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Abstract

Accurate sunspot number estimation is essential for understanding the long-term evolution of solar activity and its
impact on space weather. Sunspot numbers have been manually determined, leading to inconsistencies and
observer-dependent biases. To address this, the World Data Center Sunspot Index and Long-term Solar
Observations (WDC-SILSO) aggregates data from a global network of observatories to estimate the daily total
sunspot number, enabling cross-validation and calibration across simultaneous observations. This study proposes
a novel deep learning framework for automated total sunspot number calculation using solar full-disk continuum
images from the Solar Dynamics Observatory. The method integrates U-Net for sunspot segmentation, K-means
clustering for distinguishing umbrae from penumbrae, and You Only Look Once model for sunspot group
detection. The selection of image-processing thresholds and neural network hyperparameters is optimized with
respect to WDC-SILSO reference values during training. The results demonstrate a high correlation of 0.97
between the estimated and the WDC-SILSO daily total sunspot numbers. Furthermore, the framework offers a
scalable approach suitable for future high-resolution solar observations.

Unified Astronomy Thesaurus concepts: Sunspot number (1652)

1. Introduction Y. Wang et al. 2019; M. B. Korsés et al. 2020; S. Liu et al.
2022; M. K. Georgoulis et al. 2024).

Sunspot features are typically identified through manual
inspection, often supplemented by basic image-processing
techniques. Many automated sunspot detection methods have
predominantly utilized morphological operations (S. Zharkov
et al. 2005a, 2005b; J. Curto et al. 2008; U. Dasgupta et al.
2011; T. Baranyi et al. 2016; L. Gyori et al. 2016; C. Zhao

Sunspots are dark, planet-sized regions on the solar
photosphere marked by strong magnetic fields. They emerge
when the Sun’s internal magnetic field penetrates throughout
the photosphere and extends outward into the lower solar
atmosphere and the corona. Sunspots exhibit highly intense
magnetic fields, typically thousands of times stronger than

those in the surrounding regions, which suppress convective ] ) . ]
heat transfer from the Sun’s interior to its surface, resulting in et al. 2016; S. Carvalho et al. 2020; S. Bourgeois et al. 2024;

reduced temperatures and their characteristic darkened appear- J. Chen et a.l’ 2025). Beyond rr}orph().logl.cal approache§, other
ance (J. H. Thomas & N. O. Weiss 2008: T. J. Okamoto & methodologies have emerged, including intensity filtering and

. . - - region growing (T. Colak & R. Qahwaji 2008), wavelet
T. Sakurai 2018; A. Siu-Tapia et al. 2019). The magnetic flux transformations (D. Djafer et al. 2012), level set techniques

(S. Goel & S. K. Mathew 2014), genetic algorithms (Y. Yang
et al. 2018), and Gaussian mixture models (X. Gong et al.
2023), each contributing to the broader effort of improving
automated sunspot detection.

emerging at the Sun’s surface varies systematically with the
progression of the solar cycle, and visible sunspots are one of
the manifestations of magnetic field perturbations. The sunspot
count is closely correlated with solar activities and serves as a

key indicator of eruptive phenomena such as solar flares and These techni have facilitated ¢ identificati d
coronal mass ejections (CMEs), which have substantial ese techniques nave facilifated sunspot identitication an

impacts on space weather and the Earth’s magnetosphere feature extraction. However, they often rely on threshold

(J. Zhang et al. 2007; Y. Chi et al. 2016). The observation and selection and encounter difficulties when dealing with complex
. £ ; S i : solar images due to limited feature learning capabilities.

In contrast, convolutional neural network (CNN) models
provide a powerful solution to this feature learning challenge
(O. Ronneberger et al. 2015; K. Cao et al. 2023; Y. Zhang
et al. 2024). CNNs can automatically extract features—ranging
from intricate boundary and texture variations to global
contextual relationships—directly from large volumes of

Original content from this work may be used under the terms .. .
& : A . labeled training data (X. Huang et al. 2024). For instance,

of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title CNN models have been employed by C. Chola &
of the work, journal citation and DOL J. V. B. Benifa (2022) to classify continuum images based

feature extraction of sunspots play a significant role in solar
activity forecasting. Reliable predictions of solar activity
are vital for mitigating potential disruptions to modern
communication infrastructures, navigation systems, and high-
voltage power grids (X. Huang et al. 2018; J. Liu et al. 2018;
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on the presence or absence of sunspots and by J. Santos et al.
(2023) to detect sunspots using bounding boxes. Additionally,
N. Sayez et al. (2023), A. Mourato et al. (2024) and J. Chen
et al. (2025) applied CNNs for precise sunspot segmentation.

