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Optimal dispatch of storage-assisted thermal power considering renewable
uncertainties
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School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK. 4. School of Energy Power and
Mechanical Engineering, North China FElectric Power University, 102206 Beijing, China.

Abstract

Energy storage systems have emerged as critical components in modern power systems, addressing the
challenges of frequency regulation stability and renewable integration. Coal-fired thermal power plants have
provided grid stability but now confront increasing demands for deep peak shaving services. However, energy
storage systems are exposed to relatively low energy support duration while thermal power units confront
slow power changing rate. This paper proposes a coordinated control strategy and a robust optimization
model for storage-assisted thermal power units, addressing short-term fluctuations and long-term uncertain-
ties imposed on thermal power units across multiple timescales. The Column-and-Constraint Generation
approach is employed to improve computational efficiency, achieving convergence within three iterations
for the optimal solution. Simulation results confirm that the proposed uncertainty set effectively adapts to
increasing data dimensions, addressing over-conservatism in traditional models subject to multi-timescale
uncertainties. By leveraging the rapid response capability of energy storage and the steady output of thermal
power units, the model improves grid support and alleviates operational stress on thermal units.The results
also reveal that three different energy storage systems configurations result in cost reductions of 23.50%,
41.78%, and 38.63%, respectively, while demonstrating a substantial improvement in the system’s resilience
in response to short- and long-term challenges.

Keywords: Thermal power unit, energy storage system, multi-timescale, renewable energy uncertainties,
column and constrain generation

Nomenclature
Abbreviations

ESS  Energy Storage System.
PV Photovoltaic.

SOC  State of Charge.

STC  Standard Test Condition.
TPU Thermal Power Unit.
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WT  Wind Turbine.

Symbols

Qem;  The cost associated with emissions per unit of power.
¢ The cost of fuel per unit of power generated.

ar Temperature coefficient of power for the PV module.
Af Frequency deviation.

APg; Power output deviation of the TPU.

npy  Conversion efficiency of PV panels.

K}, Updated precision parameter for cluster k.

T Updated mean for cluster k, calculated based on prior information and observed data X, .
174 Updated degrees of freedom for cluster k.

Tk Prior probability of cluster k.

144 Updated scale matrix for cluster k.

o An emission coefficient or impact factor.

7> 2. Py Cumulative required power generation over time ¢ for each generation unit 4, scaled by a

factor 7.

Sty +1-dim(x,) Student-t distribution for cluster k, with adjusted degrees of freedom given by v +1 —

CASR

CEMI

CESR

CFC

CINV
COM

crv

Revenue generated from providing ancillary services, determined by the system’s regulation
capabilities.

The emission cost, accounting for environmental impacts and regulatory fees related to pollutant
emissions.

Revenue from selling electricity to end-users, based on market prices and the amount of electricity
sold.

The fuel cost, applicable to DG units that require fuel, which is coal used in the thermal power
unit of this paper.

The initial investment cost associated with deploying DG units and infrastructure.
The operation and maintenance cost required for the upkeep and operation of the system.

Investment cost for each unit type j of PV units.

C’jTP U Investment cost for each unit type j of thermal power units.

wT
¢

Ck

Investment cost for each unit type j of wind turbines.

Cluster k of similar load profiles for a 24-hour period.

d(P; ¢, ui) Distance metric between the load profile P;; and the centroid py of cluster k.




Ei+ The state of charge of the ESS at node 7 and time t.
E**  The maximum state-of-charge limit of the ESS.
EMn The minimum state-of-charge limit of the ESS.
[’J“fl Installation factor or quantity of thermal unit type j in location 7 and instance [.

PV

i1 Installation factor or quantity of PV unit type j in location ¢ and instance [.

wT
1,5,

Installation factor or quantity of wind turbine type j in location ¢ and instance [.
fpv(Gt) A function of the solar irradiance G; at time t.

fwr(ve) A function of the wind speed v;, dependent on cut-in, rated, and cut-out wind speeds.
Git Solar irradiance at node ¢ and time ¢.

Gsrc Standard Test Condition irradiance (1000 W/m?2).

Ky Droop control coefficient for the ESS.

K, Droop control coefficient for the TPU.

N Total number of consumers.

N(i) The set of neighboring nodes connected to node 3.

PZ-I;V Output power of the PV system at node ¢ at time t.

Output power of the wind turbine at node i at time t.

Py Power formulated based on the SOC and frequency deviation.

pactual Real-time output of the TPU.

Pgroc’p Droop-based output of the TPU.

P, Maximum allowable power.

Patea Rated power of the wind turbine.

Piec SOC recovery power.

Ptess  Primary frequency control power command of the ESS.

;E,t The charging power of the ESS at node ¢ and time ¢.

gdjf; The discharging power of the ESS at node 7 and time ¢.

vt The power output of the PV system at node i and time ¢.

(;FF  The active power output of the thermal generator at node i and time t.
V% The wind power output at node ¢ and time ¢.

P,;  The active power generated at node .

P;};’max The maximum charging capacity of the ESS.




dch,max
P

P(Zliax
P;liin
P;i—tEd
Py
P;;
I:)loadﬂ‘
Py
Q_{Li
Qij
Qloadﬂ'
Rdown
Ryp

Tnk

Spv

The maximum discharging capacity of the ESS.

The maximum output limit of the thermal generator.

The minimum output limit of the thermal generator.

The rated capacity of the wind turbine.

Power demand of consumer ¢ at time ¢.

The power flow between nodes ¢ and j.

The active power load at node i.

Total power demand at time t.

The reactive power generated at node 1.

The reactive power flow between nodes ¢ and j.

The reactive power load at node i.

The ramp-down limit (rate of decrease in output) for the generator.
The ramp-up limit (rate of increase in output) for the generator.

Fuzzy responsibility (or degree of membership) of cluster k for data point 2,1, indicating the
likelihood of the new point being assigned to cluster k.

Installed capacity of the PV system.

SOChign High SOC threshold.

SOChax Maximum SOC threshold.

SOCin Minimum SOC threshold.

Tis
Tstc
Uch, it

Udch,it

Ambient temperature at node i and time ¢.

Standard Test Condition temperature (set as 298.15 K).

Binary variable indicating the charging status of the ESS.

Binary variable indicating the discharging status of the ESS.

The voltage at node 1.

Cut-in wind speed (minimum wind speed required to generate power).
Cut-out wind speed (speed above which the turbine shuts down for safety).
Wind speed at node 4 and time t.

The maximum allowable voltage level.

The minimum allowable voltage level.

Rated wind speed (speed at which the turbine generates maximum power).
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1. Introduction

Modern power systems are often characterized by the integration of a large amount of renewable energy
sources(RES) [1], aiming to reduce the green-house gas emissions in order to meet the target set by the Paris
Agreement [2]. The UK is the first major economy legislating the target of attaining the net zero greeenhouse
gas emissions by 2050 and beyond, and the first half of 2024 has seen the installation of 2GW solar power
generation capacity which is more than the last 14 years combined [3]. This however has significantly
reduced the system inertia, thus affecting the stability of the power grid to resist the disturbances and
respond effectively to the frequency deviations [4].

Energy storage system (ESS) is considered as an effective method to compensate the fluctuations of the
RESs [5]. As of the end of 2023, the global installed capacity of power grid storage projects reached 289.2
GW, marking a year-on-year growth of 21.9 % [6]. In terms of newly installed capacity, approximately 52.0
GW of power storage projects were commissioned globally in 2023, reflecting a year-on-year growth of 69.5
% [7]. Among these, the deployment of new energy storage reached a historic high of 45.6 GW. China,
Europe, and the United States continued to lead the global energy storage market, collectively accounting
for 88 % of the new installations, with China contributing nearly 50 % of the global total [8].

1.1. The significance of energy storage-assisted thermal power units

In contrast to many developed countries, China’s resource endowment, characterized by abundant coal
and limited natural gas, ensures a rich reserve for coal-fired thermal power generation(TPU). Combined
with the distinctive distribution of user-side resources and a power market structure vastly different from
the developed countries, integration of energy storage with coal-fired power plants has become an important
research topic not only for China, but also for many other developing countries and regions where thermal
power generation plants are still the dominant and affordable electricity supply technology for accessing
to high quality electricity while supporting national economic growth and uptaking of more renewable
generating technologies.

1) Technically, integrating energy storages with coal-fired power plants significantly enhances primary
and secondary frequency regulation, providing fast and accurate grid stability support with more
integration of RESs. It reduces the dynamic strain on coal-fired units, minimizing mechanical wear
and carbon emissions.

2) Economically, integrating energy storage with coal-fired units has demonstrated tangible economic
profits in practical applications, ESS enables coal-fired plants to participate in ancillary service markets,
earning revenue through frequency regulation services. ESS increases the flexibility of coal-fired units,
reducing their idle times and improving their overall energy utilization.

3) Societally, this approach provides valuable insights for policy guidance, promoting informed decisions
for energy storage deployment. Additionally, it offers a new perspective and application for energy
storage in power system construction, supported by strong technical and economic foundations, paving
the way for sustainable and innovative energy solutions.

