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Abstract

Pathogens that are harmless in one environment can cause a serious disease in another. Among host-associated bacteria, transition
between hosts can have serious consequences for animal and human health. However, much remains unknown about how adaptation
shapes bacterial distribution in the wild. Here, investigating the ecological genomics of Escherichia coli from diverse hosts and
environments, we address the idea that bacteria disperse freely, and challenge the “everything is everywhere” paradigm. Using
comparative genomics and parallelised high throughout pangenome-wide association studies (900 experiments) we investigate lineage
distribution and identify adaptive genomic signatures associated with host species, physiology and ecology. Our findings provide
insights into bacterial niche adaptation, emphasize the impact of agriculture on microbial evolution, and inform One Health frameworks

by linking genomics, host ecology, and the emergence of antimicrobial resistance.
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Introduction

Bacteria inhabit almost every environment on Earth and studying
their distribution reveals the nature of life’s adaptability. Among
the bacteria, Escherichia coli stands out as the best understood
species in terms of the genetics underlying adaptation. This is
largely because of decades of research as a model laboratory
organism [1, 2], but little is known about how adaptation influ-
ences spatial distribution patterns in the wild: this is influenced
by a combination of ecological and biogeographical factors, with
the latter emphasizing how isolation drives diversification. Physi-
cal isolation has long been considered important in driving speci-
ation, including by Darwin [3], but in microbes it has been largely
perceived as unimportant due to their widespread dispersal and
vast populations. This view has been summed up as “every-
thing is everywhere, but the environment selects” [4], meaning
that all microbes exist globally, but only thrive where conditions
suit them. However, recent genomic studies reveal that bacteria
can exhibit biogeographic patterns [5-7] and localized adaptation
[8,9], challenging the idea of universal dispersal and revealing the
importance of niche adaptation.

Bacterial adaptation has been well characterized in long-term
laboratory passage experiments, demonstrating the nature and
rate of E. coli evolution in laboratory culture media [10], but

adaptation is much more complex in vivo. When colonizing the
gut of warm-blooded animals, the natural habitat of E. coli, bac-
teria face challenges linked to host immune defenses, a complex
nutritional environment, and competition with other bacteria. In
this natural host milieu, observing bacterial population genetic
structuring can reveal adaptation at different levels of organiza-
tion. For example, in populations of Staphylococcus aureus, different
lineages are restricted to specific birds and mammal hosts [11].
Conversely, in Campylobacter jejuni, some lineages are common to
multiple livestock bird and mammalian hosts, but are distinct
from those found in wild birds [12-14]. This is consistent with
adaptation occurring at both the level of host species and at a
higher level of host ecology (livestock vs. wild).

In E. coli, there is initial support for the “everything is
everywhere” hypothesis, as deep branching phylogroups can
be observed on phylogenetic trees. However, although some are
associated with environmental isolates or clinical infection [15],
there is no clear link to host source. Adaptation to livestock
and the farm environment has been described for E. coli [16, 17],
observed as reduced E. coli diversity among domestic compared to
wild deer, and as different metabolic capabilities among strains
from wild boar compared to domestic pigs [18, 19]. Adaptation
to dietary differences has been shown to be an important factor,
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with E. coli from wild boar more likely to harbor specific iron
acquisition genes, but other factors are also important. As
intensive livestock production increases, chronic stress and local
climate have been shown to alter the microbiome of hosts [20-
23], but perhaps the best example of farm niche adaptation is the
spread of antimicrobial resistance (AMR). This is thought to result
from selection for resistance imposed by the widespread use
of antimicrobials for disease prevention, treatment, and growth
promotion [24, 25].

Most E. coli are harmless or even beneficial [26, 27] but certain
pathogenic strains cause severeillnesses in livestock and humans.
Common pathologies include diarrhea, urinary tract infections,
respiratory disease, bloodstream infections, and colibacillosis in
livestock [15, 28, 29]. As the scale of intensive agriculture increases
[30], E. coli are excreted into the environment on a massive scale,
creating numerous pathways to enter the human food chain.
For certain strains, such as E. coli 0157, zoonotic transmission
on contaminated food poses a significant risk to human health
[31]. More generally, increased opportunity for host transition has
potential to promote the emergence of new pathogenic lineages
and the spread of AMR.

Despite extensive work on E. coli population genetics, there is
little understanding of the distribution and adaptation of natural
animal host populations. There is some evidence for host asso-
ciated lineages [32], but this declines with distance and so may
reflect transmission opportunity rather than true host adaptation
[33-35]. It may also be the case that lineages reflect a higher
organizational level such as adaptation to host gut physiology
(monogastric vs. ruminant vs. bird) [36, 37], or even the broader
ecology of farmed vs. wild animal niches. Here, analyzing the
ecological genomics of E. coli isolated from various animal host
species we address the pervasive, and perhaps mis-informed,
“everything is everywhere” aphorism. This work improves our
understanding of niche adaptation and bacterial dispersal and
provides a quantitative basis for One Health frameworks.

