

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236826/>

Version: Accepted Version

Article:

Tong, Y., Fan, C., Fu, Z. et al. (2026) Flame impingement to facilitate the stability of NH₃-CH₄ laminar diffusion flames: High-speed imaging and schlieren visualization. *Fuel*, 414. 138297. ISSN: 0016-2361

<https://doi.org/10.1016/j.fuel.2026.138297>

This is an author produced version of an article published in *Fuel*, made available via the University of Leeds Research Outputs Policy under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
<https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

UNIVERSITY OF LEEDS

**University of
Sheffield**

**UNIVERSITY
of York**

1 **Flame impingement to facilitate the stability of NH₃-**
2 **CH₄ laminar diffusion flames: High-speed imaging and**
3 **schlieren visualization**

4 **Yidu Tong^a, Chenyang Fan^{a*}, Zheng Fu^{a,b}, Ye Liu^{c**}, Huiyong Du^a, Bin Xu^a, Guorong**
5 **Lin^a, Shuo Jin^a, Shuainan Yang^a, Mingliang Wei^b**

6 ^a *Henan Provincial International Joint Laboratory of Energy Conservation and Pollutant*
7 *Control of Energy Power Equipment, College of Vehicle and Traffic Engineering, Henan University*
8 *of Science and Technology, Luoyang 471003, China*

9 ^b *State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471003, China*
10 ^c *Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK*

11

12 ***Corresponding author: Chenyang Fan**

13 **E-mail address: fanchenyang@haust.edu.cn; fanchenyang@tju.edu.cn**

14 **Postal address: College of Vehicle and Traffic Engineering, Henan University of Science**
15 **and Technology, Luoyang 471003, China**

16

17 **** Corresponding author: Ye Liu**

18 **E-mail address: Y.Liu8@leeds.ac.uk**

19 **Postal address: Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK**

20

21 **Abstract**

22 As a hydrogen-rich and carbon-free fuel with high energy density, ammonia is
23 regarded as a promising substitute for fossil fuels. In this study, flame characteristic and
24 flow field were investigated to explore the maximum substitution ratio of ammonia
25 (critical substitution ratio, i.e.) in NH₃-CH₄ by high-speed direct imaging and schlieren
26 method. To follow up the realistic scenario of flames in enclosed combustion systems,
27 the stability of impinging flame was also investigated under the effect of water-cooled
28 cooper wall. The results showed that the critical ammonia substitution ratio for free
29 laminar flames was less than 63% for the tested cases. Meanwhile, the free flames
30 exhibited periodic expansion and separation, with significant fluctuations in lift-off
31 height and flame stretch rate, accompanying with the periodic motion of the shear layer
32 between the flame and air. After the introduction of the impinging wall, the critical
33 ammonia substitution ratio of the flame increased from 63% to over 80% (up to 94%)
34 in dependent upon the height of impinging wall. At low ammonia substitution ratio
35 (40%), reducing the impinging height enhanced the stability of the flow field by
36 suppressing the development of shear layers and vortex around the flame. When the
37 ammonia substitution ratio gradually increased to 63% and the critical substitution ratio,
38 the flame anchored on the wall at different impingement heights, and no obvious vortex
39 development was observed in the flow field. Higher ammonia substitution ratios can
40 weaken the influence of impingement height on the flame flow field.

41 **Keywords:** Ammonia combustion; Impinging flame; Flame stability; Schlieren
42 technique; Vortex

Nomenclature

Re	Reynolds number
Le	Lewis number
D	Inner diameter of burner nozzle (mm)
H_b	Length from nozzle exit to root of lift-off flame (mm)
R_r	Radius of flame root (mm)
R_t	Radius of flame tip (mm)
κ	Flame stretch rate (s^{-1})
A_f	Projected area of flame yellow luminescent region (mm^2)
α	Ammonia substitution ratio
α_{cr}	Critical ammonia substitution ratio
Q_f	Fuel flow rate (SLPM)
H_I	Distance between nozzle and impinging wall (mm)
β	Ratio of the H_b to the D
H_v	Length between vortex position and nozzle exit (mm)
V_x	Axial motion velocity of vortex (m/s)
H_r	Distance between flame root and impinging wall (mm)

46 **1. Introduction**

47 With the rising demand for clean energy, ammonia (NH_3) has attracted attention
48 as a sustainable fuel [1-3]. As an excellent hydrogen carrier, NH_3 is a carbon-free and
49 high energy density fuel which can be stored and transported safely with advanced
50 facilities [4, 5]. Thus, NH_3 is regarded as a non-hydrocarbon based fuel that may be
51 applied in combustion systems such as gas turbines [6], internal combustion engines
52 and industrial furnaces [7-9]. However, studies have shown that NH_3 has inferior
53 combustion characteristics, including low laminar burning velocity and high minimum
54 ignition energy requirement [10, 11]. These characteristics limit the practical
55 application of NH_3 . Co-combustion of NH_3 - CH_4 mixed fuel with CH_4 accounting for
56 70% has a burning velocity 2.14 times higher than that of pure NH_3 flames, and thus is
57 widely used in various combustion devices for practical applications [10, 12].

58 Flame stability constitutes a critical issue for industrial applications and remains a
59 subject of extensive studies. Lin et al. [13] reported that in ammonia-methane laminar
60 diffusion flames, increasing ammonia fraction from 30% to 50% reduced flame
61 flickering frequency and shifted vortex formation downstream. Colson et al. [14]
62 similarly observed this phenomenon, attributing it to reduced mixture reactivity with
63 ammonia addition, which stabilized flames farther downstream where local velocities
64 were lower. In the study of Zheng et al. [15] about instability for ammonia-methane
65 non-premixed flames, they found that as the ammonia content increased to 40%, the
66 flame would transition from turbulent to laminar lifted flame and be directly
67 extinguished from laminar lifted flames. The study of Colson et al. [16] on the stability

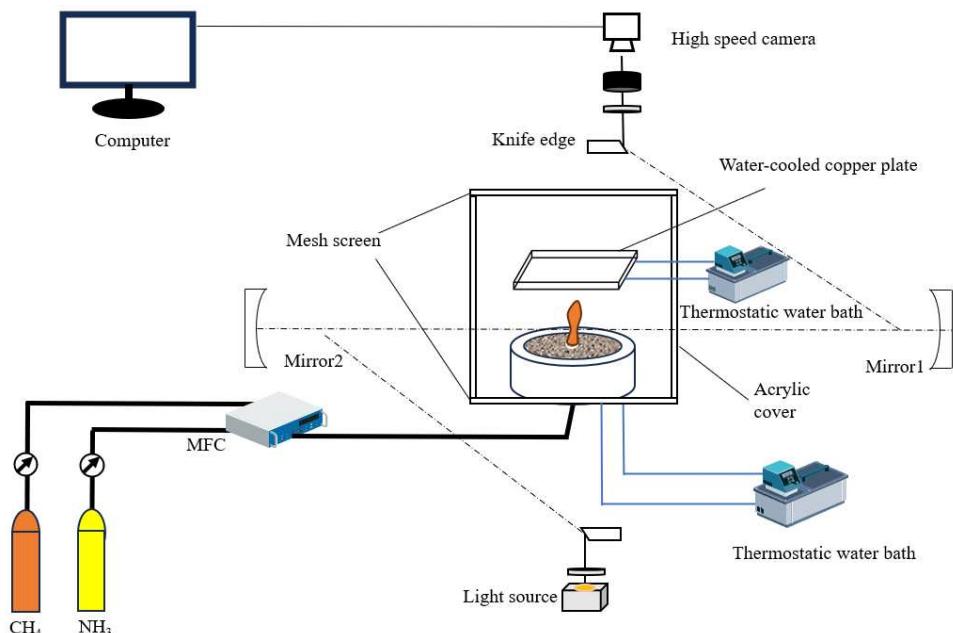
68 of non-premixed methane jet flames found that the flame can't be stabilized when the
69 ammonia ratio exceeds 0.3. Thus, to better utilize ammonia, increasing the ammonia
70 substitution ratio in ammonia-methane blended fuels and enhancing flame stability
71 under high ammonia substitution ratios are imperative.

72 Numerous studies have indicated that the flame instability or extinction behavior
73 is primarily influenced by three factors: chemical reactions [17], thermal instability [18],
74 and flow instability [19]. Won et al. [20] studied the chemical kinetics of hydrocarbon
75 fuel (n-alkanes and iso-octane) diffusion flames. They found that hydroxyl (OH)
76 radicals are key reactive intermediates in the oxidation reactions of hydrocarbon fuels
77 and the concentration of OH radicals affect the rate of chain reactions related to alkane
78 pyrolysis. Insufficient supply of OH radicals leads to a decrease in decomposition rate,
79 making combustion unsustainable. Furthermore, there is a positive feedback
80 relationship between the generation and consumption rate of OH radicals and the heat
81 release rate in the flame, thereby affecting flame extinction. Chu et al. [21] found that
82 the addition of NH₃ lessened the production of OH radicals in the methane flame,
83 thereby making the flame easier to extinguish. In the study of Chen et al. [17] on
84 ammonia-methane counterflow diffusion flames, increasing the initial pressure and
85 temperature could compensate the negative effect of ammonia addition on flame
86 instability, thereby increasing the ammonia substitution ratio. They attributed this
87 phenomenon to the fact that elevated initial pressure and temperature could accelerate
88 chemical reaction efficiency and increase heat release. Increasing the initial pressure
89 and temperature during combustion may be one of the methods to improve the ammonia

90 substitution ratio.

91 For practical applications on combustion systems (engine chambers, *etc.*),
92 impinging flames have received considerable attention [22]. In despite of the thorough
93 investigation on the stability characteristics of NH₃-CH₄ jet flames, the NH₃-CH₄
94 impinging flames may have distinctly different structures and dynamics and requires
95 further understanding on the stability characteristics. Several studies investigated the
96 influence of impinging wall on the combustion characteristics of hydrocarbon or
97 ammonia-blended flames. Study on methane impinging flames have shown that the
98 wall distance significantly affects the flame structure and near wall chemical reaction
99 rate, potentially leading to local extinction [23]. In terms of flow field structure, vortex
100 structures generated at the junctions of the primary jet region, wall jet region, and
101 stagnation flow region disrupt the continuity of the flame front, triggering oscillations
102 and reducing stability [24]. When ammonia is blended into the fuel, these effects
103 become more pronounced. Research indicates that the addition of ammonia decreases
104 the peak flame temperature and makes non-premixed impinging flames more prone to
105 local extinction in the wall jet region [25]. On the other hand, for premixed flames, wall
106 impingement can enhance stability by reducing the flow velocity around the flame,
107 thereby enabling a higher ammonia blending ratio [26].

108 The previous studies investigated the effects of adding ammonia and impinging
109 wall on flame stability, especially in chemical reactions. However, the maximum
110 ammonia substitution ratio in ammonia-methane flames and the dominant factors
111 related to the flame stability near the critical ammonia substitution ratio need further



112 investigation under the coupling effect of ammonia and impinging wall. In this study, a
113 combination of high-speed direct imaging and schlieren method was utilized to analyze
114 the flame structure and dynamic characteristics. The promoting effect of the impinging
115 wall on the critical ammonia substitution ratio was obtained by comparing the
116 differences in flame structure and stability between NH₃-CH₄ free flames and
117 impinging flames. The critical ammonia substitution ratios under different impinging
118 heights were obtained. Additionally, the evolution of the flame flow field was
119 investigated to shed light on its effect on flame stability. The present work may enrich
120 the understanding of NH₃-CH₄ impinging flames and facilitate the application of
121 ammonia fuel on combustion systems.