1.2. Literature reviews on power systems integrated with ESS

Energy storage has been widely used in the power system across the whole chain from generation,
transmission, distribution to end users. For example, Yang et. al [9] highlights how user-side ESS can be
strategically utilized to enhance grid reliability through effective demand response mechanisms. [10] investi-
gates the relationship between the energy supplier and end users equipped with ESS, and explores how end
users can respond to the electricity prices set by the energy suppliers and optimize their energy consumption
and storage usage. Cui et.al [11] presents a structured framework to address the RES uncertainty challenge
by modeling the interactions between energy providers and consumers.

Zhang et.al [12] addresses the critical issue of frequency stability in power systems using grid-connected
ESS. Li et. al [13] introduces an innovative approach to managing the output power of distributed doubly-
fed induction generators by integrating a grid-connected hybrid ESS and coordinating with the grid-side
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converter. Xie et.al [14] explores the integration of blockchain technology into grid-side shared energy storage
markets to enhance security, transparency, and efficiency in energy transactions. Khani et.al [15] highlight
the importance of integrated planning and optimization in managing the complexities introduced by high
shares of renewable energy, while the ESS have limited energy and power capacities, making them insufficient
for handling large-scale and prolonged peak demand periods.

Jafarian et.al [16] shows that a significant reduction in power and voltage fluctuations can be achieved
by integrating ESS with RES generating units. However, it does not address the frequency regulation
requirements, which are critical for grid stability when integrating high-penetration renewable energy sources.
Wang et.al [17] propose a preventive control strategy utilizing ESS to support RES generating units and to
enhance primary frequency response. Zhang et.al [18] proposed a distributed cooperative control approach
for secondary frequency regulation, enabling multiple distributed generators and ESS to work together
without relying on a central controller. The paper however does not address the coordinated control of
generations and energy storage systems, specifically addressing multiple objectives simultaneously, such
as enhancing frequency regulation, grid flexibility, and economic performance. Liu et.al [19] developed a
Generalized Predictive Control-Proportional Integral layered control strategy for energy storage integrated
renewable generation systems, achieving a 30 % reduction in overshoot compared to conventional methods.
Literature reviews are also concluded as Table. 1.

Table 1: Literature reviews of ESS-assisted power generations of RESs

Authors ESS

Ref Control strategy Economical constraints Pollutant emissions Advantages Disadvantages
Years Types
Coordinated control scheme High nitial investment The strategy The system’s complexity
13 Chao Li Hybrid energy storage system costs for Not included enhances power stability, and high upfront
2023 ybnd energy s syste HESS components " optim ey utilization, and se challenges for

[15]

Meysam Khani

ESS as interconnected

>s within distribution

e power stability.

Incorporating demand-side
management and coordination

and control infrastructure
Economic factors by

demonstrating that integrating ESS  The integration is expected

can lead to significant

to contribute to lowering

minimizes mechanical stress.

The proposed approach enhances
grid flexibility and

ead adoption.

The complexity of implementing
bi-level stochastic models

2024 between transmission and . N . - and ensuring coordination of
networks Joen cost reductions, pollutant emissions achieves smart grid objectives. Lo N
distribution systems N N distribution networks are not verified.
¥ distribution network costs.
A novel : o
Focusing on optimization and dynamic Integrating ESS The proposed strategy
Sing ¥ Y g The study addresses with RES is offers improved The complexity of
integrating evaluation strategy N : .
Masoud Jafarian economic constraints by expected to reduce integration of ESS optimization models
[16] 90 energy storage ems, is proposed to L N . . o "
2024 T D rote optimizing the integration pollutant emissions and RES, leading and the need for
o vely integra strategy by promoting to enhanced system accurate dynamic evaluations
particular ESS types ESS and o
cleaner energy sources. performance and reliability.
in hybrid systems. ! 3
The integration of
A dynamic primary ot ; ESS control strategy The complexity of
e ESS is analyzed for its & omp ety
Heng Wang >quency res economic viability,
[17] e parameter adju: a
2025 demonstrating potential
scheme fs proposed, revenue generation and economic benefits
enhancing frequency stability. generation lowering ollutant emissions. ! ® between ESS and RESs
through ancillary services
The complexity of
A distributed Economic feasibility, By Reducing reliance Tmproved frequency stability and implementing advanced
18] Runfan Zhang cooperative secondary frequency considering factors on fossil fuels, economic benefits by contre tegi
2025 control accounts for communication such a effectiveness thereby lowering effectively integ and ensuring seamless
time delays. and financial viability. pollutant emissions. ESS and RESs. coordination between
ESS and RESs.
An innovative modeling The proposed approach
_— method combined with Economic feasibility, offers improved frequency The complexity
Wanying Liu, Pumped hydro storage crhoc o o oot . % ; ) ;
19] ; a Generalized Predictive considering cos o Not included stability and economic of implementing advanced

e
2024 s
2024 systems Control PI control financial viability.

strategy in FR.

benefits by effectively
integrating PHS with RESs.

control strategies.

Economic Dispatch (ED) is another critical component of modern power system operations, aiming to
minimize the economic cost of electricity generation while maximizing the revenue from selling electricity
[20]. By focusing on these dual objectives, ED helps develop more resilient and efficient energy systems [21].
It ensures that the generation units are dispatched in a manner that achieves economic efficiency without
compromising system reliability. The integration of RES including wind and solar power, introduces signif-
icant challenges to the ED process due to their inherent variability and unpredictability [22]. Factors like
wind speed, solar radiation intensity, and solar irradiance temperature are among the major contributing
factors to the variability of these resources [23]. To handle this extra layer uncertainty and complexity,
more sophisticated optimization models are needed for optimal power allocation while maintaining system
reliability and operational efficiency [24]. Various advanced approaches have been developed for ED that
incorporate RES. Li et.al [25] studied the connections between automatic generation control and ED from
an optimization view, and a distributed approach to improve economic efficiency. These methods aim to
optimize the dispatch of generation companies by effectively managing both the operational constraints and
uncertainties of the power system [26]. Techniques such as stochastic programming, robust optimization,
and hybrid models that leverage machine learning have been proposed. Nguyen et.al [27] proposed a novel
robust model predictive control strategy by studying the feasibility problem considering the comparison
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relations of constraint sets and Lyapunov function candidates. Furthermore, Then, the strategy is applied
in Leader-Follower formation scheme in a group of followers, as well as the input-to-state stability of the
proposed terminal controller and equivalent terminal region is evaluated [28]. As for the power system
operations facilitating the sustainable energy transition, for example, Li et.al [29] proposed a two-tiered
control framework that integrates economic considerations of energy storage lifespan with frequency regu-
lation constraints, which optimize the operational efficiency and extend the service life of hybrid ESS. Yan
et.al [30] developed a method to dynamically adjust the rotational inertia and damping coefficient of the
VSG based on real-time system conditions.

Despite the latest progresses in control and dispatch of power systems with significant penetration of RES
integrated with ESS, thermal power units are increasingly required to adjust their operations in response
to fluctuations introduced by renewable energy generation. These adjustments include frequent cycling,
rapid load changes (ramp-up and ramp-down), and frequent start-ups and shutdowns [31]. Operating away
from optimal steady-state conditions reduces the thermal efficiency of power plants, leading to higher fuel
consumption and emissions per unit of electricity generated [32]. To mitigate thermal damage caused by
operational stress challenges, the integration of ESS has been proposed as a promising solution [33]. Guo
et.al [34] showed that the coal-fired units can maintain a more stable operational profile, which improves
thermal efficiency and reduces fuel consumption by charging the storage during periods of low demand or
high renewable output and discharging during peak periods. The hybrid configuration also enables coal-fired
power plants to participate in ancillary service markets. Su et.al [35] analyzed the impact of ESS on start-up
costs and concluded that, by reducing cycling, ESS can significantly lower start-up and maintenance costs,
contributing to overall cost savings. Deng et al. [36] proposed a bi-level optimization model for sizing and
dispatching hybrid systems combining coal-fired power plants with various battery technologies, focusing on
peak shaving applications. The cost-benefit analysis of adding ESS to coal-fired units is complex and highly
dependent on the dynamic market, which limits the practical implementation of these hybrid systems. Gao
et al. [37] presented a co-optimization framework for maintenance and flexibility retrofitting of coal-fired
units, addressing the challenges of integrating renewable energy sources. Real-time optimization further
complicates the process, as it requires sophisticated algorithms capable of handling large amounts of data
and making rapid decisions.

