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Abstract

Energy storage systems have emerged as critical components in modern power systems, addressing the
challenges of frequency regulation stability and renewable integration. Coal-fired thermal power plants have
provided grid stability but now confront increasing demands for deep peak shaving services. However, energy
storage systems are exposed to relatively low energy support duration while thermal power units confront
slow power changing rate. This paper proposes a coordinated control strategy and a robust optimization
model for storage-assisted thermal power units, addressing short-term fluctuations and long-term uncertain-
ties imposed on thermal power units across multiple timescales. The Column-and-Constraint Generation
approach is employed to improve computational efficiency, achieving convergence within three iterations
for the optimal solution. Simulation results confirm that the proposed uncertainty set effectively adapts to
increasing data dimensions, addressing over-conservatism in traditional models subject to multi-timescale
uncertainties. By leveraging the rapid response capability of energy storage and the steady output of thermal
power units, the model improves grid support and alleviates operational stress on thermal units.The results
also reveal that three different energy storage systems configurations result in cost reductions of 23.50%,
41.78%, and 38.63%, respectively, while demonstrating a substantial improvement in the system’s resilience
in response to short- and long-term challenges.

Keywords: Thermal power unit, energy storage system, multi-timescale, renewable energy uncertainties,
column and constrain generation

Nomenclature

Abbreviations

ESS Energy Storage System.

PV Photovoltaic.

SOC State of Charge.

STC Standard Test Condition.

TPU Thermal Power Unit.
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WT Wind Turbine.

Symbols

αemi The cost associated with emissions per unit of power.

αfc The cost of fuel per unit of power generated.

αT Temperature coefficient of power for the PV module.

∆f Frequency deviation.

∆PG Power output deviation of the TPU.

ηPV Conversion efficiency of PV panels.

κ′
k Updated precision parameter for cluster k.

µ′
k Updated mean for cluster k, calculated based on prior information and observed data Xn.

ν′k Updated degrees of freedom for cluster k.

πk Prior probability of cluster k.

Ψ′
k Updated scale matrix for cluster k.

σ An emission coefficient or impact factor.

τ
∑

t

∑

i P
c
i,t Cumulative required power generation over time t for each generation unit i, scaled by a

factor τ .

Stνk+1−dim(Xk) Student-t distribution for cluster k, with adjusted degrees of freedom given by νk +1−
dim(Xk).

CASR Revenue generated from providing ancillary services, determined by the system’s regulation
capabilities.

CEMI The emission cost, accounting for environmental impacts and regulatory fees related to pollutant
emissions.

CESR Revenue from selling electricity to end-users, based on market prices and the amount of electricity
sold.

CFC The fuel cost, applicable to DG units that require fuel, which is coal used in the thermal power
unit of this paper.

CINV The initial investment cost associated with deploying DG units and infrastructure.

COM The operation and maintenance cost required for the upkeep and operation of the system.

CPV
j Investment cost for each unit type j of PV units.

CTPU
j Investment cost for each unit type j of thermal power units.

CWT
j Investment cost for each unit type j of wind turbines.

Ck Cluster k of similar load profiles for a 24-hour period.

d(Pi,t, µk) Distance metric between the load profile Pi,t and the centroid µk of cluster k.
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Ei,t The state of charge of the ESS at node i and time t.

Emax
i The maximum state-of-charge limit of the ESS.

Emin
i The minimum state-of-charge limit of the ESS.

fmt
i,j,l Installation factor or quantity of thermal unit type j in location i and instance l.

fPV
i,j,l Installation factor or quantity of PV unit type j in location i and instance l.

fWT
i,j,l Installation factor or quantity of wind turbine type j in location i and instance l.

fPV(Gt) A function of the solar irradiance Gt at time t.

fWT(vt) A function of the wind speed vt, dependent on cut-in, rated, and cut-out wind speeds.

Gi,t Solar irradiance at node i and time t.

GSTC Standard Test Condition irradiance (1000 W/m²).

Kf Droop control coefficient for the ESS.

Kg Droop control coefficient for the TPU.

N Total number of consumers.

N(i) The set of neighboring nodes connected to node i.

PPV
i,t Output power of the PV system at node i at time t.

PWT
i,t Output power of the wind turbine at node i at time t.

Pf Power formulated based on the SOC and frequency deviation.

P actual
G Real-time output of the TPU.

P
droop
G Droop-based output of the TPU.

Pm Maximum allowable power.

Prated Rated power of the wind turbine.

Prec SOC recovery power.

Pfess Primary frequency control power command of the ESS.

P ch
g,i,t The charging power of the ESS at node i and time t.

P dch
g,i,t The discharging power of the ESS at node i and time t.

PPV
g,i,t The power output of the PV system at node i and time t.

PTPU
g,i,t The active power output of the thermal generator at node i and time t.

PWT
g,i,t The wind power output at node i and time t.

Pg,i The active power generated at node i.

P
ch,max
g,i The maximum charging capacity of the ESS.
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P
dch,max
g,i The maximum discharging capacity of the ESS.

Pmax
g,i The maximum output limit of the thermal generator.

Pmin
g,i The minimum output limit of the thermal generator.

P rated
g,i The rated capacity of the wind turbine.

Pi,t Power demand of consumer i at time t.

Pij The power flow between nodes i and j.

Pload,i The active power load at node i.

Pt Total power demand at time t.

Qg,i The reactive power generated at node i.

Qij The reactive power flow between nodes i and j.

Qload,i The reactive power load at node i.

Rdown The ramp-down limit (rate of decrease in output) for the generator.

Rup The ramp-up limit (rate of increase in output) for the generator.

rnk Fuzzy responsibility (or degree of membership) of cluster k for data point xn+1, indicating the
likelihood of the new point being assigned to cluster k.

SPV Installed capacity of the PV system.

SOChigh High SOC threshold.

SOCmax Maximum SOC threshold.

SOCmin Minimum SOC threshold.

Ti,t Ambient temperature at node i and time t.

TSTC Standard Test Condition temperature (set as 298.15 K).

uch,i,t Binary variable indicating the charging status of the ESS.

udch,i,t Binary variable indicating the discharging status of the ESS.

Vi The voltage at node i.

vin Cut-in wind speed (minimum wind speed required to generate power).

vout Cut-out wind speed (speed above which the turbine shuts down for safety).

vi,t Wind speed at node i and time t.

Vmax The maximum allowable voltage level.

Vmin The minimum allowable voltage level.

vr Rated wind speed (speed at which the turbine generates maximum power).
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1. Introduction

Modern power systems are often characterized by the integration of a large amount of renewable energy1

sources(RES) [1], aiming to reduce the green-house gas emissions in order to meet the target set by the Paris2

Agreement [2]. The UK is the first major economy legislating the target of attaining the net zero greeenhouse3

gas emissions by 2050 and beyond, and the first half of 2024 has seen the installation of 2GW solar power4

generation capacity which is more than the last 14 years combined [3]. This however has significantly5

reduced the system inertia, thus affecting the stability of the power grid to resist the disturbances and6

respond effectively to the frequency deviations [4].7

Energy storage system (ESS) is considered as an effective method to compensate the fluctuations of the8

RESs [5]. As of the end of 2023, the global installed capacity of power grid storage projects reached 289.29

GW, marking a year-on-year growth of 21.9 % [6]. In terms of newly installed capacity, approximately 52.010

GW of power storage projects were commissioned globally in 2023, reflecting a year-on-year growth of 69.511

% [7]. Among these, the deployment of new energy storage reached a historic high of 45.6 GW. China,12

Europe, and the United States continued to lead the global energy storage market, collectively accounting13

for 88 % of the new installations, with China contributing nearly 50 % of the global total [8].14

1.1. The significance of energy storage-assisted thermal power units15

In contrast to many developed countries, China’s resource endowment, characterized by abundant coal16

and limited natural gas, ensures a rich reserve for coal-fired thermal power generation(TPU). Combined17

with the distinctive distribution of user-side resources and a power market structure vastly different from18

the developed countries, integration of energy storage with coal-fired power plants has become an important19

research topic not only for China, but also for many other developing countries and regions where thermal20

power generation plants are still the dominant and affordable electricity supply technology for accessing21

to high quality electricity while supporting national economic growth and uptaking of more renewable22

generating technologies.23

1) Technically, integrating energy storages with coal-fired power plants significantly enhances primary24

and secondary frequency regulation, providing fast and accurate grid stability support with more25

integration of RESs. It reduces the dynamic strain on coal-fired units, minimizing mechanical wear26

and carbon emissions.27

2) Economically, integrating energy storage with coal-fired units has demonstrated tangible economic28

profits in practical applications, ESS enables coal-fired plants to participate in ancillary service markets,29

earning revenue through frequency regulation services. ESS increases the flexibility of coal-fired units,30

reducing their idle times and improving their overall energy utilization.31

3) Societally, this approach provides valuable insights for policy guidance, promoting informed decisions32

for energy storage deployment. Additionally, it offers a new perspective and application for energy33

storage in power system construction, supported by strong technical and economic foundations, paving34

the way for sustainable and innovative energy solutions.35

1.2. Literature reviews on power systems integrated with ESS36

Energy storage has been widely used in the power system across the whole chain from generation,37

transmission, distribution to end users. For example, Yang et. al [9] highlights how user-side ESS can be38

strategically utilized to enhance grid reliability through effective demand response mechanisms. [10] investi-39

gates the relationship between the energy supplier and end users equipped with ESS, and explores how end40

users can respond to the electricity prices set by the energy suppliers and optimize their energy consumption41

and storage usage. Cui et.al [11] presents a structured framework to address the RES uncertainty challenge42

by modeling the interactions between energy providers and consumers.43

Zhang et.al [12] addresses the critical issue of frequency stability in power systems using grid-connected44

