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ABSTRACT: This paper presents a search for physics beyond the Standard Model targeting
a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis
focuses on final states with a high-energy lepton and jet, and is optimised for the resonant
production of leptoquarks — a novel production mode mediated by the lepton content
of the proton originating from quantum fluctuations. Four distinct and orthogonal final
states are considered: e+light jet, u+light jet, e+b-jet, and u—+b-jet, constituting the first
search at the Large Hadron Collider for resonantly produced leptoquarks with couplings
to electrons and muons. Events with an additional same-flavour lepton, as expected from
higher-order diagrams in the signal process, are also included in each channel. The search uses
proton-proton collision data from the full Run 2, corresponding to an integrated luminosity
of 140 fb™! at a centre-of-mass energy of /s = 13TeV, and from a part of Run 3 (2022-2023),
corresponding to 55 ! at Vs = 13.6 TeV. No significant excess over Standard Model
predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark
(5'1) production, substantially improving upon previous ATLAS constraints from leptoquark
pair production for large coupling values. The excluded S; mass ranges depend on the
coupling strength, reaching up to 3.4 TeV for quark-lepton couplings y4. = 1.0, and up to
4.3TeV, 3.1 TeV, and 2.8 TeV for y,,,, Y., and y;, couplings set to 3.5, respectively.
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1 Introduction

While the discovery of the Higgs boson [1, 2] and subsequent precision measurements of its
properties [3, 4] remain landmark achievements, an equally fundamental scientific motivation
for the Large Hadron Collider (LHC) [5] is the search for physics beyond the Standard Model
(BSM). Numerous BSM theories predict the existence of new massive states that could be
produced resonantly in proton-proton (pp) collisions at the TeV scale, provided their masses
lie within the experimentally accessible range of the LHC. When produced through resonant
mechanisms, these states would manifest as localised excesses in the invariant mass spectra of
their decay products. Such distinctive peaks superimposed on the smoothly falling background
predicted by the Standard Model (SM) would constitute an unambiguous signature of new
physics. Consequently, resonance searches constitute a cornerstone of the research programs
for both the ATLAS and CMS experiments.

Leptoquarks (L.Qs) represent a prominent category of hypothetical heavy states predicted
by various grand unified theories featuring extended gauge groups [6-8]. These colour-charged
particles carry both baryon and lepton numbers, naturally reflecting the underlying symmetry
between the two sectors as predicted by unifying theories and suggested by observed patterns



in nature. Characterised by fractional electric charges and postulated in either scalar or vector
forms, LQs decay into distinctive lepton-quark pairs whose flavour composition depends
on the LQs’ coupling parameters.

Extensive investigations of LQ signatures were conducted using the datasets collected
during the LHC Run 1 and Run 2 data-taking periods. Previous LHC searches have
primarily focused on two production mechanisms: pair production (PP) mediated by quantum
chromodynamics (QCD) and coupling-dependent single production (SP) in association with
a lepton, as illustrated in figure 1(a) and 1(b), respectively. While PP cross-sections depend
predominantly on the strong coupling constant and remain largely independent of L(Q coupling
parameters, production via SP becomes more and more relevant with increasing coupling
values due to its direct dependence on these parameters. Additional LQ sensitivity also arises
from non-resonant contributions to dilepton production via ¢-channel processes (Drell-Yan,
DY) seen in figure 1(c). A summary of the search strategies for pair-, single- and DY
production of LQs can be found in refs. [9, 10].

This paper introduces a novel probe of s-channel resonant L() production at hadron
colliders [11] shown in figure 1(d) and 1(e), enabled by recent advancements in understanding
the proton’s lepton content that arises from quantum fluctuations. State-of-the-art next-to-
leading-order (NLO) calculations of lepton parton distribution functions (PDFs) [12] show
that, despite the relative scarcity of leptonic constituents of the proton compared to quarks
and gluons, this previously unexplored production channel offers competitive sensitivity
relative to established search strategies [13]. The resonant production mechanism yields a
relatively clean final state comprising a lepton-jet system whose invariant mass distribution
could reveal a characteristic resonance peak, similar to single LQ production. This distinctive
signature motivates the development of dedicated search algorithms within the ATLAS
experimental programme.

The analysis employs a S; LQ with absolute electric charge %e as a benchmark signal. This
LQ is a singlet under the SU(2) SM gauge group, with purely right-handed Yukawa couplings
to down-type quarks and leptons. Therefore, it is characterised by a simple, exclusive decay
topology into a down-type quark and a charged lepton, with no additional competing decay
channels into neutral leptons. Four distinct coupling scenarios are investigated where the
LQ exclusively interacts through single non-zero coupling parameters: yge, ¥su, Ype and yp,,,
corresponding to first/second-generation lepton (e, 1) couplings with d/s- or b-quark partners.
Alternative models featuring couplings to u/c-quark flavours show detector-level signatures
kinematically indistinguishable with the studied scenarios, permitting phenomenological re-
interpretation through coupling parameter rotation in the quark flavour space. The ATLAS
collaboration has performed a pair-production search focusing on scalar LQ decays into
quark-lepton (¢f) final states with ¢ = e, u, establishing mass exclusion limits up to 1.8 TeV
(electron channel) and 1.7 TeV (muon channel) assuming a branching ratio into a charged
lepton and a quark of 100%, with minimal dependence on the quark flavour [14]. These
results also served as input for a statistical combination of LQ searches [15] to enhance
sensitivity across different decay modes. Searches for LQ pair-production from the CMS
collaboration constrain scalar LQ masses up to 1.4 TeV and 1.5 TeV for couplings to electrons
and muons, respectively [16, 17]. For couplings to muons and b-quarks, these constraints
extend up to 1.8 TeV [18]. A recent search by the CMS collaboration for ¢-channel LQ



Figure 1. Example Feynman diagrams for the (a) pair, (b) single, (c) Drell-Yan, as well as (d) leading-
order and (e) next-to-leading-order resonant LQ production modes. The symbol y marks interactions
mediated by a LQ Yukawa coupling to quarks and leptons. All shown LQ production modes except
pair production are considered for the interpretation of the analysis results.

exchange strengthens the constraints on large couplings involving up- and down-type quarks
and electrons or muons, probing L(Q masses up to 5 TeV [19]. The CMS collaboration also
conducted a search for resonant LQs with couplings to a 7-lepton and a u/d/s/b quark using
data collected in 2016-2018 [20].

The present analysis introduces the first dedicated exploration of resonant LQ production
mechanisms coupling to first- and second-generation leptons (e/u). It is conducted using
/s =13TeV and /s = 13.6 TeV pp collision data collected with the ATLAS experiment from
2015 to 2018 in LHC Run 2 (140fb~ ') and from 2022 to 2023 in Run 3 (55 fb™ '), respectively.

The analysis incorporates four mutually exclusive detection channels: e + light-jet,
u + light-jet, e 4+ b-jet, and u + b-jet, where light-jet refers to jets that are not tagged as
containing a b-hadron decay. To ensure methodological consistency, a similar analysis strategy
is implemented across all channels while preserving channel-specific optimisations. Each
channel features dedicated 1-lepton (1L) and 2-lepton (2L) signal regions (SRs), where the
2L topology is specifically designed to account for NLO contributions [21, 22] as shown in
figure 1(e). These diagrams are mediated via the photon constituent of the proton which is
less suppressed than the lepton content and therefore their contributions are approximately
on equal footing with the ones from the s-channel LQ production. Signal extraction employs
a shape-based discrimination strategy through a multi-bin template likelihood analysis of
the lepton-jet invariant mass (my;) spectrum. This approach combines channel-specific
background modelling, kinematic selection thresholds, and independent treatments of sys-



tematic uncertainties, enabling simultaneous constraints on potential signals across the full
my; phase space covered in this analysis. Backgrounds with prompt, genuine leptons are
constrained using dedicated control regions (CRs), complemented with data-driven techniques
to estimate contributions from misidentified (“fake”) or non-prompt (FNP) leptons. An
individual analysis selection is developed for each channel and is applied separately on the
Run-2 and Run-3 datasets, enabling cross-validation between the two data-taking periods.
For the interpretation of results, the observed my; spectra from Run 2 and Run 3 are fitted
simultaneously to maximise the sensitivity to the benchmark signal.

The rest of this paper is organised as follows. A brief description of the ATLAS detector
is given in section 2, and the data and simulation samples used are discussed in section 3.
Overviews of the reconstruction of physics objects and the event selection are presented in
sections 4 and 5, respectively. The background estimation strategy is described in section 6.
The systematic uncertainties related to this search are described in sections 7. The results of
the search are given in section 8. Finally, section 9 presents the conclusions.