The inherent variability of renewable energy sources also adds further uncertainty to the economic
dispatch of TPU-ESS systems. Existing ED models often rely on forecasted renewable generation, which
is not always accurate. Errors in forecasting can lead to suboptimal dispatch decisions, either causing
unnecessary cycling of the coal unit or leading to underutilization of the ESS [38]. The development of more
accurate forecasting models and robust optimization techniques is crucial for effective economic dispatch of
hybrid systems. Azad et.al [39] advocated for hybrid systems combining RESs with thermal units and battery
storage for sustainable grid integration. Brandt et.al [40] employed the integration of battery and thermal
energy storage has been highlighted as effective for reducing ramp-up and ramp-down events, mitigating
thermal fatigue, and increasing plant efficiency. Bahloul et.al [41] demonstrated that ESS enhances system
reliability by providing ancillary services including frequency regulation and load balancing, contributing to
grid stability. The literature review also strengthens the argument that hybrid energy systems with ESS
are crucial for improving flexibility, reliability, and economic performance in a grid increasingly dominated
by renewable energy [42, 43]. Other literature reviews are summarized as the following Table 2. The
real-life applications have also shown promising results of thermal power plants integrated with ESS in
addressing the slow response and limited frequency regulation capability of conventional coal-fired units.
For example, in Lingwu, Ningxia (600 MW supercritical unit with 36 flywheel systems, 630kW /125kWh
each) and Shuozhou, Shanxi (350 MW circulating fluidized bed unit with lithium battery, 6MW/6MWh, and
flywheel systems,2MW /0.5MWh), all in China, energy storage has effectively improved both primary and
secondary frequency regulation performance. These projects have also demonstrated significant economic
benefits by generating extra revenue from ancillary service markets, making ESS deployment on the thermal
power side a viable and profitable solution for enhancing power system stability and flexibility.
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Table 2: Literature reviews of ESS-assisted power generations

Authors ESS , . . . ]

Ref Vaes Types Control strategy Economical constraints Pollutant emissions Advantages Disadvantages
Operational strategies The approach offers The technical complexity
that enable deep and Its economic viability, enhanced operational of integrating CFB

B TS L e storage flexible load adjustments in considering cost-cffectiveness Carbon emission flexibility, allowing preheating systems and

2023 By storags coal combustion processes, and potential financial is analyzed. coal-fired power plants ensuring seamless
facilitated by the benefits are evaluated to adjust loads, operation within existing
preheating effect of the TPU. accommodating fluctuations. plant infrastructures
Economic implications,
A multi-objective lemonstrating significant The approach offer: )
8 ohective Cemonstrating sintlicy ) © approac oters Advanced scheduling models
. Pengfei Su, n clectricity Emission costs enhanced operational
[35] o9 Thermal storage system . and integration of
2023 fon costs, sharply reduced flexibility, improve
3 . Y plant operations.
with electricity economic performance.
costs reduced
. Advanced energy ma ent . . ) The integration of HESS enhances
Hybrid energy Advanced encrgy managene The economic implications ¢ ntegranion o ceance Managing hybrid systems
" ! and operation strategies for . the AGC performance p
Yansong Zhu, storage systems, . ° P and the need for investments,
[44] o1 HE! ning to enhance Not included of TPUs leading to

combining batteries
and flywhe

which pose operational

the regulation capabilities PO
i P s and financial hurdles

of TPUs under AGC

improved grid stability

ss
and financial viability. o relinbilite

Economic f:

A two-stage optimization

The proposed
framework is proposed, props

Shiye Yan The study aims to approach offers The initial capital

451 focusing on coordi ) o reduce reliance on . : costs of ESS
145] 2024 - investments in improved grid flexibility,
ESS and imple fossil fucls. ‘ « deployment and control mechanisms.
! and thermal gener better accommodation of RES,
deep peak shaving rey
upgrades.
The proposed
Optimization techniques propo - .
strategies aim to The complexity of
. . that exploit the ! The approach enhances ¥
Yongli Wang, ; decrease reliance ‘ modeling and
[46] : weak equilibrium characteristics Not included stability of e
2024 ‘ il fuel ) ¥ controlling virtual energy
of heating networks. to address integrated energy systems.
: oreby reducing storage dynamics and ensuring.
high-frequency fluctuations ;
emissions.
An environmental and economic - ) .
Minimizing operational costs The approach improves the accommodation Implementing priority-based
scheduling approach ’ The strategy seeks
[ YW pned storage systems that prioritizes the operation of by optimizing the dispatch to reduce overall rate of wind power, eduling and
2024 7 ge 5 r P of thermal units and reduces output fluctuations, he reliability of the
thermal units based on energy-saving ! emissions. !
! I enersy maximizing the wind energy. and lowers scheduling costs integrated system.
and emission-reduction principles. ¥ ¥
The study evaluates the The initial investment
; ) economic implications of integrating  The study suggests potential The integration of FESS with )
) The configuration and Bt e : P costs associated with FESS
Runjun Qin, ) ; FESS with TPUs, analyzing reductions in pollutant emissions TPUs is shown to )
48] s optimal dispatch strategies of implementation and the need for technical
2025 storage systems effects on the due to efficient operation improve the regulating capacity

the TPU-FESS system adaptations to existing

TPU infrastructure.

a regional power and better accommodations.

teh system

of TPUs.

1.3. Motivation and Contributions

The literature reviews have suggested that limited researches have been accomplished so far to assess how
thermal units integrated with ESS can support power grid frequency regulation and scheduling optimization
while overlooked the dynamic characteristics of energy storage systems and thermal power generations
under multiple timescales, as well as the economic revenue analysis. The main contributions of the paper
are summarized as follows:

1) A novel thermal power unit security indicator based on transient energy transfer is developed to
evaluate the power output capability and reduce mechanical wear and component degradation during
the deep peak shaving process.

An optimal dispatch method is proposed to maximize economic benefits by balancing frequency reg-
ulation demands, as well as a coordinated control strategy of the system is designed to enhance the
energy storage short-term ability while relieve the pressure of TPUs.

Multiple types of energy storage systems of the constructed scenario are assessed in terms of handling
system uncertainties, demonstrating that storage-assisted thermal power unit system as an economical-
friendly solution.

1.4. Paper organization

The paper is organized as follows. The Introduction section provides the motivation, literature review,
and a summary of the main contributions of the paper. The problem formulation section is organized in
section 2. Uncertainty sets are discussed followed. Section 4 presents the robust optimization and algorithm
solution, and section 5 presents a case study and the results. Conclusion section summarizes the whole work
and future prospects.

2. Problem Formulation

Fig. 1 outlines the schematic of a robust optimization approach proposed in this paper for dispatching
a power grid with thermal units integrated with ESSs.
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Figure 1: The robust optimization approach for dispatching a power grid with energy storage coupled thermal power units

2.1. Objective Function

Integrating RESs enables the power grid to meet demand, and the grid’s ability to operate autonomously
from the main grid strengthens its resilience during grid outages or natural disasters. With a diversified
generation portfolio including renewable sources, the system can maintain a stable power supply for critical
loads, thus enhancing overall reliability. Additionally, the ESS attached to DGs can provide backup power
and frequency regulation, further stabilizing the power grid. The objective function aims to minimize the
total cost or maximize net profit of the distributed energy system, accounting for various cost and revenue
components. The main components include initial investment cost, operation and maintenance cost, fuel
cost, emission cost, ancillary service revenue, and electricity sales revenue.Assuming the total operational
period is T', the objective function can be expressed as:

min CINV 1 0OM | oFC | oEMI _ pASR _ pESR 1)
f.P,Q,V

The investment cost, operation and maintenance cost, fuel cost, emission cost, ancillary service revenue,
and selling electricity revenue are expressed as followed:

CINV _ E E § in’UTPU Zj‘l,)lUCfPU + § § E iTLUESS EﬁSCJESS—i_
7 7 l 7 g l
. WT ¢WT ~AWT . PV PV ~PV
DD imdWTTCTT Y N y imeV pihC]
1 7 l 7 7 l
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M _ ZzzzomTPUfTPUcTPU To ESSfESSCESS + om wT Ay CWT +0mPV 1chPV (3)
i j l

where the equation computes the total operation and maintenance costs incurred for the various types of
generation technologies over a specific time horizon.

C:afCEZPzEPU (4)

where the fuel cost is calculated based on the power output of the traditional power generating units over
time.

CEMI _ aemigz Z pZ;PU (5)
t o q

where the formula estimates the total emission cost associated with the power generated by traditional
power units.

RASR Z Z Pz tﬁl ref,t (6)

where the revenue from ancillary services is calculated by summing the product of power output and the
ancillary service revenue factor for each bus over the time horizon.

RESE = Z Z B Py (7)

where the equation captures the revenue generated from the sale of electricity, where the market price factor
varies over time. By multiplying the power output at each bus by the corresponding market price, this
formula quantifies the financial returns from energy sales, which are critical for the overall profitability of
power generation assets.

2.2. Constraints

These constraints collectively ensure the stable, reliable, and efficient operation of the ESS-TPU system
under renewable energy uncertainties.

2.2.1. Equality Constraints

DistFlow equations are applied in this section to illustrate the equality contraints in the context of the
power system. These equations ensure that the generation and consumption of electrical power are balanced
at each node, accounting for the flow of power through the network. Equations can be expressed as follows:

Pg,i - Pload,i = Z Pij Vie N (8)
JEN(D)

Qg,i - Qload,i = Z Ql] Vi € N (9)
JEN(?)

The voltage at each bus should be within specified bounds:

Vmin S sz S Vmaa: Vi € N (10)
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2.2.2. Inequality Constraints

To achieve robust operation, constraints of the power system with diverse sources containing thermal
generator, wind power, photovoltaic, and energy storage are not negligible to ensure each component operates
within its capacity limits and adheres to system requirements.

