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Abstract 
Pathogens that are harmless in one environment can cause a serious disease in another. Among host-associated bacteria, transition 
between hosts can have serious consequences for animal and human health. However, much remains unknown about how adaptation 
shapes bacterial distribution in the wild. Here, investigating the ecological genomics of Escherichia coli from diverse hosts and 
environments, we address the idea that bacteria disperse freely, and challenge the “everything is everywhere” paradigm. Using 
comparative genomics and parallelised high throughout pangenome-wide association studies (900 experiments) we investigate lineage 
distribution and identify adaptive genomic signature s associated with host species, physiology and ecology. Our findings provide
insights into bacterial niche adaptation, emphasize the impact of agriculture on microbial evolution, and inform One Health frameworks
by linking genomics, host ecology, and the emergence of antimicrobial resistance.
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Introduction 
Bacteria inhabit almost every environment on Earth and studying 
their distribution reveals the nature of life’s adaptability. Among 
the bacteria, Escherichia coli stands out as the best understood 
species in terms of the genetics underlying adaptation. This is
largely because of decades of research as a model laboratory
organism [1, 2], but little is known about how adaptation influ-
ences spatial distribution patterns in the wild: this is influenced 
by a combination of ecological and biogeographical factors, with 
the latter emphasizing how isolation driv es diversification. Physi-
cal isolation has long been considered important in driving speci-
ation, including by Darwin [3], but in microbes it has been largely 
perceived as unimportant due to their widespread dispersal and 
vast populations. This view has been summed u p as “every-
thing is everywhere, but the environment selects” [4], meaning 
that all microbes exist globally, but only thrive where conditions 
suit them. However, recent genomic studies reveal that bacteria
can exhibit biogeographic patterns [5–7] and localized a daptation
[8, 9], challenging the idea of universal dispersal and revealing the 
importance of niche adaptation.

Bacterial adaptation has been well characterized in long-term 
laboratory passage experiments, demonstrating the nature and 
rate of E. coli evolution in laboratory culture media [10], but 

adaptation is much more complex in vivo. When colonizing the 
gut of warm-blooded animals, the natural habitat of E. coli,  bac-
teria face challenges linked to host immune defenses, a complex 
nutritional environment, and competition with other bacteria. In 
this natural host milieu, observing bacterial population genetic 
structuring can r eveal adaptation at different levels of organiza-
tion. For example, in populations of Staphylococcus aureus, different
lineages are restricted to specific birds and mammal hosts [11]. 
Conversely, in Campylobacter jejuni, some lineages are common to 
multiple livestock bird and mammalian hosts, but are distinct
from those found in wild birds [12–14]. This is consistent with 
adaptation occurring at both the level of host species and at a 
higher level of host ecology (livestock vs. wild).

In E. coli, there is initial support for the “everything is 
everywhere” hypothesis, as deep branching phylogroups can 
be observed on phylogenetic trees. Howev er, although some are
associated with environmental isolates or clinical infection [15], 
there is no clear link to host source. Adaptation to livestock 
and the farm environment has been described for E. coli [16, 17], 
observed as reduced E. coli diversity among domestic compared to 
wild deer, and as different metabolic cap abilities among strains
from wild boar compared to domestic pigs [18, 19]. Adaptation 
to dietary differences has been shown to be an important factor,
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with E. coli from wild boar more likely to harbor specific iron 
acquisition genes, but other factors are also important. As 
intensive livestock production increases, c hronic stress and local
climate have been shown to alter the microbiome of hosts [20– 
23], but perhaps the best example of farm niche adaptation is the 
spread of antimicrobial resistance (AMR). This is thought to result 
from selection for resistance imposed b y the widespread use
of antimicrobials for disease prevention, treatment, and growth
promotion [24, 25]. 

Most E. coli are harmless or even beneficial [26, 27] but certain 
pathogenic strains cause severe illnesses in livestock and humans. 
Common pathologies include diarrhea, urinary tract infections, 
respiratory disease, bloodstr eam infections, and colibacillosis in
livestock [15, 28, 29]. As the scale of intensive agriculture increases 
[30], E. coli are excreted into the environment on a massive scale, 
creating numerous pathways to enter the human food chain. 
For certain stra ins, such as E. coli O157, zoonotic transmission
on contaminated food poses a significant risk to human health
[31]. More generally, increased opportunity for host transition has 
potential to promote the emergence of new pathogenic lineages
and the spread of AMR.

Despite extensive work on E. coli population genetics, there is 
little understanding of the distribution and adaptation of natural 
animal host populations. There is some evidence for host asso-
ciated lineages [32], but this declines with distance and so may 
reflect transmission opportunity rather than true host adaptation
[33–35]. It may also be the case that lineages reflect a higher 
organizational level such as adap tation to host gut physiology
(monogastric vs. ruminant vs. bird) [36, 37], or even the broader 
ecology of farmed vs. wild animal niches. Here, analyzing the 
ecological genomics of E. coli isolated from various animal host 
species we address the pervasive, and perhaps mis-informed, 
“everything is everywhere” aphorism. T his work improves our
understanding of niche adaptation and bacterial dispersal and
provides a quantitative basis for One Health frameworks.