Material and methods
E. coli isolate genomes

A total of 5259 E. coli genome assemblies were retrieved from pub-
lic databases, including the PATRIC database [38] and PubMLST
[39]. Initially, all genomes isolated from animal sources were
selected and their associated metadata were downloaded and
assemblies with a sequencing depth < 30 were removed. Only iso-
lates from gastrointestinal sources were included and those from
food products, such as chicken, pork or beef meat were excluded.
To ensure E. coli taxonomy was correctly assigned, ribosomal-
MLST species identification was applied to the genomes [40].
Finally, to ensure quality control, a Neighbor-Joining tree was
constructed based on a MASH-generated distance matrix, incor-
porating sequence data from all samples, to manually remove
outliers, using rapidNJ (version 2.3.2, default parameters) [41].
The assemblies of 5259 E. coli isolates that met these criteria
were downloaded and deposited in the PubMLST E. coli database
(Supplementary Table S1).

Pan-genome archiving and phylogenetic
reconstruction

Coding sequences were identified in each genome by automated
annotation using Prokka (version 1.13; default parameters) [42].
Panaroo (version 1.2.10; moderate clean-mode) [43] was used to
identify clusters of orthologous genes (COGs). COGs shared by
>95% of isolates were classified as part of the core genome, and

the accessory genome included all other COGs present in at least
one isolate. Additional scripts provided by Panaroo were used
to reannotate the gff annotation files of isolates based on gene
annotations assigned by Panaroo.

The pan-genome size was predicted for isolates belonging to
each source and phylogroup based on the number of unique
gene clusters identified by Panaroo. The pan-genome size was
predicted for a population size of 100 isolates per source. However,
to account for variation in phylogenetic distance caused by biased
sampling within each source, we applied the following model,
proposed by Park et al. [44]:

logn; ~ fo + B11og (D; + 1) + B2 logN;

where N is the number of genomes, D is the sum of branch
lengths calculated from a core-genome phylogeny and n is the
pan-genome size. The scientific computing module of Python,
scipy.optimize.curve_fit was used to optimize parameters to fit the
model with the observed values using the nonlinear least squares
method. The model was applied to 100 random samples of 100
genomes per source (Supplementary Table S4).

When considering the phylogenetic distance between isolates,
the PIRATE pan-genome pipeline (version 1.0.4; default parame-
ters) [45] was used to produce a core-genome alignment (length:
3314331 base pairs) by concatenating the genes shared by >95%
of isolates. The phylogenetic relationship between isolates was
inferred from core-genome alignments by maximum-likelihood
using RAXML (version 8.0.0; GTRGAMMA model of substitution)
[46]. The maximum-likelihood phylogeny and core-genome align-
ment were provided as input for ClonalFrameML (version 1.12;
default parameters) [47], which was used to reconstruct the phy-
logeny whilst masking the effect of recombination taking place
within the core genome.

Pangenome-wide association studies

Bacterial populations vary greatly in their genetic content, and
we aimed to capture all the genetic variation present within
the population of 5259 E. coli isolates, including variation in the
accessory genome, and infer adaptation of E. coli. To achieve this,
we used a unitig k-mer definition of sequence variation. Unitigs
are variable length k-mers extracted from a compressed de Bruijn
graph constructed from the population assemblies [48]. Multiple
genome-wide association studies were performed to screen for
associations across the three phenotypic classifications: host
ecology, host species, and host physiology. Specifically, using
elastic net regression models implemented in Pyseer (version
1.3.6) [49], we assessed the correlation of k-mers with nine
sources: (i) livestock, companion and wild animals; (ii) pigs,
cattle, and chicken; (iil) monogastric mammals, ruminants, and
birds. In addition, a pairwise distance matrix derived from the
phylogeny of each sample group was used to derive weighted
P values.

To mitigate bias caused by covariates, we implemented an iter-
ative random sampling procedure using custom python scripts.
Each source underwent 100 separate GWAS experiments, each
comparing 100 source-specific isolates to 100 control isolates.
The selection of isolates was randomized, except for stratification
by source. This approach was designed to maximize phenotypic
variation in the control group and reduce the rate of false-positive
associations caused by sources that are overrepresented in our
dataset, but also ensured comprehensive coverage of all genetic
variation present within the pan-genome.
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Figure 1. Niche organization of animal-derived E. coli isolates. Genomes from 5259 E. coli were sampled from 31 host species and 58 countries. Isolates
were divided into nine source categories based on the ecology of their host organism: (A) livestock, companion, and wild; (B) chicken, cow and pig; (C)

birds, ruminants and monogastric mammals.