2 ATLAS detector

The ATLAS detector [23, 24] at the LHC covers nearly the entire solid angle around the
collision point.1 It consists of an inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating
three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2T axial magnetic field and provides
charged-particle tracking in the range |n| < 2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measurements per track, the first hit
generally being in the insertable B-layer (IBL). It is followed by the SemiConductor Tracker
(SCT), which usually provides eight measurements per track. These silicon detectors are
complemented by the transition radiation tracker (TRT), which enables radially extended
track reconstruction up to |n| = 2.0. The TRT also provides electron identification information
based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold
corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |n| < 4.9. Within the region
In| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
In] < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel
structures within |n| < 1.7, and two copper/LAr hadronic endcap calorimeters. The solid
angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements, respectively.

"ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the
centre of the detector and the z-axis along the beam pipe. The z-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Polar coordinates (r, ¢) are used in the transverse plane, ¢

being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle 6 as

E+p,
E-p,

n = —Intan(#/2) and is equal to the rapidity y = 1 In ( in the relativistic limit. Angular distance is

measured in units of AR = \/(Ay)” + (A¢)”.



The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by the supercon-
ducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 and
6.0 T m across most of the detector. Three layers of precision chambers, each consisting of
layers of monitored drift tubes, cover the region |n| < 2.7. These were complemented in
the innermost layer of the endcap region by cathode-strip chambers in Run 2, which were
replaced in Run 3 by layers of small-strip thin-gap chambers and Micromegas chambers, both
providing precision tracking in the region 1.3 < |n| < 2.7. The muon trigger system covers
the range |n| < 2.4 with resistive-plate chambers in the barrel region, thin-gap chambers in
the endcap regions, and, in Run 3, the aforementioned small-strip thin-gap chambers and
Micromegas chambers in the innermost layer of the endcap.

The luminosity is measured mainly by the LUCID—-2 detector that records Cherenkov
light produced in the quartz windows of photomultipliers located close to the beampipe.

Events were selected by the first-level trigger system implemented in custom hardware,
followed by selections made by algorithms implemented in software in the high-level trigger [25,
26]. The first-level trigger accepted events from the 40 MHz bunch crossings at a rate close
to 100 kHz, which the high-level trigger further reduced in order to record complete events
to disk at about 1.25kHz and 3kHz in Run 2 and Run 3, respectively.

The Run-3 detector configuration benefits from several upgrades compared with that
of Run 2 to maintain high detector performance at the higher pile-up levels of Run 3.
The improvements include a new innermost layer of the muon spectrometer in the endcap
region, which provides higher redundancy and a large reduction in fake muon triggers. The
trigger system also benefits from new digital electronics readout of the LAr calorimeters with
significantly increased granularity. Other updates and further details are provided in ref. [24].

A software suite [27] is used in data simulation, in the reconstruction and analysis of
real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment.

3 Data and simulated event samples

The data used in this analysis were collected using a set of single-electron and single-muon
triggers [28, 29]. The transverse momentum thresholds of the online leptons vary across data-
taking periods and depend on whether isolation requirements are applied at the trigger level.
For electrons (muons), the p thresholds range from 24-26 (20-24) GeV for triggers with
isolation, and increase up to 120-140 (50) GeV for those without isolation requirements.
Application of data-quality requirements [30] results in data samples corresponding to
integrated luminosities of 140 fb~! and 55fb~ ! for Run 2 and Run 3, respectively.

While background contributions from misidentified or non-prompt leptons are mainly
estimated by using data-driven techniques, Monte Carlo (MC) simulations are used to estimate
the event yields and systematic uncertainties for both the signal processes and SM backgrounds
featuring prompt-lepton production. These simulated event samples include the effect of
multiple pp interactions in the same or neighbouring bunch crossings (pile-up), as well as the
effect on the detector response due to interactions from bunch crossings before or after the one
containing the hard interaction. All MC events were then re-weighted to match the pile-up



distribution observed in the data. To simulate the detector response, background and signal
MC samples were processed through the ATLAS simulation framework [31] in GEANT4 [32].

Simulated signal samples of resonant LQ production are used to optimise the event
selection and interpret the results. Events are generated with an implementation of this
process in POWHEG Box REs at NLO [22] with the LUXlep-NNPDF3.1NLO PDF set” [12]
and are interfaced with HERWIG 7.2.3 for parton shower, hadronisation, and underlying
event using the H7.2-Default set of tuned parameters [33]. This implementation models
both the LQ production and subsequent decay. Decays of bottom and charm hadrons are
performed by EVIGEN2.1.1 [34].

The 2L selections of the analysis are sensitive to the photon-induced diagrams of resonant
LQ production but also to other LQ production modes that feature a second lepton in the final
state such as DY and single production. Therefore, dedicated combined DY+SP LQ samples
are generated with a POWHEG BoX implementation at NLO [35] and used additionally in
the interpretation of the results. These samples use the same PDF set as the resonant LQ
samples and are similarly interfaced to HERWIG 7.2.3 for the parton shower. These samples
also take the interference from DY LQ production with SM DY Z/~* — £¢ into account.
As the latter is estimated from dedicated samples, the L(Q signal samples only include the
interference but not the SM contribution. The DY4SP samples include a my, > 100 GeV
requirement at matrix-element level to increase the acceptance of the generated events for
the signal selections in this analysis.

The S; LQ is used as benchmark and four different types of minimal LQ scenarios are
considered. Only one LQ coupling is considered at a time while all other couplings are set
to zero. The couplings considered are Yge, Ysu, Ype and yp, that result in an e + light-jet,
u + light-jet, e + b-jet and p + b-jet signature, respectively. For the scenarios with y,4, and
Ysu couplings, samples with LQ masses between 1 and 5 TeV are generated. Models with
couplings to b-quarks have lower production cross-sections due to the smaller b-quark PDF,
hence the generated samples cover LQ masses between 1 and 3.5 TeV. The signal samples
cover the LQ coupling range from 0.1-1.0 for y,. and from 0.5-3.5 for the other scenarios. The
ranges of the signal parameters are motivated by the expected sensitivity of the search, taking
into account existing constraints from collider and low-energy (for y,.) experiments, and
restricting to the perturbative regime of the theory [8]. The signal production cross-sections
and uncertainties are taken from the POWHEG BoX RES implementations and evaluated
according to prescriptions from ref. [36]. As an example, the production cross-section for a
2TeV LQ at /s = 13 TeV for y,, couplings between 0.1 and 1.0 range from 0.024 fb to 2.5fb.
At /s = 13.6 TeV these cross-sections increase by approximately 16%.

A variety of MC generators is utilised to model the SM backgrounds involving the
production of prompt leptons. The event generator configurations for SM processes are
mostly identical between the Run 2 and Run 3 MC samples, except that more recent
generator versions are used for some of the latter. Table 1 provides a comprehensive overview
of the SM background samples utilised in the analysis. Additional information regarding
ATLAS simulations of W+ jets, Z + jets, tt, single-top (Wt, t-channel, s-channel), and
diboson processes is available in refs. [37-40]. The decays of bottom and charm hadrons

>This PDF set includes both leptons and photons in the proton content.



Physics process Generator Parton shower Normalisation Tune PDF (generator)

Resonant LQ signal POwWHEG Box REs [22] HERWIG 7.2.3 [33] NLO H7.2-Default [33] LUXlep-NNPDF3.1NLO [12]

DY+SP LQ signal ~ POWHEG Box v2 [35] HERWIG 7.2.3 NLO H7.2-Default LUXlep-NNPDF3.1NLO
SHERPA 2.2.11 [43, 44] SHERPA 2.2.11 [45]

Z/y* (= t0)+jets NNLO [46] Default [40] NNPDF3.0NNLO [47]
(SHERPA 2.2.14) (SHERPA 2.2.14)

Z[y"(— 77)+jets SHERPA 2.2.14 SHERPA 2.2.14 NNLO [46] Default NNPDF3.0NNLO
SHERPA 2.2.11 [43] SHERPA 2.2.11

W (= lv,7v)+jets NNLO [46] Default NNPDF3.0NNLO
(SHERPA 2.2.14) (SHERPA 2.2.14)

tt POWHEG Box v2 [48-51] PyTHIA 8.230 [52] NNLO+NNLL [53-59]  A14 [60] NNPDF3.0NLO

Single-top PownEG Box v2 [49-51, 61] PyTHIA 8.230 NLO+NNLL [62] Al4 NNPDF3.0NLO
SHERPA 2.2.11,2.2.12 SHERPA 2.2.11,2.2.12

Diboson V'V LO-NLO [63-66] Default NNPDF3.0NNLO
(SHERPA 2.2.14,2.2.16) (SHERPA 2.2.14,2.2.16)

tt+7 MG5 AMC@NLO2.3.3 [41, 67] PYTHIA8.210 [52] NLO [41] Al4 NNPDF3.08LO

_ MG5_AMCQ@NLO 2.3.3 PyTHIA 8.210 Al4

t+Ww NLO NNPDF3.0NLO
(SHERPA 2.2.14) (SHERPA 2.2.14) (Default)
PyTHIA 8.230 PyTHIA 8.230

Multijet LO [68)] Al4 NNPDF2.3L0
(PyTHIA 8.308) (PyTHIA 8.308)

{j scattering MADGRAPH 3.3.4 [41] HERWIG 7.2.3 LO H7.2-Default LUXlep-NNPDF3.1NLO

Table 1. Simulated signal and background event samples with the corresponding matrix element and
parton shower (PS) generators, cross-section order in oy used to normalise the event yield, set of tuned
parameters (tune) for the underlying-event and the generator PDF sets used. For diboson samples,
V e {W,Z}. “Default” refers to the default tune of the SHERPA generator. When different, the
settings used for the simulation of samples compared with Run-3 data are mentioned in parentheses.
Abbreviations used are defined as: leading-order (LO), next-to-leading-order (NLO), next-to-next-
to-leading-order (NNLO), next-to-leading-logarithmic (NLL), next-to-next-to-leading-logarithmic
(NNLL). The PDF set employed in the PS is generally the same as in the generator except for the
tt, single-top and the MG5_ AMC@NLO tt+Z and tt+W samples where the NNPDF2.3L0 [42]
set is used.

are performed by EVTGEN versions 1.2.0, 1.6.0 and 2.1.1 [34], except for the backgrounds
modelled using SHERPA, for which the decays are performed internally.