1. Thermal power unit security constraints

Thermal generators must operate within defined minimum and maximum generation capacities, respect-
ing ramping limits to ensure stable operation, and security criterion of boiler capability is considered. The
output constraints for a thermal generator can be expressed as:

P < PITY < PRV (11)
AP;E}J < R,p, Vt (ramping up) (12)
AP;E Y > —Rgown Vt (ramping down) (13)

In [5], we illustrate the load variation process under the frequency regulation command. Three axis
depict the conventional power ramp-up curve with its performance evaluated using the index Cg, changes in
thermal parameters energy flow and fuel consumption within the system, and the potential state transition
path from the initial to the target state. These parameters are defined as the derived security criterion which
is quantified by the index Cg to integrate the security margins alongside the original load variation require-
ments. The load response curve index Cg is determined based on the deviation between the target response
curve and the actual response curve. Four sub-indices, Cg1, Cg2, Cgs, and Cga, are defined to evaluate
the curve, corresponding to adjustment time, rise time, overshoot, and steady-state error, respectively. By
analyzing the performance of the target curve, the parameter calculation method for the objective function
is derived. Assuming the adjustment time, rise time, overshoot, and steady-state error of the target curve
are denoted as Tr, TS7 Mp, and é5, and the corresponding values of the actual curve are T, T, M,, and
ess, the relationship can be expressed as follows:

N 2 ~ 2 R 2
T -1, T - T, L, - M, s — 20\
T, T, N, Cos

Co =

> =

2. Wind turbine constraints
The output of wind turbines depends on wind speed and turbine characteristics, resulting in variability.
Wind power generation is constrained by available wind conditions, represented as:

0 < Py < Pt fyyr(vy) Vi, Wt (15)

3. PV constraints
Photovoltaic generation depends on solar irradiance, which varies throughout the day. The output
constraints for photovoltaic systems are:

0< Py, < Pt foy(Gy) Vi, Vit (16)

g,t,t =
4. Energy storage system constraints
Energy storage systems must follow both power and energy limits. Their constraints include state-
of-charge limits, charging and discharging limits, and operational constraints to ensure they contribute
effectively to grid stability.

0< Pyl < tenia Poi™™ ViVt (charging) 1)
0< Pl < waan e Ppi™ ViVt (discharging) (12)
E;nin < Ei,t < E;nax Vi,Vt (state of charge) (19)

11
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These constraints ensure that the generation of each type of power source remains within safe operational
limits and adjusts based on resource availability, contributing to a stable and optimized power system.

The following inequality represents a constraint on the total power generation investment costs for
thermal power, wind power, and photovoltaic solar power:

T2 P S Y DD FISICTII A Y D AICTT 30 Y AReTT (20)
b toi gl ig 1 i g1

This constraint implies that the total required power generation, weighted by 7, must not exceed the
sum of the investment costs for the thermal, wind, and PV energy sources.

3. Constraints of energy storage system

When the system frequency deviation surpasses the established dead zone, the TPU and the ESS must
operate synchronously to engage in primary frequency regulation. This coordination balances generation and
demand, mitigating frequency deviation effectively. Both the TPU and ESS utilize droop control for primary
frequency regulation, following the droop control logic of the TPU. The droop control power command for
the ESS is calculated as:

P.os=K;-Af (21)
The droop control for both TPU and ESS is described as:

Pdroor — [, Af
{Pdroop _ Kf A (22)
G - Ty f
The real-time power output deviation of the TPU is calculated as:
dr actual
APg = P3ro°P — pactual (23)

As Fig. 2 shown, frequency regulation response of different ESS. The red line represents the system
frequency over time, with short-term ESS, long-term ESS, and TPU-ESS contributions marked. The short-
term ESS responds first to frequency deviations below 49.967 Hz, as indicated by the shaded blue area.
Long-term ESS becomes active to support longer duration deviations. The TPU+ESS integration provides
additional support when the frequency deviation exceeds 50.033 Hz. This coordination ensures optimal
frequency regulation and grid stability.

[ TPU+ESS |mmm,

50.033Hz

[ Long-term ESS r \
/\/\ Val

sosems | |_Short-term ESS

49.96Hz

Frequency (Hz)

0 1 2 3 4 5
Time (min)

Figure 2: Coordinated dispatch strategy for TPU-ESS systems

The traditional operation of ESS is divided into two stages. Initiated when the system frequency deviation
exceeds the dead zone (set to 0.033 Hz in China), the ESS engages in frequency regulation, and activated
when the frequency deviation is within the dead zone, allowing the ESS to recover its SOC.

An integrated control strategy for the ESS is proposed, prioritizing frequency regulation demands while
considering SOC recovery. In the operational hierarchy of the grid, frequency regulation commands are
executed with the highest priority. However, when SOC recovery does not interfere with frequency regulation,
the ESS can execute a combined output command:
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Pesstotal = Pessfreq + Pessrecovery (24)

This approach allows for simultaneous frequency regulation and SOC replenishment, optimizing the
operational efficiency of the ESS.
The power output command of the ESS, Py, is formulated based on the SOC and frequency deviation

as:
0, SOC < SOCynin
p_ ) min(Pg° + APg, Py), SOChin < SOC < SOChign (25)
T7 Y min(PE%P 4 APg + Pree, Pr),  SOChigh < SOC < SOCax
3 SOC > SOCax
Alternatively, during charging operations, the command is:
—Pp, SOC < SOComin
p. _ Jmaz(PE + APG + Pree = Prn),  SOCumin < SOC < SOChign (26)
77 ) maz (PP + AP, P,y), SOChigh < SOC < SOCopmax
0, SOC > SOCmax

3. Uncertainty set

3.1. Renewable Energy Source Uncertainty Set

A crucial step before the system planning is conducting a comprehensive assessment of RES availability.
This is essential due to the intermittent and variable nature of RES-based DGs, which are influenced by
fluctuating weather conditions. The renewable energy output for photovoltaic and wind turbine systems can
be modeled with constraints that account for uncertainty in solar irradiance, temperature, and wind speed.

0 if v+ < Vin OF V4 > Vout
wT _ Vi, t —Vin :
Pi,t - Uy —Vin N Prated lf Vin S Ui,t < Up (27)
Prated if vy < Vit < Vout
Git

Pftv =npy - Spy - ‘I —ar(Tie — Tsre)) (28)

Gsrc

3.2. Load Profile Analysis

Load profile analysis helps utilities and system operators understand the expected variations in electricity
demand over a 24-hour period, allowing them to plan generation, optimize resource allocation, and ensure
grid stability. A typical day-ahead load profile consists of hourly power demand values for a 24-hour
period, which are generated based on various factors such as weather conditions, time of day, and historical
consumption patterns. Below is representing the total demand P; of the proposed system at any time ¢ over
the 24-hour period using the sum of individual consumer types:

N
Pi=Y Py (29)
i=1
For clustering or segmentation of load data for day-ahead forecasting:

Ck - {]Ji,t : d(R,taﬂk) S d(H,taﬂj)7 vj 7é k} (30)
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3.3. Fuzzy Bayesian Clustering Model

In this section, Fuzzy Bayesian Clustering (FBC) method is described. This method combines fuzzy
clustering with Bayesian analysis, allowing each data point to partially belong to multiple clusters with as-
sociated degrees of membership. Bayesian inference further quantifies the uncertainty in cluster assignments,
making FBC suitable for dynamic and uncertain data in energy systems. The FBC approach is illustrated
in the accompanying figure, which highlights the load forecasting and renewable energy uncertainty set. The
fuzzy Bayesian clustering steps can be illustrated as followed shown in Fig: 3.Three Gaussian-distributed
clusters with specific means and covariance matrices is generated. The generated synthetic data provides
a realistic foundation for testing clustering algorithms and observing how they respond to different distri-
butions shown in Fig: 3(a). The KMeans approach is refined in subsequent steps shown in Fig: 3(b). This
approach allows for overlapping clusters and reflects the uncertainty in each assignment, providing a more
flexible and realistic representation of the data structure shown in Fig: 3(c).

(a) Initial KMeans Clustering (b) Fuzzy Membership Responsibilities (c) Combined Clusters and Fuzzy Members
[ [ ] o
10.01 e 10.0 10.0
° ...o °
o o .0-:. o
7.5 Aag ., ° 7.5 7.5
[ ) [ ]
A
5.0 o '-'03? A 5.0 5.0
. 5% 0 ° o . .
~N o ° 0‘..
e © 0% S, De :oo'
2 2.5 0 %09 o e w o* 2.5 2.51
Ligi ° o p ® é ‘: e
2 °0 8P °
0.0] oo 0at88 o edhd 3 0.0 0.0
o %%ﬁocs% %C‘Bos:.'.: ape
oo 09 o 7g e o
S o c? ° o..
-254° ) 8 o ©° -25 —2.5
o o °
o ..
% o o ® )
-s0f % ° -5.0 -50{ % e
o [ ®
=5 0 5 10 15 -5 0 5 10 15 =5 0 5 10 15
Feature 1 Feature 1 Feature 1
Figure 3: Visualization of the three steps in Fuzzy Bayesian Clustering
Assume a dataset X = {z1,22,...,2n} is used to be clustered into K clusters. The steps of Fuzzy

Bayesian Clustering are as follows. First, Utilizing the KMeans algorithm to initialize the cluster centers
{Hk}szl- Then, for each data point x;, calculate its fuzzy responsibility r;, representing the degree to which
x; belongs to cluster k. The responsibility is given by:
- pla|Or)
Tik = K

> je1 - p(wil6;)
Then, using the fuzzy responsibilities, update the cluster centers u; and other parameters iteratively to
approach the optimal solution.