ESS. Li et. al [13] introduces an innovative approach to managing the output power of distributed doubly-45

fed induction generators by integrating a grid-connected hybrid ESS and coordinating with the grid-side46
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converter. Xie et.al [14] explores the integration of blockchain technology into grid-side shared energy storage47

markets to enhance security, transparency, and efficiency in energy transactions. Khani et.al [15] highlight48

the importance of integrated planning and optimization in managing the complexities introduced by high49

shares of renewable energy, while the ESS have limited energy and power capacities, making them insufficient50

for handling large-scale and prolonged peak demand periods.51

Jafarian et.al [16] shows that a significant reduction in power and voltage fluctuations can be achieved52

by integrating ESS with RES generating units. However, it does not address the frequency regulation53

requirements, which are critical for grid stability when integrating high-penetration renewable energy sources.54

Wang et.al [17] propose a preventive control strategy utilizing ESS to support RES generating units and to55

enhance primary frequency response. Zhang et.al [18] proposed a distributed cooperative control approach56

for secondary frequency regulation, enabling multiple distributed generators and ESS to work together57

without relying on a central controller. The paper however does not address the coordinated control of58

generations and energy storage systems, specifically addressing multiple objectives simultaneously, such59

as enhancing frequency regulation, grid flexibility, and economic performance. Liu et.al [19] developed a60

Generalized Predictive Control-Proportional Integral layered control strategy for energy storage integrated61

renewable generation systems, achieving a 30 % reduction in overshoot compared to conventional methods.62

Literature reviews are also concluded as Table. 1.63

Table 1: Literature reviews of ESS-assisted power generations of RESs

Ref
Authors
Years

ESS
Types

Control strategy Economical constraints Pollutant emissions Advantages Disadvantages

[13]
Chao Li
2023

Hybrid energy storage system

Coordinated control scheme
integrating HESS

using a grid-side converter
to enhance power stability.

High initial investment
costs for

HESS components
and control infrastructure

Not included

The strategy
enhances power stability,

optimizes energy utilization, and
minimizes mechanical stress.

The system’s complexity
and high upfront

costs pose challenges for
widespread adoption.

[15]
Meysam Khani

2024

ESS as interconnected
entities within distribution

networks

Incorporating demand-side
management and coordination

between transmission and
distribution systems

Economic factors by
demonstrating that integrating ESS

can lead to significant
cost reductions,

distribution network costs.

The integration is expected
to contribute to lowering

pollutant emissions

The proposed approach enhances
grid flexibility and

achieves smart grid objectives.

The complexity of implementing
bi-level stochastic models

and ensuring coordination of
distribution networks are not verified.

[16]
Masoud Jafarian

2024

Focusing on
integrating efficient

energy storage systems,
without specifying

particular ESS types.

A novel
optimization and dynamic

evaluation strategy
is proposed to

effectively integrate
ESS and RES

in hybrid systems.

The study addresses
economic constraints by
optimizing the integration

strategy.

Integrating ESS
with RES is

expected to reduce
pollutant emissions

by promoting
cleaner energy sources.

The proposed strategy
offers improved

integration of ESS
and RES, leading
to enhanced system

performance and reliability.

The complexity of
optimization models
and the need for

accurate dynamic evaluations.

[17]
Heng Wang

2025
Battery energy
storage systems

A dynamic primary
frequency response
parameter adjusting
scheme is proposed,

enhancing frequency stability.

The integration of
ESS is analyzed for its
economic viability,

demonstrating potential
revenue generation

through ancillary services .

ESS control strategy
contributes to

reducing reliance
on fossil fuels,

lowering ollutant emissions.

The proposed approach
offers improved

grid frequency stability
and economic benefits.

The complexity of
implementing advanced
control strategies and

ensuring seamless coordination
between ESS and RESs.

[18]
Runfan Zhang

2025
Battery energy
storage systems

A distributed
cooperative secondary frequency

control accounts for communication
time delays.

Economic feasibility,
considering factors

such as cost-effectiveness
and financial viability.

By Reducing reliance
on fossil fuels,

thereby lowering
pollutant emissions.

Improved frequency stability and
economic benefits by
effectively integrating

ESS and RESs.

The complexity of
implementing advanced

control strategies
and ensuring seamless
coordination between

ESS and RESs.

[19]
Wanying Liu,

2024
Pumped hydro storage

systems

An innovative modeling
method combined with
a Generalized Predictive

Control PI control
strategy in FR.

Economic feasibility,
considering cost-effectiveness,

financial viability.
Not included

The proposed approach
offers improved frequency
stability and economic
benefits by effectively

integrating PHS with RESs.

The complexity
of implementing advanced

control strategies.

Economic Dispatch (ED) is another critical component of modern power system operations, aiming to64

minimize the economic cost of electricity generation while maximizing the revenue from selling electricity65

[20]. By focusing on these dual objectives, ED helps develop more resilient and efficient energy systems [21].66

It ensures that the generation units are dispatched in a manner that achieves economic efficiency without67

compromising system reliability. The integration of RES including wind and solar power, introduces signif-68

icant challenges to the ED process due to their inherent variability and unpredictability [22]. Factors like69

wind speed, solar radiation intensity, and solar irradiance temperature are among the major contributing70

factors to the variability of these resources [23]. To handle this extra layer uncertainty and complexity,71

more sophisticated optimization models are needed for optimal power allocation while maintaining system72

reliability and operational efficiency [24]. Various advanced approaches have been developed for ED that73

incorporate RES. Li et.al [25] studied the connections between automatic generation control and ED from74

an optimization view, and a distributed approach to improve economic efficiency. These methods aim to75

optimize the dispatch of generation companies by effectively managing both the operational constraints and76

uncertainties of the power system [26]. Techniques such as stochastic programming, robust optimization,77

and hybrid models that leverage machine learning have been proposed. Nguyen et.al [27] proposed a novel78

robust model predictive control strategy by studying the feasibility problem considering the comparison79
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relations of constraint sets and Lyapunov function candidates. Furthermore, Then, the strategy is applied80

in Leader-Follower formation scheme in a group of followers, as well as the input-to-state stability of the81

proposed terminal controller and equivalent terminal region is evaluated [28]. As for the power system82

operations facilitating the sustainable energy transition, for example, Li et.al [29] proposed a two-tiered83

control framework that integrates economic considerations of energy storage lifespan with frequency regu-84

lation constraints, which optimize the operational efficiency and extend the service life of hybrid ESS. Yan85

et.al [30] developed a method to dynamically adjust the rotational inertia and damping coefficient of the86

VSG based on real-time system conditions.87

Despite the latest progresses in control and dispatch of power systems with significant penetration of RES88

integrated with ESS, thermal power units are increasingly required to adjust their operations in response89

to fluctuations introduced by renewable energy generation. These adjustments include frequent cycling,90

rapid load changes (ramp-up and ramp-down), and frequent start-ups and shutdowns [31]. Operating away91

from optimal steady-state conditions reduces the thermal efficiency of power plants, leading to higher fuel92

consumption and emissions per unit of electricity generated [32]. To mitigate thermal damage caused by93

operational stress challenges, the integration of ESS has been proposed as a promising solution [33]. Guo94

et.al [34] showed that the coal-fired units can maintain a more stable operational profile, which improves95

thermal efficiency and reduces fuel consumption by charging the storage during periods of low demand or96

high renewable output and discharging during peak periods. The hybrid configuration also enables coal-fired97

power plants to participate in ancillary service markets. Su et.al [35] analyzed the impact of ESS on start-up98

costs and concluded that, by reducing cycling, ESS can significantly lower start-up and maintenance costs,99

contributing to overall cost savings. Deng et al. [36] proposed a bi-level optimization model for sizing and100

dispatching hybrid systems combining coal-fired power plants with various battery technologies, focusing on101

peak shaving applications. The cost-benefit analysis of adding ESS to coal-fired units is complex and highly102

dependent on the dynamic market, which limits the practical implementation of these hybrid systems. Gao103

et al. [37] presented a co-optimization framework for maintenance and flexibility retrofitting of coal-fired104

units, addressing the challenges of integrating renewable energy sources. Real-time optimization further105

complicates the process, as it requires sophisticated algorithms capable of handling large amounts of data106

and making rapid decisions.107

The inherent variability of renewable energy sources also adds further uncertainty to the economic108

dispatch of TPU-ESS systems. Existing ED models often rely on forecasted renewable generation, which109

is not always accurate. Errors in forecasting can lead to suboptimal dispatch decisions, either causing110

unnecessary cycling of the coal unit or leading to underutilization of the ESS [38]. The development of more111

accurate forecasting models and robust optimization techniques is crucial for effective economic dispatch of112

hybrid systems. Azad et.al [39] advocated for hybrid systems combining RESs with thermal units and battery113

storage for sustainable grid integration. Brandt et.al [40] employed the integration of battery and thermal114

energy storage has been highlighted as effective for reducing ramp-up and ramp-down events, mitigating115

thermal fatigue, and increasing plant efficiency. Bahloul et.al [41] demonstrated that ESS enhances system116

reliability by providing ancillary services including frequency regulation and load balancing, contributing to117

grid stability. The literature review also strengthens the argument that hybrid energy systems with ESS118

are crucial for improving flexibility, reliability, and economic performance in a grid increasingly dominated119

by renewable energy [42, 43]. Other literature reviews are summarized as the following Table 2. The120

real-life applications have also shown promising results of thermal power plants integrated with ESS in121

addressing the slow response and limited frequency regulation capability of conventional coal-fired units.122

For example, in Lingwu, Ningxia (600 MW supercritical unit with 36 flywheel systems, 630kW/125kWh123

each) and Shuozhou, Shanxi (350 MW circulating fluidized bed unit with lithium battery, 6MW/6MWh, and124

flywheel systems,2MW/0.5MWh), all in China, energy storage has effectively improved both primary and125

secondary frequency regulation performance. These projects have also demonstrated significant economic126

benefits by generating extra revenue from ancillary service markets, making ESS deployment on the thermal127

power side a viable and profitable solution for enhancing power system stability and flexibility.128
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Table 2: Literature reviews of ESS-assisted power generations

Ref
Authors
Years

ESS
Types

Control strategy Economical constraints Pollutant emissions Advantages Disadvantages

[32]
Jicheng Hui,

2023
Thermal energy storage

Operational strategies
that enable deep and

flexible load adjustments in
coal combustion processes,

facilitated by the
preheating effect of the TPU.

