

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236822/>

Version: Accepted Version

Article:

Ji, W., Hong, F., Li, K. et al. (2025) Optimal dispatch of storage-assisted thermal power considering renewable uncertainties. *Applied Thermal Engineering*, 278 (Part C). 127276. ISSN: 1359-4311

<https://doi.org/10.1016/j.applthermaleng.2025.127276>

This is an author produced version of an article published in *Applied Thermal Engineering*, made available via the University of Leeds Research Outputs Policy under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
<https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Optimal dispatch of storage-assisted thermal power considering renewable uncertainties

Weiming Ji^{1,2,3}, Feng Hong^{1,2*}, Kang Li³, Lu Liang^{1,2}, Junhong Hao^{1,4}, Fang Fang^{1,2}, Jizhen Liu¹

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (NCEPU), Beijing, 102206, China. 2. School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China. 3. School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK. 4. School of Energy Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing, China.

Abstract

Energy storage systems have emerged as critical components in modern power systems, addressing the challenges of frequency regulation stability and renewable integration. Coal-fired thermal power plants have provided grid stability but now confront increasing demands for deep peak shaving services. However, energy storage systems are exposed to relatively low energy support duration while thermal power units confront slow power changing rate. This paper proposes a coordinated control strategy and a robust optimization model for storage-assisted thermal power units, addressing short-term fluctuations and long-term uncertainties imposed on thermal power units across multiple timescales. The Column-and-Constraint Generation approach is employed to improve computational efficiency, achieving convergence within three iterations for the optimal solution. Simulation results confirm that the proposed uncertainty set effectively adapts to increasing data dimensions, addressing over-conservatism in traditional models subject to multi-timescale uncertainties. By leveraging the rapid response capability of energy storage and the steady output of thermal power units, the model improves grid support and alleviates operational stress on thermal units. The results also reveal that three different energy storage systems configurations result in cost reductions of 23.50%, 41.78%, and 38.63%, respectively, while demonstrating a substantial improvement in the system's resilience in response to short- and long-term challenges.

Keywords: Thermal power unit, energy storage system, multi-timescale, renewable energy uncertainties, column and constrain generation

Nomenclature

Abbreviations

ESS Energy Storage System.

PV Photovoltaic.

SOC State of Charge.

STC Standard Test Condition.

TPU Thermal Power Unit.

*Corresponding author.

Email address: hongf@ncepu.edu.cn (Feng Hong^{1,2})

WT Wind Turbine.

Symbols

α_{emi}	The cost associated with emissions per unit of power.
α_{fc}	The cost of fuel per unit of power generated.
α_T	Temperature coefficient of power for the PV module.
Δf	Frequency deviation.
ΔP_G	Power output deviation of the TPU.
η_{PV}	Conversion efficiency of PV panels.
κ'_k	Updated precision parameter for cluster k .
μ'_k	Updated mean for cluster k , calculated based on prior information and observed data X_n .
ν'_k	Updated degrees of freedom for cluster k .
π_k	Prior probability of cluster k .
Ψ'_k	Updated scale matrix for cluster k .
σ	An emission coefficient or impact factor.
$\tau \sum_t \sum_i P_{i,t}^c$	Cumulative required power generation over time t for each generation unit i , scaled by a factor τ .
$St_{\nu_k+1-\dim(X_k)}$	Student-t distribution for cluster k , with adjusted degrees of freedom given by $\nu_k + 1 - \dim(X_k)$.
C^{ASR}	Revenue generated from providing ancillary services, determined by the system's regulation capabilities.
C^{EMI}	The emission cost, accounting for environmental impacts and regulatory fees related to pollutant emissions.
C^{ESR}	Revenue from selling electricity to end-users, based on market prices and the amount of electricity sold.
C^{FC}	The fuel cost, applicable to DG units that require fuel, which is coal used in the thermal power unit of this paper.
C^{INV}	The initial investment cost associated with deploying DG units and infrastructure.
C^{OM}	The operation and maintenance cost required for the upkeep and operation of the system.
C_j^{PV}	Investment cost for each unit type j of PV units.
C_j^{TPU}	Investment cost for each unit type j of thermal power units.
C_j^{WT}	Investment cost for each unit type j of wind turbines.
C_k	Cluster k of similar load profiles for a 24-hour period.
$d(P_{i,t}, \mu_k)$	Distance metric between the load profile $P_{i,t}$ and the centroid μ_k of cluster k .

$E_{i,t}$	The state of charge of the ESS at node i and time t .
E_i^{\max}	The maximum state-of-charge limit of the ESS.
E_i^{\min}	The minimum state-of-charge limit of the ESS.
$f_{i,j,l}^{mt}$	Installation factor or quantity of thermal unit type j in location i and instance l .
$f_{i,j,l}^{PV}$	Installation factor or quantity of PV unit type j in location i and instance l .
$f_{i,j,l}^{WT}$	Installation factor or quantity of wind turbine type j in location i and instance l .
$f_{PV}(G_t)$	A function of the solar irradiance G_t at time t .
$f_{WT}(v_t)$	A function of the wind speed v_t , dependent on cut-in, rated, and cut-out wind speeds.
$G_{i,t}$	Solar irradiance at node i and time t .
G_{STC}	Standard Test Condition irradiance (1000 W/m ²).
K_f	Droop control coefficient for the ESS.
K_g	Droop control coefficient for the TPU.
N	Total number of consumers.
$N(i)$	The set of neighboring nodes connected to node i .
$P_{i,t}^{PV}$	Output power of the PV system at node i at time t .
$P_{i,t}^{WT}$	Output power of the wind turbine at node i at time t .
P_f	Power formulated based on the SOC and frequency deviation.
P_G^{actual}	Real-time output of the TPU.
P_G^{droop}	Droop-based output of the TPU.
P_m	Maximum allowable power.
P_{rated}	Rated power of the wind turbine.
P_{rec}	SOC recovery power.
P_{fess}	Primary frequency control power command of the ESS.
$P_{g,i,t}^{\text{ch}}$	The charging power of the ESS at node i and time t .
$P_{g,i,t}^{\text{dch}}$	The discharging power of the ESS at node i and time t .
$P_{g,i,t}^{PV}$	The power output of the PV system at node i and time t .
$P_{g,i,t}^{\text{TPU}}$	The active power output of the thermal generator at node i and time t .
$P_{g,i,t}^{WT}$	The wind power output at node i and time t .
$P_{g,i}$	The active power generated at node i .
$P_{g,i}^{\text{ch,max}}$	The maximum charging capacity of the ESS.

$P_{g,i}^{\text{dch,max}}$	The maximum discharging capacity of the ESS.
$P_{g,i}^{\text{max}}$	The maximum output limit of the thermal generator.
$P_{g,i}^{\text{min}}$	The minimum output limit of the thermal generator.
$P_{g,i}^{\text{rated}}$	The rated capacity of the wind turbine.
$P_{i,t}$	Power demand of consumer i at time t .
P_{ij}	The power flow between nodes i and j .
$P_{\text{load},i}$	The active power load at node i .
P_t	Total power demand at time t .
$Q_{g,i}$	The reactive power generated at node i .
Q_{ij}	The reactive power flow between nodes i and j .
$Q_{\text{load},i}$	The reactive power load at node i .
R_{down}	The ramp-down limit (rate of decrease in output) for the generator.
R_{up}	The ramp-up limit (rate of increase in output) for the generator.
r_{nk}	Fuzzy responsibility (or degree of membership) of cluster k for data point x_{n+1} , indicating the likelihood of the new point being assigned to cluster k .
S_{PV}	Installed capacity of the PV system.
SOC_{high}	High SOC threshold.
SOC_{max}	Maximum SOC threshold.
SOC_{min}	Minimum SOC threshold.
$T_{i,t}$	Ambient temperature at node i and time t .
T_{STC}	Standard Test Condition temperature (set as 298.15 K).
$u_{ch,i,t}$	Binary variable indicating the charging status of the ESS.
$u_{dch,i,t}$	Binary variable indicating the discharging status of the ESS.
V_i	The voltage at node i .
v_{in}	Cut-in wind speed (minimum wind speed required to generate power).
v_{out}	Cut-out wind speed (speed above which the turbine shuts down for safety).
$v_{i,t}$	Wind speed at node i and time t .
V_{max}	The maximum allowable voltage level.
V_{min}	The minimum allowable voltage level.
v_r	Rated wind speed (speed at which the turbine generates maximum power).

1. Introduction

1 Modern power systems are often characterized by the integration of a large amount of renewable energy
2 sources(RES) [1], aiming to reduce the green-house gas emissions in order to meet the target set by the Paris
3 Agreement [2]. The UK is the first major economy legislating the target of attaining the net zero greenhouse
4 gas emissions by 2050 and beyond, and the first half of 2024 has seen the installation of 2GW solar power
5 generation capacity which is more than the last 14 years combined [3]. This however has significantly
6 reduced the system inertia, thus affecting the stability of the power grid to resist the disturbances and
7 respond effectively to the frequency deviations [4].

8 Energy storage system (ESS) is considered as an effective method to compensate the fluctuations of the
9 RESs [5]. As of the end of 2023, the global installed capacity of power grid storage projects reached 289.2
10 GW, marking a year-on-year growth of 21.9 % [6]. In terms of newly installed capacity, approximately 52.0
11 GW of power storage projects were commissioned globally in 2023, reflecting a year-on-year growth of 69.5
12 % [7]. Among these, the deployment of new energy storage reached a historic high of 45.6 GW. China,
13 Europe, and the United States continued to lead the global energy storage market, collectively accounting
14 for 88 % of the new installations, with China contributing nearly 50 % of the global total [8].

15 1.1. The significance of energy storage-assisted thermal power units

16 In contrast to many developed countries, China's resource endowment, characterized by abundant coal
17 and limited natural gas, ensures a rich reserve for coal-fired thermal power generation(TPU). Combined
18 with the distinctive distribution of user-side resources and a power market structure vastly different from
19 the developed countries, integration of energy storage with coal-fired power plants has become an important
20 research topic not only for China, but also for many other developing countries and regions where thermal
21 power generation plants are still the dominant and affordable electricity supply technology for accessing
22 to high quality electricity while supporting national economic growth and uptaking of more renewable
23 generating technologies.

- 24 1) Technically, integrating energy storages with coal-fired power plants significantly enhances primary
25 and secondary frequency regulation, providing fast and accurate grid stability support with more
26 integration of RESs. It reduces the dynamic strain on coal-fired units, minimizing mechanical wear
27 and carbon emissions.
- 28 2) Economically, integrating energy storage with coal-fired units has demonstrated tangible economic
29 profits in practical applications, ESS enables coal-fired plants to participate in ancillary service markets,
30 earning revenue through frequency regulation services. ESS increases the flexibility of coal-fired units,
31 reducing their idle times and improving their overall energy utilization.
- 32 3) Societally, this approach provides valuable insights for policy guidance, promoting informed decisions
33 for energy storage deployment. Additionally, it offers a new perspective and application for energy
34 storage in power system construction, supported by strong technical and economic foundations, paving
35 the way for sustainable and innovative energy solutions.

36 1.2. Literature reviews on power systems integrated with ESS

37 Energy storage has been widely used in the power system across the whole chain from generation,
38 transmission, distribution to end users. For example, Yang et. al [9] highlights how user-side ESS can be
39 strategically utilized to enhance grid reliability through effective demand response mechanisms. [10] investi-
40 gates the relationship between the energy supplier and end users equipped with ESS, and explores how end
41 users can respond to the electricity prices set by the energy suppliers and optimize their energy consumption
42 and storage usage. Cui et.al [11] presents a structured framework to address the RES uncertainty challenge
43 by modeling the interactions between energy providers and consumers.

44 Zhang et.al [12] addresses the critical issue of frequency stability in power systems using grid-connected
45 ESS. Li et. al [13] introduces an innovative approach to managing the output power of distributed doubly-
46 fed induction generators by integrating a grid-connected hybrid ESS and coordinating with the grid-side

47 converter. Xie et.al [14] explores the integration of blockchain technology into grid-side shared energy storage
 48 markets to enhance security, transparency, and efficiency in energy transactions. Khani et.al [15] highlight
 49 the importance of integrated planning and optimization in managing the complexities introduced by high
 50 shares of renewable energy, while the ESS have limited energy and power capacities, making them insufficient
 51 for handling large-scale and prolonged peak demand periods.

52 Jafarian et.al [16] shows that a significant reduction in power and voltage fluctuations can be achieved
 53 by integrating ESS with RES generating units. However, it does not address the frequency regulation
 54 requirements, which are critical for grid stability when integrating high-penetration renewable energy sources.
 55 Wang et.al [17] propose a preventive control strategy utilizing ESS to support RES generating units and to
 56 enhance primary frequency response. Zhang et.al [18] proposed a distributed cooperative control approach
 57 for secondary frequency regulation, enabling multiple distributed generators and ESS to work together
 58 without relying on a central controller. The paper however does not address the coordinated control of
 59 generations and energy storage systems, specifically addressing multiple objectives simultaneously, such
 60 as enhancing frequency regulation, grid flexibility, and economic performance. Liu et.al [19] developed a
 61 Generalized Predictive Control-Proportional Integral layered control strategy for energy storage integrated
 62 renewable generation systems, achieving a 30 % reduction in overshoot compared to conventional methods.
 63 Literature reviews are also concluded as Table. 1.

Table 1: Literature reviews of ESS-assisted power generations of RESs

Ref	Authors Years	ESS Types	Control strategy	Economical constraints	Pollutant emissions	Advantages	Disadvantages
[13]	Chao Li 2023	Hybrid energy storage system	Coordinated control scheme integrating HESS using a grid-side converter to enhance power stability.	High initial investment costs for HESS components and control infrastructure Economic factors by demonstrating that integrating ESS can lead to significant cost reductions, distribution network costs.	Not included	The strategy enhances power stability, optimizes energy utilization, and minimizes mechanical stress.	The system's complexity and high upfront costs pose challenges for widespread adoption.
[15]	Meysam Khani 2024	ESS as interconnected entities within distribution networks	Incorporating demand-side management and coordination between transmission and distribution systems	The integration is expected to contribute to lowering pollutant emissions.	The proposed approach enhances grid flexibility and achieves smart grid objectives.	The complexity of implementing bi-level stochastic models and ensuring coordination of distribution networks are not verified.	
[16]	Masoud Jafarian 2024	Focusing on integrating efficient energy storage systems, without specifying particular ESS types.	A novel optimization and dynamic evaluation strategy is proposed to effectively integrate ESS and RES in hybrid systems.	The study addresses economic constraints by optimizing the integration strategy.	Integrating ESS with RES is expected to reduce pollutant emissions by promoting cleaner energy sources.	The proposed strategy offers improved integration of ESS and RES, leading to enhanced system performance and reliability.	The complexity of optimization models and the need for accurate dynamic evaluations.
[17]	Heng Wang 2025	Battery energy storage systems	A dynamic primary frequency response parameter adjusting scheme is proposed, enhancing frequency stability.	The integration of ESS is analyzed for its economic viability, demonstrating potential revenue generation through ancillary services.	ESS control strategy contributes to reducing reliance on fossil fuels, lowering pollutant emissions.	The proposed approach offers improved grid frequency stability and economic benefits.	The complexity of implementing advanced control strategies and ensuring seamless coordination between ESS and RESs.
[18]	Runfan Zhang 2025	Battery energy storage systems	A distributed cooperative secondary frequency control accounts for communication time delays.	Economic feasibility, considering factors such as cost-effectiveness and financial viability.	By Reducing reliance on fossil fuels, thereby lowering pollutant emissions.	Improved frequency stability and economic benefits by effectively integrating ESS and RESs.	The complexity of implementing advanced control strategies and ensuring seamless coordination between ESS and RESs.
[19]	Wanying Liu, 2024	Pumped hydro storage systems	An innovative modeling method combined with a Generalized Predictive Control PI control strategy in FR.	Economic feasibility, considering cost-effectiveness, financial viability.	Not included	The proposed approach offers improved frequency stability and economic benefits by effectively integrating PHS with RESs.	The complexity of implementing advanced control strategies.