Statistical significance was determined using a Bonferroni
correction based on the average number of k-mers tested in
each experiment to negate the influence of population structure.
Significant k-mers were mapped to the pan-genome using
the BWA Fastmap and MEM algorithms (version 0.7.17) [S0].
Functional annotation of genes was automatically assigned based
on sequence orthology using eggNOG-mapper (version 2.1.11) [51].
Plasmid associated genes were defined as all genes located on a
plasmid sequence identified using MOB-suite [52]. Significant k-
mers identified by GWAS underwent further association tests
to determine their significance within the entire population.
The specificity, sensitivity and Cramer’s V statistic were used
to determine the strength of association between k-mers and
each of the niche categories. The scientific computing module
of Python, “scipy.stats.chi2_contingency” was used to calculate
the chi-squared statistic and Cramer’s V was computed by taking
the square root of this value, divided by the sample size and
the minimum number of dimensions shared by the nominal
data minus 1. Niche segregating k-mers included those with a
specificity >60%, sensitivity >25%, and Cramer’s V >0.1 in at
least one niche category.

Source attribution model

The elastic net model, implemented in Pyseer [49] is a generalized
linear regression model that can be used to predict phenotypes in
new populations. For each niche category an elastic net model was
generated based on the distribution of niche-segregating k-mers
and used to predict the source of isolates in a novel dataset.

The first stage of source attribution involved dividing the origi-
nal collection of E. coli genomes (training dataset, n=5259) into two
groups; 75% of isolates were assigned to a training population and
25% of isolates were assigned to a test population. Strains were
split into each group randomly except for stratification by source
to ensure that all niche categories were present in both datasets.
For each niche category, the presence of niche-segregating k-mers
was used to fit an elastic net model to the training population.
The fitted models were subsequently used to predict the source of
isolates in the test population. As the true source of these isolates
was known, sensitivity and specificity scores were calculated to

quantify the ability of each model to correctly assign isolates to
each niche category.

The second stage of source attribution involved re-training the
models by including all isolates (n =5259) in the training dataset.
The prediction accuracy was assessed using a new dataset com-
posed of previously undiscussed isolates. This validation dataset
was composed of E. coli genomes reported in research by Tiwari
etal. [19],and included 226, 256, and 2401isolates from chicken, cat-
tle, and pig hosts, respectively. The short-read data for 722 isolates
were downloaded using the NCBI SRA Toolkit, adapter sequences
were removed using Trimmomatic (version 0.39, default param-
eters) [53] and draft genome assemblies were assembled using
SPAdes (version: 3.14.1, default parameters) [54].

Results

Escherichia coli isolates can be assigned to three
levels of niche organization

Genomes of 5259 E. coli isolates, collected from 31 host species
across 58 countries between 1947 and 2019, were analyzed
to represent the global diversity of animal-derived E. coli
(Supplementary Table S1). Escherichia coliisolates were assigned at
three levels of niche organization: (i) “Ecology”, livestock (n=4619),
companion (n=223), and wild (n=417); (ii) “Species”, chicken
(n=807), cattle (n=2228), pig (n = 1043), and other (n=1181); (iii) gut
“physiology”, bird (n=1178), ruminant (n=2562), and monogastric
mammals (n=1506). This sample-phenotype structuring allowed
identification of genomic factors influencing E. coli adaptation at
three different levels (Fig. 1).

Escherichia coli isolates from livestock animals represent the
largest ecological environment investigated, with cattle, chickens,
and pigs accounting for 88% of the 4619 livestock isolates. Wild
animals encompassed 22 nondomesticated species and therefore
are the most diverse category. In contrast to livestock, which
occupy a specific ecological niche and have little contact with
other species, wild animals inhabit natural environments with
minimal human intervention and complex interspecies inter-
actions. We also included a discrete category for companion
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animals, including dogs and cats, which reflects their unique
human-associated lifestyle, distinct from that of the other groups.

Three distinct gut morphologies were present among the host
species analyzed. Ruminants, including cattle, sheep, and deer,
possess four-chambered digestive systems specialized in digesting
fibrous plant material through microbial fermentation. Birds pro-
cess a varied diets and have unique digestive systems comprising
a muscular crop, glandular stomach (proventriculus), and a spe-
cialized grinding organ (gizzard). Finally, monogastric mammals,
including pigs, horses, and most other nonruminant mammals,
have a simpler single-chambered stomach followed by intestines.
However, even within this group gut morphology varies signifi-
cantly between species, reflecting their respective dietary adap-
tations. Beyond physiology, ecological niche (domestic or wild)
strongly influences diet and therefore the gut microbiome may
vary considerably even within the same host species.