Its economic viability,
considering cost-effectiveness

and potential financial
benefits are evaluated.

Carbon emission
is analyzed.

The approach offers
enhanced operational
flexibility, allowing

coal-fired power plants
to adjust loads,

accommodating fluctuations.

The technical complexity
of integrating CFB

preheating systems and
ensuring seamless

operation within existing
plant infrastructures.

[35]
Pengfei Su,

2023
Thermal storage system

A multi-objective
optimization model

balance electricity costs,
and emissions.

Economic implications,
demonstrating significant
reductions in electricity
and emission costs,
with electricity
costs reduced.

Emission costs
sharply reduced

The approach offers
enhanced operational
flexibility, improved

economic performance.

Advanced scheduling models
and integration of
plant operations.

[44]
Yansong Zhu,

2024

Hybrid energy
storage systems,

combining batteries
and flywheels.

Advanced energy management
and operation strategies for
HESS, aiming to enhance
the regulation capabilities
of TPUs under AGC.

The economic implications
of implementing HESS,

addressing cost-effectiveness
and financial viability.

Not included.

The integration of HESS enhances
the AGC performance
of TPUs leading to

improved grid stability
and reliability.

Managing hybrid systems
and the need for investments,

which pose operational
and financial hurdles.

[45]
Shiye Yan,

2024
Batteries and
thermal storage

A two-stage optimization
framework is proposed,
focusing on coordinating
ESS and implementing

deep peak shaving regulation.

Economic factors
including operational
costs and capital

investments in ESS
and thermal generator

upgrades.

The study aims to
reduce reliance on

fossil fuels.

The proposed
approach offers

improved grid flexibility,
better accommodation of RES.

The initial capital
costs of ESS

deployment and control mechanisms.

[46]
Yongli Wang,

2024

Virtual energy
storage characteristics
of heating networks.

Optimization techniques
that exploit the

weak equilibrium characteristics
to address

high-frequency fluctuations.

Not included

The proposed
strategies aim to
decrease reliance
on fossil fuels,

thereby reducing
emissions.

The approach enhances
stability of

integrated energy systems.

The complexity of
modeling and

controlling virtual energy
storage dynamics and ensuring.

[47]
Ying Zhu,

2024
Pumped storage systems.

An environmental and economic
scheduling approach

that prioritizes the operation of
thermal units based on energy-saving
and emission-reduction principles.

Minimizing operational costs
by optimizing the dispatch

of thermal units and
maximizing the wind energy.

The strategy seeks
to reduce overall

emissions.

The approach improves the accommodation
rate of wind power,

reduces output fluctuations,
and lowers scheduling costs.

Implementing priority-based
scheduling and

ensuring the reliability of the
integrated system.

[48]
Runjun Qin,

2025
Flywheel energy
storage systems

The configuration and
optimal dispatch strategies of

the TPU-FESS system.

The study evaluates the
economic implications of integrating

FESS with TPUs, analyzing
the effects on the

economics of a regional power
dispatch system.

The study suggests potential
reductions in pollutant emissions

due to efficient operation
and better accommodations.

The integration of FESS with
TPUs is shown to

improve the regulating capacity
of TPUs.

The initial investment
costs associated with FESS

implementation and the need for technical
adaptations to existing
TPU infrastructure.

1.3. Motivation and Contributions129

The literature reviews have suggested that limited researches have been accomplished so far to assess how130

thermal units integrated with ESS can support power grid frequency regulation and scheduling optimization131

while overlooked the dynamic characteristics of energy storage systems and thermal power generations132

under multiple timescales, as well as the economic revenue analysis. The main contributions of the paper133

are summarized as follows:134

1) A novel thermal power unit security indicator based on transient energy transfer is developed to135

evaluate the power output capability and reduce mechanical wear and component degradation during136

the deep peak shaving process.137

2) An optimal dispatch method is proposed to maximize economic benefits by balancing frequency reg-138

ulation demands, as well as a coordinated control strategy of the system is designed to enhance the139

energy storage short-term ability while relieve the pressure of TPUs.140

3) Multiple types of energy storage systems of the constructed scenario are assessed in terms of handling141

system uncertainties, demonstrating that storage-assisted thermal power unit system as an economical-142

friendly solution.143

1.4. Paper organization144

The paper is organized as follows. The Introduction section provides the motivation, literature review,145

and a summary of the main contributions of the paper. The problem formulation section is organized in146

section 2. Uncertainty sets are discussed followed. Section 4 presents the robust optimization and algorithm147

solution, and section 5 presents a case study and the results. Conclusion section summarizes the whole work148

and future prospects.149

2. Problem Formulation150

Fig. 1 outlines the schematic of a robust optimization approach proposed in this paper for dispatching151

a power grid with thermal units integrated with ESSs.152
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RES Uncertainty Set

Figure 1: The robust optimization approach for dispatching a power grid with energy storage coupled thermal power units

2.1. Objective Function153

Integrating RESs enables the power grid to meet demand, and the grid’s ability to operate autonomously154

from the main grid strengthens its resilience during grid outages or natural disasters. With a diversified155

generation portfolio including renewable sources, the system can maintain a stable power supply for critical156

loads, thus enhancing overall reliability. Additionally, the ESS attached to DGs can provide backup power157

and frequency regulation, further stabilizing the power grid. The objective function aims to minimize the158

total cost or maximize net profit of the distributed energy system, accounting for various cost and revenue159

components. The main components include initial investment cost, operation and maintenance cost, fuel160

cost, emission cost, ancillary service revenue, and electricity sales revenue.Assuming the total operational161

period is T , the objective function can be expressed as:162

min
f,P,Q,V

CINV + COM + CFC + CEMI −RASR −RESR (1)

The investment cost, operation and maintenance cost, fuel cost, emission cost, ancillary service revenue,163

and selling electricity revenue are expressed as followed:164

CINV =
∑

i

∑

j

∑

l

invTPUfTPU
i,j,l CTPU

j +
∑

i

∑

j

∑

l

invESSfESS
i,j,l CESS

j +

∑

i

∑

j

∑

l

invWT fWT
i,j,l C

WT
j +

∑

i

∑

j

∑

l

invPV fPV
i,j,lC

PV
j

(2)
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COM =
∑

t

∑

i

∑

j

∑

l

omTPUfTPU
i,j,l CTPU

j + omESSfESS
i,j,l CESS

j + omWT fWT
i,j,l C

WT
j + omPV fPV

i,j,lC
PV
j (3)

where the equation computes the total operation and maintenance costs incurred for the various types of165

generation technologies over a specific time horizon.166

CFC = αfc

∑

t

∑

i

PTPU
i,t (4)

where the fuel cost is calculated based on the power output of the traditional power generating units over167

time.168

CEMI = αemiσ
∑

t

∑

i

PTPU
i,t (5)

where the formula estimates the total emission cost associated with the power generated by traditional169

power units.170

RASR =
∑

t

∑

i

Pi,tβiPref,t (6)

where the revenue from ancillary services is calculated by summing the product of power output and the171

ancillary service revenue factor for each bus over the time horizon.172

RESR =
∑

t

∑

i

βm
t Pi,t (7)

where the equation captures the revenue generated from the sale of electricity, where the market price factor173

varies over time. By multiplying the power output at each bus by the corresponding market price, this174

formula quantifies the financial returns from energy sales, which are critical for the overall profitability of175

power generation assets.176

2.2. Constraints177

These constraints collectively ensure the stable, reliable, and efficient operation of the ESS-TPU system178

under renewable energy uncertainties.179

2.2.1. Equality Constraints180

DistFlow equations are applied in this section to illustrate the equality contraints in the context of the181

power system. These equations ensure that the generation and consumption of electrical power are balanced182

at each node, accounting for the flow of power through the network. Equations can be expressed as follows:183

Pg,i − Pload,i =
∑

j∈N(i)

Pij ∀i ∈ N (8)

Qg,i −Qload,i =
∑

j∈N(i)

Qij ∀i ∈ N (9)

The voltage at each bus should be within specified bounds:184

Vmin ≤ Vi ≤ Vmax ∀i ∈ N (10)
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2.2.2. Inequality Constraints185

