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Quantum generative modeling is emerging as a powerful tool for advancing data analysis in high-
energy physics, where complex multivariate distributions are common. However, efficiently learning
and sampling these distributions remains challenging. We propose a quantum protocol for a bivariate
probabilistic model based on shifted Chebyshev polynomials, trained as a circuit-based
representation of two correlated variables, with sampling performed via quantum Chebyshev
transforms. As a key application, we study fragmentation functions (FFs) of charged pions and kaons
from single-inclusive hadron production in electron-positron annihilation. We learn the joint
distribution of momentum fraction z and energy scale Q, and infer their correlations from the
entanglement structure. Building on the generalization capabilities of the quantum model and
extended register architecture, we perform fine-grid multivariate sampling for FF dataset
augmentation. Our results highlight the growing potential of quantum generative modeling to advance
data analysis and scientific discovery in high-energy physics.

The ability to analyze scientific data relies on designing advanced
machine learning tools, inferring correlations, and performing generative
modeling by sampling synthetic distributions'. Multivariate differential
distributions represent a major interest in high-energy physics (HEP),
specifically in the context of quantum chromodynamics (QCD) and
studies of scattering processes’. Quantum computing shows promise for
accelerating calculations of physical properties and is believed to be vital
for large-scale QCD simulations in the future’”. Moreover, quantum
machine learning (QML) methods become increasingly more
developed®™. Here, HEP data analysis is a suitable example of learning
processes that are inherently quantum. For instance, to date, QML has
been applied to jet clustering”'’, elementary particle process
integration”™", anomaly detection'*"*, data classification'*”’, etc. QML
was also used to analyze the causal structure of multi-loop Feynman
diagrams and integrate them to predict decay rates at higher orders in
perturbation theory” ™. Finally, an increasing part of QML studies is
targeting generative modeling and preparing quantum circuits that can
mimic relevant probability distributions® ",

Fragmentation functions (FFs) represent an essential component in
describing quantum particle processes, encoding the transition from par-
tons—quarks and gluons—to hadrons after a hard-scattering event* ™.
Unlike partonic cross-sections, FFs cannot be predicted perturbatively and

must be obtained from experimental data via global analysis across diverse
processes”*®. Several approaches were proposed to extract FFs from
experimental data using statistical tools and heuristics, for instance, a
polynomial-based ansatz in the hadron’s momentum fraction™**, and Euler
Beta function distributions with additional parameters’ . Despite the
progress, the determination of FFs can still be affected by procedural bias,
including limited functional form flexibility and uncertainty estimation
challenges. Machine learning (ML) techniques, particularly based on neural
networks, have emerged to potentially overcome these limitations" ™.

While supervised ML approaches are effective in determining FFs and
Parton Density Functions (PDF) in hadronic collisions”, some challenges
remain. A primary issue lies in the energy-scale evolution. Models are
typically trained for a specific range of momentum fraction z and a fixed
energy scale Q. However, evolving a given FF to different energy scales
requires solving the DGLAP evolution equations* ™, a task that is com-
putationally expensive. Additionally, once the FFs are determined, their true
value are only known for specific points, necessitating interpolation to
estimate the function at other regions, increasing the complexity of the
method. Finally, given the inherent nature of FFs as probability distribu-
tions, which require inversion to get samples, and the need for multivariate
descriptions based on both momentum fraction (z) and the energy scale (Q),
alternative methods are being explored.
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Quantum computing naturally fits generative modeling due to the
probabilistic nature of projective measurements and natural sampling
abilities from strongly correlated distributions™*’. Following the Born rule,
the probability of measuring a bitstring x is p(x) = [{x|w)|>, where a wave-
function |y) is prepared by some parametrized quantum circuit. We refer to
models that represent such circuit-based distributions as quantum prob-
abilistic models of an implicit type*™'. These models can be sampled,
offering generative modeling capabilities as commonly needed in ML™.
Quantum generative modeling was demonstrated with quantum generative
adversarial networks (QGANs)™™, quantum Boltzmann machines
(QBMs)™*', and quantum circuit born machines (QCBMs)**. To date,
quantum generative modeling has shown intriguing results for HEP
analysis™>**”". Also, quantum-inspired approaches based on tensor net-
works are explored as probabilistic models to analyze multivariate
distributions’™”*