Variable geographical distribution was observed among the
three levels of niche organization. For example, most E. coli iso-
lated from domestic mammals originated from North America
(n=1527) or Asia (n=1147). This bias is driven by ruminant associ-
ated samples, which predominantly originated in North America
(n=1270). Conversely, samples associated with monogastric mam-
mals were of approximately equal origin between North America,
Europe, Asia, and Oceania. There were only a few (n=15) E. coli
isolates from Africa, highlighting the under-representation of the
region in genomic datasets [55, 56].

Everything is everywhere: convergent ecology in
divergent E. coli

Using a Neighbor-Joining (NJ) tree, constructed from a MASH-
generated distance matrix, we identified eight distinct phylo-
genetic lineages corresponding to the established phylogroups
A (n=1595), B1 (n=2255), B2 (n=153), C (n=225), D (n=191),
E (n=572), F (n=136) and G (n=132) (Fig.2A). Maximum-
likelihood phylogenies of core genome alignments for individual
phylogroups revealed a high degree of population structure,
particularly in phylogroups A and B1. Importantly, all major
phylogroups were represented in each of the niche categories
investigated, suggesting a lack of consistent patterns linking
deep-branching lineage structure with particular host species
or ecology (Fig. 2C and D). Notwithstanding, some phylogroups
were overrepresented in some niche categories. For instance, 56%
(1248/2228) of cattle isolates belonged to phylogroup B1, whereas
41% (63/153) of phylogroup B2 isolates were sampled from wild
sources, and 64% (87/136) of phylogroup F isolates were sampled
from birds.

Accessory genome variation underpins niche
segregation

Pan- and core-genomes of all isolates were constructed based
on COGs. The average number of genes per isolate was 4853 (SD
299). The total pangenome consisted of 51 205 COGs, with a core
genome containing 3049 genes shared by >95% of isolates. In
addition, we quantified the core and accessory genome for each
phylogroup and niche category (Fig. 3A and B, Supplementary
Table S2 & S3). In all cases we observed an open pangenome, as
expected for E. coli [S7, 58].

Phylogroups A and B1 have the largest pangenomes, correlating
with their sample size, with 35892 and 36 856 genes, respectively.
Regarding the niche categories, livestock-derived isolates dis-
played the largest pangenome, encompassing 91% (46 456/51 205)
of all genes, whereas isolates from companion sources had the
smallest pangenome at 42% (21385/51205). The size of the core

genome for each niche category differed by a maximum of 204
genes (range: 2964-3168). This level of consistency suggests
that sampling was sufficient to capture general trends in core
and accessory genome variation. To account for variations in
phylogenetic distance from biased sampling, we used a model to
predict the pan-genome size for a population size of 100 isolates
per niche category [44] (Supplementary Table S4). Although
prediction based on 100 isolates underestimated pangenome
size, they followed the same trend as in the full dataset with
the smallest and largest accessory genomes found in companion
and livestock animals, respectively.

The core genome of E. coli isolates was remarkably similar
between phylogroups or niche categories (Fig. 3C). Between 79%
and 90% of core genes were conserved across phylogroups. Iso-
lates from chickens, cattle, and pigs share up to 95% of their
core genes. In contrast, the accessory genome varied considerably
between phylogroups and niche categories. Isolates from different
phylogroups shared some accessory genome content, ranging
from 29% to 63%. The proportion of accessory genes shared by
isolates from different niche categories ranged from 44% to 96%.
Complementary niche categories, such as chicken and bird, were
the most similar. For example, E. coli from ruminants and cattle
shared 96% of their accessory genome, meaning that additional
ruminant isolates (sheep and deer) only marginally contribute to
the pangenome content already present in cattle isolates. It is
expected that the number of accessory genes identified will relate
to the number of isolates sampled. However, even if there is biased
sampling, the shape of the gene discovery curve (Fig. 3A) provides
information about the diversity of strains within a given niche.
Our findings suggest some consistency in core genome content
between E. coli derived from different sources, whereas variation in
the accessory genome is strongly associated with host adaptation
and niche segregation.