(31)

N
i = St Tk T (32)
Zn:l Tnk

If it is applicable, then update the cluster covariances.

Z»,]:]:l Tnk * (xn - Mk)(xn - Mk)T
25:1 Tnk
14
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Then, updated the priors.

1 N
szﬁnz::lﬂlk (34)

Finally, repeat the calculation of fuzzy responsibilities and the update of cluster centers until convergence,
resulting in the final fuzzy clustering.

3.4. Formulation of FBC Uncertainty Set

The uncertainty set is constructed by capturing the probabilistic nature of data point assignments to clus-
ters. The fuzzy membership structure is fundamental in defining the uncertainty set for robust optimization,
especially when dealing with renewable energy generation, which is inherently variable and unpredictable. :

The posterior predictive distribution in FBC represents the likelihood of a new data point z,,41 belonging
to any of the clusters k£ given the observed data X, and model parameters =. This distribution captures
both the clustering structure and the probabilistic membership of each point across clusters.

The posterior predictive distribution for a new data point z, 41 is given by:

Ky 41
Tn41]| X0, Z) ~ Y ok Sty p1—ai oo . ot 35
p( n+1‘ n ) ; nk Plyg+1—dim(Xy) (Mk: H;@(V]/(} 11— dlm(Xk)) k ( )

The uncertainty set U in FBC is then constructed by combining the posterior predictive distributions of
each cluster, weighted by the fuzzy memberships. This set represents the range of potential outcomes for
ZTn+1, encapsulating the full scope of variability in the model based on the observed data. Mathematically,
the uncertainty set ¢ can be defined as:

Ky + 1 _
U= {x T X~ Ek:rnk; Sty +1—dim(X) (/i?c, P 1k_ dim(Xk.))\P;“ 1) } (36)

This representation means that any point x in the uncertainty set is drawn from the mixture distribution
specified by the posterior predictive distribution. Each cluster k contributes to the uncertainty set propor-
tionally to its responsibility r,; for the data point x,,41. High responsibility values indicate that a cluster has
a strong influence over the point’s membership, while low values indicate a weaker influence. This fuzzy mem-
bership enables the uncertainty set to accommodate points that belong to multiple clusters, effectively cap-
turing the variability of renewable output patterns.To guarantee tractability and robust feasibility in the pres-
ence of uncertainty modeled by FBC, we derive a confidence-bound-based outer approximation of the uncer-
tainty set U in Eq. (36). Specifically, the predictive posterior for each cluster & is a multivariate Student-¢ dis-

tribution, from which we extract a high-confidence interval, | 1}, — taj2,u] * Ok, W, + taj2, ak} ,  with o =

\/ T
K (v +1=dim(Xg)) k*

In this construction, each cluster is represented by a Student-t distribution with parameters specific to
that cluster. The Student-t distribution is particularly useful here because it is robust to outliers and can
accommodate a variety of data distributions. The degrees of freedom vy + 1 — dim(Xj) control the shape
of the distribution, allowing it to capture the inherent variability in renewable output for that cluster. The
mean ) represents the expected value of data points in cluster &, while the precision &}, scales the Student-t
distribution, influencing the spread around the mean. A higher precision &, implies more confidence in the
mean estimate. The degrees of freedom v}, affect the tail behavior of the distribution, with higher values
leading to a more Gaussian-like shape and lower values resulting in heavier tails, accommodating more
variability. Finally, the scale matrix ¥} adjusts for variability in multiple dimensions, making the model
robust to multivariate uncertainty.

The constructed uncertainty set & can now be applied in robust optimization to improve the resilience
of the system. This uncertainty set allows the optimization model to consider a variety of possible outcomes
for renewable output and make decisions that remain feasible under different scenarios. For instance, in
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energy dispatch, the robust optimization framework can look at the lower end of the uncertainty set to
prepare for worst-case scenarios, ensuring backup from thermal or stored energy is available when renewable
output is low. Conversely, the upper bounds of the uncertainty set represent favorable conditions where
renewable generation is high, enabling the dispatch model to minimize thermal generation and utilize storage
to capture excess renewable energy. By using the full range of the uncertainty set, the optimization model
can dynamically adjust decisions based on the probabilistic distribution of renewable energy, balancing the
trade-off between cost and reliability.

The final form of the uncertainty set U can be represented as a distribution over possible future values,
capturing the entire range of cluster-based predictions from FBC:

K

/ + 1
Z/{ = Rd . Xn E ~ n Sty —dim f Hk \Ij/_l 37
{IIZ c p(x| , ) ’;T k r+1—dim(Xy) <u’k7 K/%(V;c n 1— dlm(Xk;)) k ( )

where d is the dimensionality of the data space. This set represents all possible outcomes x that are
consistent with the fuzzy-clustered predictive distribution, covering both typical and extreme values. In
Fuzzy Bayesian Clustering, the uncertainty set U is constructed by combining cluster-specific Student-
t distributions weighted by fuzzy memberships. This set provides a robust representation of potential
renewable energy outputs, accommodating uncertainty in both cluster assignment and future data points.
By integrating this uncertainty set into robust optimization, energy systems can make informed decisions
that remain effective under a range of future conditions, enhancing the resilience and reliability of the power
grid in the face of renewable variability.

4. Robust Optimization methodology

4.1. Robust Power Grid Dispatching Model

A two-stage robust optimization framework is proposed in this paper for power system dispatching
considering the integration of DG units, renewable energy sources, and storage. The objective is to handle
the uncertainties inherent in RES generation and load demand.These intervals reflect the marginal variability
captured by each cluster. Then, the total uncertainty set is conservatively approximated by aggregating all
cluster-wise bounds according to the fuzzy membership weights r,;. This forms a bounding region I/ in
either box-type or ellipsoidal form, which is then used in the outer maximization in:

in (ATf) + i BTy + CTu). 38
win (A'F) +max min | (B'y +C'u) (38)
s.t.
Dy +Eu=m (39)
JF+Gy+Hu<n (40)

where, in the optimization model, f represents the vector of all first-stage decision variables, which in-
cludes fTPU = [frPU.i il fWT — [fwr,i,5,], and R [fpv,i,ju) for all i, j, and [. The binary set
F = {0, 1}?*1»xJaxLi imposes constraints on the L; increments of the J, types of thermal power units, wind
turbine, and photovoltaic units in a power grid with I, candidate buses. The matrices A and J correspond to
the parameters for the binary variables f. Meanwhile, in the second stage, U represents the uncertainty set
for the vector u, which includes the wind and solar power output wwr = [Ww,i,j.1.t], Wpv = [Wpv 4 5,1,¢) for all
i, 7, 1, and ¢, and the active and reactive load demand P, = [P, ;1], Qc = [Qc,:,¢] for all ¢ and ¢. The matrices
C, E, and H represent the parameters for the uncertain variables u. The set Y (f, u) represents the feasi-
ble region for the vector of other continuous variables y = [Prpu; Pwr; Ppv; Qreu; Qwr; Qpv; P; Q; V],
where Prpy = [Prru,itl, Pwr = [Pwr,itl, Ppv = [Pov,its Qreu = [Qrrusidl, Qwr = [Qwril,
Qpv = [Qpvit), Q = [Qit), and V = [V;,] for all ¢ and ¢, and P = [Pi4 4, Pi_4, P;¢] for all ¢ and ¢,
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where ¢ % 1. The corresponding parameter matrices in the objective function and inequality constraints
are represented by B and G. The vectors m and n represent the remaining scalars in the equality and
inequality constraints, respectively.

4.2. Robust Methods for Solving Power Grid Optimal Dispatching

In the two-stage optimization problem formulation subsection, the uncertainty set is defined by the
posterior predictive distribution capturing the range of renewable outputs based on historical and forecast
data. The problem solving method is illustrated in Fig. 4.

First Layer:
Power Grid Optimal Dispatching

RES Uncertainties | I ]
[ f I I‘ ]

Uncertainty forecast
Time rolling: hours

J — — N
[ I I ]
Second Layer :
RES TPU-ESS Coor(liinated control |
Uncertainties
Robust Cost & LT T
S int
Sit lr;tlczhatlon n rl\r/ﬁg] AN | Revenue Frequency regulation forecast
P MAX Time rolling: seconds
CT T T T T T T 1
A A A A
CIT T T1T1
{ i FR Ancillary Services MAX
TPU ESS output [ I I I ] - CIT T T T T T T 17
Time series

Figure 4: The proposed two-stage robust optimization procedure

4.2.1. Model Formulation with FBC-Based Uncertainty Set

The first stage of the optimization problem focuses on making initial configuration decisions for the
power grid, such as selecting and placing power generation units. The second stage then uses the FBC-
based uncertainty set to account for RES variability in dispatching and operational decisions.

