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Detecting faulty lithium-ion cells in large-
scale parallel battery packs using current
distributions
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Pierre Lambert 1,2, Ross Drummond 3 , Joseph P. Ross1,4, Eloise C. Tredenick 1,5,6,

David A. Howey 1,6 & Stephen R. Duncan1,6

One of the main concerns affecting the uptake of battery packs is safety, particularly with respect to

fires caused by cell faults. Mitigating possible risks from faults requires advances in battery

management systems and an understanding of the dynamics of large packs. To address this, a

machine learning classifier based upon a support vector machine was developed that detects cell

faults within large packs using a limited number of current sensors. To train the classifier, a modelling

framework for parallel-connected packs is introduced and shown to generalise to Doyle-Fuller-

Newman electrochemical models. The fault classification performance was found to be satisfactory,

with an accuracy of 83% using current information from only 27% of the cells. Validation on

experimental pack data is also shown. These results highlight the potential to combine mathematical

modelling and machine learning to improve battery management systems and deal with the

complexities of large packs.

Applications including transport electrification and grid energy storage are
leading a rapid growth in the roll-out of large lithium-ion (Li-ion) battery
packs1. As large packs become more widely adopted, concerns have been
raised about their safety and the ability of the battery management systems
(BMS) todetect faults that could eventually lead tofires2,3. Various faults can
occur duringoperation,mainly due to ageing and improperuse4, and several
instances of electric vehicle (EV)fires causedbybattery pack faults have now
been reported5. For example, the National Transportation Safety Board
reported 17 lithium-ion battery fires on Tesla vehicles in the USA in 2018,
out of a total of 350,000 vehicles6. Detecting these faults and isolating them
before they become dangerous is therefore a growing concern for EV and
grid storage users andmanufacturers. Each Li-ion battery pack typically has
its own individual architecture (with little standardisation across the field)
because each application generally has unique energy and power require-
ments. Cells in battery packs are typically connected in parallel within
individual modules, with the modules then connected in series7. This
arrangement is often referred to as nPmS, where m modules of n parallel
cells are connected in series. Within parallel-connected modules, both
external and internal faults can occur8,9. External faults are primarily caused
by sensor and connection issues, while the causes of internal faults include
overcharge, over-discharge, short circuits, accelerated degradation, and
thermal runaway10; these form a varied collection of issues that can be

challenging to detect since each cell behaves as a ‘black-box’. While the
initiation of external faults can be sudden, internal faults often appear
gradually, and thus their formation can be monitored and detected more
effectively. The ability to detect and manage the development of internal
faults (even though doing so may be challenging using existing pack sensor
technology) motivates the fault-detection algorithms of this work.

Problems associated with battery pack faults, including fires and
deterioration in pack performance, have motivated BMS fault-detection
research. Cells in large-scale battery packs have intrinsic variability caused
by slight changes in manufacturing and usage11. Within parallel-connected
packs, this cell-to-cell variability causes an uneven distribution of currents
across the branches in the pack, resulting in the appearance of
fluctuations12–14. As the behaviour of these current fluctuations depends
upon the cell-to-cell variability, current measurements can be used to
understand pack health. Since current sensors are already widely deployed
for state-of-charge estimation (although usually not all parallel branch
currents are measured) and are relatively inexpensive, they have the
potential to be scalable, cost-effective, and accessible tools for diagnosing
pack health and detecting faults. However, improvements in BMS algo-
rithms are needed to make more effective use of this data.

In response, this paper develops a fault-detectionmethod that uses the
information encoded within the uneven current distributions of parallel-
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connected packs. First, amodel of a large battery pack is established, and the
branch currents simulated. An internal cell fault-detection algorithm based
upon the support vector machine (SVM) is then proposed using the
simulated data. It should be noted that the use of branch current distribu-
tions as a means of detecting cell faults has recently been demonstrated by
Ding et al.15, whose work estimated the current distributions based on
terminal voltage, total pack current and state-of-charge (SoC) using a long
short-term memory (LSTM) network. They compared the estimated
branch currents to the actualmeasured signals andused a generated residual
signal to detect connection faults. The main differences with our work
include the fact that Ding et al. 15 proposed a detection method for con-
nection faults (external faults) whereas we study accelerated degradation
faults (internal faults); also, they focus on small packs (4p1s) whereas our
results are based on large packs (74p1s).

The modelling framework and analysis proposed here also differs. In
particular, our framework expresses the branch currents of the parallel pack
explicitly in terms of the model states and the applied current. This for-
mulation allows the differential algebraic equations (DAEs) of the pack
model to be converted into a set of ordinary differential equations (ODEs),
significantly simplifying the pack model equations. The obtained expres-
sions for the branch currents are also shown to generalise to more complex
battery models than the circuit models developed for the fault-detection
algorithm, in particular to the Doyle-Fuller-Newman (DFN) electro-
chemical model based on porous-electrode theory. As far as the authors are
aware, these are amongst the first simulations of parallel connected DFN
models, a result that will enable detailed electrochemical simulations of Li-
ion battery packs in the future.

Three main approaches have been used to detect battery faults in
previous works: model-based methods, signal processing, and knowledge-
based methods16. Model-based methods rely on battery models (mostly
electrochemical or equivalent circuit) whose parameters are estimated using
system identification techniques17–19. The measured and estimated signals
are compared anda residual signal is extracted todiagnose apotential fault20.
Signal processing methods rely on large datasets from which fault features
are extracted (e.g., using entropy and wavelet transforms)21,22; faults are
detected once a given Z-score threshold has been exceeded for a certain
feature. Finally, the knowledge-based approach involves applying methods
such as expert systems, fuzzy logic, and neural networks to diagnose battery
faults23–25. Criteria describing the faulty state of the battery are established
and thresholds defining the detection of a fault are determined.

The need for effective fault detection algorithms for BMS designs has
motivated several studies on this topic. Tran et al.26proposed amodel-based
sensor fault diagnosis method and demonstrated how the equivalent circuit
model parameters were affected by cell degradation and by sensor faults,
with the proposed method able to detect and isolate voltage and current
sensor faults from the estimated cell degradation. Nuhic et al.27 developed a
data-drivenapproach forhealthdiagnosis using aSVM,whichwas shown to
effectively learn the degradation behaviour of Li-ion cells. Yao et al.28 also
demonstrated the ability of a SVMclassifier to identify a cell fault andgive an
indication of its severity. Finally, Sidhu et al.29 proposed a model-based
method to diagnose multiple faults using extended Kalman filters to
represent signature-fault models.