Both Fourier and Chebyshev expansions are common methods for
approximating smooth functions using global basis functions. Fourier
expansions, which use the complex exponential form of sinusoidal func-
tions, are ideal for periodic functions on uniform grids. In contrast, Che-
byshev expansions, which utilize Chebyshev polynomials, are particularly
suited for non-periodic functions defined on finite intervals. In our recent
works™”*, we have developed quantum Chebyshev and Hartley feature map
circuits. These circuits are designed to encode input data as real-valued
quantum states associated with real expansion coefficients. We have also
built their corresponding transform circuits responsible for basis mappings,
which are essential for generative modeling. For this specific study, we are
focusing primarily on Chebyshev expansions. We have chosen this
approach because it offers the best polynomial approximation to a con-
tinuous function under the maximum norm, making it particularly well-
suited for approximating the FFs relevant to our work.

In this work, we propose a multivariate quantum probabilistic model
that represents HEP data involving several correlated variables, and apply it
to describe FFs for the hadronization process. Specifically, we develop
quantum Chebyshev probabilistic models (QCPMs) with shifted Cheby-
shev feature maps and a correlation circuit for multivariate probability
distributions™”. Our approach allows encoding models explicitly in the
basis of orthogonal Chebyshev polynomials, and transforms trained QML
models of variables z and Q into the bivariate distribution p(z, Q) ready for
sampling. Such an approach provides an ability to infer correlations between
variables, giving an insight into HEP data, as well as augmenting HEP
datasets with generative modeling on extended grids that grow exponen-
tially with the system size. While classical approaches, such as*, focus on
fitting frameworks that provide statistically robust estimations of FF
uncertainties, our approach differs in scope and goals. We do not aim to
quantify uncertainties; instead, we go beyond traditional polynomial para-
metrizations of FFs. Using the Chebyshev feature map, we build a more

flexible and expressive representation that can capture complex structures
missed by standard fits. Furthermore, our method allows efficient inter-
polation, with resolution growing exponentially with the number of qubits.
QPCM training uses small circuits to keep optimization tractable. After
training, we exploit the exponential growth of Hilbert space with qubit count
to sample at higher resolutions. This separation of training and sampling
demonstrates QPCM’s interpolation ability without exceeding classical
simulation limits, highlighting its potential for efficient, high-resolution
sampling with low training cost. The small number of qubits required for
both training and sampling makes hardware execution feasible and also
allows efficient simulation using tensor networks. However, scaling the
sampling to a larger number of qubits for extremely high resolution would
require a bond dimension that grows exponentially, which may limit the
performance of the tensor network implementation.

Results and discussion

FFs and hadronization

Our goal is to study HEP processes which: (1) lead to correlated data; (2)
require working with multivariate distributions that are hard to study
classically; (3) benefit from native abilities of quantum devices for sampling
non-trivial probability distributions™. Here, we concentrate on parton
hadronization. These processes are described by FFs, being two-
dimensional probability distributions that possess the properties outlined
above. In practice, FFs define differential cross-sections for processes that
lead to specific hadrons (e.g., pions or kaons) as a result (Fig. 1a). For the
single-inclusive production of a hadron 4 in electron-positron annihilation,
the differential cross-section is defined from

_ 4m’(Q)

h 2 1
@ FY(z,Q), 1

dot )
where F'(z, Q) is the fragmentation structure function, and a(Q) represents
the quantum electrodynamics (QED) running coupling.