A notable research gap remains, as few studies have focused
on automating the estimation of total sunspot numbers, a
process that has traditionally depended on human expert
annotations for the past two centuries. C. Zhao et al. (2024)
proposed an automated approach for calculating total sunspot
numbers. However, it relied on a basic segmentation method
based on mathematical morphology. The daily total sunspot
number, R, is defined as

R = Ns + 10 - Ng, (1)

where Ns denotes the number of single spots, and Ng
represents the number of sunspot groups observed across the
entire solar disk.

Sunspot groups are strongly correlated with perturbations in
the Sun’s magnetic field. Sunspots within the same group not
only are spatially close but often represent manifestations of
the same active region. These regions of intense magnetic
activity can give rise to solar flares and CMEs. The total
sunspot number reflects this relationship by combining the
contributions of both single spots and sunspot groups,
capturing the fact that groups signify larger, more complex,
and magnetically active regions of the Sun.

Moreover, long-term studies of sunspot evolution are
fundamental to several branches of solar physics, including
space weather (M. J. Owens et al. 2021; N. Buzulukova &
B. Tsurutani 2022), helioseismology (L. Gizon 2004; R. Howe
2008), and solar irradiance modeling (T. Chatzistergos et al.
2020; T. N. Woods et al. 2022). Understanding sunspot
behavior over extended periods is critical, as it also directly
connects to key processes governing the evolution of Earth’s
climate (B. Owens 2013).

Commonly used sunspot catalogs include (i) daily total
sunspot numbers from the Space Weather Prediction Center
(SWPC)8 covering the period 2011-2025; (ii) both daily
single-spot counts and group counts from the Debrecen
Photoheliographic Data (DPD)’ spanning 2011-2015; and
(iii) daily total sunspot numbers from the World Data
Center Sunspot Index and Long-term Solar Observations
(WDC-SILSO),"” which provides records from 1818 to 2025
(see, e.g., F. Clette et al. 2007; S. Mathieu et al. 2019). In
addition, WDC-SILSO offers a monthly mean total sunspot
number since 1749 and yearly mean total sunspot number
since 1700. Serving as the international reference standard,
WDC-SILSO aggregates sunspot counts from approximately
80 observing stations worldwide.

This work proposes an automated framework for total
sunspot number estimation by integrating deep learning
techniques with physics-based knowledge. In addition to its
role as the international reference, the WDC-SILSO dataset is
adopted as the ground truth in this study due to its inclusion of
both single-spot and group counts, as well as its uniquely long
temporal coverage.

For sunspot segmentation, we follow the methodology of
J. Chen et al. (2025), with a key modification: an additional

8
9
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correction layer is applied to remove the smallest and short-
lived sunspots, thereby ensuring alignment with WDC-SILSO
standard. The masks used for this approximation are generated
based on the Uccle Solar Equatorial Table (USET)'! station at
the Royal Observatory of Belgium. Although the Sun can now
be observed using advanced techniques such as high-resolution
imaging, spectroscopy across wavelengths ranging from X-ray
and extreme ultraviolet to optical and radio, and both ground-
and space-based instruments capable of detecting even the
smallest sunspots. These methods have only been developed in
recent decades. Therefore, their records cover just one or a few
solar cycles, which is insufficient for studying the long-term
variability of the Sun. In contrast, telescopic visual observa-
tions have been conducted for over 400yr. Sunspot
counts provide the only direct and continuous record of solar
activity spanning tens of solar cycles. Accordingly, incorpor-
ating USET-based corrections into the segmentation process
improves consistency with the rules adopted by WDC-SILSO.

Within each segmented sunspot region, umbrae that are
fully enclosed by penumbrae are distinguished as separate
entities. The total number of individual sunspots is determined
by counting only the umbrae. Sunspot groups are identified
using a You Only Look Once (YOLO) model'* applied to
solar full-disk continuum images containing only the segmen-
ted sunspots. The final daily total sunspot number is then
computed using Equation (1). Beyond its application to
ground-based observations, this framework is designed to be
adaptable for data from next-generation space-borne tele-
scopes with higher resolutions, as the method is robust to
variations in image resolution. As demonstrated by S. Liu et al.
(2022), deep learning networks are insensitive to resolution,
provided that the smallest sunspots are visible. The rest of this
paper is organized as follows: Section 2 provides a detailed
description of the dataset, followed by an explanation of the
methodologies in Section 3. The results and corresponding
discussions are presented in Section 4, and the paper concludes
with a summary of findings in Section 5.