Building on these results, the primary contributions of this article are as
follows. An equivalent circuit model of a parallel-connected battery pack is
developed and used to simulate single parallel modules (74p1s) within a
Tesla Model S battery pack (74p96s) containing Panasonic NCR 18650B
cells. An expression for the parallel-pack branch currents is derived which
converts the model DAEs into ODEs. This expression for the currents is
shown to hold for a broad class of cell-levelmodels, in particular for parallel-
connected DFN electrochemical battery models. The current distributions
fromthe 74p1spackmodel simulations are then analysed and their response
to cell faults caused by accelerated degradation is investigated. A cell fault-
detection algorithm based on a support vector machine is then trained and
applied. The trained classifierwas evaluated on experimental packdata, and,
even though the algorithm was trained on simulation data, its ability to

predict faults transferred over to experimental data. These results highlight
the potential to use relatively inexpensive sensing hardware—current
measurements at pack level—for fault diagnosis, improving pack safety and
performance.

Results and discussion
Simulations
Wenowdescribe ourmodel for parallel-connected Li-ion cells that captures
the impact of variations in the series resistance r and capacity Q on the
overall response of the pack. The key feature is the resolving of Kirchhoff’s
laws such that the DAEs of the pack model are converted into ODEs,
making it significantly simpler to solve. The class of cell-level models to
which the following pack-level modelling results can be applied are those
where voltage can be expressed as

VkðtÞ ¼ hðxkðtÞÞ þ rkikðtÞ; k ¼ 1; 2; . . . ; n ð1Þ

where the index k ∈ {1, 2, …, n} relates to the parallel-connected cell
number in the pack, n is the total number of cells in parallel, xk(t) is the
dynamic state of cell k associated with a time derivative, rk is the respective
cell series resistance and ik(t) is the branch current (as in the current flowing
into branch k of the parallel connections). Connecting these cell-level
models in parallel means that Kirchhoff’s laws have to be satisfied to
compute the branch currents ik(t),

hðxjðtÞÞ þ rjijðtÞ ¼ hðxkðtÞÞ þ rkikðtÞ; j; k 2 f1; 2; . . . ; ng; ð2aÞ

X

n

k¼1

ikðtÞ ¼ IðtÞ: ð2bÞ

Combining thesewith the cell dynamicsmeans that parallel-connectedpack
models are described by a set of DAEs30. However, using the approach
outlined in theMethods section, the algebraic equations of Kirchhoff’s laws
from Equation 2 can be resolved to give

i1ðtÞ ¼ r1
X

n

k¼1

1

rk

 !�1
X

n

k¼2

Δhk1ðtÞ

rk
þ IðtÞ

 !

; ð3aÞ

ikðtÞ ¼
1

rk
r1i1ðtÞ � Δhk1ðtÞ
� �

; k ¼ 2; 3; n; ð3bÞ

whereΔhjk(t) = h(xj(t))−h(xk(t)).With this expression, the branchcurrents
can be written as a function of the states xk(t) (which, for equivalent circuit
models such as Fig. 1, could be the state-of-charge and voltages, and, for
electrochemicalmodels, could be the potentials and concentrations) and the
applied pack current I(t). Resolving Kirchhoff’s laws using Equation 3
means that the parallel-pack model does not have to numerically solve
Equation 2 at each time step of the simulation to compute the branch
currents ik(t). Instead, these currents are defined by Equation 3 and are
expressed in terms of the states of the cell model xk(t) and the applied pack
current I(t), allowing the pack model dynamics to be solved as an ODE
rather than a DAE30. Turning the DAE parallel-pack model into an ODE
also gives insight into the distribution of currents between branches in the
pack, in contrast to the numerical approach where the computational
solution only gives a limited insight into the mechanisms by which the
pack’s currents re-distribute themselves. The numerical solution for
computing the parallel-pack branch currents is, however, widely used in
modelling studies31–34, estimator designs35–38 and simulations based upon the
PyBAMM39 open-source software40.

The extent to which this computational solution has been used indi-
cates the broad applicability of the analytic solution of Equation 3 to
understand these nonlinear parallel-pack dynamics. Moreover, the pro-
posed approach overcomes some of the restrictive assumptions of existing
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analytical solutions, such as the open circuit voltage (OCV) being affine41,42

and the cell-level model simply being a voltage source and a series
resistor13,43. Instead, with Equation 3, the voltage is allowed to be of the form
of Eq. (1), as in the sum of a linear series resistance term and a nonlinear
function of the states. Compared to the existing derivation for the branch

currents from Drummond et al.44, the method presented here is simpler
since it does not involve computing a matrix inverse. Instead, in this work,
the structure of the equations definingKirchhoff’s laws are exploited to solve
Equation 2.

The cell-level model used to design the fault-detection algorithm for
theparallel-packbranchcurrents is the equivalent circuitmodeldescribed in
the Methods section. The different cell parameters were assumed to be
normally distributed from cell-to-cell by extrapolating the results of
Schneider et al.45, with the means of the parameter distributions given in
Table 1 and the standard deviations given in Table 2. Since the values
observed in Schneider et al.45 were based on different cells (Samsung
INR18650-25R) from those considered here (Panasonic NCR 18650B), the
σ/μ ratios from Schneider et al.45were first computed and then related to the
mean values from Table 1 to derive the standard deviation values for the
NCR18650B cell considered here. The standard deviations computed using
this method are stated in Table 2.

To analyse the behaviour of our model, a 1C discharge of three cells
connected in parallel was considered. The simulated currents and state-of-
charge values are plotted in Fig. 2, and it is noted that the current dis-
tributions for the cells are similar in shape to thosemeasured experimentally
by Chang et al.46. In both cases, the characteristic current fluctuations of
parallel-connected packs are observed. It is the properties of these fluctua-
tions that are examined in this work for the purpose of fault detection.

The architecture of aTeslaModel S batterywas used as a reference for a
large parallel-connected pack. This pack has a 74p96s configuration, but a
single module (74p1s configuration) was simulated here. Because all
modules are subjected to the same pack current, they all behave similarly,
hence our focus on the simulation of a single module. The 74 cells of the
module were assigned parameters according to the normal distribution
defined previously (Tables 1 and 2), and the ODEs of the pack model were
solved to obtain the terminal voltage, state-of-charge, and current flowing
through each cell in parallel during a full discharge. The results of this pack-
level simulation are shown in Fig. 3. The observed current fluctuations
typically have an amplitude of a few hundredths of an ampere and are
therefore detectablewith shunt current sensors that typically have tolerances
ranging from 0.1 to 1% and can be connected in series with the cells14–
although, in practice, cost reasonsmake suchmass sensing impractical. The
highest current deviations from the mean are located at the beginning and
end of the discharge.

