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Alleviating cosmological tensions with a hybrid dark sector
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34095 Montpellier, France
*School of Mathematical and Physical Sciences, University of Sheffield,
Hounsfield Road, Sheffield S3 7RH, United Kingdom

® (Received 19 February 2025; accepted 1 December 2025; published 9 January 2026)

We investigate a cosmological model inspired by hybrid inflation, where two scalar fields representing
dark energy (DE) and dark matter (DM) interact through a coupling that is proportional to the DE scalar
field 1/¢. The strength of the coupling is governed solely by the initial condition of the scalar field, ¢;,
which parametrizes deviations from the standard A cold dark matter (ACDM) model. In this model, the
scalar field tracks the behavior of DM during matter domination until it transitions to DE while the DM
component decays quicker than standard CDM during matter domination, and is therefore different from
some interacting DM-DE models which behave like phantom dark energy. Using Planck 2018 CMB data,
Dark Energy Spectroscopic Instrument baryonic acoustic oscillations measurements and Pantheon +
supernova observations, we find that the model allows for an increase in H, that can help reduce the Hubble
tension. In addition, we find that higher values of the coupling parameter are correlated with lower values of
®,,, and a mild decrease of the weak-lensing parameter Sg, potentially relevant to address the Sg tension.
Bayesian model comparison, however, reveals inconclusive results for most datasets, unless SHyES data

are included, in which case a moderate evidence in favor of the hybrid model is found.

DOI: 10.1103/91f2-33zf

I. INTRODUCTION

Cosmological observations and models predict the exist-
ence of a dark sector. That is, cosmology requires additional
degrees of freedom beyond the fields and particles of the
standard model of particle physics. These new degrees of
freedom dominate the Universe’s energy budget today and
are commonly known as dark matter (DM) and dark energy
(DE). Dark matter is essential for structure formation.
Because, as far as we know, it interacts with the standard
model fields only via gravity, DM overdensities collapse
and act as the first seeds for the formation of structures such
as galaxies and galaxy clusters. On the other hand, the role
of DE is to explain the accelerated expansion of the
Universe at the present epoch, and it is so far compatible
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with a perfectly homogeneous fluid. Cosmologists have
developed an excellent working model of the Universe to
explain various data, from the cosmic microwave back-
ground (CMB) anisotropies to the distribution of matter at
large scales. It is encapsulated by the A cold dark matter
(ACDM) model, in which DM is a cold, nonrelativistic
fluid, and DE is portrayed by the cosmological constant A
of general relativity. This model is a remarkable success
story, explaining the overall properties of the Universe [1].

Despite these successes, there are good reasons to look
beyond the ACDM model. The first reason is theoretical.
Although scientists have developed models for DM and DE,
the nature of the dark sector is still not understood. Dark
matter might be weakly interacting massive particles or light
scalar fields such as axions [2—4]. Dark energy might be the
manifestation of a nonvanishing cosmological constant;
nevertheless, it is essential to understand why this constant
is so small compared to other energy scales in particle
physics [5,6]. Until there is a solid theoretical foundation for
DE and DM, cosmologists should continue investigating the
theoretical foundations of the ACDM model.

The second reason to look beyond the ACDM model
comes from observations. One of the most important open
problems in cosmology is the persisting Hubble tension
[7,8], a disagreement in the measurement of the current
expansion rate of the Universe, H, between late-time and

Published by the American Physical Society
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early-time observations from various cosmological probes
(see, e.g., [9,10] for a review). Most notably, local
observations by the SH(ES collaboration using absolutely
calibrated Type-Ia supernovae find H, =73+ 1 km/s/Mpc
[11-13] (see also [14-29] for recent local measurement).
On the other hand, the Planck Collaboration infers, from
measurements of the CMB temperature and polarization
anisotropies’ angular power spectra, a value of H, =
67.4 + 0.5 km/s/Mpc [30], when the ACDM model is
assumed in the analysis, in agreement with the recent
ground based CMB estimates [31,32]. This tension exceeds
5o significance and has provoked heated debates in the
cosmology community about whether this difference could
be due to systematic errors or whether it is a signal of new
physics beyond ACDM [33-40].

Another tension, albeit with less statistical significance,
pertains to the Sg parameter, Sg = 03+/Q,,/0.3, where oy is
the variance of the matter density field at 8 Mpc scales and
Q,, is the fractional matter density. The Sg tension refers to
a mismatch in measurements of matter density fluctuations
today as inferred from the CMB and galaxy surveys, see,
e.g., [41-47]. Because of these theoretical and observa-
tional shortcomings, one needs to remain mindful that the
ACDM model might only be a very good approximation for
describing the Universe. We refer to [9,48] for an overview
of current observational tensions and to [49] for a review of
the suggested solutions to the Hubble tension.

In this work, we explore a model for the dark sector
where DM and DE share a common origin in terms of two
interacting scalar fields. Inspired by hybrid inflation and
initially proposed in [50], this hybrid model introduces one
additional parameter compared to the ACDM framework:
the initial value of the DE field. This parameter governs the
coupling strength between DM and DE, mediating the
energy transfer from the DM fluid to the DE field. This
interaction modifies the expansion history and offers a
potential resolution to the Hubble and Sy tensions while
aligning with recent preferences for dynamical dark energy
[51-58]. In this study, we constrain the hybrid model using
current cosmological data, assuming adiabatic initial con-
ditions for the cosmological perturbations.

The paper is organized as follows. After introducing the
model in Sec. II, we detail the methodology followed in this
analysis and present and discuss the results in Sec. III. We
conclude our work in Sec. IV, where we also present an
outlook for future directions of investigation.