2. Data

The full-disk continuum observations from the Helioseismic
and Magnetic Imager (HMI) on board the Solar Dynamics
Observatory (SDO) are retrieved from the Joint Science
Operations Center (JSOC) database'® (J. Schou et al. 2012).
Since SDO/HMI began routine observations in 2010, this
study utilizes data covering the period from 2010 July to 2023
June. The data preprocessing pipeline includes derotating the
tilt of the Sun’s north—south axes and applying limb darkening
correction. The original image resolution of 4096 x 4096
pixels is preserved to retain the smallest sunspots, which are
typically represented by only a few pixels.

The training set was constructed using observations
collected from January 1 to September 15 of each year, while
the test set was composed of data from October 1 to December
15. To mitigate potential data leakage, observations from
September 16 to September 30 were excluded from both sets.

To further optimize the dataset for the tiling procedure
employed in the segmentation process, only solar disks

1 https: / /vo-tap.oma.be/
2 hitps: //github.com/ultralytics/yolov5
13 hitp:/ /jsoc.stanford.edu /ajax /lookdata.html
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Figure 1. Flowchart for generating pseudolabels, using one HARP region of NOAA No. 13,186 as an example.

containing sunspots were included. The final training set
comprises 2464 images, while the test set includes 775 images.

The HMI Active Region Patch (HARP) data are also
obtained through the JSOC database to identify active regions
within the continuum images (M. G. Bobra et al. 2014). This
dataset provides approximate boundaries for entire sunspot
groups, making it an effective tool for selecting regions of
interest from full-disk observations. Both the full-disk
continuum observations and the HARP active region data are
downloaded once daily at 12 PM International Atomic Time,
ensuring temporal consistency between the two datasets.

Since 1941, USET has compiled an uninterrupted series of
sunspot drawings (S. Bechet et al. 1940), with human
operators manually annotating these drawings to record
sunspot groups and total sunspot counts. In this study, sunspot
groups are manually annotated based on the drawings from the
USET dataset. For each SDO/HMI continuum image, the
closest corresponding USET drawing is paired to provide
precise annotations of sunspot groups. These annotations are
represented as the smallest-possible bounding boxes, denoted
as USET masks, which are used to refine the ground truth for
both sunspot segmentation and sunspot group detection,
thereby improving the accuracy of the automated framework.
The daily total sunspot number is obtained from the WDC-
SILSO catalog, as mentioned earlier.

3. Methodology

To determine the daily total sunspot number, as defined in
Equation (1), the process begins by identifying sunspots in a
solar full-disk continuum image. The detected sunspots are
then classified into umbrae and penumbrae, enabling the
counting of individual spots. Sunspot groups are identified,
yielding the number of groups. The image-processing thresh-
olds and neural network hyperparameters are initially selected
to ensure that the model outputs are qualitatively consistent
with the manual annotations and/or human visual assessment.
Subsequently, these parameters are further optimized by
minimizing the discrepancy between the model’s outputs and
the total sunspot number published by WDC-SILSO. The
sunspot segmentation method employed in this study is a
refined version of the approach described in our previous work
(J. Chen et al. 2025), with a brief summary provided for
completeness within the overall framework.

3.1. Pseudolabeling

In the context of full-disk continuum observations, the
semantic segmentation method U-Net is employed to segment
sunspots. U-Net, a supervised deep learning model, features an
encoder—decoder architecture based on CNNs (O. Ronneberger
et al. 2015). Rather than relying on manual annotation, a
pseudolabeling approach is adopted, in which a model identifies
sunspots that serve as labels for training U-Net. This approach is
preferred due to the substantial time demands required for
manual annotation and the potential introduction of personal bias.

Figure 1 illustrates the workflow for generating pseudola-
bels. The process begins with limb darkening correction and
derotation of the raw continuum images. For pseudolabeling,
this study employs the morphological active contours without
edges (MorphACWE) method (P. Mairquez-Neila et al.
2014). MorphACWE is an unsupervised image segmentation
technique designed to handle scenarios where object bound-
aries may be partially obscured. The method requires that the
inner and outer regions of the target feature exhibit distinct
average pixel intensities. Given the assumption that sunspots
are darker than the surrounding quiet Sun, MorphACWE is
considered suitable for this application.

