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Abstract

Objective: The diagnosis of functional/dissociative seizures (FDS) without
ictal video-electroencephalography is challenging. The Functional/Dissociative
Seizures Likelihood Score (FSLS) is a machine learning-based diagnostic score
that aims to help clinicians identify FDS. We evaluated whether a human-in-
the-loop implementation of the FSLS improved the performance of clinicians
identifying FDS as compared to epileptic seizures (ES).

Methods: We constructed 117 anonymized cases about patients with ictal video-
electroencephalography-documented FDS, epilepsy, co-occurring ES and FDS,
or physiological seizurelike events. Text-based clinical history was presented
followed by the FSLS. Readers were asked the most likely diagnosis after each
piece of information. We used mixture modeling combined with mixed effects
logistic regression to perform data-driven grouping of participants based on
observed patterns of diagnostic performance.

Results: Overall, 163 readers saw 1142 cases (median =4 cases/reader), and 146
(90%) had a performance higher than chance. More formal training in seizures
was associated with better performance (epileptologist accuracy=67%, mental
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KEYWORDS

seizures (PNES)

1 | INTRODUCTION

Previously known as psychogenic nonepileptic seizures,
functional/dissociative seizures (FDS) have profound
negative impacts on patients' quality of life, capacity
for employment, health care utilization, and mortality
rate.'”® Although the pathophysiology of FDS is not well
established, FDS are episodic neurological symptoms that
commonly, but not exclusively, were associated with acute
and chronic biopsychosocial stressors.” The average delay
from first seizure to an accurate diagnosis of FDS was
8.6 years (median =3 years), during which 80% of patients
were empirically treated for epileptic seizures (ES) with
antiseizure medications.>®’ Even after determination
that seizures were functional instead of epileptic with
ictal video-electroencephalographic monitoring (VEM),
longer delay to diagnosis was associated with worse
outcomes.'®!! Therefore, it is critical to decrease the delay
to diagnosis, because shorter delays may contribute to
superior treatment outcomes.

To address the delay to diagnosis, we used machine
learning to develop the Functional/Dissociative Seizures
Likelihood Score (FSLS), which had prospective accuracy
of 77% and external validation accuracy of 81%.'*"* The
FSLS was trained on a retrospective VEM-based cohort
of 1126 patients and validated with standardized inter-
views with 490 patients. The FSLS was built on a base of
logistic regression to create a weighted combination of
features obtained as part of the clinical history to identify
patients with “possible” functional seizures (FS)."* The
International League Against Epilepsy (ILAE) certainty
level of “possible” was defined as a history raising concern
for FDS, but the seizure had not been observed by a cli-
nician or on electroencephalography (EEG)."> Although

health clinician accuracy=52%). Data-driven groups including 66% of readers
benefitted from the FSLS (accuracy improvement=12%-15%, p <.05), including
those in the reference and near highest baseline performance group. Other groups
had no net change in performance (p>.75).

Significance: Clinicians with more formal seizure training identified possible
FDS more accurately than others, but formal training did not guarantee high
diagnostic performance. Two performance-based groups, which included 66%
readers, benefitted from the FSLS because they identified when to change their
mind on the basis of the FSLS's suggestion. The implementation of machine
learning in the diagnosis of FDS should focus on identifying clinical settings
where it can effectively enhance clinicians' decision-making.

artificial intelligence, epilepsy, machine learning, observer study, psychogenic nonepileptic

Key points

« Higher diagnostic accuracy of FDS and epilep-
tic seizures was partially associated with more
formal training in seizures.

« The FSLS improved the performance of two
groups (66%) of readers: the average participants
and near highest participants.

« The FSLS did not improve the accuracy of
the highest performance group (Group 1) or
intermediate groups (Groups 3 and 4).

« FSLS improved the average group's accuracy
from 41% to 60%, compared to intermediate
groups (55%-64%) and high-performing groups
(72%-82%).