II. THE HYBRID MODEL FOR
THE DARK SECTOR

The model we consider is an interacting scalar field
model inspired by hybrid inflation [59], described by the
following action:

5= [ axy=a MR- 3007 - (007 - Vig2)

+SSM7 (1)

where Sqy is the action of the standard model species, and
V(¢, x) is the interaction potential defined analogously to
hybrid inflation,

! 1 1
Vigx) =3 (M? =)+ 592452;(2 + Eﬂzfﬁz
1 1 1 1
=V — M2 A L PP 2R (2
0= A ST S0P (2)

Here, the two scalar fields ¢ and y assume the roles of DE
and DM, respectively, comprising a hybrid model for the
dark sector. This model exhibits a rich phenomenology,
described in detail in [50]. In this work, we focus on the
parameter space leading to an oscillating DM field and a
slow-rolling DE field. Consequently, we adopt the follow-
ing simplified interaction potential,

1
V(gb’)() = VO +592¢2 27 (3)

where we assume that the last term in Eq. (2) is smaller than
the interaction term. The requirement for y to oscillate in
the effective potential is expressed as m; > H?, while for
¢ to evolve slowly as DE, mé < H?, where the effective
masses are given by

m; = g, (4)
my, = g*x*. ()

We note that, since y oscillates faster than the Hubble
expansion rate, mé is proportional to the density of the
y field. This results in the source term on the right-hand side
in Eq. (9) below.

The conditions on the masses translate into the following
constraint on the value of the ¢ field [50]:

L) ©

When the value of the ¢ field becomes small enough to
violate this condition, the y field ceases oscillating,
implying that DM will no longer exist in its current form.
Both fields then settle at the global minimum of the
potential (where V = 0), ending the accelerated expansion.

To reduce computational costs, we average the DM field
y over a period of oscillation and solve for the averaged
energy density of DM, p,.,

L, 1,5,
== - , 7
pe =50+ 50¢ (7)
alongside the scalar field DE, ¢. The procedure is detailed
in [50]. The resulting equations of motion in Planck units
are,

023514-2
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Pe+3Hp. = gpm (8)
3 = ——p. 9
¢ +3Hp == p. ©)

The coupling between DM and DE is proportional to
1/¢. As shown in [50], the DE scalar field is invariably
driven toward the minimum of the potential at very early
stages when its contribution is effectively negligible for the
cosmological evolution. For this reason, the initial velocity
of the DE scalar field ¢; does not have a relevant impact on
the dynamics, and so, without loss of generality, we always
set ¢; = 0. Hence, the system’s modified dynamics are
fully determined by the initial value of the DE field, ¢;.
This model is thus a one-parameter extension of the ACDM
model." For the data analysis in the following sections, we
sample the initial value of the coupling parameter 1/¢;,
which is more intuitive and defines a compact parameter
range. In the limit 1/¢; — 0, ACDM is recovered. Larger
coupling values [corresponding to ¢; closer to the theo-
retical limit in Eq. (6)] lead to greater deviations from
standard cosmology.

We demonstrate the main effect of the coupling in Fig. 1,
showing deviations from ACDM by introducing the
following reparametrization of the background DE
density [60,61],

,0¢,eff(a) =Py +pc(a) _pc,Oa_3' (10)

The quantity p, . describes an effective dark energy
fluid, which includes the DE component plus the non-
standard component of DM arising due to the interaction in
the dark sector, effectively mimicking an uncoupled dark
sector at the level of the background. In other words, it
encloses the deviation from the standard ACDM evolution
in a single component. The evolution of p, ¢ is given by

Ppett + 3Hpy e (1 +wy o) = 0, (11)

where we have defined the effective equation of state

Weeff = (12)

Pp.eff '

This effective equation of state is the equation of state of
DE, assuming an uncoupled DM species, as it is usually
taken as given when analysing low-redshift data such as
supernovae. In Fig. 1, we show the equation of state (EoS)
parameter of this effective dark energy sector, supposing
standard CDM evolution.

'In this framework, V, is merely the scale of the potential, not
a true degree of freedom, that is used to numerically enforce the
closure relation »_;Q; = 1 through a shooting method.

100 ............................................... -
0.75 - -
0.50 - -
0.25 - -
§ 0.00 — T
—0.25 - wg (1/¢; =0.06)
—0.50 -~ 1/¢;=0.06
o7 L 1/¢; =0.10
— = 1/¢;=0.04
-1.00
mr LTINS LTTENN ] LTINS LTTTEN . LTINS
6 5 4 3 2 1 0
log(1+ 2)
FIG. 1. Effective DE equation of state parameter defined in

Eq. (12) for different values of ¢,. All cosmological parameters
are fixed to the mean values for the hybrid model under the
P118 + DESI data combination for various values of the coupling
parameter 1/¢;: the mean value obtained from the data analysis is
shown in red, 1/¢; = 0.1 is shown in dashed yellow, and 1/¢; =
0.04 is shown in dotted-dashed green. In dotted red, we depict the
equation of state parameter for the DE scalar field alone wy (i.e.,
excluding the effective DM contribution) for the P118 4+ DESI
scenario for reference. While in the matter-dominated epoch, the
effective EoS parameter is dominated by the CDM-like contri-
bution from the coupling in the dark sector, at late times, it is
driven down by the w,, contribution.

The effective DE behavior can be dissected from the
individual evolutions of p, and p,: As described in [50], the
p4 component tracks the DM during the matter domination
era until its kinetic part decays enough for the constant
potential to take over, at which point it transitions to a
cosmological constant. The p,. component starts as standard
CDM at early times, then diluting faster than a=3 when the
¢ field starts to evolve, and the coupling turns on. As a
result, the effective DE field behaves as an additional DM
component at early times until matter domination. At this
point, the effective EoS becomes positive and pg .5 is
dominated by the p. contribution. At late times, the EoS
transitions back to that of a cosmological constant. This
means that, effectively, a fraction of the DM energy density
becomes DE at late times. Although it resembles tracking
dark energy (e.g., [62]), it is also different from such
models as the DE field does not always scale with the
dominant component in this effective description.