In addition to the hypothesized resonant L.Q production, taking into account the lepton
PDF in the proton also predicts a SM ¢j scattering process at the LHC. Such a process
has not been observed yet but features the same lepton-jet signature as the targeted LQ
model. To take this contribution into account, an £j scattering sample is generated at
leading-order using MADGRAPH 3.3.4 [41] and interfaced with HERWIG 7.2.3 and the LUXlep-
NNPDF3.1INLO PDF set. To enrich the sample in events with large my;, the transverse
momentum (pr) of the lepton is required to be greater than 50 GeV and the generation is
performed in bins of lepton pr.

4 Object reconstruction

Events are required to contain a primary vertex built from at least two associated tracks
with pp > 0.5 GeV. The primary vertex with the highest sum of squared transverse momenta
" pa of its associated tracks [69] is identified as the hard-scatter vertex of interest in each



event. A set of basic data-quality requirements is applied to ensure a fully operating detector
and to suppress contributions from detector noise or non-collision backgrounds [70].

Two categories of analysis objects are defined and utilised to define the search regions.
Leptons and jets are first “preselected” using loose selection criteria; those that satisfy
additional, tighter requirements are designated as “signal” objects. For electrons, also an
intermediate category — falling between the preselected and signal definitions — is introduced
which is employed in the data-driven estimate of the FNP electron background, as detailed
in section 6.

Preselected electrons are reconstructed using ID tracks matched to energy clusters in
the electromagnetic calorimeter. These satisfy pp > 10GeV and |n| < 2.47 with a Loose
operation point of likelihood-based identification criteria and the requirement of a hit in
the innermost pixel layer [71, 72]. Electrons reconstructed in the calorimeter transition
region, 1.37 < |n| < 1.52, are not considered. The longitudinal impact parameter z, of
preselected electron tracks is required to satisfy |zgsin | < 0.5mm. Signal electrons must also
satisfy pr > 25 GeV, the Tight likelihood-based identification criteria and have a transverse
impact parameter dy with uncertainty o(dy) satisfying |dg/o(dy)| < 5. To further reject FNP
electrons, the HighPtCaloOnly isolation discriminant [72] is employed that is calculated from
energy deposits in the calorimeter cells in a cone around the electron candidate.

Preselected muons are reconstructed by combining tracks from the ID and the muon
spectrometer subsystems. These are required to have pp > 10 GeV, |n| < 2.5, satisfy the High-
pr identification criteria [73] and |z sin | < 0.5 mm. Signal muons must have pp > 25 GeV,
impact parameter significance |dg/o(dy)| < 3 and must satisfy an isolation requirement with
a similar performance to the PflowTight criterion described in ref. [73].

Hadronic jets are reconstructed using the anti-k; algorithm [74] as implemented in
FastJet [75] with a jet radius parameter of R = 0.4. The inputs to this algorithm are
particle-flow objects [76] that combine measurements from the ATLAS inner detector and
calorimeters [77]. The jet energy scale and resolution are calibrated using simulations, with in
situ corrections obtained from data [78]. Preselected jets are required to satisfy pp > 20 GeV
and |n| < 4.5. Signal jets are required to have |n| < 2.5 and must additionally satisfy a
pile-up jet rejection criterion based on a neural-network variant of the jet vertex tagger [79] if
they have pp < 60 GeV. Signal jets that satisfy the 85% efficiency working point of the GN2
algorithm [80] are considered to likely contain b-hadrons and are referred to as b-tagged jets.

The missing transverse momentum p?iss is calculated as the magnitude of the negative
vector sum of the transverse momenta of all identified hard physics objects (preselected
leptons and jets) calibrated to their respective energy scales, with a contribution from an
additional soft term [81]. This soft term is constructed from ID tracks matched to the
hard-scatter vertex but not associated with any of the hard reconstructed objects.

Since the object reconstruction algorithms are applied independently, lepton and jet can-
didates may share contributions from the same detector signals. To resolve such ambiguities,
an overlap removal procedure is applied to the preselected leptons and signal jets in the
following order. First, any electron sharing an ID track with a muon is removed. Next, jets
are removed if they are within AR < 0.2 from a remaining electron. After this, electrons are
in turn rejected if they are within AR < 0.4 of any remaining jet. Subsequently, jets with any



ghost-associated [82] muon or within AR < 0.2 are removed if the jet has fewer than three
associated tracks with pp > 500 MeV. Finally, any muon within AR < 0.4 of a jet is removed.
Only objects that satisfy this overlap removal procedure are retained for the event selection.

5 Event selection

A set of analysis variables is derived from the physics objects that satisfy the identification
criteria and are used in the event selections. These are briefly summarised below, where the
leading lepton (jet) refers to the lepton (jet) with the largest pr in the event:

My Invariant mass of the system built from the leading lepton and leading jet
in the event to reconstruct the LQ mass.

pf_fp VALTE: Ratio of the pt of the leading lepton and the invariant mass of the lepton-jet
system my;.

AR(4,7): Angular separation AR({,j) = \/A¢(€,j)2 + An(¢, j)2 between the leading

lepton and leading jet.

miss

Ap(L, pP%):  Azimuthal angle between the leading lepton and py
Mypt Invariant mass of the lepton pair in the 2L selections.

S(pFiss): Object-based p™* significance [81] that provides a measure for the like-
lihood of the reconstructed pp™ to originate from real invisible particles
instead of from detector effects.

All four channels share a common preselection designed to enrich the selected events in the
kinematic phase space of interest and to serve as basis to define signal, control, and validation
regions. Each event must contain at least one signal lepton (electron or muon) and at least one
jet, both with pp > 130 GeV. The invariant mass of the lepton-jet system, my;, is required to
exceed 700 GeV. Although the leptons and jets from the LQ decays of interest typically have
transverse momenta of several hundreds of GeV, the pr requirements at the preselection level
are relaxed to retain a sufficiently large sample of events for reliable background estimation.

The 1L selection requires exactly one signal lepton, while the 2L selection requires exactly
two same-flavour signal leptons (ee or pp). Events with additional preselected leptons beyond
those satisfying the signal lepton criteria are vetoed. For the 2L selections, an additional
requirement of my, > 70 GeV is imposed, as the signal of interest with a resonantly produced
LQ does not contribute much at low my,.

To ensure that events are selected in the plateau region of the trigger efficiency, a
reconstructed lepton is required to be matched to the trigger-level lepton and to have a
sufficiently high p1 above the corresponding online threshold, as described in section 3. For
muons, the pp requirement of the event preselection alone guarantees that the single-muon
triggers operate within their efficiency plateau. For electrons, the required pt reaches up to
141 GeV in events selected by single-electron triggers that employ only a loose identification
and no isolation criteria at the trigger level.



Preselection

me; > T00GV  pif > 130GV pit > 130GeV  my > T0GeV (if N, = 2)

e + light-jet 1+ light-jet e + b-jet wu+ b-jet
Region
SR-1L-ej SR-2L-ej SR-1L-yj SR-2L-yj SR-1L-eb SR-2L-eb SR-1L-pb SR-2L-ub
my; [GeV] > 950 > 900 > 900 >900
N, 1 2 0 1 2 0
N, 0 1 2 0 1 2
Ny jets 0 0 1 1
S(pT™) <3.5 <35 <3.0 <5.0 <3.0 <5.0
AR(Y,j) <3.7 - 2.9, 3.6] - - (2.4, 4.2]
pr/my; >0.4 >0.3 >0.4 >0.3 >0.3 >0.25 >0.3 >0.2
myp [GeV] - > 160 - > 160 - > 150 - > 120

Table 2. Definitions of the preselection together with the 1L and 2L SRs for the e + light-jet,
1+ light-jet, e + b-jet and p 4 b-jet channels. The lepton requirements indicate an additional veto
of preselected leptons, e.g. N, = 1 requires the presence of exactly one signal electron but no other
preselected lepton in the event.