At the start of the simulation, the immediate distribution of currents
across the pack is due to differences in series resistance from cell-to-cell
causing different currents to flow through the cells such that they have the
same terminal voltage. Because of this initial current distribution, the cells
discharge at different rates. The values of the cell OCVs will then also vary
from cell-to-cell, since the OCV is a function of the state-of-charge, causing
the currents within the pack to rebalance themselves to enforce Kirchhoff’s
voltage laws. This rebalancingmechanism is the reasonwhy thefluctuations
are more visible at the end of the discharge where the gradient of the OCV
with respect to SoC changes is steep. It should also be noted from Fig. 3 that
the SoCs varies slightly between the cells and that the terminal voltage is the
same throughout the parallel pack, which is consistent with the Kirchhoff
law of Equation 2.

It should be recalled that the cells modelled during this study were
considered to be fresh and from the same batch, implying little cell-to-cell
variability (except for the faulty cells used for the fault detection algorithm
that were deliberately selected to have a high variation so as to represent a
fault). For comparison, a simulation of the samepack butwith the fresh cells
replacedwith aged oneswas run, as shown in Fig. 3. To characterise the aged
cells, the value of the standard deviations of the parameters was multiplied
by five with respect to the values chosen previously (see Table 2). The
current variations follow a similar shape to the fresh pack simulation of
Fig. 3, with one significant difference; the amplitude of the variations is one
order of magnitude higher. This increased variation in the currents is
responsible for the significantlyhigher SoCdeviationsof the agedpackwhen
compared to thehealthypack results inFig. 3,which are amplified furtherby

Table 1 | Mean values of the cell model parameters

Parameter Mean Value Unit References

r 19 mΩ 61

R1 1.7 mΩ 61

C1 5598 F 61

Q 3350 mAh 62

Table 2 | Standard deviations of the cell model parameters

Parameter σ/μ ratio Standard deviation σ Unit

r 2.09 % 0.40 mΩ

R1 1.64 % 0.028 mΩ

C1 7.12 % 399 F

Q 0.28 % 9.4 mAh

(a)

(b)

Fig. 2 | Discharging behaviour of three cells connected in parallel. Simulated

currents (a) and states of charge (b) for three parallel-connected cells during a 1C

discharge.

Cell 1

Cell 2

Cell n-1

Cell n

a b

Fig. 1 | Schematic of the cell-level battery model used to build the packs. a

Equivalent circuit model and b module of n cells connected in parallel.
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the increased variation in the capacitance of each cell. These capacitance
differences also cause a larger shift in the current fluctuations over time; the
current deviations of the cells with the highest capacitances have a slight
delay compared to others, which is particularly noticeable at around 2800 s
in the simulation. The simulations suggest that a degradation fault would be
more easily identifiable in aged packs compared to fresh ones, as the current
fluctuations would be greater. In the remainder of this paper, the focus will
be on the design of fault-detection algorithms for the pack described above.

The general formof the cell-level voltage equations of Eq. (1) allows the
equation for the branch currents given in Equation 3 to be applied to a
broader class of models than just the circuit model discussed above. In
particular, it can be applied to DFN-style electrochemical Li-ion battery
models47with double layer effects included48,49

—a benchmarkmodel for Li-
ion batteries. Electrochemical battery models are, generally, more complex
than circuit models and this added complexity introduces challenges when
using them within pack models, as observed in the recent work of Reniers
and Howey50. In that work, a pack-level model was developed for a 1MWh
grid battery system containing 18,900 cells; simulations then cycled the
system for 10 years. The cell-levelmodel of that studywas the single particle
model (SPM), and although this is one of the simplest forms of battery
electrochemical models, the analysis highlighted the difficulty of resolving
Kirchhoff’s laws for parallel connections of SPMs. Specifically, due to the
SPM nonlinear series resistance, the parallel Kirchhoff laws had to be
resolved using an approach based upon a PID controller, which introduced
some errors.

By contrast, it is shown in the Supplementary Information (SI1 giving
the mathematical analysis and SI2 defining the DFN model variables and
parameters) that resolving parallel connections of DFN models is intuitive
and possibly easier to implement than for the SPM. Even though the DFN
model ismore complex than the SPM, this result shows how computing the
branchcurrents is easier.Asdetailed inSI1, this is obtainedby expressing the
DFNmodel voltage within the anode, cathode, and separator in the form of
Eq. (1) with

r ¼ Rctc þ

Z

Ωn

1

σs þ κe
dx þ

Z

Ωp

1

σs þ κe
dx þ

Z

Ωs

1

κe
dx;

and

hðxkðtÞÞ ¼ϕdlðL; tÞ � ϕdlð0; tÞ þ

Z

Ωn

ωκe
σs þ κe

∂lnðceðx; tÞÞ

∂x
�

σs
σs þ κe

∂ϕdlðx; tÞ

∂x
dx

þ

Z

Ωp

ωκe
σs þ κe

∂lnðceðx; tÞÞ

∂x
�

σs
σs þ κe

∂ϕdlðx; tÞ

∂x
dx þ

Z

Ωs

ω
∂lnðceðx; tÞÞ

∂x
dx:

Crucially, by including double-layer dynamics in the DFN model, the
potentialϕdl(x, t) becomes amodel state as the double-layer dynamics give it
a time derivative. The parallel branch currents can then be computed
directly using Equation 3, eliminating the need to solve the algebraic
equations of Kirchhoff’s laws when using DFNmodels. Thus, even though
the DFN is a more complex electrochemical model than the SPM,
computing the branch currents for parallel connections is intuitive and can
be readily implemented, with the branch currents expressed directly as a
function of the model states and the applied current.

To verify that Kirchhoff’s laws had been satisfied with this DFN pack
model, simulations of two parallel-connected DFN electrochemical models
were conducted. The parameters of these simulations are given in SI2. The
model was formulated numerically by discretising the PDEs using second-
order central differences to approximate spatial derivatives, along with
averaging of the diffusivity and conductivity functions at the control volume
faces, and solved using “ode15s” within MATLAB® 2021b51. The para-
meters for each cell in this pack model are given in Table 1 and Table 2. A
constant-current discharge was modelled with a current density of I(t) =
129.55 A/m2. It was assumed that the contact resistance between cells one
and two in the simulated parallel pack differed with Rctc = 5.7 × 10−4Ω for
cell one and Rctc = 7.7 × 10−4Ω for cell two—this setup is referred to as case
one. As well as differences between cell contact resistances, two other cases
were simulated.Case two additionally has the anode reaction rate coefficient
in cell two being three times that of cell one, while case three has the anode
particle radius of cell two being three times greater than in cell one.