The structure function FP(z, Q%) > J-C]-(z, a(Q)® D?(z., Q) is
defined from a convolution of coefficient functions C{(z, a,(Q)) and FFs
Di(z, Q), where indices i and j denote relevant configurations (e.g., singlet or
non-singlet), and a(Q) is the QCD runnmg coupling. The convolution
operation ® is defined as f(2) ® g(z) = f (dy/. y)f(y)g(z/ ). The FFs
Di(z, Q) follow the DGLAP evolution equations™, where one needs to
perform the evolution of the FFs with the energy scale Q to solve Eq. (1). As
an example, the evolution of the non-singlet component according to the
DGLAP equation is given by
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Fig. 1| Workflow for describing FFs with quantum probabilistic models based on
shifted Chebyshev polynomials. a The input data for the FF D!(z, Q) is produced for a
grid of zand Q. b The quantum probabilistic model is composed of two Chebyshev feature
maps for encoding z and Q, a correlation circuit that entangles both registers, and basis
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adaptation circuits to be trained on D{-‘ (z, Q). ¢ For sampling, we perform the inverse of
basis adaptation, the correlation circuit, followed by parallel inverse quantum Chebyshev
transforms for mapping the model into the bit basis. d Sampling results assembled in a
2-dimensional plot that represents Df(z, Q).
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Fig. 2 | Applying linear maps and setting

up QCPM. Application of shifted Chebyshev poly-
nomials to map between a the problem and y
b Chebyshev spaces. ¢ Visualization of training
(black) and sampling (color) grids for different
extended registers.
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where P, (2, o) is a splitting function having a perturbative expansion in the
strong coupling a(Q) (see Supplementary Note 1). The integro-differential
equation in Eq. (2) is, in general, difficult to solve. In our generative
modeling, we take a data-driven approach to bypass the DGLAP
propagation.

QCPMs

We proceed to introduce a framework that is suitable for describing FFs and
associated probabilistic processes. The resulting models need to provide
access to samples of multivariate distributions yet have a form such that they
can be analyzed’*””. To match the desired requirements, we propose to build
QCPMs. These models are based on the quantum Chebyshev toolbox”,
which allows building models in the basis of orthogonal polynomials. Given
the typical shape of distributions, the Chebyshev basis™ fits naturally for
describing FFs. We extend this to a generalized setting, specifically devel-
oping quantum circuits for two variables, correlating them, and demon-
strating sampling capabilities on the extended grids.

The core of QCPM is represented by a probability distribution para-
metrized as p(x) = [(( x)|1//)| where |y) = V|0 is a quantum state pre-
pared by a unitary circuit V, and l7(x)) = u (x)]0) is a Chebyshev state
generated by the corresponding feature map Z/,. The Chebyshev state is
given by ref. 75

2N—1

s 3 Tk, 3
k=1

|7(x)) = 575 To(x)10) +

where T(x) = cos(k arccos(x)) is a degree k Chebyshev polynomials of the
first kind. These are typ1cally defined in the domain of [—1, 1]. At the Che-
byshev grid points, {|7(x; ))}>_ " thereis a set of orthonormal states, which are
mapped by a unitary transf(/)rm to the computational basis states, {|x )}Z -1,
Importantly, by applying Chebyshev feature maps in parallel, we generate
explicit models of several variables, and can introduce correlations by a circuit
that  connects the registers. This leads to QCPM of the form
px,y) =S8 =0 ck T (x)T(y), where ¢ are defined by quantum circuits
\7. Our goal is to train such models on FF-based datasets and enable sampling,
The workflow for QCPM-based HEP analysis is shown in Fig. 1. In
Fig. 1a, we visualize a hadronization process, described by the FF D}‘ (z,Q)
and the associated data. These data are transformed into the Chebyshev
space and fed into the training (Fig. 1b). Once training is complete, the
inferred model is used for sampling a multivariate back in the problem space
(Fig. 1c). This leads to an augmented FF distribution visualized in Fig. 1d.
As an important methodological detail for FF modeling, we address the
challenge of generalizing our models from the original problem domain to

the Chebyshev native domain Q¢ =[—1, 1] x [—1, 1] and back. This is
illustrated in Fig. 2. Given a 2D probability density function p(x, y) defined in
a box domain delimited by coordinate tuples, Qp = [X,, Xb] X [V Jb)> We
express it in the scaled domain as p(u, v) = iAl;(} ¢ Tr(w)Ty(v), where
u(x) = [2x — (%o + %))/ (% — xa) and v(y) = [2y — (ya + 1))/ (1o — ya)- The
transformation is shown in Fig. 2a, b (top). Using the Chebyshev feature

maps for the scaled variables I/, (1) and U, (v), we build the parameterized
QCPM pq(u, v) to approximately represent the transformed probability
density function p(u, v) The quantum model is trained on a 2D grid of

