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Abstract

Objective: The diagnosis of functional/dissociative seizures (FDS) without 

ictal video- electroencephalography is challenging. The Functional/Dissociative 

Seizures Likelihood Score (FSLS) is a machine learning- based diagnostic score 

that aims to help clinicians identify FDS. We evaluated whether a human- in- 

the- loop implementation of the FSLS improved the performance of clinicians 

identifying FDS as compared to epileptic seizures (ES).

Methods: We constructed 117 anonymized cases about patients with ictal video- 

electroencephalography- documented FDS, epilepsy, co- occurring ES and FDS, 

or physiological seizurelike events. Text- based clinical history was presented 

followed by the FSLS. Readers were asked the most likely diagnosis after each 

piece of information. We used mixture modeling combined with mixed effects 

logistic regression to perform data- driven grouping of participants based on 

observed patterns of diagnostic performance.

Results: Overall, 163 readers saw 1142 cases (median = 4 cases/reader), and 146 

(90%) had a performance higher than chance. More formal training in seizures 

was associated with better performance (epileptologist accuracy = 67%, mental 
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1  |  INTRODUCTION

Previously known as psychogenic nonepileptic seizures, 

functional/dissociative seizures (FDS) have profound 

negative impacts on patients' quality of life, capacity 

for employment, health care utilization, and mortality 

rate.1–6 Although the pathophysiology of FDS is not well 

established, FDS are episodic neurological symptoms that 

commonly, but not exclusively, were associated with acute 

and chronic biopsychosocial stressors.7 The average delay 

from first seizure to an accurate diagnosis of FDS was 

8.6 years (median = 3 years), during which 80% of patients 

were empirically treated for epileptic seizures (ES) with 

antiseizure medications.5,8,9 Even after determination 

that seizures were functional instead of epileptic with 

ictal video- electroencephalographic monitoring (VEM), 

longer delay to diagnosis was associated with worse 

outcomes.10,11 Therefore, it is critical to decrease the delay 

to diagnosis, because shorter delays may contribute to 

superior treatment outcomes.

To address the delay to diagnosis, we used machine 

learning to develop the Functional/Dissociative Seizures 

Likelihood Score (FSLS), which had prospective accuracy 

of 77% and external validation accuracy of 81%.12,13 The 

FSLS was trained on a retrospective VEM- based cohort 

of 1126 patients and validated with standardized inter-

views with 490 patients. The FSLS was built on a base of 

logistic regression to create a weighted combination of 

features obtained as part of the clinical history to identify 

patients with “possible” functional seizures (FS).14 The 

International League Against Epilepsy (ILAE) certainty 

level of “possible” was defined as a history raising concern 

for FDS, but the seizure had not been observed by a cli-

nician or on electroencephalography (EEG).15 Although 

the FSLS is not the only clinical score to identify FDS,16–26 

only two scores have been validated prospectively and at 

an external center.12,13 There also is evidence that large 

language models like ChatGPT (version 3.5 and 4) may 

assist in identifying patients with FDS.27

Each approach in identifying FDS may have unique 

patterns of benefits and limitations.14,15,27 For example, 

when clinical epilepsy fellows viewed the same cases as 

the FSLS, their diagnostic performance was similar, but 

the errors did not overlap (Cohen kappa = 21%).14

Because the pattern of errors from humans and the 

FSLS did not overlap, we asked if a human- in- the- loop 

implementation that combined clinicians' impression 

health clinician accuracy = 52%). Data- driven groups including 66% of readers 

benefitted from the FSLS (accuracy improvement = 12%–15%, p < .05), including 

those in the reference and near highest baseline performance group. Other groups 

had no net change in performance (p > .75).

Significance: Clinicians with more formal seizure training identified possible 

FDS more accurately than others, but formal training did not guarantee high 

diagnostic performance. Two performance- based groups, which included 66% 

readers, benefitted from the FSLS because they identified when to change their 

mind on the basis of the FSLS's suggestion. The implementation of machine 

learning in the diagnosis of FDS should focus on identifying clinical settings 

where it can effectively enhance clinicians' decision- making.

K E Y W O R D S

artificial intelligence, epilepsy, machine learning, observer study, psychogenic nonepileptic 

seizures (PNES)

Key points

• Higher diagnostic accuracy of FDS and epilep-

tic seizures was partially associated with more 

formal training in seizures.

• The FSLS improved the performance of two 

groups (66%) of readers: the average participants 

and near highest participants.

