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Data integrity in materials science in the era of AI:
balancing accelerated discovery with responsible
science and innovation

Nik Reeves-McLaren *a and Sarah Moth-Lund Christensen b

Artificial intelligence promises to revolutionise materials discovery through accelerated prediction and

optimisation, yet this transformation brings critical data integrity challenges that threaten the scientific

record. Recent studies demonstrate that experts cannot reliably distinguish AI-generated microscopy

images from authentic experimental data, while widespread errors plague 20–30% of materials

characterisation analyses. Generative AI tools can now produce code for data manipulation at pace,

creating plausible-looking results that violate fundamental physical principles yet evade traditional peer

review. These risks are compounded by inherent biases in training datasets that systematically over

represent equilibrium-phase oxide systems, and by the “black box” opacity of AI models that challenges

scientific accountability and epistemic agency. We propose a multifaceted framework for enhanced

research integrity encompassing materials-specific ethical governance, professional standards for AI

disclosure and data validation, and modular integrity checklists with technique-specific validation

protocols. Critical enablers include mandatory deposition of structured raw instrument files, AI-powered

fraud detection systems, and cultivation of critical AI literacy through interdisciplinary education. Without

immediate action to address these challenges, the materials science community risks perpetuating errors

and biases that will fundamentally undermine AI's transformative potential.

1 Introduction

Consider the scene: an early-career researcher, comparing their

experimental data to a published standard, instructs a genera-

tive articial intelligence to ‘improve’ their results to better

match the reference dataset. The AI complies, subtly altering

the data points. The researcher subsequently asks their super-

visor whether this action is an acceptable method of data pro-

cessing – or maybe they don't. This situation illustrates

a serious emerging threat to the integrity of the scientic record,

one that extends far beyond issues of academic writing and into

the manipulation of primary experimental data itself.

The severity of this threat was recently demonstrated in

nanomaterials research, where a survey of 250 scientists found

that experts could not reliably distinguish AI-generated

microscopy images from authentic experimental data.1 These

AI-generated images were created in under one hour using

publicly available tools, requiring no specialised technical

knowledge. The traditional peer review process, reliant on

visual inspection by experts, is no longer sufficient to detect

sophisticated image fraud.

These challenges appear at a time when articial intelligence

(AI) is set to reshape materials science, promising rapid

discovery of advanced materials by predicting material proper-

ties, optimising compositions, and exploring vast chemical

design spaces. Emergent examples include the development of

alloys with superior mechanical properties,2 the generation of

numerous MOF candidates, and advances in battery material

discovery.3–5 Developments such as Google DeepMind's GNOME

(graph networks for materials exploration) have demonstrated

the potential for large-scale materials discovery, identifying 2.2

million stable crystal structures and representing an order-of-

magnitude expansion in known stable materials.6 The reli-

ability of such AI models, however, depends entirely on the

integrity of their training data.7

High-quality, relevant, and representative data is essential

for accurate and effective generalisation. The principle “garbage

in, garbage out” is key: if training data are limited or awed, AI

models will be inaccurate.8 Intense debate followed a 2023

publication on an automated lab for rapid synthesis and char-

acterisation of ‘new’ inorganic materials, with critiques of the

work focussed around issues of metadata and what constitutes

a novel discovery, the quality of automated analyses, and the

ability to model the complexities of real materials, such as

disorder.9,10

Despite the clear promise of AI, widespread errors and

inconsistencies in data, along with fraudulently manipulated or
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fabricated data threaten research validity in materials charac-

terisation. Generative AI (GenAI) is readily capable of, for

example, producing code to manipulate data, and then cover

one's tracks, without asking any challenging ethical questions

of researchers increasingly under ‘publish or perish’ pressures.

Manipulating data to report a new room temperature super-

conductor would be discredited within hours of publication,

but smaller iterative materials developments are more likely to

sneak past peer review.

There is an urgent need for research on, and new approaches

to, data integrity. Given the broad uptake of generative AI in

materials science, and across all disciplines in engineering and

the physical sciences, small errors, biases in foundational

training data, and outright unethical conduct risk widespread

research misdirection.