Chy2 Chy2" -1
} {VJ' }j:O

? The training grid is schematically illustrated in

Chebyshev nodes {u; plus additional half-index points
{ 1+l/2} { ]+l/2}
Fig. 2b (top) as a black- dotted grid within Q¢. Once the model is trained,
sampling is carried out through projective measurements in the same
domain (Fig. 2b, bottom), using inverse quantum Chebyshev transform

.
circuits U,y Details of implementing QCPM are provided in the
“Methods” section.

The sampled pq(u, v) is mapped back to the problem domain to obtain
the sampled histogram pq(x, ¥), rescaled as x(u) = [(x, — x)u + (x, + xp)]/
2and y(v) = [(b — ¥a)V + (Va + 1)]/2 and reshaped in a suitable form. This
is shown in Fig. 2(a, bottom). Crucially, the quantum model is trained on a
sparse training grid given by the available training dataset, but can provide
samples (predictions) for unseen data points on a controllable, denser
sampling grid, which is not necessarily a superset of the training grid. This is
based on extending the register to 2(N + S), where S is the number of added
qubits on which we act with the Chebyshev transform. In this case, the
learned distribution from the training data can closely mimic the physical
distribution for the input data, generalizing (interpolating) beyond the
training grid.

In this work, we applied shifted Chebyshev polynomials to study the
FFs as a testbed. Shifted Chebyshev polynomials can approximate any
continuous function beyond the Chebyshev domain and thus are not lim-
ited to FFs. Because the coefficients in the Chebyshev expansion are purely
real, it is straightforward that a purely real quantum state should be used.
The Chebyshev encoding provides a convenient way to encode each input
datum, v, as a distinct real quantum state, 7(v), in terms of orthonormal
bases. Most importantly, the proposed QCPMs allow us to systemically and
modularly extend to a larger system size and allow us to explore the
underlying data correlations inferred by QCPMs. The correlation circuit
shown in Fig. 1b is a problem-specific ansatz designed to efficiently train the
FFs. The ansatz circuit can be tailored to fit various applications in differ-
ent fields.
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In addition, the modular capability of QCPM allows us to easily scale
up the model dimension at the expense of increasing the circuit complexity,
mainly contributed by quantum Chebyshev transform circuits. Please refer
to our previous work” for details of the quantum circuits.

Application of QCPM to FFs
We have applied QCPM to FFs by using data accessible via the LHAPDF6
interface”®. The FF datasets are derived from hadron production in
electron-positron single-inclusive annihilation (SIA), one of the cleanest
processes for studying hadron production, as it does not require simulta-
neous knowledge of PDFs. We use the next-to-next-to-leading order
(NNLO) datasets NNFF10_PIsum_nnlo for pions (7" =7n"+7") and
NNFF10_KAsum_nnlo for kaons (K* = K* 4 K")*. Regarding the specific
FFs analyzed, we consider five independent combinations of FFs for each
hadron h, {Dh Dll} , Dh D! FL u+} where combined FFs are defined as
D, h o= Dh + Dh and Dh et = Dh + D, for different quarks. The pro-
blem domaln is set as Qp=[1072 1] [1, 10,000] GeV for (z, Q).

We present the results of one particular FF as an example of the
proposed quantum protocol, DK (z, Q), which corresponds to the sum of
FFs of the gluon g fragmentmg into the kaon K" and its antiparticle K.
Samplings of other FFs for h = K*, 7* are available in Figs. S1 and S2.

The results in Fig. 3 show that QCPM correctly captures the behavior of
the 2-dimensional function Dg *(2,Q) in the region of interest. Figure 3a
depicts the target distribution, shown on the training grid. Figure 3b
demonstrates the ability of the model to generate samples using the same
quantum registers employed during training. Figure 3¢, d display the sampling
performance when the model utilizes one (S = 1) and two (S = 2) additional
qubits per variable, respectively, where the model makes predictions in
untrained regions, and overall shows excellent correspondence to the
ground truth.