• The FSLS did not improve the accuracy of 

the highest performance group (Group 1) or 

intermediate groups (Groups 3 and 4).

• FSLS improved the average group's accuracy 

from 41% to 60%, compared to intermediate 

groups (55%–64%) and high- performing groups 

(72%–82%).

• Clinical history supplemented by the FSLS 

was insufficient to diagnose FS; further 

neurodiagnostic testing is required.
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with the FSLS could improve diagnostic performance. 

Human- in- the- loop implementation emphasizes that ma-

chine learning and artificial intelligence likely are not ac-

curate or reliable enough to be used in health care without 

human supervision; therefore, we evaluate how clinicians' 

insights improve upon the machine learning approach 

and vice versa.28,29 Evaluation of the utilization of artifi-

cial intelligence medicine has identified distinct groups of 

clinicians: those who use artificial intelligence effectively, 

those who did not benefit from artificial intelligence sup-

port, and those who overrelied on artificial intelligence. 

Based on those groups, we hypothesized that epileptolo-

gists and those with specific expertise in FDS may have 

high enough pre- FSLS performance that they may not 

benefit from the FSLS, or they may trust their own exper-

tise more than an unfamiliar FSLS.

Alternatively, clinicians with less expertise in FDS may 

benefit from the FSLS if they identify how to leverage 

its strengths while recognizing its limitations. However, 

that balanced approach to clinician–artificial intelligence 

collaboration may require high levels of experience and 

literacy with artificial intelligence. If clinicians with 

less expertise in FDS benefit from the FSLS, then subse-

quent naturalistic implementation studies could evaluate 

whether the FSLS addresses a primary challenge of de-

layed diagnosis: referral to epilepsy specialists or perform-

ing more definitive neurodiagnostic testing.8 To evaluate 

these questions initially in a structured experimental set-

ting, we developed online case modules based on real pa-

tient examples and asked readers to differentiate between 

ES and FDS based on either clinical history alone or clini-

cal history supplemented by the FSLS.

2  |  MATERIALS AND METHODS

2.1 | Patients on whom the case modules 
were based

We created online case modules regarding adult (>18 years 

old) patients with seizurelike movements with definitive 

diagnosis based on ictal VEM at a Level 4 Comprehensive 

Epilepsy Center during 2017–2019. To ensure the preva-

lence of each seizure type was maintained, patients were 

selected in reverse sequential order (most recent first) 

from the patients with “documented” certainty of FDS, 

EEG- observed ES, co- occurring FDS and ES, or nonepilep-

tic nonfunctional physiological seizurelike events (PSLE, 

e.g., convulsive cardiogenic syncope), and with prospec-

tive standardized interviews that were used in the vali-

dation of the FSLS.14,15 The patient portion of this study 

was approved by the University of California, Los Angeles 

(UCLA) Institutional Review Board (IRB#11- 000916). 

The case module portion of this study was approved by 

IRBs at UCLA, University of Michigan, and University of 

Pittsburgh. For more information about patients, clinical 

history, and patient selection, see Supplemental Methods.

Online case modules were created based on a combi-

nation of manually deidentified and anonymized retro-

spective chart review and the prospective standardized 

interview. The section we call the history of present ill-

ness (HPI) includes all clinical information from the 

earliest neurologists' clinical notes, excluding EEG and 

neuroimaging results. The FSLS was calculated based on 

information obtained from the standardized interview 

conducted by research staff to obtain the clinical history 

(see Supplemental Methods for details).14

2.2 | Case module information

These cases were organized into case modules within 

Qualtrics with the three sections of HPI, FSLS, and the 

results of VEM (Figure 1). Readers were asked two ques-

tions after each sequential section: (1) “Which diagnosis 

is most likely?” (a) epileptic seizures, (b) functional sei-

zures, (c) co- occurring epileptic and functional seizures, 

and (d) physiological seizurelike events; and (2) “What 

is your certainty or confidence in this diagnosis?” using 

a 5- point Likert scale. When the FSLS information was 

provided, the readers were told the predicted probability 

of the most likely prediction.14 After each case, readers 

were shown the correct diagnosis based on subsequent 

VEM. For additional details about the case modules 

and the use of GPT- 4 for comparison, see Supplemental 

Methods.27

2.3 | Readers

Readers were intended to be clinicians or researchers in 

seizures and were recruited through multiple sources to 

participate in the online case modules including word of 

mouth, emails to training program directors, academic 

presentations, and social media (see Supplemental 

Methods). Nonclinicians (e.g., patients and advocates) 

were included to estimate baseline performance that may 

be improved upon with clinical training. We categorized 

readers based on self- reported formal clinical training.