 Clinical history supplemented by the FSLS
was insufficient to diagnose FS; further
neurodiagnostic testing is required.

the FSLS is not the only clinical score to identify FDS,'®"2
only two scores have been validated prospectively and at
an external center.'*'® There also is evidence that large
language models like ChatGPT (version 3.5 and 4) may
assist in identifying patients with FDS.*’

Each approach in identifying FDS may have unique
patterns of benefits and limitations."*'>* For example,
when clinical epilepsy fellows viewed the same cases as
the FSLS, their diagnostic performance was similar, but
the errors did not overlap (Cohen kappa=21%)."

Because the pattern of errors from humans and the
FSLS did not overlap, we asked if a human-in-the-loop
implementation that combined clinicians’ impression
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with the FSLS could improve diagnostic performance.
Human-in-the-loop implementation emphasizes that ma-
chine learning and artificial intelligence likely are not ac-
curate or reliable enough to be used in health care without
human supervision; therefore, we evaluate how clinicians'
insights improve upon the machine learning approach
and vice versa.”®* Evaluation of the utilization of artifi-
cial intelligence medicine has identified distinct groups of
clinicians: those who use artificial intelligence effectively,
those who did not benefit from artificial intelligence sup-
port, and those who overrelied on artificial intelligence.
Based on those groups, we hypothesized that epileptolo-
gists and those with specific expertise in FDS may have
high enough pre-FSLS performance that they may not
benefit from the FSLS, or they may trust their own exper-
tise more than an unfamiliar FSLS.

Alternatively, clinicians with less expertise in FDS may
benefit from the FSLS if they identify how to leverage
its strengths while recognizing its limitations. However,
that balanced approach to clinician-artificial intelligence
collaboration may require high levels of experience and
literacy with artificial intelligence. If clinicians with
less expertise in FDS benefit from the FSLS, then subse-
quent naturalistic implementation studies could evaluate
whether the FSLS addresses a primary challenge of de-
layed diagnosis: referral to epilepsy specialists or perform-
ing more definitive neurodiagnostic testing.® To evaluate
these questions initially in a structured experimental set-
ting, we developed online case modules based on real pa-
tient examples and asked readers to differentiate between
ES and FDS based on either clinical history alone or clini-
cal history supplemented by the FSLS.

2 | MATERIALS AND METHODS

2.1 | Patients on whom the case modules
were based

We created online case modules regarding adult (>18 years
old) patients with seizurelike movements with definitive
diagnosis based on ictal VEM at a Level 4 Comprehensive
Epilepsy Center during 2017-2019. To ensure the preva-
lence of each seizure type was maintained, patients were
selected in reverse sequential order (most recent first)
from the patients with “documented” certainty of FDS,
EEG-observed ES, co-occurring FDS and ES, or nonepilep-
tic nonfunctional physiological seizurelike events (PSLE,
e.g., convulsive cardiogenic syncope), and with prospec-
tive standardized interviews that were used in the vali-
dation of the FSLS.'*'> The patient portion of this study
was approved by the University of California, Los Angeles
(UCLA) Institutional Review Board (IRB#11-000916).

Epilepsia

The case module portion of this study was approved by
IRBs at UCLA, University of Michigan, and University of
Pittsburgh. For more information about patients, clinical
history, and patient selection, see Supplemental Methods.

Online case modules were created based on a combi-
nation of manually deidentified and anonymized retro-
spective chart review and the prospective standardized
interview. The section we call the history of present ill-
ness (HPI) includes all clinical information from the
earliest neurologists’ clinical notes, excluding EEG and
neuroimaging results. The FSLS was calculated based on
information obtained from the standardized interview
conducted by research staff to obtain the clinical history
(see Supplemental Methods for details).™*

2.2 | Case module information

These cases were organized into case modules within
Qualtrics with the three sections of HPI, FSLS, and the
results of VEM (Figure 1). Readers were asked two ques-
tions after each sequential section: (1) “Which diagnosis
is most likely?” (a) epileptic seizures, (b) functional sei-
zures, (¢) co-occurring epileptic and functional seizures,
and (d) physiological seizurelike events; and (2) “What
is your certainty or confidence in this diagnosis?” using
a 5-point Likert scale. When the FSLS information was
provided, the readers were told the predicted probability
of the most likely prediction.'* After each case, readers
were shown the correct diagnosis based on subsequent
VEM. For additional details about the case modules
and the use of GPT-4 for comparison, see Supplemental
Methods.?’