At this point, it is of particular interest to analyze how correlations
between variables affect the training process of QCPMs. The introduction of
correlations between variables zand Q in the training circuit is motivated by
their analytical relationship through the DGLAP evolution equations. In
this work, we use a heuristic-based approach, where we explicitly introduce a
correlation circuit C, as illustrated in Fig. 1b and detailed in Fig. 5, to
entangle the registers that load z and Q, which we refer to as Z and Q. This
circuit combines Hadamard gates (H) applied to the first variable with
controlled-Z gates (CZ). Our aim is to evaluate the impact of these corre-
lations on QCPM performance and infer correlations.

We compare the accuracy of the models with (w/ CC) and without (w/
o CC) correlations between the variables, all conditions being equal (fol-
lowing Fig. 3 and with the same number of qubits, trainable parameters, and
optimizer epochs). We use the coefficient of determination R’ as a metric to
evaluate the goodness of the fit for the explicit QCPMs after the training. The
results in Fig. 4a demonstrate that QCPM with the correlation circuit C
consistently outperforms those without, across all the FFs studied. These
findings point to the valuable insight from the developed quantum prob-
abilistic models—we can infer (indirectly) the degree of correlations
between physical variables by studying the performance of the quantum
model and the need for entanglement between Z and Q. Although typically
correlations are inferred from samples and require significant dataset sizes,
we suggest quantifying correlations by unraveling the entanglement prop-
erties between registers of QCPMs. This can be achieved by various means
(entanglement entropy, purity test, and mutual information), and we con-
centrate on purity measurement”' as the one that can be readily obtained
from the SWAP test".

Specifically, to quantify the cross-variable correlations, we define the
nonpurity as C = |1 — |, where y(p) = Tro(p%) is the purity of the
subsystem Z, with Q being traced out. We track the value of C during the
sampling stage for QCPM that includes the fixed correlation circuit [c.f.
Fig. 1c], and show the change of C for a hundred epochs in Fig. 4b [two solid
curves for selected processes]. Note that the correlations observed in all the
FFs are very similar, as can be seen in Figs. S1 and S2. Therefore, here we
focus on two FFs for illustrative purposes. We observe that from a large value

of Cp = 0.7 during the learning stage, the model settles nonpurity to a small
but finite value Cy99 = 2 x 107* [red and blue lines in Fig. 4b as a guide]. Note
that the same values of C are achieved with different circuit initialization
chosen to start with uncorrelated registers [dashed curves in Fig. 4b]. While
being modest, this value reflects the presence of non-negligible z-Q corre-
lations that are required to reach high accuracy, as shown in Fig. 4a. As such,
the analysis of QCPM trained on multidimensional datasets leads to
quantifiable measures of cross-correlations to high accuracy.

Conclusions

We introduced QCPMs for learning on multivariate HEP distributions,
inferring relevant properties, and performing generative modeling by
sampling of quantum circuits. We applied QCPMs to describe FFs being
probability distributions that describe hadronization processes during high-
energy collisions. The developed models in the Chebyshev basis over a
generalized grid are particularly suitable for describing FFs that are known
to exhibit a polynomial dependence on the momentum fraction. Addi-
tionally, QCPM models can be pretrained to describe the required marginal
distributions, and tuned further to capture correlations. Our results on
inference show that introducing entanglement between (z, Q) quantum
registers significantly enhances training performance, reinforcing the
growing body of evidence that quantum correlations can improve model
accuracy. Our results on generative modeling demonstrate excellent gen-
eralization of models between training points (interpolation), where Che-
byshev models enable fine grid sampling, where quantum registers extended
by S qubits lead 2°*~"-fold increase in sampling grid size. This work paves
the way for further exploration of quantum computing techniques to gain
deeper insights into fundamental distributions in particle physics.