122 **2. Experimental description**

123 The set-up of experimental apparatus is shown in Fig.1, consisting of a McKenna
124 flat-flame burner, mass flow meters and a water-cooled copper plate. Acrylic cover was
125 enclosed on the laminar diffusion flame to mitigate environmental interference. The
126 burner with a fuel nozzle inner diameter (D) of 8 mm, surrounded by a 60 mm diameter
127 coaxial air annulus, contains an Archimedes spiral cooling circuit for water flow to
128 minimize radial temperature gradient. CH₄ and NH₃ with purity of 99.99% were
129 supplied to the burner at given mass flow rates. A water-cooled copper plate with a size
130 of 150 mm × 100 mm and a thickness of 10 mm was positioned directly above the
131 burner to study the flame impingement process. Six water channels were built in to fix
132 the plate temperature to 313±2 K through circulating water connected to thermostatic
133 water bath (THS-10, Tianheng, China).

134 The optical measurement system includes a high-speed camera and the Z-type
135 schlieren imaging system. A high-speed camera (Memrecam GX-8, NAC) was used to
136 capture the configuration and structure of flame. All flame images (1024×1024 pixels)
137 were recorded at a frame rate of 50 fps. A Z-type schlieren imaging system (HGD-
138 SD200) is mainly composed of a 300 W tungsten halogen lamp and two concave
139 mirrors. The Halogen Tungsten lamp was employed due to its continuous spectrum in
140 the visible range, providing stable and broad light output. Each mirror has an effective
141 diameter of 200 mm and a focal length of 2000 mm. It was used to investigate the
142 density gradient of flame flow field and obtain the flame stretch ratio. Schlieren
143 imaging was performed using a direct visualization technique, with all image sequences
144 acquired at identical frame rates (500 fps) and shutter speeds to ensure temporal
145 consistency across experimental conditions.



146
147 Fig.1 Experimental set-up.
148 Each flame image is converted into a binary image based on OTSU algorithm [27].
149 The algorithm distinguishes the flame boundary by assigning binary values (1 for flame

150 and 0 for background). Then, the binarized images are further scrutinized to extract the
 151 flame dimensional parameters in terms of the height of lift-off (H_b), the radius of flame
 152 root (R_r), and the radius of flame tip (R_t), as depicted in Fig. 2(b). The H_b defined as the
 153 length from the nozzle exit to the root of lift-off flame. To characterize the flame stretch
 154 rate (κ) of impinging flames, the projected area of the flame yellow luminescent region
 155 (A_f) in the binarized images are measured. The κ is obtained according to the method of
 156 Chung et al. [28]:

$$157 \quad \kappa = \frac{1}{A} \cdot \frac{dA}{d\tau} \quad (1)$$

158 where A represents the area of the flame surface, τ denotes the time scale, and
 159 $dA/d\tau$ is the rate of change of the flame area with respect to time. In terms of boundary
 160 processing, for the first and last frames of the flame images, the forward difference [29]
 161 and backward difference [30] methods were adopted for calculation, respectively. For
 162 the flame images in the middle, the central difference method was used [31].

163
 164 Fig. 2 (a) Typica images of free and impinging flame and (b) definitions of flame dimensional
 165 parameters.

166 In this study, the effects of different ammonia substitution ratios (α) in the fuel
 167 mixture and cold-flow Reynolds numbers (Re) on flame stability were investigated.
 168 These parameters are defined by Eq. (2) and Eq. (3), respectively. The flow rate of CH_4
 169 and NH_3 were controlled by mass flow meters (AB-11, AiroBoost) with an accuracy of

170 1% of full scale. The ammonia substitution ratio exhibited a $\pm 1\%$ experimental
171 uncertainty due to pressure fluctuation of fuel flow and systematic calibration
172 deviations of the mass flow meters. Each test condition was conducted with more than
173 three repeated experimental trials. The results derived from the flame images were
174 averaged, with error bars representing the deviations from multiple repeated
175 experiments.

176

$$\alpha = \frac{Q_{NH_3}}{Q_{NH_3} + Q_{CH_4}} \quad (2)$$

177

$$Re = \frac{\rho_{mix} V_{mix} D}{\mu_{mix}} \quad (3)$$

178 Where Q represents the volumetric flow rate of gases, and ρ_{mix} , V_{mix} , and μ_{mix}
179 represent the density, velocity, and viscosity coefficient of the fuel mixture, respectively.
180 Additionally, D is the inner diameter of the nozzle.

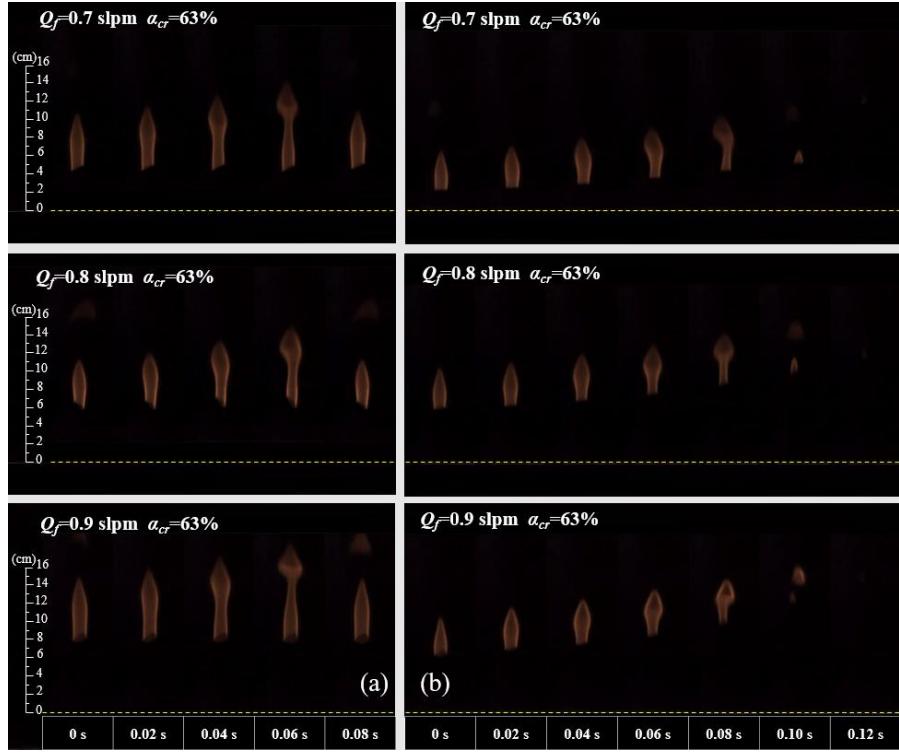
181 In this study, critical ammonia substitution ratio (α_{cr}) in NH_3 - CH_4 diffusion flames
182 under different experimental conditions were investigated experimentally. For free
183 flame without impinging wall, three fuel flow rates (0.7 slpm, 0.8 slpm, 0.9 slpm) were
184 set as shown in Tab. 1, and α was continuously increased to obtain the threshold of
185 ammonia proportion of NH_3 - CH_4 free flame. In the experiment, the threshold of
186 ammonia proportion beyond which the flame turned to an unstable nature was recorded
187 as the α_{cr} . The unstable nature refers to the phenomenon that the flame boundary
188 continuously fluctuates until eventual blow-out. Subsequently, a water-cooled copper
189 plate was introduced to establish an impinging flame. The flame behavior patterns were
190 found to be consistent across all three flow rates in free flames. Therefore, the

191 impinging flame experiments were conducted with the representative flow rate of 0.8
192 slpm. Various impinging height (H_I), defined as the vertical distance between the exit
193 of burner nozzle and the water-cooled copper plate, corresponding to 3, 6, 9 and 12
194 times the nozzle inner diameter were adopted for the impinging flame experiments. To
195 eliminate the interference of wall temperature on the experiment, the plate temperature
196 was retained at 313 ± 2 K through a thermostatic water bath.

197 Tab.1 Test conditions.

Case	Fuel flow (SLPM)	H_I (mm)	Critical ammonia substitution ratio (α_{cr})	Cold flow Reynolds number under α_{cr} (Re)
F1	0.7	/	63%	118.09
F2	0.8	/	63%	134.96
F3	0.9	/	63%	151.83
I1	0.8	24	84%	137.43
I2	0.8	48	87%	137.79
I3	0.8	72	94%	138.62
I4	0.8	96	91%	138.14

198 **3. Results and discussion**


199 *3.1 Threshold of ammonia substitution ratio for flame extinction*

200 *3.1.1 Free diffusion flame*

201 In our previous work [13], flame instability in $\text{NH}_3\text{-CH}_4$ laminar free diffusion
202 flames was investigated at up to 50% substituted ratio of NH_3 . It was found that upon
203 ammonia addition, flames exhibit recurrent periodic oscillations similar to pure
204 methane flames. In this study, the α is further elevated to explore the mechanism for

205 why the flame instability occurs. After further increasing the α ($\geq 60\%$), the flame
206 possesses a more pronounced lift-off height and appears a blow-out as α_{cr} is achieved.
207 As the ammonia substitution ratio reached the threshold, high-speed camera was
208 triggered simultaneously with flame ignition to capture the blow-out process. The flame
209 exhibited periodic contraction oscillations, followed by a marked decrease in lift-off
210 height. Fig. 3(a) shows the flame periodic oscillation process under various Q_f at α_{cr} .
211 The periodic oscillation of flame arises from the following mechanisms: differences in
212 velocity and density between the fuel and air form the shear layer, within which
213 oxidation reactions of the fuel release heat that induces thermal expansion [32].
214 Thermal expansion exacerbates the density difference, and together with gravity,
215 generates buoyancy. Driven by thermal expansion and buoyancy, the shear layer
216 increases in diameter and forms vortex. The pushing or pulling effects of vortex on the
217 flame surface cause local extinction and flame separation [33]. The shear layer repeats
218 the developmental process, ultimately resulting in the periodic oscillation of the flame.
219 Subsequently, the flame root undergoes a progressive elevation, contraction and
220 expansion, ultimately leading to necking phenomena that detach the protruding region
221 of the flame as time evolves, and eventually flame extinguishes as shown in Fig. 3(b).
222 Necking originates from vortex generated by the shear layer between the jet and the
223 ambient air, producing critical flame stretch rates that peak within the constricted region
224 [34]. Enhanced flame stretch induced by flame surface curvature can trigger local
225 extinction and necking [28]. Subsequently, the flame extinguished in both upward and
226 downward directions.

227

228

Fig. 3 The extinction process of $\text{NH}_3\text{-CH}_4$ free diffusion flame: (a) first sequence after ignition; (b) last sequence preceding flame extinction. (The yellow dashed lines represent the burner nozzle exit.)

231

232

233

234

235

236

237

238

239

240

241

242

To clearly observe flame evolution from ignition to extinction, the minimum and

maximum of H_b within each oscillation cycle were obtained, as well as the maximum

values of R_t and minimum values of R_r . As shown in Fig. 4(a) and (b), both H_b_{\min} and

H_b_{\max} undergoes a reduction-then-increase trend as the time evolves under the various

Q_f . Furthermore, when the Q_f increases from 0.7 to 0.8 slpm, H_b_{\min} and H_b_{\max}

correspondingly raise. However, upon further increase to 0.9 slpm, a higher magnitude

of reduction is observed and the minimum values of H_b_{\min} and H_b_{\max} are even lower

than that for 0.8 slpm. According to the study of Lin et al. [13], when shear layer

vortices reach a critical threshold, they trigger global flame lift-off, and ammonia

addition enhances this phenomenon. Concerning lift-off conditions, Takahashi et.al [35]

proposed that a lift-off occurs when the local flow velocity at the flame base exceeds

flame laminar burning velocity. Due to the relatively small laminar burning velocity of

243 ammonia, as α increases, the flame laminar burning velocity will significantly decrease
244 [36, 37], facilitating the lift-off flame phenomenon. Similar phenomena were also
245 observed in the study of Zheng et al. [15] on the unstable characteristics of NH₃-CH₄
246 non-premixed jet flames. They found that for the fixed ammonia substitution ratio,
247 increasing the fuel injection speed would cause the flame to transition from an attached
248 flame to a lift-off flame and further increasing the fuel injection speed would result in
249 an increase in H_b . Similarly, Fig. 4(c) and (d) reveal that $R_{t_{\max}}$ and $R_{r_{\min}}$ exhibit an
250 overall trend of initially irregular fluctuations across various Q_f , followed by a steep
251 decline during the final 3~6 oscillation cycles preceding extinction. Quantitatively,
252 $R_{t_{\max}}$ and $R_{r_{\min}}$ increase correspondingly with higher Q_f across the tested range. The
253 aforementioned dynamics phenomenon is a comparison of three cases under free
254 diffusion flame. Given their consistent behavioral pattern as a whole, a representative
255 flow rate of 0.8 slpm was selected as the Q_f for subsequent impinging flame experiment.