Events satisfying this preselection are then assigned to one of four analysis channels
based on the lepton flavour and the number of b-tagged jets N jers- The electron-based
(muon-based) channels are restricted to events with either one or two electrons (muons). The
e + light-jet and p + light-jet channels require the absence of any b-tagged jet (b-veto) while
the e + b-jet and p + b-jet channels require the leading jet to be b-tagged.

Building on the preselection, additional requirements are applied — individually optimised
for each channel and for the 1L and 2L selections — to enhance the separation between
signal and background events. The resulting signal regions are referred to as SR-1L and
SR-2L, respectively.

A summary of the SR definitions for each channel is provided in table 2. Since the LQ
signal does not produce genuine missing transverse momentum, an upper requirement on
S (p%liss) is applied to efficiently suppress W+ jets and top-related backgrounds while retaining
most of the signal events. The lepton and jet originating from a LQ decay are typically
produced back-to-back in the detector, motivating a selection on their angular separation
AR(¢,7). In addition, the LQ decay products are expected to share the parent particle’s
energy approximately equally, resulting in similar lepton and jet momenta. Therefore, each
channel imposes a lower bound on pff /myj to reject SM events with a large pp imbalance
between the leading lepton and jet. Finally, in the SR-2L selections, a lower requirement
on my, is applied to suppress Z + jets events.

To maximise sensitivity across a broad range of potential LQ masses, the SRs are further
binned in my;, targeting LQ masses of approximately 1TeV and above. The binning choice
is derived by the experimental resolution in my;, defined by the relative difference between
the invariant mass of the lepton-jet system at reconstruction- and at particle-level. This
resolution is evaluated using LQ signal samples and found to be largely independent of the LQ
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Figure 2. Relative difference between the reconstructed my; and particle-level m;; " invariant mass

of the lepton-jet system for selected example LQ scenarios in the (a) e + light-jet and e 4 b-jet, and
(b) v+ light-jet and p + b-jet channels using Run 2 MC simulation. The dashed lines correspond to
an LQ scenario with a larger mass but the same coupling as the one shown by the solid lines. The
particle-level invariant mass is calculated using the particle-level four-momenta of the reconstructed
lepton and jet. The last bin contains the overflow.

coupling, with only a mild dependence on the LQ mass. Figure 2 shows the relative difference
between the reconstructed and the particle-level my; for example LQ signals after application
of the preselection requirements. Since the absolute my; resolution worsens with increasing
LQ mass, the m,; bin widths are gradually broadened across the spectrum. Binning continues
until the SM background expectation falls below approximately one event, with the final bin
in both SR-1L and SR-2L being inclusive and capturing all overflow events. No substantial
difference between the my; resolution between Run 2 and Run 3 is observed; therefore, the
same binning strategy is applied to both data-taking periods.

Table 3 provides an overview of how the individual m,; SR bins are defined for each
channel. In the e + light-jet channel, the my; resolution is found to be approximately 5%,
motivating bin widths of 100 GeV for LQ masses around 1 TeV and 200 GeV for masses near
2TeV. The first bin in the e + light-jet SRs begins at m,; = 950 GeV, while the final bin in
SR-1L-ej (SR-2L-¢j) includes events with m,; > 3100 (2300) GeV.

In the 1+ light-jet channel, the m,; resolution is approximately 10%, due to the worsened
momentum resolution for high-p muons compared with electrons. This suggests a bin width of
200 GeV for a LQ mass of 1 TeV and therefore the SRs in this channel begin at m,; = 900 GeV
with the final bin in both SR-1L-z5 and SR-2L-f1j includes events with my; > 2300 GeV.

In the b-tagged channels, the m,; resolution is slightly worse than in the corresponding
light-jet channels due to the possible presence of neutrinos in b-hadron decays, and is
determined to be approximately 8% in the e + b-jet channel and 13% in the u + b-jet
channel. Both SR-1L-eb and SR-1L-ub begin at my; = 900 GeV, while the final bin in
SR-1L-eb (SR-1L-pub) and SR-2L-eb (SR-2L-ub) includes events with my; > 2200 (2025) GeV
and my; > 1550 (1550) GeV, respectively.
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SR Binning in my; [GeV]

SR-1L-ej  [950, 1050, 1150, 1250, 1350, 1450, 1600, 1750, 1900, 2100, 2300, 2550, 2800, 3100, cc)

e + light-jet
SR-2L-ej  [950, 1050, 1150, 1250, 1350, 1450, 1600, 1750, 1900, 2100, 2300, co)

L SR-1L-pj  [900, 1100, 1300, 1600, 1900, 2300, co)
1+ light-jet
SR-2L-pj  [900, 1100, 1300, 1600, 1900, 2300, co)

SR-1L-eb  [900, 1100, 1300, 1550, 1850, 2200, oo)

e + b-jet
SR-2L-eb  [900, 1100, 1300, 1550, co)

SR-1L-pb  [900, 1175, 1550, 2025, oo)

1+ b-jet
SR-2L-ub 900, 1175, 1550, co)

Table 3. Binning of the m,; distribution used for SR-1L and SR-2L of the e + light-jet, p + light-jet,
e + b-jet and p + b-jet channels, respectively.

Therefore, the LQ decay width® remains well below the experimental resolution for
couplings up to about 1.5, corresponding to a width of approximately 80 GeV for a 2 TeV
LQ. For the largest couplings considered, the effects of the intrinsic width and the detector
resolution on the reconstructed LQ mass peak become comparable.

The signal composition in the SR-2L regions varies across the parameter space. For
coupling values below 0.5, resonant LQ production accounts for approximately 70-80% of
the total signal in these regions. As the coupling strength increases, the DY+SP production
mode becomes increasingly relevant, reaching comparable levels to resonant production at
couplings around 3.5. Within the DY+SP sample, the SP component, which also produces a
peak in the my; spectrum at the LQ mass, dominates for low couplings and LQ masses up
to roughly 2TeV. In contrast, the non-resonant DY contribution, which decreases steeply
with my; and thus has a comparable low selection efficiency in the SRs, gains in relative
importance at larger couplings and LQ masses.

The overall signal efficiencies for resonant L(Q production, including the detector accep-
tance, for the SR-1L and SR-2L selections in the e + light-jet channel assuming a L.Q with
mass of 2TeV and coupling of 1.0 are approximately 30% and 15%, respectively. In the
u + light-jet channel these selection efficiencies for a LQ of the same mass and a coupling of
1.5 are approximately 17% and 10%, respectively. The selection efficiencies in the b-tagged
channels are smaller than in the light-jet channels and are 17% (12%) and 7% (7%) in the
e + b-jet (pu + b-jet) channel, for a LQ signal with mass of 2 TeV and a coupling of 1.5.

6 Background estimation

The SM processes contributing to the phase space targeted by this analysis can be broadly
classified into reducible and irreducible backgrounds. Reducible backgrounds include events
containing at least one FNP lepton, originating from misidentified detector signatures such as
jets, or from non-prompt leptons produced in hadron decays involving heavy-flavour quarks.

3The partial decay width I'yq of a scalar LQ with mass my,q corresponding to coupling y,, is given at LO

2
by I'Lq = %mLQ in the limit of large LQ masses [13].
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Irreducible backgrounds arise from processes with prompt, genuine leptons that produce
final states resembling the target signal. The dominant irreducible contributions come from
W+ jets and Z + jets production, with top-quark processes providing an additional source
in the b-tagged channels.

A combination of data-driven and MC-based techniques is used to estimate these SM back-
grounds, as detailed in the following sections. The resulting predictions are validated in dedi-
cated validation regions (VRs), which are typically enriched in specific background processes.

6.1 Reducible backgrounds

The particle-level information available in simulation samples enables a study of the origins
of reconstructed leptons, allowing a distinction between genuine and misidentified objects.
In the 1L selections of the e + light-jet and e + b-jet channels, a non-negligible fraction of
the SM background is predicted to arise from FNP electrons. The most common origins of
these misidentified electrons are prompt photons, arising from e.g. initial- and final-state
radiation, and light-hadron decays. To estimate this contribution, a data-driven technique
known as the fake-factor method [83] is employed in the 1L selections of the electron channels.
In contrast, the selections requiring two electrons and all selections in the p + light-jet and
1+ b-jet channels receive only a small contribution from FNP leptons. In these cases, the
FNP background is instead estimated directly from MC simulation.