Methods

Implementation details of QCPMs

In this section, we provide implementation details of QCPMs to ensure the
reproducibility of our results. The training and sampling quantum circuits
employed are presented in Fig. 5. The training circuit (Fig. 5a) is composed
of two Chebyshev feature map circuits I/, (1) and U, (v) for encoding two
independent variables,  and v € Q, in parallel registers, followed by a
correlation circuit C and two separate variational Anzitze 9(9) and V(9).
The correlation circuit generates Bell-like entangled states to make
two otherwise independent latent variables correlated for efficient

of FFs. The = P g(u,v) =

al(0,90,91 (1 ® V(0) ® 1® V(9)C(UL, () ® U, (1)) [0,00,$) + B is
trained to search for optimal angles (6" and 9") and classical weighting
parameters (ctope and fBope), 0 that a mean squared error loss function is

training quantum  model  p,(u,v)

minimized. Because of py g(u,v) > [(uuuv,v,v; |(Z/IQChT ® L{QChT)

LA™ eV ) 0" e ff(e*))losomos 0,4)1°, the sampling
circuit (Fig. 5b) consists of the inverse operations of the trained variational

AnZziitze, followed by an extended inverse correlation circuit C ixt and two

identical sets of extended inverse quantum Chebyshev transform I:lgcm
circuits. This procedure allows the basis transformation from the Chebyshev
to computational basis spaces. In this context, we assume that the problem
domain of interest is expressed in terms of the momentum fraction and

energy scale (z, Q) € Qp.

It is worth mentioning that Eq. (3) represents the (unnormalized)
Chebyshev state. Its normalized version can be prepared by a quantum
Chebyshev feature map circuit 4, (1) with respect to any continuous input
variable u. The Quantum Chebyshev transform /. qanr s  basis transfor-
mation between the bitstring and the Chebyshev state at the Chebyshev
nodes. Details of both quantum circuits are given in our previous work”.

The setup we consider for training the QCPM is as follows. We fix the
epoch count of the ADAM® optimizer to 10% the number of Ansatz layers to 3,
and the number of qubits per variable to 4. Hence, both circuits have the same
number of free parameters (16 for each variable) and require the same training
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Fig. 3 | Sampling of D *(z, Q), the FF of a gluon
fragmenting into kaons. a-d The sampling is per-
formed with S =0, 1, 2 additional qubits for each
variable to interpolate in untrained regions. a Target
distribution Df; *(z, Q). b Samples from trained
QCPM of Dif *(z, Q) with the same number of qubsits
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time. We perform a sweep over the learning rate of the ADAM optimizer
across the range [0.1, 1.0] and select the model with the best accuracy in
learning the functions D!'(z, Q). All quantum simulations are performed
using Pennylane®, and the training process is accelerated with JAX*. The
Ansatz used for the variational quantum circuit is depicted in Fig. 6.

We use the Hardware-Efficient Ansatz (HEA) primarily for its simplicity
and compatibility with NISQ devices, which facilitates future implementation

on quantum hardware. This choice is not motivated by any particular
mathematical structure or claim of optimality for the QPCM. More structured
circuit families may offer better performance or reduced resource require-
ments, especially when considering compilation to fault-tolerant gate sets.
However, such optimization is outside the scope of this work.

To provide a baseline reference, we include resource estimates for
compiling our HEA circuit into a fault-tolerant Clifford 4- T gate set using
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Fig. 4 | Training performance and nonpurity
evaluation of the models for different FF.

a Accuracy (R?) comparison of QCPMs for learning
FFs D?(z, Q) w/ CC and w/o CC correlations
between z and Q. b Nonpuriry coefficient C =

[1 — yz| of system Z for 100 training epochs with
the fixed correlation circuit (solid curves, log-log
curves). Dashed curves represent C when the system
starts in a product state without entanglement
between registers (no correlations). Solid curves
highlight the values of nonpurity after training.
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Fig. 5 | Quantum circuits for implementation of QCPMs. a Quantum circuit used
to train the multivariate distribution in the QCPM latent space, where a correlation
circuit C is sandwiched between two identical sets of feature map circuits and var-
iational Ansitze. Measured observable is defined as O = [0 ,$0,6)(0,¢0,4|, where
|¢>> = 0)®N. Here, @ and j8 are trainable scaling and bias parameters. b Quantum

circuit used to sample the multivariate distribution from the trained model, where

the inverse versions of the same parameterized circuits are applied with 8" and 9"
being retrieved after the optimization procedure, followed by the inverse versions of
the same correlation and two identical sets of quantum Chebyshev transform circuits
associated with extended registers of S qubits (|0)®S) in parallel, for fine sampling in
the computational basis |uu
denoted as |y).