64 Economic Dispatch (ED) is another critical component of modern power system operations, aiming to
 65 minimize the economic cost of electricity generation while maximizing the revenue from selling electricity
 66 [20]. By focusing on these dual objectives, ED helps develop more resilient and efficient energy systems [21].
 67 It ensures that the generation units are dispatched in a manner that achieves economic efficiency without
 68 compromising system reliability. The integration of RES including wind and solar power, introduces significant
 69 challenges to the ED process due to their inherent variability and unpredictability [22]. Factors like
 70 wind speed, solar radiation intensity, and solar irradiance temperature are among the major contributing
 71 factors to the variability of these resources [23]. To handle this extra layer uncertainty and complexity,
 72 more sophisticated optimization models are needed for optimal power allocation while maintaining system
 73 reliability and operational efficiency [24]. Various advanced approaches have been developed for ED that
 74 incorporate RES. Li et.al [25] studied the connections between automatic generation control and ED from
 75 an optimization view, and a distributed approach to improve economic efficiency. These methods aim to
 76 optimize the dispatch of generation companies by effectively managing both the operational constraints and
 77 uncertainties of the power system [26]. Techniques such as stochastic programming, robust optimization,
 78 and hybrid models that leverage machine learning have been proposed. Nguyen et.al [27] proposed a novel
 79 robust model predictive control strategy by studying the feasibility problem considering the comparison

relations of constraint sets and Lyapunov function candidates. Furthermore, Then, the strategy is applied in Leader-Follower formation scheme in a group of followers, as well as the input-to-state stability of the proposed terminal controller and equivalent terminal region is evaluated [28]. As for the power system operations facilitating the sustainable energy transition, for example, Li et.al [29] proposed a two-tiered control framework that integrates economic considerations of energy storage lifespan with frequency regulation constraints, which optimize the operational efficiency and extend the service life of hybrid ESS. Yan et.al [30] developed a method to dynamically adjust the rotational inertia and damping coefficient of the VSG based on real-time system conditions.

Despite the latest progresses in control and dispatch of power systems with significant penetration of RES integrated with ESS, thermal power units are increasingly required to adjust their operations in response to fluctuations introduced by renewable energy generation. These adjustments include frequent cycling, rapid load changes (ramp-up and ramp-down), and frequent start-ups and shutdowns [31]. Operating away from optimal steady-state conditions reduces the thermal efficiency of power plants, leading to higher fuel consumption and emissions per unit of electricity generated [32]. To mitigate thermal damage caused by operational stress challenges, the integration of ESS has been proposed as a promising solution [33]. Guo et.al [34] showed that the coal-fired units can maintain a more stable operational profile, which improves thermal efficiency and reduces fuel consumption by charging the storage during periods of low demand or high renewable output and discharging during peak periods. The hybrid configuration also enables coal-fired power plants to participate in ancillary service markets. Su et.al [35] analyzed the impact of ESS on start-up costs and concluded that, by reducing cycling, ESS can significantly lower start-up and maintenance costs, contributing to overall cost savings. Deng et al. [36] proposed a bi-level optimization model for sizing and dispatching hybrid systems combining coal-fired power plants with various battery technologies, focusing on peak shaving applications. The cost-benefit analysis of adding ESS to coal-fired units is complex and highly dependent on the dynamic market, which limits the practical implementation of these hybrid systems. Gao et al. [37] presented a co-optimization framework for maintenance and flexibility retrofitting of coal-fired units, addressing the challenges of integrating renewable energy sources. Real-time optimization further complicates the process, as it requires sophisticated algorithms capable of handling large amounts of data and making rapid decisions.

The inherent variability of renewable energy sources also adds further uncertainty to the economic dispatch of TPU-ESS systems. Existing ED models often rely on forecasted renewable generation, which is not always accurate. Errors in forecasting can lead to suboptimal dispatch decisions, either causing unnecessary cycling of the coal unit or leading to underutilization of the ESS [38]. The development of more accurate forecasting models and robust optimization techniques is crucial for effective economic dispatch of hybrid systems. Azad et.al [39] advocated for hybrid systems combining RESs with thermal units and battery storage for sustainable grid integration. Brandt et.al [40] employed the integration of battery and thermal energy storage has been highlighted as effective for reducing ramp-up and ramp-down events, mitigating thermal fatigue, and increasing plant efficiency. Bahloul et.al [41] demonstrated that ESS enhances system reliability by providing ancillary services including frequency regulation and load balancing, contributing to grid stability. The literature review also strengthens the argument that hybrid energy systems with ESS are crucial for improving flexibility, reliability, and economic performance in a grid increasingly dominated by renewable energy [42, 43]. Other literature reviews are summarized as the following Table 2. The real-life applications have also shown promising results of thermal power plants integrated with ESS in addressing the slow response and limited frequency regulation capability of conventional coal-fired units. For example, in Lingwu, Ningxia (600 MW supercritical unit with 36 flywheel systems, 630kW/125kWh each) and Shuozhou, Shanxi (350 MW circulating fluidized bed unit with lithium battery, 6MW/6MWh, and flywheel systems, 2MW/0.5MWh), all in China, energy storage has effectively improved both primary and secondary frequency regulation performance. These projects have also demonstrated significant economic benefits by generating extra revenue from ancillary service markets, making ESS deployment on the thermal power side a viable and profitable solution for enhancing power system stability and flexibility.

Table 2: Literature reviews of ESS-assisted power generations

Ref	Authors	ESS Types	Control strategy	Economical constraints	Pollutant emissions	Advantages	Disadvantages
[32]	Jicheng Hui, 2023	Thermal energy storage	Operational strategies that enable deep and flexible load adjustments in coal combustion processes, facilitated by the preheating effect of the TPU.	Its economic viability, considering cost-effectiveness and potential financial benefit are evaluated.	Carbon emission is analyzed.	The approach offers enhanced operational flexibility, allowing coal-fired power plants to adjust loads, accommodating fluctuations.	The technical complexity of integrating CFB preheating systems and ensuring seamless operation within existing plant infrastructures.
[35]	Pengfei Su, 2023	Thermal storage system	A multi-objective optimization model balance electricity costs, and emissions.	Economic implications, demonstrating significant reductions in electricity and emission costs, with electricity costs reduced.	Emission costs sharply reduced	The approach offers enhanced operational flexibility, improved economic performance.	Advanced scheduling models and integration of plant operations.
[44]	Yansong Zhu, 2024	Hybrid energy storage systems, combining batteries and flywheels.	Advanced energy management and operation strategies for HESS, aiming to enhance the regulation capabilities of TPUs under AGC.	The economic implications of implementing HESS, addressing cost-effectiveness and financial viability.	Not included.	The integration of HESS enhances the AGC performance of TPUs leading to improved grid stability and reliability.	Managing hybrid systems and the need for investments, which pose operational and financial hurdles.
[45]	Shiye Yan, 2024	Batteries and thermal storage	A two-stage optimization framework is proposed, focusing on coordinating ESS and implementing deep peak shaving regulation.	Economic factors including operational costs and capital investments in ESS and thermal generator upgrades.	The study aims to reduce reliance on fossil fuels.	The proposed approach offers improved grid flexibility, better accommodation of RES.	The initial capital costs of ESS deployment and control mechanisms.
[46]	Yongli Wang, 2024	Virtual energy storage characteristics of heating networks.	Optimization techniques that exploit the weak equilibrium characteristics to address high-frequency fluctuations.	Not included	The proposed strategies aim to decrease reliance on fossil fuels, thereby reducing emissions.	The approach enhances stability of integrated energy systems.	The complexity of modeling and controlling virtual energy storage dynamics and ensuring.
[47]	Ying Zhu, 2024	Pumped storage systems.	An environmental and economic scheduling approach that prioritizes the operation of thermal units based on energy-saving and emission-reduction principles.	Minimizing operational costs by optimizing the dispatch of thermal units to maximize the wind energy.	The strategy seeks to reduce overall emissions.	The approach improves the accommodation rate of wind power, reduces output fluctuations, and lowers scheduling costs.	Implementing priority-based scheduling and ensuring the reliability of the integrated system.
[48]	Runjun Qin, 2025	Flywheel energy storage systems	The configuration and optimal dispatch strategies of the TPU-FESS system.	The study evaluates the economic implications of integrating FESS with TPUs, analyzing the effects on the economics of a regional power dispatch system.	The study suggests potential reductions in pollutant emissions due to efficient operation and better accommodations.	The integration of FESS with TPUs is shown to improve the regulating capacity of TPUs.	The initial investment costs associated with FESS implementation and the need for technical adaptations to existing TPU infrastructure.

1.3. Motivation and Contributions

The literature reviews have suggested that limited researches have been accomplished so far to assess how thermal units integrated with ESS can support power grid frequency regulation and scheduling optimization while overlooked the dynamic characteristics of energy storage systems and thermal power generations under multiple timescales, as well as the economic revenue analysis. The main contributions of the paper are summarized as follows:

- 1) A novel thermal power unit security indicator based on transient energy transfer is developed to evaluate the power output capability and reduce mechanical wear and component degradation during the deep peak shaving process.
- 2) An optimal dispatch method is proposed to maximize economic benefits by balancing frequency regulation demands, as well as a coordinated control strategy of the system is designed to enhance the energy storage short-term ability while relieve the pressure of TPUs.
- 3) Multiple types of energy storage systems of the constructed scenario are assessed in terms of handling system uncertainties, demonstrating that storage-assisted thermal power unit system as an economical-friendly solution.

1.4. Paper organization

The paper is organized as follows. The Introduction section provides the motivation, literature review, and a summary of the main contributions of the paper. The problem formulation section is organized in section 2. Uncertainty sets are discussed followed. Section 4 presents the robust optimization and algorithm solution, and section 5 presents a case study and the results. Conclusion section summarizes the whole work and future prospects.

2. Problem Formulation

Fig. 1 outlines the schematic of a robust optimization approach proposed in this paper for dispatching a power grid with thermal units integrated with ESSs.

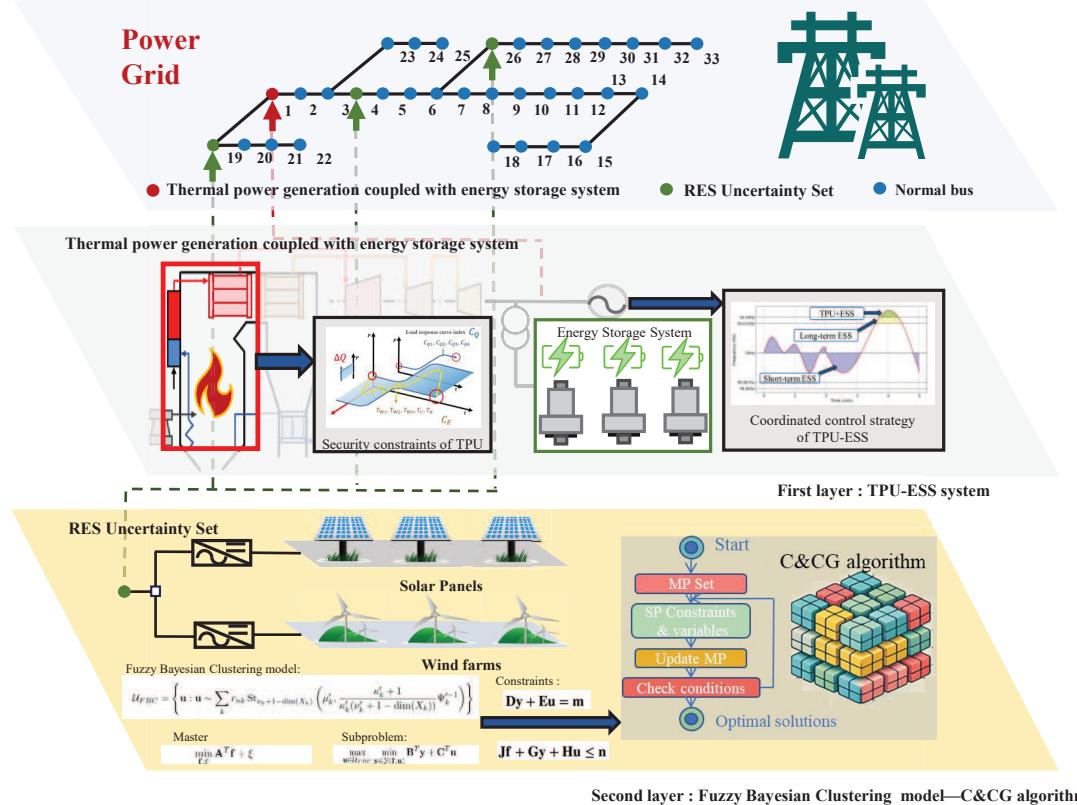


Figure 1: The robust optimization approach for dispatching a power grid with energy storage coupled thermal power units

2.1. Objective Function

Integrating RESs enables the power grid to meet demand, and the grid's ability to operate autonomously from the main grid strengthens its resilience during grid outages or natural disasters. With a diversified generation portfolio including renewable sources, the system can maintain a stable power supply for critical loads, thus enhancing overall reliability. Additionally, the ESS attached to DGs can provide backup power and frequency regulation, further stabilizing the power grid. The objective function aims to minimize the total cost or maximize net profit of the distributed energy system, accounting for various cost and revenue components. The main components include initial investment cost, operation and maintenance cost, fuel cost, emission cost, ancillary service revenue, and electricity sales revenue. Assuming the total operational period is T , the objective function can be expressed as:

$$\min_{f, P, Q, V} C^{INV} + C^{OM} + C^{FC} + C^{EMI} - R^{ASR} - R^{ESR} \quad (1)$$

The investment cost, operation and maintenance cost, fuel cost, emission cost, ancillary service revenue, and selling electricity revenue are expressed as followed:

$$C^{INV} = \sum_i \sum_j \sum_l inv^{TPU} f_{i,j,l}^{TPU} C_j^{TPU} + \sum_i \sum_j \sum_l inv^{ESS} f_{i,j,l}^{ESS} C_j^{ESS} + \sum_i \sum_j \sum_l inv^{WT} f_{i,j,l}^{WT} C_j^{WT} + \sum_i \sum_j \sum_l inv^{PV} f_{i,j,l}^{PV} C_j^{PV} \quad (2)$$

$$C^{OM} = \sum_t \sum_i \sum_j \sum_l om^{TPU} f_{i,j,l}^{TPU} C_j^{TPU} + om^{ESS} f_{i,j,l}^{ESS} C_j^{ESS} + om^{WT} f_{i,j,l}^{WT} C_j^{WT} + om^{PV} f_{i,j,l}^{PV} C_j^{PV} \quad (3)$$

165 where the equation computes the total operation and maintenance costs incurred for the various types of
 166 generation technologies over a specific time horizon.

$$C^{FC} = \alpha_{fc} \sum_t \sum_i P_{i,t}^{TPU} \quad (4)$$

167 where the fuel cost is calculated based on the power output of the traditional power generating units over
 168 time.

$$C^{EMI} = \alpha_{emi} \sigma \sum_t \sum_i P_{i,t}^{TPU} \quad (5)$$

169 where the formula estimates the total emission cost associated with the power generated by traditional
 170 power units.

$$R^{ASR} = \sum_t \sum_i P_{i,t} \beta_i P_{ref,t} \quad (6)$$

171 where the revenue from ancillary services is calculated by summing the product of power output and the
 172 ancillary service revenue factor for each bus over the time horizon.

$$R^{ESR} = \sum_t \sum_i \beta_t^m P_{i,t} \quad (7)$$

173 where the equation captures the revenue generated from the sale of electricity, where the market price factor
 174 varies over time. By multiplying the power output at each bus by the corresponding market price, this
 175 formula quantifies the financial returns from energy sales, which are critical for the overall profitability of
 176 power generation assets.

177 2.2. Constraints

178 These constraints collectively ensure the stable, reliable, and efficient operation of the ESS-TPU system
 179 under renewable energy uncertainties.

180 2.2.1. Equality Constraints

181 DistFlow equations are applied in this section to illustrate the equality constraints in the context of the
 182 power system. These equations ensure that the generation and consumption of electrical power are balanced
 183 at each node, accounting for the flow of power through the network. Equations can be expressed as follows:

$$P_{g,i} - P_{load,i} = \sum_{j \in N(i)} P_{ij} \quad \forall i \in \mathcal{N} \quad (8)$$

$$Q_{g,i} - Q_{load,i} = \sum_{j \in N(i)} Q_{ij} \quad \forall i \in \mathcal{N} \quad (9)$$

184 The voltage at each bus should be within specified bounds:

$$V_{min} \leq V_i \leq V_{max} \quad \forall i \in \mathcal{N} \quad (10)$$

185 *2.2.2. Inequality Constraints*

186 To achieve robust operation, constraints of the power system with diverse sources containing thermal
187 generator, wind power, photovoltaic, and energy storage are not negligible to ensure each component operates
188 within its capacity limits and adheres to system requirements.