The simulation results for the three cases discussed above are shown in
Fig. 4. In this figure, the first rowdescribes the pack voltages, the second row
is the branch currents, the third row is the evolution of the cathode reaction
rate kinetics at both the current collector and the separator boundaries, and
the fourth rows corresponds to the evolutionof the spatial distributionof the

Fig. 3 | Simulated currents, state-of-charges, and voltages for 74 parallel-

connected cells during a 1C discharge. A Fresh TeslaModel Smodule: currents (a),

states of charge (b), and voltages (c). Each line corresponds to a cell. B Aged Tesla

Model S module: currents (d), states of charge (e), and voltages (f). Each line cor-

responds to a cell. C Pack with one faulty cell: currents (g) and states of charge (h),

with the solid cyan line indicating the defective cell among 74 cells.
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reaction kinetics through the thickness of the anode. Each line in the fourth
row figures corresponds to a snapshot of j(x, t) in the anode taken every 25 s
during simulation, with darker lines corresponding to the start of the
simulation and lighter lines corresponding to the end. The three columns in
the figure corresponds to the three different cases of the cell parameters
being simulated.

From the current and voltage plots of Fig. 4, it can be observed that
Kirchhoff’s laws are satisfied; cell voltages are equal and the current splits
between the two cells and constantly rebalances itself during the discharge.
The three different cases were found to lead to three different responses,
highlighting the degree to which manufacturing variability of cells (and
hence, variation in their electrochemical parameters) can affect pack per-
formance. The final two rows in the figure illustrate how variations in cell
parameters can lead to variations in the electrochemical response. These
variations may impact the pack response in the long-term, especially cell
degradation rates52.

The generalisation to parallel-connected DFN models discussed
above shows how the modelling framework of Equation 2 can be applied
to more complex models, beyond simple electrical circuits. The frame-
work can also be generalised to time-varying current profiles, such as the
drive cycles considered in ref. 44, and is not restricted to the constant-
current profiles used here for fault diagnosis. With this approach,
detailed simulations of pack electrochemical response can be undertaken.
However, due to the significant computational complexity and lack of
effective parameter estimation methods for DFN models, it was decided
to base the fault detection algorithm here on parameterised circuit
models for 74p96s Tesla Model S modules. Once the computational and
parameterisation issues of DFN models are resolved, the expression for
the branch currents stated in Equation 3 can then be used for pack-level
diagnostics with more complex models, such as designing advanced
fault-tolerant algorithms.

Fault detection
To implement the cell fault-detection algorithm, a cell fault must first be
introduced. Here, the focus is on understanding faults caused by accelerated
degradation. Amongst other phenomena, as a cell ages its resistance
increases—especially at end-of-life53. Within a pack, some cells will reach
this stage sooner than others, leading to potential accelerated degradation
faults. For this reason, the resistances of the cells within a pack can be
regarded as useful indicators of cell faults, as they can significantly influence
the pack dynamics52.We therefore consider the detection of faults caused by
an abnormal increase in the ohmic resistance of a cell due to accelerated
degradation54. According to the cell model described in Fig. 1, a cell whose
series resistance r follows a normal distribution based upon the values given
inTables 1 and 2will be defined as healthy. A faulty cell will be defined by an
abnormally high resistance r (at least 5 standarddeviations above themean).
Experimental studies55 have shown that series resistances of cells within
packs can vary by several dozen percent during ageing. For this reason, the
following analysiswill consider the casewhen the faulty cell has an increased
resistance ranging from 10 to 100%.

To evaluate the impact of cell faults on the current distributions across
parallel-connected packs, simulations of both a healthy pack (see Fig. 3) and
onewith a faultwere carriedout.Thepack containing the faultwas similar in
all aspects to the healthy pack but one of the cells had an increased series
resistance, r = 1.5 × μr = 28.5mΩ. The results are shown in Fig. 3. There is a
cleardifference compared to thehealthypack inFig. 3: the faulty cell exhibits
a discharge current at t = 0 with a low absolute value due to its resistance
fault. Consequently, the current variations experienced by this cell are
extreme in amplitude.However, in general, the currentsflowing through the
non-faulty cells in this aged pack all behave similarly to those obtained for a
healthy pack. This similarity between the currents in fresh and aged packs
introduces a challenge for fault detectionwhen not all the currents are being
monitored.

A fault detection algorithmbased upon a SVMclassifierwas trained on
the dataset to perform binary classification between healthy and faulty

parallel packs based upon the simulated current distributions,with details of
this algorithm given in the Methods section. Features for the SVM fault-
detection algorithm were extracted from the dataset samples in order to
discriminate the healthy packs from the faulty packs. The performance of
the classifier was first verified for detecting faulty packs from all the simu-
lated currents as inputs. Using simple features based on the deviation of
currents from the mean, it was expected that faulty packs could be detected
because they present an abnormal current signal (see fault detection sec-
tion). Once trained, the classifier was able to classify the 200 samples of the
training set withoutmaking any classification errors, thus achieving a 100%
accuracy score. The algorithm thus performed successfully when all the
currents in the pack were being monitored.

However, in practice, only a limited number of branch currents are
typically measured with large parallel-connected packs due to the increased
costs of the sensors and added system complexity. To make the proposed
algorithm more applicable the fault detection algorithm for the sparse
sensing problem is now considered—i.e., when only a fraction of the
number of branch currents are measured. With sparse sensing, fault
detection becomes significantly harder, as it is challenging to infer the
impact of a faulty cell on the rest of the pack when only measuring the
healthy-cell currents, as seen in Fig. 5. For this analysis, it was assumed that
onlyNs current sensors were deployed in the pack and the current from the
faulty cell was not measured by these sensors.

Features for the developed SVM fault-detection algorithm were
extracted from the dataset samples in order to discriminate the healthy
packs from the faultypacks. The extracted features described in theMethods
section were then used and an ablation study was performed to characterise
their impact on the classification, where the impact of each feature on the
classifier was quantified. After empirically testing and selecting features, it
was noticed that the most effective descriptors were formed from the local
minima and maxima of the current signals. The classification was per-
formed for a range of numbers of sensors Ns in the parallel pack. The
classifier was first trained and tested forNs = 73, i.e. all cell currents available
except the faulty cell current. The confusion matrix of the corresponding
predictions is given in Table 3a. The same procedure was then applied for
Ns = 20, i.e., sensorsmeasuringonly a subsetof the 74 cells,with results given
in Table 3b.