To achieve robust operation, constraints of the power system with diverse sources containing thermal186

generator, wind power, photovoltaic, and energy storage are not negligible to ensure each component operates187

within its capacity limits and adheres to system requirements.188

1. Thermal power unit security constraints189

Thermal generators must operate within defined minimum and maximum generation capacities, respect-190

ing ramping limits to ensure stable operation, and security criterion of boiler capability is considered. The191

output constraints for a thermal generator can be expressed as:192

Pmin
g,i ≤ PTPU

g,i,t ≤ Pmax
g,i ∀i, ∀t (11)

∆PTPU
g,i,t ≤ Rup ∀t (ramping up) (12)

∆PTPU
g,i,t ≥ −Rdown ∀t (ramping down) (13)

In [5], we illustrate the load variation process under the frequency regulation command. Three axis193

depict the conventional power ramp-up curve with its performance evaluated using the index CQ, changes in194

thermal parameters energy flow and fuel consumption within the system, and the potential state transition195

path from the initial to the target state. These parameters are defined as the derived security criterion which196

is quantified by the index CQ to integrate the security margins alongside the original load variation require-197

ments. The load response curve index CQ is determined based on the deviation between the target response198

curve and the actual response curve. Four sub-indices, CQ1, CQ2, CQ3, and CQ4, are defined to evaluate199

the curve, corresponding to adjustment time, rise time, overshoot, and steady-state error, respectively. By200

analyzing the performance of the target curve, the parameter calculation method for the objective function201

is derived. Assuming the adjustment time, rise time, overshoot, and steady-state error of the target curve202

are denoted as T̂r, T̂s, M̂p, and êss, and the corresponding values of the actual curve are Tr, Ts, Mp, and203

ess, the relationship can be expressed as follows:204

CQ =
1

4
×











∣

∣

∣T̂r − Tr

∣

∣

∣

T̂r





2

+





∣

∣

∣T̂s − Ts

∣

∣

∣

T̂s





2

+





∣

∣

∣M̂p −Mp

∣

∣

∣

M̂p





2

+

(

|ess − êss|

êss

)2






(14)

2. Wind turbine constraints205

The output of wind turbines depends on wind speed and turbine characteristics, resulting in variability.206

Wind power generation is constrained by available wind conditions, represented as:207

0 ≤ PWT
g,i,t ≤ P rated

g,i · fWT(vt) ∀i, ∀t (15)

3. PV constraints208

Photovoltaic generation depends on solar irradiance, which varies throughout the day. The output209

constraints for photovoltaic systems are:210

0 ≤ PPV
g,i,t ≤ P rated

g,i · fPV(Gt) ∀i, ∀t (16)

4. Energy storage system constraints211

Energy storage systems must follow both power and energy limits. Their constraints include state-212

of-charge limits, charging and discharging limits, and operational constraints to ensure they contribute213

effectively to grid stability.214

0 ≤ P ch
g,i,t ≤ uch,i,t · P

ch,max
g,i ∀i, ∀t (charging) (17)

0 ≤ P dch
g,i,t ≤ udch,i,t · P

dch,max
g,i ∀i, ∀t (discharging) (18)

Emin
i ≤ Ei,t ≤ Emax

i ∀i, ∀t (state of charge) (19)
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These constraints ensure that the generation of each type of power source remains within safe operational215

limits and adjusts based on resource availability, contributing to a stable and optimized power system.216

The following inequality represents a constraint on the total power generation investment costs for217

thermal power, wind power, and photovoltaic solar power:218

τ
∑

t

∑

i

P c
i,t ≤

∑

t

∑

i

∑

j

∑

l

fTPU
i,j,l CTPU

j +
∑

i

∑

j

∑

l

fWT
i,j,l C

WT
j +

∑

i

∑

j

∑

l

fPV
i,j,lC

PV
j (20)

This constraint implies that the total required power generation, weighted by τ , must not exceed the219

sum of the investment costs for the thermal, wind, and PV energy sources.220

3. Constraints of energy storage system221

When the system frequency deviation surpasses the established dead zone, the TPU and the ESS must222

operate synchronously to engage in primary frequency regulation. This coordination balances generation and223

demand, mitigating frequency deviation effectively. Both the TPU and ESS utilize droop control for primary224

frequency regulation, following the droop control logic of the TPU. The droop control power command for225

the ESS is calculated as:226

Pess = Kf ·∆f (21)

The droop control for both TPU and ESS is described as:227

{

P droop
v = −Kf ·∆f

P
droop
G = −Kg ·∆f

(22)

The real-time power output deviation of the TPU is calculated as:228

∆PG = P
droop
G − P actual

G (23)

As Fig. 2 shown, frequency regulation response of different ESS. The red line represents the system229

frequency over time, with short-term ESS, long-term ESS, and TPU-ESS contributions marked. The short-230

term ESS responds first to frequency deviations below 49.967 Hz, as indicated by the shaded blue area.231

Long-term ESS becomes active to support longer duration deviations. The TPU+ESS integration provides232

additional support when the frequency deviation exceeds 50.033 Hz. This coordination ensures optimal233

frequency regulation and grid stability.234

Figure 2: Coordinated dispatch strategy for TPU-ESS systems

The traditional operation of ESS is divided into two stages. Initiated when the system frequency deviation235

exceeds the dead zone (set to 0.033 Hz in China), the ESS engages in frequency regulation, and activated236

when the frequency deviation is within the dead zone, allowing the ESS to recover its SOC.237

An integrated control strategy for the ESS is proposed, prioritizing frequency regulation demands while238

considering SOC recovery. In the operational hierarchy of the grid, frequency regulation commands are239

executed with the highest priority. However, when SOC recovery does not interfere with frequency regulation,240

the ESS can execute a combined output command:241
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Pesstotal
= Pessfreq

+ Pessrecovery
(24)

This approach allows for simultaneous frequency regulation and SOC replenishment, optimizing the242

operational efficiency of the ESS.243

The power output command of the ESS, Pf , is formulated based on the SOC and frequency deviation244

as:245

Pf =



















0, SOC ≤ SOCmin

min(P droop
F +∆PG, Pm), SOCmin < SOC ≤ SOChigh

min(P droop
F +∆PG + Prec, Pm), SOChigh < SOC ≤ SOCmax

Pm, SOC > SOCmax

(25)

Alternatively, during charging operations, the command is:246

Pf =



















−Pm, SOC ≤ SOCmin

max(P droop
F +∆PG + Prec − Pm), SOCmin < SOC ≤ SOChigh

max(P droop
F +∆PG, Pm), SOChigh < SOC ≤ SOCmax

0, SOC > SOCmax

(26)

3. Uncertainty set247

3.1. Renewable Energy Source Uncertainty Set248

A crucial step before the system planning is conducting a comprehensive assessment of RES availability.249

This is essential due to the intermittent and variable nature of RES-based DGs, which are influenced by250

fluctuating weather conditions. The renewable energy output for photovoltaic and wind turbine systems can251

be modeled with constraints that account for uncertainty in solar irradiance, temperature, and wind speed.252

PWT
i,t =











0 if vi,t < vin or vi,t > vout
vi,t−vin
vr−vin

· Prated if vin ≤ vi,t < vr

Prated if vr ≤ vi,t ≤ vout

(27)

PPV
i,t = ηPV · SPV ·

Gi,t

GSTC
· [1− αT (Ti,t − TSTC)] (28)

3.2. Load Profile Analysis253

Load profile analysis helps utilities and system operators understand the expected variations in electricity254

demand over a 24-hour period, allowing them to plan generation, optimize resource allocation, and ensure255

grid stability. A typical day-ahead load profile consists of hourly power demand values for a 24-hour256

period, which are generated based on various factors such as weather conditions, time of day, and historical257

consumption patterns. Below is representing the total demand Pt of the proposed system at any time t over258

the 24-hour period using the sum of individual consumer types:259

Pt =

N
∑

i=1

Pi,t (29)

For clustering or segmentation of load data for day-ahead forecasting:260

Ck = {Pi,t : d(Pi,t, µk) ≤ d(Pi,t, µj), ∀j ̸= k} (30)
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3.3. Fuzzy Bayesian Clustering Model261

In this section, Fuzzy Bayesian Clustering (FBC) method is described. This method combines fuzzy262

clustering with Bayesian analysis, allowing each data point to partially belong to multiple clusters with as-263

sociated degrees of membership. Bayesian inference further quantifies the uncertainty in cluster assignments,264

making FBC suitable for dynamic and uncertain data in energy systems. The FBC approach is illustrated265

in the accompanying figure, which highlights the load forecasting and renewable energy uncertainty set. The266

fuzzy Bayesian clustering steps can be illustrated as followed shown in Fig: 3.Three Gaussian-distributed267

clusters with specific means and covariance matrices is generated. The generated synthetic data provides268

a realistic foundation for testing clustering algorithms and observing how they respond to different distri-269

butions shown in Fig: 3(a). The KMeans approach is refined in subsequent steps shown in Fig: 3(b). This270

approach allows for overlapping clusters and reflects the uncertainty in each assignment, providing a more271

flexible and realistic representation of the data structure shown in Fig: 3(c).272
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(a) Initial KMeans Clustering
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(b) Fuzzy Membership Responsibilities
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(c) Combined Clusters and Fuzzy Members

Figure 3: Visualization of the three steps in Fuzzy Bayesian Clustering

Assume a dataset X = {x1, x2, . . . , xN} is used to be clustered into K clusters. The steps of Fuzzy273