It is also important to note that the coupling constant g
present in the potential in Eq. (3) is absent from the
effective fluid equations (see [50] for more details), mean-
ing that its value cannot be constrained under this fluid
approximation. This, in turn, implies that the masses of DM
and DE are not constrained in this model, as they depend
linearly on g. Nevertheless, g controls the validity of the
time-averaged description of y directly through the mass
of both scalars (m, = g¢p and m, = gly|). In practice we
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require m, > H (fast y oscillations) and my < H (slow-
rolling ¢). For values of g so small such that g¢p < H during
the relevant epochs the averaging would fail and the fluid
approximation would no longer hold. Conversely, in
Sec. II B, we will use our best-fit results to derive an
upper limit on g.

The dynamics of the hybrid model also introduce
modifications at the level of the linear perturbations in
comparison to ACDM. We refer to [50] for the complete
derivation of the perturbation equations and a discussion of
the evolution of cosmological perturbations in this model.
This work aims to constrain the hybrid model with
cosmological data, which is the focus of the remainder
of the paper.

III. ANALYSIS
A. Methodology and datasets

We implement the relevant equations for the hybrid
model in our modified version of the Einstein-Boltzmann
solver code CLASS® [63-65]. We perform a Markov chain
Monte Carlo (MCMC) analysis by interfacing the solver
with the publicly available sampler Monte Python® [66,67] to
confront the hybrid model with recent cosmological data.
Cosmological and nuisance parameters are varied accord-
ing to Cholesky’s parameter decomposition [68]. We
consider chains to be converged with the Gelman-Rubin
convergence criterion R — 1 < 1072 [69]. The correspond-
ing chains are treated and analysed using the GetDist" Python
package [70].

We assume wide uniform priors for the set of sampled
cosmological ~parameters {Q,h%, Q. h%, 1000, T,io, 1.
log(10'°A,)} in the range detailed in Table I. These are
the standard ACDM parameters, namely the physical density
of baryonic matter today, the physical density of dark matter
today, the angular scale of the sound horizon at the time of
last scattering, the optical depth to reionization, the scalar
spectral index, and the amplitude of the primordial scalar
power spectrum at the pivot scale ko = 0.05 Mpc~!.
Regarding the free parameter of the hybrid model, the initial
condition of the dark energy scalar field ¢;, we opt for
sampling over its inverse 1/¢; to reduce the impact of the
diverging parameter space in which the model reduces to
the ACDM limit (¢p; > 1), with a uniform prior covering the
range of validity of the model’s assumptions. The other
independent parameters are fixed to their Planck best-fit
values [30], including the assumption of two massless and
one massive neutrino species with m, = 0.06 eV. Although
not explicitly listed, a large number of nuisance parameters
are varied simultaneously, following the respective collabo-
ration recommendations.

2https:// github.com/lesgourg/class_public
3https ://github.com/brinckmann/montepython_public
4https://github.com/cmbzmt/getdist

TABLE I. Flat priors on the cosmological and model param-
eters sampled in this work.

Parameter Prior

Q,h? [0.005, 0.1]

Q.n? [0.001, 0.99]

1006, [0.5, 10]

Treio [0.02, 0.08]

ng [0.7, 1.3]

log (10'°4,) [1.7, 5.0]

1/; [0, 1]

The datasets considered are the ones listed below:

®

(i)

(iif)

@iv)

023514-4

Planck 2018 (P118): The Planck-2018 CMB high-#
TTTEEE, low-£ TTEE, and lensing likelihoods
[30,71,72]. Specifically, this includes the high-£ Plik
likelihood for TT over the range 30 < ¢ < 2508, and
for TE and EE within 30 < Z < 1996, combined with
the low-Z TT and EE likelihoods for 2 < # < 29,
based on the Commander algorithm and the SimALL
likelihood. Although newer versions of the Planck
likelihood have been developed [73,74], we use the
baseline collaboration likelihood and expect only
slightly tighter constraints with alternative likeli-
hoods, which will not impact our main results.
DESI: The baryonic acoustic oscillations (BAO)
measurements obtained from the first year of Dark
Energy Spectroscopic Instrument (DESI) observa-
tions. These data are based on galaxy and quasar
observations [75] as well as Lyman-a tracers [76], as
detailed in Table I of Ref. [51]. Covering an effective
redshift range of approximately z~ 0.1-4.1, the
measurements include the transverse comoving dis-
tance (D,;/r,), the Hubble horizon (Dy/r,), and
the angle-averaged distance (Dy/r,), each normal-
ized to the comoving sound horizon at the drag
epoch, r,. The appropriate correlations between
measurements of D,,/r; and Dy /r,; are considered
in the computations.

Pantheon-plus (supernovae (SN)): The Pantheon +
catalog distance modulus measurements derived
from 1701 light curves of 1550 Type la supernovae
(SNela), detected spectroscopically, spanning a red-
shift range of 0.001 < z < 2.26. The data, compiled
in the Pantheon-plus sample [77,78], include ob-
served magnitudes postprocessed for systematic
effects, with residual corrections and marginaliza-
tion over nuisance parameters [79]. These can be
translated into uncalibrated luminosity distances of
the SNela.

Pantheon-plus with SHyES R22 (SHOES): In our
analysis, we consider the Pantheon-plus sample with
and without the SHyES Cepheid host distance
anchors as calibrators [11], typically employed to
address degeneracies in the M — H, plane.


https://github.com/lesgourg/class_public
https://github.com/lesgourg/class_public
https://github.com/brinckmann/montepython_public
https://github.com/brinckmann/montepython_public
https://github.com/cmbant/getdist
https://github.com/cmbant/getdist
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Our baseline dataset is Planck 2018, denoted as “P118,”
to which we incrementally add other combinations to assess
the constraints imposed by each dataset on the model.
Separate combinations with DESI BAO and Pantheon-plus
data are referred to as “Pl118 + DESI” and “P118 + DESI,”
respectively, while the full addition of background data
to the CMB is denoted as “P118 + DESI 4 SN.” Finally,
whenever the SHyES Cepheid anchors are considered, the
“SN” data is represented as “SHOES,” and the inclusion of
all datasets is denoted as “P118 + DESI 4 SHOES.”