Sunspot groups are strongly linked to active regions. To
improve the accuracy of the pseudolabels, the coordinates of
active regions provided by the HARP data are utilized to
define regions of interest within a full-disk continuum image.
MorphACWE is then applied to these targeted regions to
obtain sunspot segmentation patches.

This is the point where the segmentation approach deviates
from J. Chen et al. (2025). The WDC-SILSO dataset excludes
very small or short-lived sunspots. To ensure consistency with
this convention, the outputs of MorphACWE are masked using
manual annotations of sunspot groups provided by USET. This
masking process excludes certain small sunspots that, although
present within the active regions, lie outside the sunspot
groups defined by USET. The smallest sunspots typically have
a diameter of approximately 1500 km. Given that the pixel size
of SDO/HMI is 0.505 pixel ' (J. Schou et al. 2012), each
pixel in a 4096 x 4096 pixel image corresponds to roughly
362.6km at the disk center. Consequently, the smallest
sunspots generally span about 4.14 pixels at the disk center.
However, this apparent size decreases toward the edge of the
solar disk due to foreshortening, which follows a cosine
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Figure 2. Sunspot segmentation process using U-Net. The purple-highlighted image displays the predicted results generated by U-Net, with nonsunspot areas
assigned a value of 0, while the green-highlighted image illustrates the same sunspot segmentation, but with nonsunspot areas represented by their mean value.

dependence on heliographic latitude and longitude. Specifi-
cally, the apparent pixel size n of the smallest sunspot at a
given location is calculated as

n=4.14-cos¢ - cos A, 2)

where ¢ and X denote the heliographic latitude and longitude,
respectively. As such, any dark features identified by the
MorphACWE algorithm that occupy fewer than the smallest
sunspots are considered false detections and are excluded from
the final segmentation mask.

Following the segmentation and correction process, the
patches are merged back into a final full-disk sunspot
segmentation mask, which is referred to as the pseudolabels.

3.2. Semantic Segmentation

U-Net has emerged as a widely utilized deep learning
architecture for semantic segmentation, owing to its accuracy
and efficacy, particularly in domains requiring detailed
segmentation, such as medical imaging and satellite image
analysis (T. P. T. Armand et al. 2024; A. Mourato et al. 2024).
However, sunspots are considerably smaller in scale compared
to the solar disk and the background of continuum images. Our
experiments indicate that, when a full-disk observation is input
into U-Net, the model tends to focus primarily on large-scale
features, such as the solar disk and the background. This is due
to the potential inadequacy of learned features in capturing
subtle and intricate details, particularly as a result of down-
sampling and convolutional operations. This phenomenon is
known as small object detection in image processing.

To address this challenge, continuum observations with a
resolution of 4096 x 4096 pixels were partitioned into 16
evenly sized patches, each measuring 1024 x 1024 pixels, prior
to being fed into U-Net, as illustrated in Figure 2. The loss is
computed for each patch to facilitate backpropagation. Our
results indicate that reducing the patch size to 512 x 512 pixels
degraded U-Net’s performance. While smaller patches allow the
model to focus more effectively on small sunspots, they also
increase the likelihood of splitting a single sunspot across

multiple patches, which complicates feature extraction and
limits the model’s ability to accurately capture sunspot contours.

The output patches from U-Net are reconstructed into
4096 x 4096 pixel images. The output pixels represent
probabilities indicating the likelihood of being sunspots,
yielding continuous values between 0 and 1. These pixel values
are thresholded at 0.5 to generate binary masks, where sunspot
areas are assigned a value of 1, and nonsunspot areas are
represented by 0. The employed loss function is binary cross-
entropy (BCELoss), and the model is optimized using the Adam
algorithm. During training, the learning rate is set to 0.001, with
a batch size of 2, and the model is trained for nine epochs.
Group normalization is utilized in place of batch normalization
to ensure consistent performance with the small batch size.

Elementwise multiplication is performed between these
binary masks and their corresponding continuum observations
to generate masked continuum images, preserving sunspots
while setting nonsunspot areas to 0. Furthermore, the mean
intensity value of the nonsunspot areas is calculated during
sunspot segmentation to facilitate alignment with the annotated
sunspot group data.

3.3. Sunspot Number Estimation

Following the identification of sunspots from the full-disk
observations, the next step diverges into two branches. One
branch involves computing the number of single spots, while
the other focuses on determining the number of sunspot
groups, as illustrated in Figure 3.