2 Outlining the data integrity
challenges

The challenges of AI-driven or assisted research can be classi-

ed into several areas, each impacting the validity and trust-

worthiness of scientic ndings.

2.1. Widespread errors and underused verication methods

Studies show that a large proportion, from 20% to 30%, of data

analyses across various common materials characterisation

techniques, contain basic inaccuracies.7 A recent study used an

AI tool to examine over 3000 papers in Organic Letters and

found only 40% of chemical research papers had error-free

mass measurements.11 The study also found cases where mis-

calculated values seemed validated by experimental measure-

ments, casting doubts on researcher understanding, as well as

raising concerns about potential data fabrication.

There are widespread issues with the underutilisation of

well-established physical consistency checks in materials

science data analyses, compounded by many instances of poor

understanding of statistical measures employed to judge the

perceived quality of work. Rietveld renement is a powerful tool

for extracting structural information from powder diffraction

data, but misinterpretations of statistical measures are

common; one example is the effective ‘goodness of t’ of the

diffraction pattern calculated from the rened structure to the

experimental data, the reduced chi-squared (c2). A critical

misunderstanding is evident when reports on a renement

quote a c
2 value less than 1.0, statistically problematic as it

implies a t that is “better than ideal”. This can indicate either

that the standard uncertainties associated with the observed

data are overestimated, or that too many parameters have been

introduced, leading to overtting of the model to noise rather

than true physical phenomena. The result is publication of

structural parameters that are statistically unreliable or physi-

cally meaningless.12,13 Furthermore, many publications fail to

report or justify crucial details of the renement model itself,

such as the mathematical function used to model the peak

proles and background, the constraints applied to parameters,

or the handling of atomic displacement parameters (ADPs).

This frequently leads to the publication of physically nonsen-

sical results, such as negative ADPs, and structural models that

are statistically unsound and ultimately irreproducible.14

A further example: despite proven utility for ensuring

consistency in dielectric functions and accurate optical and

electronic property measurements, methods such as F-sum

rules and Kramers–Kronig (K–K) relations are reportedly oen

overlooked in research on optical materials.7 K–K relations are

mathematical constraints linking the real and imaginary

components of optical constants, derived from fundamental

causality requirements. Violation of these relations – or of F-

sum rules, which constrain integrated absorption based on

electron density – indicates either measurement errors,

incomplete spectral data, or data manipulation. The failure to

apply such validation methods leaves optical property claims

vulnerable to fabrication, particularly as GenAI tools could

generate supercially plausible spectra that nevertheless violate

basic physical constraints.

These types of widespread shortcomings highlight poten-

tially severe issues around the reliability of reported materials

and their properties, creating a substantial barrier to the

development of high-performance advanced materials. Without

improvement in data integrity, handling and reporting, we risk

these shortcomings becoming xtures of AI training and vali-

dation data sets – in turn undermining the promise of AI in

materials science and leaving us instead with unreliable

models, and misdirected research.

2.2. Deliberate data manipulation and synthetic data risks

Research misconduct can be dened to include data fabrica-

tion, falsication, or plagiarism committed intentionally,

knowingly, or recklessly, representing a signicant departure

from accepted research practices.15,16 The recent reporting of

around 800 papers published in crystallography and exotic-

chemistry journals originating from “paper mills” highlights

one example of such systemic fraud.7,17 Other reports show 3.8%

of published papers in biomedical research contain inappro-

priate image duplication.18

The arrival of GenAI brings new and complex ethical and

scientic problems, at a time when research integrity in mate-

rials science is already under pressure. Highly realistic synthetic

GenAI data and images can easily be misrepresented as exper-

imental. Real data can be altered to better support scientic

hypotheses. This capability poses serious risks to research

integrity. Traditional methods for detecting fraud, such as

identifying non-random digits, are now obsolete due to GenAI's

sophistication, leading to an “arms race” between AI tools for

detection and new methods designed to avoid them.15

The growth in use of text produced using GenAI tools such as

ChatGPT, Gemini, Claude etc. means that many journals now

require authors to declare where these have been used. But what

about manipulation or fabrication of raw data? There is much

less awareness around this risk. One GenAI tool these authors

tested was able to yield reuseable Python code for data manip-

ulation (to remove secondary phase peaks in diffraction data

and ll the resulting void with randomly generated believable
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background, or to manipulate long-term battery testing data to

remove noise and glitched cycles) in comfortably less than an

hour. This is a challenge for the here and now.