2.3 | Readers

Readers were intended to be clinicians or researchers in
seizures and were recruited through multiple sources to
participate in the online case modules including word of
mouth, emails to training program directors, academic
presentations, and social media (see Supplemental
Methods). Nonclinicians (e.g., patients and advocates)
were included to estimate baseline performance that may
be improved upon with clinical training. We categorized
readers based on self-reported formal clinical training.

2.4 | Statistical methods

We evaluated the impact of clinical expertise, the FSLS,
and the interaction between clinical expertise and the
FSLS on diagnostic performance using mixed-effected
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Flowchart of Participation

> Link to Qualtrics
survey

Allowed to complete

multiple sets of case
vignettes l

Consent &
self-reported
characteristics

S

Case Vignette
#1

Random order
selected from 117 | —<%

possible ¢

Case Vignette
#10

!

Up to 10 cases
before required break
(can complete less
than 10 in one
session)

Case Vignette Structure

r
History of present
illness
Which diagnosis is most
> g

likely?

What is your certainty or

} confidence in this diagnosis?
A 4
_{ FSLS
3 Which diagnosis is most
likely?
What is your certainty or
confidence in this diagnosis?
Y
Feedback of video-
EEG based
diagnosis

—

FIGURE 1 Flowchart of participation in the case modules. EEG, electroencephalography; FSLS, Functional Seizures Likelihood Score.

logistic regression predicting whether the reader made
the correct diagnosis with crossed random effects ac-
counting for within reader, within case, and repeated
measures variability (R package Ime4).>**! To perform
data-driven grouping of participants based on observed
level of performance, we superimposed mixture mod-
eling upon this logistic regression model and forward
selection to determine the number of groups (R package
mixture; see Supplemental Methods).** Mixture mod-
eling hypothesizes that the observed performance may be
a mixture of performance patterns that, originally, come
from more than one group. Based on the similarities of
readers’ performances across individual cases using clini-
cal history alone or clinical history assisted by the FSLS,
mixture modeling evaluated whether there were groups
of readers who had different patterns of diagnostic per-
formance and interaction with the FSLS. The area under
the receiver operating curve was built based on certainty
ratings.

We measured intraparticipant variability and learning
from the educational feedback at the end of each case with
afixed effect term to indicate repeat views of the same case.
Repeats occurred randomly when participants completed
more than one session of case modules (see Supplemental
Methods) and were a “positive control” where readers had
additional insights from remembering the patient, as com-
pared to the additional insights from the FSLS.

We evaluated the changes in reader-predicted diag-
nosis after viewing the FSLS. In this change analysis, we
evaluated (1) how often readers changed their diagnosis
after viewing the FSLS and (2) rates of change based on
whether the FSLS was correct, the reader was correct, and
the true diagnosis was either FDS or ES. The Supplemental
Methods describes other details. We defined the following
terms to describe these changes:

 Persuaded: An initially incorrect reader changed their
diagnosis to agree with a correct FSLS.

d 0 “L9118TST
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FIGURE 2 (A) Performance on cases varied between readers both between and within formal training categories. Only participants
who viewed more than two cases are displayed. (B) Mixture modeling used performance data to form six groups irrespective of

formal training. Additional performance metrics are described in Figure S2, Tables S1 and S2. APP, advanced practice provider; EEG,

electroencephalography; FSLS, Functional Seizures Likelihood Score; GPT, generative pretrained transformer; Non-Neuro, nonneurology

clinician; Tech, technologist.