256 The non-monotonic structure variation and eventual blow-out of the NH₃-CH₄ free
257 flame at α_{cr} indicate that a high ammonia substitution ratio leads to a significant
258 decrease in laminar burning velocity, thereby intensifying the global extinction
259 phenomenon induced by shear layer vortex [38]. For the flame impingement condition,
260 the axial velocity of the unburned gas flow in the stagnation zone will be significantly
261 reduced due to impingement on the wall, while the flow in the near wall jet region will
262 be significantly affected by the boundary layer [26]. Therefore, the impingement
263 process can establish a flow field with a lower velocity than that in the free flame, which
264 is ultimately conducive to establishing a more stable flame shape and a complete flame

front. In this case, further investigation on the effect of the impinging wall is conducted and explore whether and how the impinging wall can further extend the threshold of ammonia substitution ratio.

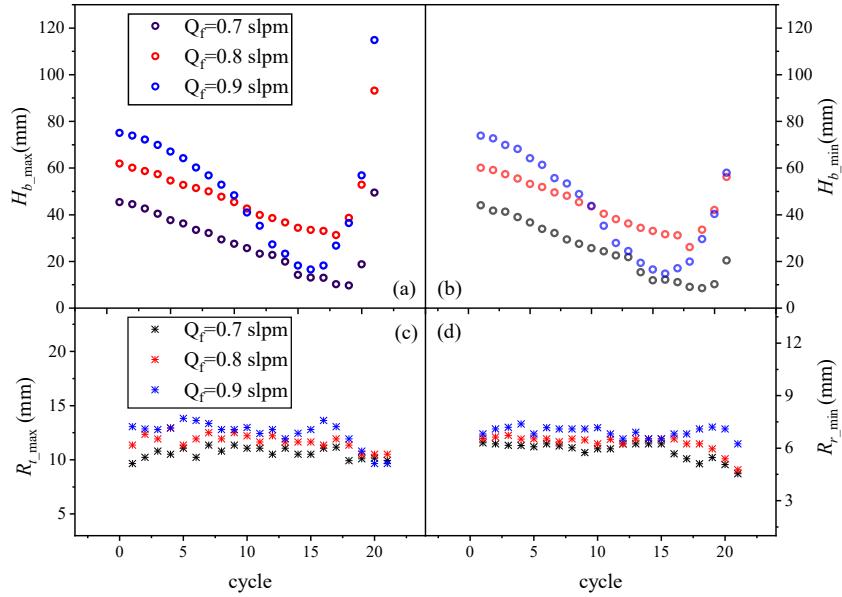
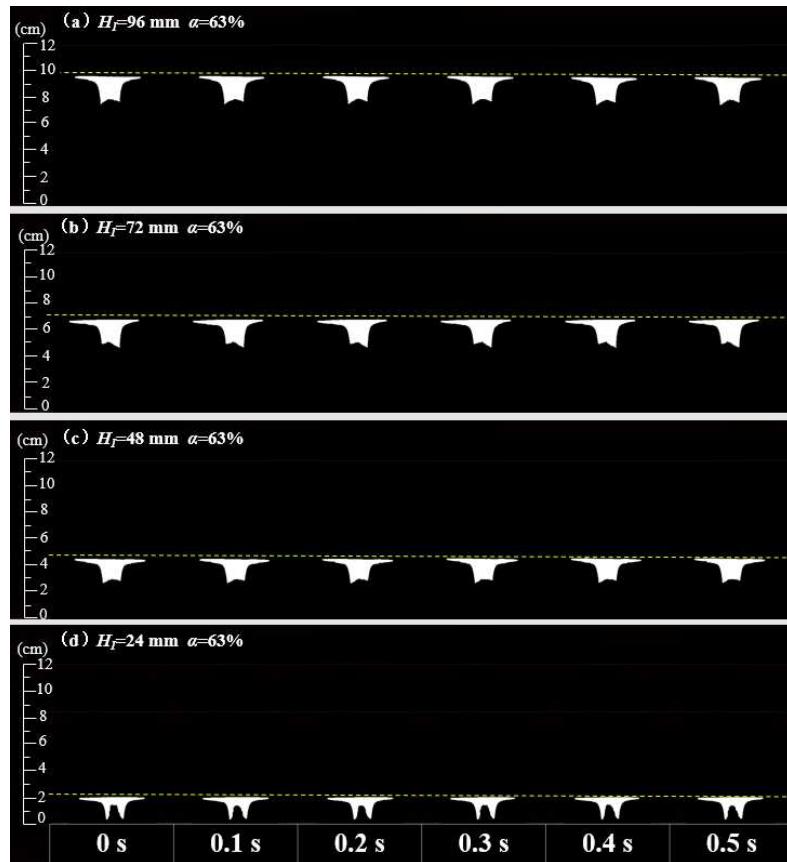


Fig. 4 Variation of flame size parameters over cycle: (a) the maximum height of lift-off (H_b_{\max}) with various fuel flow rate (Q_f); (b) the minimum height of lift-off (H_b_{\min}) with various Q_f ; (c) the maximum radius of the flame tip (R_t_{\max}) with various Q_f ; (d) the minimum radius of flame root (R_r_{\min}) with various Q_f .

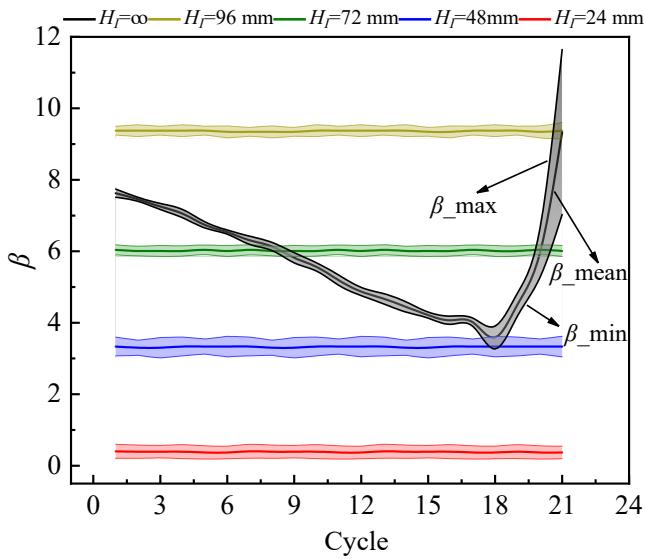

3.1.2 Impinging flame

To evaluate the effect of the impinging wall on laminar diffusion flames, experiments on $\text{NH}_3\text{-CH}_4$ diffusion impinging flames with different α are conducted at a constant Q_f of 0.8 slpm by varying the H_l . At the same α , the appearances of $\text{NH}_3\text{-CH}_4$ impinging flames differ from that of free flames, as shown in Fig. 5. Under this condition, the necking and separation characteristic of free flames are not appeared by the impinging flame that instead exhibit a stable lift-off flame attached to the impinging wall. A further analysis of Fig. 5 reveals that H_b increases with the increase in H_l . A dimensionless parameter β , defined as the ratio of the lift-off height (H_b) to the nozzle

282 inner diameter (D) is used to reveal the effect of H_I

283

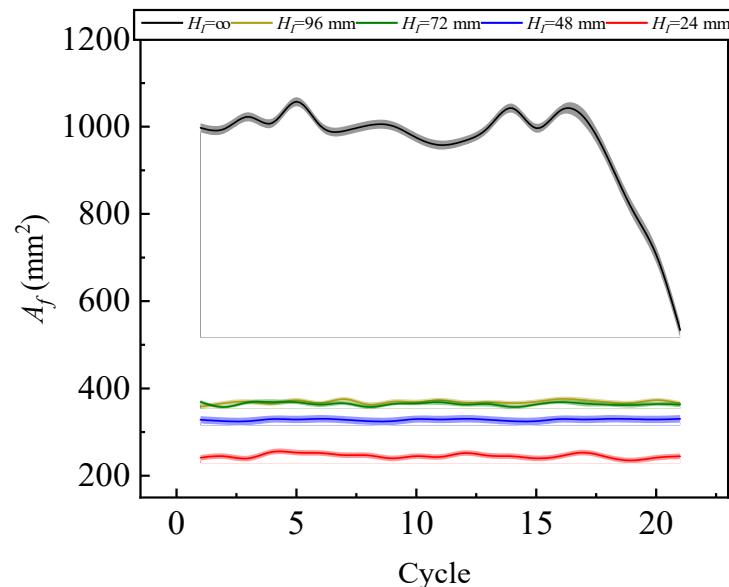
$$\beta = H_b / D \quad (2)$$



284

285 Fig. 5 Sequence diagrams of binarized images of impinging flame at different impinging heights
286 (H_I) under the fuel flow rate (Q_f) of 0.8 slpm and the ammonia substitution ratio (α) of 63%, with
287 the yellow dashed line denoting the position of the water-cooled copper plate.

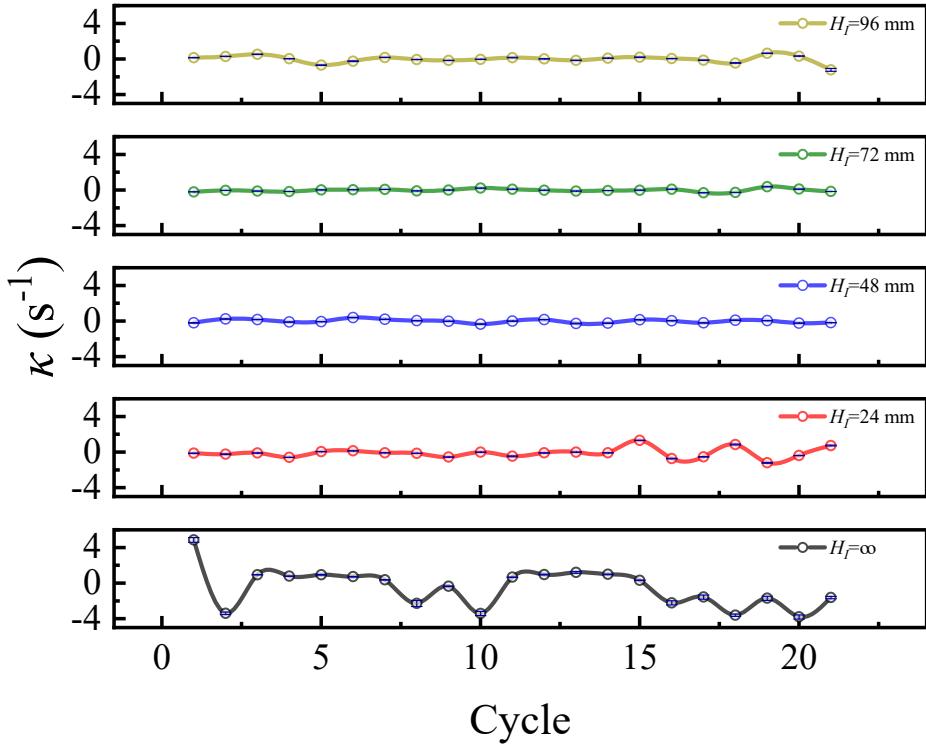
288 For comparison with free flames at α of 63%, the cycle experienced by the free
289 flame from ignition to extinction is defined as the period of interest. Given that the
290 impinging flame does not extinguish, flame images captured at equal time intervals are
291 used to quantify the corresponding parameter. The results in Figs. 6-8 are the mean
292 values obtained for each cycle. Fig.6 shows the variation of β for free flames during the
293 extinction process and that for imping flame under different H_I . It is observed that for
294 the impinging flame β increases with the rise in impinging height. Besides, it is noted
295 that adjusting H_I improves the flame stability. When H_I decreases from 48 mm to 24


296 mm, β drops to around 0.4, indicating that reducing H_l facilitates the transition of the
 297 flame from lifted to attached state. Furthermore, the β of the impinging flame exhibits
 298 marginal fluctuations over the whole period, which indicates a stable combustion. In
 299 contrast, β for the free flame shows significant fluctuations. This phenomenon is related
 300 to the above-mentioned necking and separation occurring in the free flame. Vortex
 301 beneath the bulge of the free flame tip pushes the flame surface outward, while vortex
 302 above the bulge pulls the surface inward, thereby enhancing fuel and air mixing at
 303 specific moments [39]. As a result, the local burning velocity and stretch rate increase,
 304 leading to fluctuations at the flame boundary.