In practice, these measurements may not be available because cur-
rent sensors are usually not added to every branch of a parallel-connected
pack. In fact, often only a few sensors are used due to added costs
and additional compute power required from the BMS to process the
data. For these reasons, a fault-detection algorithmmust be robust in the
sense that it should still function even when the current of the parallel
branch is not measured. The results in the following section address
this issue.

The features were then trained on the dataset generated by this model,
whose structure is shown in Fig. 6. The profile of the current distributions
simulated within the dataset can be seen in this figure, showing that faulty
packs can be easily distinguished fromhealthypacks usingmeasurementsof
the faulty cell current (with the exceptionof the case rfaultycell = 1.1 × μr). This
again highlights the increased difficulty in designing the fault-detection
algorithm for the sparse sensing problem. After calculating the features for
all samples in the training and testing set, their histograms were analysed.
These were calculated forNs = 73 (i.e. the current signal from the faulty cell
was removed in faulty packs, while a random current was removed for
healthy packs). The feature values for the healthy and faulty packs were
separated, with the resulting histograms compared in Fig. 7. The observed
distributions for these features differ between healthy and faulty packs,
except for f1.

The histograms reveal that the extrema reached by the currents,
which form the basis of the six identified features f1 to f6, allow one to
partially discriminate the two classes. This is the case even though it
appears that the current distributions of the cells in a healthy pack and
the healthy cells in a faulty pack are similar (from Fig. 3 and the fault-
detection algorithm results). It is this discrimination that allows the SVM
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algorithm to detect faults even when only limited sensor information is
used. After empirically testing and selecting different features, it was also
noticed that the most effective descriptors were formed from the local
minima and maxima of the current signals. Finally, it is noted that as the
number of removed current sensors increases, the distributions of the
histograms of the two pack classes (healthy and faulty) overlap—
resulting in reduced classification performance.

Finally, the SVMclassifierwas trained and tested for a larger number of
Ns values, between 2 and 72, and themodel accuracy evaluated for each trial.
The results are shown in Fig. 8 and are a key contribution of this paper. This
figure compares the accuracy of the proposed faulty pack detection algo-
rithm as a function of the number of measured current branches Ns. A
plateau can be seen in the prediction accuracy of the figure at around 20
sensors out of 74, continuing to around 50 sensors. This suggests that the

Fig. 4 |Discharge simulation results of two parallel-connectedDFNmodels using

the parameter values in Table 1 and Table 2. Case 1 corresponds to the nominal

setup, with Rctc = 5.7 × 10−4 Ω for cell 1 and Rctc = 7.7 × 10−4 Ω for cell 2. Case 2

additionally has an anode reaction rate coefficient k three times greater in cell 2 than

cell 1. Case 3 has an anode active particle radius three times greater in cell two than

cell one and the fourth row is plotted every 25 seconds, with dark lines corresponding

to the start of the simulation and light lines to the end. a–c are the voltage responses

for the three cases, d–f are the branch current densities, g–i are the anode reaction

rates in time, and j–l are the distribution of the reaction rates in space across

the anode.
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optimal detection configuration for the TeslaModule Smodule, in terms of
precision and sensing cost, is around 20 sensors. As the number of deployed
sensors decreases, the accuracy score decreases: for 7 sensors (10% of the
cells in the pack), an accuracy of 76%was obtained, and for 2 sensors only, it
dropped to 67%.

Table 3b details the predictions made by the algorithm with only 20
sensors—the results contain few false positives, and a larger quantity of false
negatives. Since an accelerated cell degradation fault in a pack is a relatively
infrequent phenomenon, it is important that there are few false positives.
However, false negatives canbeproblematic and it canbe seen that this is the
main difference compared to the Ns = 73 case discussed in Table 3a, where
there are fewer false negatives. Considering the plot shown in Fig. 8, and the
statistical nature of the extracted features used by the detection method, it
appears that this method is applicable for a parallel pack made of a large
number of cells (Nc, total number of cells in pack), such as the TeslaModel S
module. However, for pack configurations where only a few cells are con-
nected in parallel, a method that uses only a small fraction of the total
number of cells in the module may prove difficult to implement.

The accuracy of the proposed SVM fault classifier was also evaluated
against a recurrent neural network (RNN), since RNNs are widely used in
many battery system algorithms, e.g., state-of-charge estimation56 because
they can implement online diagnosis in an end-to-end manner. Details of
the RNN can be found in theMethods section. Training on the raw current
data, the RNN had a fault-detection accuracy of 47.0% when Ns = 73 and
45.50% when Ns = 20, lower than the SVM. Whilst other neural network
architectures may show higher accuracies, the results indicate that simple
SVM classifiers can performwell for this task when compared against more
complex deep learning methods. The simplicity of the SVM also brings
advantages for practical deployment, both in terms of explainability of
features but also compact size. However, deep learning approaches, such as
theRNNconsideredhere,will likely outperformSVMs formore diverse and
complex usage profiles than the constant discharge currents of this paper.
With rapidly changing use profiles, such as drive cycles, the SVM features
may not be appropriate as it would be challenging to disentangle the fluc-
tuations causedby the use profile and those caused by the imbalances across
the parallel pack. Future work and experimental data will be required to
validate this.

Several model parameters strongly influence the dynamic
response of the current distributions across a parallel-connected pack
and, consequently, the performance of the detection algorithm. For
example, it was observed that the points where the fluctuations in the
current distributions were largest, during both discharging and
charging, correlated with the points where the slope of the OCV
curves were steepest. The shape of the OCV curve (which is different
for each cell chemistry) therefore strongly impacts the ability of the
algorithm to detect cell faults. Additionally, it is noted that the the
pack ageing will influence the detection algorithm—the variation
between cell parameters may grow, which could lead to greater
current deviations and potentially improve the accuracy of the
detection algorithm. It should also be noted that the obtained
accuracy of 82.8% for Ns = 20 (i.e. sensors placed on about 27% of the
cells in the pack) assumes that no sensor is ever placed on the faulty
cell. Since this should happen in this configuration in 27% of cases
and the fault is systematically detected in this case, we can assume a
higher accuracy in the general case.