189 1. Thermal power unit security constraints

190 Thermal generators must operate within defined minimum and maximum generation capacities, respect-
191 ing ramping limits to ensure stable operation, and security criterion of boiler capability is considered. The
192 output constraints for a thermal generator can be expressed as:

$$P_{g,i}^{\min} \leq P_{g,i,t}^{\text{TPU}} \leq P_{g,i}^{\max} \quad \forall i, \forall t \quad (11)$$

$$\Delta P_{g,i,t}^{\text{TPU}} \leq R_{\text{up}} \quad \forall t \quad (\text{ramping up}) \quad (12)$$

$$\Delta P_{g,i,t}^{\text{TPU}} \geq -R_{\text{down}} \quad \forall t \quad (\text{ramping down}) \quad (13)$$

193 In [5], we illustrate the load variation process under the frequency regulation command. Three axis
194 depict the conventional power ramp-up curve with its performance evaluated using the index C_Q , changes in
195 thermal parameters energy flow and fuel consumption within the system, and the potential state transition
196 path from the initial to the target state. These parameters are defined as the derived security criterion which
197 is quantified by the index C_Q to integrate the security margins alongside the original load variation require-
198 ments. The load response curve index C_Q is determined based on the deviation between the target response
199 curve and the actual response curve. Four sub-indices, C_{Q1} , C_{Q2} , C_{Q3} , and C_{Q4} , are defined to evaluate
200 the curve, corresponding to adjustment time, rise time, overshoot, and steady-state error, respectively. By
201 analyzing the performance of the target curve, the parameter calculation method for the objective function
202 is derived. Assuming the adjustment time, rise time, overshoot, and steady-state error of the target curve
203 are denoted as \hat{T}_r , \hat{T}_s , \hat{M}_p , and \hat{e}_{ss} , and the corresponding values of the actual curve are T_r , T_s , M_p , and
204 e_{ss} , the relationship can be expressed as follows:

$$C_Q = \frac{1}{4} \times \left[\left(\frac{|\hat{T}_r - T_r|}{\hat{T}_r} \right)^2 + \left(\frac{|\hat{T}_s - T_s|}{\hat{T}_s} \right)^2 + \left(\frac{|\hat{M}_p - M_p|}{\hat{M}_p} \right)^2 + \left(\frac{|e_{ss} - \hat{e}_{ss}|}{\hat{e}_{ss}} \right)^2 \right] \quad (14)$$

205 2. Wind turbine constraints

206 The output of wind turbines depends on wind speed and turbine characteristics, resulting in variability.

207 Wind power generation is constrained by available wind conditions, represented as:

$$0 \leq P_{g,i,t}^{\text{WT}} \leq P_{g,i}^{\text{rated}} \cdot f_{\text{WT}}(v_t) \quad \forall i, \forall t \quad (15)$$

208 3. PV constraints

209 Photovoltaic generation depends on solar irradiance, which varies throughout the day. The output
210 constraints for photovoltaic systems are:

$$0 \leq P_{g,i,t}^{\text{PV}} \leq P_{g,i}^{\text{rated}} \cdot f_{\text{PV}}(G_t) \quad \forall i, \forall t \quad (16)$$

211 4. Energy storage system constraints

212 Energy storage systems must follow both power and energy limits. Their constraints include state-
213 of-charge limits, charging and discharging limits, and operational constraints to ensure they contribute
214 effectively to grid stability.

$$0 \leq P_{g,i,t}^{\text{ch}} \leq u_{ch,i,t} \cdot P_{g,i}^{\text{ch,max}} \quad \forall i, \forall t \quad (\text{charging}) \quad (17)$$

$$0 \leq P_{g,i,t}^{\text{dch}} \leq u_{dch,i,t} \cdot P_{g,i}^{\text{dch,max}} \quad \forall i, \forall t \quad (\text{discharging}) \quad (18)$$

$$E_i^{\min} \leq E_{i,t} \leq E_i^{\max} \quad \forall i, \forall t \quad (\text{state of charge}) \quad (19)$$

215 These constraints ensure that the generation of each type of power source remains within safe operational
 216 limits and adjusts based on resource availability, contributing to a stable and optimized power system.

217 The following inequality represents a constraint on the total power generation investment costs for
 218 thermal power, wind power, and photovoltaic solar power:

$$\tau \sum_t \sum_i P_{i,t}^c \leq \sum_t \sum_i \sum_j \sum_l f_{i,j,l}^{TPU} C_j^{TPU} + \sum_t \sum_i \sum_j \sum_l f_{i,j,l}^{WT} C_j^{WT} + \sum_t \sum_i \sum_j \sum_l f_{i,j,l}^{PV} C_j^{PV} \quad (20)$$

219 This constraint implies that the total required power generation, weighted by τ , must not exceed the
 220 sum of the investment costs for the thermal, wind, and PV energy sources.

221 3. Constraints of energy storage system

222 When the system frequency deviation surpasses the established dead zone, the TPU and the ESS must
 223 operate synchronously to engage in primary frequency regulation. This coordination balances generation and
 224 demand, mitigating frequency deviation effectively. Both the TPU and ESS utilize droop control for primary
 225 frequency regulation, following the droop control logic of the TPU. The droop control power command for
 226 the ESS is calculated as:

$$P_{ess} = K_f \cdot \Delta f \quad (21)$$

227 The droop control for both TPU and ESS is described as:

$$\begin{cases} P_v^{\text{droop}} = -K_f \cdot \Delta f \\ P_G^{\text{droop}} = -K_g \cdot \Delta f \end{cases} \quad (22)$$

228 The real-time power output deviation of the TPU is calculated as:

$$\Delta P_G = P_G^{\text{droop}} - P_G^{\text{actual}} \quad (23)$$

229 As Fig. 2 shown, frequency regulation response of different ESS. The red line represents the system
 230 frequency over time, with short-term ESS, long-term ESS, and TPU-ESS contributions marked. The short-
 231 term ESS responds first to frequency deviations below 49.967 Hz, as indicated by the shaded blue area.
 232 Long-term ESS becomes active to support longer duration deviations. The TPU+ESS integration provides
 233 additional support when the frequency deviation exceeds 50.033 Hz. This coordination ensures optimal
 234 frequency regulation and grid stability.

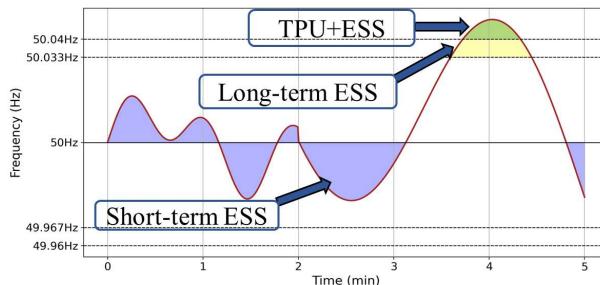


Figure 2: Coordinated dispatch strategy for TPU-ESS systems

235 The traditional operation of ESS is divided into two stages. Initiated when the system frequency deviation
 236 exceeds the dead zone (set to 0.033 Hz in China), the ESS engages in frequency regulation, and activated
 237 when the frequency deviation is within the dead zone, allowing the ESS to recover its SOC.

238 An integrated control strategy for the ESS is proposed, prioritizing frequency regulation demands while
 239 considering SOC recovery. In the operational hierarchy of the grid, frequency regulation commands are
 240 executed with the highest priority. However, when SOC recovery does not interfere with frequency regulation,
 241 the ESS can execute a combined output command:

$$P_{ess_{total}} = P_{ess_{freq}} + P_{ess_{recovery}} \quad (24)$$

242 This approach allows for simultaneous frequency regulation and SOC replenishment, optimizing the
243 operational efficiency of the ESS.

244 The power output command of the ESS, P_f , is formulated based on the SOC and frequency deviation
245 as:

$$P_f = \begin{cases} 0, & SOC \leq SOC_{\min} \\ \min(P_F^{\text{droop}} + \Delta P_G, P_m), & SOC_{\min} < SOC \leq SOC_{\text{high}} \\ \min(P_F^{\text{droop}} + \Delta P_G + P_{\text{rec}}, P_m), & SOC_{\text{high}} < SOC \leq SOC_{\max} \\ P_m, & SOC > SOC_{\max} \end{cases} \quad (25)$$

246 Alternatively, during charging operations, the command is:

$$P_f = \begin{cases} -P_m, & SOC \leq SOC_{\min} \\ \max(P_F^{\text{droop}} + \Delta P_G + P_{\text{rec}} - P_m), & SOC_{\min} < SOC \leq SOC_{\text{high}} \\ \max(P_F^{\text{droop}} + \Delta P_G, P_m), & SOC_{\text{high}} < SOC \leq SOC_{\max} \\ 0, & SOC > SOC_{\max} \end{cases} \quad (26)$$

247 3. Uncertainty set

248 3.1. Renewable Energy Source Uncertainty Set

249 A crucial step before the system planning is conducting a comprehensive assessment of RES availability.
250 This is essential due to the intermittent and variable nature of RES-based DGs, which are influenced by
251 fluctuating weather conditions. The renewable energy output for photovoltaic and wind turbine systems can
252 be modeled with constraints that account for uncertainty in solar irradiance, temperature, and wind speed.

$$P_{i,t}^{WT} = \begin{cases} 0 & \text{if } v_{i,t} < v_{\text{in}} \text{ or } v_{i,t} > v_{\text{out}} \\ \frac{v_{i,t} - v_{\text{in}}}{v_r - v_{\text{in}}} \cdot P_{\text{rated}} & \text{if } v_{\text{in}} \leq v_{i,t} < v_r \\ P_{\text{rated}} & \text{if } v_r \leq v_{i,t} \leq v_{\text{out}} \end{cases} \quad (27)$$

$$P_{i,t}^{PV} = \eta_{PV} \cdot S_{PV} \cdot \frac{G_{i,t}}{G_{STC}} \cdot [1 - \alpha_T(T_{i,t} - T_{STC})] \quad (28)$$

253 3.2. Load Profile Analysis

254 Load profile analysis helps utilities and system operators understand the expected variations in electricity
255 demand over a 24-hour period, allowing them to plan generation, optimize resource allocation, and ensure
256 grid stability. A typical day-ahead load profile consists of hourly power demand values for a 24-hour
257 period, which are generated based on various factors such as weather conditions, time of day, and historical
258 consumption patterns. Below is representing the total demand P_t of the proposed system at any time t over
259 the 24-hour period using the sum of individual consumer types:

$$P_t = \sum_{i=1}^N P_{i,t} \quad (29)$$

260 For clustering or segmentation of load data for day-ahead forecasting:

$$C_k = \{P_{i,t} : d(P_{i,t}, \mu_k) \leq d(P_{i,t}, \mu_j), \forall j \neq k\} \quad (30)$$

261 3.3. Fuzzy Bayesian Clustering Model

262 In this section, Fuzzy Bayesian Clustering (FBC) method is described. This method combines fuzzy
 263 clustering with Bayesian analysis, allowing each data point to partially belong to multiple clusters with as-
 264 sociated degrees of membership. Bayesian inference further quantifies the uncertainty in cluster assignments,
 265 making FBC suitable for dynamic and uncertain data in energy systems. The FBC approach is illustrated
 266 in the accompanying figure, which highlights the load forecasting and renewable energy uncertainty set. The
 267 fuzzy Bayesian clustering steps can be illustrated as followed shown in Fig: 3.Three Gaussian-distributed
 268 clusters with specific means and covariance matrices is generated. The generated synthetic data provides
 269 a realistic foundation for testing clustering algorithms and observing how they respond to different distri-
 270 butions shown in Fig: 3(a). The KMeans approach is refined in subsequent steps shown in Fig: 3(b). This
 271 approach allows for overlapping clusters and reflects the uncertainty in each assignment, providing a more
 272 flexible and realistic representation of the data structure shown in Fig: 3(c).

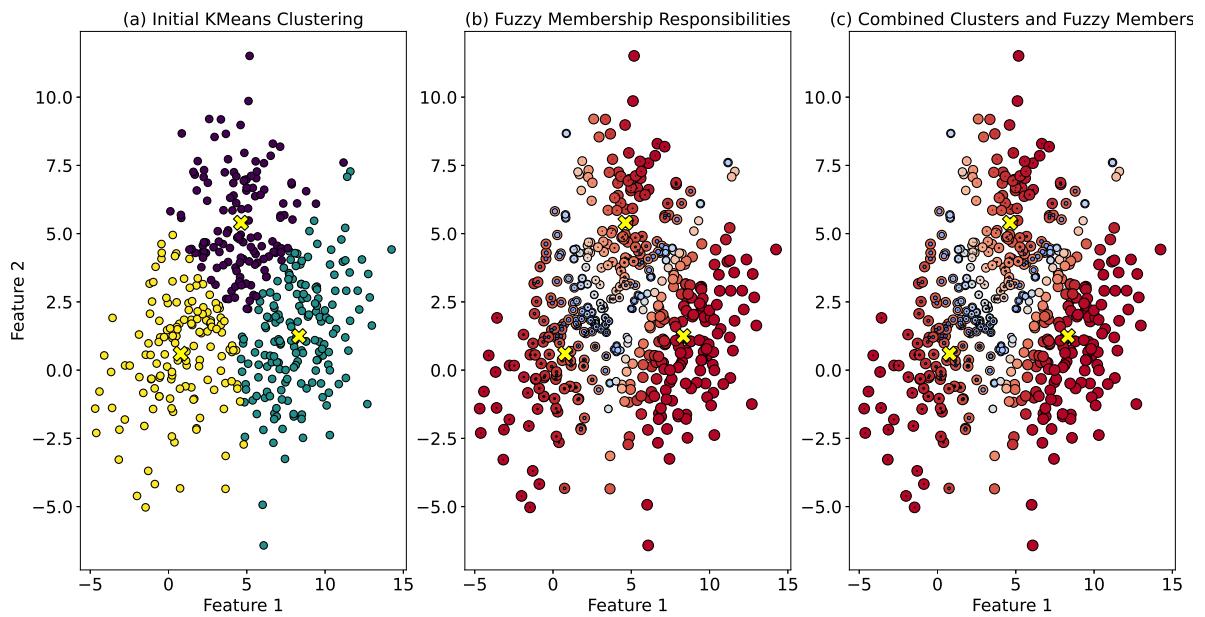


Figure 3: Visualization of the three steps in Fuzzy Bayesian Clustering

273 Assume a dataset $X = \{x_1, x_2, \dots, x_N\}$ is used to be clustered into K clusters. The steps of Fuzzy
 274 Bayesian Clustering are as follows. First, Utilizing the KMeans algorithm to initialize the cluster centers
 275 $\{\mu_k\}_{k=1}^K$. Then, for each data point x_i , calculate its fuzzy responsibility r_{ik} , representing the degree to which
 276 x_i belongs to cluster k . The responsibility is given by:

$$r_{ik} = \frac{\pi_k \cdot p(x_i | \theta_k)}{\sum_{j=1}^K \pi_j \cdot p(x_i | \theta_j)} \quad (31)$$

277 Then, using the fuzzy responsibilities, update the cluster centers μ_k and other parameters iteratively to
 278 approach the optimal solution.

$$\mu_k = \frac{\sum_{n=1}^N r_{nk} \cdot x_n}{\sum_{n=1}^N r_{nk}} \quad (32)$$

279 If it is applicable, then update the cluster covariances.

$$\Sigma_k = \frac{\sum_{n=1}^N r_{nk} \cdot (x_n - \mu_k)(x_n - \mu_k)^T}{\sum_{n=1}^N r_{nk}} \quad (33)$$

280 Then, updated the priors.

$$\pi_k = \frac{1}{N} \sum_{n=1}^N r_{nk} \quad (34)$$

281 Finally, repeat the calculation of fuzzy responsibilities and the update of cluster centers until convergence,
282 resulting in the final fuzzy clustering.

283 *3.4. Formulation of FBC Uncertainty Set*

284 The uncertainty set is constructed by capturing the probabilistic nature of data point assignments to clusters.
285 The fuzzy membership structure is fundamental in defining the uncertainty set for robust optimization,
286 especially when dealing with renewable energy generation, which is inherently variable and unpredictable. :

287 The posterior predictive distribution in FBC represents the likelihood of a new data point x_{n+1} belonging
288 to any of the clusters k given the observed data X_n and model parameters Ξ . This distribution captures
289 both the clustering structure and the probabilistic membership of each point across clusters.