In the fake-factor method, the number of FNP leptons entering an analysis region —
i.e., those satisfying the “tight”, signal selection criteria for leptons, Ng{g}; — is estimated
using a separate, independent data sample of “loose” leptons in the same region that meet a
relaxed set of selection requirements. The ratio to extrapolate from the loose to the signal
lepton sample is referred to as the “fake factor” (FF) and is derived from data, as described
below. To isolate the FNP contribution, any contamination from real, genuine leptons in
the loose lepton sample, originating mainly from W+ jets events, is estimated by using MC
simulation and subtracted from the data. The resulting estimate of the number of signal
FNP leptons Ngglgl in a given region is computed as

NFNP — FF. (Nlt(i)igae o ]\/vMC7 real) )

signal loose

Here, N2™2 and Nf;/logé real are the numbers of loose leptons observed in data and the
estimated number of genuine loose leptons from simulation, respectively. The fake factor is
typically parameterised in bins of relevant kinematic variables to account for dependencies in
the extrapolation. These are derived as the ratio of signal to loose electrons in data, using a
region enriched in FNP leptons and orthogonal to all other selections used in the analysis.
The contamination from genuine leptons in both the loose and signal samples within the fake

factor measurement region is estimated from MC simulation and again subtracted accordingly:

data NMC, real

_ “'signal ™ “Vgignal
FF = data MC, real *
loose — “Vloose

Loose electrons are defined as preselected electrons that fail to satisfy any of the signal
electron selection criteria. They are further required to satisfy the Medium identification
and IsoLoose__VarRad isolation working points [72] to match the associated online criteria
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FNP estimation

Region
MR-fake VR-fake CR-W-fake
my; [GeV] > 700
N, 1
N, 0
Nb—jets 0
AR(4,7) >3.7
S(p™) <3 35 >5.0

Table 4. Overview of the definitions for the regions employed to derive and validate the FNP electron
estimate.

and avoid any bias originating from the trigger requirements in the measured fake factors.
Moreover, applying these requirements brings the loose electron definition closer to the signal
one, reducing the size of the extrapolation between them while maintaining a sufficiently
large number of events in the loose electron sample.

Fake factors are measured in events that satisfy the preselection described in section 5.
Such events must contain exactly either one loose or signal electron, no additional preselected
leptons, and no b-tagged jets. To ensure orthogonality with the selections in the e + light-jet
channel, a requirement of AR((, j) > 3.7 is imposed. An additional S(pT*) < 3 requirement
suppresses contributions from W+ jets events. This selection is referred to as fake factor
measurement region, denoted by MR-fake. Events featuring 3 < S(p™) < 5 instead define
the validation region VR-fake, which is used to assess the performance of the measured fake
factors. While the loose electron samples in MR-fake and VR-fake are very pure in FNP
leptons, the purity decreases to approximately 40% and 20% for signal electrons due to
significant contamination from the W+ jets process. To constrain the W+ jets normalisation
when validating the FNP estimate in VR-fake, events with S (p%iss) > 5 are used to define a
control region, CR-W-fake. A summary of the region definitions is provided in table 4.

The fake factors are parameterised as a function of the electron pt in three bins of |,
and are shown separately for Run 2 and Run 3 in figure 3. In Run 2, the fake factors range
from 0.2 to 0.35 at pp ~ 130 GeV, depending on |n|, and typically decrease to values between
0.05 and 0.1 for pp > 800GeV. In Run 3, higher values are observed, with fake factors
ranging from approximately 0.35 to 0.5 at low pp and from 0.05 to 0.25 at high pr. This
difference between Run 2 and Run 3 is consistently observed in both data and simulation.
The AR({,j) > 3.7 requirement in the MR-fake region biases the selected electrons towards
the more forward direction, limiting the available number of events in the central region and
allowing only a coarser binning at high electron pp. Although the fake factors are measured in
events without b-tagged jets, they are applied in both the e + light-jet and e + b-jet channels.
A b-tagged counterpart to MR-fake cannot be defined due to low FNP purity and limited
number of events. Since MC simulation shows no strong dependence of the fake factors on
the b-jet multiplicity, an additional uncertainty is assigned when applying them to events
with b-tagged jets instead to cover this dependence, see section 7.
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with correlations between uncertainties taken into account. The last bin contains the overflow.

Figure 4 shows the electron pp distributions in VR-fake separately for Run 2 and Run 3,
with the FNP background estimated by using the derived fake factors. The normalisation of
W+ jets in this region is constrained by performing a background-only fit (see section 8) to
the corresponding CR-W-fake region. The extracted normalisation factors for W+ jets in the
CR-W-fake regions are found to be compatible with unity. These fit results are used solely to
validate the FNP estimate in VR-fake; the following section introduces the dedicated CRs used
to constrain the W+ jets normalisation in the SRs. Good agreement between data and the SM
predictions is observed across the pp spectrum in both data-taking periods within systematic
uncertainties (see section 7), giving confidence in the procedure used to derive the fake factors.

6.2 Irreducible backgrounds

Irreducible backgrounds are estimated from MC simulation, with the dominant processes
being constrained to data through dedicated control regions. These CRs are individually
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e + light-jet w+ light-jet

Region -
CR-W VR-W VR-S(p1t™) CR-Z VR-Z VR-my CR-W VR-W CRZ VR-Z

my; [GeV] [700, 950] >950  [700, 950] [700, 950] >950 [700, 950] [700, 900] >900 [700, 900] > 900

N, 1 1 2 2 0 0
N, 0 0 0 0 1 2
Nyjets 0 0 0 0 0 0
AR(L,§) <3.7 <3.7 - - 2.9, 3.6] -
my [GeV] - - [70, 160 [160, 250] - [70, 160
S(pT™) >3.5 <35 <35 <35 >3.5 <35
pr/my; >0.4 >0.4 >0.3 >0.3 >04  >0.2 >0.3

Table 5. Definitions of the CRs and VRs for the e + light-jet and p + light-jet channels. The
requirements listed are placed on top of the preselection introduced in the main text. The lepton
requirements indicate an additional veto of preselected leptons, e.g. N, = 1 requires the presence of
exactly one signal electron but no other preselected lepton in the event. The VR-W and VR-Z regions
follow the m,; binning of the associated SRs as described in the main text. The suffixes -ej (e.g. in
CR-W-¢j) and -puj of each region name are dropped in the table for brevity, respectively.

optimised for each channel and enriched in a specific background process. The W+ jets
and Z + jets backgrounds are constrained in CR-W and CR-Z, respectively. The e + b-jet
and p + b-jet channels define additional CR-T regions to normalise backgrounds containing
top quarks. Events from tt and single-top production are therefore grouped into a common
category labelled “Top” and constrained using a common normalisation factor. Other, rarer
processes involving genuine leptons — such as diboson production, ¢£V, and /j scattering—
are estimated from MC simulation and grouped into a category labelled “Others”. MC events
used to estimate the irreducible backgrounds are required to contain only genuine leptons
to avoid double-counting with the FNP estimate described in the previous subsection. The
extracted background normalisations are validated in the corresponding VRs which also adopt
the my; binning of the SRs. Summaries of the CR and VR definitions are provided in table 5
for the light-jet and tables 6 and 7 for the e + b-jet and p + b-jet channels, respectively.
All four channels follow a similar strategy to derive and validate the normalisations
for W+ jets and Z + jets backgrounds. Both the CR-W and CR-Z are defined at lower my;
values than the SRs to ensure sufficiently large event counts in these regions. Illustrations
showing the region layout of the CR-W and CR-Z are presented in figure 5. These CRs span
the m,; range from 700 GeV up to the start of the SRs, which begins at either 900 or 950 GeV
depending on the channel. The VR-W and VR-Z regions apply the same selection as their
respective CRs but cover the my; range used in the SRs. To maintain kinematic similarity
to the SRs, the CRs and VRs mirror the SR requirements on AR(Y, 5), my, S(pr"), and
pf} /my; as closely as possible, with one selection inverted to ensure orthogonality. In some
of these CRs and VRs, additional or relaxed requirements relative to the SRs are applied
to ensure that the contamination from signals not already excluded by previous ATLAS
searches remains below 10%. CR-W and VR-W replicate the SR-1L selection but invert the
S(pF5) requirement to enrich W+ jets events. Similarly, CR-Z and VR-Z mimic the SR-2L
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e + b-jet

Region .
CR-W VR-W CR-Z VR-Z CR-T-high VR-T-high CR-T-low VR-S(p7"")

my; [GeV]  [700, 900] >900 [700, 900] >900 [900, 1300]  >1300  [700, 900] [700, 900]

N, 1 2 1 1 1

N, 0 0 0 0 0

Ny jets 1 1 >2 >2 1

My [GeV] - 70, 110] - - -
S(pP) >3.0 <5.0 <4.0 >3.0 <3.0
pr/my >0.3 >0.25 >0.3 >0.3 >0.3
AG(L, priss) <1.0 - <1.0 <1.0 <1.0

Table 6. Definitions of the CRs and VRs for the e + b-jet channel. The requirements listed are
placed on top of the preselection introduced in the main text. The lepton requirements indicate an
additional veto of preselected leptons, e.g. N, = 1 requires the presence of exactly one signal electron
but no other preselected lepton in the event. The VR-W, VR-Z and VR-T-high regions follow the
my; binning of the associated SRs as described in the main text. The suffix -eb (e.g. in CR-W-eb) of
each region name is dropped in the table for brevity.