To determine the number of spots, we first identify connected
components within the sunspot mask and count the nonzero
components. A component is deemed to contain a penumbra if
its intensity histogram is bimodal with two prominent peaks
(Figure 4). In the example shown, peaks near pixel values ~25
and ~145 correspond to the umbra and penumbra, respectively.
Operationally, we apply SciPy’s peak detector (scipy.
signal. find_peaksl4) to each component’s histogram

4 https: / /docs.scipy.org/doc/scipy /reference /generated /scipy.signal.find_
peaks.html
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with height >10, prominence 22, and distance =90,
after inspecting representative components to set these
thresholds. Here, height is the peak amplitude, which
suppresses spurious peaks from noise or isolated pixels;
prominence is the elevation of a peak above the higher of
its two bounding minima, and a threshold of 2 means the peak
is meaningfully higher than local fluctuations; distance
enforces a minimum separation between accepted peaks,
preventing closely spaced features from being counted as
distinct modes. Components with fewer than two qualifying
peaks are classified as sunspots without penumbrae and are
subsequently removed from the continuum mask, leaving a
final mask that retains only sunspots with penumbrae.

To further extract the umbra from the penumbra, K-means
clustering with two clusters is applied, separating the umbra
and background (both characterized by lower intensity values)
from the penumbra. By default, K-means assigns the label zero
to the cluster corresponding to the umbra and background, and
the label one to the penumbra cluster. Because the connected
component analysis counts the number of components with a
pixel value of 1, the cluster labels must be swapped. After this
reassignment, pixels belonging to the umbra and background
take the value of 1, while those of the penumbra are assigned
0. Applying a connected component analysis then yields the
total number of individual umbrae and background compo-
nents. Since all umbrae are embedded within the penumbrae,
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Figure 5. Comparison of the segmentation results produced by MorphACWE and U-Net. (a) The original continuum image. (b) Shows the predicted segmentation
mask by MorphACWE. (c) Demonstrates the predicted segmentation mask by U-Net. MorphACWE leaks across penumbral boundaries, whereas U-Net more

accurately delineates sunspot edges.

the background itself forms a single connected component.
Consequently, the number of umbrae is given by the total
number of connected components minus 1, which accounts for
the background. Finally, the total number of sunspots is
computed by summing the counts of single spots without
penumbrae and those with penumbrae.

The deep learning algorithm YOLO is employed to detect
sunspot groups due to its efficacy in real-time processing,
multiscale detection, and robust performance in accurately
localizing objects with varying sizes and overlapping struc-
tures. This capability makes it particularly well suited for
dynamic solar observation and large-scale solar image
analysis. In this study, the performance of the widely
recognized YOLOVS5'> and YOLOV9,'® (C.-Y. Wang et al.
2025) models is examined, with both models demonstrating
comparable detection accuracy. Finally, the number of single
spots and groups is used as inputs in Equation (1) to compute
the total sunspot number. The training process is conducted
with a batch size of 9 over 30 epochs, maintaining the original
loss functions and optimizers of the YOLO models. A learning
rate of 0.01 is applied throughout the training process.

3.4. Inference

Despite the multiple unsupervised and supervised machine
learning methods and calibrations involved in the training
process, the testing procedure remains relatively straightfor-
ward. For estimating the total sunspot number, a preprocessed
continuum observation is input into U-Net for sunspot
identification, which generates a mask of the continuum image
(refer to Figure 2).

The masked continuum image, with the background
intensity value set to 0, is processed to separate the umbrae
from the penumbrae, followed by K-means clustering to count
the number of single spots. Simultaneously, the masked
continuum image with the mean background intensity value is
input into YOLOVS to count the number of sunspot groups
(refer to Figure 3).

'3 https: //github.com /ultralytics /yolov5, released under the AGPL-3.0
license.
'® https: //github.com/WongKinYiu/yolov9 released under the GPL-3.0
license.

4. Results and Discussions
4.1. Sunspot Identification

U-Net is adopted on top of MorphACWE due to its ability to
automatically learn and extract adaptive, hierarchical features
essential for a complex solar image analysis. Traditional
image-processing techniques, such as MorphACWE, rely
primarily on pixel-level gradient information, and lack the
ability to capture higher-level structural features. U-Net
effectively captures the surrounding context of sunspot
boundaries, a capability that MorphACWE inherently lacks,
as illustrated in Figure 5.