Material and methods
E. coli isola te genomes
A total of 5259 E. coli genome assemblies were retrieved from pub-
lic databases, including the PATRIC database [38] and PubMLST 
[39]. Initially, all genomes isolated from animal sources were 
selected and their associated metadata were downloaded and 
assemblies with a sequencing depth < 30 were removed. Only iso-
lates from gastrointestinal sources were included and those from 
food products, such as chicken, pork or beef meat were excluded.
To ensure E. coli taxonomy was correctly assigned, ribosomal-
MLST species identification was applied to the genomes [40]. 
Finally, to ensure quality control, a Neighbor-Joining tree was 
constructed based on a MASH-generated distance matrix, incor-
porating sequence data from all samples, to manually remove
outliers, using rapidNJ (version 2.3.2, default parameters) [41]. 
The assemblies of 5259 E. coli isolates that met these criteria 
were downloaded and deposited in the PubMLST E. coli database
(Supplementary Table S1). 

Pan-genome archiving and ph ylogenetic
reconstruction
Coding sequences were identified in each genome by automated 
annotation using Prokka (version 1.13; default parameters) [42]. 
Panaroo (version 1.2.10; moderate clean-mode) [43] was used to 
identify clusters of orthologous genes (COGs). COGs shared by 
>95% of isolates were classified as part of the core genome, and 

the accessory genome included all other COGs present in at least 
one isolate. Additional scripts provided by Panaroo were used
to reannotate the gff annotation files of isolates based on gene
annotations assigned by Panaroo.

The pan-genome size was predicted for isolates belonging to 
each source and phylogroup based on the number of unique 
gene clusters identified by Panaroo. The pan-genome size was 
predicted for a population size of 100 isolates per source. However, 
to account for variation in phylogenetic distance caused by biased
sampling within each source, we applied the following model,
proposed by Park et al. [44]: 

log ni ≈ β0 + β1 log (Di + 1) + β2 log N i 

where N is the number of genomes, D is the sum of branch 
lengths calculated from a core-genome phylogeny and n is the 
pan-genome size. The scientific computing module of Python, 
scipy.optimize.curve_fit was used to optimize parameters to fit the
model with the observed values using the nonlinear least squares
method. The model was applied to 100 random samples of 100
genomes per source (Supplementary Table S4). 

When considering the phylogenetic distance between isolates, 
the PIRATE pan-genome pipeline (version 1.0.4; default parame-
ters) [45] was used to produce a core-genome alignment (length: 
3314331 base pairs) by concatenating the genes shared by >95% 
of isolates. The phylogenetic relationship between isolates w as
inferred from core-genome alignments by maximum-likelihood
using RAxML (version 8.0.0; GTRGAMMA model of substitution)
[46]. The maximum-likelihood phylogeny and core-genome align-
ment were provided as input for ClonalF rameML (version 1.12;
default parameters) [47], which was used to reconstruct the phy-
logeny whilst masking the effect of recombination taking place
within the core genome.

Pangenome-wide association studies
Bacterial populations vary greatly in their genetic content, and 
we aimed to capture all the genetic variation present within 
the population of 5259 E. coli isolates, including variation in the 
accessory genome, and infer adaptation of E. coli. To achieve this, 
we used a unitig k-mer definition of sequence variation. Unitigs
are variable length k-mers extracted from a compressed de Bruijn
graph constructed from the population assemblies [48]. Multiple 
genome-wide association studies were performed to screen for 
associations across the three phenotypic classifications: host 
ecology, host species, and host physiology . Specifically, using
elastic net regression models implemented in Pyseer (version
1.3.6) [49], we assessed the correlation of k-mers with nine 
sources: (i) livestock, companion and wild animals; (ii) pigs, 
cattle, and chicken; (iii) monogastric mammals, ruminants, and 
birds. In addition, a pairwise distance matrix deri ved from the
phylogeny of each sample group was used to derive weighted
P values.

To mitigate bias caused by covariates, we implemented an iter-
ative random sampling procedure using custom python scripts. 
Each source underwent 100 separate GWAS experiments, each 
comparing 100 source-specific isolates to 100 control isolates. 
The selection of isolates was randomized, except for stratification 
by source. This approach was designed to maximize phenotypic 
variation in the control group and reduce the rate of false–positive
associations caused by sources that are overrepresented in our
dataset, but also ensured comprehensive coverage of all genetic
variation present within the pan-genome.
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Figure 1. Niche organization of animal-derived E. coli isolates. Genomes from 5259 E. coli were sampled from 31 host species and 58 countries. Isolates 
were divided into nine source categories based on the ecology of their host organism: (A) livestock, companion, and wild; (B) chicken, cow and pig; (C)
birds, ruminants and monogastric mammals.