Experimental validation
To evaluate the practical applicability of the proposed approach, the SVD
fault prediction classifier trained on 74p1s pack simulations with NCR
18650B cells was then applied to experimental testing data. Details of the
experimental setup can be found in theMethods section. Figure 9a–d show
the recorded current data of the four cells in the packs for the four cases. In
order for the experimental current data to be in the same format as that of
the SVD’s training data (e.g., that shown in Fig. 6), the data was scaled
according to the approach detailed in the Methods Section, with the nor-
malised currents shown in Fig. 9e–h. Feeding this scaled experimental data
into the SVD classifier trained on the 74p1s pack NCR 18650B cell simu-
lationdata gave the predictions of: (i) Fig. 9i–l withNs = 1, and (ii) Fig. 9m–p
withNs = 3. In general, the SVD predictor performed relatively well on this
experimental dataset. WithNs= 1, all the faulty cases were detected, but the
healthy packwas also predicted to be faulty; withNs = 3 (as in with only the
faulty cell not being sensed), the SVDpredictor detected the faults inCases 1
and 3 but misclassified Case 2 during most of the discharge and Case 4 at
some times. In general, these results highlight the transferability of machine
learning algorithms for battery systems trained on simulation data to
experimental data, with the SVD classifier in Fig. 9 performing satisfactorily
even though itwas trainedon74p1s pack simulationdatawithNCR18650B
cells and tested on experimental pack data of four RJ-LFP72174204-
280 cells.

Conclusions
Amethod to detect cell faults in large parallel connected battery packs that
combines model-based prediction with machine learning classification was

(a)

(b)

Fig. 5 | The impact of cell faults on pack-level current distributions. Comparison

between the current distributions of a faulty pack (a) and the same pack without the

faulty cell current (b) during a 1C discharge. Each line corresponds to a cell, with the

solid cyan line in (a) corresponding to the defective cell.

Table 3 | Confusion matrices for two sensor configurations

Prediction

Faulty pack Healthy pack Total

Truth Faulty pack 81 17 98

Healthy pack 5 97 102

Total 86 114 200

(a)Confusion matrix of SVM classifier with Ns = 73 (i.e. all but the faulty parallel
branch currents are measured).

Prediction

Faulty pack Healthy pack Total

Truth Faulty pack 76 27 103

Healthy pack 7 90 97

Total 83 117 200

(b) Confusion matrix of SVM classifier for Ns = 20.
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presented. An equivalent circuit model of a parallel battery pack was
developed to simulate the behaviour of an EV battery pack, specifically a
Tesla Model S module. Current distributions within the parallel connected
pack were studied in detail and an expression for the branch currents as a
function of the model’s states and the pack’s applied current was derived.
This expression for the parallel-pack branch currents was shown to gen-
eralise tomore complex batterymodels, including theDFN electrochemical
model. The branch currents of the parallel connected were used within an
SVM-based algorithm to detect faulty cells in the pack to improve its safety.
The proposed fault-detection algorithm was shown to perform well,
achieving an accuracy of 83% when using only 20 current sensors per
module of 74 cells in parallel. To assess its applicability in practice, the
algorithm trained on simulation datawas then testing on experimental pack
data and performed well, with the results shown in Fig. 9. These results
demonstrate the potential of detecting cell degradation faults with sparse
sensing on large-scale parallel battery packs. By combining algorithms with

current sensing data in this way, these results can be used to improve the
safety of a battery pack.

One limitation of this paper is the focus on faults from resistance
increases in one of the pack’s cells. Awider study including faults from both
capacitance losses and impedance growth would result in a more compre-
hensive detection algorithm. The motivation to focus on resistance faults
herewas: (i) they could be replicated in experiments (see e.g. Fig. 9), (ii) these
faults could occur quite suddenly, such as a tab becoming loose or lithium
plating when fast charging in sub-zero temperatures, whereas slower
degradation effects, such as capacitance losses from SEI layer growth, may
be corrected by the averaging effect of the parallel connections, (iii) the
higher resistances from the faults could lead to higher heat generation rates
and so impact the pack’s safety through thermal runaway. Generalising the
results of this paper to the more diverse class of faults and current profiles
found in practice is an important direction for future research in this area.
For that generalisation, a rich-dataset containing a wide class of faults in

Fig. 7 |Histograms of feature for healthy and faulty packs of the simulated dataset. a gives the distribution of feature f1 defined in (11), and similarly b in (12), c in (13),d in

(14), e in (15), and f in (16).

Healthy packs

Faulty packs

(a)

(b)

(b.1) (b.2) (b.3)

Fig. 6 | Change in pack-level current distributions as the faulty cell’s resistance

increases. Simulations of Tesla Model S battery pack module when all cells are

healthy (a) and when one of the cells is faulty (b). The value of the faulty cell

resistance (rfaultycell) varies between cases b.1, b.2 and b.3. It is defined as amultiple of

pack mean resistance μr, and significantly impacts pack current distribution and

hence the performance of the fault classification algorithm.
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practical battery systems would be required which would be challenging to
achieve at scale.

As well as generalising the results to a more diverse class of faults, the
authors are also comparing the efficacyof theproposedSVMalgorithmwith
other approaches based upon deep learning, such as convolutional neural
networks. As these algorithms have delivered strong results in other clas-
sification tasks, it is expected that they may also perform well for the pro-
blem considered here of detecting faults in large parallel connected packs.
However, neural networks have limitations which may affect their perfor-
mance in practice, notably, their lack of robustnessmay impact the extent to
which engineers trust them formonitoring large and expensive packs,where
safety issues need to be understood and failures explained.

Methods
Cell model
The pack model is based on the equivalent circuit model of a single cell and
the connection of multiple cells in parallel. The cell model used is the
Thevenin model shown in Fig. 1 which has been widely used due to its
simplicity combinedwith its highaccuracy57. In thismodel, thedynamics for
each cellk∈ {1, 2, …, n} are characterisedby its series resistance rk, RC-pair

Fig. 8 | Accuracy score of fault-detection classifier (SVM) as a function ofNs (the

number of current sensors within the 74p1s parallel pack). For each number of

sensor plotted, 50 classifiers were trained, with the crosses representing the median

accuracy and the bars representing the standard deviation of the accuracy across

the tests.

Fig. 9 | Application of SVD classifier to detect faults in experimental pack data

with four RJ-LFP72174204-280 cells connected in parallel.As detailed inMethods

Section, four fault cases were considered, withCases 1–3 being faulty andCase 4 fault

free. a–d show experimental current data, e–h show scaled currents, i–l show fault

predictions with Ns = 1 and m–p show fault prediction with Ns = 3.
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resistance R1,k, RC-pair capacitance C1,k and capacityQk. The subscript k is
dropped from these parameter labels when referring to them in a general
context, for example in Table 1 where their mean values are stated. The
battery pack of a Tesla Model S was modelled and so the modelled pack’s
cells were chosen to be Panasonic NCR 18650B cells. The corresponding
model parameters are given in Table 1 whilst the OCV curve was obtained
from experimental data58 and fitted using a polynomial approximation (see
Fig. 10). The branch current ik(t)flowing through cell kwas considered to be
positive when charging and negative when discharging.