 Misled: An initially correct reader changed their diag-
nosis to agree with an incorrect FSLS.

« Overruled: An initially correct reader did not change
their diagnosis to agree with an incorrect FSLS.

« Not convinced: An initially incorrect reader did not
change their diagnosis to agree with a correct FSLS.

o Error: An initially correct reader viewed a correct FSLS
but erroneously changed their diagnosis.

3 | RESULTS

3.1 | Patient and reader information

The reverse sequential selection of patients with diagnostic
VEM yielded 117 unique patients, comprised of 85 (73%)
patients with ES only, 26 (22%) patients with FDS only,
four (3%) patients with co-occurring ES and FS, and two
(2%) patients with PSLE (Table S1).

Through all methods of recruitment, 163 unique
readers saw at least one case (see Figure S1 for STROBE
flowchart). The participants self-identified as follows:
17 epileptologists, 19 general neurologists, 22 psychiatry
or psychology clinicians, 11 nonneurology clinicians, 12
neurology trainees (four epilepsy fellows, eight residents),
four medical students, 18 neurology advanced practice
providers (APPs), nine EEG technologists, and 51 noncli-
nicians (Table S2).

There were 1142 total case-reader pairs of diagnoses
(median=4 cases per reader, interquartile range=1-8;
28% of readers viewed only one case; see Figure S1). The
117 unique cases were viewed a median of 10 times (inter-
quartile range =8-11). Readers learned from case-specific

feedback (odds ratio=2.23, 95% confidence inter-
val=1.07-4.67, p=.033; Figure S5). Before viewing the
FSLS, readers’ diagnoses had fair correspondence with the
FSLS (Cohen kappa=21.8%).

3.2 | Associations of performance with
self-reported clinical expertise

Readers with more formal training in seizures had
higher diagnostic performance than those with less
formal training, but there was substantial variability
(Figure 2; leaderboard in Table S8). The formal training
category was the only reader characteristic associated
with different performance (Figure S2, Tables S2 and
S3). Within clinicians with formal training in neurology
(accuracy=66%, 327/492 case-reader pairs), there was
no significant difference in diagnostic performance based
on level of training (e.g., residency, fellowship, general
neurology, epileptology). The pooled diagnostic accuracy
of these neurology/seizure specialists was higher,
although not significantly, than all other readers (66% vs.
53%, p=.078). The performance of the FSLS and GPT-4
are provided for comparison (Table S2).?’

3.3 | Data-driven grouping of impact of
FSLS on readers’ performance

Readers' self-rater certainty reflected that when the reader
felt they were more confident, then the likelihood of their
chosen diagnosis was higher in most, but not all, cases
(Figure 3A). Viewing the FSLS improved that relationship
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A: Association of Self-Rated Certainty with Observed Percent FS B: Performance with FSLS
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b $Reader Only ] No Change with FSLS ] Improved with FSLS
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=
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= e 1 = || el
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|
[ - —
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Sl [ TN R A R
2 20% Pre-test Percent 20%— ’ ‘ 20%—
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Absolut
solutely Moderately Not at all[ Not at all Moderately Absolutely HPI Only HPI+FSLS HPI Only HPI+FSLS

FS More Likely FS Not More Likely

Self-Rated Certainty of FS

Information Viewed

FIGURE 3 Performance changed after the Functional Seizures Likelihood Score (FSLS) was displayed, with higher predictive value for

cases with high certainty of functional seizures (FS). (A) Predictive value of self-rated certainty with the observed percent FS. (B) Change in

performance was different across data-driven groups. Raw FSLS-only performance is illustrated for comparison. Other performance metrics

are provided in Figures S3 and S4. Error bars indicate 95% confidence intervals. HPI, history of present illness.

TABLE 1 Descriptive names of the data-driven groups and the change (A) in accuracy with the FSLS.