Multiple parallel pangenome-wide association
studies reveal ecological adaptations

A total of 100 pangenome-wise association studies were con-
ducted in parallel for each of the nine niche categories to iden-
tify adaptive signatures in the genome (900 experiments). In
every case, variable length unitig k-mers from the pangenome
of 200 randomly sampled isolates were tested for their associa-
tion with the niche of interest, and significance was determined
using a Bonferroni corrected threshold of -logi(P)=7.5, averaged
across experiments. In total, 157 652 k-mers exceeded the thresh-
old for significance (Fig. 4A; Supplementary Table S5, FigShare
10.6084/m9.figshare.30543260). Host species association experi-
ments revealed the largest number of hits, with 25558 significant
k-mers mapping to 1726 unique genes, of which 1273, 1176, and
335 genes mapped to chickens, cattle, and pigs, respectively. In
comparison, the physiology and ecology association experiments
produced far fewer hits: 5311 and 1396 significant k-mers, which
mapped to 1105 and 412 genes, respectively (Fig. 4C).

In pilot experiments, host species-associated genetic varia-
tion dominated over gut physiology categories. For example, 40%
(6079/15 326) of bird gut associated genetic elements were previ-
ously identified by chicken GWAS experiments, and these variants
had a greater association with chicken isolates than isolates from
non-chicken birds. Therefore, to account for this host species
dominance, chicken, cattle, and pig isolates were excluded from
our gut physiology association experiments. The significant k-
mers from all experiments were combined and tested for their
niche category associations across the entire E. coli pangenome.
From a total of 157 652 k-mers that exceeded the P value threshold
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Figure 2. Phylogeny reveals that E. coli phylogroups do not segregate by host species, physiologies, or ecology. (A) NJ tree representing a MASH
generated distance matrix of 5259 E. coli isolates. Bar charts show (B) the number of isolates per phylogroup and stacked bars with the proportion of
isolates per phylogroup divided by niche categories: (C) ecology, (D) host species, (E) physiology.

of —logio(P)=7.5, 20011 k-mers had a specificity >60%, sensi-
tivity >25%, and Cramer’'s V >0.1, in at least one niche cat-
egory. These niche-segregating k-mers included 12687, 14 280,
and 12420 sequences associated with the species, physiology,
and ecology categories, mapped to 1460, 1485, and 1445 genes,
respectively.

A total of 1726 unique genes across the E. coli pangenome
show variation associated with at least one niche category. This
includes 5% (144/3049) of core genes, which account for 5%
(907/20011) of niche-segregating k-mers. Comparatively, just 3%
(1582/48 156) of accessory genes show variation, but account
for 70% (14051/20011) of niche-segregating k-mers, supporting
accessory genome variation as the primary driver of niche
association in E. coli. Furthermore, 58% (11711/20011) of niche-
segregating k-mers mapped to plasmid sequences. This contrasts
with comparable analyses in Campylobacter [59], Helicobacter
[60], and Staphylococcus [61], whereby variation in chromosomal
sequence is responsible for host associated adaptation. In E.
coli, plasmids act as successful backbones for adaptation, such
as promoting antibiotic resistance and enhancing bacterial
competition, driving phenotypic evolution independently of the
chromosomal genetic background [62].

Escherichia coli isolates can be attributed to the
correct source based upon host segregating
genetic variation
The degree to which source associated genetic variation segre-
gates is a measure of genetic cohesion allowing isolates to be
attributed to a source population. Here, we use elastic net linear
regression machine learning models to attribute E. coli isolates
to their source based on the presence of niche-segregating k-
mers. Our curated dataset of 5259 E. coli was randomly parti-
tioned into two datasets, one containing 75% of isolates (the
training dataset), and the other containing 25% of isolates (the
test dataset). For each niche category, the distribution of niche-
segregating k-mers across the training dataset was used to con-
struct a source-attribution model using the -wg option in Pyseer
[49]. The accuracy of each model was evaluated by comparing
the model’s niche predictions for the test dataset with their
true sample origins. This self-attribution was conducted for the
three levels of niche organization (host, physiology, and ecology)
(Fig. SA).