Recent work in nanomaterials characterisation provides

sobering empirical evidence of these capabilities. Researchers

generated convincing fake atomic force microscopy (AFM),

scanning transmission electron microscopy (STEM), and

transmission electron microscopy (TEM) images in less than

one hour using commercially available generative AI tools.1

When presented to 250 scientists in a blind survey, experts

correctly identied real versus AI-generated images only 40–51%

of the time for most image pairs – performance indistinguish-

able from random guessing. For four out of six image pairs

tested, statistical analysis (chi-squared test, p > 0.05) showed no

signicant difference in scientists' ability to identify authentic

versus fake images.

Energy materials research offers another good example of

how research elds are facing vulnerabilities to AI-assisted data

manipulation, in this case due to the complex, multi-parameter

nature of electrochemical measurements. Photovoltaic current–

voltage characteristics are readily susceptible to algorithmic

enhancement, where ll factors could be articially improved

from experimentally observed values of 0.83 to theoretically

optimal values approaching 0.89 through subtle modication of

series resistance contributions.19 Such manipulations remain

within plausible ranges for peer review assessment whilst

signicantly inating reported power conversion efficiencies.

Electrocatalyst performance data present similar vulnerabilities

through fabrication of Tafel slope values. Experimental studies

demonstrate that Pt/C catalysts exhibit Tafel slopes varying

from 30 mV dec−1 in 0.5 M H2SO4 to 120 mV dec−1 under fuel

cell conditions, with additional dependence upon catalyst

loading (63 to 211 mV dec−1 across different overpotential

ranges for identical materials).20 It is perceivable that GenAI

tools could readily generate synthetic data presenting articially

consistent Tafel slopes of 30 mV dec−1 across varied conditions,

thereby suggesting superior kinetic performance. Electro-

chemical impedance spectroscopy measurements in battery

and fuel cell research are similarly vulnerable, where complex

multi-semicircle Nyquist plots can be algorithmically simplied

to eliminate inconvenient high-frequency resistances or low-

frequency inductive features associated with side reactions or

interface instabilities.21

If a research group was to fraudulently manipulate data and

present the discovery of a room-temperature superconductor

based on these types of subtle data hacks, they would likely be

found out on the same day. For the more iterative work on less

transformative materials that makes up much of the publica-

tion record – we propose this is currently much more likely to

slip through the net unnoticed.