B. Results

In this section, we discuss the constraints placed by each
dataset combination on the hybrid model in direct com-
parison with the ACDM model. Table II summarizes the

results of the analysis described in Sec. III A for the
{P118, PI18 + DESI, PI18 + SHOES, PI18 + DESI,
P118 + DESI + SN, P118 + DESI + SHOES} datasets at
the 68% confidence level (CL). The corresponding 1D
and 2D marginalized posterior distributions are depicted
in Figs. 2 and 3 for relevant parameters and key data
combinations at 68% and 95% CL. Similar tables for the
same datasets in the ACDM model can be found in
Appendix A, along with additional contour plots and the
same analysis with a different BAO sample.

To determine the model preference in terms of the fit to
each data combination, we report the difference in the value
of the minimum y* with respect to the ACDM model,
Alfmin = XminHybrid — Zmin.Acom- computed through a global
minimization approach using the simulated-annealing

y Hybrid: PI18
Hybrid: PI18+DESI+SHOES
ACDM: PI18

ACDM: PI18+DESI+SHOES
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FIG. 2. One-dimensional posterior probability distribution functions and two-dimensional contours at 68% and 95% CL for the
parameters of interest in the hybrid model and the standard ACDM model for reference, for the minimal PI118 dataset and the full
combination P118 + DESI + SHOES, as indicated in the legend and listed in Sec. IIT A.
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A Hybrid: PI18
RS W Hybrid: PI18+SN
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FIG. 3.

One-dimensional posterior probability distribution functions and two-dimensional contours at 68% and 95% CL for the

parameters of interest in the hybrid model for incremental dataset combinations, as indicated in the legend and listed in Sec. IIL A.

optimizer Procoli” package [80]. A negative value of Ay
indicates a better fit for the hybrid model, while a positive
value suggests otherwise. Additionally, we report on the
Bayesian evidence log By acpym test for model comparison,
for which we employed the public MCEvidence’ code [81,82].
The greater the evidence for the hybrid model relative to
ACDM, the larger the Bayes factor ratio (the difference of the
logarithms) will be. Furthermore, if its value is negative, there
is no evidence supporting the hybrid model over ACDM for
a given dataset, while the opposite holds if it is positive.

Finally, the difference of the maximum a posteriori
(DMAP) metric tension for H, given a particular dataset D
is [83]

5https:// github.com/tkarwal/procoli
6https:// github.com/yabebalFantaye/MCEvidence

SOES = [12ia(D + M) = 72(D). (13)

which is used to assess the compatibility between the
constraints derived for the model under the dataset D and
the SHyES prior on the value of H0.7 This method has the
added benefit of being insensitive to prior volume effects,

"The formulation of the DMAP metric tension in Eq. (13) is
only valid for datasets differing by one degree of freedom. Since
when imposing the SH(ES calibration as listed in Sec. III A we
consider only a subsample of the supernovae in the entire
Pantheon-plus catalog, we opt instead for replacing the full
SHES likelihood with the Pantheon-plus sample plus a Gaussian
prior on the absolute magnitude calibration M g of the supernovae
in SH(ES [11]. We use this approximation for the sole purpose of

computing QPSS 1), and we have confirmed that it does not

impact the results.

023514-6
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TABLE IL

Observational constraints at a 68% confidence level on the independent and derived cosmological parameters using

different dataset combinations for the hybrid model, as detailed in Sec. III A. A)Gznin represents the difference in the best-fit y> of the
profile likelihood global minimization, and log By acpm indicates the ratio of the Bayesian evidence, both computed with respect to
ACDM. The value of Q35S is calculated according to Eq. (13). For reference, the same results for ACDM are given in Table III of

Appendix A.
Parameter PI18 PI18 + SN P118 + SHOES P118 + DESI P18 + DESI+ SN PII8 + DESI + SHOES
o 0.02236 £ 0.00015  0.02231 £0.00014  0.02237 £0.00015  0.02240 £ 0.00015  0.02239 £ 0.00015 0.02237 £ 0.00015
o, 0.118470.0029 0.1202 +0.0014 0.1139 £ 0.0014 0.1174 £0.0011  0.11820 = 0.00099 0.11577 £ 0.00089
1000, 1.04187 £0.00030  1.04182£0.00029  1.04190 +0.00030  1.04193 £0.00030  1.04194 = 0.00029 1.04188 £ 0.00029
Treio 0.0548 + 0.0077 0.0539 -+ 0.0077 0.0558 + 0.0079 0.0557 +0.0079 0.0557 + 0.0077 0.0554 +0.0078
ng 0.9660 - 0.0045 0.9640 =+ 0.0041 0.9683 =+ 0.0041 0.9677 + 0.0040 0.9673 = 0.0039 0.9670 = 0.0041
log 10'04, 3.047£0.016 3.046 £0.016 3.049 +£0.016 3.047 £0.016 3.047 £0.016 3.048 +0.016
1/, < 0.0390 <0.0220 0.0661790%3 0.037:9812 0.029%0817 0.0570-005e
Best fit: (0.0054] [0.0019] (0.0676] 0.0455] [0.0341] [0.0591]
o3 0.8263109%7° 0.8185109%° 0.858 = 0.017 0.82740913 0.82173019 0.847 £0.015
H, 68.55 080 67.42703; 71.49 +0.87 69.047042 68.5170% 70.30 +0.56
Q, 0.3007992! 0.313870.5093 0.2669 + 0.0091 0.2934 + 0.0080 0.299700%0%3 0.2796 + 0.0061
Sg 0.826 £ 0.018 0.837 £0.015 0.809 +0.014 0.817 +£0.013 0.821 +£0.013 0.818 £0.013
A2 0.14 0.08 -16.32 -2.8 -1.06 -12.76
log By acom -33 -3.6 4.5 -2.0 -2.8 2.5

SHOES e 4.78 4.65

DMAP

and the global maximum likelihood values are derived
directly from Procoli.