Within the pack model, the dynamics for cell k ∈ {1, 2, …, n} were
described by the simple equivalent circuit model

_zkðtÞ

_V1;kðtÞ

" #

¼
0 0

0 � 1
RkCk

" #

zkðtÞ

V1;kðtÞ

" #

þ
1=Qk

1=C1;k

" #

ikðtÞ; ð4aÞ

VðtÞ ¼ OCVðzkðtÞÞ þ V1;kðtÞ þ rkiðtÞ; ð4bÞ

where, for cell k∈ {1, 2, …, n},V1,k(t) is the voltage drop across theRC-pair
of Fig. 1, zk(t) is the state-of-charge,V(t) is the voltage andOCV(z(t)) is the
open circuit voltage.

Parallel pack model: conversion of DAEs into ODEs
The parallel connection of n cells, as described in Fig. 1, was then modelled
in accordance with Kirchhoff’s laws. For parallel connections, these laws
impose that the voltages V(t) across each of the cells are the same and that
the sum of the cell branch currents must equal the total current applied to
the pack.

Defining xk(t) as the state vector of cell k, which for the circuit model is
xkðtÞ ¼ ½zkðtÞ;V1;kðtÞ�

>, and ik(t) as the current flowing through cell k in
response to the pack current I(t), then, for j, k ∈ {1, 2,…, n}, Kirchhoff’s
laws for parallel connected packs can be written as

OCVðzjðtÞÞ þ V1;jðtÞ þ rjijðtÞ ¼ OCVðzkðtÞÞ þ V1;kðtÞ þ rkikðtÞ; ð5aÞ

X

n

k¼1

ikðtÞ ¼ IðtÞ: ð5bÞ

Combining Equation 4 andEquation 2 gives the systemofDAEs of the
parallel pack model. The use of DAE models is, however, often undesired
because they can be significantly more challenging to simulate and analyse
than those described by ODEs. In the following analysis, a method to
translate this DAEmodel of the parallel pack into anODE one is described.
The first step of this conversion is to express Kirchhoff’s laws as

VðtÞ ¼ rkikðtÞ þ V1;kðtÞ þ OCVðzkðtÞÞ ð6aÞ

¼ rkikðtÞ þ hðxkðtÞÞ; 8k 2 f1; 2; . . . ; ng; ð6bÞ

where h(xk(t)) is a function of cell k’s state-space. Kirchoff’s laws can then
alternatively be written as

r1i1ðtÞ � r2i2ðtÞ ¼ Δh21ðtÞ; ð7aÞ

.

.

.

r1i1ðtÞ � rninðtÞ ¼ Δhn1ðtÞ;
ð7bÞ

i1ðtÞ þ i2ðtÞ þ � � � þ inðtÞ ¼ IðtÞ; ð7cÞ

where Δhjk(t) = h(xj(t)) − h(xk(t)). With this formulation, each of the
branch currents ik(t) can be expressed in terms of the first one, as in

i2ðtÞ ¼
1

r2
r1i1ðtÞ � Δh21ðtÞ
� �

; ð8aÞ

.

.

.

inðtÞ ¼
1
rn

r1i1ðtÞ � Δhn1ðtÞ
� �

:
ð8bÞ

Substituting these expressions back into Eq. (7c) gives

IðtÞ ¼ i1ðtÞ þ i2ðtÞ þ � � � þ inðtÞ; ð9aÞ

¼ i1ðtÞ þ
X

n

k¼2

1

rk
r1i1ðtÞ � Δhk1ðtÞ
� �

; ð9bÞ

¼ 1þ r1
X

n

k¼2

1

rk

 !

i1ðtÞ �
X

n

k¼2

Δhk1ðtÞ

rk
: ð9cÞ

Thefirst branch current i1(t) can thenbewritten exclusively in terms of
the model’s state and the applied current via

i1ðtÞ ¼ r1
X

n

k¼1

1

rk

 !�1
X

n

k¼2

Δhk1ðtÞ

rk
þ IðtÞ

 !

: ð10Þ

Using Equation 3, the other cell currents i2, … , in can then also be
written in terms of the model states and the applied current. This process
allows the parallel packmodel to be described by anODE instead of a DAE,
which greatly simplifies the analysis30. TheODEmodel equations were then
solved numerically using the integrate.odeint solver from the
scipy package in Python.

Data processing pipeline
The faulty cell detectionmethod is implemented through the following data
processing pipeline:
1. Data Simulation. A large quantity of battery pack discharges, including

both healthy and faulty packs, is simulated using the pack model
developed around Equation 2 to generate a substantial number of
current distributions.

2. Data Pre-processing. The simulated data is pre-processed to emulate
the acquisition process of the current sensors used in practice. The data
is then divided into a training set and a testing set.

3. Feature Extraction. Heuristic features are constructed from the pre-
processed data to facilitate the classification of healthy and faulty
battery packs.

4. Binary classification. A SVM is trained on the extracted features to
perform binary classification, distinguishing between healthy and
faulty battery packs.

Eachpackwas characterisedbya set of 74 time signals (corresponding to
the 74 cells in the Tesla Model S module). The generated dataset contained

Fig. 10 | The open circuit voltage curve used for the Panasonic NCR 18650B cells.

Comparison between the digitised OCV curve from ref. 58 (blue) and its polynomial

interpolation (red).
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1000 samples consisting of the simulated currents of the parallel pack. Each
sample is represented as a matrix of size 74 × tmax with tmax � 3600 s, being
the duration of the pack discharge.A total of 500healthy and 500 faulty packs
were simulated. The healthy packs are assigned parameters following the
normal distributionof themodel for all 74 cells,while the faulty packs contain
a faulty cell whose resistance rfaultycell has been set to be abnormally high (as
defined at the beginning of the fault detection section). Different degrees of
fault are considered during the simulations. Among the 500 simulated faulty
packs, 50 are assigned the faulty cell resistance value rfaultycell = 1.1 × μr, 50 are
assigned the value rfaultycell = 1.2 × μr, and so forth until rfaultycell = 2.0 × μr.