The Retraction Watch database currently runs to almost 60

000 records, but none yet specically focus on the use of AI for

the purposes discussed here. One tangentially related case

claimed to track the productivity of “a thousand material

scientists” at a large R&D company, reporting a “44% increase

in materials discovery” and an “81% productivity increase for

top-decile scientists” due to the introduction of a “machine

learning material generation tool”. The data included were

found to be “suspiciously clean and neat: nearly every sub

measure of success gave a clear and statistically signicant

result”. Following an internal, condential review, the sole

author's institution concluded that the paper “should be with-

drawn from public discourse” and requested the paper's

withdrawal.22

2.3. Inherent biases and quality shortcomings in AI training

datasets

Materials characterisation data can oen be noisy, incomplete

and inconsistent, which directly impacts the performance of

machine learning models. For example, a comprehensive

review of over 1300 research papers focusing on X-ray photo-

electron spectroscopy (XPS) analyses revealed wide-ranging

issues with the quality and reliability of published data,

directly exemplifying these challenges. Over 40% of publica-

tions contained errors that could have signicantly affected the

conclusions drawn; 35% neglected to provide details on the

spectrometer used, and 85% did not specify the analytical

soware used.23

It may seem unintuitive to think of bias in the context of

materials science data, but our scientic track record – the AI's

training data – fundamentally overrepresent stable, inorganic,

equilibrium-phase systems, particularly oxide based materials,

especially relative to amorphous, disordered or highly entropic

materials.24 AI models trained on such data struggle to gener-

alise or extrapolate to new, unexplored chemistries or process-

ing conditions, oen leading to “hallucinations” or unreliable

predictions for novel materials. Generative AI models can

accidently learn and then amplify any biases and shortcomings

present in their training data.25

For instance, if AI models are predominantly trained on data

from materials developed and characterised under specic,

well-established (e.g., equilibrium) conditions or for certain

applications, they may inadvertently learn to prioritise or

‘hallucinate’ properties that conform to these existing para-

digms. This could lead to a biased prediction landscape, where

novel materials with unusual or non-equilibrium properties, or

those relevant to emerging applications, are systematically

overlooked or inaccurately predicted. Such a bias could

perpetuate existing research trajectories, effectively ‘stereo-

typing’ what constitutes a ‘good’ or ‘feasible’ material based on

historical data, rather than enabling truly disruptive

discoveries.

2.4. Challenges of transparency, explainability, and human

oversight in AI systems

A signicant hurdle to data integrity in AI-driven materials

science is the “black box” problem of AI models, wherein the

‘reasoning’ or the way the systems gets to a specic output is an

opaque process for users and programmers alike. As such an AI

model may suggest adding a tiny amount of a given element to

an alloy will signicantly improve its tensile strength, but one

might struggle to get an accurate and directly related explana-

tion on why it predicts these properties. This issue pertains
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especially to AI models, such as deep learning neural networks,

where complexity results in opaque decision-making.25 A lack of

transparency and explainability severely complicates and

hinders understanding of AI outputs, accountability, identi-

cation of causes of errors and biases, as well as potentially

limiting trust in model predictions.

To reduce these risks and ensure responsible AI deployment,

meaningful human control and oversight are essential. This

involves actively monitoring AI behaviour and developing plans

to prevent harmful effects on users, with human validation

being crucial for high-risk decisions.25 Ethical guidelines for

trustworthy AI, such as those from the European Commission,

outline different levels of human involvement and oversight of

AI system activity, including consideration of societal and

ethical impacts, and ultimate decision-making.26

The impact of AI on human “epistemic agency” – the control

individuals have over their beliefs, the questions they ask, and

the reasons they entertain – is also a critical concern. There is an

ongoing discussion about whether AI-based science poses

a social epistemological problem, particularly concerning trust

in opaque models and the responsibility of scientists for

outputs based on AI models.27 Some argue that full trans-

parency is not always needed for trust if systems follow estab-

lished academic and institutional norms, but this applies

to human and institutional actors, not to AI models which

cannot be held to norms in the same way. Therefore, how can

materials scientists ensure research integrity and fully take

responsibility for AI tools, when they cannot foresee, fully

understand nor verify how these tools gets to a given specic

output? For example, if an AI model identies a novel battery

electrolyte composition but cannot explain why certain addi-

tives improve ionic conductivity, researchers cannot properly

assess safety risks or optimise the formulation further. Simi-

larly, if an AI predicts a ceramic will exhibit ferroelectric prop-

erties but provides no mechanistic insight, experimental

validation becomes trial-and-error rather than hypothesis-

driven science. This requires an evolving understanding of

scientic responsibility and epistemic agency in the AI era.

The traditional idea of scientic responsibility assumes

a human agent's full understanding and control over their

research tools.27 AI's opacity directly challenges this, raising

basic questions about who is accountable when an AI system

makes a awed decision or generates inaccurate data, and

curtailing the scientist's ability to articulate the reasons and

evidence supporting AI-generated hypotheses. This implies

a profound shi in the epistemology of science, and a new

understanding of human agency in research integrity and

accountability.25–27

3. Developing frameworks for
enhanced research integrity in AI-
driven materials science

Dealing with data integrity issues in AI-driven materials science

will require a multi-faceted approach, combining governance,

professional standards, and human vigilance.