At the end of Table II, we list the Ay?. values and the
associated Bayesian evidence compared to ACDM for all
the data combinations, and also the QRS - tension for the
relevant cases. In Table VI of Appendix C, we list in detail
the y2. values associated with each likelihood for the
different models and data combinations used in this study.

We summarize our main findings below, based on the
results in the above figures and tables.

Considering only the baseline CMB Pl18 data, the
hybrid model provides a similar fit to ACDM, with a
negligible A)(Izmn and no detection of the coupling param-
eter at lo: 1/¢; <0.039. In Fig. 2, we see that the
constraints derived for the hybrid model (beige) are very
similar to the ACDM case (red), but with enlarged errors
due to the long tail in the 1/¢; 1D posterior. Moreover, the
increased prior volume implies that the hybrid model is
disfavored with respect to ACDM regarding the Bayesian
evidence. Nevertheless, the positive correlation between
1/¢; and Hy and negative correlation with Sg allows us to
relax the constraint to H, and Sg from PI18 data alone,
suggesting a potential role in cosmic tensions.

As expected, including the BAO data from DESI
significantly improves the constraining power by breaking
the geometrical degeneracies in the CMB, making the data
more sensitive to the particular effects of the dynamical
behavior of the dark sector at late times in the hybrid model.
More precisely, for the P118 + DESI combination, we find

a detection of the coupling at 26 with 1/¢; = 0.037f8:8113

and 1/¢; = 0.037f8"8§§ at 68% and 95% CL, respectively.
This data combination is represented in green in Fig. 3,
where we see that not only do the contours generally shrink
in relation to P118 (beige), but also the 1D marginalized
posterior distribution for 1/¢; shows a well-defined
peak away from the standard cosmological model limit
1/¢; — 0. This contrasts with what is found for the sloan
digital sky survey (SDSS) BAO dataset (see Fig. 8 in
Appendix A), where the BAO data reinforces the general
preference for a cosmology consistent with a cosmological
constant [84]. Including DESI data brings Ay?. down by
—2.8, indicating a better fit in the hybrid model. The
Bayesian evidence remains negative, showing no prefer-
ence for the hybrid model.

The inclusion of the SN distance moduli measurements
alone yields similar results to the P118-alone case, with only
mild reductions in the error bars of the cosmological
parameters, actually bringing 1/¢; closer to zero:
1/¢; < 0.0220. The addition of the SHyES calibration
(P118 + SN + H,)) inevitably pushes H, toward higher
values, resulting in an apparent detection of the coupling
at more than 36: 1/¢; = 0.066700,9 at 99% CL.

The full combination of “background” data
(P118 + DESI + SN) leads to constraints that are essen-
tially unchanged relative to the P118 4 DESI case but with
a detection of 1/¢; only at 1o given the preference for
consistency with ACDM found for the SN data: 1/¢; =

0.02970¢17 at 68% CL. Analogously, the inclusion of the
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SHyES calibration for the SN (P118 + DESI 4+ SHOES)
results in a larger predicted value for H,, and detection
of the coupling in the hybrid model at more than 3o
1/¢p; = 0.05770g at 99% CL.

Once the SHyES calibration is included, we observe
an increase in Ay, going from 0.08 to —16.32 in the
PI18 + SHOES case and from —1.06 to —12.76 in
P118 + SHOES. The Bayesian evidence also indicates
moderate to strong support for the hybrid model, according
to the Jeffreys scale [85]. However, the QPR3 indicator
shows that there is still a large residual tension between the
datasets. The breakdown of ;(Iznin in Table VI shows that the
tension is indeed hidden in a worsened fit to the P118 and
DESI likelihoods compared to the case without the cali-
bration. With respect to ACDM, there is a better fit to P118
and SHOES in the hybrid case but a worse fit to DESL

Overall, the hybrid model leads to a slight
alleviation of the H, tension, with QPSS . 1o o\ =
4786 and OPWRS p11sipEsissn = 4.050, compared to

Q]S)Il-\[/?EE,PI isrsy = 0.250 and OPNIRD by 15 pEsirsn = 5-760
for ACDM. This expresses only a mild reduction of the H,
tension in the hybrid model. The H, tension is of the same
order regardless of the inclusion of DESI in the baseline
dataset since the posteriors obtained are compatible at 1o,
and the value of H, needed to fit the cosmology in this
case is still too low. As expected, once the SHyES SN
calibration is added to the analysis, the predicted value
of Hy~70 is a compromise between the two incom-
patible values, reflecting the tension in the datasets

under the model in consideration. This effect is illus-
trated in Fig. 4, where we display the 2D contours for
the model parameter 1/¢; and H, for the incremental
datasets used in this analysis.

The origin of the correlation between 1/¢; and H, can be
traced back to the w, panels of Fig. 3: Therein, we observe
that there is a negative correlation between w, and 1/¢; for
all the datasets considered, implying that stronger inter-
actions lead to a preference toward lower values of w..
Physically, increasing 1/¢; enhances the early-time
DM-like contribution of py ., effectively advancing mat-
ter—radiation equality and boosting early growth. This
smaller w, allows one to compensate the larger #, yielding
an overall smaller Q,,, which helps in keeping the angular
diameter distance to recombination (and therefore the
angular size of the sound horizon) fixed. Note that this
mechanism is different from regular dynamical dark
energy, which requires a phantom behavior (e.g., [86]).
In Fig. 5, we illustrate the impact of the interaction on the
evolution of the dark matter energy density for the hybrid
model. We fix the cosmological parameters (and hence the
value of @,) to the best-fit value found for the hybrid model
with the full combination of PI18 + DESI + SHOES.
Under ACDM (yellow line), this results in a consistent
overall shift in the ratio of dark matter relative to the
ACDM best-fit (grey line). In the case of the hybrid model
(red dashed line), this ratio evolves with redshift according
to the impact of the interaction, which can be understood as
an additional redshift-dependent contribution to p, coming
from the effective fluid described in Eq. (12). As a result,
p. 1s slightly larger than in (standard) ACDM originally and