A total of 75% (772/1020) of E. coli isolates were correctly
assigned to their host source (chicken, cattle, or pig). Model
sensitivity was calculated as the number of true positives divided
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by the sum of true positives and false negatives, multiplied by negatives and false positives, also expressed as a percentage.
100 to express it as a percentage. Specificity was calculated The cattle model had the highest sensitivity (87%; 486/557) but
as the number of true negatives divided by the sum of true lower specificity (92%; 694/756) than the chicken and pig models
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Figure 5. Elastic net regression model predictions of E. coli host niche. (A) Self-attribution of E. coli (i) sensitivity and specificity of niche models; (ii)
lineage effects of niche models measured using Wald-test. (B) Validation source-attribution of E. coli: (i) mutual information between niche-segregating
k-mers for chicken, cattle, and pig niches; (ii) host species predictions made by niche models for isolates sourced from chicken, cattle, and pig isolates;
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incorrectly; (iv) E. coli isolates were divided into either specialist (those that were correctly attributed to their host niche) or generalist (those that were
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(98% specificity; 1089/1111 and 1030/1052, respectively). This
likely reflects the prevalence of cattle-associated genetic variants
in non-cattle sources. Self-attribution based upon physiology
correctly classified 65% of bird (60/93) and ruminant (55/84),
but only 28% (33/116) of monogastric isolates (Supplementary
Fig. S1). The model’s ability to identify E. coli isolated from chicken,
cattle, or pig sources was low—21% (43/202), 10% (58/557), and
3% (9/261), respectively. Applying host models to corresponding
physiological groups gave true-positive rates of 27% (25/93) for
birds, 19% (16/84) for ruminants, and 6% (7/116) for monogastric
animals. Self-attribution based upon ecologically segregating k-
mers assigned 98% (1050/1061) of livestock isolates correctly, but
just 40% (41/102) of wild and 8% (4/50) of companion animal
isolates. Companion isolates shared more genomic variation with
livestock (82%; 41/50) than wild sources (58%; 59/102).

Variation within phylogroups significantly influenced model
predictions (Wald test), with lineage effects reflecting niche distri-
bution (Fig. SA). Livestock and wild models showed nearly identi-
cal lineage patterns, but the strongest ecological signals appeared
in phylogroups B2 and F, suggesting wild-derived variation is
most informative. Mutual information analysis (Fig. 5B) further
revealed that k-mer patterns associated with the cattle niche
exhibited the highest discriminatory power, indicating a greater
dependence of genomic variation on cattle-associated E. coli com-
pared to those from chicken or pig sources.

Model validation revealed robust genomic host
associated genomic variation

To validate predictive ability, we tested host models on an inde-
pendent set of 722 E. coli isolates. Host source was assigned based
on the highest probability across chicken, cattle, and pig mod-
els. Overall accuracy was 71% (513/722), with greatest sensitivity
in the cattle model at 96% (246/256), followed by pig at 60%
(144/240), and chicken at 54% (123/226) (Fig. 5B). As in training,
the cattle model showed the lowest specificity at 68% (318/466),
misclassifying 55 chicken and 93 pig isolates. The pig model also
misassigned 55 isolates, mostly from chickens. The chicken model
had the highest specificity at 98% (460/466), misclassifying only
six isolates.

To further understand variation in prediction accuracy, isolates
were classified as “specialists”, where source was confidently
determined based on the distribution of niche-segregating k-mers,
and generalists where it cannot (Fig. 5B). Specialists shared more
segregating k-mers with their respective host model than gener-
alists. In contrast, generalist isolates from different host species
shared similar, lower numbers of model k-mers. This pattern was
consistent across all three models. Finally, mapping predictions
onto a maximum-likelihood phylogeny (Supplementary Fig. S2)
showed generalists were not confined to specific lineages but
scattered across the tree. This suggests misclassifications stem
from the genomic similarity of generalist isolates to non-source
host profiles, rather than poor predictive power within specific
lineages. Instead, the lower k-mer sharing and broader distribu-
tion of generalists may reflect recent host transitions or inherent
flexibility in niche adaptation.

Ecological and physiological adaptations
dominated in birds and ruminants respectively

As shown in our self-attribution experiments, sufficient genetic
variation exists to classify E. coli isolates to bird and ruminant
physiological niches. To explore the nature of these adaptations,
we examined the distribution of niche-segregating k-mers using
Cramer’s V to quantify association strength between variants

and host categories (Fig. 6). Comparing k-mer effect sizes between
physiological (bird or ruminant) and ecological (livestock or wild)
niches reveals distinct patterns of adaptation. In birds, most k-
mers show significant associations with both bird and chicken
niches (Fig. 6A). However, many of these k-mers are strongly asso-
ciated with chickens but only weakly with birds, whereas the
reverse is rare. This asymmetry suggests that adaptation to birds
is dominated by ecological traits specific to chickens, rather than
avian physiology. In contrast, most k-mers associated with the cat-
tle niche also show strong associations with the broader ruminant
niche, supporting the idea that E. coli adaptation to ruminants is
driven primarily by host physiology.