W+ b-jet
Region :
CR-W VR-W CR-Z VR-Z CR-T-high VR-T-high CR-T-low VR-T-low VR-S(p-*)
my; [GeV] [700, 900] >900 [700, 900] >900  >900 > 900 [700, 900] [700, 900]
N, 0 0 0 0 0
N, 1 2 1 1 1
Nb»jets 1 1 >2 >2 1
AR(L,§) (2.4, 4.2] (2.4, 4.2] (2.4, 4.2] (2.4, 4.2] (2.4, 4.2]
my [GeV] - 70, 120] - - -
S(ps) >3.0 <5.0 >4.0 [3.0,40]  >4.0  [3.0, 4.0] <3.0
pr/my; >0.2 >0.2 >0.3 >0.3 >0.3

Table 7. Definitions of the CRs and VRs for the and p + b-jet channel. The requirements listed are
placed on top of the preselection introduced in the main text. The lepton requirements indicate an
additional veto of preselected leptons, e.g. N, = 1 requires the presence of exactly one signal electron
but no other preselected lepton in the event. The VR-W, VR-Z and VR-T-high regions follow the
my; binning of the associated SRs as described in the main text. The suffix -ub (e.g. in CR-W-ub) of
each region name is dropped in the table for brevity.

selection but require my, to lie within a window around the Z boson mass. To facilitate a
validation of the background normalisations across my;, VR-W and VR-Z adopt the same
my; binning as SR-1L and SR-2L, respectively. If the expected number of events in a VR
bin falls below approximately 10, the corresponding bin is made inclusive in m,; to ensure
adequate event counts for validation.
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S(piiss), Np_jets = 0 (e+light-jet, p+light-jet) myp Np_jers = 0 (e+light-jet, p+light-jet)

b Npjers = 1 (e+b-jet, p+b-jet) Np-jers = 1 (e+b-jet, p+b-jet)
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VR-
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S(piss) SR-1L
m;] m{z;
(a) (b)

Figure 5. Illustrations of the CRs and VRs definitions for the (a) W+ jets and (b) Z+ jets
backgrounds. The phase space of SR-1L and SR-2L is also indicated, respectively. Grey vertical
dashed lines indicate that a region is binned in my;.

The estimation strategy for the top background is adapted relative to that for the V+ jets
processes, as its normalisation is found to depend on my;. The associated CR-T and VR-T
regions select 1L events with two or more b-tagged jets, with the b-jet requirement ensuring
orthogonality with the SRs. Both the e + b-jet and p + b-jet channels define a CR-T-high
region at my; > 900 GeV to normalise top events in the high-m,; regime.

Since top-quark decays involving leptons yield genuine p%iss, CR-T-high-ub applies the
same kinematic selections as SR-1L-ub but requires S(p%iss) > 4.0 to enhance the top
fraction while suppressing signal contamination. Events with 3.0 < & (p%liss) < 4.0 define
VR-T-high-ub, which otherwise matches the CR selection and is binned in my; for validation.

miss

In contrast, CR-T-high-eb applies S(pt ) < 4.0, i.e. an upper requirement on this
variables similar as in the SRs, since the top normalisation also shows some dependence on
S(PF™) in the e + light-jet channel. CR-T-high-eb extends up to my; = 1300 GeV, while
higher-m,; events are covered by VR-T-high-eb, which otherwise mirrors the CR selection
and is binned in my;.

The CR-W regions in both the e + b-jet and p + b-jet channels, which cover my; values
below 900 GeV, receive substantial contributions from top-quark backgrounds. To ensure
proper normalisation of these events, dedicated CR-T-low regions are defined to normalise
top events in the low-my; regime. CR-T-low-eb adopts the same requirements as CR-W-eb,
differing only in the b-jet multiplicity. CR-T-low-ub reflects the kinematic selections of
SR-1L-ub but enforces S(pF*%) > 4.0. An illustration of the CRs and VRs definitions for
the top background is shown in figure 6.

A set of additional VRs is defined to test the robustness of the background normalisations
when extrapolated over variables other than m,;. The VR-S (p™) regions invert the S(p=)
requirement of the corresponding CR-W selections to test the modelling of W+ jets at low
S(pR5). The extrapolation of the Z + jets normalisation across my, is validated with VR-my,.
This validation region is defined only for the e + light-jet channel, as the other three channels
show significant signal contamination that precludes its use. The u + b-jet channel defines
VR-T-low-ub, to validate the low-m,; top background normalisation across S (p%ﬁss) as the
associated VR-S(p1 ") receives a substantial contribution from this background.
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Figure 6. Illustrations of the CRs and VRs definitions for the top background in the (a) e + b-jet and
(b) 4 b-jet channel, respectively. The phase spaces of VR-S(pt™) and SR-1L which select event
with exactly one b-tagged jet are indicated as hatched boxes. The phase space SR-1L is only indicated
in (b) as it overlaps with the phase space of CR/VR-T-high in (a) in the m,;-S (pT™*) plane. Grey
vertical dashed lines indicate that a region is binned in my;.

7 Systematic uncertainties

While this search is predominantly limited by statistical constraints, experimental, theory,
and modelling uncertainties have non-negligible contributions to the total uncertainty. These
systematic effects are quantified and incorporated into the statistical model (see section &),
with their key components detailed below. The overall effect of systematic uncertainties in
the LQ mass sensitivity reach is found to be below 5%.

Figure 7 shows a decomposition into individual categories of the systematic uncertainties
in the total SM predictions for the SRs in Run 2 of each channel, with a similar breakdown
observed for the corresponding Run 3 regions. This decomposition is obtained by performing
a series of fits in which the parameters associated with a given category are fixed to their
best-fit values and held constant, effectively removing their contribution from the systematic
model. The systematic uncertainty attributed to each category is then computed as the
quadratic difference between the total background uncertainty in the nominal fit and that
in the fit with the category fixed [84].

A detailed evaluation of detector-related systematic uncertainties is performed. These
include uncertainties in lepton performance, covering trigger, reconstruction, identification,
and isolation efficiencies for electrons [85] and muons [73], along with momentum calibration
uncertainties for both lepton species. Jet energy calibration uncertainties are also considered,
including those in the jet energy scale (JES) and jet energy resolution (JER) [78]. Additional
jet-related uncertainties arise from efficiency corrections applied to pile-up jet tagging [79]
and b-jet identification [86—88]. Missing transverse momentum uncertainties originate from

® calculation, supplemented by

the propagation of JES and JER uncertainties to the p?is
uncertainties related to tracks associated with the primary vertex but unmatched to recon-
structed objects [81]. The uncertainties in the combined 2015-2018 and 2022-2023 integrated
luminosities are 0.83% [89] and 2.0% [90, 91], respectively, obtained using the LUCID-2

detector [92] for the primary luminosity measurements, complemented by measurements
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Figure 7. Relative systematic uncertainties in the post-fit SM background estimates in the
(a) e+light-jet, (b) u+light-jet, (c) e+b-jet and (d) p+b-jet channels obtained from a background-only
fit to the respective CRs and SRs. The “Fake/non-prompt” category reflects uncertainties impacting
the FNP background estimate. Uncertainties originating from the limited size of the MC samples used
to model the irreducible background contributions are contained in the “MC statistics” category. The
“Background normalisation” category reflects uncertainty in normalisation factors for the W+ jets,
Z + jets and top backgrounds extracted from the respective CR-W, CR-Z and CR-T regions. The
“Theory and modelling” category includes the different sources of theory modelling uncertainties for
the W+ jets, Z + jets and top backgrounds. The “Experimental” category covers detector related
uncertainties from the reconstruction and selection of objects in the analysis. The individual uncer-
tainties are correlated and do not necessarily add up in quadrature to the total uncertainty.

using the inner detector and calorimeters. Additionally, a dedicated uncertainty accounts for
discrepancies between data and simulation in pile-up profile modelling.

The treatment of FNP background employs distinct strategies across analysis channels.
Simulated samples directly model these backgrounds in the p + jet and 2e electron channels,
with a conservative 80% normalisation uncertainty applied to account for potential mismod-
elling. In the le selections of the e + light-jet and e + b-jet channels, systematic uncertainties
associated with the data-driven FNP estimate (section 6) are characterised through mul-
tiple dedicated studies. The dominant uncertainty originates from the subtraction of the
prompt-lepton contamination in the loose and tight electron samples, originating in particular
from W+ jets events. Therefore, £15% variations in the MC-derived real lepton fractions are
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propagated through the fake-factor calculation, with the variation magnitude chosen to cover
the size of the W+ jets normalisation factors observed in the e+light-jet channel, see section 8.
To account for the reduced binning granularity in pp for central electrons with pp > 800 GeV
in the fake-factor measurements, an additional 70% uncertainty, based on the pt dependence
of the fake factors observed in MC simulation, is assigned on the FNP estimate from such
electrons. A non-negligible dependence of the fake factors on AR(¥, j) is observed. Comparing
fake factors from MC simulation from events with AR(¢, j) smaller and larger than 3.7, results
in uncertainties of 50% (pr < 200 GeV) and 25% (pr > 200 GeV), respectively. Differences
between the FNP composition between the fake-factor measurement and application domains
are evaluated using MC simulation and translated into an additional 50% uncertainty in
the FNP estimate. Furthermore, potential b-jet induced modifications to the fake factors
were investigated through dedicated simulation studies comparing b-jet enriched and depleted
phase spaces in the e + b-jet channel. The observed weak correlation between fake factor
magnitudes and b-jet presence was conservatively accommodated through an additional 25%
uncertainty component in the FNP estimates derived for the e + b-jet channel.