The robust optimization model can be formulated as follows:

min ATE ¢ (41)
subject to:
¢>BTy +CTu Vy e Y(f,u) (42)
Dy+Eu=m (43)
JF+Gy+Hu<n (44)

where, f represents the vector of first-stage decision variables, which includes decisions regarding the config-
uration of thermal power units, wind turbines, and photovoltaic units. The second-stage decision variables,
y and u, represent the operational decisions and uncertain parameters, respectively, where u is defined by
an uncertainty set based on the FBC model.
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4.2.2. FBC-Based Uncertainty Set Definition

Using the FBC model, we construct a probabilistic uncertainty set Uppc, which accounts for the vari-
ability in wind and solar outputs. This set is defined as a weighted mixture of cluster-specific distributions
derived from the posterior predictive distribution in FBC:

Ky, +1
U ={u:un~ Y Tup Sty 1i_ai / k (A 45
FBC { zk: nk vp+1—dim(Xy) (/J’ka H;C(V]/c +1— dlm(Xk)) k ( )
where each cluster k represents a distinct renewable output scenario, and r,; represents the fuzzy member-

ship of the scenario.

4.2.8. Two-Stage Optimization considering FBC Uncertainty Set

The first stage solves for the optimal power grid configuration under different renewable scenarios, while
the second stage adjusts operational decisions based on the uncertainty set Uppc.

The optimization can be split into a master problem (MP) and subproblems (SP) that correspond to
different scenarios within the FBC-based uncertainty set.

1. Master Problem (MP)

Hflign ATf 4 ¢ (46)
subject to:
£>BTy+CTu VyeY(f,u),uclppe (47)
Dy + Eu=m (48)
Jf+Gy+Hu<n (49)

The result of the master problem is a relaxed solution that provides a lower bound LB for the optimiza-
tion. This solution is then passed to the subproblems to evaluate its feasibility under different scenarios
within the uncertainty set.

2. Subproblem (SP)

For each scenario k, represented by cluster k£ in the FBC uncertainty set, we solve a subproblem to
identify the worst-case scenario within the uncertainty set. This ensures the feasibility of the first-stage
decision f under the worst-case realizations of renewable output.

max min BTy + CTu (50)
uclrpc yGy(f,u)
subject to:
Dy+Eu=m (51)
Jf+Gy+Hu<n (52)

This subproblem evaluates the upper bound U By, for each scenario and adjusts the feasible region by
adding cuts to exclude infeasible solutions. The optimality cuts, which are associated with the worst-case
uncertain variables, are then added to the master problem. To solve the challenging bi-level “max-min”
subproblem using standard solvers, we formulate the KKT optimality conditions as follows:

Dy+Eu=m (53)
B +77'G+4"D =0 (54)
Jf+Gy+Hu<n (55)
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7'(n—Jf— Gy —Hu) =0 (56)

402 Constraint (56) represents the complementary slackness condition, indicating that either v or (n — Jf — Gy — Hu)
w3 should be zero. Using the Big-M method, we can transform this condition along with Constraint (55) into
w0t the following mixed-integer linear constraints:

0<n-Jf-Gy—-Hu< Mo (57)

0<y<M(-o0) (58)

ws  where M is a sufficiently large constant and o is a binary variable. The KKT conditions are sufficient when
ws the subproblem is convex. The complete set of constraints now comprises (53), (54), (57), and (58).

wr 4.2.4. Solution Procedure

a08 The solution procedure involves iteratively solving the master problem and subproblems, refining the
wo uncertainty set Uppc based on the worst-case scenarios identified in each iteration. This approach is
a0 summarized as follows:

l Initiate data of weather information, load profile, and power grid topology

Generate the proposed data-driven uncertainty set
and obtain the total subproblem number T'

Initialize the low bound LB = -x0
and the upper bound UB = +o0

Initialize iteration number t = 1 ‘

v
Solve MP using equations (46-49) and obtain
optimal solution (f, &), Update LB by max(LB,ATf" + ¢}
3
’ Initialize subproblem number ‘

k=1
¥

45‘ Solve SPk using equations Eq(53), (54), (57), (58). ‘

YES

Is SPk feasible?

Obtain the infeasible solution
iy ufp)

Optimality variables and
infeasible variables to MP;
Optimality cuts and
infeasible cuts to MP

Obtain the feasible solution
Vi uk

NO Compare results 57y, + ¢« and identify the worst-case scenario
Ohud) . Update UB_min{UB,A"f* + B"y! + C"ut}

NO

t=t+1

Is gap within

tolerance?

YES
Return Optimal Solution

Figure 5: Flowchart of the solution algorithm for FBC-based framework

a1 e Step 0: Set initial lower bound LB = —oo and upper bound UB = +o00. Define tolerance ¢ and set
412 iteration t = 1.

19



413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

e Step 1: Solve the master problem (MP) and obtain the tentative solution (f?,&?). Update the lower
bound LB=max {LB, ATf" + ¢'}.

e Step 2: Solve each subproblem SP; using f' to find the optimal scenario outcome Q% = (yi,ul)
under uncertainty.

e Step 3: Compare Q% for all k = 1,2, ..., T, identifying the worst-case scenario Q% = (y!, u!) and infea-
t

sible scenario set Qj; = (y{;, uj;). Update upper bound as UB = min {UB,ATf'+ BTyl + CTu'}.

e Step 4: Check the gap between UB and LB, GAP = |UE;];BLB|. If the gap is below €, terminate the
procedure. Otherwise, update the MP by adding new variables y! and y! ¢ and corresponding optimal
cuts (Dy{ + Eul = m) and (Jf + Gyl + Hu{ < n) , while infeasible cuts (Dy;; + Euj; = m) and
(Jf + Gyf-f + Huﬁf < mn). Update t =t + 1 and go back to step 1.

By iteratively refining the solution, this approach ensures the robustness of power grid planning decisions
against the variability in renewable energy output, as represented by the FBC-based uncertainty set, the
algorithm process is shown in Fig. 5.

5. Case Study: Economic Optimization and frequency regulation of the Power grid

In the section, a modified IEEE 33-bus system is used as the test power grid to validate the distributed
generation network dispatching design with the FBC-C&CG framework. To find the optimal DG mix, the
proposed methodologies will be analyzed under various conditions.

5.1. The Power Grid Description

The single-line topology of the system is shown in Fig. 1. The total basic load is 650 MW and 315
MVAR. In the figure, the blue nodes are denoted as normal buses where load demands are connected. The
green nodes are three possible sites (bus 4, 19, and 26) that not only have load demands connected but also
can be chosen to install DG units due to geographic advantages. Each possible site could install either wind
generation, PV panels. The red node is the energy storage system coupled with thermal power unit (bus 1),
and this is the main regulation elements for the system to resist fluctuations of the RES uncertainties.

The capital costs for thermal power plants, wind turbine, and photovoltaic generation units are $2293 /kVA,
$1882/kVA, $4004/kVA, respectively. The O&M costs of the three DG units are $0.012/kWh, $0.01/kWh,
and $0.01/kWh,respectively. For thermal power unit, the fuel cost and emission penalty costs are $0.63/kWh
and $0.02 kg/kWh, respectively. The emission factor is $0.003 kg/kWh. For energy storage system, this
study considers a capital cost of $2000/kWh and a round-trip efficiency of 85% for flywheel energy storage
systems, and a capital cost of $400/kWh with 90% efficiency for lithium-ion battery energy storage systems.
The O&M cost is estimated at $0.004/kWh for flywheels, while the operational cost of batteries is assumed
negligible due to minimal maintenance requirements.

The system is modeled on a 600 MW coal-fired thermal power plant in Lingwu, Ningxia Province, China
which serves as the primary baseload generation unit, which can be shown in Table. 3. The thermal power
unit ensures grid stability by providing consistent energy output, especially during periods of low renewable
generation. Meanwhile, the wind turbines and PV modules operate in parallel to reduce dependency on fossil
fuels and contribute to peak power demands. The base configuration which is located in Lingwu, Ningxia,
employs 36 flywheel energy storage units, each with a power rating of 625 kW and a storage capacity of 153
kWh. Flywheel energy storage system (FESS) is applied for addressing transient fluctuations in wind and
solar output, ensuring smoother grid operation. In contrast, the other configuration uses battery energy
storage systems with the same power rating of 625 kW but a significantly higher storage capacity of 45
MWHh, enabling extended-duration energy support.

Table. 4 summarizes the characteristics of the wind turbines and photovoltaic modules used in the hybrid
renewable energy system. For wind turbines, the parameters include rated power, cut-in speed, rated speed,
and cut-out speed, with a configuration of 3 MW rated power, 4 m/s cut-in speed, 10 m/s rated speed, and
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Table 3: Characteristics of available TPU, ESS.