3.1. Ethical foundations and materials-specic governance

With rapid developments in AI, the corresponding AI regulatory

and governance landscape is trying to play catchup under the

headings of primarily “ethical AI”, “responsible AI”, and

“trustworthy AI”. Despite the language ux, core principles are

emerging that mirror the technical limitations and concerns for

particularly GenAI: transparency, explainability, accountability,

fairness, privacy and safety. Key initiatives, such as the National

Institute of Standards and Technology's (NIST) research on

trustworthy AI characteristics and UNESCO's global standard on

the Ethics of Articial Intelligence, highlight these shared

priority principles for AI development.

Despite the concerted efforts in AI governance, the practical

challenges for materials science-oriented adoption of these

principles and governance frameworks is and will not be

straightforward. Even these broad principles need to be trans-

lated into specic guidelines and governance mechanisms

relevant to the specic challenges of materials science data.

Further, the current generalised list of ethical AI principles can

and should not be expected to be exhaustive. One must expect

that considerable work will be needed to identify potential

ethical challenges posed by the use and development of AI

specically in and for materials science research. This includes

ethical challenges requiring both technical and non-technical

address, for example potentially relating to sustainability,

dual use, and how AI might change perceptions and assump-

tions about materials science research practises.

Frameworks for assessing “AI-ready” data are appearing to

deal with some of these problems. The SciHorizon framework,

for instance, suggests four main aspects: quality, FAIRness

(ndable, accessible, interoperable, reusable), explainability,

and compliance.8 Key parts of the ‘quality’ component include

completeness, accuracy, consistency (both internal coherence

within a dataset and external alignment to related datasets),

and timeliness (prompt publication and continuous updating).

‘Compliance’ stresses the importance of data provenance (clear

documentation of data sources, authorship, and licensing),

ethics & safety (adherence to scientic ethical standards), and

trustworthiness (compliance with national regulations and

sustainability of data services). This shis the focus from sheer

data volume to the quality, relevance, and representativeness of

the data, but implicit in this is a fundamental re-evaluation of

how scientic data is collected, curated, and prepared – with

both good practice and AI in mind.

3.2. Professional standards and best practices for materials

data and AI

Professional bodies and scientic publishers increasingly set

specic standards and best practices for ethical AI use in

scientic research and its dissemination through journal arti-

cles. For the materials science community, Nature Portfolio

journals, including Nature Materials, have established clear

guidelines for authors and peer reviewers regarding AI tools.28

Their policies establish that accountability for work cannot be

effectively applied to AI tools, precluding large language models

such as ChatGPT from author attribution on publications. A

This journal is © The Royal Society of Chemistry 2026 J. Mater. Chem. A, 2026, 14, 276–283 | 279
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nuanced distinction is made for AI-assisted improvements to

human-generated texts for readability, style, grammar, spelling,

and tone, which does not require declaration. However, in all

cases, human accountability for the nal text remain

paramount.

The Nature Portfolio also largely prohibits the use of gener-

ative AI for images due to unresolved legal copyright and

research integrity issues. This stance, while understandable

from a legal and ethical perspective, may be an implicit hurdle

for AI-driven materials discovery workows reliant on genera-

tive models to propose novel material structures or micro-

structures, where visual representation is key.

Recent calls from the microscopy community emphasise the

need to reframe expectations around image quality, recognising

that not every nanomaterial or assembly is perfect, and that

pristine images may signal manipulation rather than excel-

lence.1 Excessive demands for polished images create pressure

on researchers that can inadvertently incentivise AI usage.

Reviewers should not request “better looking” images unless

visual improvements would change the authors' scientic

conclusions. The purpose of images is to support conclusions

and enable fair judgment, not to serve as polished content for

dissemination. Editors must actively dismiss such reviewer

comments when they are scientically unjustied, recognising

that this pressure contributes to the integrity crisis.

Standardised validation protocols are also becoming more

prominent. There is a recognised need for new norms, stan-

dards, and best practices for conducting research with AI. Data

provenance is vital for AI authentication, transparency, and

traceability. The detailed requirements for documentation,

including researcher responsibilities, workow, input, output,

metadata, origin/access point, and data management, go

beyond a traditional citation. This implies that for AI-driven

materials science, true reproducibility and trustworthiness

depend not just on the nal model or results, but on a carefully

documented “data trail” from raw source to nal output, espe-

cially given AI's potential to hallucinate and/or generate

synthetic data.