2.4 | Statistical methods

We evaluated the impact of clinical expertise, the FSLS, 

and the interaction between clinical expertise and the 

FSLS on diagnostic performance using mixed- effected 
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logistic regression predicting whether the reader made 

the correct diagnosis with crossed random effects ac-

counting for within reader, within case, and repeated 

measures variability (R package lme4).30,31 To perform 

data- driven grouping of participants based on observed 

level of performance, we superimposed mixture mod-

eling upon this logistic regression model and forward 

selection to determine the number of groups (R package 

mixture; see Supplemental Methods).32 Mixture mod-

eling hypothesizes that the observed performance may be 

a mixture of performance patterns that, originally, come 

from more than one group. Based on the similarities of 

readers' performances across individual cases using clini-

cal history alone or clinical history assisted by the FSLS, 

mixture modeling evaluated whether there were groups 

of readers who had different patterns of diagnostic per-

formance and interaction with the FSLS. The area under 

the receiver operating curve was built based on certainty 

ratings.

We measured intraparticipant variability and learning 

from the educational feedback at the end of each case with 

a fixed effect term to indicate repeat views of the same case. 

Repeats occurred randomly when participants completed 

more than one session of case modules (see Supplemental 

Methods) and were a “positive control” where readers had 

additional insights from remembering the patient, as com-

pared to the additional insights from the FSLS.

We evaluated the changes in reader- predicted diag-

nosis after viewing the FSLS. In this change analysis, we 

evaluated (1) how often readers changed their diagnosis 

after viewing the FSLS and (2) rates of change based on 

whether the FSLS was correct, the reader was correct, and 

the true diagnosis was either FDS or ES. The Supplemental 

Methods describes other details. We defined the following 

terms to describe these changes:

• Persuaded: An initially incorrect reader changed their 

diagnosis to agree with a correct FSLS.

F I G U R E  1  Flowchart of participation in the case modules. EEG, electroencephalography; FSLS, Functional Seizures Likelihood Score.
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• Misled: An initially correct reader changed their diag-

nosis to agree with an incorrect FSLS.

• Overruled: An initially correct reader did not change 

their diagnosis to agree with an incorrect FSLS.

• Not convinced: An initially incorrect reader did not 

change their diagnosis to agree with a correct FSLS.

• Error: An initially correct reader viewed a correct FSLS 

but erroneously changed their diagnosis.

3  |  RESULTS

3.1 | Patient and reader information

The reverse sequential selection of patients with diagnostic 

VEM yielded 117 unique patients, comprised of 85 (73%) 

patients with ES only, 26 (22%) patients with FDS only, 

four (3%) patients with co- occurring ES and FS, and two 

(2%) patients with PSLE (Table S1).

Through all methods of recruitment, 163 unique 

readers saw at least one case (see Figure S1 for STROBE 

flowchart). The participants self- identified as follows: 

17 epileptologists, 19 general neurologists, 22 psychiatry 

or psychology clinicians, 11 nonneurology clinicians, 12 

neurology trainees (four epilepsy fellows, eight residents), 

four medical students, 18 neurology advanced practice 

providers (APPs), nine EEG technologists, and 51 noncli-

nicians (Table S2).

There were 1142 total case–reader pairs of diagnoses 

(median = 4 cases per reader, interquartile range = 1–8; 

28% of readers viewed only one case; see Figure S1). The 

117 unique cases were viewed a median of 10 times (inter-

quartile range = 8–11). Readers learned from case- specific 

feedback (odds ratio = 2.23, 95% confidence inter-

val = 1.07–4.67, p = .033; Figure  S5). Before viewing the 

FSLS, readers' diagnoses had fair correspondence with the 

FSLS (Cohen kappa = 21.8%).

3.2 | Associations of performance with 
self- reported clinical expertise

Readers with more formal training in seizures had 

higher diagnostic performance than those with less 

formal training, but there was substantial variability 

(Figure 2; leaderboard in Table S8). The formal training 

category was the only reader characteristic associated 

with different performance (Figure  S2, Tables  S2 and 

S3). Within clinicians with formal training in neurology 

(accuracy = 66%, 327/492 case–reader pairs), there was 

no significant difference in diagnostic performance based 

on level of training (e.g., residency, fellowship, general 

neurology, epileptology). The pooled diagnostic accuracy 

of these neurology/seizure specialists was higher, 

although not significantly, than all other readers (66% vs. 