Data-driven group Descriptive name

Highest performance

Near highest performance
Intermediate performance
Intermediate performance

Reference/average

AN B AW N =

Poor performance

Accuracy

HPI, % HPI+FSLS, % AFSLS, %
75 72 -3

67 82 15

64 64 0

59 55 —4

41 60 19

28 27 =1

Note: For additional performance metrics, see Table S7.

Abbreviations: FSLS, Functional Seizures Likelihood Score; HPI, history of present illness.

between certainty and likelihood of identifying the correct
diagnosis (Figures 3A and S3).

Mixture modeling identified six groups of partici-
pants based on significantly different observed perfor-
mance (Figure 3B, Table S4). Our descriptive names for
each group reflect a gradient of performance (Figure 2B,
Tables 1 and S5). Most (61%) of the highest performance
group (Group 1) were seizure subspecialists (26% [6/23]
epileptologists, 26% [6/23] neurologists, 9% [2/23] neu-
rology residents or fellows). Of the remaining nine read-
ers in Group 1, at least six had special experience in FS.
The poor performance readers (Group 6) were compara-
ble or worse than chance and were excluded from other
analyses.

After viewing the FSLS, participants in the reference/
average group (Group 5) had a 15% increase in accuracy
(odds ratio=2.44, 95% confidence interval =1.15-5.15,

p=.02), whereas the near highest performance group
(Group 2) had a 12% increase in accuracy (odds
ratio =3.02,95%confidenceinterval =1.05-8.70, p = .041;
Figure 3B, Table S6). The other groups (Groups 1, 3,4, and
6) had a net accuracy change of <5% (p-value of change
> .75).

The accuracy of the near highest performance group
(Group 2) improved because they were persuaded by the
FSLS, but they were never misled (Figures 4 and S4-S6).
The accuracy of the reference group (Group 5) improved
by 21% due to persuasion by the FSLS and reduced by
4% due to being misled. Readers and FSLS disagreed less
often for higher performing groups than lower performing
groups (Groups 1-3: 37%, Groups 4-5: 53%). When readers
and FSLS disagreed, higher performing groups changed
their diagnostic impression less often (Groups 1-3: 22%,
Groups 4-5: 42%).
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A: Decisions in Response to FSLS

B: Impact of FSLS on Performance

Epilepsia-

C: Net Change of Performance
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FIGURE 4 Theimpact of readers’ decisions in response to the Functional Seizures Likelihood Score (FSLS) on performance varied
based on data-driven group. Groups 2 and 5 were persuaded more often than misled by the FSLS, but other groups had no significant net

change. (A) Alluvial to illustrate decisions in response to FSLS. (B) Potential impact of FSLS on overall accuracy are illustrated in lighter

shades. Decisions to change initial impression are outlined in red. (C) Net impact of decisions on overall accuracy (p-values reflect mixed

logistic models). HPI, history of present illness.

4 | DISCUSSION

Written reports of clinical history indicative of “possible”
FDS should prompt early and accurate referral for more
definitive neurodiagnostic testing (e.g., video-EEG
monitoring), because diagnostic accuracy ranged from
49% (nonclinicians) to 67% (epileptologists). Accurate
identification was challenging, even for the highest
performing participants (accuracy=75%). Machine
learning-assisted identification with the FSLS improved
the performance of groups containing 66% of readers by
12%-15%, but other readers could not effectively identify
when to change their diagnosis based on the FSLS. These
online case modules provide unique insights regarding
how human-in-the-loop machine learning can integrate
into clinical pathways.