305
 306 Fig. 6 Variation of the ratio of the lift-off height to the nozzle inner diameter (β) for different
 307 impinging heights (H_l) at the fuel flow rate (Q_f) of 0.8 slpm and the ammonia substitution ratio (α)
 308 of 63% with cycle (where the impinging height of ∞ corresponds to the free flames).

309 A_f for flames under different H_l are derived from the binarized images, as shown
 310 in Fig. 7. A_f for the free flames exhibit a significant fluctuation amplitude over cycle,
 311 particularly during the latest cycles of the flame extinction process. This behavior
 312 corresponds to the aforementioned changes in β . After the introduction of the impinging
 313 wall, the variation amplitude of A_f decreases, further verifying the improvement in

314 flame stability. In addition, A_f shows a significant reduction with the introduction of
 315 impinging wall, and gradually increases with the increasing H_l . However, when the H_l
 316 increases from 72 mm to 96 mm, A_f shows no significant increase and sustains a
 317 comparable level. Similar phenomenon was also found by Zhen et al. [40]. In the
 318 presence of an impinging wall, the conical shape of the flame front is truncated by the
 319 wall, causing radial stretch of flame and restricting the axial development, finally
 320 resulting in the flame taking on ‘V’ and ‘M’ shapes. For impinging flames, Li et al. [23]
 321 found that as the impinging height increases, the flame shape changes from a horn-like
 322 form to a complete shape. They explained that the space for flame development
 323 expanded with an increase in impinging height, permitting more ambient air entrained
 324 into the combustion zone, resulting in more thorough combustion and an enlarged flame
 325 area.



326
 327 Fig. 7 Variation of projected area of the flame yellow luminescent region (A_f) for different
 328 impinging heights (H_l) at the fuel flow rate (Q_f) of 0.8 slpm and the ammonia substitution ratio (α)
 329 of 63% with cycle.

330 Flame stretch rate (κ) is also employed to quantify the improvement of flame

331 stability by wall impingement. As shown in Fig. 8, κ for the impinging flames are nearly
332 zero, indicating that the flame area varies slightly and tends to a stability. For $H_l \geq 48$
333 mm, κ shows moderate fluctuate and exhibit no significant affinity with the variation in
334 H_l . Surprisingly, for H_l of 24 mm, κ shows marginal fluctuation in the early cycle, but
335 present a large amplitude fluctuation in the later cycle. In contrast, the free flames
336 exhibit higher level and fluctuation amplitude (-4~5) in κ , suggesting severe changes in
337 A_f . According to Jung et al. [41], larger flame stretch rate reduces the flame heat release
338 rate, inhibiting heat release in the reaction zone, and ultimately leads to flame extinction.
339 In the last 7 cycles before the extinction of the free flame, κ remained negative,
340 suggesting a continuous decrease in A_f until extinction. This phenomenon may be
341 related to the rates of mass diffusion and thermal diffusion in the flame, i.e. the Lewis
342 number (Le) of the fuel. Le for NH_3 is significantly higher than that for CH_4 [42-44]. In
343 the study by Zhang et al. [45], it was found that in the tip region of ammonia-methane
344 flames, the preferential diffusion effect induced by the high Lewis number leads to
345 insufficient local fuel mass diffusion and contraction of the flame area, which further
346 causes flame contraction and eventually results in extinction.

347

348 Fig. 8 Variation of flame stretch rates (κ) of flames for different impinging heights (H_I) at the fuel
 349 flow rate (Q_f) of 0.8 slpm and the ammonia substitution ratio (α) of 63% with cycle.

350 The α is further expanded to explore the maximum level of ammonia application

351 in NH₃-CH₄ fuels. Compared with the free flame, α_{cr} for the impinging flame increases

352 significantly, rising from 63% to over 80%, as shown in Fig. S1 of the supplementary

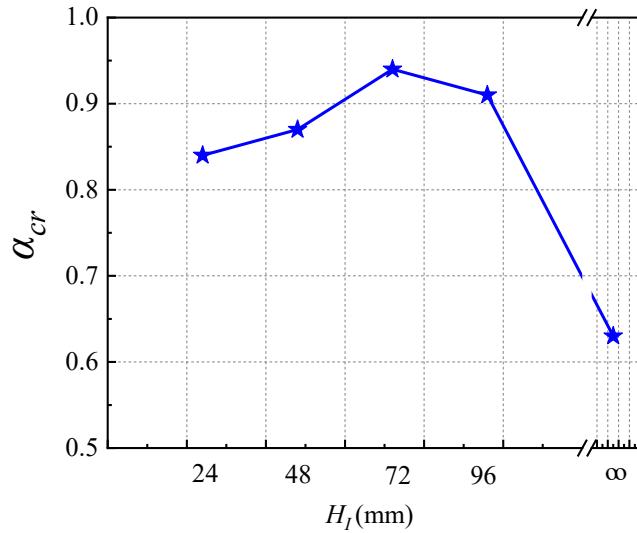
353 material. This phenomenon indicates that the impinging wall enhances the stability of

354 flames and α_{cr} is greatly improved. In laminar diffusion flames, the flame burning

355 velocity and the flow velocity of the unburned gas are the key factors determining flame

356 stability. The impinging wall may form a lower-velocity flow field matching the

357 reduced laminar flame velocity for higher ammonia content, and facilitate the flame

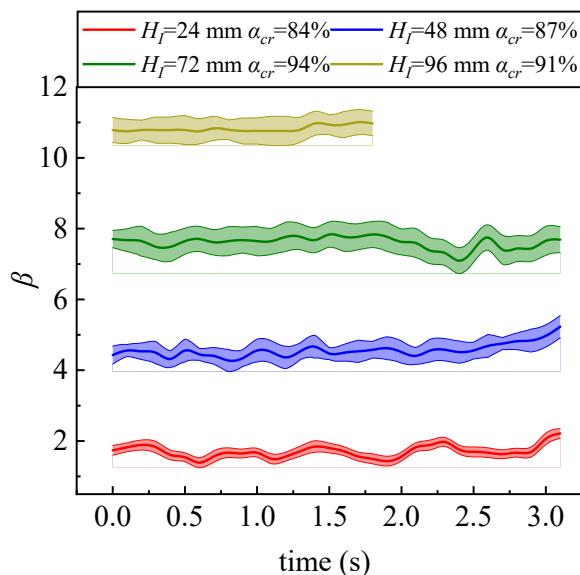

358 stability [26]. H_I is a crucial factor influencing the combustion characteristics of

359 impinging flames [46]. As H_I increases from 24 to 72 mm, α_{cr} shows a monotonical

360 increase and achieves the peak value of 94% at H_I of 72 mm. The impinging wall creates

361 a stagnation flow field with a low velocity zone [24], reducing local stretch rate, as

362 shown in Fig. 8. A lower κ can lead to a more stable flame anchoring, permitting a
 363 higher proportion of NH_3 to be substituted in the fuel mixture before reaching the
 364 critical condition. When H_l is further increased to 96 mm, the α_{cr} decreases to 91%. As
 365 H_l continues to increase, the flow becomes more complex with large fluctuations in the
 366 fuel-air mixture ratio and flow velocity. The non-homogeneous fuel mixture
 367 distribution and rapid changes in flow conditions make it difficult for NH_3 to burn
 368 efficiently. As a result, the flame stability deteriorates and α_{cr} decreases. At each H_l , the
 369 process from flame ignition to extinction under α_{cr} is recorded and digitalized with a
 370 time scale of 0.1 ms to derive the variations of β , A_f and κ over time.



371
 372 Fig. 9 Critical ammonia substitution ratio (α_{cr}) for different impinging heights (H_l) at the fuel
 373 flow rate (Q_f) of 0.8 slpm (where the impinging height of ∞ corresponds to the free flames).

374 As shown in Fig. 10, for the same H_l , β increases significantly with the increase in
 375 α , indicating that the flame base moves toward the upstream of flame. At the flame lift-
 376 off conditions [35], the local flow velocity equals to the flame burning velocity. As α
 377 further increases, the NH_3 addition further reduce the fuel burning velocity [36], and
 378 thus the flame root moves to downstream (with a lower flow velocity) to re-establish

379 equilibrium. Meanwhile, the fluctuation amplitude of β increases as α further increases.
 380 At the initial α of 63% for the impinging flame, β shows nearly no temporal fluctuation.
 381 Conversely, at α_{cr} , β exhibits distinct fluctuations across different H_l , suggesting a
 382 deterioration in flame stability. The results of Colson et al. [47] indicated that the
 383 counterflow non-premixed ammonia-methane flames cannot be stabilized at higher
 384 ammonia constituted ratio ($>70\%$) due to the flame weakness and strong buoyancy
 385 effect. At that condition, the flame resides in a regime proximate to the extinction limit,
 386 thereby exhibiting heightened susceptibility to perturbation, and β fluctuation increases.
 387 Additionally, further increasing α will also lead to an increase in Le of the fuel [43].
 388 Wang et al. [48] found that on ammonia-methane laminar expanding flames, an increase
 389 in the Le leads to a more uneven distribution of flame surface curvature, exacerbating
 390 the geometric distortion of the flame surface. Owing to the high Le of NH_3 , it is more
 391 sensitive to the interaction of vortex structure in the lifted state, resulting in the
 392 intensification of β oscillation under the lift-off condition.

393
 394 Fig. 10 Variation of the ratio of the lift-off height to the nozzle inner diameter (β) for different
 395 impinging heights (H_l) at the fuel flow rate (Q_f) of 0.8 slpm and the acritical ammonia substitution

396 ratio (α_{cr}) with time.