mirn i [LLLLR RN} e mrre

PI18
0.10 PI18+SN
PI118+DESI
0.08f PI118+DESI+SHOES
e
I,I, ! Il
— e 1' 1
&0.06
11 ’
— 1,
1N 'l
! ’
0.04¢ y
0.02¢
0.00

64 66 68 70 72 74 76
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FIG. 4. 2D contours at 68% and 95% CL for the initial condition
of the scalar field 1/¢; and the Hubble parameter H (in units of
km/s/Mpc). The results are inferred considering different combi-
nations of Planck 2018, DESI BAO distance, and SN distance
moduli data, as indicated in the legend and listed in Sec. IIl A. The
blue dashed line and band represent the value of H, measured by
the SH(ES collaboration and the respective uncertainties.
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FIG. 5. Top panel: redshift evolution of the dark matter energy

density for the hybrid model (dotted red) and ACDM model
(filled yellow), with cosmological parameters fixed to the best fit
of the hybrid model under the P118 + DESI + SHOES dataset
combination in both cases. The corresponding case of the ACDM
best fit is depicted in grey for reference. Bottom panel: percent
relative deviations in the value of the Hubble rate with respect to
the ACDM P118 + DESI + SN best fit for the same scenarios.
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decays to about 97.5% of its value at late times. Note also
that the larger effective DM density at early times, which
enhances the linear growth prior to the late-time transfer of
energy from DM to DE, implies that og increases in the
hybrid model. However, the weak-lensing parameter Sg
receives an overall suppression due to the smaller Q,,.
From the results obtained from the combination of
Planck 2018 and DESI BAO distance measurements, there
is some evidence to support the interaction between DE and
DM through the hybrid fluid approximation. Indeed, it is
known that DESI data attempts to bring the physical matter
density down in ACDM. At face value, this leads to a slight
disagreement between DESI and P118 (~2¢) under ACDM.
As a result, the time-dependence of p, in the hybrid model
is favored when DESI is added to the baseline dataset,
with Ay2. =0.14 in PlI8 going to Ay2. = —2.8 for
P118 4 DESI. However, this is not supported by Pantheon-
plus data, which favors a larger €, than DESI In the
analysis reported by the DESI collaboration [51] for
minimal parametrizations of dynamical dark energy, a
considerable preference in favor of phantom dark energy
over ACDM (with the combination of Planck 2018, DESI,
and SNla data) was reported and has been the focus of
multiple studies. In the context of the hybrid model, the
preference for a late-time effective phantomlike behavior
for DE is replaced by the coupled dark sector with a
nonvanishing detection of 1/¢; >0 exceeding the
95% CL. The phenomenological difference in the dynamics
of DE under the hybrid model compared to the CPL [87,88]
parametrization highlighted in the DESI Y1 data release
[51]is illustrated in Fig. 6 with w, ¢ as defined in Eq. (12),
mimicking DE in an uncoupled dark sector. We stress that
in that case, wy o never becomes phantom. This suggests

0.00 -

-0.25 - -
_ —— Hybrid (1/¢; =0.06) i

wow, DESI
-0.75 - -

—0.50

—1.00

We, eff

-1.25 - -
-1.50 - -

-1.75 - -

_2.00 e
6 5 4 3 2 1 0

1+2z

FIG. 6. Redshift evolution of the effective EoS parameter of
DE in the hybrid model with the P118 4+ DESI + SHOES best fit
(in filled red) compared with the EoS parameter for DE reported
by the DESI collaboration (in dashed yellow) for a CPL wyw,
parametrization under PI18 4+ DESI + SN with best-fit values
wo = —0.827 and w, = —0.75 [51].

an alternative explanation to the mild discrepancy between
DESI and PI18. However, this behavior does not help
reconcile P118 + DESI data with the (uncalibrated) SNe,
which favor larger Q,, and a phantom DE behavior [89,90].
Future BAO and SNe data are thus crucial for the fate of the
hybrid model.

Finally, using Eq. (4) in conjunction with our best-fit
results, we can put an upper limit on the coupling constant
g. For Planck+DESI+SHOES, we find the best-fit value
¢; = 16.92Mp,. Requiring that the DM mass is smaller than
the Planck mass yields the most conservative upper limit on
the value of g. However, another conservative requirement
is ensuring that the DM is not oscillating during inflation:
requiring m, < 10'2 GeV leads to g < 107®. Stronger
upper limits on the DM mass will put more stringent
constraints on the value of the coupling constant g.

IV. CONCLUSIONS

In this work, we have explored the predictions of the
hybrid model proposed in [50] and its fit to currently
available datasets, namely Planck 2018 CMB data, the
Pantheon + catalog of SN distance moduli—with and
without the Cepheid calibration from SH,ES—and the
recent BAO distance measurements by the DESI collabo-
ration. From the phenomenological side, this model has
interesting features derived from a Lagrangian formulation
with a fluid description motivated by the physics of the dark
sector. The model extends the standard ACDM framework
by introducing one single additional parameter, the initial
value of the DE scalar field ¢ (¢;), which governs the
strength of the interaction between dark matter and dark
energy (x 1/¢;). On the observational side, the main effect
of this coupling is to provide a nontrivial time dependence
to the dark matter and dark energy densities as the effective
DE field transitions from behaving like DM at early times
to regular DE at late times. As a result, the dynamics of the
scalar field and the dark sector interaction induce a negative
correlation between the physical density of dark matter w,
and the coupling parameter. This correlation helps accom-
modate the tendency of the DESI data to bring the matter
density down in ACDM, leading to a better fit to this
dataset in the hybrid model. At the same time, this is also
entangled with a positive correlation between 1/¢; and H
(required to preserve the angular diameter distance to
recombination), making it possible to alleviate the Hubble
tension slightly.