4.1 | Diagnostic implications of
“possible” FDS

This study focuses on the highest ILAE certainty of FDS
that could be achieved by clinical history, which is called

“possible.”’® When readers in our performance-based
seizure expert groups felt that FDS was “possible,” they
were correct 63% and 53% of the time for Group 1 and 2,
respectively (predictive value). They also identified 70%
and 63% of patients with FDS, respectively (sensitivity).
That performance was similar to other evaluations that
used clinical history.*®

However, the difference between self-identified formal
training and performance-based grouping highlighted
that formal training in epilepsy or neurology was not suf-
ficient to be in the highest performing groups. There was
insufficient evidence to conclude that 27% (3/11) of epilep-
tologists and 50% (7/14) of neurologists had high enough
performance to earn a place in the two top-performing
data-driven groups.

The average reader, who may represent a generic cli-
nician without specific formal or practice experience in
seizures, had quite poor diagnostic performance. When
the 55% of readers with average performance (Group 5)
felt FDS was “possible,” they were correct in 41% of pa-
tients (predictive value), and they only identified 37% of
patients with FDS (sensitivity). These poor results mir-
ror video-based studies of nonseizure specialists (e.g.,
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emergency physicians), who could have accuracies as low
as 459, 15:33-35

These limited diagnostic performances indicated that
“possible” FDS could prompt referral for further neuro-
diagnostic testing, but this level of evidence was not high
enough to impact treatment decisions. Because shorter
time to diagnosis may improve long-term outcomes, pa-
tients identified with “possible” FDS should promptly pur-
sue more definitive neurodiagnostic evaluation."®"' The
ILAE diagnostic criteria for FDS recommends observa-
tion of seizures by a seizure specialist with video, EEG, or
video-EEG."*">* Video observation of a seizure by a sei-
zure specialist corresponded with the ILAE certainty cat-
egory of “clinically established” (predictive value=92%,
sensitivity =93%).

4.2 | Machine learning-assisted
diagnosis

To focus on the goal of early clinical triage of “possible”
FDS to more definitive neurodiagnostic evaluation, this
study directly addressed how machine learning integrated
with clinicians using a human-in-the-loop design by
identifying when the FSLS produced a net benefit, no
change, or had potential harm.*® The human-in-the-loop
design differs from when machine learning tools aim to
replace or compete with clinicians.?’

Groups including 66% of readers utilized the FSLS ef-
fectively as a supportive tool by leveraging its strengths
while maintaining critical oversight and clinical reason-
ing.” The group of average readers (Group 5) was able to
understand the FSLS enough to improve their accuracy
from 44% to 60%. Although that was lower than the 76%
accuracy of the FSLS alone, it was a significant improve-
ment (p=.02). In addition, the near highest performance
group (Group 2) improved their accuracy from 70% to 82%
with the FSLS (p=.04). That combined performance was
numerically, but not statistically, higher than the FSLS
alone (76%) or Group 1. In other studies of the integration
of artificial intelligence with clinical insights, clinicians
who effectively used artificial intelligence had higher
artificial intelligence literacy and more experience and
expressed a balanced approach toward human-artificial
intelligence collaboration.****3

In contrast, the remaining groups with 44% of readers
did not significantly benefit from FSLS support. Similar
to other studies, this lack of benefit may have been due
to lack of trust, poor understanding of the FSLS's predic-
tions, or misalignment between the FSLS' recommenda-
tions and clinical reasoning.”” When readers were wrong
(and the FSLS was correct), readers were persuaded in
only 30%-45% of cases. The highest performance group

(Group 1) may not have been convinced because they felt
that they had more nuanced knowledge than the FSLS.*
However, the fair Cohen kappa of 32% between the FSLS
and the highest performance group (Group 1) indicated
that the FSLS may provide some unique information that
could supplement, not replace, their clinical expertise.
Even though Group 1 did not recognize those unique
insights, the near highest performance group (Group 2)
successfully improved their performance by recognizing
and effectively utilizing that supplemental information
provided by the FSLS.