Statistical significance was determined using a Bonferroni 
correction based on the average number of k-mers tested in 
each experiment to negate the influence of population structure. 
Significant k -mers were mapped to the pan-genome using
the BWA Fastmap and MEM algorithms (version 0.7.17) [50]. 
Functional annotation of genes was automatically assigned based 
on sequence orthology using eggNOG-mapper (version 2.1.11) [51]. 
Plasmid associated genes were defined as all genes located on a
plasmid sequence identified using MOB-suite [52]. Significant k-
mers identified by GWAS underwent further association tests 
to determine their significance within the entire population. 
The specificity, sensitivity and Cramer’s V statistic were used 
to determine the strength of association between k-mers and 
each of the niche categories. The scientific computing module 
of Python, “scipy.stats.chi2_contingency” was used to calculate 
the chi-squared statistic and Cramer’s V was computed by taking 
the square root of this value, divided by the sample size and
the minimum number of dimensions shared by the nominal
data minus 1. Niche segregating k-mers included those with a
specificity >60%, sensitivity >25%, and Cramer’s V >0.1 in at
least one niche category.

Source attribution model
The elastic net model, implemented in Pyseer [49] is a generalized 
linear regression model that can be used to predict phenotypes in 
new populations. For each niche category an elastic net model was 
generated based on the distribution of nic he-segregating k-mers
and used to predict the source of isolates in a novel dataset.

The first stage of source attribution involved dividing the origi-
nal collection of E. coli genomes (training dataset, n = 5259) into two 
groups; 75% of isolates were assigned to a training population and 
25% of isolates were assigned to a test population. Strains were 
split into each group randomly except for stratification by source 
to ensure that all niche categories were present in both datasets. 
For each niche category, the presence of niche-segregating k-mers 
was used to fit an elastic net model to the tr aining population.
The fitted models were subsequently used to predict the source of
isolates in the test population. As the true source of these isolates
was known, sensitivity and specificity scores were calculated to

quantify the ability of each model to correctly assign isolates to
each niche category.

The second stage of source attribution involved re-training the 
models by including all isolates (n = 5259) in the training dataset. 
The prediction accuracy was assessed using a new dataset com-
posed of previously undiscussed isolates. This va lidation dataset
was composed of E. coli genomes reported in research by Tiwari
et al. [19], and included 226, 256, and 240 isolates from chicken, cat-
tle, and pig hosts, respectively. The short-read data for 722 isolates 
were downloaded using the NCBI SRA Toolkit, adapter sequences 
were removed using Trimmomatic (version 0.39, default param-
eters) [53] and draft genome assemblies were assembled using 
SPAdes (version: 3.14.1, default parameters) [54]. 

Results 
Escherichia coli isolates can be assigned to three 
le vels of niche organization
Genomes of 5259 E. coli isolates, collected from 31 host species 
across 58 countries between 1947 and 2019, wer e analyzed
to represent the global diversity of animal-derived E. coli
(Supplementary Table S1). Escherichia coli isolates were assigned at 
three levels of niche organization: (i) “Ecology”, livestock (n = 4619), 
companion (n = 223), and wild (n = 417); (ii) “Species”, chicken 
(n = 807), cattle (n = 2228), pig (n = 1043), and other (n = 1181); (iii) gut 
“physiology”, bird (n = 1178), ruminant (n = 2562), and monogastric 
mammals (n = 1506). This sample-phenotype structuring allow ed
identification of genomic factors influencing E. coli adaptation at
three different levels (Fig. 1). 

Escherichia coli isolates from livestock animals represent the 
largest ecological environment investigated, with cattle, chickens, 
and pigs accounting for 88% of the 4619 livestock isolates. Wild 
animals encompassed 22 nondomesticated species and therefore 
are the most diverse category. In contrast to livestock, which 
occupy a specific ecological niche and have little contact with
other species, wild animals inhabit natural environments with
minimal human intervention and complex interspecies inter-
actions. We also included a discrete category for companion
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animals, including dogs and cats, which reflects their unique 
human-associated lifestyle, distinct fro m that of the other groups.

Three distinct gut morphologies were present among the host 
species analyzed. Ruminants, including cattle, sheep, and deer, 
possess four-chambered digestive systems specialized in digesting 
fibrous plant material through microbial fermentation. Birds pro-
cess a varied diets and have unique digestive systems comprising 
a muscular crop, glandular stomach (proventriculus), and a spe-
cialized grinding organ (gizzard). Finally, monogastric mammals, 
including pigs, horses, and most other nonruminant mammals, 
have a simpler single-chambered stomach followed by intestines. 
However, even within this group gut morphology varies signif i-
cantly between species, reflecting their respective dietary adap-
tations. Beyond physiology, ecological niche (domestic or wild)
strongly influences diet and therefore the gut microbiome may
vary considerably even within the same host species.