290 The posterior predictive distribution for a new data point x_{n+1} is given by:

$$p(x_{n+1}|X_n, \Xi) \sim \sum_k r_{nk} \text{St}_{\nu_k + 1 - \dim(X_k)} \left(\mu'_k, \frac{\kappa'_k + 1}{\kappa'_k(\nu'_k + 1 - \dim(X_k))} \Psi'^{-1}_k \right) \quad (35)$$

291 The uncertainty set \mathcal{U} in FBC is then constructed by combining the posterior predictive distributions of
292 each cluster, weighted by the fuzzy memberships. This set represents the range of potential outcomes for
293 x_{n+1} , encapsulating the full scope of variability in the model based on the observed data. Mathematically,
294 the uncertainty set \mathcal{U} can be defined as:

$$\mathcal{U} = \left\{ x : x \sim \sum_k r_{nk} \text{St}_{\nu_k + 1 - \dim(X_k)} \left(\mu'_k, \frac{\kappa'_k + 1}{\kappa'_k(\nu'_k + 1 - \dim(X_k))} \Psi'^{-1}_k \right) \right\} \quad (36)$$

295 This representation means that any point x in the uncertainty set is drawn from the mixture distribution
296 specified by the posterior predictive distribution. Each cluster k contributes to the uncertainty set proportionally
297 to its responsibility r_{nk} for the data point x_{n+1} . High responsibility values indicate that a cluster has
298 a strong influence over the point's membership, while low values indicate a weaker influence. This fuzzy mem-
299 bership enables the uncertainty set to accommodate points that belong to multiple clusters, effectively cap-
300 turing the variability of renewable output patterns. To guarantee tractability and robust feasibility in the pres-
301 ence of uncertainty modeled by FBC, we derive a confidence-bound-based outer approximation of the uncer-
302 tainty set \mathcal{U} in Eq. (36). Specifically, the predictive posterior for each cluster k is a multivariate Student- t dis-
303 tribution, from which we extract a high-confidence interval, $[\mu'_k - t_{\alpha/2, \nu'_k} \cdot \sigma_k, \mu'_k + t_{\alpha/2, \nu'_k} \cdot \sigma_k]$, with $\sigma_k =$
304 $\sqrt{\frac{\kappa'_k + 1}{\kappa'_k(\nu'_k + 1 - \dim(X_k))} \cdot \Psi'_k}$.

305 In this construction, each cluster is represented by a Student- t distribution with parameters specific to
306 that cluster. The Student- t distribution is particularly useful here because it is robust to outliers and can
307 accommodate a variety of data distributions. The degrees of freedom $\nu_k + 1 - \dim(X_k)$ control the shape
308 of the distribution, allowing it to capture the inherent variability in renewable output for that cluster. The
309 mean μ'_k represents the expected value of data points in cluster k , while the precision κ'_k scales the Student- t
310 distribution, influencing the spread around the mean. A higher precision κ'_k implies more confidence in the
311 mean estimate. The degrees of freedom ν'_k affect the tail behavior of the distribution, with higher values
312 leading to a more Gaussian-like shape and lower values resulting in heavier tails, accommodating more
313 variability. Finally, the scale matrix Ψ'_k adjusts for variability in multiple dimensions, making the model
314 robust to multivariate uncertainty.

315 The constructed uncertainty set \mathcal{U} can now be applied in robust optimization to improve the resilience
316 of the system. This uncertainty set allows the optimization model to consider a variety of possible outcomes
317 for renewable output and make decisions that remain feasible under different scenarios. For instance, in

318 energy dispatch, the robust optimization framework can look at the lower end of the uncertainty set to
 319 prepare for worst-case scenarios, ensuring backup from thermal or stored energy is available when renewable
 320 output is low. Conversely, the upper bounds of the uncertainty set represent favorable conditions where
 321 renewable generation is high, enabling the dispatch model to minimize thermal generation and utilize storage
 322 to capture excess renewable energy. By using the full range of the uncertainty set, the optimization model
 323 can dynamically adjust decisions based on the probabilistic distribution of renewable energy, balancing the
 324 trade-off between cost and reliability.

325 The final form of the uncertainty set \mathcal{U} can be represented as a distribution over possible future values,
 326 capturing the entire range of cluster-based predictions from FBC:

$$\mathcal{U} = \left\{ x \in \mathbb{R}^d : p(x|X_n, \Xi) \sim \sum_{k=1}^K r_{nk} \text{St}_{\nu_k+1-\dim(X_k)} \left(\mu'_k, \frac{\kappa'_k + 1}{\kappa'_k(\nu'_k + 1 - \dim(X_k))} \Psi_k'^{-1} \right) \right\} \quad (37)$$

327 where d is the dimensionality of the data space. This set represents all possible outcomes x that are
 328 consistent with the fuzzy-clustered predictive distribution, covering both typical and extreme values. In
 329 Fuzzy Bayesian Clustering, the uncertainty set \mathcal{U} is constructed by combining cluster-specific Student-
 330 t distributions weighted by fuzzy memberships. This set provides a robust representation of potential
 331 renewable energy outputs, accommodating uncertainty in both cluster assignment and future data points.
 332 By integrating this uncertainty set into robust optimization, energy systems can make informed decisions
 333 that remain effective under a range of future conditions, enhancing the resilience and reliability of the power
 334 grid in the face of renewable variability.

335 4. Robust Optimization methodology

336 4.1. Robust Power Grid Dispatching Model

337 A two-stage robust optimization framework is proposed in this paper for power system dispatching
 338 considering the integration of DG units, renewable energy sources, and storage. The objective is to handle
 339 the uncertainties inherent in RES generation and load demand. These intervals reflect the marginal variability
 340 captured by each cluster. Then, the total uncertainty set is conservatively approximated by aggregating all
 341 cluster-wise bounds according to the fuzzy membership weights r_{nk} . This forms a bounding region $\bar{\mathcal{U}}$ in
 342 either box-type or ellipsoidal form, which is then used in the outer maximization in:

$$\min_{\mathbf{f} \in \mathcal{F}} (\mathbf{A}^T \mathbf{f}) + \max_{\mathbf{u} \in \bar{\mathcal{U}}} \min_{\mathbf{y} \in \mathcal{Y}(\mathbf{f}, \mathbf{u})} (\mathbf{B}^T \mathbf{y} + \mathbf{C}^T \mathbf{u}). \quad (38)$$

343
 344 s.t.

$$\mathbf{Dy} + \mathbf{Eu} = \mathbf{m} \quad (39)$$

$$\mathbf{Jf} + \mathbf{Gy} + \mathbf{Hu} \leq \mathbf{n} \quad (40)$$

345 where, in the optimization model, \mathbf{f} represents the vector of all first-stage decision variables, which in-
 346 cludes $\mathbf{f}^{\text{TPU}} = [f_{\text{TPU},i,j,l}]$, $\mathbf{f}^{\text{WT}} = [f_{\text{WT},i,j,l}]$, and $\mathbf{f}^{\text{PV}} = [f_{\text{PV},i,j,l}]$ for all i , j , and l . The binary set
 347 $\mathbf{F} = \{0, 1\}^{3 \times I_b \times J_g \times L_i}$ imposes constraints on the L_i increments of the J_g types of thermal power units, wind
 348 turbine, and photovoltaic units in a power grid with I_b candidate buses. The matrices \mathbf{A} and \mathbf{J} correspond to
 349 the parameters for the binary variables \mathbf{f} . Meanwhile, in the second stage, \mathbf{U} represents the uncertainty set
 350 for the vector \mathbf{u} , which includes the wind and solar power output $\boldsymbol{\omega}_{\text{WT}} = [\omega_{\text{WT},i,j,l,t}]$, $\boldsymbol{\omega}_{\text{PV}} = [\omega_{\text{PV},i,j,l,t}]$ for all
 351 i , j , l , and t , and the active and reactive load demand $\mathbf{P}_c = [P_{c,i,t}]$, $\mathbf{Q}_c = [Q_{c,i,t}]$ for all i and t . The matrices
 352 \mathbf{C} , \mathbf{E} , and \mathbf{H} represent the parameters for the uncertain variables \mathbf{u} . The set $\mathbf{Y}(\mathbf{f}, \mathbf{u})$ represents the feasi-
 353 ble region for the vector of other continuous variables $\mathbf{y} = [\mathbf{P}_{\text{TPU}}; \mathbf{P}_{\text{WT}}; \mathbf{P}_{\text{PV}}; \mathbf{Q}_{\text{TPU}}; \mathbf{Q}_{\text{WT}}; \mathbf{Q}_{\text{PV}}; \mathbf{P}; \mathbf{Q}; \mathbf{V}]$,
 354 where $\mathbf{P}_{\text{TPU}} = [P_{\text{TPU},i,t}]$, $\mathbf{P}_{\text{WT}} = [P_{\text{WT},i,t}]$, $\mathbf{P}_{\text{PV}} = [P_{\text{PV},i,t}]$, $\mathbf{Q}_{\text{TPU}} = [Q_{\text{TPU},i,t}]$, $\mathbf{Q}_{\text{WT}} = [Q_{\text{WT},i,t}]$,
 355 $\mathbf{Q}_{\text{PV}} = [Q_{\text{PV},i,t}]$, $\mathbf{Q} = [Q_{i,t}]$, and $\mathbf{V} = [V_{i,t}]$ for all i and t , and $\mathbf{P} = [P_{1+,t}, P_{1-,t}, P_{i,t}]$ for all i and t ,

356 where $i \neq 1$. The corresponding parameter matrices in the objective function and inequality constraints
 357 are represented by \mathbf{B} and \mathbf{G} . The vectors \mathbf{m} and \mathbf{n} represent the remaining scalars in the equality and
 358 inequality constraints, respectively.

359 *4.2. Robust Methods for Solving Power Grid Optimal Dispatching*

360 In the two-stage optimization problem formulation subsection, the uncertainty set is defined by the
 361 posterior predictive distribution capturing the range of renewable outputs based on historical and forecast
 362 data. The problem solving method is illustrated in Fig. 4.

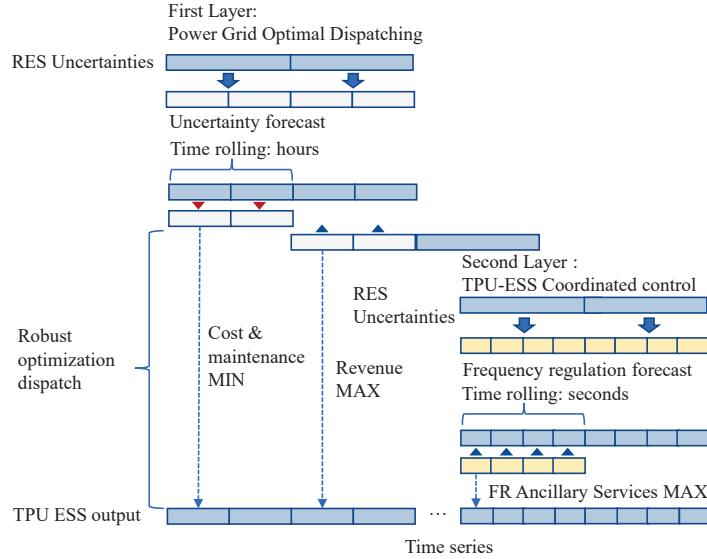


Figure 4: The proposed two-stage robust optimization procedure

363 *4.2.1. Model Formulation with FBC-Based Uncertainty Set*

364 The first stage of the optimization problem focuses on making initial configuration decisions for the
 365 power grid, such as selecting and placing power generation units. The second stage then uses the FBC-
 366 based uncertainty set to account for RES variability in dispatching and operational decisions.

367 The robust optimization model can be formulated as follows:

$$\min_{\mathbf{f} \in \mathcal{F}} \mathbf{A}^T \mathbf{f} + \xi \quad (41)$$

368 subject to:

$$\xi \geq \mathbf{B}^T \mathbf{y} + \mathbf{C}^T \mathbf{u} \quad \forall \mathbf{y} \in \mathcal{Y}(\mathbf{f}, \mathbf{u}) \quad (42)$$

$$\mathbf{D}\mathbf{y} + \mathbf{E}\mathbf{u} = \mathbf{m} \quad (43)$$

$$\mathbf{J}\mathbf{f} + \mathbf{G}\mathbf{y} + \mathbf{H}\mathbf{u} \leq \mathbf{n} \quad (44)$$

371 where, \mathbf{f} represents the vector of first-stage decision variables, which includes decisions regarding the config-
 372 uration of thermal power units, wind turbines, and photovoltaic units. The second-stage decision variables,
 373 \mathbf{y} and \mathbf{u} , represent the operational decisions and uncertain parameters, respectively, where \mathbf{u} is defined by
 374 an uncertainty set based on the FBC model.

375 4.2.2. *FBC-Based Uncertainty Set Definition*

376 Using the FBC model, we construct a probabilistic uncertainty set \mathcal{U}_{FBC} , which accounts for the vari-
 377 ability in wind and solar outputs. This set is defined as a weighted mixture of cluster-specific distributions
 378 derived from the posterior predictive distribution in FBC:

$$\mathcal{U}_{FBC} = \left\{ \mathbf{u} : \mathbf{u} \sim \sum_k r_{nk} \text{St}_{\nu_k + 1 - \dim(X_k)} \left(\mu'_k, \frac{\kappa'_k + 1}{\kappa'_k(\nu'_k + 1 - \dim(X_k))} \Psi'^{-1}_k \right) \right\} \quad (45)$$

379 where each cluster k represents a distinct renewable output scenario, and r_{nk} represents the fuzzy member-
 380 ship of the scenario.

381 4.2.3. *Two-Stage Optimization considering FBC Uncertainty Set*

382 The first stage solves for the optimal power grid configuration under different renewable scenarios, while
 383 the second stage adjusts operational decisions based on the uncertainty set \mathcal{U}_{FBC} .

384 The optimization can be split into a master problem (MP) and subproblems (SP) that correspond to
 385 different scenarios within the FBC-based uncertainty set.

386 1. Master Problem (MP)

$$\min_{\mathbf{f}, \xi} \mathbf{A}^T \mathbf{f} + \xi \quad (46)$$

387 subject to:

$$\xi \geq \mathbf{B}^T \mathbf{y} + \mathbf{C}^T \mathbf{u} \quad \forall \mathbf{y} \in \mathcal{Y}(\mathbf{f}, \mathbf{u}), \mathbf{u} \in \mathcal{U}_{FBC} \quad (47)$$

$$\mathbf{Dy} + \mathbf{Eu} = \mathbf{m} \quad (48)$$

$$\mathbf{Jf} + \mathbf{Gy} + \mathbf{Hu} \leq \mathbf{n} \quad (49)$$

390 The result of the master problem is a relaxed solution that provides a lower bound LB for the optimiza-
 391 tion. This solution is then passed to the subproblems to evaluate its feasibility under different scenarios
 392 within the uncertainty set.

393 2. Subproblem (SP)

394 For each scenario k , represented by cluster k in the FBC uncertainty set, we solve a subproblem to
 395 identify the worst-case scenario within the uncertainty set. This ensures the feasibility of the first-stage
 396 decision \mathbf{f} under the worst-case realizations of renewable output.

$$\max_{\mathbf{u} \in \mathcal{U}_{FBC}} \min_{\mathbf{y} \in \mathcal{Y}(\mathbf{f}, \mathbf{u})} \mathbf{B}^T \mathbf{y} + \mathbf{C}^T \mathbf{u} \quad (50)$$

397 subject to:

$$\mathbf{Dy} + \mathbf{Eu} = \mathbf{m} \quad (51)$$

$$\mathbf{Jf} + \mathbf{Gy} + \mathbf{Hu} \leq \mathbf{n} \quad (52)$$

398 This subproblem evaluates the upper bound UB_k for each scenario and adjusts the feasible region by
 399 adding cuts to exclude infeasible solutions. The optimality cuts, which are associated with the worst-case
 400 uncertain variables, are then added to the master problem. To solve the challenging bi-level “max-min”
 401 subproblem using standard solvers, we formulate the KKT optimality conditions as follows:

$$\mathbf{Dy} + \mathbf{Eu} = \mathbf{m} \quad (53)$$

$$\mathbf{B}^T + \gamma^T \mathbf{G} + \delta^T \mathbf{D} = 0 \quad (54)$$

$$\mathbf{Jf} + \mathbf{Gy} + \mathbf{Hu} \leq \mathbf{n} \quad (55)$$

$$\gamma^\top (\mathbf{n} - \mathbf{J}\mathbf{f} - \mathbf{G}\mathbf{y} - \mathbf{H}\mathbf{u}) = 0 \quad (56)$$

402 Constraint (56) represents the complementary slackness condition, indicating that either γ or $(\mathbf{n} - \mathbf{J}\mathbf{f} - \mathbf{G}\mathbf{y} - \mathbf{H}\mathbf{u})$
403 should be zero. Using the Big-M method, we can transform this condition along with Constraint (55) into
404 the following mixed-integer linear constraints:

$$0 \leq \mathbf{n} - \mathbf{J}\mathbf{f} - \mathbf{G}\mathbf{y} - \mathbf{H}\mathbf{u} \leq \mathbf{M}\sigma \quad (57)$$

$$0 \leq \gamma \leq \mathbf{M}(1 - \sigma) \quad (58)$$

405 where \mathbf{M} is a sufficiently large constant and σ is a binary variable. The KKT conditions are sufficient when
406 the subproblem is convex. The complete set of constraints now comprises (53), (54), (57), and (58).