Further evidence comes from comparing bird-associated vari-
ants across species (Fig. 6B). Of 2173 k-mers associated with chick-
ens, 92% (1997/2173) are shared with domestic turkeys but only
6% (139/2173) with wild birds. Similarly, 57% (205/361) of wild bird-
associated k-mers are not found in domestic birds, reinforcing the
dominant role of shared livestock ecology (chicken and turkey),
rather than physiology in driving adaptation. Contrastingly in
ruminants, 4343, 4400, and 2741 ruminant-segregating k-mers
were associated with cattle, sheep/goat, and deer, respectively,
with 57% (2604/4537) shared across all three. This widespread
overlap across wild and domestic hosts suggests that physiology,
rather than ecology, is the principal driver of adaptation in rumi-
nants.

Discussion

Evolutionary theory predicts that organisms in isolated niches
will diversify from the ancestral population, giving rise to niche
associated lineages, and ultimately new species. Where multiple
lineages occupy the same niche, they will compete, and one
ecotype will prevail [8, 63]. Based on this model, one would expect
to observe niche associated E. coli lineages. However, consistent
with previous work, we found that all major E. coli phylogroups
were observed in all niche categories investigated here. Therefore,
it may be reasonable to conclude that “everything is everywhere”,
at least at the level of phylogroup. This may seem to contract the
ecotype model but there are several explanations for the ubiquity
of phylogroups. First, there may be multiple non-competing sub-
lineages within the phylogroups that occupy different subniches
within the host gut [64]. Second, continuous niche transitions,
within and between hosts, may give rise to a dynamic system with
ongoing colonization events, disrupting direct lineage competition
[65]. Third, sub-lineages may adapt by horizontally acquiring
niche specifying genes before they are outcompeted [28, 66].

The absence of clear host-associated lineage structure is con-
sistent with relatively recent, and ongoing, host-transition. When
bacteria transition between hosts they adapt to the new niche,
and, importantly, the most beneficial adaptations will increase
most rapidly in the pioneer population [67]. This fundamental
principal, that guided the first formal bacterial GWAS [59], means
that the most strongly niche-associated genetic elements will
likely be linked to adaptation driven by selection, rather than
genetic variation that has evolved through drift in allopatry. One
may expect E. coli, adaptation to be dominated by the acquisi-
tion of mobile genetic elements [28, 68], particularly as plasmids
enable the simultaneous acquisition of multiple beneficial traits.
However, as putative plasmid genes were defined by reference to
a database using the annotation tool [52], only k-mers match-
ing previously described plasmids were identified as such. This
may lead to underestimation of plasmid genes. We also iden-
tified a number of phage integrase and transposon machinery
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genes associated with specific hosts, which could further drive
rapid transfer of genetic material. This “plug and play” ability
could explain how divergent lineages colonize the same host
niche. However, although numerous k-mers did map to plasmid
borne genes, our pangenome-wide association studies revealed
the importance of niche-specifying alleles, rather than just simple
gene presence, consistent with a mosaic of core and accessory
genome elements driving niche adaptation.

Parallelized pangenome-wide association studies (900 in silico
experiments) revealed genomic variation linked to all nine niche
categories. The putative function of genes with host segregating
variation give clues about the specific adaptations to that host or
niche. There were a total of 16 984 chicken associated k-mers that
mapped to 58 genes. The most significant variation was detected
in icsA, encoding a surface protein that facilitates intra/intercel-
lular motility of E. coli by nucleating actin filaments at one pole of
the bacterium to form an “actin rocket”, a phenotype associated
with entero-invasive E. coli. IcsA also functions as an adhesin
which promotes invasion into host epithelial cells [69, 70]. Other

invasion effector genes, such as the proteases sepA, hbp, espP, and
ompT were also associated with the chicken niche. Multiple toxin-
antitoxin (TA) systems were associated with chicken adaptation,
including relBE, mazEF, and yafNO, which inhibit protein synthesis
in response to stress [7/1-73]. The CbeA-CbtA TA system, involved
in cytoskeletal remodeling and antibiotic resistance, was also
chicken-associated. Together, variation in these virulence and TA
genes suggests chicken adaptation involves altered invasion and
stress response phenotypes.

Host diet may also be an important factor for gut coloniza-
tion. Chicken associated genetic variation was observed in the
plasmid-borne raf operon, which enables uptake of raffinose,
a non-digestible galacto-oligosaccharide that can constitute up
to 10% of soybean meal, the primary protein source in poultry
feed, and impacts the chicken gut microbiota [74]. lacY, encoding
lactose permease, had similar variation [75].These genes indicate
adaptation to diet, but chicken associated genetic variation was
also linked to AMR. Specifically, the fosA and mcr-1 genes, linked
to fosfomycin and colistin resistance respectively [76, 77], were
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present in ~20% of all chicken E. coli isolates compared to 4%-
8% from other sources. Although the isolates in our study are not
from a structured survey, these findings are consistent with other
studies [78] and may be related to the use of these antimicrobials
to treat enteric infections in broiler chickens. For these host-
associated genes, plasmid carriage may enhance colonization
success in addition to facilitating resistance.