3.3. Using AI as a tool for materials data quality control

Paradoxically, while AI brings new integrity challenges, it also

offers powerful ways to detect misconduct, including data

manipulation, image fraud, and fabricated results. AI systems

can analyse datasets for statistical inconsistencies and patterns

suggesting fabrication or manipulation, using machine

learning models to compare experimental results with estab-

lished scientic principles and assess adherence to expected

distributions or statistical norms. Natural language processing

tools can check for consistency between text descriptions,

gures, and tables, agging any differences for authors and

editors alike.

The potential for automated quality assurance and better

peer review processes specically within materials science is

signicant. Some publishers and research institutions already

use AI tools to scan submitted manuscripts for image integrity

problems before peer review. Christmann's study showed the

power of AI-powered data analysis in uncovering previously

unknown systematic errors in chemical publications highlights

AI's capability for automated quality control in chemical and

materials data.11 The future must bring better collaboration

between AI and human reviewers to improve fraud detection.

This will likely involve AI handling issues of scale and initial

pattern detection, with human experts then providing critical

judgement, contextual understanding, and deal with nuanced

cases AI might miss.

The Science family of journals has adopted Proog, an AI-

powered image-analysis tool, to screen for manipulation.29

However, ethical implementation requires that AI-agged

suspicions be reviewed by humans, with outcomes communi-

cated to authors who must have opportunity to respond, in

accordance with Committee on Publication Ethics (COPE)

guidelines. Such tools should be deployed both during

submission and retrospectively to audit previous publications,

with the sophistication of anti-fraud measures potentially

serving as an indicator of journal quality.

3.4. Cultivating a culture of data responsibility and critical

AI literacy in materials science

Ultimately, researchers are responsible for checking the accu-

racy of data, AI-generated output and ensuring that data prov-

enance is carefully maintained. It is not enough to just use AI

tools; researchers must become responsible guardians who

understand AI's abilities, limits, as well as its ethical and

scientic implications, actively checking its outputs and

ensuring proper disclosure. This necessitates at least two

additions or changes to the norms of material science research.

First, it requires higher level of general data and AI literacy

among researchers. Second, as the state of AI and available AI

research tools is far from static, it also requires researchers to

continuously reect upon (1) the potential ethical concerns in

their adoption of these tools, and (2) whether their trust,

understanding and control of given AI tools and their outputs is

adequate for genuine knowledge creation.

Fostering a reective research culture by bringing AI ethics

and sound data analysis skills into scientic education and

training is an essential and proactive step. For instance, Freie

Universität Berlin's Department of Biology, Chemistry, and

Pharmacy plans to bring AI tools into its curriculum to help

students develop strong data analysis skills and critical

thinking, preparing them for their future research careers.30

Similarly, Cornell Engineering has started a graduate-level

course, “AI for materials”, designed to give the next genera-

tion of researchers and engineers the knowledge to drive

discovery where AI and materials science meet, highlighting

both applications and the challenges involved. The challenges

posed by AI can also be seen as an opportune moment to foster

new interdisciplinary relations, and to benet from the

strengths of disciplines, who specialise in ethics or meta-

science matters. As an example, “Embedded EthiCS” at Har-

vard is a collaboration between computer scientists and

philosophers fuelling both teaching and research on ethical

concerns in AI development and adoption.
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Encouraging a culture of critical reection and healthy

scepticism towards AI outputs is essential. It is vital to develop

a culture within materials science that sees AI models as tools

requiring responsible use while instilling strong data analysis

skills and critical thinking skills in researchers – at all levels,

ensuring we are all equipped with the necessary knowledge and

ethical grounding to navigate the complexities of AI-driven

science responsibly.

To supplement individual diligence, the community should

also consider adopting established structural approaches from

other scientic disciplines designed to improve the reliability of

research ndings. Adversarial collaborations, for instance,

unite researchers with conicting viewpoints to jointly design

and conduct a critical experiment, increasing the impartiality of

the outcome. The Registered Reports publication format, where

methods and analysis protocols are peer-reviewed before

experiments are conducted, mitigates publication bias and

questionable research practices. Finally, a ‘Red Team’

approach, where researchers actively solicit rigorous, structured

criticism of a project from designated colleagues prior to

submission, can identify weaknesses in argumentation and

data interpretation that might otherwise be missed. The adop-

tion of such practices would represent a systemic commitment

to research integrity.