Our main conclusions regarding the hybrid model in
light of CMB, BAO and SNe data are as follows:

(i) For P118 alone, the hybrid model is virtually indis-
tinguishable from ACDM in terms of the quality of
the fit (Ay?,, =~ 0), and we derive an upper bound on
the initial field value 1/¢; < 0.0390.

(ii)) When DESI data are included, the hybrid model
provides a better fit than ACDM, thanks to the
ability to accommodate the lower Q,, favored by
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DESI. The inclusion of (uncalibrated) Pantheon-plus
data, however, reduces the relative improvement in
x2, and the Bayesian evidence comparison remains
inconclusive for most combinations, often favoring
ACDM due to the increased prior volume.

(iii) The hybrid model demonstrates potential to slightly
alleviate the Hubble tension, with a relaxation of the
constrain to H, allowing for values closer to those
from SH)ES measurements when combining all
datasets. However, the alleviation is insufficient to
eliminate the tensions, estimated to be 4.65¢ in the
hybrid model down from 5.766 in ACDM.

(iv) The coupling parameter 1/¢; correlates positively
with og due to the additional DM contribution at
early times, but the decrease in €, at late times
dominates, yielding a slightly smaller Sg.

Overall, while the hybrid model offers promising ave-
nues for addressing theoretical questions related to the
nature of the dark sector and observational issues such as
the cosmological tensions, whether it provides a better fit to
available data in comparison with ACDM is dataset
dependent, and significant challenges remain in reconciling
all the observational incompatibilities within this frame-
work. Nevertheless, the ability to introduce time depend-
ence in the DM (and DE) densities is an interesting
phenomenological feature of the model, which helps
address DESI measurements and accommodate larger
H, values. In this study, we focused on purely adiabatic
initial conditions. The impact of isocurvature modes on the
constraints is worth investigating in future work.

In light of these results, we highlight the importance of
phenomenological models of the dark sector, which,
through their inherent dynamics, can address the cosmo-
logical tensions under specific regimes. We emphasize the
need to investigate the phenomenological predictions of
such models when faced with the available observatio-
nal data.
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APPENDIX A: RESULTS FOR ACDM AND
ALTERNATIVE DATA

In this appendix, we provide results for additional dataset
combinations considered in the analysis, along with the
ACDM counterparts. Table I1I follows the same organization
as Table II, with the results pertaining to the ACDM model

Observational constraints at a 68% confidence level on the independent and derived cosmological parameters using

SHOES

different dataset combinations for the ACDM model, as detailed in Sec. III A. The value of Qp/xp is calculated according to Eq. (13).

Parameter P118 P118 + SN P118 + SHOES P118 + DESI P118 + DESI + SN P118 4 DESI + SHOES
wy 0.02235 £ 0.00015 0.02231 £ 0.00015 0.02264 £ 0.00014 0.02249 £ 0.00013 0.02246 £ 0.00013 0.02265 £ 0.00013
w, 0.1202 £0.0014 0.1207 £0.0013 0.1169 £ 0.0011 0.11817 £ 0.00094 0.11862 £ 0.00091 0.11678 £ 0.00083
1000, 1.04187 £ 0.00030 1.04182 £ 0.00029 1.04221 £ 0.00028 1.04206 £ 0.00028 1.04203 + 0.00028 1.04223 £ 0.00028
Treio 0.0543 £ 0.0078 0.0536 £ 0.0077 0.0591 £ 0.0079 0.0572 £ 0.0078 0.0565 £ 0.0077 0.0595 £ 0.0078
ng 0.9647 £ 0.0045 0.9635 £ 0.0042 0.9729 £ 0.0039 0.9697 £ 0.0038 0.9686 £ 0.0036 0.9733 £0.0035
log 10104, 3.045 £ 0.016 3.045 £0.016 3.048 £0.016 3.046 £0.016 3.046 £0.016 3.048 £0.016
oy 0.8118 £ 0.0074 0.8125 £ 0.0074 0.8026 & 0.0074 0.8066 £ 0.0071 0.8078 £ 0.0071 0.8030 £ 0.0071
H, 67.29 £0.61 67.08 £0.56 68.86 = 0.49 68.21 £0.42 68.01 £0.40 68.91 £0.38
Q, 0.3150 £ 0.0085 0.3179 £ 0.0078 0.2944 £ 0.0062 0.3024 £ 0.0055 0.3050 £ 0.0053 0.2936 £ 0.0047
Sg 0.832 £0.016 0.836 £0.015 0.795 £0.013 0.810 £0.012 0.815 £0.012 0.794 £ 0.011
o 625 37
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TABLE IV. Observational constraints at a 68% confidence level on the independent and derived cosmological parameters using
different dataset combinations for the ACDM model, as detailed in Sec. III A and Appendix A, using the SDSS BAO dataset as an
alternative to DESI. We also include a variation of the full data set with the parameter A free as detailed in the text. The value of QFHIES

is calculated according to Eq. (13).

Parameter P118 + SDSS P118 + SDSS + SN P118 + SDSS + SHOES P118(Ay ) -+ DESI + SHOES
o, 0.02241 + 0.00014 0.02264 + 0.00014 0.02259 + 0.00013 0.02283 + 0.00014
X 0.11943 + 0.00098 0.1169 +0.0011 0.11766 + 0.00084 0.11579 4 0.00086
1006, 1.04194 + 0.00028 1.04221 + 0.00028 1.04214 £ 0.00028 1.04229 + 0.00028
Treio 0.0555 + 0.0077 0.0591 + 0.0079 0.0583 + 0.0077 0.0503500%6
n 0.9666 + 0.0038 0.9729 + 0.0039 0.9711 + 0.0036 0.9771 + 0.0037
log 10104, 3.046 +0.016 3.048 +£0.016 3.048 +£0.016 3.0261001e
Ay 1.251 + 0.062
o3 0.8094 4 0.0071 0.8026 + 0.0074 0.8050 + 0.0070 0.79137000%
H, 67.65 + 0.44 68.86 + 0.49 68.51 +0.37 69.46 + 0.40
Q, 0.3100 = 0.0059 03121 + 0.0057 0.2988 = 0.0048 0.2874 = 0.0048
Ss 0.823 +0.012 0.827 +0.012 0.803 +0.011 0.774 £ 0.012
Bk 624

for the {P118, P118 + DESI, P118 + SHOES, P118 + DESI,
PI18 + DESI + SN, P118 + DESI + SHOES} datasets.