53%, p = .078). The performance of the FSLS and GPT- 4 

are provided for comparison (Table S2).27

3.3 | Data- driven grouping of impact of 
FSLS on readers' performance

Readers' self- rater certainty reflected that when the reader 

felt they were more confident, then the likelihood of their 

chosen diagnosis was higher in most, but not all, cases 

(Figure 3A). Viewing the FSLS improved that relationship 

F I G U R E  2  (A) Performance on cases varied between readers both between and within formal training categories. Only participants 

who viewed more than two cases are displayed. (B) Mixture modeling used performance data to form six groups irrespective of 

formal training. Additional performance metrics are described in Figure S2, Tables S1 and S2. APP, advanced practice provider; EEG, 

electroencephalography; FSLS, Functional Seizures Likelihood Score; GPT, generative pretrained transformer; Non- Neuro, nonneurology 

clinician; Tech, technologist.
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between certainty and likelihood of identifying the correct 

diagnosis (Figures 3A and S3).

Mixture modeling identified six groups of partici-

pants based on significantly different observed perfor-

mance (Figure 3B, Table S4). Our descriptive names for 

each group reflect a gradient of performance (Figure 2B, 

Tables 1 and S5). Most (61%) of the highest performance 

group (Group 1) were seizure subspecialists (26% [6/23] 

epileptologists, 26% [6/23] neurologists, 9% [2/23] neu-

rology residents or fellows). Of the remaining nine read-

ers in Group 1, at least six had special experience in FS. 

The poor performance readers (Group 6) were compara-

ble or worse than chance and were excluded from other 

analyses.

After viewing the FSLS, participants in the reference/

average group (Group 5) had a 15% increase in accuracy 

(odds ratio = 2.44, 95% confidence interval = 1.15–5.15, 

p = .02), whereas the near highest performance group 

(Group 2) had a 12% increase in accuracy (odds 

ratio = 3.02, 95% confidence interval = 1.05–8.70, p = .041; 

Figure 3B, Table S6). The other groups (Groups 1, 3, 4, and 

6) had a net accuracy change of <5% (p- value of change  

> .75).

The accuracy of the near highest performance group 

(Group 2) improved because they were persuaded by the 

FSLS, but they were never misled (Figures 4 and S4–S6). 

The accuracy of the reference group (Group 5) improved 

by 21% due to persuasion by the FSLS and reduced by 

4% due to being misled. Readers and FSLS disagreed less 

often for higher performing groups than lower performing 

groups (Groups 1–3: 37%, Groups 4–5: 53%). When readers 

and FSLS disagreed, higher performing groups changed 

their diagnostic impression less often (Groups 1–3: 22%, 

Groups 4–5: 42%).

F I G U R E  3  Performance changed after the Functional Seizures Likelihood Score (FSLS) was displayed, with higher predictive value for 

cases with high certainty of functional seizures (FS). (A) Predictive value of self- rated certainty with the observed percent FS. (B) Change in 

performance was different across data- driven groups. Raw FSLS- only performance is illustrated for comparison. Other performance metrics 

are provided in Figures S3 and S4. Error bars indicate 95% confidence intervals. HPI, history of present illness.

T A B L E  1  Descriptive names of the data- driven groups and the change (Δ) in accuracy with the FSLS.

Data- driven group Descriptive name

Accuracy

HPI, % HPI + FSLS, % ΔFSLS, %

1 Highest performance 75 72 −3

2 Near highest performance 67 82 15

3 Intermediate performance 64 64 0

4 Intermediate performance 59 55 −4

5 Reference/average 41 60 19

6 Poor performance 28 27 −1

Note: For additional performance metrics, see Table S7.

Abbreviations: FSLS, Functional Seizures Likelihood Score; HPI, history of present illness.
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4  |  DISCUSSION

Written reports of clinical history indicative of “possible” 

FDS should prompt early and accurate referral for more 

definitive neurodiagnostic testing (e.g., video- EEG 

monitoring), because diagnostic accuracy ranged from 

49% (nonclinicians) to 67% (epileptologists). Accurate 

identification was challenging, even for the highest 

performing participants (accuracy = 75%). Machine 

learning- assisted identification with the FSLS improved 

the performance of groups containing 66% of readers by 

12%–15%, but other readers could not effectively identify 

when to change their diagnosis based on the FSLS. These 

online case modules provide unique insights regarding 

how human- in- the- loop machine learning can integrate 

into clinical pathways.