Thermal power unit parameters Type I Typell Type II1

Parameters Rated power (MW) 600 600 600

Energy storage system parameters Typel Type Il Type III

Parameters Rated Power (MW) 7.5 22.5 22.5
Energy Capacity (MWh) 1.83 5.5 45

25 m/s cut-out speed. These specifications ensure efficient operation under a range of wind conditions.For
PV modules, the parameters include peak power, open circuit voltage, short circuit current, voltage and
current at the maximum power point, voltage temperature coefficient, current temperature coefficient, and
nominal cell operating temperature. The PV modules are optimized with a peak power of 50 W and a
nominal cell operating temperature of 43°C to perform reliably under high-temperature conditions.

Wind turbines and PV modules are strategically deployed at nodes 4, 19, and 26 within the power
network. The total installed capacity is 300 MW for wind turbines and 200 MW for PV modules. This
configuration takes advantage of local wind and solar resources while minimizing transmission losses and
ensuring stable integration into the grid.

Table 4: Characteristics of Wind Turbine and PV Module Parameters

Wind Turbine Parameters Value

Parameters Rated power (MW) 3
Cut-in speed (m/s) 4
Rated speed (m/s) 10
Cut-out speed (m/s) 25
PV Module Parameters

Parameters Peak power (W) 50
Open circuit voltage (V) 55.50
Short circuit current(A) 1.80
Voltage at maximum power point (V) 38.00
Current at maximum power point (A) 1.32

Voltage temperature coefficient (mV/°C)  194.00
Current temperature coefficient (mA/°C)  1.40
Nominal cell operating temperature (°C)  43.00

5.2. Comparison Results of Optimization for the Power Grid

5.2.1. Analysis of RES Uncertainty Set

This analysis utilizes 10 days of weather data from China mainland, to model renewable energy generation
at candidate buses 4, 19, and 26. Each station provides wind speed and solar radiation data corresponding to
its assigned bus. The load profiles for all connected loads are sourced from the State Grid Shandong Electric
Research Institute. The uncertainties in the system are modeled to account for wind turbine parameters,
PV module parameters, and load variations across the three buses. Specifically, the uncertainty dimensions
include contributions from wind turbines (3 x 3), PV modules (3 x 3), and load profiles (1), resulting in a
total uncertainty dimension of 19.

The clustering results for normalized wind and solar data over a 10-day period are shown in Fig. 6.
The solar output exhibits a clear diurnal pattern, with peak values occurring in the day time. During
nighttime, the output is nearly zero. However, the peak values vary across different days, highlighting the
randomness and uncertainty in solar output. In contrast to solar energy, wind output shows significantly
higher variability and does not follow a clear diurnal pattern. The fluctuations in wind output are more
random throughout the day, reflecting a greater degree of uncertainty.
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Figure 6: Normalized RES Data Across 10 Days.

Fig. 7 illustrates the results of clustering normalized wind and solar data over a 10-day period using the
Fuzzy Bayesian Clustering method. The figure provides insights into how wind and solar energy outputs
can be categorized into distinct operating patterns, aiding in the analysis of renewable energy systems.
The clustering process aimed to group the data into meaningful categories, with each cluster representing
a specific range of wind and solar power generation levels. This analysis enables the characterization of
renewable energy variability and supports efficient energy management strategies. The three subplots in the
figure illustrate different stages of the clustering process. Subplot (a) shows the initial clustering performed
using the KMeans algorithm, where each data point is assigned to a single cluster. This initial step categorizes
the data into three distinct clusters, representing low, medium, and high wind-solar power output conditions,
with black crosses marking the cluster centers. Subplot (b) transitions to the fuzzy clustering step, which
provides a probabilistic measure of each data point’s membership in the clusters. In this subplot, darker
points indicate strong associations with a single cluster, while lighter points reflect shared memberships across
multiple clusters, capturing the transitional nature of the data. Subplot (c¢) combines these results, presenting
the final clustering outcome that integrates the hard clustering of KMeans with the fuzzy memberships to
produce a refined representation of the wind-solar patterns.

Clustering in subplot (a) corresponds to periods of low wind and solar output, typically observed during
nighttime or under overcast weather conditions. Clustering in subplot (b) represents moderate power output,
such as during early morning or late afternoon, when either wind speeds or solar radiation is partially
available. Clustering in subplot (c) captures high power generation scenarios, reflecting optimal wind and
solar conditions during the day. These findings are instrumental in optimizing hybrid renewable energy
systems by informing decisions on energy storage allocation, grid integration strategies, and the efficient
management of variable renewable energy resources.

5.2.2. Comparison Under Different Confidence Levels

Once the uncertainty sets are ready, the proposed modified C&CG algorithm will be used to solve the
proposed problem. All the simulation results are implemented with CPLEX 12.8.0 using a computer with
an Inter(R) Core(TM) i7-12700H CPU at 4.7 GHz.

Figure 8 visualizes the distribution of costs for 3 distinct categories, which include First stage cost
and Total cost for three different types which are shown in Table 4. The three types represent different
cost structures or scenarios, and each type includes both the First stage cost, which represents the initial
investments for all generations, and the Total cost, which combines the initial costs, operation cost and
revenue of the generation dispatching for 20 years. It illustrats the cost analysis of different energy storage
scenarios under varying confidence levels. The x-axis categorizes the storage scenarios into three types (Type
I, Type I, and Type III), further divided into First Stage Cost and Total Cost for each type. The confidence
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Figure 7: Normalized RES Data Across 10 Days

levels ranging from 0.5 to 0.95, which reflect the uncertainty tolerance in the optimization problem, reveals
that as the confidence level increases, both the first stage and total costs generally rise, indicating higher
expenses for robust planning under stricter uncertainty constraints. Across all scenarios, the total cost is
consistently higher than the first stage cost, reflecting the inclusion of penalty costs for power shortages or
operational adjustments in the total cost. Notably, Type II exhibits higher costs compared to Type I and
Type III, indicating its potentially higher investment and operational requirements.

In this section, Type II is used as an example. From the bar chart in Fig. 8, it can be observed that when
a storage capacity of 22.5 MW is configured, the reduction in total cost is the most significant. Although
Type III exhibits lower initial costs, the total benefits decrease over the usage period, implying that Type
IT is the most effective storage configuration for long-term performance. Therefore, Type II is selected to
illustrate the optimization process.

The optimization process begins by defining the objective function, which minimizes the total cost
including both the first stage investment cost and the second stage operational cost. This optimization is
solved under varying confidence levels to account for uncertainties in energy production and demand. The
iteration proceeds using a C&CG method until convergence is achieved.

The optimization results are presented in Table. 5. For Type II, the total cost effectively decreased,
and the first stage cost, representing the investment cost, remained unchanged, while the second stage cost
resulted in a negative value, indicating a profit made from energy arbitrage during the operational phase.
The optimization ran for multiple iterations, adjusting decision variables such as energy storage dispatch
and generation to ensure convergence. The range of uncertainty, upper and lower bounds, and optimality
gap were carefully monitored to determine the stopping criteria.

Table. 5 provides an overview of the bounds and optimality gaps under different confidence levels for the
optimization of Type II storage configurations. The table highlights the iterative process of reducing the gap
between the lower bound and upper bound until convergence is achieved. For each instance, corresponding
to confidence levels ranging from 50% to 95%, the optimization proceeds through three iterations. As the
confidence level increases, the total cost also rises, reflecting the higher costs required for robust decision-
making under stricter uncertainty requirements. For instance, at a 95% confidence level, the LB and UB
values in Iteration 3 are both 7,770,174, achieving convergence with an optimality gap of 0.00%. This
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Table 5: Bounds and gaps under different confidence levels of Type II.

Instance Confidence level Iteration LB UB Optimality gap
1 50% 1 -8,265,328 16,380,225 150.46%
50% 2 4,852,998 5,110,238 5.03 %
50% 3 5,075,232 5,075,232 0.00%
2 60% 1 -8,265,328 16,325,121 150.63%
60% 2 4,920,976 4,979,626 1.17%
60% 3 4,955,382 4,955,382 0.00%
3 70% 1 -8,265,328 16,298,398 150.72%
70% 2 4,780,853 4,858,691 1.60%
70% 3 4,835,978 4,835,978 0.00%
4 80% 1 -8,265,328 16,100,244 150.33%
80% 2 6,236,441 6,305,308 1.09%
80% 3 6,292,328 6,292,328 0.00%
5 90% 1 -8,265,328 16,879,208 148.97%
90% 2 7,425,467 7,501,082 1.01%
90% 3 7472174 7,472,174 0.00%
6 95% 1 -8,265,328 16,396,752 150.41%
95% 2 7,686,453 7,892,186 2.61%
95% 3 7,770,174 7,770,174 0.00%

se3 trend is consistent across all instances, with convergence achieved within three iterations regardless of the
s confidence level. The results demonstrate the efficiency and reliability of the optimization process in refining
ses  the bounds to achieve optimal solutions under varying uncertainty levels.
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5.2.83. Comparison under different Type Energy Storage Systems

It can be observed that at lower confidence levels (0.5, 0.6, 0.7), the storage system output is relatively
smooth, with small fluctuations. This is likely because lower confidence levels imply less concern about
system uncertainties, resulting in storage being primarily used to smooth load fluctuations and avoid large
power changes. On the other hand, at higher confidence levels (0.8, 0.9, 0.95), the variability in storage
output increases significantly, especially at the 0.95 level. Fig. 9 to Fig. 11 presents the storage and thermal
power outputs under different confidence levels using Type I, which is flywheel energy storage, characterized
by a rated power capacity of 7.5 MW and an energy capacity of 1.83 MWh. The storage output shows
relatively low variability, with fluctuations around zero, indicating limited reliance on storage to manage
uncertainties. The thermal output demonstrates consistent and robust generation, highlighting its role as a
resilient energy source under Type I conditions. The minimal impact of varying confidence levels on thermal
output underscores its reliability in maintaining system stability.