Bayesian Clustering are as follows. First, Utilizing the KMeans algorithm to initialize the cluster centers274

{µk}
K
k=1. Then, for each data point xi, calculate its fuzzy responsibility rik, representing the degree to which275

xi belongs to cluster k. The responsibility is given by:276

rik =
πk · p(xi|θk)

∑K
j=1 πj · p(xi|θj)

(31)

Then, using the fuzzy responsibilities, update the cluster centers µk and other parameters iteratively to277

approach the optimal solution.278

µk =

∑N
n=1 rnk · xn
∑N

n=1 rnk
(32)

If it is applicable, then update the cluster covariances.279

Σk =

∑N
n=1 rnk · (xn − µk)(xn − µk)

T

∑N
n=1 rnk

(33)
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Then, updated the priors.280

πk =
1

N

N
∑

n=1

rnk (34)

Finally, repeat the calculation of fuzzy responsibilities and the update of cluster centers until convergence,281

resulting in the final fuzzy clustering.282

3.4. Formulation of FBC Uncertainty Set283

The uncertainty set is constructed by capturing the probabilistic nature of data point assignments to clus-284

ters. The fuzzy membership structure is fundamental in defining the uncertainty set for robust optimization,285

especially when dealing with renewable energy generation, which is inherently variable and unpredictable. :286

The posterior predictive distribution in FBC represents the likelihood of a new data point xn+1 belonging287

to any of the clusters k given the observed data Xn and model parameters Ξ. This distribution captures288

both the clustering structure and the probabilistic membership of each point across clusters.289

The posterior predictive distribution for a new data point xn+1 is given by:290

p(xn+1|Xn,Ξ) ∼
∑

k

rnk Stνk+1−dim(Xk)

(

µ′
k,

κ′
k + 1

κ′
k(ν

′
k + 1− dim(Xk))

Ψ′−1
k

)

(35)

The uncertainty set U in FBC is then constructed by combining the posterior predictive distributions of291

each cluster, weighted by the fuzzy memberships. This set represents the range of potential outcomes for292

xn+1, encapsulating the full scope of variability in the model based on the observed data. Mathematically,293

the uncertainty set U can be defined as:294

U =

{

x : x ∼
∑

k

rnk Stνk+1−dim(Xk)

(

µ′
k,

κ′
k + 1

κ′
k(ν

′
k + 1− dim(Xk))

Ψ′−1
k

)

}

(36)

This representation means that any point x in the uncertainty set is drawn from the mixture distribution295

specified by the posterior predictive distribution. Each cluster k contributes to the uncertainty set propor-296

tionally to its responsibility rnk for the data point xn+1. High responsibility values indicate that a cluster has297

a strong influence over the point’s membership, while low values indicate a weaker influence. This fuzzy mem-298

bership enables the uncertainty set to accommodate points that belong to multiple clusters, effectively cap-299

turing the variability of renewable output patterns.To guarantee tractability and robust feasibility in the pres-300

ence of uncertainty modeled by FBC, we derive a confidence-bound-based outer approximation of the uncer-301

tainty set U in Eq. (36). Specifically, the predictive posterior for each cluster k is a multivariate Student-t dis-302

tribution, from which we extract a high-confidence interval,
[

µ′
k − tα/2,ν′

k
· σk, µ

′
k + tα/2,ν′

k
· σk

]

, with σk =303

√

κ′

k
+1

κ′

k
(ν′

k
+1−dim(Xk))

·Ψ′
k.304

In this construction, each cluster is represented by a Student-t distribution with parameters specific to305

that cluster. The Student-t distribution is particularly useful here because it is robust to outliers and can306

accommodate a variety of data distributions. The degrees of freedom νk + 1 − dim(Xk) control the shape307

of the distribution, allowing it to capture the inherent variability in renewable output for that cluster. The308

mean µ′
k represents the expected value of data points in cluster k, while the precision κ′

k scales the Student-t309

distribution, influencing the spread around the mean. A higher precision κ′
k implies more confidence in the310

mean estimate. The degrees of freedom ν′k affect the tail behavior of the distribution, with higher values311

leading to a more Gaussian-like shape and lower values resulting in heavier tails, accommodating more312

variability. Finally, the scale matrix Ψ′
k adjusts for variability in multiple dimensions, making the model313

robust to multivariate uncertainty.314

The constructed uncertainty set U can now be applied in robust optimization to improve the resilience315

of the system. This uncertainty set allows the optimization model to consider a variety of possible outcomes316

for renewable output and make decisions that remain feasible under different scenarios. For instance, in317
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energy dispatch, the robust optimization framework can look at the lower end of the uncertainty set to318

prepare for worst-case scenarios, ensuring backup from thermal or stored energy is available when renewable319

output is low. Conversely, the upper bounds of the uncertainty set represent favorable conditions where320

renewable generation is high, enabling the dispatch model to minimize thermal generation and utilize storage321

to capture excess renewable energy. By using the full range of the uncertainty set, the optimization model322

can dynamically adjust decisions based on the probabilistic distribution of renewable energy, balancing the323

trade-off between cost and reliability.324

The final form of the uncertainty set U can be represented as a distribution over possible future values,325

capturing the entire range of cluster-based predictions from FBC:326

U =

{

x ∈ R
d : p(x|Xn,Ξ) ∼

K
∑

k=1

rnk Stνk+1−dim(Xk)

(

µ′
k,

κ′
k + 1

κ′
k(ν

′
k + 1− dim(Xk))

Ψ′−1
k

)

}

(37)

where d is the dimensionality of the data space. This set represents all possible outcomes x that are327

consistent with the fuzzy-clustered predictive distribution, covering both typical and extreme values. In328

Fuzzy Bayesian Clustering, the uncertainty set U is constructed by combining cluster-specific Student-329

t distributions weighted by fuzzy memberships. This set provides a robust representation of potential330

renewable energy outputs, accommodating uncertainty in both cluster assignment and future data points.331

By integrating this uncertainty set into robust optimization, energy systems can make informed decisions332

that remain effective under a range of future conditions, enhancing the resilience and reliability of the power333

grid in the face of renewable variability.334

4. Robust Optimization methodology335

4.1. Robust Power Grid Dispatching Model336

A two-stage robust optimization framework is proposed in this paper for power system dispatching337

considering the integration of DG units, renewable energy sources, and storage. The objective is to handle338

the uncertainties inherent in RES generation and load demand.These intervals reflect the marginal variability339

captured by each cluster. Then, the total uncertainty set is conservatively approximated by aggregating all340

cluster-wise bounds according to the fuzzy membership weights rnk. This forms a bounding region Ū in341

either box-type or ellipsoidal form, which is then used in the outer maximization in:342

min
f∈F

(

AT f
)

+max
u∈Ū

min
y∈Y(f ,u)

(

BTy +CTu
)

. (38)

343

s.t.344

Dy +Eu = m (39)

Jf +Gy +Hu ≤ n (40)

where, in the optimization model, f represents the vector of all first-stage decision variables, which in-345

cludes fTPU = [fTPU,i,j,l], fWT = [fWT,i,j,l], and fPV = [fPV,i,j,l] for all i, j, and l. The binary set346

F = {0, 1}3×Ib×Jg×Li imposes constraints on the Li increments of the Jg types of thermal power units, wind347

turbine, and photovoltaic units in a power grid with Ib candidate buses. The matrices A and J correspond to348

the parameters for the binary variables f . Meanwhile, in the second stage, U represents the uncertainty set349

for the vector u, which includes the wind and solar power output ωWT = [ωWT,i,j,l,t], ωpv = [ωPV,i,j,l,t] for all350

i, j, l, and t, and the active and reactive load demand Pc = [Pc,i,t], Qc = [Qc,i,t] for all i and t. The matrices351

C, E, and H represent the parameters for the uncertain variables u. The set Y(f ,u) represents the feasi-352

ble region for the vector of other continuous variables y = [PTPU;PWT;PPV;QTPU;QWT;QPV;P;Q;V],353

where PTPU = [PTPU,i,t], PWT = [PWT,i,t], PPV = [Ppv,i,t], QTPU = [QTPU,i,t], QWT = [QWT,i,t],354

QPV = [QPV,i,t], Q = [Qi,t], and V = [Vi,t] for all i and t, and P = [P1+,t, P1−,t, Pi,t] for all i and t,355
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where i ̸= 1. The corresponding parameter matrices in the objective function and inequality constraints356

are represented by B and G. The vectors m and n represent the remaining scalars in the equality and357

inequality constraints, respectively.358

4.2. Robust Methods for Solving Power Grid Optimal Dispatching359

In the two-stage optimization problem formulation subsection, the uncertainty set is defined by the360

posterior predictive distribution capturing the range of renewable outputs based on historical and forecast361

data. The problem solving method is illustrated in Fig. 4.362
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Figure 4: The proposed two-stage robust optimization procedure

4.2.1. Model Formulation with FBC-Based Uncertainty Set363

The first stage of the optimization problem focuses on making initial configuration decisions for the364

power grid, such as selecting and placing power generation units. The second stage then uses the FBC-365

based uncertainty set to account for RES variability in dispatching and operational decisions.366

The robust optimization model can be formulated as follows:367

min
f∈F

AT f + ξ (41)

subject to:368

ξ ≥ BTy +CTu ∀y ∈ Y(f ,u) (42)
369

Dy +Eu = m (43)
370

Jf +Gy +Hu ≤ n (44)

where, f represents the vector of first-stage decision variables, which includes decisions regarding the config-371

uration of thermal power units, wind turbines, and photovoltaic units. The second-stage decision variables,372

y and u, represent the operational decisions and uncertain parameters, respectively, where u is defined by373

an uncertainty set based on the FBC model.374
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4.2.2. FBC-Based Uncertainty Set Definition375