Variable geographical distribution was observed among the 
three levels of niche organization. For example, most E. coli iso-
lated from domestic mammals originated from North America 
(n = 1527) or Asia (n = 1147). This bias is driven by ruminant associ-
ated samples, which predominantly originated in North America 
(n = 1270). Conversely, samples associated with monogastric mam-
mals were of approximately equal origin between North America,
Europe, Asia, and Oceania. There were only a few (n = 15) E. coli
isolates from Africa, highlighting the under-representation of the
region in genomic datasets [55, 56]. 

Everything is everywhere: convergent ecology in 
divergent E. coli
Using a Neighbor-Joining (NJ) tree, constructed from a MASH-
generated distance matrix, we identified eight distinct phylo-
genetic lineages corresponding to the established phylogroups 
A  (n = 1595), B1 (n = 2255), B2 (n = 153), C (n = 225), D (n = 191),
E (n = 572), F (n = 136) and G (n = 132) (Fig. 2A). Maximum-
likelihood phylogenies of core genome alignments for individual 
phylogroups revealed a high degree of population structure, 
particularly in phylogroups A and B1. Importantly, all major 
phylogroups were represented in each of the niche categories
investigated, suggesting a lack of consistent patterns linking
deep-branching lineage structure with particular host species
or ecology (Fig. 2C and D). Notwithstanding, some phylogroups 
were overrepresented in some niche categories. For instance, 56% 
(1248/2228) of cattle isolates belonged to phylogroup B1, whereas 
41% (63/153) of phylogroup B2 isolates w ere sampled from wild
sources, and 64% (87/136) of phylogroup F isolates were sampled
from birds.

Accessory genome variation underpins nic he
segregation
Pan- and core-genomes of all isolates were constructed based 
on COGs. The average number of genes per isolate was 4853 (SD 
299). The total pangenome consisted of 51 205 COGs, with a core 
genome containing 3049 genes shared by >95% of isolates. In
addition, we quantified the core and accessory genome for each
phylogroup and niche category (Fig. 3A and B, S upplementary
Table S2 & S3). In all cases we observed an open pangenome , as
expected for E. coli [57, 58]. 

Phylogroups A and B1 have the largest pangenomes, correlating 
with their sample size, with 35 892 and 36 856 genes, respectively. 
Regarding the niche categories, livestock-derived isolates dis-
played the largest pangenome, encompassing 91% (46 456/51 205) 
of all genes, whereas isolates from companion sources had the 
smallest pangenome at 42% (21 385/51 205). The size of the core 

genome for each niche category differed by a maximum of 204 
genes (range: 2964–3168). This level of consistency suggests 
that sampling was sufficient to capture general trends in core
and accessory genome variation. To account for variations in
phylogenetic distance from biased sampling, we used a model to
predict the pan-genome size for a population size of 100 isolates
per niche category [44] (Supplementary Table S4). Although 
prediction based on 100 isolates underestimated pangenome 
size, they followed the same trend as in the full dataset with 
the smallest and largest accessory genomes found in companion
and livestock animals, respectively.

The core genome of E. coli isolates was remarkably similar 
between phylogroups or niche categories (Fig. 3C). Between 79% 
and 90% of core genes were conserved across phylogroups. Iso-
lates from chickens, cattle, and pigs share up to 95% of their 
core genes. In contrast, the accessory genome varied considerably 
between phylogroups and niche categories. Isolates from different 
phylogroups shared some accessory genome content, ranging 
from 29% to 63%. The proportion of accessory genes shared by 
isolates from different niche categories ranged from 44% to 96%. 
Complementary niche categories, such as chicken and bird, were 
the most similar. For example, E. coli from ruminants and cattle 
shared 96% of their accessory genome, meaning that additional
ruminant isolates (sheep and deer) only marginally contribute to
the pangenome content already present in cattle isolates. It is
expected that the number of accessory genes identified will relate
to the number of isolates sampled. However, even if there is biased
sampling, the shape of the gene discovery curve (Fig. 3A) provides 
information about the diversity of strains within a given niche. 
Our findings suggest some consistency in core genome content 
between E. coli derived from different sources, whereas va riation in
the accessory genome is strongly associated with host adaptation
and niche segregation.

Multiple parallel pangenome-wide association 
studies re veal ecological adaptations
A total of 100 pangenome-wise association studies were con-
ducted in parallel for each of the nine niche categories to iden-
tify adaptive signatures in the genome (900 experiments). In 
every case, variable length unitig k-mers from the pangenome 
of 200 randomly sampled isolates were tested for their associa-
tion with the niche of inter est, and significance was determined
using a Bonferroni corrected threshold of -log10(P) = 7.5, averaged
across experiments. In total, 157 652 k-mers exceeded the thresh-
old for significance (Fig. 4A; Supplementary Table S5, FigShare 
10.6084/m9.figshare.30543260). Host species association experi-
ments revealed the largest number of hits, with 25 558 significant 
k-mers mapping to 1726 unique genes, of which 1273, 1176, and 
335 genes mapped to chickens, cattle, and pigs, respectively. In 
comparison, the physiology and ecology association experiments
produced far fewer hits: 5311 and 1396 significant k-mers, which
mapped to 1105 and 412 genes, respectively (Fig. 4C). 