The background composition exhibits a strong channel dependence, with W+ jets pro-
duction constituting the dominant contribution in SR-1L and Z + jets prevailing in SR-2L.
Systematic uncertainties in these V+ jets processes incorporate three principal components:
variations of the QCD renormalisation pup and factorisation pp scales by a factor two evalu-
ated through the envelope of seven pp-pp combinations, PDF eigenvector variations using
the NNPDF3.1 NNLO set, and ag variations. Additional uncertainties are applied to take
into account electroweak corrections on the V4 jets samples [93].

Top-quark backgrounds, while small in b-vetoed regions, are subleading contributions in
the e + b-jet and u + b-jet channels. Their theory uncertainties mirror the V+ jets framework
in scale and PDF treatment, augmented by process-specific considerations including parton
shower modelling differences quantified via PyTHIA 8.230 versus HERWIG 7.2.1 (for ¢t) or
HERWIG 7.1.6 (for single top) generator comparisons. Uncertainties associated with the level
of initial- (ISR) and final-state radiation (FSR) are estimated by variations of ag in the
A14 tune [60] and variations of the renormalization scale for FSR branchings, respectively.
The matrix element-parton shower interface uncertainty is assessed through a variation of
the p}r}ard parameter that regulates how the radiation phase space of the parton shower is
determined, following the prescription in ref. [94]. Interference effects between ¢t and Wt
processes are evaluated through diagram subtraction/removal scheme comparisons [95].

Similarly, uncertainties in the signal predictions from scale and PDF variations were
evaluated using generator-level reweighting, focusing on my; spectrum distortions in both
the SR-1L and SR-2L regions. These uncertainties were found to have a negligible impact
on the results and were therefore neglected.

As seen in figure 7, the dominant sources of systematic uncertainties vary depending
on the channel and signal region. In the SR-1L selections of the e + light-jet and e + b-jet
channels, the leading uncertainty arises from the estimate of backgrounds with FNP electrons.
Other major experimental uncertainties are associated with the jet energy scale and resolution,
as well as the b-jet identification efficiency in the e + b-jet and p + b-jet channels. Among the
modelling uncertainties, the most significant contributions come from QCD scale variations
and electroweak corrections to the V+ jets backgrounds.
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8 Results

Observed data in the CRs, VRs, and SRs are compared with the SM predictions using a profile
likelihood method [96]. The statistical model is constructed using the cabinetry [97] package,
which interfaces with pyhf [98], a Python-based implementation of the HISTFACTORY [99]
template. Parameters of interest, such as the signal strength, along with other floating
parameters like normalisation factors, are determined via a maximum-likelihood fit to data.
In each region, the expected event yield is modelled as the sum of contributions from the
individual physics processes (samples). The predicted rate for each sample may depend on a
set of free parameters 1 such as normalisation factors and the signal strength, and a set of
constrained nuisance parameters 8, which encode the effect of systematic uncertainties.

The probability density function for bin b in region 7 is modelled as a Poisson distribution,
Pois(n,, | v(1,0)), where n,, is the observed number of events and v,;(1,0) is the
predicted event yield. To account for systematic uncertainties, additional constraint terms
are introduced, which control the allowed deviations of the nuisance parameters from their
nominal values. These constraints are interpreted as auxiliary measurements, with associated
global observables a, such that the full set of observations is denoted by & = (n, a), where
n = n,;, represents the set of observed yields across all bins and regions. The full likelihood
function is then constructed as the product of the Poisson likelihoods for each bin and region
and the constraint terms for each nuisance parameter:

L |$,0)= ] ]I Poistuy | v(v,0) I folag | 6), (8.1)

r €regions b€ bins 0co

where fp(ag | ) is the constraint term associated with nuisance parameter 6, typically
modelled as a Gaussian distribution centred on the nominal value with a width reflecting
the corresponding uncertainty.

Different fit configurations are employed to derive the results presented below. All fits
are performed independently for each channel and for the validation of the FNP background
estimate, and generally also individually for the Run 2 and Run 3 datasets.

The first configuration, referred to as CR-only fit, is a background-only fit to the CR-W
and CR-Z regions to validate the background estimates by extracting normalisation factors
uw and py for the W+ jets and Z + jets backgrounds, respectively. In the e 4 b-jet and
1 =+ b-jet channels, the CR-T-low and CR-T-high regions are additionally included to extract

high-

top " for top backgrounds in the low- and high-my;

normalisation factors ultzvg_m“ and p
regimes, respectively. The results of the CR~only fit are extrapolated to the corresponding
VRs to compare the post-fit SM predictions with the observed data. For the validation of
the FNP estimate, a separate CR-only fit is performed using only the CR-W-fake region to
derive predictions in VR-fake, see section 6. This CR is not included in any other fit.

The second configuration, referred to as CR+SR fit, simultaneously fits the my; dis-
tributions in SR-1L and SR-2L along with the associated CRs. This configuration probes
for potential BSM contributions while constraining the background components, and is
also used to evaluate the compatibility of the observed data with specific signal hypotheses.
The normalisation factors derived in this configuration are found to be compatible with

the ones from a CR-only fit.
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e + light-jet w + light-jet e + b-jet i+ b-jet

Norm. factor

Run 2 Run 3 Run 2 Run 3 Run 2 Run 3 Run 2 Run 3
b 1.084+0.21 1134025 1.04-+0.18 1.05+021 1.21+0.28 1.224+0.33 1.244+0.27 1.24+0.31
uy 1144025 1204023 1.08+020 1.204022 1.24+028 1.19+0.26 1.11+0.23 1.3140.29
ui‘;ih'm“ - - 0.74+0.17 0.79+0.26 0.55+0.13 0.714£0.27
u‘t‘;ﬁ””"f - - 0.75+0.12 0.77+0.23 0.71+0.12 0.69 4 0.21

tlgih-mej d uﬁfmw for the W+ jets, Z 4+ jets and top

backgrounds, respectively, extracted from CR-only fits using the respective CRs of each channel. The

Table 8. Normalisation factors pvwy, tiz, i

associated uncertainties include all statistical and systematic contributions.

A third configuration, the Run 2+8 combination, maximizes sensitivity to a given signal
model by fitting the my; spectra in the SRs of both Run 2 and Run 3 simultaneously. In this
configuration, all CRs and SRs from both data-taking periods are included, with independent
normalisation factors for the backgrounds in Run 2 and Run 3. All nuisance parameters are
treated as uncorrelated between the two data-taking periods, except for most of the JES
and JER variations, which are derived from a shared set of in situ calibrations. Treating all
nuisance parameters as fully correlated between Run 2 and Run 3 was not found to have
a notable impact on the final sensitivity reach of the search.

8.1 Results for control and validation regions

The agreement between observed data and SM predictions in the e 4 light-jet VRs after a fit
to CR-W-¢j and CR-Z-ej for Run 2 is shown in figure 8(a). Overall, the data are consistent
with the SM predictions within the associated uncertainties. A notable deficit is observed in
the last bin of VR-W-ej in Run 2, which is not reproduced in the corresponding Run 3 region
and is therefore attributed to a statistical fluctuation. Overall, the observations support the
robustness of the W+ jets and Z + jets normalisation extrapolation over my;.

Similar conclusions are drawn from the CR-only fit results in the VRs of the u + light-jet,
e + b-jet, and u + b-jet channels. As an example, the Run 3 VR results for the p + light-jet
channel are shown in figure 8(b), while figure 9 presents the corresponding VRs for the
e + b-jet and p + b-jet channels. The data generally agree with the SM predictions within
uncertainties, and no consistent mis-modelling is observed between Run 2 and Run 3. Table 8
reports the extracted normalisation factors for all channels.