Using the FBC model, we construct a probabilistic uncertainty set UFBC , which accounts for the vari-376

ability in wind and solar outputs. This set is defined as a weighted mixture of cluster-specific distributions377

derived from the posterior predictive distribution in FBC:378

UFBC =

{

u : u ∼
∑

k

rnk Stνk+1−dim(Xk)

(

µ′
k,

κ′
k + 1

κ′
k(ν

′
k + 1− dim(Xk))

Ψ′−1
k

)

}

(45)

where each cluster k represents a distinct renewable output scenario, and rnk represents the fuzzy member-379

ship of the scenario.380

4.2.3. Two-Stage Optimization considering FBC Uncertainty Set381

The first stage solves for the optimal power grid configuration under different renewable scenarios, while382

the second stage adjusts operational decisions based on the uncertainty set UFBC .383

The optimization can be split into a master problem (MP) and subproblems (SP) that correspond to384

different scenarios within the FBC-based uncertainty set.385

1. Master Problem (MP)386

min
f ,ξ

AT f + ξ (46)

subject to:387

ξ ≥ BTy +CTu ∀y ∈ Y(f ,u), u ∈ UFBC (47)
388

Dy +Eu = m (48)
389

Jf +Gy +Hu ≤ n (49)

The result of the master problem is a relaxed solution that provides a lower bound LB for the optimiza-390

tion. This solution is then passed to the subproblems to evaluate its feasibility under different scenarios391

within the uncertainty set.392

2. Subproblem (SP)393

For each scenario k, represented by cluster k in the FBC uncertainty set, we solve a subproblem to394

identify the worst-case scenario within the uncertainty set. This ensures the feasibility of the first-stage395

decision f under the worst-case realizations of renewable output.396

max
u∈UFBC

min
y∈Y(f ,u)

BTy +CTu (50)

subject to:397

Dy +Eu = m (51)

Jf +Gy +Hu ≤ n (52)

This subproblem evaluates the upper bound UBk for each scenario and adjusts the feasible region by398

adding cuts to exclude infeasible solutions. The optimality cuts, which are associated with the worst-case399

uncertain variables, are then added to the master problem. To solve the challenging bi-level “max-min”400

subproblem using standard solvers, we formulate the KKT optimality conditions as follows:401

Dy +Eu = m (53)

BT + γTG+ δTD = 0 (54)

Jf +Gy +Hu ≤ n (55)
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γ⊤(n− Jf −Gy −Hu) = 0 (56)

Constraint (56) represents the complementary slackness condition, indicating that either γ or (n− Jf −Gy −Hu)402

should be zero. Using the Big-M method, we can transform this condition along with Constraint (55) into403

the following mixed-integer linear constraints:404

0 ≤ n− Jf −Gy −Hu ≤ Mσ (57)

0 ≤ γ ≤ M(1− σ) (58)

where M is a sufficiently large constant and σ is a binary variable. The KKT conditions are sufficient when405

the subproblem is convex. The complete set of constraints now comprises (53), (54), (57), and (58).406

4.2.4. Solution Procedure407

The solution procedure involves iteratively solving the master problem and subproblems, refining the408

uncertainty set UFBC based on the worst-case scenarios identified in each iteration. This approach is409

summarized as follows:410

Start

Initiate data of weather information, load profile, and power grid topology

Generate the proposed data-driven uncertainty set 

and obtain the total subproblem number �

Initialize the low bound LB = -∞ 

and the upper bound UB = +∞

Initialize iteration number t = 1

 Solve MP using equations (46-49) and obtain 

optimal solution (f, ξ), Update LB by  

Initialize subproblem number 

k = 1

Solve SPk using equations Eq(53), (54), (57), (58).

Is SPk feasible?

Obtain the feasible solution  Obtain the infeasible solution 

k ≤ T?

Compare results                    and identify the worst-case scenario

              ; Update UB

 Is gap within 

tolerance?

Return Optimal Solution

t=t+1

End

k =k+1

YES

NO

YES

YES

NO

NO

Optimality variables and 

infeasible variables to MP;

Optimality cuts and 

infeasible cuts to MP 

Figure 5: Flowchart of the solution algorithm for FBC-based framework

• Step 0: Set initial lower bound LB = −∞ and upper bound UB = +∞. Define tolerance ϵ and set411

iteration t = 1.412
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• Step 1: Solve the master problem (MP) and obtain the tentative solution (f t, ξt). Update the lower413

bound LB=max
{

LB,A⊤f t + ξt
}

.414

• Step 2: Solve each subproblem SPk using f t to find the optimal scenario outcome Qt
k = (yt

k,u
t
k)415

under uncertainty.416

• Step 3: Compare Qt
k for all k = 1, 2, ..., T , identifying the worst-case scenario Qt

∗ = (yt
∗, u

t
∗) and infea-417

sible scenario set Qt
if = (yt

if ,u
t
if ). Update upper bound as UB = min

{

UB,A⊤f t +B⊤yt
∗ +C⊤ut

∗

}

.418

• Step 4: Check the gap between UB and LB, GAP =
∣

∣

UB−LB
UB

∣

∣. If the gap is below ϵ, terminate the419

procedure. Otherwise, update the MP by adding new variables yt
∗ and yt

if and corresponding optimal420

cuts (Dyt
∗ + Eut

∗ = m) and (Jf +Gyt
∗ +Hut

∗ ≤ n) , while infeasible cuts (Dyt
if + Eut

if = m) and421

(Jf +Gyt
if +Hut

if ≤ n). Update t = t+ 1 and go back to step 1.422

By iteratively refining the solution, this approach ensures the robustness of power grid planning decisions423

against the variability in renewable energy output, as represented by the FBC-based uncertainty set, the424

algorithm process is shown in Fig. 5.425

5. Case Study: Economic Optimization and frequency regulation of the Power grid426

In the section, a modified IEEE 33-bus system is used as the test power grid to validate the distributed427

generation network dispatching design with the FBC-C&CG framework. To find the optimal DG mix, the428

proposed methodologies will be analyzed under various conditions.429

5.1. The Power Grid Description430

The single-line topology of the system is shown in Fig. 1. The total basic load is 650 MW and 315431

MVAR. In the figure, the blue nodes are denoted as normal buses where load demands are connected. The432

green nodes are three possible sites (bus 4, 19, and 26) that not only have load demands connected but also433

can be chosen to install DG units due to geographic advantages. Each possible site could install either wind434

generation, PV panels. The red node is the energy storage system coupled with thermal power unit (bus 1),435

and this is the main regulation elements for the system to resist fluctuations of the RES uncertainties.436

The capital costs for thermal power plants, wind turbine, and photovoltaic generation units are $2293/kVA,437

$1882/kVA, $4004/kVA, respectively. The O&M costs of the three DG units are $0.012/kWh, $0.01/kWh,438

and $0.01/kWh,respectively. For thermal power unit, the fuel cost and emission penalty costs are $0.63/kWh439

and $0.02 kg/kWh, respectively. The emission factor is $0.003 kg/kWh. For energy storage system, this440

study considers a capital cost of $2000/kWh and a round-trip efficiency of 85% for flywheel energy storage441

systems, and a capital cost of $400/kWh with 90% efficiency for lithium-ion battery energy storage systems.442

The O&M cost is estimated at $0.004/kWh for flywheels, while the operational cost of batteries is assumed443

negligible due to minimal maintenance requirements.444

The system is modeled on a 600 MW coal-fired thermal power plant in Lingwu, Ningxia Province, China445

which serves as the primary baseload generation unit, which can be shown in Table. 3. The thermal power446

unit ensures grid stability by providing consistent energy output, especially during periods of low renewable447

generation. Meanwhile, the wind turbines and PV modules operate in parallel to reduce dependency on fossil448

fuels and contribute to peak power demands. The base configuration which is located in Lingwu, Ningxia,449

employs 36 flywheel energy storage units, each with a power rating of 625 kW and a storage capacity of 153450

kWh. Flywheel energy storage system (FESS) is applied for addressing transient fluctuations in wind and451

solar output, ensuring smoother grid operation. In contrast, the other configuration uses battery energy452

storage systems with the same power rating of 625 kW but a significantly higher storage capacity of 45453

MWh, enabling extended-duration energy support.454

Table. 4 summarizes the characteristics of the wind turbines and photovoltaic modules used in the hybrid455

renewable energy system. For wind turbines, the parameters include rated power, cut-in speed, rated speed,456

and cut-out speed, with a configuration of 3 MW rated power, 4 m/s cut-in speed, 10 m/s rated speed, and457
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Table 3: Characteristics of available TPU, ESS.