407 4.2.4. Solution Procedure

408 The solution procedure involves iteratively solving the master problem and subproblems, refining the
409 uncertainty set \mathcal{U}_{FBC} based on the worst-case scenarios identified in each iteration. This approach is
410 summarized as follows:

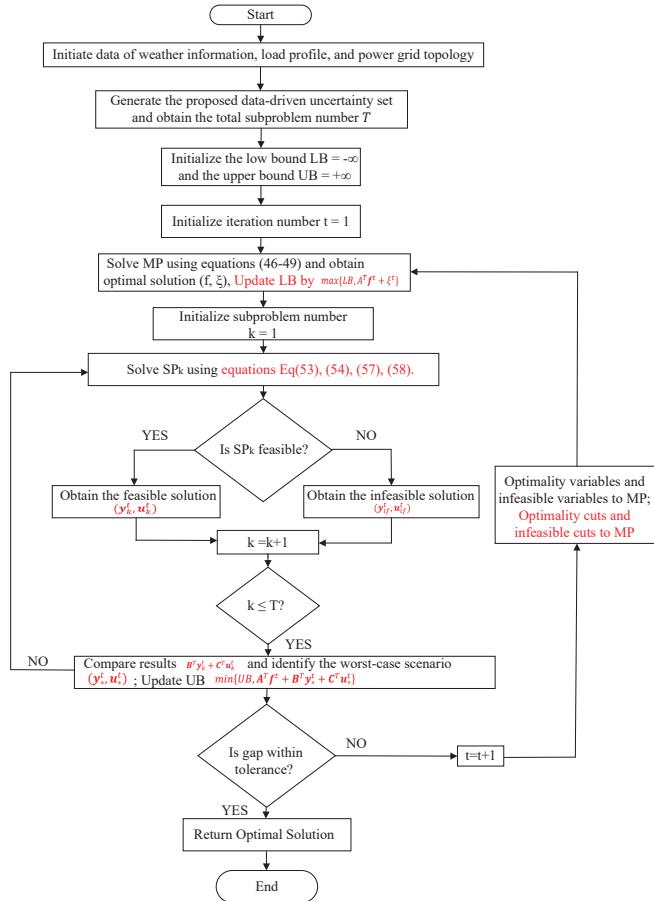


Figure 5: Flowchart of the solution algorithm for FBC-based framework

411 • **Step 0:** Set initial lower bound $LB = -\infty$ and upper bound $UB = +\infty$. Define tolerance ϵ and set
412 iteration $t = 1$.

- **Step 1:** Solve the master problem (MP) and obtain the tentative solution (\mathbf{f}^t, ξ^t) . Update the lower bound $LB = \max \{LB, A^\top \mathbf{f}^t + \xi^t\}$.
- **Step 2:** Solve each subproblem SP_k using \mathbf{f}^t to find the optimal scenario outcome $Q_k^t = (\mathbf{y}_k^t, \mathbf{u}_k^t)$ under uncertainty.
- **Step 3:** Compare Q_k^t for all $k = 1, 2, \dots, T$, identifying the worst-case scenario $Q_*^t = (\mathbf{y}_*^t, \mathbf{u}_*^t)$ and infeasible scenario set $\mathbf{Q}_{if}^t = (\mathbf{y}_{if}^t, \mathbf{u}_{if}^t)$. Update upper bound as $UB = \min \{UB, \mathbf{A}^\top \mathbf{f}^t + \mathbf{B}^\top \mathbf{y}_*^t + \mathbf{C}^\top \mathbf{u}_*^t\}$.
- **Step 4:** Check the gap between UB and LB , $GAP = \left| \frac{UB - LB}{UB} \right|$. If the gap is below ϵ , terminate the procedure. Otherwise, update the MP by adding new variables \mathbf{y}_*^t and \mathbf{y}_{if}^t and corresponding optimal cuts $(\mathbf{D}\mathbf{y}_*^t + \mathbf{E}\mathbf{u}_*^t = \mathbf{m})$ and $(\mathbf{J}\mathbf{f} + \mathbf{G}\mathbf{y}_*^t + \mathbf{H}\mathbf{u}_*^t \leq \mathbf{n})$, while infeasible cuts $(\mathbf{D}\mathbf{y}_{if}^t + \mathbf{E}\mathbf{u}_{if}^t = \mathbf{m})$ and $(\mathbf{J}\mathbf{f} + \mathbf{G}\mathbf{y}_{if}^t + \mathbf{H}\mathbf{u}_{if}^t \leq \mathbf{n})$. Update $t = t + 1$ and go back to step 1.

By iteratively refining the solution, this approach ensures the robustness of power grid planning decisions against the variability in renewable energy output, as represented by the FBC-based uncertainty set, the algorithm process is shown in Fig. 5.

5. Case Study: Economic Optimization and frequency regulation of the Power grid

In the section, a modified IEEE 33-bus system is used as the test power grid to validate the distributed generation network dispatching design with the FBC-C&CG framework. To find the optimal DG mix, the proposed methodologies will be analyzed under various conditions.

5.1. The Power Grid Description

The single-line topology of the system is shown in Fig. 1. The total basic load is 650 MW and 315 MVAR. In the figure, the blue nodes are denoted as normal buses where load demands are connected. The green nodes are three possible sites (bus 4, 19, and 26) that not only have load demands connected but also can be chosen to install DG units due to geographic advantages. Each possible site could install either wind generation, PV panels. The red node is the energy storage system coupled with thermal power unit (bus 1), and this is the main regulation elements for the system to resist fluctuations of the RES uncertainties.

The capital costs for thermal power plants, wind turbine, and photovoltaic generation units are \$2293/kVA, \$1882/kVA, \$4004/kVA, respectively. The O&M costs of the three DG units are \$0.012/kWh, \$0.01/kWh, and \$0.01/kWh, respectively. For thermal power unit, the fuel cost and emission penalty costs are \$0.63/kWh and \$0.02 kg/kWh, respectively. The emission factor is \$0.003 kg/kWh. For energy storage system, this study considers a capital cost of \$2000/kWh and a round-trip efficiency of 85% for flywheel energy storage systems, and a capital cost of \$400/kWh with 90% efficiency for lithium-ion battery energy storage systems. The O&M cost is estimated at \$0.004/kWh for flywheels, while the operational cost of batteries is assumed negligible due to minimal maintenance requirements.

The system is modeled on a 600 MW coal-fired thermal power plant in Lingwu, Ningxia Province, China which serves as the primary baseload generation unit, which can be shown in Table. 3. The thermal power unit ensures grid stability by providing consistent energy output, especially during periods of low renewable generation. Meanwhile, the wind turbines and PV modules operate in parallel to reduce dependency on fossil fuels and contribute to peak power demands. The base configuration which is located in Lingwu, Ningxia, employs 36 flywheel energy storage units, each with a power rating of 625 kW and a storage capacity of 153 kWh. Flywheel energy storage system (FESS) is applied for addressing transient fluctuations in wind and solar output, ensuring smoother grid operation. In contrast, the other configuration uses battery energy storage systems with the same power rating of 625 kW but a significantly higher storage capacity of 45 MWh, enabling extended-duration energy support.

Table. 4 summarizes the characteristics of the wind turbines and photovoltaic modules used in the hybrid renewable energy system. For wind turbines, the parameters include rated power, cut-in speed, rated speed, and cut-out speed, with a configuration of 3 MW rated power, 4 m/s cut-in speed, 10 m/s rated speed, and

Table 3: Characteristics of available TPU, ESS.

Thermal power unit parameters		Type I	Type II	Type III
Parameters	Rated power (MW)	600	600	600
Energy storage system parameters		Type I	Type II	Type III
Parameters	Rated Power (MW)	7.5	22.5	22.5
	Energy Capacity (MWh)	1.83	5.5	45

458 25 m/s cut-out speed. These specifications ensure efficient operation under a range of wind conditions. For
 459 PV modules, the parameters include peak power, open circuit voltage, short circuit current, voltage and
 460 current at the maximum power point, voltage temperature coefficient, current temperature coefficient, and
 461 nominal cell operating temperature. The PV modules are optimized with a peak power of 50 W and a
 462 nominal cell operating temperature of 43°C to perform reliably under high-temperature conditions.

463 Wind turbines and PV modules are strategically deployed at nodes 4, 19, and 26 within the power
 464 network. The total installed capacity is 300 MW for wind turbines and 200 MW for PV modules. This
 465 configuration takes advantage of local wind and solar resources while minimizing transmission losses and
 466 ensuring stable integration into the grid.

Table 4: Characteristics of Wind Turbine and PV Module Parameters

Wind Turbine Parameters		Value
Parameters	Rated power (MW)	3
	Cut-in speed (m/s)	4
	Rated speed (m/s)	10
	Cut-out speed (m/s)	25
PV Module Parameters		
Parameters	Peak power (W)	50
	Open circuit voltage (V)	55.50
	Short circuit current(A)	1.80
	Voltage at maximum power point (V)	38.00
	Current at maximum power point (A)	1.32
	Voltage temperature coefficient (mV/°C)	194.00
	Current temperature coefficient (mA/°C)	1.40
	Nominal cell operating temperature (°C)	43.00

467 5.2. Comparison Results of Optimization for the Power Grid

468 5.2.1. Analysis of RES Uncertainty Set

469 This analysis utilizes 10 days of weather data from China mainland, to model renewable energy generation
 470 at candidate buses 4, 19, and 26. Each station provides wind speed and solar radiation data corresponding to
 471 its assigned bus. The load profiles for all connected loads are sourced from the State Grid Shandong Electric
 472 Research Institute. The uncertainties in the system are modeled to account for wind turbine parameters,
 473 PV module parameters, and load variations across the three buses. Specifically, the uncertainty dimensions
 474 include contributions from wind turbines (3 × 3), PV modules (3 × 3), and load profiles (1), resulting in a
 475 total uncertainty dimension of 19.

476 The clustering results for normalized wind and solar data over a 10-day period are shown in Fig. 6.
 477 The solar output exhibits a clear diurnal pattern, with peak values occurring in the day time. During
 478 nighttime, the output is nearly zero. However, the peak values vary across different days, highlighting the
 479 randomness and uncertainty in solar output. In contrast to solar energy, wind output shows significantly
 480 higher variability and does not follow a clear diurnal pattern. The fluctuations in wind output are more
 481 random throughout the day, reflecting a greater degree of uncertainty.

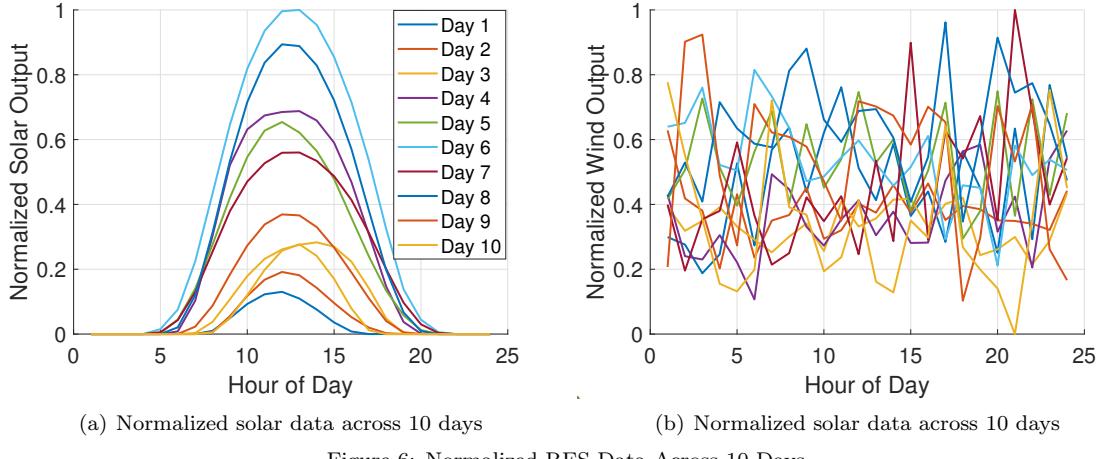


Figure 6: Normalized RES Data Across 10 Days.

482 Fig. 7 illustrates the results of clustering normalized wind and solar data over a 10-day period using the
 483 Fuzzy Bayesian Clustering method. The figure provides insights into how wind and solar energy outputs
 484 can be categorized into distinct operating patterns, aiding in the analysis of renewable energy systems.
 485 The clustering process aimed to group the data into meaningful categories, with each cluster representing
 486 a specific range of wind and solar power generation levels. This analysis enables the characterization of
 487 renewable energy variability and supports efficient energy management strategies. The three subplots in the
 488 figure illustrate different stages of the clustering process. Subplot (a) shows the initial clustering performed
 489 using the KMeans algorithm, where each data point is assigned to a single cluster. This initial step categorizes
 490 the data into three distinct clusters, representing low, medium, and high wind-solar power output conditions,
 491 with black crosses marking the cluster centers. Subplot (b) transitions to the fuzzy clustering step, which
 492 provides a probabilistic measure of each data point's membership in the clusters. In this subplot, darker
 493 points indicate strong associations with a single cluster, while lighter points reflect shared memberships across
 494 multiple clusters, capturing the transitional nature of the data. Subplot (c) combines these results, presenting
 495 the final clustering outcome that integrates the hard clustering of KMeans with the fuzzy memberships to
 496 produce a refined representation of the wind-solar patterns.

497 Clustering in subplot (a) corresponds to periods of low wind and solar output, typically observed during
 498 nighttime or under overcast weather conditions. Clustering in subplot (b) represents moderate power output,
 499 such as during early morning or late afternoon, when either wind speeds or solar radiation is partially
 500 available. Clustering in subplot (c) captures high power generation scenarios, reflecting optimal wind and
 501 solar conditions during the day. These findings are instrumental in optimizing hybrid renewable energy
 502 systems by informing decisions on energy storage allocation, grid integration strategies, and the efficient
 503 management of variable renewable energy resources.

504 5.2.2. Comparison Under Different Confidence Levels

505 Once the uncertainty sets are ready, the proposed modified C&CG algorithm will be used to solve the
 506 proposed problem. All the simulation results are implemented with CPLEX 12.8.0 using a computer with
 507 an Inter(R) Core(TM) i7-12700H CPU at 4.7 GHz.