10 (a) Storage Output (Confidence level 0.5, 0.6, 0.7) 10(p) Storage Output (Confidence level 0.8, 0.9, 0.95)
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Figure 9: Storage and Thermal Power Outputs with Different Confidence Levels under Type I

From Fig. 9, in Type II, storage output exhibits greater variability, especially during mid-day hours, with
higher confidence levels resulting in noticeable peaks. This indicates increased reliance on storage systems
to manage uncertainties introduced under Type II conditions, showcasing storage as a flexible but less
inherently stable resource. Despite this, the thermal output continues to provide a stable baseline of power,
contributing to system resilience by mitigating the impact of storage variability. The slight decrease in
thermal output during peak hours suggests the system’s adaptive capability to balance storage and thermal
contributions effectively.

From Fig. 11, the storage output reaches its highest variability across the three scenarios, especially at
higher confidence levels. This highlights storage as a critical but highly dynamic component for maintaining
operational resilience under high uncertainty. Peaks in storage output during mid-day emphasize its role
in compensating for fluctuations in other parts of the system. Meanwhile, thermal output remains stable
and reliable, though minor reductions at lower confidence levels during peak hours suggest some trade-offs
between storage and thermal contributions. The comparison across the three figures reveals a progression
in system reliance on storage for flexibility and resilience, while thermal generation acts as a consistent
backbone, ensuring overall stability. The combination of storage and thermal systems at higher confidence
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Figure 10: Storage and Thermal Power Outputs with Different Confidence Levels under Type III
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Figure 11: Storage and Thermal Power Outputs with Different Confidence Levels under Type I1
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levels highlights the trade-off between renewable integration and the need for dependable, conventional
generation sources to maintain system stability and reliability.

Fig. 12 compares the frequency deviation suppression performance of different energy storage systems
coupled with TPU (Type I, Type II, and Type III) in frequency regulation scenarios. The results demon-
strate varying levels of effectiveness in reducing frequency fluctuations across the three types of systems.
Under Type I, the TPU-ESS system shows moderate performance in stabilizing frequency. While frequency
deviations are reduced compared to the original system, the fluctuations remain relatively prominent. This
indicates that Type I ESS has limited capability to fully mitigate frequency instability under these con-
ditions, likely due to lower flexibility or responsiveness in the system design. The Type II ESS achieves
the best performance in suppressing frequency deviations among the three systems. The fluctuations are
significantly minimized, and the system maintains frequency stability more effectively across the evaluation
period.

Table 6: Mean and standard deviation of IQR and range for different ESS types
ESS Type Mean IQR (MW) Std of IQR (MW) Mean Range (MW) Std of Range (MW)

Type I 1.4503 1.7485 2.8248 2.3615
Type 11 3.3847 3.4921 6.3093 5.8374
Type 111 2.5517 1.7198 6.1411 4.6682

Full statistical sampling is examined for each hour, five representative indicators—minimum, lower quar-
tile, mean, upper quartile, and maximum-—are used as proxy points to illustrate the distributional behavior
of each ESS type. Fig.13 compares the daily energy storage system output strategies across Type I, Type II,
and Type III conditions. In Type I, the output remains close to zero with limited variability throughout the
day. The slight fluctuations reflect minor adjustments made by the ESS, indicating relatively stable system
conditions and minimal reliance on storage to handle uncertainties. In Type IT (subfigure b), the ESS output
demonstrates more pronounced variability, particularly during peak hours. This suggests that under Type II
conditions, the ESS actively compensates for larger fluctuations in power demand or renewable generation,
emphasizing its role in balancing the system. The increased variability highlights the greater challenges in
maintaining stability under these conditions. For Type III, the ESS output variability is further amplified,
particularly during the mid-day hours. This reflects the ESS taking a critical role in addressing the highest
levels of uncertainty and fluctuations under Type III conditions. The broader interquartile ranges in Type
IIT compared to Type I and Type II indicate greater effort by the ESS to maintain system resilience and sta-
bility.This setup allows for a comparative assessment of the impacts of both increased capacity and different
storage technologies on system variability and performance. To quantify variability, the interquartile range
(IQR) and total range (max - min) were computed . Table 6 summarizes the average IQR and range for each
ESS type. Both the mean IQR and range increase progressively from Type I to II, confirming the visual
assessment of growing variability. Specifically, the mean IQR rises from 1.45 MW in Type I to 3.38 MW
in Type II and 2.55 MW in Type III, while the mean total range follows a similar trend. These results
illustrate enhanced operational fluctuations with higher-capacity systems and further highlight the effect
of storage technology differences, as the the high-capacity flywheel in Type II demonstrates comparable or
greater variability than the lithium-ion battery in Type III.

To further evaluate the practical trade-offs among different energy storage configurations, a radar plot
analysis is presented in Fig. 14. The results highlight that while the 22.5 MW lithium-ion battery performs
well in terms of overall cost-efficiency and moderate electricity loss compared to Type II, but it suffers
from higher degradation risks under frequent cycling conditions. In contrast, the 22.5 MW flywheel exhibits
superior dynamic performance and virtually no degradation, making it ideal for high-frequency disturbances,
albeit at a higher capital cost. The 7.5 MW flywheel shows limited performance due to capacity constraints,
but offers a balance between cost and longevity.

6. Conclusion
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With the increasing penetration of renewable energy, thermal power units are facing a greater challenger
to provide more flexibility in order to maintain the system stability. Energy storage-assisted thermal power
units present a promising solution for countries and regions where thermal generation plants still prevail
in their power systems but are facing a greater challenge to accommodate more renewable generations
to support low carbon transition. Their future capability of offering multi-timescale frequency regulation
supports the integration of more renewable generations. The findings indicate that hybrid energy storage-
assisted thermal power systems significantly improve the flexibility and economic viability of thermal power
generation, ensuring grid stability in high-renewable energy scenarios. The main conclusions are summarized
as follows.

1) The integration of energy storage plays a pivotal role in alleviating the operational stress of thermal
power units. By providing multi-timescale frequency regulation, energy storage system effectively
balances power fluctuations, reducing the need for frequent ramping and deep cycling of thermal
power untis. This prolongs the lifespan of thermal power equipment by minimizing mechanical decay.
The coordinated operation of energy storage system and thermal power untis allows for more efficient
energy dispatch, optimizing fuel consumption and lowering operational costs.

2) A coordinated control strategies for systems with energy storage system is employed, while high-
capacity battery energy storage (Type II, III), the ability to compensate more load during peak
periods minimizes the fluctuations for thermal power units to operate at full capacity, enhancing
system frequency regulation ability. Energy storage system integration ensures a dynamic response to
renewable energy fluctuations, improving grid resilience.

3) A comparative analysis of different energy storage system types highlights their role in optimizing
dispatch strategies under varying levels of renewable uncertainty. Larger energy storage systems de-
liver superior economic benefits by minimizing frequent operations of thermal units, reducing fuel
costs, and lowering maintenance expenses. Despite higher initial investments, the cost-benefit analy-
sis reveals that the long-term economic and resilience advantages—including reduced costs, improved
adaptability, and enhanced system stability—make these hybrid configurations economically viable.

4) Different storage technologies contribute to improving system flexibility and resilience as their char-
acteristics shows diverse abilities under different timescales. While smaller-capacity energy storage
system offers limited benefits but with low maintenance and investment cost, larger-capacity systems
enable more sustained power output during peak demand, reducing the reliance on thermal power
units and effectively mitigating renewable energy variability. The short-term and long-term energy
storage systems show different benefits during the operational duration, as the frequency regulations
are more frequent than used to be, short-term energy storage system shows a more comparable profits
in both technical and economic aspects.

The future research will focus on the refinement of control strategies to further optimize the economic and
operational benefits of storage-assisted thermal power systems. This paper overlooked the voltage profile of
ESS, detailed modeling of its reactive power support are critical for a comprehensive stability assessment.
Furthermore, high dimensional uncertainty sets and decision variables are required to explore by proposing
advanced optimization algorithms. Last but not least developing market mechanisms and policy incentives
tailored for storage-assisted thermal power units deployment is another research direction. It is anticipated
that new frequency regulation ancillary service markets and electric market mechanisms will accelerate
large-scale applications of the technology to integrate energy storages with thermal power units.
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