In pilot experiments, host species-associated genetic varia-
tion dominated over gut physiology categories. For example, 40% 
(6079/15 326) of bird gut associated genetic elements were previ-
ously identified by chicken GWAS experiments, and these variants 
had a greater association with chicken isolates than isolates from 
non-chicken birds. Therefore, to account for this host species 
dominance, chicken, cattle, and pig isolates were excluded from 
our gut physiology association experiments. The significant k-
mers from all experiments were combined and tested for their
niche category associations across the entire E. coli pangenome.
From a total of 157 652 k-mers that exceeded the P value threshold
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Figure 2. Phylogeny reveals that E. coli phylogroups do not segregate by host species, physiologies, or ecology. (A) NJ tree representing a MASH 
generated distance matrix of 5259 E. coli isolates. Bar charts show (B) the number of isolates per ph ylogroup and stacked bars with the proportion of 
isolates per phylogroup divided by nic he categories: (C) ecology, (D) host species, (E) physiology.

of –log10(P) = 7.5, 20 011 k-mers had a specificity >60%, sensi-
tivity >25%, and Cramer’s V >0.1, in at least one niche cat-
egory. These niche-segregating k-mers included 12 687, 14 280, 
and 12 420 sequences associated with the species, physiology,
and ecology categories, mapped to 1460, 1485, and 1445 genes,
respectively.

A total of 1726 unique genes across the E. coli pangenome 
show variation associated with at least one niche category. This 
includes 5% (144/3049) of core genes, which account for 5% 
(907/20 011) of niche-segregating k-mers. Comparatively, just 3% 
(1582/48 156) of accessory genes show variation, but account 
for 70% (14 051/20 011) of niche-segregating k-mers, supporting 
accessory genome variation as the primary driver of niche
association in E. coli. Furthermore, 58% (11 711/20 011) of niche-
segregating k-mers mapped to plasmid sequences. This contrasts
with comparable analyses in Campylobacter [59], Helicobacter 
[60], and Staphylococcus [61], whereby variation in chromosomal 
sequence is responsible for host associated adaptation. In E. 
coli, plasmids act as successful backbones for adaptation, such 
as promoting antibiotic re sistance and enhancing bacterial
competition, driving phenotypic evolution independently of the
chromosomal genetic background [62]. 

Escherichia coli isolates can be attributed to the 
correct source based upon host segregating
genetic variation
The degree to which source associated genetic variation segre-
gates is a measure of genetic cohesion allowing isolates to be 
attributed to a source population. Here, we use elastic net linear 
regression machine learning models to attribute E. coli isolates 
to their source based on the presence of niche-segregating k-
mers. Our curated dataset of 5259 E. coli was randomly parti-
tioned into two datasets, o ne containing 75% of isolates (the
training dataset), and the other containing 25% of isolates (the
test dataset). For each niche category, the distribution of niche-
segregating k-mers across the training dataset was used to con-
struct a source-attribution model using the –wg option in Pyseer
[49]. The accuracy of each model was evaluated by comparing 
the model’s niche predictions for the test dataset with their 
true sample origins. This self-attribution w as conducted for the
three levels of niche organization (host, physiology, and ecology)
(Fig. 5A). 

A total of 75% (772/1020) of E. coli isolates were correctly 
assigned to their host source (chicken, cattle, or pig). Model
sensitivity was calculated as the number of true positives divided
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Figure 3. Pangenome variation between phylogroups and niche categories. (A) Pan-genome and core genome size relative to the number of isolates per 
phylogroup and niche category. (B) Bar chart showing the number of genes present in the core genome (solid fill) and accessory genome (no fill). (C) 
Matrix representing the number of core and accessory genes shared between (i) phylogroup and (ii) niche categories.

by the sum of true positives and false negatives, multiplied by 
100 to express it as a percentage. Specificity was calculated 
as the number of true negatives divided by the sum of true 