508 Figure 8 visualizes the distribution of costs for 3 distinct categories, which include First stage cost
 509 and Total cost for three different types which are shown in Table 4. The three types represent different
 510 cost structures or scenarios, and each type includes both the First stage cost, which represents the initial
 511 investments for all generations, and the Total cost, which combines the initial costs, operation cost and
 512 revenue of the generation dispatching for 20 years. It illustrates the cost analysis of different energy storage
 513 scenarios under varying confidence levels. The x-axis categorizes the storage scenarios into three types (Type
 514 I, Type II, and Type III), further divided into *First Stage Cost* and *Total Cost* for each type. The confidence

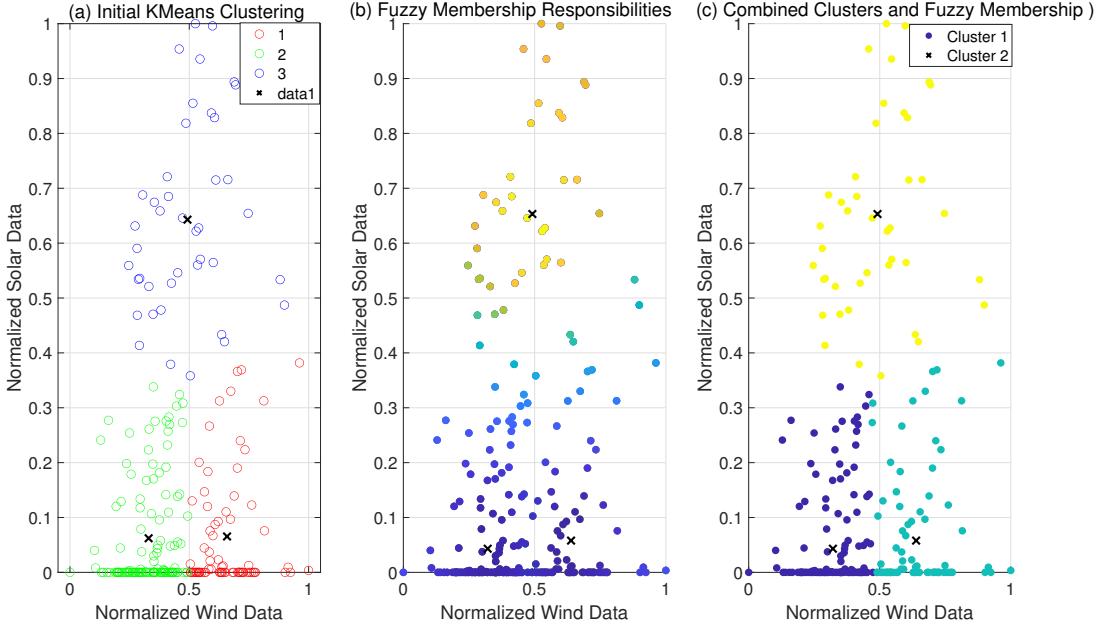


Figure 7: Normalized RES Data Across 10 Days

515 levels ranging from 0.5 to 0.95, which reflect the uncertainty tolerance in the optimization problem, reveals
 516 that as the confidence level increases, both the first stage and total costs generally rise, indicating higher
 517 expenses for robust planning under stricter uncertainty constraints. Across all scenarios, the total cost is
 518 consistently higher than the first stage cost, reflecting the inclusion of penalty costs for power shortages or
 519 operational adjustments in the total cost. Notably, Type II exhibits higher costs compared to Type I and
 520 Type III, indicating its potentially higher investment and operational requirements.

521 In this section, Type II is used as an example. From the bar chart in Fig. 8, it can be observed that when
 522 a storage capacity of 22.5 MW is configured, the reduction in total cost is the most significant. Although
 523 Type III exhibits lower initial costs, the total benefits decrease over the usage period, implying that Type
 524 II is the most effective storage configuration for long-term performance. Therefore, Type II is selected to
 525 illustrate the optimization process.

526 The optimization process begins by defining the objective function, which minimizes the total cost
 527 including both the first stage investment cost and the second stage operational cost. This optimization is
 528 solved under varying confidence levels to account for uncertainties in energy production and demand. The
 529 iteration proceeds using a C&CG method until convergence is achieved.

530 The optimization results are presented in Table. 5. For Type II, the total cost effectively decreased,
 531 and the first stage cost, representing the investment cost, remained unchanged, while the second stage cost
 532 resulted in a negative value, indicating a profit made from energy arbitrage during the operational phase.
 533 The optimization ran for multiple iterations, adjusting decision variables such as energy storage dispatch
 534 and generation to ensure convergence. The range of uncertainty, upper and lower bounds, and optimality
 535 gap were carefully monitored to determine the stopping criteria.

536 Table. 5 provides an overview of the bounds and optimality gaps under different confidence levels for the
 537 optimization of Type II storage configurations. The table highlights the iterative process of reducing the gap
 538 between the lower bound and upper bound until convergence is achieved. For each instance, corresponding
 539 to confidence levels ranging from 50% to 95%, the optimization proceeds through three iterations. As the
 540 confidence level increases, the total cost also rises, reflecting the higher costs required for robust decision-
 541 making under stricter uncertainty requirements. For instance, at a 95% confidence level, the LB and UB
 542 values in Iteration 3 are both 7,770,174, achieving convergence with an optimality gap of 0.00%. This

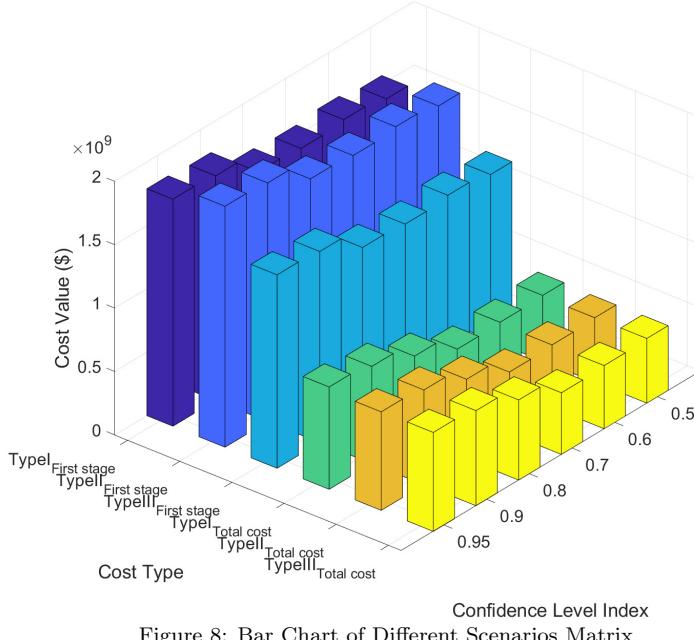


Figure 8: Bar Chart of Different Scenarios Matrix

Table 5: Bounds and gaps under different confidence levels of Type II.

Instance	Confidence level	Iteration	LB	UB	Optimality gap
1	50%	1	-8,265,328	16,380,225	150.46%
	50%	2	4,852,998	5,110,238	5.03 %
	50%	3	5,075,232	5,075,232	0.00%
2	60%	1	-8,265,328	16,325,121	150.63%
	60%	2	4,920,976	4,979,626	1.17%
	60%	3	4,955,382	4,955,382	0.00%
3	70%	1	-8,265,328	16,298,398	150.72%
	70%	2	4,780,853	4,858,691	1.60%
	70%	3	4,835,978	4,835,978	0.00%
4	80%	1	-8,265,328	16,100,244	150.33%
	80%	2	6,236,441	6,305,308	1.09%
	80%	3	6,292,328	6,292,328	0.00%
5	90%	1	-8,265,328	16,879,208	148.97%
	90%	2	7,425,467	7,501,082	1.01%
	90%	3	7,472,174	7,472,174	0.00%
6	95%	1	-8,265,328	16,396,752	150.41%
	95%	2	7,686,453	7,892,186	2.61%
	95%	3	7,770,174	7,770,174	0.00%

543 trend is consistent across all instances, with convergence achieved within three iterations regardless of the
 544 confidence level. The results demonstrate the efficiency and reliability of the optimization process in refining
 545 the bounds to achieve optimal solutions under varying uncertainty levels.

546 5.2.3. Comparison under different Type Energy Storage Systems

547 It can be observed that at lower confidence levels (0.5, 0.6, 0.7), the storage system output is relatively
 548 smooth, with small fluctuations. This is likely because lower confidence levels imply less concern about
 549 system uncertainties, resulting in storage being primarily used to smooth load fluctuations and avoid large
 550 power changes. On the other hand, at higher confidence levels (0.8, 0.9, 0.95), the variability in storage
 551 output increases significantly, especially at the 0.95 level. Fig. 9 to Fig. 11 presents the storage and thermal
 552 power outputs under different confidence levels using Type I, which is flywheel energy storage, characterized
 553 by a rated power capacity of 7.5 MW and an energy capacity of 1.83 MWh. The storage output shows
 554 relatively low variability, with fluctuations around zero, indicating limited reliance on storage to manage
 555 uncertainties. The thermal output demonstrates consistent and robust generation, highlighting its role as a
 556 resilient energy source under Type I conditions. The minimal impact of varying confidence levels on thermal
 557 output underscores its reliability in maintaining system stability.

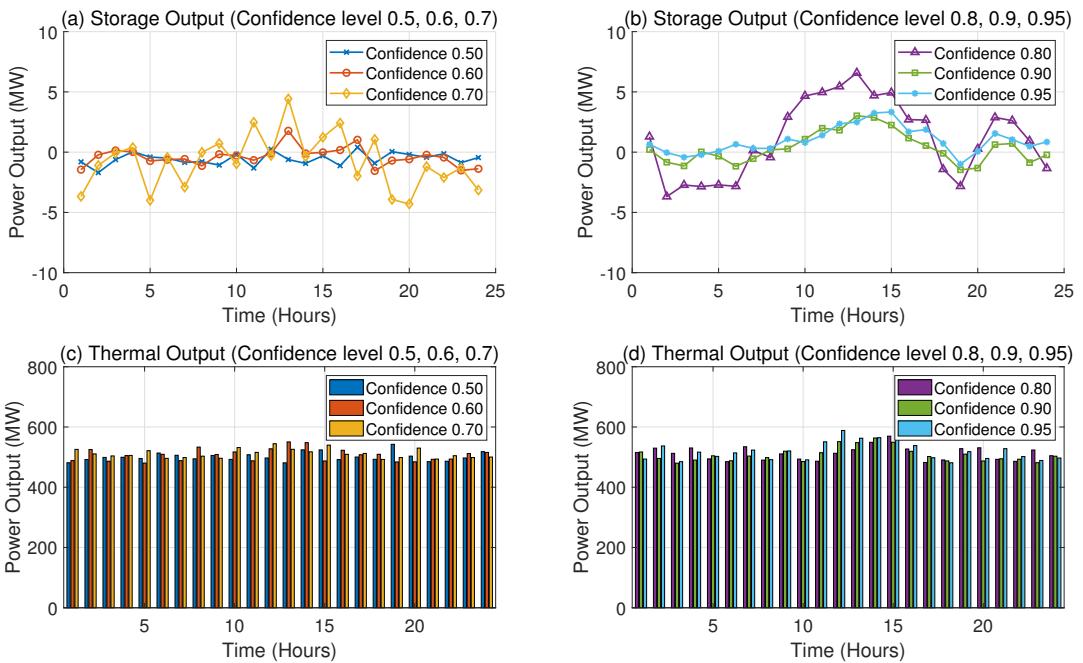


Figure 9: Storage and Thermal Power Outputs with Different Confidence Levels under Type I

558 From Fig. 9, in Type II, storage output exhibits greater variability, especially during mid-day hours, with
 559 higher confidence levels resulting in noticeable peaks. This indicates increased reliance on storage systems
 560 to manage uncertainties introduced under Type II conditions, showcasing storage as a flexible but less
 561 inherently stable resource. Despite this, the thermal output continues to provide a stable baseline of power,
 562 contributing to system resilience by mitigating the impact of storage variability. The slight decrease in
 563 thermal output during peak hours suggests the system's adaptive capability to balance storage and thermal
 564 contributions effectively.

565 From Fig. 11, the storage output reaches its highest variability across the three scenarios, especially at
 566 higher confidence levels. This highlights storage as a critical but highly dynamic component for maintaining
 567 operational resilience under high uncertainty. Peaks in storage output during mid-day emphasize its role
 568 in compensating for fluctuations in other parts of the system. Meanwhile, thermal output remains stable
 569 and reliable, though minor reductions at lower confidence levels during peak hours suggest some trade-offs
 570 between storage and thermal contributions. The comparison across the three figures reveals a progression
 571 in system reliance on storage for flexibility and resilience, while thermal generation acts as a consistent
 572 backbone, ensuring overall stability. The combination of storage and thermal systems at higher confidence

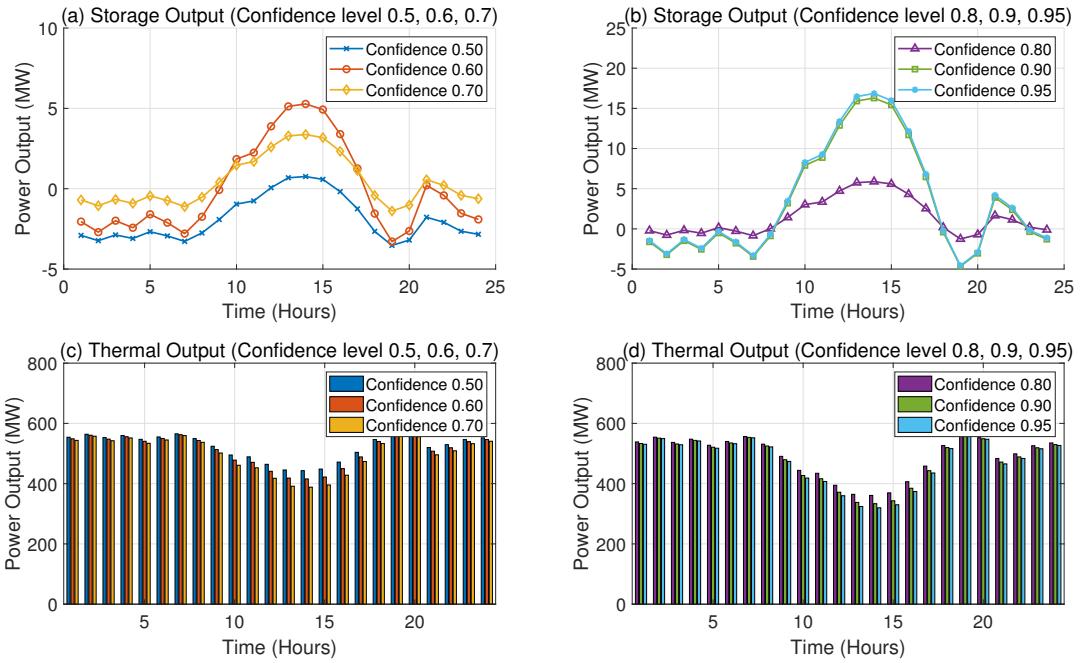


Figure 10: Storage and Thermal Power Outputs with Different Confidence Levels under Type III

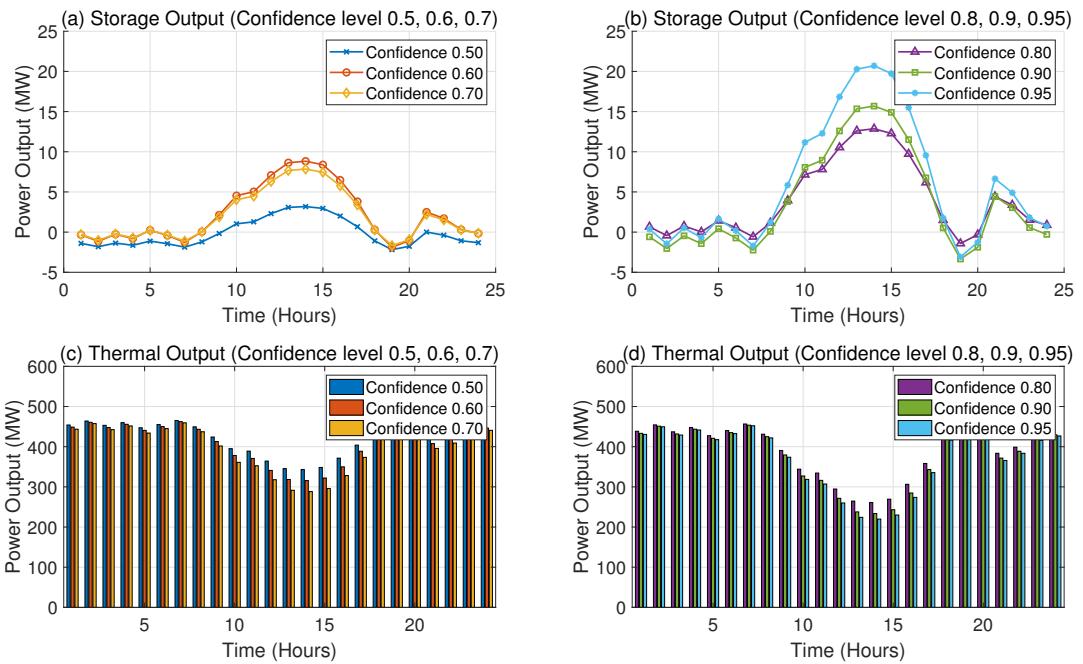


Figure 11: Storage and Thermal Power Outputs with Different Confidence Levels under Type II

573 levels highlights the trade-off between renewable integration and the need for dependable, conventional
 574 generation sources to maintain system stability and reliability.