In E. coli isolated from cattle, many of the most significantly
host associated genes were linked with virulence and the Shiga
toxin-producing strain of E. coli 0175 that causes severe foodborne
infections in humans. These included: the hyl locus, encoding «-
hemolysin, which lyses erythrocytes and is common in invasive
strains [79, 80]; shIB and hbp, linked to red blood cell lysis and
intra-abdominal infections; sepA, derived from Shigella and co-
associated with cattle associated hemolysins [81, 82]; espP, encod-
ing an extracellular serine protease essential for cattle coloniza-
tion by E. coli O157:H7 [83]. This suggests E. coli adapted to the
cattle niche have a modified ability to acquire iron and other
nutrients from erythrocytes.

In comparison to chickens and cattle, genetic variation
associated with pigs lacked putative virulence and toxin genes
but included several AMR genes. These included bcr, bla, and
tetR, linked to bacitracin, beta-lactam, and tetracycline resistance,
respectively. The strongest pig associated variation was in the sil,
cus, and cop operons, which confer resistance to silver and copper.
These metals are widely used as biocides in veterinary settings,
with copper specifically used as a growth promoter in pig farming
[84, 85]. Exposure has resulted in resistant E. coli via inducible
efflux systems such as sil and cus [86-89]. This is particularly
problematic as metal and antibiotic resistance genes often co-
occur on plasmids. Therefore, exposure to metals may co-select
for AMR, as seen with dietary zinc [90] and the sil genes, which
are over-represented in extended-spectrum beta-lactamase
producing E. coli [91]. Taken together, resistance to antimicrobial
metals appears to be an important factor in adaptation to the pig
niche and may bring the risk of co-acquired antibiotic resistance.

Specific phenotypic adaptations to particular hosts give rise to
genetic variation that consequently segregate by host. These are
the adaptive genomic signatures that are flagged by GWAS, but
this genetic variation can also be used to attribute the origin of
particular strains [92-95]. This simple principal underlies various
source attribution models [96, 97] but the degree of host segre-
gation is also informative for understanding population struc-
ture. The ability to attribute E. coli isolates to their correct host
niche varied with some “specialist” E. coli genotypes showing evi-
dence of specific adaptations and host segregation whereas other
genotypes appeared to have host generalist ecology, indicating
a greater propensity for host transition. Identifying significant
host segregating k-mers was less likely among putative gener-
alists for multiple reasons. First, k-mers with low P values in
relation presence/absence are excluded in the elastic net linear
regression model where they do not add values to improve model
performance (i.e. redundancy due to multicollinearity). Second, k-
mers that are adapted to an unsampled host or were transiently
present in their non-preferred hosts at the point of sampling will
be wrongly associated with this host. Both of these observations
imply that there is no absolute physical barrier to host switching,
consistent with the “everything is everywhere” aphorism.

Nonetheless, host physiology and ecology do represent impor-
tant barriers to colonization. We found clear evidence that E. coli
adapt to the ruminant gut in the same way in both domestic and
wild hosts, with cattle, sheep, goat, and deer all sharing a high
proportion of ruminant-associated k-mers, despite their diverse
ecology (Fig. 6B). Conversely, among E. coli isolated form birds, host

ecology was a stronger predictor, with domesticated birds sharing
more associated k-mers than with their wild counterparts, despite
their common physiology. Although wild animals have diverse
ecologies, livestock typically share ecological traits including high
stocking density, a consistent diet, low genetic variation, and expo-
sure to antimicrobials. This complexity in host natural history
may explain why E. coli adaptations can be driven by both host
physiology and ecology.

In conclusion, we describe an ecological landscape for E. coli
that involves ongoing host transition, consistent with traditional
explanations of bacterial population biology [4]. Successful col-
onization is associated with a mosaic of adaptions across the
entire pangenome. The hierarchical GWAS approach identified
candidate adaptive genes at three levels of organization, demon-
strating the advantage over a reductive single-level comparison.
This approach was made possible through the utilization of pub-
licly available genomes, ensuring a sample size large enough to
identify robust associations. It is acknowledged that the underly-
ing sampling bias cannot be excluded as public E. coli genomes
are often sampled in the context of specific projects or out-
break investigations. However, our ecological genomics approach
provides valuable high-level information about the evolutionary
forces that shape natural E. coli populations and zoonotic bacteria
more generally. This addresses long-standing questions about
bacterial biogeography, but also provides a quantitative basis for
considering the transmission of zoonotic bacteria that is essential
for improved animal welfare and food safety.
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