397 Under α_{cr} , A_f at different H_l all exhibit distinct fluctuations over time, as shown in

398 Fig. 11. Meanwhile, as α increases from 63% to α_{cr} , A_f under different H_l decrease. The

399 lower flame propagation speed, corresponding to a higher ammonia content, are prone

400 to slow down the expansion rate of the combustion reaction zone and affect the mixing

401 process of fuel and oxidizer [49], resulting in reduction in A_f . As H_l increased to 72 mm

402 at which the largest α_{cr} is achieved, A_f is significantly larger than that at other H_l . The

403 lower A_f at H_l of 24 mm and 48 mm may come from the strong cooling effect from the

404 impinging wall on the flame front of the laminar flame [50]. When H_l further increases

405 to 96 mm, A_f decreases significantly, and the combustion duration also reduces

406 obviously. For this case, the cooling effect of the impinging wall on the combustion

407 process may be diminished, while the entrainment of ambient air provides more

408 oxidizer, exerting a significant cooling effect on flame combustion and leading to a

409 reduction in A_f [51]. Similar to the free flame, A_f of the impinging flame gradually

410 decreases until it extinguishes.

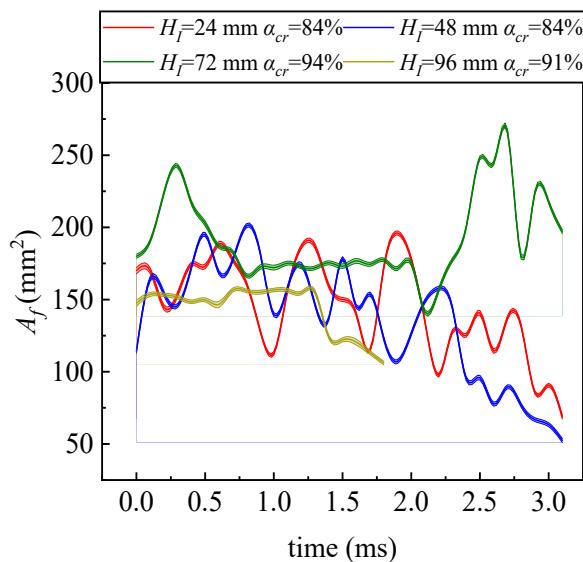
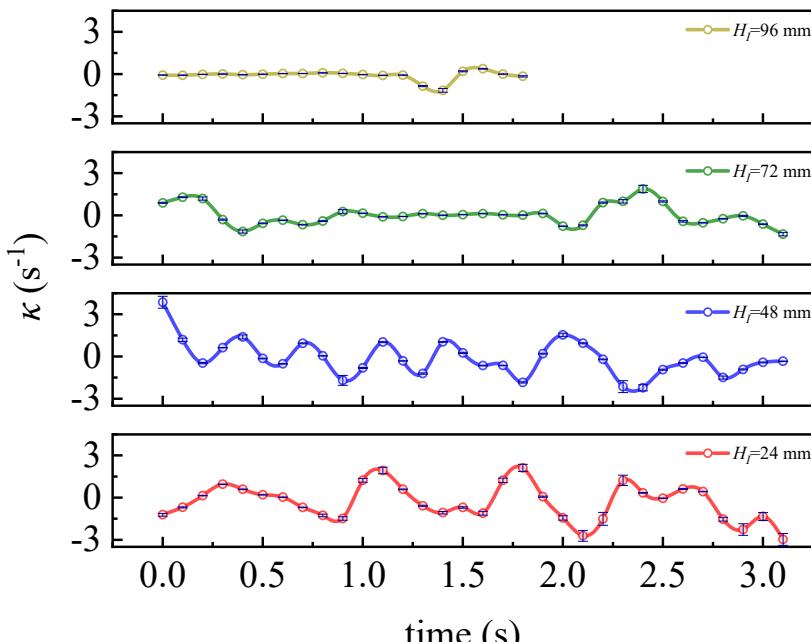
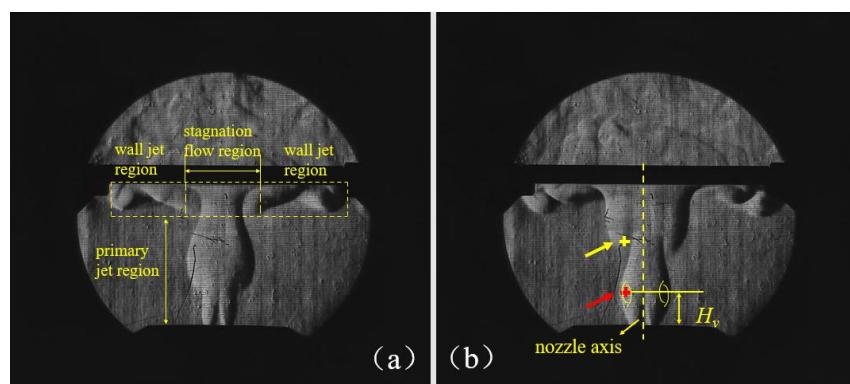



Fig. 11 Variation of projected area of the flame yellow luminescent region (A_d) for different

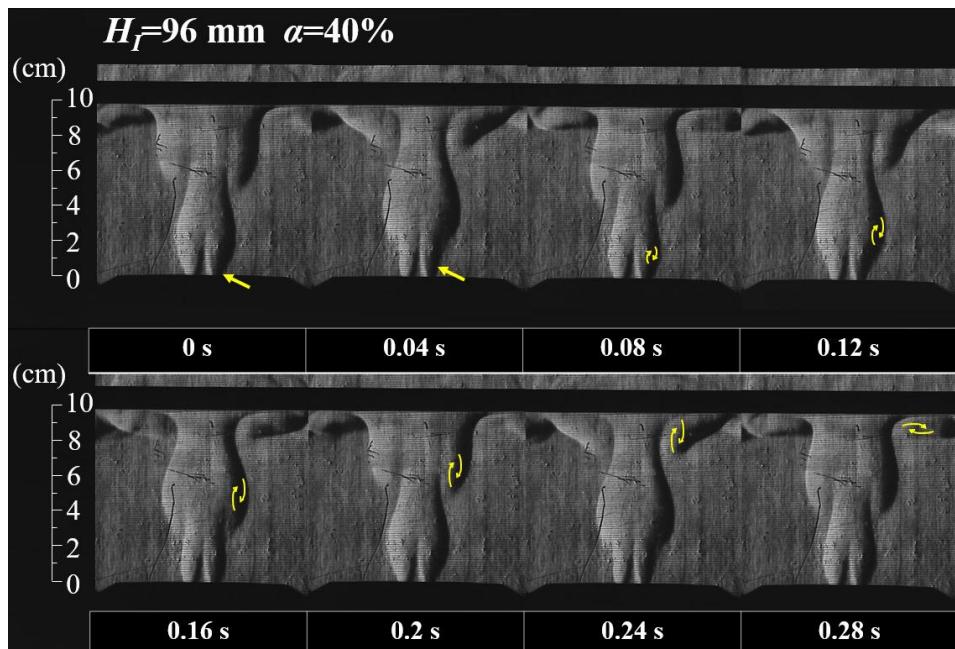
413 impinging heights (H_I) at the fuel flow rate (Q_f) of 0.8 slpm and the critical ammonia substitution
414 ratio (α_{cr}) with time.

415 Fig. 12 shows the variation of κ with time at different H_I . At all impingement
416 heights, κ possess periodical fluctuation over time. At H_I less than 48mm, the
417 fluctuation amplitude of κ is relatively large (-3 to 4 s^{-1}). The flame is significantly
418 affected by the wall, leading to the stretching and compression of the flame front at low
419 H_I . As H_I increased from 48 mm to 72 mm, the fluctuation amplitude of κ decreases (-
420 1 to 1.5 s^{-1}). At this time, the impinging flow field is stable, and the fuel and air may be
421 mixed uniformly. When H_I increases to 96 mm, κ is relatively low in the early stage,
422 but the fluctuation intensifies (-1.5 to 0.5 s^{-1}) in the later stage. At higher H_I , the fuel
423 jet develops sufficiently, and the oxidizer is sufficient, but the turbulence intensity
424 increases, which intensifies the local deformation of the flame front, resulting in larger
425 fluctuations of κ in the later stage of combustion [52].


426
427 Fig. 12 Variation of flame stretch rate (κ) of flames for different impinging heights (H_I) at the fuel
428 flow rate (Q_f) of 0.8 slpm and the critical ammonia substitution ratio (α_{cr}) with time.

429 3.2 *Schlieren image analysis*

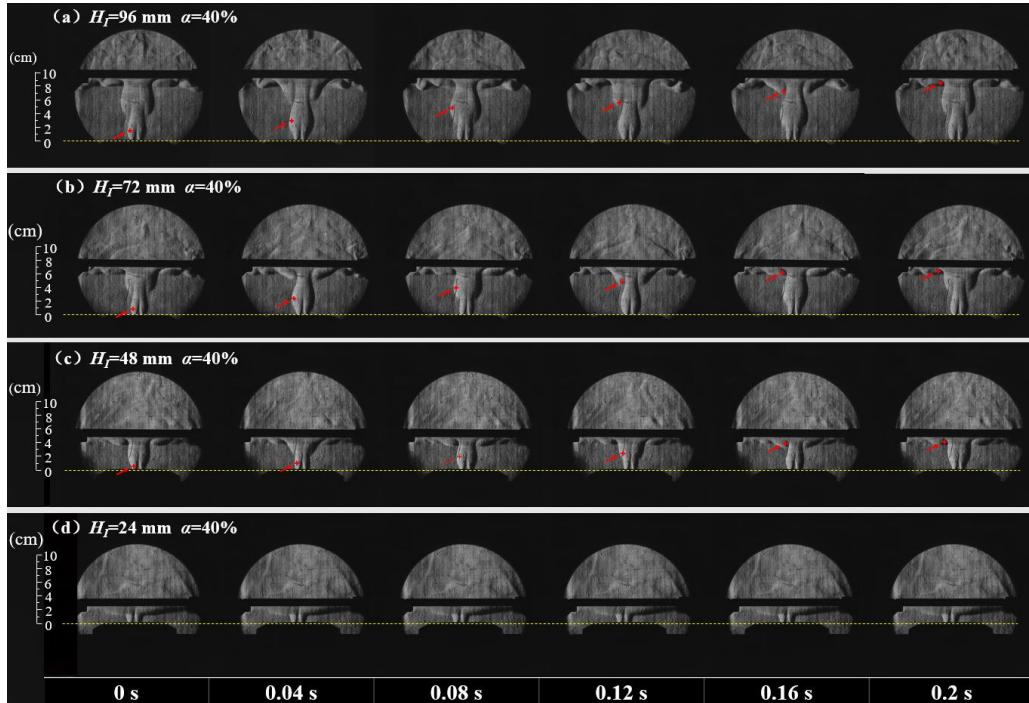
430 Schlieren visualization is used to study the generation and distribution of vortex
431 around flames and their interaction with flames [53, 54].


432 By changing H_l (24, 48, 72, 96 mm) and α ($\geq 40\%$), the effect of impinging wall
433 and ammonia substitution ratio on the stability of $\text{NH}_3\text{-CH}_4$ flame is obtained. Fig. 13(a)
434 presents the schlieren image of typical impinging flame. There are three characteristic
435 regions in the flow field: the primary jet region, the stagnation flow region and the wall
436 jet region, which are consistent with the previous study of [55]. In the primary jet region,
437 the impinging wall has no significant influence on the flow and the shear layer at the
438 interface of flame and surrounding air presents a spindle shape, similar to the free $\text{NH}_3\text{-}$
439 CH_4 laminar diffusion flame studied by Lin et al. [13]. In the stagnation flow region,
440 the axial flow strongly decelerates and the radial flow accelerates, resulting in an
441 increase in pressure and ultimately leading to the wall jet region. The wall jet region
442 begins where the velocity is basically parallel to the impinging wall. In the wall jet
443 region, the flame spreads along the wall surface.

444
445 Fig. 13 (a) Schlieren diagram of the typical impinging flame; (b) schematic diagram of parameter
446 definition.