575 Fig. 12 compares the frequency deviation suppression performance of different energy storage systems
 576 coupled with TPU (Type I, Type II, and Type III) in frequency regulation scenarios. The results demon-
 577 strate varying levels of effectiveness in reducing frequency fluctuations across the three types of systems.
 578 Under Type I, the TPU-ESS system shows moderate performance in stabilizing frequency. While frequency
 579 deviations are reduced compared to the original system, the fluctuations remain relatively prominent. This
 580 indicates that Type I ESS has limited capability to fully mitigate frequency instability under these con-
 581 ditions, likely due to lower flexibility or responsiveness in the system design. The Type II ESS achieves
 582 the best performance in suppressing frequency deviations among the three systems. The fluctuations are
 583 significantly minimized, and the system maintains frequency stability more effectively across the evaluation
 584 period.

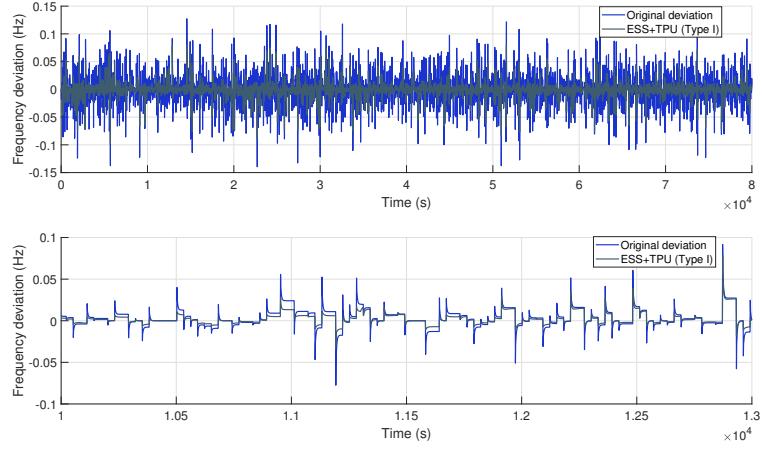
Table 6: Mean and standard deviation of IQR and range for different ESS types

ESS Type	Mean IQR (MW)	Std of IQR (MW)	Mean Range (MW)	Std of Range (MW)
Type I	1.4503	1.7485	2.8248	2.3615
Type II	3.3847	3.4921	6.3093	5.8374
Type III	2.5517	1.7198	6.1411	4.6682

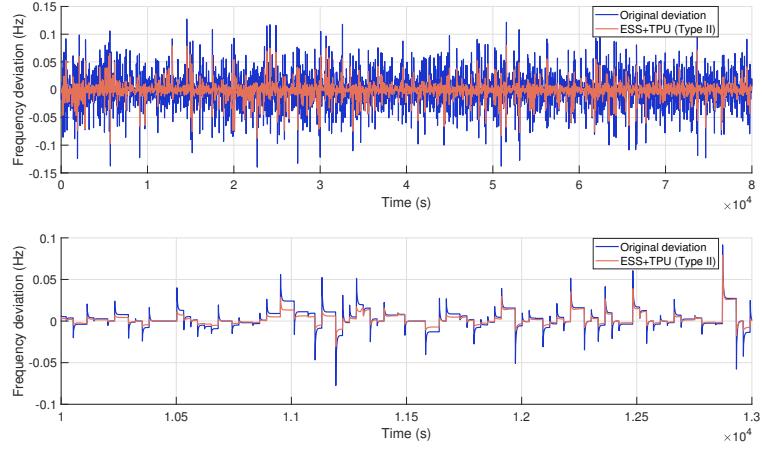
585 Full statistical sampling is examined for each hour, five representative indicators—minimum, lower quar-
 586 tile, mean, upper quartile, and maximum—are used as proxy points to illustrate the distributional behavior
 587 of each ESS type. Fig.13 compares the daily energy storage system output strategies across Type I, Type II,
 588 and Type III conditions. In Type I , the output remains close to zero with limited variability throughout the
 589 day. The slight fluctuations reflect minor adjustments made by the ESS, indicating relatively stable system
 590 conditions and minimal reliance on storage to handle uncertainties. In Type II (subfigure b), the ESS output
 591 demonstrates more pronounced variability, particularly during peak hours. This suggests that under Type II
 592 conditions, the ESS actively compensates for larger fluctuations in power demand or renewable generation,
 593 emphasizing its role in balancing the system. The increased variability highlights the greater challenges in
 594 maintaining stability under these conditions. For Type III, the ESS output variability is further amplified,
 595 particularly during the mid-day hours. This reflects the ESS taking a critical role in addressing the highest
 596 levels of uncertainty and fluctuations under Type III conditions. The broader interquartile ranges in Type
 597 III compared to Type I and Type II indicate greater effort by the ESS to maintain system resilience and sta-
 598 bility. This setup allows for a comparative assessment of the impacts of both increased capacity and different
 599 storage technologies on system variability and performance. To quantify variability, the interquartile range
 600 (IQR) and total range (max - min) were computed . Table 6 summarizes the average IQR and range for each
 601 ESS type. Both the mean IQR and range increase progressively from Type I to II, confirming the visual
 602 assessment of growing variability. Specifically, the mean IQR rises from 1.45 MW in Type I to 3.38 MW
 603 in Type II and 2.55 MW in Type III, while the mean total range follows a similar trend. These results
 604 illustrate enhanced operational fluctuations with higher-capacity systems and further highlight the effect
 605 of storage technology differences, as the the high-capacity flywheel in Type II demonstrates comparable or
 606 greater variability than the lithium-ion battery in Type III.

607 To further evaluate the practical trade-offs among different energy storage configurations, a radar plot
 608 analysis is presented in Fig. 14. The results highlight that while the 22.5 MW lithium-ion battery performs
 609 well in terms of overall cost-efficiency and moderate electricity loss compared to Type II, but it suffers
 610 from higher degradation risks under frequent cycling conditions. In contrast, the 22.5 MW flywheel exhibits
 611 superior dynamic performance and virtually no degradation, making it ideal for high-frequency disturbances,
 612 albeit at a higher capital cost. The 7.5 MW flywheel shows limited performance due to capacity constraints,
 613 but offers a balance between cost and longevity.

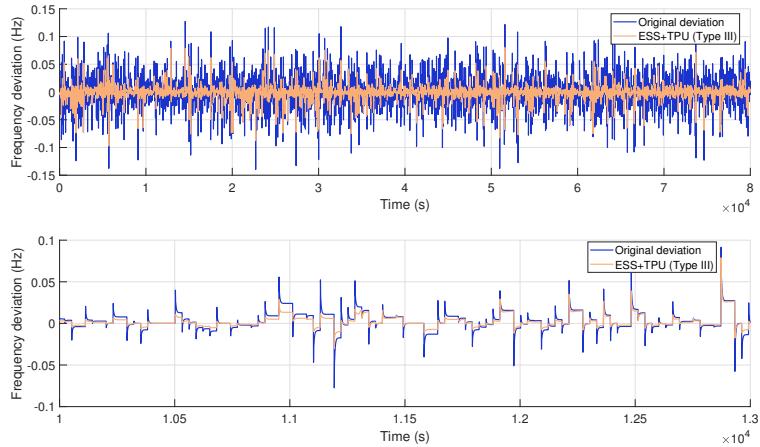
6. Conclusion



(a) Comparison of Original frequency deviation and TPU-ESS Type I



(b) Comparison of Original frequency deviation and TPU-ESS Type I



(c) Comparison of Original frequency deviation and TPU-ESS Type I

Figure 12: Storage power output under Type I, Type II, and Type III

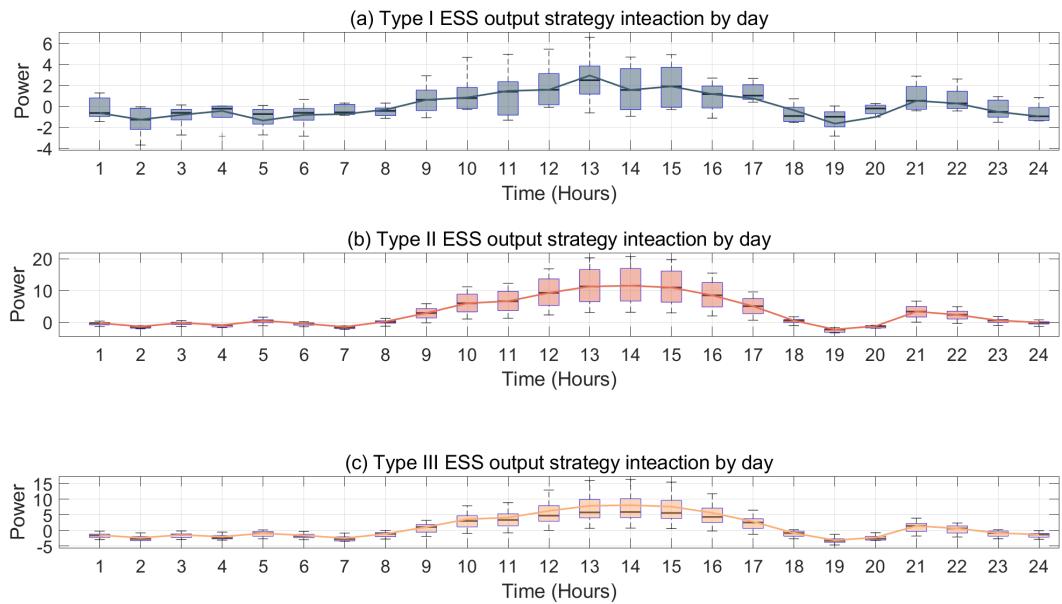


Figure 13: Storage power output under Type I, Type II, and Type III

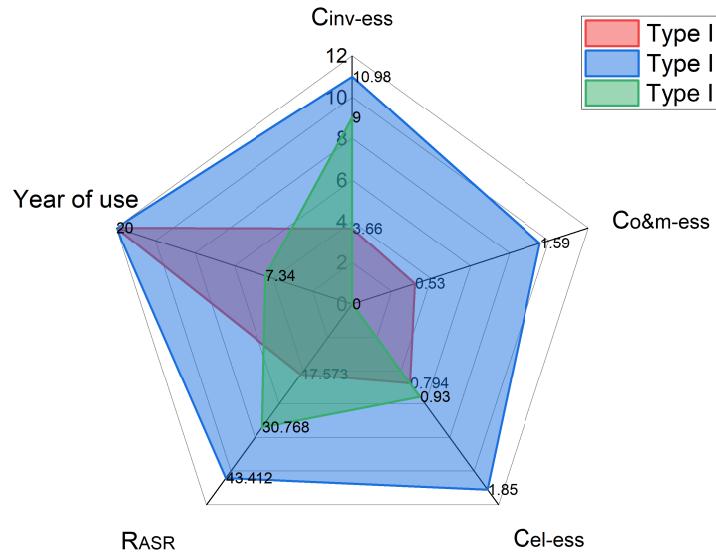


Figure 14: Storage sensitivity analysis under Type I, Type II, and Type III (Million dollars)

615 With the increasing penetration of renewable energy, thermal power units are facing a greater challenger
616 to provide more flexibility in order to maintain the system stability. Energy storage-assisted thermal power
617 units present a promising solution for countries and regions where thermal generation plants still prevail
618 in their power systems but are facing a greater challenge to accommodate more renewable generations
619 to support low carbon transition. Their future capability of offering multi-timescale frequency regulation
620 supports the integration of more renewable generations. The findings indicate that hybrid energy storage-
621 assisted thermal power systems significantly improve the flexibility and economic viability of thermal power
622 generation, ensuring grid stability in high-renewable energy scenarios. The main conclusions are summarized
623 as follows.

- 624 1) The integration of energy storage plays a pivotal role in alleviating the operational stress of thermal
625 power units. By providing multi-timescale frequency regulation, energy storage system effectively
626 balances power fluctuations, reducing the need for frequent ramping and deep cycling of thermal
627 power units. This prolongs the lifespan of thermal power equipment by minimizing mechanical decay.
628 The coordinated operation of energy storage system and thermal power units allows for more efficient
629 energy dispatch, optimizing fuel consumption and lowering operational costs.
- 630 2) A coordinated control strategies for systems with energy storage system is employed, while high-
631 capacity battery energy storage (Type II, III), the ability to compensate more load during peak
632 periods minimizes the fluctuations for thermal power units to operate at full capacity, enhancing
633 system frequency regulation ability. Energy storage system integration ensures a dynamic response to
634 renewable energy fluctuations, improving grid resilience.
- 635 3) A comparative analysis of different energy storage system types highlights their role in optimizing
636 dispatch strategies under varying levels of renewable uncertainty. Larger energy storage systems de-
637 liver superior economic benefits by minimizing frequent operations of thermal units, reducing fuel
638 costs, and lowering maintenance expenses. Despite higher initial investments, the cost-benefit analy-
639 sis reveals that the long-term economic and resilience advantages—including reduced costs, improved
640 adaptability, and enhanced system stability—make these hybrid configurations economically viable.
- 641 4) Different storage technologies contribute to improving system flexibility and resilience as their char-
642 acteristics shows diverse abilities under different timescales. While smaller-capacity energy storage
643 system offers limited benefits but with low maintenance and investment cost, larger-capacity systems
644 enable more sustained power output during peak demand, reducing the reliance on thermal power
645 units and effectively mitigating renewable energy variability. The short-term and long-term energy
646 storage systems show different benefits during the operational duration, as the frequency regulations
647 are more frequent than used to be, short-term energy storage system shows a more comparable profits
648 in both technical and economic aspects.

649 The future research will focus on the refinement of control strategies to further optimize the economic and
650 operational benefits of storage-assisted thermal power systems. This paper overlooked the voltage profile of
651 ESS, detailed modeling of its reactive power support are critical for a comprehensive stability assessment.
652 Furthermore, high dimensional uncertainty sets and decision variables are required to explore by proposing
653 advanced optimization algorithms. Last but not least developing market mechanisms and policy incentives
654 tailored for storage-assisted thermal power units deployment is another research direction. It is anticipated
655 that new frequency regulation ancillary service markets and electric market mechanisms will accelerate
656 large-scale applications of the technology to integrate energy storages with thermal power units.