8.2 Results for signal regions

The observed and predicted my; distributions in SR-1L-ej and SR-2L-ej of the e + light-jet
channel for Run 2 and Run 3 are shown in figure 10. The SM predictions agree well with the
data within their uncertainties, and no significant excess of events is observed. Among the
selections, SR-2L provides the strongest sensitivity to the LQ signals of interest due to its
much higher signal to background ratio, as illustrated by the overlaid nominal predictions
of two example signal models in figure 10.
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Figure 8. Data (dots) and post-fit SM predictions (histograms) in the VRs for (a) Run 2 of the
e + light-jet and (b) Run 3 of the p + light-jet channels obtained by a CR-only fit. The lower panel
shows the ratio of observed data to the total post- and pre-fit SM prediction. Uncertainties in the
background estimates include both the statistical and systematic uncertainties, with correlations
between uncertainties taken into account. A grey arrow in the lower panel indicates a data point

outside the vertical range shown.
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Figure 9. Data (dots) and post-fit SM predictions (histograms) in the VRs for (a) Run 2 of the e+b-jet
and (b) Run 3 of the p + b-jet channels obtained by a CR~only fit. The lower panel shows the ratio of
observed data to the total post- and pre-fit SM prediction. Uncertainties in the background estimates
include both the statistical and systematic uncertainties, with correlations between uncertainties taken

into account.
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Figure 10. Data (dots) and post-fit SM distribution (histograms) of my; in (a), (b) SR-1L-ej and
(¢), (d) SR-2L-ej of the e + light-jet channel obtained by a CR+SR background-only fit for Run 2 and
Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit
SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include
both the statistical and systematic uncertainties, with correlations between uncertainties taken into
account. The dashed lines show the predicted yields for two benchmark signal models corresponding
to Sy (m, yge) = (2.0TeV,1.0) and S; (m,y4.) = (3.0 TeV, 1.0), respectively.

Figure 11 presents the results of SR-1L-uj and SR-2L-pj of the p + light-jet channel for
both Run 2 and Run 3. The data agree well with the SM predictions within uncertainties
in the SR-1L-uj regions. Deficits of approximately 50% are observed in the last two bins of
SR-2L-pj in Run 2, although compatible with the predictions within uncertainties.

The results of SR-1L-eb and SR-2L-eb of the e + b-jet channel for both data-taking
periods are shown in figure 12, while figure 13 presents the corresponding SRs, SR-1L-eb and
SR-2L-eb, of the u + b-jet channel. In both channels no significant excesses are observed and
the SM predictions generally agree with the data within uncertainties.

To quantitatively probe the observed my; spectra in each channel for a new-physics
signal, the py value of the background-only hypothesis is evaluated relative to each signal
model and translated into a discovery significance. No deviations above the 1o level are
observed in any channel.
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Figure 11. Data (dots) and post-fit SM distribution (histograms) of m,; in (a), (b) SR-1L-zj and
(¢), (d) SR-2L-puj of the p+light-jet channel obtained by a CR+SR, background-only fit for Run 2 and
Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit
SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include
both the statistical and systematic uncertainties, with correlations between uncertainties taken into
account. The dashed lines show the predicted yields for two benchmark signal models corresponding
to S1(m, ys,) = (2.0TeV, 1.5) and S;(m, y,,) = (3.0 TeV, 1.5), respectively.

8.3 Interpretations

In the absence of any significant indications for new-physics contributions in the SRs, the
observations are interpreted as constraints on minimal LQ production models featuring
S, with either yg., Ysu> Yber OT Yp, couplings as benchmark scenarios. To evaluate the
compatibility of the observed data with a given S; model, a combined fit to the Run-2 and
Run-3 datasets is performed, effectively fitting the m,; spectra from both data-taking periods
simultaneously. In these fits, the signal strength is a free parameter and coherently scales
the nominal signal predictions across all regions, accounting for the difference of the S;
production cross-sections between Run 2 and Run 3. The CL, prescription [100] is used to
perform hypothesis tests and set exclusion limits at 95% confidence level (CL), employing
the asymptotic approximation [96] for the calculation of the CL, values. The results were
cross-checked using pseudo experiments and found to agree within 10%. In each channel
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Figure 12. Data (dots) and post-fit SM distribution (histograms) of m,; in (a), (b) SR-1L-eb and
(¢), (d) SR-2L-eb of the e + b-jet channel obtained by a CR+SR, background-only fit for Run 2 and
Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit
SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include
both the statistical and systematic uncertainties, with correlations between uncertainties taken into
account. The dashed lines show the predicted yields for two benchmark signal models corresponding
to Sy (m,yp.) = (1.5 TeV,2.5) and S (m, yp.) = (2.0 TeV, 2.5), respectively.

the constraints are dominated by the Run-2 results due to the larger dataset size and the
SR-2L regions which are significantly more sensitive to the signal of interest than their
respective SR-1L counterparts.

Figure 14 shows the observed and expected exclusion limits for the e + light-jet channel.
The contours are presented in the m(gl)—yde plane, with couplings ranging from 0.1 to 1.0. In
this minimal LQ model, S; masses up to approximately 3.4 TeV are excluded for a coupling
value of y,4, = 1.0. For couplings larger than roughly 0.25, this search surpasses the limits
set by a previous ATLAS search for LQ pair production [14], which are independent of the
coupling strength. Strong indirect constraints on y,, arise from weak charge measurements

of protons and nuclei [10], which impose y4, < 0. 17[T§evi’ where m(S) denotes the scalar

LQ mass. The results from this search exceed those limits in a small region of parameter
space below approximately 2.3 TeV. Although the weak charge constraints dominate across
most of the parameter space, they may be relaxed or even vanish in scenarios with more
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Figure 13. Data (dots) and post-fit SM distribution (histograms) of m,; in (a), (b) SR-1L-ub and
(c), (d) SR-2L-ub of the p + b-jet channel obtained by a CR+SR. background-only fit for Run 2 and
Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit
SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include
both the statistical and systematic uncertainties, with correlations between uncertainties taken into
account. The dashed lines show the predicted yields for two benchmark signal models corresponding
to Sy (m, yp,) = (1.5 TeV, 1.5) and S, (m, y;,) = (2.0 TeV, 1.5), respectively.

than one LQ present in the mass range of interest [101], rendering the constraints from
this search complementary.

The observed and expected exclusion contours for the p + light-jet channel are shown
in figure 15. The deficits observed in the highest my; bins of SR-2L-uj for Run 2 shift
the observed limits beyond the 1o uncertainty band, though they are found to remain
well within the 20 band. S; masses up to approximately 4.3 TeV are excluded assuming
coupling values of 3.5.

Figure 16 shows the observed and expected exclusion limits for the e + b-jet channel. The
derived constraints on the S; mass depend again on the coupling and range up to 3.1 TeV
for y. = 3.5. The mild excess observed in the third my; bin of SR-2L-¢b in Run 2 slightly
weakens the observed limit relative to the expected one for masses below approximately 2 TeV.

Exclusion contours for the p + b-jet channel are presented in figure 17 where constraints
on the S; mass extend up to 2.8 TeV at couplings of 3.5.
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In summary, all channels improve upon existing ATLAS constraints for scalar LQ models
at large coupling values — approximately above 0.25 in the e + light-jet channel, above
0.7 in the p + light-jet channel and above 1.0 in the other channels. At lower couplings,
the LQ pair production searches remain more sensitive due to their independence from the
LQ coupling strength.

9 Conclusion

This paper reports a search for resonantly produced LQs using proton-proton collision data
from the full Run-2 (2015-2018) and partial Run-3 (2022-2023) datasets at the LHC. The
analysis probes the s-channel production of LQs, which exploits the lepton content of the
proton to yield a distinctive lepton+jet final state. The signal topology features a narrow
my; peak near the LQ mass, and the inclusion of 2-lepton-+jet final states — motivated
by NLO contributions to resonant LQ production — is crucial for maximizing the analysis
sensitivity as it also provides acceptance for additional LQ production modes beyond the
lepton- and photon-induced processes.

Four orthogonal channels — e + light-jet, p + light-jet, e 4 b-jet, and p + b-jet — are
analysed, each with individually optimised SRs binned in my; to maximize coverage across
a broad range of LQ masses. Dominant SM backgrounds, including W+ jets and Z + jets,
are constrained through dedicated CRs at low my;, with extrapolations validated in VRs.
For b-jet channels, the top background is further controlled using two CRs spanning distinct
kinematic regimes of my;, addressing observed dependencies in top processes modelling.

No significant excesses beyond SM predictions are observed in any of the SRs. The results
are interpreted within a minimal S’I—model framework, where only a single LQ coupling is
non-zero. Combining Run-2 and partial Run-3 data, the analysis achieves stringent exclusion
limits on LQ masses: for electron+jet channels (e + light-jet and e + b-jet), LQ masses below
3.4TeV (coupling y4, = 1.0) and 3.1 TeV (y;, = 3.5) are excluded at 95% CL. For muon-+ijet
channels (u + light-jet and p + b-jet), exclusion reaches extend to 4.3 TeV (y;, = 3.5) and
2.8TeV (yp, = 3.5), respectively. These limits surpass those from previous ATLAS searches
for LQ pair production for sufficiently large couplings (yg. 2 0.25,9s, 2 0.7, Ypepp 2 1.0).
By establishing robust exclusion limits for LQ masses and couplings beyond the reach of
pair-production searches, this work underscores the critical role of resonant production as
a complementary probe of TeV-scale LQ scenarios. The results also highlight the potential
of early Run-3 data to constrain exotic physics, paving the way for future high-luminosity
LHC analyses to explore uncharted parameter space in LQ models.
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