447 A typical sequence of schlieren images depicting the development of flame vortex

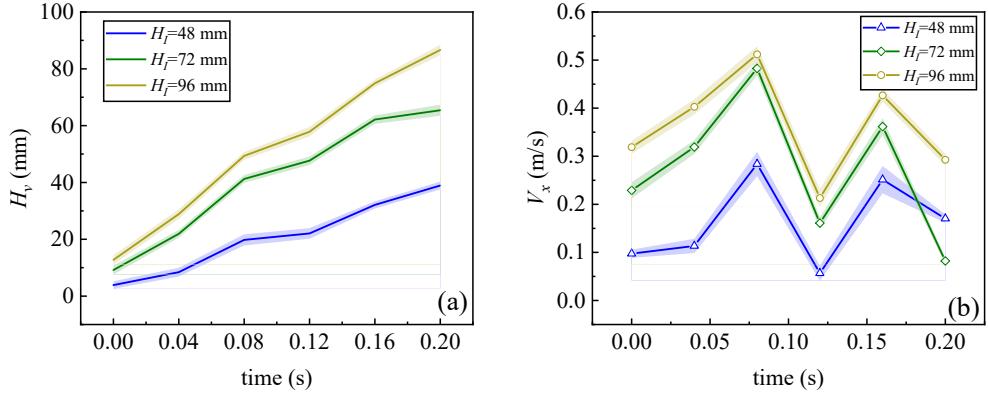
448 and their position in the flow field at H_I of 96mm and α of 40% is presented in Fig.14.
 449 In the primary jet region, the spindle-shaped shear layer at the flame and air interface
 450 undergoes periodic motion due to thermal expansion [56]. As shown in Fig. 14 , the
 451 flame vortex evolves sequentially: initial slight inward concavity (roll-up vortex) on the
 452 shear layer develops into an internal vortex with increasing shear layer diameter [57]
 453 Upon impingement, the axial development of the shear layer is constrained and
 454 gradually moving radially. At this time, the shear stresses near the wall generate an
 455 annular vortex in the near wall region [58, 59]. The vortex positions refer to the study
 456 by He et al. [59]. As the impingement distance increases, more vortex structures can be
 457 observed.


458
 459 Fig. 14 Whole schlieren image sequence of flame vortex evolution at an impingement height
 460 (H_I) of 96 mm and an ammonia substitution ratio (α) of 40% (the yellow markers indicate the
 461 vortex positions)

462 Fig. 15 presents the complete sequence of schlieren images depicting the flames
 463 at $\alpha=40\%$ for various H_I . At $H_I \geq 48$ mm, the spindle shaped shear layer undergoes
 464 periodic motion due to thermal expansion [13, 56]. Firstly, the shear layer expands

465 gradually until the flame front impinges on the wall. Subsequently, the shear layer
466 develops along the wall into a vortex - like shape. In contrast, with the lower H_I of 24
467 mm, the flame remains in a stable state in which the flame boundary exhibits negligible
468 fluctuations, with no coherent vortical structures developing within the wall jet region.
469 At lower impingement heights, the development of the fuel jet is constrained, leading
470 to rapid dissipation of axial momentum [60]. The main jet region is compressed, which
471 suppresses the development of flame vortex and alters the temperature distribution [59].
472 Consequently, a flow field distinct from that observed at other heights is formed.
473 According to the study by Hsu et al. [57] on jet impinging on a flat plate, there are two
474 axisymmetric vortices within each spindle-shaped shear layer, with the vortex center
475 located at the maximum diameter of the shear layer, as shown by the red arrow in Fig.
476 13(b). After the flame impinges on the wall, the shear layer begins to stretch radially
477 under the combined action of the wall and the original thermal expansion force, causing
478 the alteration of the vortex center. The vertex center is the local extremum of the
479 vorticity, therefore the new vortex center after flame impingement is obtained [24, 61],
480 as depicted by the yellow arrow in Fig. 13(b). Therefore, to compare the influence of
481 H_I on vortex development, the evolution of vortex center is studied. Red crosses track
482 the development trajectory of the vortex, as shown in Fig. 15 (a-c). Initially, the spindle-
483 shaped shear layer bends inward and forms roll-up vortex, depicted by the red arrows
484 in the images. As time evolves, the elevation of vortex position with the development
485 of the shear layer. After impinging on the wall, the flame front takes a V-shape and
486 propagates radially along the wall. The difference in flame stability with the same α at

487 different H_l indicates that reducing the H_l can mitigate the influence of vortex on flames
 488 by suppressing the development of flame shear layer, making it easier to achieve stable
 489 processes. In addition, the lower H_l allows more heat and active free radicals to be fed
 490 back to the unburned gas near the nozzle, which also helps stabilize the flame [62].



491
 492 Fig. 15 Whole sequence of schlieren images for different impinging heights (H_l) at the fuel flow
 493 rate (Q_f) of 0.8 slpm and the ammonia substitution ratio (α) of 40%, with yellow dashed line
 494 represents the nozzle exit position.

495 The yellow horizontal line shown in Fig. 13 (b) represents the height of the vortex
 496 position (H_v), defined as the length between the vortex center and nozzle exit, which is
 497 used to calculate the axial motion velocity of vortex (V_x). Take the differential of H_v
 498 within the 0.04 s time interval to obtain V_x . The changes in H_v and V_x can be qualitatively
 499 used to describe the intensity of the vortex [63]. Fig. 16(a) shows the variation of H_v
 500 with time under different H_l . At all H_l , H_v gradually increases over time and eventually
 501 reaches a constant value. The reason is the low density hot gas enters the high density
 502 ambient air, causing the flame shear layer to expand continuously, and the vortex rises

503 as the shear layer expands [64]. At 0.16 s, the vortex enters the wall jet region, the flame
504 develops radially under the influence of the impinging wall, and H_v reaches a constant
505 value. The V_x at different times is shown in Fig. 16(b). At each H_l , V_x shows the same
506 variation law. At 0~0.08 s, the vortex is located in the primary jet region with little
507 constraint by the wall and the vortex axial motion driven by thermal expansion force
508 and jet momentum. The thermal expansion force causes a decrease in gas density near
509 the flame front, forming an axial pressure gradient that accelerates the unburned gas
510 and increases the flame burning velocity [65], resulting in an increase in V_x . At 0.08 s,
511 the flame schlieren image shows that the flame tip collides with the impinging wall,
512 causing the shear layer to be radially stretched and change of the vortex center.
513 Subsequently, the wall stagnation effect gradually intensifies and exerts a reverse force
514 on the flame through momentum exchange [66], leading to a significant decrease in V_x .
515 At 0.12~0.16 s, the shear layer develops under the combined action of wall confinement
516 and thermal expansion force, further increasing V_x . However, V_x in this case remains
517 lower level than that before the impingement. After the vortex enters the wall jet region,
518 it develops radially along the wall. As the radial distance increases, the vortex gradually
519 dissipates and V_x decreases due to the influence of wall viscous resistance and shear
520 stress [25]. Reduced H_l relocates vortex downstream, leading to reduction in V_x . The
521 reduction of H_l shortens the primary jet region and may enhance the wall-induced
522 stagnation effects, thereby weakening the axial acceleration driven by thermal
523 expansion force. Consequently, shear layer and vortex development are suppressed,
524 establishing a stable flow field as depicted in Fig. 15(d).

525

526 Fig. 16 Parameters of the vortex over time for different impinging heights (H_I) at the fuel flow rate
 527 (Q_f) of 0.8 slpm and the ammonia substitution ratio (α) of 40%: (a) the length between the vortex
 528 center and nozzle exit (H_v); (b) the axial motion velocity of vortex (V_x).

529

To further understand the influence of α , the flame schlieren images for higher α (63% and α_{cr}) at different H_I are shown in Fig. 17. At higher α , the flow field exhibits similar stable state at each H_I to that for $H_I=24$ mm of $\alpha=40\%$. Notably, for $\alpha=63\%$, as H_I elevates to higher value of ≥ 48 mm, the periodic development of shear layer and vortex vanishes and the flow field undergoes towards the stable state. He et al. [24] observed a similar phenomenon, in the near-wall region, the area of vortex significantly decreases with an increase in the NH_3 blending ratio. When further increases α from 63% to α_{cr} , the flow field stability remains unaltered under different H_I . However, the flame in the primary jet region moves downstream, and the motion of the flame flow field is mainly concentrated in the stagnation flow region and the wall jet region. That is, increasing α probably weaken the influence of H_I on the flame flow field, enabling the flame to stably attach to the wall for combustion.

530

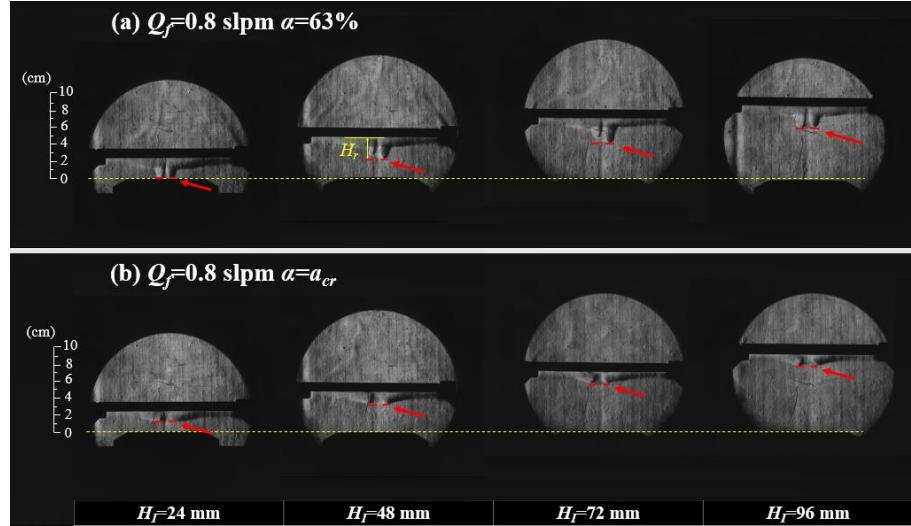
531

532

533

534

535


536

537

538

539

540

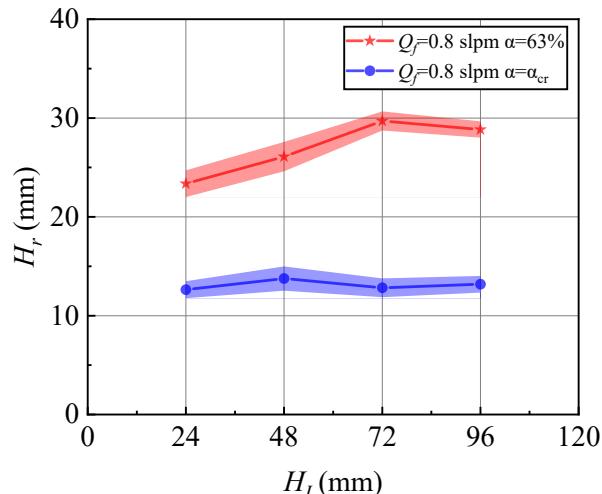

541
542
543
544

Fig. 17 Schlieren images for different impingement heights (H_I) and ammonia substitution ratios (α) at the fuel flow rate (Q_f) of 0.8 slpm, with yellow dashed line represents the nozzle exit position.

545
546
547
548
549
550
551
552
553
554
555
556
557
558

The distance between the flame root and the impinging wall, termed as H_r , is used to further depict the flow structure. The definition of H_r is demonstrated in Fig. 17. As shown in Fig. 18, for $\alpha=63\%$, with increasing H_I , H_r gradually rises and reaches the peak at $H_I=72$ mm, then decreases slightly as H_I further increases to 96 mm. When further increasing to α_{cr} , H_r exhibits no consistent trend and scatters within a range of 12.5 mm to 13.5 mm, meaning that H_r may be insensitive to the variation in H_I . This phenomenon indicates that the increase of α may anchor the flame root in the near wall region, suppressing the effect of H_I on flow field. According to the study of Takahashi et al. [35], H_r is controlled by flame burning velocity and local fuel flow velocity. Higher ammonia content in flames reduces flame burning velocity, driving the flame root downstream and transitioning from attached flame to lifted flame configuration [36]. At $H_I \geq 48$ mm, the lifted flame shortens H_r , which may result in a flow field similar to that at $H_I = 24$ mm. Therefore, the impinging wall suppress vortex development and enhance flow field stability, thereby the lifted flame anchoring.