Thermal power unit parameters Type I Type II Type III

Parameters Rated power (MW) 600 600 600
Energy storage system parameters Type I Type II Type III

Parameters Rated Power (MW) 7.5 22.5 22.5
Energy Capacity (MWh) 1.83 5.5 45

25 m/s cut-out speed. These specifications ensure efficient operation under a range of wind conditions.For458

PV modules, the parameters include peak power, open circuit voltage, short circuit current, voltage and459

current at the maximum power point, voltage temperature coefficient, current temperature coefficient, and460

nominal cell operating temperature. The PV modules are optimized with a peak power of 50 W and a461

nominal cell operating temperature of 43°C to perform reliably under high-temperature conditions.462

Wind turbines and PV modules are strategically deployed at nodes 4, 19, and 26 within the power463

network. The total installed capacity is 300 MW for wind turbines and 200 MW for PV modules. This464

configuration takes advantage of local wind and solar resources while minimizing transmission losses and465

ensuring stable integration into the grid.466

Table 4: Characteristics of Wind Turbine and PV Module Parameters

Wind Turbine Parameters Value

Parameters Rated power (MW) 3
Cut-in speed (m/s) 4
Rated speed (m/s) 10
Cut-out speed (m/s) 25

PV Module Parameters

Parameters Peak power (W) 50
Open circuit voltage (V) 55.50
Short circuit current(A) 1.80
Voltage at maximum power point (V) 38.00
Current at maximum power point (A) 1.32
Voltage temperature coefficient (mV/◦C) 194.00
Current temperature coefficient (mA/◦C) 1.40
Nominal cell operating temperature (◦C) 43.00

5.2. Comparison Results of Optimization for the Power Grid467

5.2.1. Analysis of RES Uncertainty Set468

This analysis utilizes 10 days of weather data from China mainland, to model renewable energy generation469

at candidate buses 4, 19, and 26. Each station provides wind speed and solar radiation data corresponding to470

its assigned bus. The load profiles for all connected loads are sourced from the State Grid Shandong Electric471

Research Institute. The uncertainties in the system are modeled to account for wind turbine parameters,472

PV module parameters, and load variations across the three buses. Specifically, the uncertainty dimensions473

include contributions from wind turbines (3 × 3), PV modules (3 × 3), and load profiles (1), resulting in a474

total uncertainty dimension of 19.475

The clustering results for normalized wind and solar data over a 10-day period are shown in Fig. 6.476

The solar output exhibits a clear diurnal pattern, with peak values occurring in the day time. During477

nighttime, the output is nearly zero. However, the peak values vary across different days, highlighting the478

randomness and uncertainty in solar output. In contrast to solar energy, wind output shows significantly479

higher variability and does not follow a clear diurnal pattern. The fluctuations in wind output are more480

random throughout the day, reflecting a greater degree of uncertainty.481
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Figure 6: Normalized RES Data Across 10 Days.

Fig. 7 illustrates the results of clustering normalized wind and solar data over a 10-day period using the482

Fuzzy Bayesian Clustering method. The figure provides insights into how wind and solar energy outputs483

can be categorized into distinct operating patterns, aiding in the analysis of renewable energy systems.484

The clustering process aimed to group the data into meaningful categories, with each cluster representing485

a specific range of wind and solar power generation levels. This analysis enables the characterization of486

renewable energy variability and supports efficient energy management strategies. The three subplots in the487

figure illustrate different stages of the clustering process. Subplot (a) shows the initial clustering performed488

using the KMeans algorithm, where each data point is assigned to a single cluster. This initial step categorizes489

the data into three distinct clusters, representing low, medium, and high wind-solar power output conditions,490

with black crosses marking the cluster centers. Subplot (b) transitions to the fuzzy clustering step, which491

provides a probabilistic measure of each data point’s membership in the clusters. In this subplot, darker492

points indicate strong associations with a single cluster, while lighter points reflect shared memberships across493

multiple clusters, capturing the transitional nature of the data. Subplot (c) combines these results, presenting494

the final clustering outcome that integrates the hard clustering of KMeans with the fuzzy memberships to495

produce a refined representation of the wind-solar patterns.496

Clustering in subplot (a) corresponds to periods of low wind and solar output, typically observed during497

nighttime or under overcast weather conditions. Clustering in subplot (b) represents moderate power output,498

such as during early morning or late afternoon, when either wind speeds or solar radiation is partially499

available. Clustering in subplot (c) captures high power generation scenarios, reflecting optimal wind and500

solar conditions during the day. These findings are instrumental in optimizing hybrid renewable energy501

systems by informing decisions on energy storage allocation, grid integration strategies, and the efficient502

management of variable renewable energy resources.503

5.2.2. Comparison Under Different Confidence Levels504

Once the uncertainty sets are ready, the proposed modified C&CG algorithm will be used to solve the505

proposed problem. All the simulation results are implemented with CPLEX 12.8.0 using a computer with506

an Inter(R) Core(TM) i7-12700H CPU at 4.7 GHz.507

Figure 8 visualizes the distribution of costs for 3 distinct categories, which include First stage cost508

and Total cost for three different types which are shown in Table 4. The three types represent different509

cost structures or scenarios, and each type includes both the First stage cost, which represents the initial510

investments for all generations, and the Total cost, which combines the initial costs, operation cost and511

revenue of the generation dispatching for 20 years. It illustrats the cost analysis of different energy storage512

scenarios under varying confidence levels. The x-axis categorizes the storage scenarios into three types (Type513

I, Type II, and Type III), further divided into First Stage Cost and Total Cost for each type. The confidence514
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Figure 7: Normalized RES Data Across 10 Days

levels ranging from 0.5 to 0.95, which reflect the uncertainty tolerance in the optimization problem, reveals515

that as the confidence level increases, both the first stage and total costs generally rise, indicating higher516

expenses for robust planning under stricter uncertainty constraints. Across all scenarios, the total cost is517

consistently higher than the first stage cost, reflecting the inclusion of penalty costs for power shortages or518

operational adjustments in the total cost. Notably, Type II exhibits higher costs compared to Type I and519

Type III, indicating its potentially higher investment and operational requirements.520

In this section, Type II is used as an example. From the bar chart in Fig. 8, it can be observed that when521

a storage capacity of 22.5 MW is configured, the reduction in total cost is the most significant. Although522

Type III exhibits lower initial costs, the total benefits decrease over the usage period, implying that Type523

II is the most effective storage configuration for long-term performance. Therefore, Type II is selected to524

illustrate the optimization process.525

The optimization process begins by defining the objective function, which minimizes the total cost526

including both the first stage investment cost and the second stage operational cost. This optimization is527

solved under varying confidence levels to account for uncertainties in energy production and demand. The528

iteration proceeds using a C&CG method until convergence is achieved.529

The optimization results are presented in Table. 5. For Type II, the total cost effectively decreased,530

and the first stage cost, representing the investment cost, remained unchanged, while the second stage cost531

resulted in a negative value, indicating a profit made from energy arbitrage during the operational phase.532

The optimization ran for multiple iterations, adjusting decision variables such as energy storage dispatch533

and generation to ensure convergence. The range of uncertainty, upper and lower bounds, and optimality534

gap were carefully monitored to determine the stopping criteria.535

Table. 5 provides an overview of the bounds and optimality gaps under different confidence levels for the536

optimization of Type II storage configurations. The table highlights the iterative process of reducing the gap537

between the lower bound and upper bound until convergence is achieved. For each instance, corresponding538

to confidence levels ranging from 50% to 95%, the optimization proceeds through three iterations. As the539

confidence level increases, the total cost also rises, reflecting the higher costs required for robust decision-540

making under stricter uncertainty requirements. For instance, at a 95% confidence level, the LB and UB541

values in Iteration 3 are both 7,770,174, achieving convergence with an optimality gap of 0.00%. This542
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Figure 8: Bar Chart of Different Scenarios Matrix

Table 5: Bounds and gaps under different confidence levels of Type II.

Instance Confidence level Iteration LB UB Optimality gap

1 50% 1 -8,265,328 16,380,225 150.46%
50% 2 4,852,998 5,110,238 5.03 %
50% 3 5,075,232 5,075,232 0.00%

2 60% 1 -8,265,328 16,325,121 150.63%
60% 2 4,920,976 4,979,626 1.17%
60% 3 4,955,382 4,955,382 0.00%

3 70% 1 -8,265,328 16,298,398 150.72%
70% 2 4,780,853 4,858,691 1.60%
70% 3 4,835,978 4,835,978 0.00%

4 80% 1 -8,265,328 16,100,244 150.33%
80% 2 6,236,441 6,305,308 1.09%
80% 3 6,292,328 6,292,328 0.00%

5 90% 1 -8,265,328 16,879,208 148.97%
90% 2 7,425,467 7,501,082 1.01%
90% 3 7,472,174 7,472,174 0.00%

6 95% 1 -8,265,328 16,396,752 150.41%
95% 2 7,686,453 7,892,186 2.61%
95% 3 7,770,174 7,770,174 0.00%

trend is consistent across all instances, with convergence achieved within three iterations regardless of the543

confidence level. The results demonstrate the efficiency and reliability of the optimization process in refining544

the bounds to achieve optimal solutions under varying uncertainty levels.545
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5.2.3. Comparison under different Type Energy Storage Systems546

It can be observed that at lower confidence levels (0.5, 0.6, 0.7), the storage system output is relatively547

smooth, with small fluctuations. This is likely because lower confidence levels imply less concern about548

system uncertainties, resulting in storage being primarily used to smooth load fluctuations and avoid large549

power changes. On the other hand, at higher confidence levels (0.8, 0.9, 0.95), the variability in storage550

output increases significantly, especially at the 0.95 level. Fig. 9 to Fig. 11 presents the storage and thermal551

power outputs under different confidence levels using Type I, which is flywheel energy storage, characterized552

by a rated power capacity of 7.5 MW and an energy capacity of 1.83 MWh. The storage output shows553

relatively low variability, with fluctuations around zero, indicating limited reliance on storage to manage554

uncertainties. The thermal output demonstrates consistent and robust generation, highlighting its role as a555

resilient energy source under Type I conditions. The minimal impact of varying confidence levels on thermal556

output underscores its reliability in maintaining system stability.557
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Figure 9: Storage and Thermal Power Outputs with Different Confidence Levels under Type I