negatives and false positives, also expr essed as a percentage.
The cattle model had the highest sensitivity (87%; 486/557) but
lower specificity (92%; 694/756) than the chicken and pig models
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Figure 5. Elastic net regression model predictions of E. coli host niche. (A) Self-attribution of E. coli (i) sensitivity and specificity of niche models; (ii) 
lineage effects of niche models measured using Wald-test. (B) Validation source-attribution of E. coli: (i) mutual information between niche-segregating 
k-mers for chicken, cattle, and pig niches; (ii) host species predictions made by niche models for isolates sourced from chicken, cattle, and pig isolates; 
(iii) results from niche model predictions visualized as a chord diagram. Each host niche is represented by a fragment on the outer part of the circular 
layout. The size of the arcs connecting each niche is proportional to the number of isolates that have been assigned to a host niche, either correctly or 
incorrectly; (iv) E. coli isolates were divided into either specialist (those that were correctly attributed to their host niche) or generalist (those that were 
incorrectly assigned to a different host niche) isolates. Bars indicate the average number of niche-segregating k-mers shared between each host niche
model and specialist/generalist E. coli from each niche.
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(98% specificity; 1089/1111 and 1030/1052, respectively). This 
likely reflects the prevalence of cattle-associated genetic variants 
in non-cattle sources. Self-attribution based upon physiology 
corr ectly classified 65% of bird (60/93) and ruminant (55/84),
but only 28% (33/116) of monogastric isolates (Supplementary
Fig. S1). The model’s ability to identify E. coli isolated from chicken, 
cattle, or pig sources was low—21% (43/202), 10% (58/557), and 
3% (9/261), respectively. Applying host models to corresponding 
physiological groups gave true-positive rates of 27% (25/93) for 
birds, 19% (16/84) for ruminants, and 6% (7/116) for monogastric 
animals. Self-attribution based upon ecologically segregating k-
mers assigned 98% (1050/1061) of livestock isolates correctly, but
just 40% (41/102) of wild and 8% (4/50) of companion animal
isolates. Companion isolates shared more genomic variation with
livestock (82%; 41/50) than wild sources (58%; 59/102).

Variation within phylogroups significantly influenced model 
predictions (Wald test), with lineage e ffects reflecting niche distri-
bution (Fig. 5A). Livestock and wild models showed nearly identi-
cal lineage patterns, but the strongest ecological signals appeared 
in phylogroups B2 and F , suggesting wild-derived variation is
most informative. Mutual information analysis (Fig. 5B) further 
revealed that k-mer patterns associated with the cattle niche 
exhibited the highest discriminatory power, indicating a greater 
dependence of genomic variation o n cattle-associated E. coli com-
pared to those from chicken or pig sources.

Model validation revealed robust genomic host 
associa ted genomic variation
To validate predictive ability, we tested host models on an inde-
pendent set of 722 E. coli isolates. Host source was assigned based 
on the highest probability across chicken, cattle, and pig mod-
els. Overall accuracy was 71% (513/722), with greatest sensitivity
in the cattle model at 96% (246/256), followed by pig at 60%
(144/240), and chicken at 54% (123/226) (Fig. 5B). As in training, 
the cattle model showed the lowest specificity at 68% (318/466), 
misclassifying 55 chicken and 93 pig isolates. The pig model also 
misassigned 55 isolates, mostly from c hickens. The chicken model
had the highest specificity at 98% (460/466), misclassifying only
six isolates.

To further understand variation in prediction accuracy, isolates 
were classified as “specialists”, where source was confidently 
determined based on the distribution of niche-segregating k-mers,
and generalists where it cannot (Fig. 5B). Specialists shared more 
segregating k-mers with their respective host model than gener-
alists. In contrast, generalist isolates from different host species 
shared similar, lower numbers of model k-mers. This pattern was
consistent across all three models. Finally, mapping predictions
onto a maximum-likelihood phylogeny (Supplementary Fig. S2) 
showed generalists were not confined to specific lineages but 
scattered across the tree. This suggests misclassifications stem 
from the genomic similarity of generalist isolates to non-source 
host profiles, rather than poor predictive power within specific 
lineages. Instead, the lo wer k-mer sharing and broader distribu-
tion of generalists may reflect recent host transitions or inherent
flexibility in niche adaptation.

Ecological and physiological adaptations 
dominated in birds and ruminants respectively
As shown in our self-attribution experiments, sufficient genetic 
variation exists to classify E. coli isolates to bird and ruminant 
physiological niches. To explore the nature of these adaptations, 
we examined the distribution of niche-segregating k-mers using
Cramer’s V to quantify association strength between variants

and host categories (Fig. 6). Comparing k-mer effect sizes between 
physiological (bird or ruminant) and ecological (livestock or wild) 
niches reveals distinct patterns of adaptation. In birds, most k-
mers show significant associations with both bird and chicken
niches (Fig. 6A). However, many of these k-mers are strongly asso-
ciated with chickens but only weakly with birds, whereas the 
reverse is rare. This asymmetry suggests that adaptation to birds 
is dominated by ecological traits specific to chickens, rather than 
avian physiology. In contrast, most k-mers associated with the cat-
tle niche also show strong associations with the broader ruminant
niche, supporting the idea that E. coli adaptation to ruminants is
driven primarily by host physiology.