Data pre-processing
The first step of the data pre-processing phase involves removing a number
of current sensors from the samples of the data-set. By removing the current
data of the faulty cell, the performance of the fault-detection algorithm was
mademore robust andmore representative of packs deployed in practice, as
costs may limit the number of branch currents being monitored. In fact, it
was found to be straightforward to distinguish a healthy pack from a faulty
one when all the current distributions were measured (i.e. when all the
currents flowing through the cells were known, including that of the faulty
cell). By deliberately removing the data generated by the faulty cell from the
algorithm’s input, the fault detection problem becomes non-trivial. If the
current from the faulty cell is not measured, the behaviour of the current
distributions appears to be similar to that of a healthypack, can be seen from
the results of Fig. 6.Themethodpresentedhere thus aimed toperform faulty
pack detection using only a fraction of the total potential current sensors. To
do this, first, a given number of current signals,N =Nc−Ns≥ 1 whereNc is
the total number of cells in the parallel pack andNs is the number of sensors
that are ultimately used,were removed fromeach sample of the dataset. This
is equivalent to placing sensors on only a few of the 74 branches of the Tesla
Model S’s parallel pack module. For the faulty packs, the current sensor of
the faulty branch is removed and the other removed current sensors are
randomly selected.

The second step of the data pre-processing stage consisted in
adding noise to the data and then filtering it. This noise was added to
the model simulation data to make it more realistic with respect to the
current sensor data measured from experiments. Given that the shunt
resistors used for current sensing can generate a measurement error of
approximately 0.1%14, a Gaussian noise with an amplitude of ±0.1% of
the current signals was used. To be conservative, the standard devia-
tion of the Gaussian noise distribution for each current signal was set
to 0.05% of the mean value of the current during discharge. All the
signals were then filtered by a low-pass Butterworth filter of order 5,
and critical frequency fc = 0.005 Hz (the sampling frequency being
fs = 1 Hz). These operations resulted in slightly distorted signals com-
pared to the original data.

The third and last step of the data pre-processing stage is the train-test
splitting of the data. The dataset was split into 80:20 proportions for the
training and the testing set respectively; a 5-fold selection is applied for this
purpose. These two sets contained samples consisting of matrices of size
N s × tmax. Features are then extracted from these samples and, after the
feature transformation has been applied, each sample consists of a vector of
length N features. The standard technique of training an SVM classifier59 was
then applied to the datasets.

Feature extraction
Six features, labelled as f1 to f6, were considered. Each sample consists of a
matrix containing in each of its rows a branch current time-series. To be
specific about individual time-serieswithin those for thewholepack, the row
index p is used to denote a given cell current within the parallel pack, and t
will refer to the time index of the signal. The total number of cells isNc and
the duration of the time-series is tmax, with a time stepΔt = 1s between each
sample t. A given sample of the dataset is denoted by S and the value of the
current in cell p at time t within the signal is S[p, t].

1. Feature 1 is the average sum of local maxima over the cell
currents across the whole discharge. Writing the local current
maximum on a given time interval within a cell as maxt2IS½p; t�,
and the kth local maximum current encountered during its discharge
(out of N local maxima) as maxtS½p; t�

� �

k
, the feature was then

defined as:

f 1 ¼
1

Nc

X

Nc

p¼1

X

N

k¼1

maxtS½p; t�
� �

k
: ð11Þ

2. Feature 2 characterised the local current minima instead of the local
maxima:

f 2 ¼
1

Nc

X

Nc

p¼1

X

N

k¼1

mintS½p; t�
� �

k
: ð12Þ

3. Feature 3 uses the standard deviation instead of a mean:

f 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4. Feature 4 was defined similarly to f3 but used the local minima:

f 4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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5. Feature 5 was based on the standard deviation of all local maxima
within the signals (rather than taking their sum as in f3) for a given p:

maxtS½p; t�
� �

¼ maxtS½p; t�
� �

0
; . . . ; maxtS½p; t�

� �

N

n o

:

We define

max S ¼ maxtS½1; t�; ::: ; maxtS½Nc; t�
� �

and denote its elements as max Sð Þi which are numbered from 1 to Nm.
Then, the feature, corresponding to the standard deviation of all local
maxima within a sample was defined

f 5 ¼
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6. The final feature was defined as the standard deviation of all local
minima within the signal S:

f 6 ¼
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1

Nm

XNm

i¼1
min Sð Þi � min Sð Þi

 �2
h i

s

: ð16Þ

SVM binary classification
The classification was performed by an SVM classifier60 with hyperpara-
meter optimisation using grid search. A 5-fold cross-validation was used to
create a validation set from the test set obtained during the train-test split of
the pre-processing phase. The hyperparameter grid was:
• C: [0.01, 0.05, 0.1, 0.5, 1, 5, 10],
• γ: [10−5, 10−4, 10−3, 0.01, 0.1, 1],
• Kernel: [‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’].
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Here,Cdenotes the regularisationparameter,while the kernel function
transforms the input data into another, often non-linear and high-
dimensional feature space, and γ determines the influence of the training
samples on the definition of the SVM separation hyperplane. The para-
meters retained after optimisation were C = 1, kernel = ‘linear’, and γ being
usedonly for the ‘rbf’, ‘poly’with ‘sigmoid’ kernels60. The SVMpredictions, y,
were then obtained by

y ¼ signðwf þ bÞ ð17Þ

with w being the weights and b the bias learned from data.

Recurrent neural network
The RNN was composed of an input layer, a Long Short Term Memory
(LSTM) layerwith 100 neurons, a fully connected layer, a softmax layer, and
a classification layer. A learning rate of 0.001 was used with a gradient
clipping threshold of 1 implemented with the ADAM optimisation algo-
rithm. The inputs to the RNNwere the current signals from eachmeasured
branch of the parallel pack and its output was a fault diagnosis. The number
of epochs was 50 and the mini batch size was 32.

Experimental setup
Four 280 Ah prismatic LFP cells from RJ Energy (RJ-LFP72174204-280)
were connected in parallel and current sensors recorded the branch cur-
rents. The sensors were IVT-S shunt sensors manufactured by Isa-
bellenhutte with a ±1000 A range and shunt resistor values of 20 μΩ. Faults
were introduced into Cell 4 of the packs through additional shunt resistors.
As detailed in Table 4, four cases were considered with Cases 1–3 being
faulty packs and Case 4 being healthy (i.e., without the additional shunt
resistor).

The scaled currents, îk;‘ðtÞ, for cell k of Case ℓwere calculated from the
experimental current data,ik,ℓ(t), using

îk;‘ðtÞ ¼ ciðik;‘ðt0;‘ : tf ;‘ÞÞ=ik;‘ðt0;‘Þ ð18Þ

with ci =−1.675Abeing a scaling constant tonormalise against the training
data (i.e., for the currents shown in Fig. 3), t0,ℓ = 500 s being the starting time
of the scaling current of Case ℓ (to reduce the effects of the harmonics at the
beginning of the data), and tf,ℓ being the final time.

Data availability
The simulation and experimental datasets are available from the corre-
sponding authors upon request.

Code availability
TheDFN-type simulation and post-processing codes that have been used to
produce the results of this study are available by the corresponding authors
upon request.
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