From Fig. 9, in Type II, storage output exhibits greater variability, especially during mid-day hours, with558

higher confidence levels resulting in noticeable peaks. This indicates increased reliance on storage systems559

to manage uncertainties introduced under Type II conditions, showcasing storage as a flexible but less560

inherently stable resource. Despite this, the thermal output continues to provide a stable baseline of power,561

contributing to system resilience by mitigating the impact of storage variability. The slight decrease in562

thermal output during peak hours suggests the system’s adaptive capability to balance storage and thermal563

contributions effectively.564

From Fig. 11, the storage output reaches its highest variability across the three scenarios, especially at565

higher confidence levels. This highlights storage as a critical but highly dynamic component for maintaining566

operational resilience under high uncertainty. Peaks in storage output during mid-day emphasize its role567

in compensating for fluctuations in other parts of the system. Meanwhile, thermal output remains stable568

and reliable, though minor reductions at lower confidence levels during peak hours suggest some trade-offs569

between storage and thermal contributions. The comparison across the three figures reveals a progression570

in system reliance on storage for flexibility and resilience, while thermal generation acts as a consistent571

backbone, ensuring overall stability. The combination of storage and thermal systems at higher confidence572

25



0 5 10 15 20 25

Time (Hours)

-5

0

5

10

P
o
w

e
r 

O
u
tp

u
t 
(M

W
)

(a) Storage Output (Confidence level 0.5, 0.6, 0.7)

Confidence 0.50

Confidence 0.60

Confidence 0.70

0 5 10 15 20 25

Time (Hours)

-5

0

5

10

15

20

25

P
o
w

e
r 

O
u
tp

u
t 
(M

W
)

(b) Storage Output (Confidence level 0.8, 0.9, 0.95)

Confidence 0.80

Confidence 0.90

Confidence 0.95
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(d) Thermal Output (Confidence level 0.8, 0.9, 0.95)
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Figure 10: Storage and Thermal Power Outputs with Different Confidence Levels under Type III
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Figure 11: Storage and Thermal Power Outputs with Different Confidence Levels under Type II
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levels highlights the trade-off between renewable integration and the need for dependable, conventional573

generation sources to maintain system stability and reliability.574

Fig. 12 compares the frequency deviation suppression performance of different energy storage systems575

coupled with TPU (Type I, Type II, and Type III) in frequency regulation scenarios. The results demon-576

strate varying levels of effectiveness in reducing frequency fluctuations across the three types of systems.577

Under Type I, the TPU-ESS system shows moderate performance in stabilizing frequency. While frequency578

deviations are reduced compared to the original system, the fluctuations remain relatively prominent. This579

indicates that Type I ESS has limited capability to fully mitigate frequency instability under these con-580

ditions, likely due to lower flexibility or responsiveness in the system design. The Type II ESS achieves581

the best performance in suppressing frequency deviations among the three systems. The fluctuations are582

significantly minimized, and the system maintains frequency stability more effectively across the evaluation583

period.584

Table 6: Mean and standard deviation of IQR and range for different ESS types

ESS Type Mean IQR (MW) Std of IQR (MW) Mean Range (MW) Std of Range (MW)

Type I 1.4503 1.7485 2.8248 2.3615

Type II 3.3847 3.4921 6.3093 5.8374

Type III 2.5517 1.7198 6.1411 4.6682

Full statistical sampling is examined for each hour, five representative indicators—minimum, lower quar-585

tile, mean, upper quartile, and maximum—are used as proxy points to illustrate the distributional behavior586

of each ESS type. Fig.13 compares the daily energy storage system output strategies across Type I, Type II,587

and Type III conditions. In Type I , the output remains close to zero with limited variability throughout the588

day. The slight fluctuations reflect minor adjustments made by the ESS, indicating relatively stable system589

conditions and minimal reliance on storage to handle uncertainties. In Type II (subfigure b), the ESS output590

demonstrates more pronounced variability, particularly during peak hours. This suggests that under Type II591

conditions, the ESS actively compensates for larger fluctuations in power demand or renewable generation,592

emphasizing its role in balancing the system. The increased variability highlights the greater challenges in593

maintaining stability under these conditions. For Type III, the ESS output variability is further amplified,594

particularly during the mid-day hours. This reflects the ESS taking a critical role in addressing the highest595

levels of uncertainty and fluctuations under Type III conditions. The broader interquartile ranges in Type596

III compared to Type I and Type II indicate greater effort by the ESS to maintain system resilience and sta-597

bility.This setup allows for a comparative assessment of the impacts of both increased capacity and different598

storage technologies on system variability and performance. To quantify variability, the interquartile range599

(IQR) and total range (max - min) were computed . Table 6 summarizes the average IQR and range for each600

ESS type. Both the mean IQR and range increase progressively from Type I to II, confirming the visual601

assessment of growing variability. Specifically, the mean IQR rises from 1.45 MW in Type I to 3.38 MW602

in Type II and 2.55 MW in Type III, while the mean total range follows a similar trend. These results603

illustrate enhanced operational fluctuations with higher-capacity systems and further highlight the effect604

of storage technology differences, as the the high-capacity flywheel in Type II demonstrates comparable or605

greater variability than the lithium-ion battery in Type III.606

To further evaluate the practical trade-offs among different energy storage configurations, a radar plot607

analysis is presented in Fig. 14. The results highlight that while the 22.5 MW lithium-ion battery performs608

well in terms of overall cost-efficiency and moderate electricity loss compared to Type II, but it suffers609

from higher degradation risks under frequent cycling conditions. In contrast, the 22.5 MW flywheel exhibits610

superior dynamic performance and virtually no degradation, making it ideal for high-frequency disturbances,611

albeit at a higher capital cost. The 7.5 MW flywheel shows limited performance due to capacity constraints,612

but offers a balance between cost and longevity.613

6. Conclusion614
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Figure 12: Storage power output under Type I, Type II, and Type III
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Figure 13: Storage power output under Type I, Type II, and Type III

 Type III

Figure 14: Storage sensitivity analysis under Type I, Type II, and Type III(Million dollars)
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With the increasing penetration of renewable energy, thermal power units are facing a greater challenger615

to provide more flexibility in order to maintain the system stability. Energy storage-assisted thermal power616

units present a promising solution for countries and regions where thermal generation plants still prevail617

in their power systems but are facing a greater challenge to accommodate more renewable generations618

to support low carbon transition. Their future capability of offering multi-timescale frequency regulation619

supports the integration of more renewable generations. The findings indicate that hybrid energy storage-620

assisted thermal power systems significantly improve the flexibility and economic viability of thermal power621

generation, ensuring grid stability in high-renewable energy scenarios. The main conclusions are summarized622

as follows.623

1) The integration of energy storage plays a pivotal role in alleviating the operational stress of thermal624

power units. By providing multi-timescale frequency regulation, energy storage system effectively625

balances power fluctuations, reducing the need for frequent ramping and deep cycling of thermal626

power untis. This prolongs the lifespan of thermal power equipment by minimizing mechanical decay.627

The coordinated operation of energy storage system and thermal power untis allows for more efficient628

energy dispatch, optimizing fuel consumption and lowering operational costs.629

2) A coordinated control strategies for systems with energy storage system is employed, while high-630

capacity battery energy storage (Type II, III), the ability to compensate more load during peak631

periods minimizes the fluctuations for thermal power units to operate at full capacity, enhancing632

system frequency regulation ability. Energy storage system integration ensures a dynamic response to633

renewable energy fluctuations, improving grid resilience.634

3) A comparative analysis of different energy storage system types highlights their role in optimizing635

dispatch strategies under varying levels of renewable uncertainty. Larger energy storage systems de-636

liver superior economic benefits by minimizing frequent operations of thermal units, reducing fuel637

costs, and lowering maintenance expenses. Despite higher initial investments, the cost-benefit analy-638

sis reveals that the long-term economic and resilience advantages—including reduced costs, improved639

adaptability, and enhanced system stability—make these hybrid configurations economically viable.640

4) Different storage technologies contribute to improving system flexibility and resilience as their char-641

acteristics shows diverse abilities under different timescales. While smaller-capacity energy storage642

system offers limited benefits but with low maintenance and investment cost, larger-capacity systems643

enable more sustained power output during peak demand, reducing the reliance on thermal power644

units and effectively mitigating renewable energy variability. The short-term and long-term energy645

storage systems show different benefits during the operational duration, as the frequency regulations646

are more frequent than used to be, short-term energy storage system shows a more comparable profits647

in both technical and economic aspects.648

The future research will focus on the refinement of control strategies to further optimize the economic and649

operational benefits of storage-assisted thermal power systems. This paper overlooked the voltage profile of650

ESS, detailed modeling of its reactive power support are critical for a comprehensive stability assessment.651

Furthermore, high dimensional uncertainty sets and decision variables are required to explore by proposing652

advanced optimization algorithms. Last but not least developing market mechanisms and policy incentives653

tailored for storage-assisted thermal power units deployment is another research direction. It is anticipated654

that new frequency regulation ancillary service markets and electric market mechanisms will accelerate655

large-scale applications of the technology to integrate energy storages with thermal power units.656
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