Further evidence comes from comparing bird-associated vari-
ants across species (Fig. 6B). Of 2173 k-mers associated with chick-
ens, 92% (1997/2173) are shared with domestic turkeys but only 
6% (139/2173) with wild birds. Similarly, 57% (205/361) of wild bird-
associated k-mers are not found in domestic birds, reinforcing the 
dominant role of shared livestock ecology (chicken and turkey), 
rather than physiology in driving adaptation. Contrastingly in 
ruminants, 4343, 4400, and 2741 ruminant-segregating k-mers 
were associated with cattle, sheep/goat, and deer, respectively, 
with 57% (2604/4537) shared across all three. This widespread
overlap across wild and domestic hosts suggests that physiology,
rather than ecology, is the principal driver of adaptation in rumi-
nants.

Discussion 
Evolutionary theory predicts that organisms in isolated niches 
will diversify from the ancestral population, giving rise to niche 
associated lineages, and ultimately new species. Where multiple 
lineages occupy the same niche, they will compete, and one
ecotype will prevail [8, 63]. Based on this model, one would expect 
to observe niche associated E. coli lineages. However, consistent 
with previous work, we found that all major E. coli phylogroups 
were observed in all niche categories investigated here. Therefore, 
it may be reasonable to conclude that “everything is everywhere”, 
at least at the level of phylogroup. This may seem to contract the
ecotype model but there are several explanations for the ubiquity
of phylogroups. First, there may be multiple non-competing sub-
lineages within the phylogroups that occupy different subniches
within the host gut [64]. Second, continuous niche transitions, 
within and between hosts, may give rise to a dynamic system with 
ongoing colonization events, disrupting direct lineage competition
[65]. Third, sub-lineages may adapt by horizontally acquiring 
niche specifying genes before they are outcompeted [28, 66]. 

The absence of clear host-associated lineage structure is con-
sistent with relatively recent, and ongoing, host-transition. When 
bacteria transition between hosts they adapt to the new nic he,
and, importantly, the most beneficial adaptations will increase
most rapidly in the pioneer population [67]. This fundamental 
principal, that guided the first formal bacterial GWAS [59], means 
that the most strongly niche-associated genetic elements will 
likely be linked to adaptation driven by selection, rather than 
genetic variation that has evolved through drift in allopatry. One
may expect E. coli, adaptation to be dominated by the acquisi-
tion of mobile genetic elements [28, 68], particularly as plasmids 
enable the simultaneous acquisition of multiple beneficial traits. 
However, as putative plasmid genes were defined by reference to
a database using the annotation tool [52], only k-mers match-
ing previously described plasmids were identified as such. This 
may lead to underestimation of plasmid genes. We also iden-
tified a number of phage integrase and transposon machinery
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Figure 6. Sequence variation is shared between E. coli with the same host physiology. (A) Scatter plot comparing the effect size of niche-segregating 
k-mers between host and host physiology niche categories. (B) Venn diagram depicting the number of bird or ruminant-segregating v ariants associated
with each niche category.

genes associated with specific hosts, which could further drive 
rapid transfer of genetic material. This “plug and play” ability 
could explain how divergent lineages colonize the same host 
niche. However, although numerous k-mers did map to plasmid 
borne genes, our pangenome-wide association studies r evealed
the importance of niche-specifying alleles, rather than just simple
gene presence, consistent with a mosaic of core and accessory
genome elements driving niche adaptation.

Parallelized pangenome-wide association studies (900 in silico 
experiments) revealed genomic variation linked to all nine niche 
categories. The putative function of genes with host segregating 
variation give clues about the specific adaptations to that host or 
niche. There were a total of 16 984 chicken associated k-mers that 
mapped to 58 genes. The most significant variation was detected 
in icsA, encoding a surface protein that facilitates intra/inter cel-
lular motility of E. coli by nucleating actin filaments at one pole of
the bacterium to form an “actin rocket”, a phenotype associated
with entero-invasive E. coli. IcsA also functions as an adhesin
which promotes invasion into host epithelial cells [69, 70]. Other 

invasion effector genes, such as the proteases sepA, hbp, espP,  and  
ompT were also associated with the chicken niche. Multiple toxin-
antitoxin (TA) systems were associated with chicken a daptation,
including relBE, mazEF, and yafNO, which inhibit protein synthesis
in response to stress [71–73]. The CbeA-CbtA TA system, involved 
in cytoskeletal remodeling and antibiotic resistance, was also 
chicken-associated. Together, variation in these virulence and TA 
genes suggests c hicken adaptation involves altered invasion and
stress response phenotypes.

Host diet may also be an important factor for gut coloniza-
tion. Chicken associated genetic variation was observed in the 
plasmid-borne raf operon, which enables uptake of raffinose, 
a non-digestible galacto-oligosaccharide that can constitute up
to 10% of soybean meal, the primary protein source in poultry
feed, and impacts the chicken gut microbiota [74]. lacY, encoding 
lactose permease, had similar variation [75].These genes indicate 
adaptation to diet, but chicken associated genetic variation was 
also linked to AMR. Specifically, the fosA and mcr-1 genes, linked
to fosfomycin and colistin resistance respectively [76, 77], were
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present in ∼20% of all chicken E. coli isolates compared to 4%– 
8% from other sources. Although the isolates in our study are not
from a structured survey, these findings are consistent with other
studies [78] and may be related to the use of these antimicrobials 
to treat enteric infections in broiler chickens. For these host-
associated genes, plasmid carriage may enhance colonization
success in addition to facilitating resistance.