Initial segmentation masks are generated with Mor-
phACWE. These masks are subsequently constrained by
USET masks (manually annotated, smallest-possible bounding
boxes around sunspot groups), which removes small detections
outside the boxes and produces the pseudolabels used to train
the U-Net. Small detections within the boxes are retained at
this stage. The resulting U-Net segmentations are then
inspected and refined against sunspot drawings from the
USET database to establish the ground truth, during which
remaining small sunspots across the image are removed. This
ground truth is used to further train U-Net and to evaluate and
compare the performance of MorphACWE and U-Net. The
performance of the segmentation models is briefly evaluated
for the completeness of the proposed framework. A more
detailed evaluation can be found in J. Chen et al. (2025). The
following quantitative metrics are utilized:

Precision measures the proportion of true positive predic-
tions among all positive predictions made by a model. It is
defined as

Precision = _Ir , 3
TP + FP

where TP represents true positives (the model successfully
detects the sunspot), and FP represents false positives (the
model incorrectly identifies sunspots when none is actually
present). High precision indicates that the model is effective in
reducing the occurrence of false sunspots.

Recall (or sensitivity) assesses the proportion of true
positive predictions among all actual positives. It is calculated
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Table 1
Comparison between MorphACWE and U-Net Segmentation Results in the
Test Set
Model Precision Recall F1-score ToU
MorphACWE 0.810 0.930 0.847 0.756
U-Net 0.989 0.992 0.986 0.981
as
P
Recall = ——, (@)
TP + FN

where FN denotes false negatives (the model fails to detect
sunspots). High recall reflects the model’s ability to capture as
many positive sunspot pixels as possible.

Fl-score is the harmonic mean of precision and recall,
providing a single metric that balances both aspects. It is
defined as

Precision x Recall

Fl-score =2 x — . (®)]
Precision + Recall

This metric is particularly useful when dealing with imbal-
anced datasets, as it considers both FPs and FNs.

Intersection over union (IoU) quantifies the overlap between
the predicted and ground-truth regions in object detection
tasks. It is defined as

Area of Overlap

IoU = (6)

Area of Union
where the area of overlap is the intersection of the predicted
and ground-truth regions, and the area of union is their union.
IoU provides a measure of how well the predicted sunspot
masks align with the actual ones.

Table 1 presents the precision, recall, Fl1-score, and IoU for
both MorphACWE and U-Net. The metrics presented are
evaluated at the pixel level, assessing the accuracy of each
pixel classification. The notable differences in precision, and
consequently in the Fl-score, between the two segmentation
models presented in Table 1 mean MorphACWE tends to
produce a larger number of false sunspot detections compared
to U-Net. This can partially be explained by the removal of
small sunspots according to USET dataset when constructing
the ground truth.

Table 1 presents the precision, recall, F1-score, and IoU for
both MorphACWE and U-Net. The metrics presented are
evaluated at the pixel level, assessing the accuracy of each
pixel classification. The lower precision of MorphACWE
relative to U-Net, and the associated reduction in F1, indicates
a higher rate of FP sunspot pixels for MorphACWE. This
discrepancy is partly attributable to the ground-truth construc-
tion, which removes small sunspots based on USET dataset.
Detections of such small spots are therefore counted as FPs
affecting MorphACWE. The high recall achieved by U-Net
indicates its ability to capture a larger proportion of actual
sunspot pixels, highlighting its capability to learn the
hierarchical structure of sunspots, as demonstrated in
Figure 5. Overall, the superior metric values of U-Net
underscore its effectiveness in segmenting sunspots from
full-disk continuum images. Notably, the additional refinement
layer based on USET data, applied to the MorphACWE
results, is unnecessary when the application is not constrained
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to align with the WDC-SILSO convention, enabling our
method with greater future scalability.

4.2. Detection of Single Spot and Sunspot Group

The K-means clustering algorithm is employed to effec-
tively distinguish umbrae from penumbrae, facilitating the
accurate identification and counting of individual sunspots
encompassed by penumbrae. The umbrae, characterized by its
significantly cooler temperature, exhibit much lower intensity
compared to the penumbrae. The reduced intensity of the
umbrae causes them to cluster together with the dark
background, as illustrated in Figure 6. This classification
process isolates the penumbrae into a separate cluster, ensuring
a clear and reliable distinction between these two regions of
sunspots.

YOLOVS is employed for detecting sunspot groups on full-
disk solar segmentation images, where the background is
assigned the mean intensity of nonsunspot regions. The
representative examples demonstrate the effectiveness of
YOLOV5 in accurately detecting and localizing sunspot
groups, as depicted in Figure 7. The performance of YOLOv5
is evaluated using precision, recall, Fl-score, and average
precision at a confidence level of 0.5 (AP50), as presented in
Table 2.