559 Conversely, at higher ammonia substitution ($\alpha=63\%$), the free flame undergoes necking
560 as the shear layer develops, leading to flame instability and ultimately triggering blow-
561 out probably.

562 Fig. 18 The value of H_r under different impingement heights (H_I) at the fuel flow rate of 0.8 slpm.
563
564 In relevant studies, the extinction of $\text{NH}_3\text{-CH}_4$ flame has been extensively
565 scrutinized and attributed to various factors such as fluid dynamics [19], chemical
566 reactions [17] and thermal effects [18]. Under the critical substitution ratio of ammonia
567 in hydrocarbon fuels, the development of flame vortex is suppressed and the flow
568 instability within the flow field is weakened with the effect of the impinging wall. Thus,
569 chemical reactions and thermal instability may be the main factors leading to flame
570 extinction under the condition. This assertion is supported in the study of [59] on
571 characteristics of methane non-premixed impinging flame. The high-temperature
572 region was concentrated in the stagnation region, and the temperature gradually
573 decreased as the wall-attached flame propagated. They attributed this phenomenon to
574 the decrease in flame temperature caused by heat and momentum dissipation during the
575 propagation of the wall-attached flame in the near wall region, which leads to weakened

576 flame stability and extinction behavior. According to the study of Chu et al. [21], a
577 decrease in flame temperature due to the addition of ammonia to methane non-premixed
578 flames reduces the reaction rate and decreases the production of OH radicals, thereby
579 resulting in a lower extinction limit of the flame. With the introduction of impinging
580 wall, the flame flow field becomes jointly controlled by both impinging height and
581 ammonia substitution ratio. The impinging wall likely enhances the critical ammonia
582 substitution ratio primarily by altering vortex distribution and evolution within the flow
583 field. Under the present experimental conditions, when ammonia substitution ratio
584 reaches a certain level, it may weaken the effects of impinging height, causing flow
585 fields to converge toward identical characteristics.

586 **4. Conclusion**

587 The effect of impinging wall on the stability of ammonia-methane laminar
588 diffusion flame was investigated by the high-speed camera system and schlieren
589 method in this work. The main findings are summarized as follows:

590 In the absence of the impinging wall, the free flame exhibits periodic expansion
591 and separation at the critical ammonia substitution ratio, displaying pronounced
592 fluctuations dominated by flow instability. With introduction of the impinging wall, the
593 critical ammonia substitution ratio of the flame increases from 63% to over 80%. At a
594 low ammonia substitution ratio (40%), reducing the impinging height promote the
595 stability of flow field by suppressing the development of shear layer and vortex around
596 the flames. When the ammonia substitution ratio is gradually increased to 63% and the
597 critical substitution ratio, the flames are anchored on the wall at different impinging

598 heights, with no significant vortex development in the flow field. Therefore, a higher
599 ammonia substitution ratio can weaken the influence of impinging height on the flame
600 flow field, and chemical and thermal instability may be the main factors leading to
601 flame extinction under this condition. In addition to flow instability caused by flow
602 field fluctuations, chemical kinetics and thermal instability in the flame are also key
603 factors affecting flame stability. Therefore, the chemical kinetics and temperature
604 effects of ammonia-methane flames under impinging wall conditions will be further
605 investigated in our subsequent studies.

606 **CRediT authorship contribution statement**

607 **Yidu Tong:** Conceptualization, Investigation, Data curation, Visualization,
608 Writing-original draft. **Chenyang Fan:** Investigation, Methodology, Funding
609 acquisition, Supervision, Project administration, Writing-review and editing. **Zheng Fu:**
610 Investigation, Resources, Validation. **Ye Liu:** Investigation, Validation. **Huiyong Du:**
611 Methodology, Resources. **Bin Xu:** Methodology, Resources. **Guorong Lin:**
612 Conceptualization, Visualization. **Shuo Jin:** Investigation, Data curation, Validation.
613 **Shuainan Yang:** Investigation, Data curation, Validation. **Mingliang Wei:** Resources,
614 Data Curation.

615 **Acknowledgments**

616 This research is sponsored by National Natural Science Foundation of China (No.
617 52006054), and International scientific and technological cooperation project in Henan
618 Province (No. 232102521019).
619

620 References

621 [1] Kobayashi H, Hayakawa A, Somaratne KKA, Okafor EC. Science and technology of ammonia
622 combustion. Proc Combust Inst 2019;37(1):109-33. <https://doi.org/10.1016/j.proci.2018.09.029>

623 [2] Ikäheimo J, Kiviluoma J, Weiss R, Holttinen H. Power-to-ammonia in future North European 1
624 00% renewable power and heat system. Int J Hydrog Energy 2018;43(36):17295-308. <https://doi.o>
625 [rg/10.1016/j.ijhydene.2018.06.121](https://doi.org/10.1016/j.ijhydene.2018.06.121)

626 [3] Smith C, Hill AK, Torrente-Murciano L. Current and future role of Haber-Bosch ammonia in a
627 carbon-free energy landscape. Energy Environ Sci 2020;13(2):331-44. <https://doi.org/10.1039/c9>
628 [ee02873k](https://doi.org/10.1039/c9ee02873k)

629 [4] Dolan RH, Anderson JE, Wallington TJ. Outlook for ammonia as a sustainable transportation f
630 uel. Energy Fuels 2021;5(19):4830-41. <https://doi.org/10.1039/D1SE00979F>

631 [5] Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ. Ammonia for power. Prog En
632 ergy Combust Sci 2018;69:63-102. <https://doi.org/10.1016/j.procs.2018.07.001>

633 [6] Kurata O, Iki N, Matsunuma T, Inoue T, Tsujimura T, Furutani H, et al. Performances and emiss
634 ion characteristics of NH₃-air and NH₃CH₄-air combustion gas-turbine power generations. Proc
635 Combust Inst 2017;36(3):3351-9. <https://doi.org/10.1016/j.proci.2016.07.088>

636 [7] Frigo S, Gentili R. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and
637 hydrogen. Int J Hydrog Energy 2013;38(3):1607-15. <https://doi.org/10.1016/j.ijhydene.2012.10.11>
638 4

639 [8] Vinod KN, Gore M, Liu H, Fang T. Experimental characterization of ammonia, methane, and ga
640 soline fuel mixtures in small scale spark ignited engines. Appl Energy Combust Sci 2023;16:10020
641 5. <https://doi.org/10.1016/j.jaecs.2023.100205>

642 [9] Wang B, Wang H, Hu D, Yang C, Duan B, Wang Y. Study on the performance of premixed nat
643 ural gas/ammonia engine with diesel ignition. Energy 2023;271:127056. <https://doi.org/10.1016/j.>
644 [energy.2023.127056](https://doi.org/10.1016/j.energy.2023.127056)

645 [10] Hayakawa A, Goto T, Mimoto R, Arakawa Y, Kudo T, Kobayashi H. Laminar burning velocity a
646 nd Markstein length of ammonia/air premixed flames at various pressures. Fuel 2015;159:98-106.
647 <https://doi.org/10.1016/j.ijhydene.2015.04.024>

648 [11] Zamfirescu C, Dincer I. Ammonia as a green fuel and hydrogen source for vehicular applicati
649 ons. Fuel Process Technol 2009;90(5):729-37. <https://doi.org/10.1016/j.fuproc.2009.02.004>

650 [12] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Experimental and nume
651 rical study of the laminar burning velocity of CH₄-NH₃-air premixed flames. Combust Flame 201
652 8;187:185-98. <https://doi.org/10.1016/j.combustflame.2017.09.002>

653 [13] Lin G, Fan C, Fu Z, Li H, Liu Y, Du H, et al. Insight into the instability of ammonia-methane la
654 minar diffusion flame. J Energy Inst 2025;119. <https://doi.org/10.1016/j.joei.2024.101961>

655 [14] Colson S, Kuhni M, Hayakawa A, Kobayashi H, Galizzi C, Escudie D. Stabilization mechanisms
656 of an ammonia/methane non-premixed jet flame up to liftoff. Combust Flame 2021;234. <https://>
657 doi.org/10.1016/j.combustflame.2021.111657

658 [15] Zheng J, Tang F, Chung SH, Hu L. Characteristics of liftoff, blowout and instability in nonpre
659 mixed jet flames with NH₃/CH₄ mixture fuels. Proc Combust Inst 2024;40(1-4). <https://doi.org/1>
660 [0.1016/j.proci.2024.105591](https://doi.org/10.1016/j.proci.2024.105591)

661 [16] Colson S, Kuhni M, Galizzi C, Escudie D, Kobayashi H. Study of the combined effect of ammo
662 nia addition and air coflow velocity on a non-premixed methane jet flame stabilization. Combust

663 Sci Technol 2022;194(9):1747-67. <https://doi.org/10.1080/00102202.2020.1830276>

664 [17] Chen Y, Wang J, Zhang J, Li Y. Numerical Study on Chemical Kinetic Characteristics of Count
665 erflow Diffusion Flame Extinction of Methane/Ammonia/Air Flame under High Pressure or Air Pre
666 heating Temperature. Molecules 2024;29(15):3632. <https://doi.org/10.3390/molecules29153632>

667 [18] Wang Y, Trouve A. Direct numerical simulation of nonpremixed flame–wall interactions. Com
668 bust Flame 2006;144(3):461–75. <https://doi.org/10.1016/j.combustflame.2005.08.009>

669 [19] Bradley D, Shehata M, Lawes M, Ahmed P. Flame extinctions: Critical stretch rates and sizes.
670 Combust Flame 2020;212:459–68. <https://doi.org/10.1016/j.combustflame.2019.11.013>

671 [20] Won SH, Dooley S, Dryer FL, Ju YJC, Flame. A radical index for the determination of the chem
672 ical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combust Flame
673 2012;159(2):541–51. <https://doi.org/10.1016/j.combustflame.2011.08.020>

674 [21] Chu C, Scialabba G, Liu P, Serrano-Bayona R, Aydin FY, Pitsch H, et al. Effects of Ammonia Su
675 bstitution in the Fuel Stream and Exhaust Gas Recirculation on Extinction Limits of Non-premixed
676 Methane– and Ethylene–Air Counterflow Flames. Energy Fuels 2023;37(18):14393–403. [https://p
677 ubs.acs.org/doi/10.1021/acs.energyfuels.3c02605](https://p).