4.1 | Diagnostic implications of 
“possible” FDS

This study focuses on the highest ILAE certainty of FDS 

that could be achieved by clinical history, which is called 

“possible.”15 When readers in our performance- based 

seizure expert groups felt that FDS was “possible,” they 

were correct 63% and 53% of the time for Group 1 and 2, 

respectively (predictive value). They also identified 70% 

and 63% of patients with FDS, respectively (sensitivity). 

That performance was similar to other evaluations that 

used clinical history.33

However, the difference between self- identified formal 

training and performance- based grouping highlighted 

that formal training in epilepsy or neurology was not suf-

ficient to be in the highest performing groups. There was 

insufficient evidence to conclude that 27% (3/11) of epilep-

tologists and 50% (7/14) of neurologists had high enough 

performance to earn a place in the two top- performing 

data- driven groups.

The average reader, who may represent a generic cli-

nician without specific formal or practice experience in 

seizures, had quite poor diagnostic performance. When 

the 55% of readers with average performance (Group 5) 

felt FDS was “possible,” they were correct in 41% of pa-

tients (predictive value), and they only identified 37% of 

patients with FDS (sensitivity). These poor results mir-

ror video- based studies of nonseizure specialists (e.g., 

F I G U R E  4  The impact of readers' decisions in response to the Functional Seizures Likelihood Score (FSLS) on performance varied 

based on data- driven group. Groups 2 and 5 were persuaded more often than misled by the FSLS, but other groups had no significant net 

change. (A) Alluvial to illustrate decisions in response to FSLS. (B) Potential impact of FSLS on overall accuracy are illustrated in lighter 

shades. Decisions to change initial impression are outlined in red. (C) Net impact of decisions on overall accuracy (p- values reflect mixed 

logistic models). HPI, history of present illness.
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emergency physicians), who could have accuracies as low 

as 45%.15,33–35

These limited diagnostic performances indicated that 

“possible” FDS could prompt referral for further neuro-

diagnostic testing, but this level of evidence was not high 

enough to impact treatment decisions. Because shorter 

time to diagnosis may improve long- term outcomes, pa-

tients identified with “possible” FDS should promptly pur-

sue more definitive neurodiagnostic evaluation.10,11 The 

ILAE diagnostic criteria for FDS recommends observa-

tion of seizures by a seizure specialist with video, EEG, or 

video- EEG.14,15,33 Video observation of a seizure by a sei-

zure specialist corresponded with the ILAE certainty cat-

egory of “clinically established” (predictive value = 92%, 

sensitivity = 93%).

4.2 | Machine learning- assisted 
diagnosis

To focus on the goal of early clinical triage of “possible” 

FDS to more definitive neurodiagnostic evaluation, this 

study directly addressed how machine learning integrated 

with clinicians using a human- in- the- loop design by 

identifying when the FSLS produced a net benefit, no 

change, or had potential harm.36 The human- in- the- loop 

design differs from when machine learning tools aim to 

replace or compete with clinicians.37

Groups including 66% of readers utilized the FSLS ef-

fectively as a supportive tool by leveraging its strengths 

while maintaining critical oversight and clinical reason-

ing.29 The group of average readers (Group 5) was able to 

understand the FSLS enough to improve their accuracy 

from 44% to 60%. Although that was lower than the 76% 

accuracy of the FSLS alone, it was a significant improve-

ment (p = .02). In addition, the near highest performance 

group (Group 2) improved their accuracy from 70% to 82% 

with the FSLS (p = .04). That combined performance was 

numerically, but not statistically, higher than the FSLS 

alone (76%) or Group 1. In other studies of the integration 

of artificial intelligence with clinical insights, clinicians 

who effectively used artificial intelligence had higher 

artificial intelligence literacy and more experience and 

expressed a balanced approach toward human–artificial 

intelligence collaboration.28,29,38

In contrast, the remaining groups with 44% of readers 

did not significantly benefit from FSLS support. Similar 

to other studies, this lack of benefit may have been due 

to lack of trust, poor understanding of the FSLS's predic-

tions, or misalignment between the FSLS' recommenda-

tions and clinical reasoning.29 When readers were wrong 

(and the FSLS was correct), readers were persuaded in 

only 30%–45% of cases. The highest performance group 

(Group 1) may not have been convinced because they felt 

that they had more nuanced knowledge than the FSLS.39 

However, the fair Cohen kappa of 32% between the FSLS 

and the highest performance group (Group 1) indicated 

that the FSLS may provide some unique information that 

could supplement, not replace, their clinical expertise. 