Precision is defined as the proportion of correctly detected
sunspot groups out of all groups detected by the model. In this
context, TP refers to predictions where the detected group
correctly matches the ground truth with an IoU >0.5.
Conversely, TF represents predictions where the detected
group either does not match any ground-truth groups or
exhibits an IoU below the specified threshold of 0.5.

Recall quantifies the ability of YOLOVS to correctly identify
all ground-truth groups. In this context, FN corresponds to
ground-truth groups that were not correctly detected by the
model, i.e., the model fails to identify the group.

AP50 calculates the area under the precision-recall curve
when the IoU threshold is set to 0.5. It serves as an indicator of
how well the model detects objects with moderate localization
accuracy.

The sunspot butterfly diagram is presented in Figure 8. The
corrected areas are computed for each sunspot group,
providing a quantitative measure of the associated magnetic
flux. The latitude of each sunspot group is determined based on
the central position of a group. This diagram offers valuable
insights into the cyclical nature of solar activity and the
latitudinal migration of sunspots throughout the solar cycle.
Specifically, it illustrates how sunspots initially emerge at
higher latitudes (~30°-40°) at the onset of a solar cycle and
gradually migrate toward the equator (~5°) as the cycle
progresses. The characteristic pattern of the butterfly diagram
confirms that the identified sunspots and groups align with the
expected latitude evolution across multiple solar cycles.

4.3. Estimation of Sunspot Numbers

The comparison of daily total sunspot numbers between
various human annotations and the estimated values from
the proposed framework is presented in Table 3. Both
WDC-SILSO and USET are operated by the Royal Observa-
tory of Belgium, with USET serving as one of the
observational resources that directly contributes to WDC-
SILSO’s solar monitoring and sunspot number calculations.
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Figure 6. Examples of separation of umbrae and penumbrae with K-means. The first row displays patches from SDO/HMI continuum observations. The second row
presents the sunspot segmentation results. The third row shows the clustering outcomes generated using K-means.
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Figure 7. Examples of sunspot group detection. The red boxes highlight the annotated sunspot groups based on SDO/HMI continuum observations, while the blue

boxes indicate the detection results of sunspot groups generated using YOLOVS.

Table 2
Evaluation Results of the Proposed Sunspot Group Detection Method Using
YOLOvV5
Method Precision Recall Fl-score AP50
YOLOvV5 0.757 0.732 0.744 0.732

The WDC-SILSO database does not currently provide daily
counts of single spots or sunspot groups. The Uccle station,
recognized for its stability (F. Clette et al. 2016), has produced
an extensive observational record spanning nearly six decades
(F. Clette et al. 2014). Therefore, the estimated sunspot
numbers in this study are validated against the corresponding
daily reports from USET.

The Pearson correlation coefficients between the USET
single-spot counts and sunspot group numbers, in comparison
with the estimated values, are 0.88 and 0.93, respectively. As
shown in Figure 9, USET’s total sunspot numbers are
generally lower than the estimated values, with a correlation
coefficient of 0.93. Notably, despite these discrepancies, a
strong correlation of 0.97 is achieved between the estimated
daily total sunspot numbers and those reported by WDC-
SILSO, as illustrated in Figure 9(a). Furthermore, the
correlation coefficient between USET and WDC-SILSO total
sunspot numbers is 0.95. The better correlation between the
proposed method and WDC-SILSO, as compared to that
between the proposed method and the single USET station, is

demonstrated in Figure 9(a), where the latter exhibits more
scatter.

The proposed approach mimics the logic of human counting
while minimizing subjective bias. This forms the first pillar of
our contribution. According to S. Mathieu et al. (2019),
manual sunspot counts are prone to short-term inconsistencies
caused by variable seeing conditions (e.g., weather, atmo-
spheric turbulence), the involvement of multiple observers at
one station, and counting or transcription errors. Long-term
errors may arise from gradual instrument degradation and
systematic biases in the counting process, with biases being
particularly pronounced during solar minima when short-lived
sunspots are common. To mitigate these potential issues, we
rely on satellite imagery, which eliminates various atmo-
spheric seeing conditions, and ensures more homogeneous
observations. Further, an automated system also avoids
interobserver variability and transcription errors. Furthermore,
because the image-processing thresholds and neural network
hyperparameters are optimized with respect to the WDC-
SILSO total sunspot number during training, long-term
systematic errors can be effectively reduced. Nevertheless,
the automated system may still be subject to residual biases
introduced by human intervention in parameter settings or by
the limited span of solar cycles represented in the training data.
The performance and stability of the system are expected to
further improve as longer-term satellite observations become
available.
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Figure 8. Sunspot butterfly diagram illustrating (a) both the training and test datasets, and (b) the test dataset only. The black, red, and yellow dots represent the
corrected areas of sunspot groups within the ranges of 0-50 millionths of solar hemisphere (MSH), 50-200 MSH, and greater than 200 MSH, respectively.