678 [22] Chander S, Ray A. Flame impingement heat transfer: a review. Energy Conv Manag 2005;46(1
679 8–19):2803–37. <https://doi.org/10.1016/j.enconman.2005.01.011>

680 [23] Li F, Pan J, Zhang C, K. Quaye E, Shao X. Structure and Combustion Characteristics of Metha
681 ne/Air Premixed Flame under the Action of Wall. Energy Eng 2021;118(4):1135–54. [https://doi.or
682 g/10.32604/EE.2021.014366](https://doi.or)

683 [24] He C, Jiang J, Sun M, Yu Y, Liu K, Zhang B. Analysis of the NH₃ blended ratio on the impingin
684 g flame structure in non-premixed CH₄/NH₃/air combustion. Fuel 2022;330. [https://doi.org/10.1
685 016/j.fuel.2022.125559](https://doi.org/10.1)

686 [25] Sun M, Jiang J, Yu Y, He C, Liu K, Zhang B. The impinging wall effect on flame dynamics and
687 heat transfer in non-premixed jet flames. Therm Sci 2023;27(1 Part B):855–67. [https://doi.org/10.
688 2298/TSCI220126076S](https://doi.org/10.2)

689 [26] Wei Z, Wang L, Zhang X, Liu L, Huang G, Zhen H. Effects of flame impingement on the stabili
690 ty and NO/CO emissions of laminar premixed methane-ammonia impinging flame. Int J Hydron
691 Energy 2024;83:1078–86. <https://doi.org/10.1016/j.ijhydene.2024.08.121>

692 [27] Otsu N. A threshold selection method from gray-level histograms. Automatica 1975;11(285–
693 296):23–7. <https://doi.org/10.1109/TSMC.1979.4310076>

694 [28] Chung SH, Law C. An invariant derivation of flame stretch. Combust Flame 1984;55(ISSN: 00
695 10–2180). [https://doi.org/10.1016/0010-2180\(84\)90156-1](https://doi.org/10.1016/0010-2180(84)90156-1)

696 [29] Randall JL. Finite difference methods for ordinary and partial differential equations. Philadelp
697 hia: Society for Industrial and Applied Mathematics; 2007. [https://doi.org/10.1137/1.9780898717
698 839](https://doi.org/10.1137/1.9780898717)

699 [30] Patankar S. Numerical heat transfer and fluid flow. Boca Raton: CRC press; 2018. <https://doi.org/10.1201/9781482234213>

700 [31] Ferziger JH, Perić M. Computational methods for fluid dynamics. Berlin, Heidelberg: Springer;
701 2002. <https://doi.org/10.1007/978-3-642-56026-2>

702 [32] Brown G, Roshko A. The effect of density difference on the turbulent mixing layer. Proc, AGA
703 RD Specialist Meeting on Turbulent Shear Flows; 1971.

704 [33] Chen L-D, Seaba J, Roquemore W, Goss L. Buoyant diffusion flames. Symposium (internation
705 al) on combustion; 1989; vol. 22: Elsevier, p. 677–84.

706

707 [34] Iyogun CO, Birouk M. Effect of Fuel Nozzle Geometry on the Stability of a Turbulent Jet Meth
708 ane Flame. *Combust Sci Technol* 2008;180(12):2186-209. <https://doi.org/10.1080/00102200802414980>

710 [35] Takahashi F, Schmoll WJ. Lifting criteria of jet diffusion flames. *Symposium (International) on*
711 *Combustion* 1991;23(1):677-83. [https://doi.org/10.1016/S0082-0784\(06\)80316-4](https://doi.org/10.1016/S0082-0784(06)80316-4)

712 [36] Han X, Wang Z, Costa M, Sun Z, He Y, Cen K. Experimental and kinetic modeling study of la
713 minar burning velocities of NH₃/air, NH₃/H₂/air, NH₃/CO/air and NH₃/CH₄/air premixed flames.
714 *Combust Flame* 2019;206:214-26. <https://doi.org/10.1016/j.combustflame.2019.05.003>

715 [37] Lubrano Lavadera M, Han X, Konnov AA. Comparative effect of ammonia addition on the la
716 minar burning velocities of methane, n-heptane, and iso-octane. *Energy Fuels* 2020;35(9):7156-6
717 8. <https://doi.org/10.1021/acs.energyfuels.0c03424>

718 [38] Lee B, Kim J, Chung S. Effect of dilution on the liftoff of non-premixed jet flames. *Symposium*
719 *(International) on Combustion* 1994;25(1):1175-81. [https://doi.org/10.1016/S0082-0784\(06\)80756-3](https://doi.org/10.1016/S0082-0784(06)80756-3)

720 [39] Darabkhani HG, Wang Q, Chen L, Zhang Y. Impact of co-flow air on buoyant diffusion flame
721 s flicker. *Energy Conv Manag* 2011;52(8-9):2996-3003. <https://doi.org/10.1016/j.enconman.2011.04.011>

722 [40] Zhen HS, Leung CW, Cheung CS. Heat transfer characteristics of an impinging premixed ann
723 ular flame jet. *Appl Therm Eng* 2012;36:386-92. <https://doi.org/10.1016/j.applthermaleng.2011.10.053>

724 [41] Jung KS, Kwon SH, Chung SH, Park J, Yoo CS. Flame edge dynamics in counterflow nonprem
725 ixed flames of CH₄/He versus air at low strain rates: An experimental and numerical study. *Comb*
726 *ust Flame* 2022;235. <https://doi.org/10.1016/j.combustflame.2021.111718>

727 [42] Cai X, Wang J, Bian Z, Zhao H, Zhang M, Huang ZJC, et al. Self-similar propagation and turb
728 ulent burning velocity of CH₄/H₂/air expanding flames: Effect of Lewis number. *Combust Flame*
729 2020;212:1-12. <https://doi.org/10.1016/j.combustflame.2019.10.019>

730 [43] Kohansal M, Kiani M, Masoumi S, Nourinejad S, Ashjaee M, Houshfar E. Experimental and nu
731 matical investigation of NH₃/CH₄ mixture combustion properties under elevated initial pressure
732 and temperature. *Energy Fuels* 2023;37(14):10681-96. <https://doi.org/10.1021/acs.energyfuels.3c00780>

733 [44] Zitouni S, Brequigny P, Mounaïm-Rousselle C. Influence of hydrogen and methane addition
734 in laminar ammonia premixed flame on burning velocity, Lewis number and Markstein length. *Co*
735 *mbust Flame* 2023;253. <https://doi.org/10.1016/j.combustflame.2023.112786>

736 [45] Zhang X, Wang J, Chen Y, Li C. Effect of CH₄, Pressure, and Initial Temperature on the Lamina
737 r Flame Speed of an NH₃-Air Mixture. *ACS Omega* 2021;6(18):11857-68. <https://doi.org/10.1021/acsomega.1c00080>

738 [46] Hou S-S, Ko Y-C. Effects of heating height on flame appearance, temperature field and effi
739 ciency of an impinging laminar jet flame used in domestic gas stoves. *Energy Conv Manag* 2004;45
740 (9-10):1583-95. <https://doi.org/10.1016/j.enconman.2003.09.016>

741 [47] Colson S, Hirano Y, Hayakawa A, Kudo T, Kobayashi H, Galizzi C, et al. Experimental and num
742 erical study of NH₃/CH₄ counterflow premixed and non-premixed flames for various NH₃ mixin
743 g ratios. *Combust Sci Technol* 2021;193(16):2872-89. <https://doi.org/10.1080/00102202.2020.1763326>

744 [48] Wang S, Elbaz AM, Wang G, Wang Z, Roberts WL. Turbulent flame speed of NH₃/CH₄/H₂/H

751 2O/air-mixtures: Effects of elevated pressure and Lewis number. Combust Flame 2023;247. <https://doi.org/10.1016/j.combustflame.2022.112488>

752 [49] Wang S, Wang Z, Chen C, Elbaz AM, Sun Z, Roberts WL. Applying heat flux method to laminar burning velocity measurements of NH₃/CH₄/air at elevated pressures and kinetic modeling study. Combust Flame 2022;236:111788. <https://doi.org/10.1016/j.combustflame.2021.111788>

753 [50] Wei Z, Zhen H, Leung CW, Cheung CS, Huang Z. Heat transfer characteristics and the optimized heating distance of laminar premixed biogas-hydrogen Bunsen flame impinging on a flat surface. Int J Hydrog Energy 2015;40(45):15723-31. <https://doi.org/10.1016/j.ijhydene.2015.06.047>

754 [51] Wei Z, Zhen H, Leung CW, Cheung CS, Huang Z. Experimental and numerical study on the emission characteristics of laminar premixed biogas-hydrogen impinging flame. Fuel 2017;195:1-11. <https://doi.org/10.1016/j.fuel.2017.01.056>

755 [52] Ho C-M, Nosseir NS. Dynamics of an impinging jet. Part 1. The feedback phenomenon. J Fluid Mech 1981;105:119-42. <https://doi.org/10.1017/S0022112081003133>

756 [53] Wang Q, Huang HW, Zhang Y, Zhao C. Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques. Fuel 2013;108:177-83. <https://doi.org/10.1016/j.fuel.2013.01.048>

757 [54] Wang Q, Zhang Y, Tang HJ, Zhu M. Visualization of diffusion flame/vortex structure and dynamics under acoustic excitation. Combust Sci Technol 2012;184(10-11):1445-55. <https://doi.org/10.1080/00102202.2012.693419>

758 [55] Phares DJ, Smedley GT, Flagan RC. The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 2000;418:351-75. <https://doi.org/10.1017/S00221120000121X>

759 [56] Li D, Wen Y, Liu YC, Wang S. On the transition modes and mechanisms for laminar to turbulent lifted jet diffusion flames at normal-and micro-gravity. Combust Flame 2024;260:113269. <https://doi.org/10.1016/j.combustflame.2023.113269>

760 [57] Hsu C, Jhan W, Chang Y. Flow and heat transfer characteristics of a pulsed jet impinging on a flat plate. Heat Mass Transf 2020;56(1):143-60. <https://doi.org/10.1007/s00231-019-02696-w>

761 [58] Zhang F, Zirwes T, Häber T, Bockhorn H, Trimis D, Suntz R. Near wall dynamics of premixed flames. Proc Combust Inst 2021;38(2):1955-64. <https://doi.org/10.1016/j.proci.2020.06.058>

762 [59] He C, Sun M, Jiang J, Yu Y, Liu K, Zhang B. Analysis of the quenching behavior in impinging flame: Flow and thermal characteristics. Numer Heat Transf A-Appl 2023;85(12):1973-87. <https://doi.org/10.1080/10407782.2023.2214310>

763 [60] Li H, Jiang J, Sun M, Yu Y, Sui C, Zhang BJJ. A study of the influence of coflow on flame dynamics in impinging jet diffusion flames. 2021;22(8):461-80.

764 [61] Fernandes EL, RE. Modeling and experimental validation of unsteady impinging flames. Combust Flame 2006;146(4):674-86. <https://doi.org/10.1016/j.combustflame.2006.06.008>

765 [62] Zhen H, Wei Z, Chen Z, Xiao M, Fu L, Huang Z. An experimental comparative study of the stabilization mechanism of biogas-hydrogen diffusion flame. Int J Hydrog Energy 2019;44(3):1988-97. <https://doi.org/10.1016/j.ijhydene.2018.11.171>

766 [63] Yang X, Ma S, Gao J, Du Q, Zhang Y, Dong H. Suppression effect prediction of mixed combustion with ammonia under sub-atmospheric pressure on flicker of methane laminar diffusion flame. Energy 2024;298:131300. <https://doi.org/10.1016/j.energy.2024.131300>

767 [64] Wimer NT, Lapointe C, Christopher JD, Nigam SP, Hayden TR, Upadhye A, et al. Scaling of the puffing Strouhal number for buoyant jets and plumes. J Fluid Mech 2020;895:A26. <https://doi.org/10.1017/jfm.2020.911>

795 [rg/10.1017/jfm.2020.271](https://doi.org/10.1017/jfm.2020.271)

796 [65] Smith T, Menon S. Large-eddy simulations of turbulent reacting stagnation point flows. Proc
797 edings of the 35th Aerospace Sciences Meeting and Exhibit; 1997 Jau 06-09; Reno, NV, U.S.A.: AI
798 AA; 1997. <https://doi.org/10.2514/6.1997-372>

799 [66] Im YH, Huh KY, Kim K-YJJFE. Analysis of impinging and countercurrent stagnating flows by R
800 eynolds stress model. J Fluids Eng 2002;124(3):706-18. <https://doi.org/10.1115/1.1493815>

801