3.5. Practical implementation: data integrity checklists and

validation frameworks

To move from identifying these challenges towards actionable

solutions, we rst propose a modular checklist for authors,

reviewers, and journal editors, inspired by best practices in

clinical research such as the INSPECT-SR criteria for systematic

Table 1 Modular data integrity checklist for materials science publications. The core data integrity module is required for all submissions, while

technique-specific modules should be applied as relevant to the methods used. This framework provides concrete validation steps for authors,

editors, and reviewers while accommodating the diverse methodological landscape of materials research. Additional modules can be developed

for other characterisation techniques as community priorities emerge
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reviews.31 This approach provides a structured framework for

data validation specic to common materials science tech-

niques. The core module, Table 1, outlines general principles of

data integrity and AI usage declaration applicable to all manu-

scripts. We have also suggested initial technique-specic

modules for X-ray diffraction with Rietveld renement and for

electrochemical battery testing, two areas where data quality is

frequently suboptimal. This modular design is extensible, and

we invite community contributions to develop and validate

further modules.

A critical enabler for this checklist is a policy mandating the

deposition of raw experimental data. The distinction between

raw and processed data is vital for integrity. It is insufficient to

provide only processed data, such as a text le of a diffraction

pattern (.xy); journals must require the structured, machine-

readable raw data les generated by the instrument itself (e.g.,

.raw, .xrdml). Raw instrument les contain a rich set of meta-

data – including calibration parameters, detector settings, and

collection times – that are essential for reproducing the analysis

and verifying the data's origin. This embedded metadata makes

the convincing fabrication of a raw data le substantially more

difficult than creating a simple text le of processed numbers.

To make verication of these les practical rather than over-

whelming, recent proposals from the nanomaterials commu-

nity suggest adopting standardised data storage structures.1

The minimal arrangement of instrument les (MAIF) frame-

work proposes that each manuscript has its own folder, with

each gure having a subfolder containing primary instrument

les specic to that gure, and non-gure data stored in

a separate ‘additional data’ folder.1 This structured approach –

as opposed to idiosyncratic, researcher-specic ling systems –

enables efficient checking of key instrument les for legitimacy

without overwhelming reviewers or investigators. We recom-

mend that journals require structured raw data les (following

MAIF or similar principles) as a publication criterion, published

as compressed directories in supplementary information or

repositories such as Zenodo, Open Science Framework, or Fig-

share. This requirement should over time become mandatory

rather than merely encouraged.

While the checklist approach we propose addresses the

integrity of individual studies, a distinct but related challenge is

the quality control of the large, aggregated datasets upon which

foundational AI models are built. In elds such as clinical

science, where meta-analyses of randomised controlled trials

face similar issues with awed or fraudulent data, researchers

have developed formal tools to identify problematic studies

before their inclusion in a wider analysis.31 A parallel approach

is required in materials science to ensure that AI models are not

trained on compromised data.

Accordingly, we propose the development of a complemen-

tary data-vetting framework specically for the curation of AI

training sets. Such a framework would consist of a series of

checks to be applied to any dataset being considered for

inclusion in a larger corpus, including: (i) verication of the

publication status of the source data, checking for retractions,

corrections, or expressions of concern; (ii) screening against

public post-publication review platforms for credible criticisms;

and (iii) programmatic checks for statistical anomalies or

physically implausible results within the data itself, such as

efficiencies exceeding 100% or unrealistic electrochemical

parameters.

These proposed actions are not one-and-done xes, and as

shown earlier connects with larger reections upon how AI

interacts with our notion of trustworthy research and knowl-

edge generation, therefore instead requiring continuous

involvement and engagement from both the materials science

research community and beyond. However, we hope with these

initial suggestions to open up for a focused discussion on

responsible AI adoption in Materials Sciences, and encourage

a wider dialogue on how we can ensure trustworthy and

responsible research practices in the AI age.
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