Table 3
Correlation Coefficients between the Proposed Method and the WDC-SILSO,
USET, SWPC, and DPD Datasets Evaluated Based on the Number of Single
Spots, Sunspot Groups, and Total Sunspot Counts, Where Available

Dataset No. of Single Spots No. of Groups Total Sunspot No.
SILSO None None 0.97
USET 0.88 0.93 0.93
SWPC None None 0.94
DPD 0.78 0.74 0.81

Note. “None” means no record is available from this dataset.

Our second contribution deals with the fact that traditional
sunspot masks are typically available only as hand-drawn
sketches, which limits their utility for large-scale analysis. Our
method generates accurate by-products including sunspot
masks, umbra/penumbra segmentation, and positional infor-
mation, all of which are calibrated to be consistent with the
relevant WDC-SILSO records.

Third, the incorporation of advanced techniques (such as
limb darkening correction, feature extraction, and image
segmentation) enhances the model’s sensitivity to low-contrast
features, enabling the detection of faint or small sunspots that
may be missed by human observers. Therefore, the proposed
method provides an automated and scalable approach capable
of replicating the composite outputs of a multistation network
such as WDC-SILSO. Notably, the performance of the method
should continue to be monitored, as it remains uncertain
whether it will perform equally well across different solar
cycle regimes (S. Mathieu et al. 2023). This nevertheless
highlights its potential as a valuable tool for future high-
resolution solar observations and, more broadly, for long-term
monitoring of solar activity.

The correlation coefficient between the SWPC total sunspot
numbers and the estimated values is 0.94. The discrepancy
could be attributed to the higher consistency and reliability of
the proposed sunspot segmentation approach, as discussed by
J. Chen et al. (2025). As shown in Figure 9(b), without
applying the additional USET-based mask, the correlation
coefficient between DPD and the estimated total sunspot
numbers is 0.81. When the mask is applied, this correlation
decreases slightly to 0.79, and DPD continues to report higher
total sunspot numbers than the proposed method. This
difference likely arises from distinct sunspot identification
criteria, as DPD tends to include significantly smaller sunspots
(L. Lefevre & F. Clette 2011).

5. Conclusions

This study presents a deep learning-based approach for
automated total sunspot number estimation. The proposed
framework employs semantic segmentation methods to
identify sunspots, machine learning clustering techniques to
distinguish umbrae from penumbrae, and object detection
models to detect sunspot groups, enabling a fully automated
determination of daily total sunspot numbers. The Pearson
correlation coefficients between the estimated total sunspot
numbers and the WDC-SILSO dataset reach 0.97, demonstrat-
ing the reliability of our approach.

Traditional sunspot counting methods rely on manual
annotations or threshold-based image processing, both of
which are susceptible to inconsistencies and biases. Our
framework improves upon these approaches by leveraging
deep learning to automatically count individual sunspots and
detect sunspot groups. The correction mask based on USET
data enhances the consistency of automated results with the
WDC-SILSO convention regarding which sunspots should be
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Figure 9. Comparison of daily total sunspot numbers for each test image between (a) the estimated values and WDC-SILSO (blue dots) or USET (yellow dots)
observations; and (b) the estimated values and SWPC (blue dots) or DPD without USET mask (yellow dots) observations. The red-dashed line indicates the points

where estimated values match the corresponding observations.

counted. In addition, the framework parameters are optimized
with respect to WDC-SILSO reference values, ensuring a more
objective and reliable estimation process.

While the proposed approach is robust, future work will
focus on refining the calculation method by incorporating
temporal information. Examining multiple preceding and
subsequent images could help differentiate persistent sunspots
from transient noise. Additionally, incorporating solar cycle
variability into the training dataset may further enhance the
model’s adaptability across different phases of solar activity.
By integrating advanced time-series models, future studies aim
to improve the accuracy and reliability of sunspot number
estimation, contributing to a deeper understanding of solar
activity and its implications for space weather forecasting.
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