In E. coli isolated from cattle, many of the most significantly 
host associated genes were linked with virulence and the Shiga 
toxin-producing strain of E. coli O175 that causes severe foodborne 
infections in humans. These included: the hyl locus, encoding α-
hemolysin, which lyses erythrocytes and is common in invasive
strains [79, 80]; shlB and hbp, linked to red blood cell lysis and 
intra-abdominal infections; sepA, d erived from Shigella and co-
associated with cattle associated hemolysins [81, 82]; espP, encod-
ing an extracellular serine protease essential for cattle coloniza-
tion by E. coli O157:H7 [83]. This suggests E. coli adapted to the 
cattle niche have a modified ability to acquir e iron and other
nutrients from erythrocytes.

In comparison to chickens and cattle, genetic variation 
associated with pigs lacked putative virulence and toxin genes 
but included several AMR genes. These included bcr, bla,  and  
tetR, linked to bacitracin, beta-lactam, and tetracycline resistance, 
respectively. The strongest pig associated variation was in the sil, 
cus,  and  cop operons, whic h confer resistance to silver and copper.
These metals are widely used as biocides in veterinary settings,
with copper specifically used as a growth promoter in pig farming
[84, 85]. Exposure has resulted in resistant E. coli via inducible 
efflux systems such as sil and cus [86–89]. This is particularly 
problematic as metal and antibiotic resistance genes often co-
occur on plasmids. Therefore, exposur e to metals may co-select
for AMR, as seen with dietary zinc [90]  and  the  sil genes, which 
are over-represented i n extended-spectrum beta-lactamase
producing E. coli [91]. Taken together, resistance to antimicrobial 
metals appears to be an important factor in adaptation to the pig 
nic he and may bring the risk of co-acquired antibiotic resistance.

Specific phenotypic adaptations to particular hosts give rise to 
genetic variation that consequently segregate by host. These are 
the adaptive genomic signatures that are flagged by GWAS, but
this genetic variation can also be used to attribute the origin of
particular strains [92–95]. This simple principal underlies various 
source attribution models [96, 97] but the degree of host segre-
gation is also informative for understanding population struc-
ture. The ability to attribute E. coli isolates to their correct host 
niche varied with some “specialist” E. coli genotypes showing evi-
dence of specific adaptations and host segregation whereas other 
genotypes appeared to have host generalist ecology, indicating 
a greater propensity for host transition. Identifying significant 
host segregating k-mers was less likely among putative gener-
alists for multiple reasons. First, k-mers with low P values in 
relation presence/absence are excluded in the elastic net linear 
regression model where they do not add values to impr ove model
performance (i.e. redundancy due to multicollinearity). Second, k-
mers that are adapted to an unsampled host or were transiently
present in their non-preferred hosts at the point of sampling will
be wrongly associated with this host. Both of these observations
imply that there is no absolute physical barrier to host switching,
consistent with the “everything is everywhere” aphorism.

Nonetheless, host physiology and ecology do represent impor-
tant barriers to colonization. We found clear evidence that E. coli 
adapt to the ruminant gut in the same way in both domestic and 
wild hosts, with cattle, sheep, goat, and deer all sharing a high
proportion of ruminant-associated k-mers, despite their diverse
ecology (Fig. 6B). Conversely, among E. coli isolated form birds, host 

ecology was a stronger predictor, with domesticated birds sharing 
more associated k-mers than with their wild counterparts, despite 
their common physiology. Although wild animals have diverse 
ecologies, livestock typically share ecological traits including high 
stocking density, a consistent diet, low genetic variation, and expo-
sure to antimicrobials. This complexity in host natural history
may explain why E. coli adaptations can be driven by both host
physiology and ecology.

In conclusion, we describe an ecological landscape for E. coli 
that involves ongoing host transition, consistent with traditional
explanations of bacterial population biology [4]. Successful col-
onization is associated with a mosaic of adaptions across the 
entire pangenome. The hierarchical GWAS approach identified 
candidate adaptive genes at three levels of organization, demon-
strating the advantage over a reductive single-level comparison. 
This approach was made possible through the utilization of pub-
licly available genomes, ensuring a sample size large enough to 
identify robust associations. It is acknowledged that the underly-
ing sampling bias cannot be excluded as public E. coli genomes 
are often sampled in the context of specific projects or out-
break investigations. However, our ecological genomics appr oach
provides valuable high-level information about the evolutionary
forces that shape natural E. coli populations and zoonotic bacteria
more generally. This addresses long-standing questions about
bacterial biogeography, but also provides a quantitative basis for
considering the transmission of zoonotic bacteria that is essential
for improved animal welfare and food safety.
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