657 **Acknowledgements**

658 This project was supported by the National Natural Science Foundation of China (No.52376007).

References

- [1] J. Wu, J. Yan, H. Jia, N. Hatziargyriou, N. Djilali, H. Sun, Integrated energy systems, *Applied Energy* 167 (2016) 155–157. doi:<https://doi.org/10.1016/j.apenergy.2016.02.075>. URL <https://www.sciencedirect.com/science/article/pii/S0306261916302124>
- [2] Y. Cheng, R. Azizipanah-Abarghooee, S. Azizi, L. Ding, V. Terzija, Smart frequency control in low inertia energy systems based on frequency response techniques: A review, *Applied Energy* 279 (2020) 115798. doi:<https://doi.org/10.1016/j.apenergy.2020.115798>. URL <https://www.sciencedirect.com/science/article/pii/S0306261920312800>
- [3] S. N. Hussain, A. Ghosh, Evaluating tracking bifacial solar pv based agrivoltaics system across the uk, *Solar Energy* 284 (2024) 113102. doi:<https://doi.org/10.1016/j.solener.2024.113102>. URL <https://www.sciencedirect.com/science/article/pii/S0038092X24007977>
- [4] G. Yin, M. Duan, Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration, *Applied Energy* 321 (2022) 119391. doi:<https://doi.org/10.1016/j.apenergy.2022.119391>. URL <https://www.sciencedirect.com/science/article/pii/S0306261922007292>
- [5] F. Hong, Y. Zhao, W. Ji, J. Hao, F. Fang, J. Liu, A dynamic migration route planning optimization strategy based on real-time energy state observation considering flexibility and energy efficiency of thermal power unit, *Applied Energy* 377 (2025) 124575. doi:<https://doi.org/10.1016/j.apenergy.2024.124575>. URL <https://www.sciencedirect.com/science/article/pii/S0306261924019585>
- [6] W. Ji, F. Hong, Y. Zhao, L. Liang, J. Hao, F. Fang, J. Liu, A real-time phase transition modeling of supercritical steam cycle and load variation rate enhancement of thermal power plants under deep peak shaving, *Energy* 312 (2024) 133431. doi:<https://doi.org/10.1016/j.energy.2024.133431>. URL <https://www.sciencedirect.com/science/article/pii/S0360544224032079>
- [7] F. Hong, W. Ji, Y. Pang, J. Hao, M. Du, F. Fang, J. Liu, A new energy state-based modeling and performance assessment method for primary frequency control of thermal power plants, *Energy* 276 (2023) 127594. doi:<https://doi.org/10.1016/j.energy.2023.127594>. URL <https://www.sciencedirect.com/science/article/pii/S036054422300988X>
- [8] Zhongguancun Energy Storage Industry Technology Alliance, Energy Storage Industry White Paper 2024, available online: <https://www.cnsea.org/information/detail/?column;d=1id=6296> [Accessed : 2024 – 04 – 10] (2024).
- [9] H. Yang, Q. Chen, Y. Liu, Y. Ma, D. Zhang, Demand response strategy of user-side energy storage system and its application to reliability improvement, *Journal of Energy Storage* 92 (2024) 112150. doi:<https://doi.org/10.1016/j.est.2024.112150>. URL <https://www.sciencedirect.com/science/article/pii/S2352152X24017365>
- [10] Y. Ding, Q. Xu, L. Hao, Y. Xia, A stackelberg game-based robust optimization for user-side energy storage configuration and power pricing, *Energy* 283 (2023) 128429. doi:<https://doi.org/10.1016/j.energy.2023.128429>. URL <https://www.sciencedirect.com/science/article/pii/S0360544223018236>
- [11] J. Cui, Z. Zhu, G. Qu, Y. Wang, R. Li, Demand-side shared energy storage pricing strategy based on stackelberg-nash game, *International Journal of Electrical Power Energy Systems* 164 (2025) 110387. doi:<https://doi.org/10.1016/j.ijepes.2024.110387>. URL <https://www.sciencedirect.com/science/article/pii/S0142061524006100>
- [12] J. Zhang, J. Wang, N. Zhang, P. Wang, Y. Wang, C. Fang, Droop coefficient placements for grid-side energy storage considering nodal frequency constraints under large disturbances, *Applied Energy* 357 (2024) 122444. doi:<https://doi.org/10.1016/j.apenergy.2023.122444>. URL <https://www.sciencedirect.com/science/article/pii/S0306261923018081>
- [13] C. Li, Y. Cao, B. Li, S. Wang, P. Chen, A novel power control scheme for distributed dfig based on cooperation of hybrid energy storage system and grid-side converter, *International Journal of Electrical Power Energy Systems* 157 (2024) 109801. doi:<https://doi.org/10.1016/j.ijepes.2024.109801>. URL <https://www.sciencedirect.com/science/article/pii/S014206152400022X>
- [14] Y. sheng Xie, Yu-Lee, X. qiang Chang, X. Yin, H. Zheng, Research on the transaction mode and mechanism of grid-side shared energy storage market based on blockchain, *Energy Reports* 8 (2022) 224–229, 2021 6th International Conference on Clean Energy and Power Generation Technology. doi:<https://doi.org/10.1016/j.egyr.2021.11.044>. URL <https://www.sciencedirect.com/science/article/pii/S2352484721011896>
- [15] M. Khani, M. Samiei Moghaddam, T. Noori, R. Ebrahimi, Integrated energy management for enhanced grid flexibility: Optimizing renewable resources and energy storage systems across transmission and distribution networks, *Heliyon* 10 (20) (2024) e39585. doi:<https://doi.org/10.1016/j.heliyon.2024.e39585>. URL <https://www.sciencedirect.com/science/article/pii/S2405844024156162>
- [16] M. Jafarian, E. Assareh, A. Ershadi, X. Wang, Optimal integration of efficient energy storage and renewable sources in hybrid energy systems: A novel optimization and dynamic evaluation strategy, *Journal of Energy Storage* 101 (2024) 113880. doi:<https://doi.org/10.1016/j.est.2024.113880>. URL <https://www.sciencedirect.com/science/article/pii/S2352152X24034662>
- [17] H. Wang, X. Zhang, Y. Sun, Q. Li, Preventive primary frequency response control of energy storage systems for a high renewable penetrated power grid, *Electric Power Systems Research* 238 (2025) 111109. doi:<https://doi.org/10.1016/j.epsr.2024.111109>. URL <https://www.sciencedirect.com/science/article/pii/S0378779624009945>
- [18] R. Zhang, X. Ren, Z. Liu, Z. Bie, C. Chen, Distributed cooperative secondary frequency control for power system penetrated with renewable energy sources and energy storage with communication time delays, *International Journal of*

Electrical Power Energy Systems 164 (2025) 110411. doi:<https://doi.org/10.1016/j.ijepes.2024.110411>.
 URL <https://www.sciencedirect.com/science/article/pii/S0142061524006343>

[19] W. Liu, Y. Zheng, X. Zhou, Y. Lv, Q. Chen, Enhanced frequency regulation in pumped hydro storage integrated power systems: An innovative modeling method and gpc-pi control strategy, Journal of Energy Storage 103 (2024) 114251. doi:<https://doi.org/10.1016/j.est.2024.114251>.
 URL <https://www.sciencedirect.com/science/article/pii/S2352152X24038374>

[20] A. Heydari, R. Ebrahimi, M. Ghanbari, Eco-environmental dispatch of power system with high penetration wind farms considering demand/source side uncertainties, Electric Power Systems Research 236 (2024) 110925. doi:<https://doi.org/10.1016/j.epsr.2024.110925>.
 URL <https://www.sciencedirect.com/science/article/pii/S0378779624008113>

[21] T. N. Rateele, L. Z. Thamae, An optimization approach for the economic dispatch incorporating renewable energy resources into lesotho power sources portfolio, Heliyon 9 (4) (2023) e14748. doi:<https://doi.org/10.1016/j.heliyon.2023.e14748>.
 URL <https://www.sciencedirect.com/science/article/pii/S2405844023019552>

[22] M. Lu, J. Guan, H. Wu, H. Chen, W. Gu, Y. Wu, C. Ling, L. Zhang, Day-ahead optimal dispatching of multi-source power system, Renewable Energy 183 (2022) 435–446. doi:<https://doi.org/10.1016/j.renene.2021.10.093>.
 URL <https://www.sciencedirect.com/science/article/pii/S0960148121015597>

[23] Q. Yu, Z. Li, X. Han, P. Ju, M. Shahidehpour, End-to-end learning for stochastic preventive dispatch of renewables-rich power systems in abnormal weather conditions, Renewable Energy 234 (2024) 121107. doi:<https://doi.org/10.1016/j.renene.2024.121107>.
 URL <https://www.sciencedirect.com/science/article/pii/S0960148124011753>

[24] M. Zare, S. Farhang, M. A. Akbari, R. Azizipanah-Abarghooee, P. Trojovský, Optimizing reserve-constrained economic dispatch: Cheetah optimizer with constraint handling method in static/dynamic/single/multi-area systems, Energy 313 (2024) 133681. doi:<https://doi.org/10.1016/j.energy.2024.133681>.
 URL <https://www.sciencedirect.com/science/article/pii/S0360544224034595>

[25] N. Li, C. Zhao, L. Chen, Connecting automatic generation control and economic dispatch from an optimization view, IEEE Transactions on Control of Network Systems 3 (3) (2016) 254–264. doi:[10.1109/TCNS.2015.2459451](https://doi.org/10.1109/TCNS.2015.2459451).

[26] O. Folorunso, R. Sadiku, Y. Hamam, Dispatchable generation analysis and prediction by using machine learning: A case study of south africa, e-Prime - Advances in Electrical Engineering, Electronics and Energy 9 (2024) 100701. doi:<https://doi.org/10.1016/j.prime.2024.100701>.
 URL <https://www.sciencedirect.com/science/article/pii/S277267112400281X>

[27] T. H. Nguyen, V. C. Nguyen, D. Q. Bui, P. N. Dao, An efficient min/max robust model predictive control for nonlinear discrete-time systems with dynamic disturbance, Chaos, Solitons Fractals 180 (2024) 114551. doi:<https://doi.org/10.1016/j.chaos.2024.114551>.
 URL <https://www.sciencedirect.com/science/article/pii/S0960077924001024>

[28] T. L. Nguyen, X. S. Mai, P. N. Dao, A robust distributed model predictive control strategy for leader-follower formation control of multiple perturbed wheeled mobile robotics, European Journal of Control 81 (2025) 101160. doi:<https://doi.org/10.1016/j.ejcon.2024.101160>.
 URL <https://www.sciencedirect.com/science/article/pii/S0947358024002206>

[29] C. Li, X. Wang, J. Li, X. Zhu, C. Jia, Dual-layer control strategy based on economic characterization of lifetime state and frequency regulation limit partition of hybrid energy storage, Journal of Energy Storage 99 (2024) 113326. doi:<https://doi.org/10.1016/j.est.2024.113326>.
 URL <https://www.sciencedirect.com/science/article/pii/S2352152X24029128>

[30] D.-Q. Yang, M.-J. Li, T. Ma, J.-W. Ni, Z.-Y. Han, Study on adaptive vsg parameters and soc control strategy for pv-hess primary frequency regulation, Energy 314 (2025) 133909. doi:<https://doi.org/10.1016/j.energy.2024.133909>.
 URL <https://www.sciencedirect.com/science/article/pii/S0360544224036879>

[31] J. Wang, S. Zhang, J. Huo, Y. Zhou, L. Li, T. Han, Dispatch optimization of thermal power unit flexibility transformation under the deep peak shaving demand based on invasive weed optimization, Journal of Cleaner Production 315 (2021) 128047. doi:<https://doi.org/10.1016/j.jclepro.2021.128047>.
 URL <https://www.sciencedirect.com/science/article/pii/S0959652621022654>

[32] J. Hui, S. Zhu, X. Zhang, Y. Liu, J. Lin, H. Ding, K. Su, X. Cao, Q. Lyu, Experimental study of deep and flexible load adjustment on pulverized coal combustion preheated by a circulating fluidized bed, Journal of Cleaner Production 418 (2023) 138040. doi:<https://doi.org/10.1016/j.jclepro.2023.138040>.
 URL <https://www.sciencedirect.com/science/article/pii/S0959652623021984>

[33] W. Ji, F. Hong, Y. Zhao, L. Liang, H. Du, J. Hao, F. Fang, J. Liu, Applications of flywheel energy storage system on load frequency regulation combined with various power generations: A review, Renewable Energy 223 (2024) 119975. doi:<https://doi.org/10.1016/j.renene.2024.119975>.
 URL <https://www.sciencedirect.com/science/article/pii/S0960148124000405>

[34] J. Guo, W. Deng, J. Zheng, Z. Li, Optimal capacity configuration of hydrogen storage systems connecting the electricity-heat network, in: 2023 IEEE/IAS Industrial and Commercial Power System Asia (ICPS Asia), 2023, pp. 1764–1769. doi:[10.1109/ICPSAsia58343.2023.10294997](https://doi.org/10.1109/ICPSAsia58343.2023.10294997).

[35] P. Su, Y. Zhou, J. Wu, Multi-objective scheduling of a steelmaking plant integrated with renewable energy sources and energy storage systems: Balancing costs, emissions and make-span, Journal of Cleaner Production 428 (2023) 139350. doi:<https://doi.org/10.1016/j.jclepro.2023.139350>.
 URL <https://www.sciencedirect.com/science/article/pii/S0959652623035084>

[36] D. Yang, G. Xu, B. Yusheng, C. Feixiang, C. Xiaoxia, Z. Sheng, Y. Shiye, Y. Jilei, Bi-level optimal sizing and scheduling

of hybrid thermal power-energy storage system for peak shaving, in: F. Sun, Q. Yang, E. Dahlquist, R. Xiong (Eds.), The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022), Springer Nature Singapore, Singapore, 2023, pp. 250–261.

[37] Y. Sun, M. Ban, H. Liu, W. Bai, H. Jiang, Q. Chen, Coordination of maintenance and flexibility retrofit of coal-fired units in generation scheduling, in: 2022 IEEE/IAS Industrial and Commercial Power System Asia (ICPS Asia), 2022, pp. 732–737. doi:10.1109/ICPSAsia55496.2022.9949657.

[38] Y. Cui, K. Jiang, H. Wei, X. Du, A steam combination extraction thermal energy storage scheme in boiler side for coal-fired power plant flexibility retrofit, *Journal of Energy Storage* 98 (2024) 113038. doi:<https://doi.org/10.1016/j.est.2024.113038>. URL <https://www.sciencedirect.com/science/article/pii/S2352152X24026240>

[39] A. Azad, H. Shateri, Design and optimization of an entirely hybrid renewable energy system (wt/pv/bw/hs/tes/evpl) to supply electrical and thermal loads with considering uncertainties in generation and consumption, *Applied Energy* 336 (2023) 120782. doi:<https://doi.org/10.1016/j.apenergy.2023.120782>. URL <https://www.sciencedirect.com/science/article/pii/S0306261923001460>

[40] M. Brandt, J. Woods, P. C. Tabares-Velasco, An analytical method for identifying synergies between behind-the-meter battery and thermal energy storage, *Journal of Energy Storage* 50 (2022) 104216. doi:<https://doi.org/10.1016/j.est.2022.104216>. URL <https://www.sciencedirect.com/science/article/pii/S2352152X2200247X>

[41] M. Bahloul, M. Daoud, S. K. Khadem, Optimal dispatch of battery energy storage for multi-service provision in a collocated pv power plant considering battery ageing, *Energy* 293 (2024) 130744. doi:<https://doi.org/10.1016/j.energy.2024.130744>. URL <https://www.sciencedirect.com/science/article/pii/S0360544224005164>

[42] C. Li, C. Feng, J. Li, D. Hu, X. Zhu, Comprehensive frequency regulation control strategy of thermal power generating unit and ess considering flexible load simultaneously participating in agc, *Journal of Energy Storage* 58 (2023) 106394. doi:<https://doi.org/10.1016/j.est.2022.106394>. URL <https://www.sciencedirect.com/science/article/pii/S2352152X22023830>

[43] G. N. D. de Doile, P. Rotella Junior, L. C. S. Rocha, K. Janda, G. Aquila, R. S. Peruchi, P. P. Balestrassi, Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation, *Renewable Energy* 195 (2022) 1310–1323. doi:<https://doi.org/10.1016/j.renene.2022.06.121>. URL <https://www.sciencedirect.com/science/article/pii/S0960148122009612>

[44] Y. Zhu, J. Liu, D. Zeng, L. Liang, Y. Xie, R. Li, Y. Hu, Energy management strategy and operation strategy of hybrid energy storage system to improve agc performance of thermal power units, *Journal of Energy Storage* 102 (2024) 114191. doi:<https://doi.org/10.1016/j.est.2024.114191>. URL <https://www.sciencedirect.com/science/article/pii/S2352152X24037770>

[45] S. Yan, Y. Zhang, W. Yin, B. Li, J. Ye, Y. Wu, Y. Zhang, Flexibility enhancement of renewable-penetrated power systems coordinating energy storage deployment and deep peak regulation of thermal generators, *Electric Power Systems Research* 231 (2024) 110354. doi:<https://doi.org/10.1016/j.epsr.2024.110354>. URL <https://www.sciencedirect.com/science/article/pii/S0378779624002426>

[46] Y. Wang, H. Dong, K. Ma, H. Wang, J. Zhang, Multi frequency stability optimization of integrated energy systems considering virtual energy storage characteristics of heating networks, *Applied Thermal Engineering* 257 (2024) 124254. doi:<https://doi.org/10.1016/j.applthermaleng.2024.124254>. URL <https://www.sciencedirect.com/science/article/pii/S1359431124019227>

[47] Y. Zhu, S. Yao, Y. Zhang, M. Cao, Environmental and economic scheduling for wind-pumped storage-thermal integrated energy system based on priority ranking, *Electric Power Systems Research* 231 (2024) 110353. doi:<https://doi.org/10.1016/j.epsr.2024.110353>. URL <https://www.sciencedirect.com/science/article/pii/S0378779624002414>

[48] R. Qin, Y. Lv, F. Fang, D. Deng, B. Wu, N. Mao, J. Liu, Analysis of the improvement in the regulating capacity of thermal power units equipped with flywheel energy storage and the influence on a regional dispatch system, *Applied Thermal Engineering* 262 (2025) 125248. doi:<https://doi.org/10.1016/j.applthermaleng.2024.125248>. URL <https://www.sciencedirect.com/science/article/pii/S1359431124029168>