Readers with intermediate performance may have
enough seizure expertise to identify FDS better than the
average reader, but the depth of their knowledge was not
enough to recognize when to be persuaded by the FSLS.
Even though their performance did not improve, these
intermediate performance readers tried to use the FSLS
more than the higher performers because the interme-
diate readers changed their impression after viewing the
FSLS more often (40% vs. 20%). Readers in all groups rec-
ognized that the FSLS supplemented, and did not replace,
their diagnostic impression; no reader “misskilled,” which
is defined by adopting the FSLS's errors uncritically.” No
reader who viewed a disagreeing FSLS more than twice
uniformly changed their impression to match the FSLS.
Therefore, the readers attempted to benefit from the FSLS,
but many did not recognize when it supplemented their
clinical insights. Further exposure to and training on the
FSLS may permit these readers to identify how to effec-
tively use the FSLS.

Lastly, we must consider the potential harm of utiliz-
ing the FSLS through “deskilling.”* Deskilling is defined
as the loss of clinical reasoning skills.”> Although the net
accuracy of readers in intermediate Group 4 reduced nu-
merically by 4% (post-FSLS difference, p=.92), that dif-
ference may have corresponded to a shift in the threshold
of concern for FDS, where they increased the overall rate
at which they predicted FDS, which resulted in 19% in-
crease of the FDS predictive value plus a corresponding
10% decrease of the epilepsy predictive value (Figure S4,
Table S7). That shift in the threshold of concern without a
substantial increase in overall performance was reflected
by a net 1% increase in the area under the receiver operat-
ing curve (Table S7).

An alternative potential harm of the FSLS may be
perpetuation of harmful historical practices. Initially,
we were concerned about the ethics of the FSLS because
it included components of patient sex and the presence
of psychosocial trauma, including sexual trauma.***
Overemphasis of those factors could have perpetuated
sex-driven disparities and stigmatization of victims in
health care.**™* However, we did not observe worsen-
ing performance when the FSLS was provided, which
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indicated that these initial concerns were not seen in the
data.

There are some limitations to our approach of online
case modules and our analyses. Our use of observed per-
formance to group participants highlighted that formal
training was not a reliable indicator of how they would
utilize the FSLS. Future studies are needed to identify
characteristics that may predict which clinicians may
benefit most from the FSLS. To promote patient ano-
nymity and recruit more readers with broad clinical
background, these case modules excluded seizure vid-
eos, which, with specific ictal behaviors, can increase
the ILAE certainty of FDS to clinically established."
The estimated response rate was <1%, and 28% of read-
ers only observed a single case, which may have con-
tributed to a selection bias. Additionally, the limited
number of cases for each reader led to insufficient data
to definitively categorize individual readers based on
whether they did or did not benefit from the FSLS. For
example, one third of epileptologists and half of board-
certified neurologists were included in the reference
group due to insufficient evidence to put them in higher
performing groups. Therefore, we primarily focus on the
interpretation of the composition of the groups with suf-
ficient evidence that they were different from the refer-
ence groups. We also had insufficient readers from key
categories of clinicians who care for patients with FDS,
including emergency physicians, emergency nurses,
emergency medicine technicians, and primary care pro-
viders.** This evaluation focuses on reader-associated
performance. The additional complexity of addressing
case-associated drivers of performance can be addressed
in future work. Whereas the proportion of patients with
FDS matched patients admitted for VEM, the prevalence
of FDS was much lower in non-VEM settings.***” This
evaluation also focused on adults with seizures, and the
identification of pediatric FDS differs from adult FS.

5 | CONCLUSIONS

The diagnosis of FDS based on written history alone was
challenging, even for seizure specialists. The machine
learning-based FSLS improved the diagnostic accuracy
of groups including 66% of readers by 12%-15% and also
improved other diagnostic performance measures. This
differential benefit of the FSLS in some readers indicated
that efforts toimplement the FSLS should focus on targeted
groups of clinicians who can effectively understand its
benefits and limitations. The predictive value of “possible”
FDS was insufficient for a reliable diagnosis; therefore,
patients should pursue further neurodiagnostic testing for
a more definitive diagnosis (e.g., VEM).
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