a”jVsVan)~ The quantum state prior to measurement is
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Fig. 6 | Hardware-efficient real-amplitude

(HERA) ansatz circuit V,. The HERA for N = 4 g Vg N=4d=3 \
qubits with a circuit quantum depth of d=3 is i o~ 1: o~ T~
shown. The first block (d = 1) is framed by a dashed T Rv(61) i Ry(85) ! D Rv(69) O Rv(013) 1~
box. The HERA is composed of N(d + 1) tunable i — ! [
single-qubit Ry gates and Nd entanglinl\%tgcll)\IOT) 1 Rv(62) i G Ry(86) ; S Ry(810)~D> RY(914—)%_
.. + [}
gates. The training parameters are {6,};,2]" . | @ i <> m ! <> m\ A @_
] ! A\
]
-+ Ry(64) ;_________C_)“““—Rj{fs_g_)“i <> Ry(812) <> Rv(em)%-
|\ J
Table 1 | Resource estimation for transpiled HEA using 5. Rodrigo, G. Quantum algorithms in particle physics. Acta Phys. Pol.
Ross-Selinger method Supp. 17, 2-A14 (2024).
6. Biamonte, J. et al. Quantum machine learning. Nature 549, 195-202
€ Total depth T-count Total gate count (2017).
10° 415 360 1506 7. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3,
10°° 566 512 2092 625-644 (2021).
104 716 654 2681 8. Du, Y. et al. Quantum machine learning: a hands-on tutorial for
10© 841 698 2704 machine learning practitioners and researchers. Preprint at https://
arxiv.org/abs/2502.01146 (2025).
9. Wei,A.Y., Naik, P., Harrow, A. W. & Thaler, J. Quantum algorithms for
the Ross-Selinger decomposition method implemented in Pennylane® jet clustering. Phys. Rev. D. 101, 094015 (2020).
in Table 1. We define the approximation accuracy by the maximum 10. Delgado, A. & Thaler, J. Quantum annealing for jet clustering with
allowable operator norm error € for the full circuit. The resource estimates thrust. Phys. Rev. D. 106, 094016 (2022).
include total circuit depth, T-count, and total number of gates. T-countis  11. Martinez de Lejarza, J. J., Cieri, L. & Rodrigo, G. Quantum
especially relevant in fault-tolerant quantum computing due to its impact on clustering and jet reconstruction at the LHC. Phys. Rev. D. 106,
qubit overhead and magic state distillation costs® . For context, recent 036021 (2022).
fault-tolerant proposals report that decomposing a single gate may require  12. de Lejarza, J. J. M., Cieri, L. & Rodrigo, G. Quantum jet clustering with
on the order of 100 T gates”, indicating that the T counts we obtain are LHC simulated data. PoS ICHEP2022, 241 (2022).
reasonable for the scale of circuits used in this work. 13. delejarza, J. J. M., Grossi, M., Cieri, L. & Rodrigo, G. Quantum Fourier

Unlike the structure of GAN represented by the simultaneous training of
two neural networks, QCPM separates the training and sampling stages.
Because the probability distribution is encoded in the orthogonal Chebyshev
basis states provided by the quantum Chebyshev feature map circuit, the model
effectively represents a wide range of functions with sufficient training data and
learns patterns with a decent number of variational parameters. The number of
variational parameters used for training in this work is 32 (=2N(d + 1)) with
N=4 and d=3. The trained model generates new data that fall within the
trained distribution. In addition to generation and sampling, the QCPM effi-
ciently encodes probability distributions into quantum states, making it a
valuable tool for a wider range of quantum algorithms and applications.
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