Even though Group 1 did not recognize those unique 

insights, the near highest performance group (Group 2) 

successfully improved their performance by recognizing 

and effectively utilizing that supplemental information 

provided by the FSLS.

Readers with intermediate performance may have 

enough seizure expertise to identify FDS better than the 

average reader, but the depth of their knowledge was not 

enough to recognize when to be persuaded by the FSLS. 

Even though their performance did not improve, these 

intermediate performance readers tried to use the FSLS 

more than the higher performers because the interme-

diate readers changed their impression after viewing the 

FSLS more often (40% vs. 20%). Readers in all groups rec-

ognized that the FSLS supplemented, and did not replace, 

their diagnostic impression; no reader “misskilled,” which 

is defined by adopting the FSLS's errors uncritically.29 No 

reader who viewed a disagreeing FSLS more than twice 

uniformly changed their impression to match the FSLS. 

Therefore, the readers attempted to benefit from the FSLS, 

but many did not recognize when it supplemented their 

clinical insights. Further exposure to and training on the 

FSLS may permit these readers to identify how to effec-

tively use the FSLS.

Lastly, we must consider the potential harm of utiliz-

ing the FSLS through “deskilling.”29 Deskilling is defined 

as the loss of clinical reasoning skills.29 Although the net 

accuracy of readers in intermediate Group 4 reduced nu-

merically by 4% (post- FSLS difference, p = .92), that dif-

ference may have corresponded to a shift in the threshold 

of concern for FDS, where they increased the overall rate 

at which they predicted FDS, which resulted in 19% in-

crease of the FDS predictive value plus a corresponding 

10% decrease of the epilepsy predictive value (Figure S4, 

Table S7). That shift in the threshold of concern without a 

substantial increase in overall performance was reflected 

by a net 1% increase in the area under the receiver operat-

ing curve (Table S7).

An alternative potential harm of the FSLS may be 

perpetuation of harmful historical practices. Initially, 

we were concerned about the ethics of the FSLS because 

it included components of patient sex and the presence 

of psychosocial trauma, including sexual trauma.40,41 

Overemphasis of those factors could have perpetuated 

sex- driven disparities and stigmatization of victims in 

health care.42–45 However, we did not observe worsen-

ing performance when the FSLS was provided, which 
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indicated that these initial concerns were not seen in the 

data.

There are some limitations to our approach of online 

case modules and our analyses. Our use of observed per-

formance to group participants highlighted that formal 

training was not a reliable indicator of how they would 

utilize the FSLS. Future studies are needed to identify 

characteristics that may predict which clinicians may 

benefit most from the FSLS. To promote patient ano-

nymity and recruit more readers with broad clinical 

background, these case modules excluded seizure vid-

eos, which, with specific ictal behaviors, can increase 

the ILAE certainty of FDS to clinically established.15 

The estimated response rate was <1%, and 28% of read-

ers only observed a single case, which may have con-

tributed to a selection bias. Additionally, the limited 

number of cases for each reader led to insufficient data 

to definitively categorize individual readers based on 

whether they did or did not benefit from the FSLS. For 

example, one third of epileptologists and half of board- 

certified neurologists were included in the reference 

group due to insufficient evidence to put them in higher 

performing groups. Therefore, we primarily focus on the 

interpretation of the composition of the groups with suf-

ficient evidence that they were different from the refer-

ence groups. We also had insufficient readers from key 

categories of clinicians who care for patients with FDS, 

including emergency physicians, emergency nurses, 

emergency medicine technicians, and primary care pro-

viders.34 This evaluation focuses on reader- associated 

performance. The additional complexity of addressing 

case- associated drivers of performance can be addressed 

in future work. Whereas the proportion of patients with 

FDS matched patients admitted for VEM, the prevalence 

of FDS was much lower in non- VEM settings.46,47 This 

evaluation also focused on adults with seizures, and the 

identification of pediatric FDS differs from adult FS.

5  |  CONCLUSIONS

The diagnosis of FDS based on written history alone was 

challenging, even for seizure specialists. The machine 

learning- based FSLS improved the diagnostic accuracy 

of groups including 66% of readers by 12%–15% and also 

improved other diagnostic performance measures. This 

differential benefit of the FSLS in some readers indicated 

that efforts to implement the FSLS should focus on targeted 

groups of clinicians who can effectively understand its 

benefits and limitations. The predictive value of “possible” 

FDS was insufficient for a reliable diagnosis; therefore, 

patients should pursue further neurodiagnostic testing for 

a more definitive diagnosis (e.g., VEM).
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