In this appendix, we also present the results for the same
analysis conducted in Sec. III, but replacing the DESI BAO
data with the SDSS BAO data:

(i) SDSS: The BAO legacy data from the completed
SDSS-IV eBOSS survey, summarized in Table 3 of
[84]. This includes transverse BAO measurements
from BOSS galaxies [91], eBOSS luminous red
galaxies [92,93], eBOSS emission-line galaxies

TABLE V. Observational constraints at a 68% confidence level on the independent and derived cosmological parameters using
different dataset combinations for the hybrid model, as detailed in Sec. IIl A and Appendix A, using the SDSS BAO dataset as an
alternative to DESI. We also include a variation of the full data set with the parameter A free as detailed in the text. The value of QFHIES

is calculated according to Eq. (13).

Parameter PI18 -+ SDSS PI18 + SDSS + SN P118 + SDSS + SHOES PI18(A, ) + DESI + SHOES
Wy 0.02237 £ 0.00014 0.02236 =+ 0.00014 0.02237 £ 0.00015 0.02264 + 0.00017
W, 0.1190 + 0.0010 0.11956 + 0.00097 0.11675 + 0.00093 0.11542 =+ 0.00090
1000, 1.04189 + 0.00029 1.04187 + 0.00029 1.04187 + 0.00030 1.04206 + 0.00031
Treio 0.0550 + 0.0078 0.0545 + 0.0078 0.0549 + 0.0077 0.0493 10508

ng 0.9660 + 0.0038 0.9653 = 0.0037 0.9662 + 0.0041 0.9726 + 0.0044
log 10'0A, 3.047 £ 0.016 3.046 +0.016 3.048 £ 0.016 3.031 +£0.018
AL 1.201 + 0.067
1/ 0.023+0012 0.02070010 0.0517239%7 0.0427+0016,
Best-fit: (0.0241] (0.0068] [0.0538] 0.0469]

oy 0.81940:99%7 0.81807 3984 0.842 £ 0.015 0.8197901¢

Hy 68.0510¢; 67.76°0% 69.71 +0.55 70.18 +0.57
Q, 0.3055%0 06e2 0.3092:9.9067 0.2864 + 0.0062 0.2804 £ 0.0061
Sg 0.827 £0.013 0.830 £ 0.012 0.822 +£0.014 0.792 £0.015
Ayl -0.30 0.10 -8.54 —6.66

log BM,/\CDM -3.1 -34 0 -1.2
QDMAP 5.51
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FIG. 7. Comparison of BAO data combinations for the ACDM model with SDSS and DESI.

[94,95], eBOSS quasars [96,97], and the combined
BOSS + eBOSS Lyman-a autocorrelation and cross
correlation [98]. Alongside the transverse measure-
ments (Dy,(z)/ry), we incorporate radial BAO
measurements (Dy(z)/r,) from these datasets, as
well as the angle-averaged measurement (Dy(z)/r,)
from the SDSS main galaxy sample [99,100].
Covariance matrices for these measurements are
calculated following the approach described in
[84]. Moreover, we combine these with the low-z
BAO data gathered from 6dFGS at z = 0.106 [101]
and SDSS DR7 MGS at z = 0.15 [99].
Tables IV and V summarize the results for the {Pl118+
SDSS, P118 + SDSS + SN, P118 + SDSS + SHOES} data-
sets in the context of the ACDM and the hybrid models,
respectively, at 68% CL. Figures 7 and 8 provide contour
plots comparing different dataset combinations using either
DESI or SDSS BAO data for the ACDM and the hybrid
models, respectively. Since SDSS favor larger €,, and
smaller H,, than DESI, the constraints on 1/¢; are stronger

than when using DESI, and the degeneracy with H|, is less
pronounced. This suggests that future DESI data will be of
utmost importance with regard to the viability of this model to
alleviate cosmic tensions.

APPENDIX B: RESULTS WHEN INCLUDING A4,

The phenomenological parameter A; was introduced in
[102] to account for various physical mechanisms that can
influence the lensing amplitude of the CMB spectra by
scaling the amplitude of the lensing trispectrum, effectively
modeling the smoothing effects in the CMB temperature
and polarization spectra. This parameter is defined such
that the standard ACDM prediction corresponds to A, = 1,
while A}, = O represents a scenario where CMB lensing is
completely ignored. By treating A; as a free parameter, its
value can be directly constrained by observational data,
allowing for consistency tests with or deviations from the
ACDM framework. From Planck temperature and polari-
zation spectra, A; deviates from 1 with a significance of
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FIG. 8. Comparison of BAO data combinations for the hybrid model with SDSS and DESI.

about 2.80 [103,104]. This issue can also be recast into an APPENDIX C: PROFILE LIKELIHOOD AND
apparent preference for a closed universe in the Planck x*-VALUE TABLES
CMB data [105-108].

We explore the implication of the hybrid model for the car ]
dark sector for this A, anomaly. This case is referred to as for each model and data combination considered through

“PI18(A)” and we assume a flat prior range of [0, 10] for & profile likelihooq analysis performed. wi.th Procoli [80].
A;. We report our results for the case PI18(A;)+DESI In Table VI, we list the overall and individual dataset
+SHOES in the last column of Tables IV and V in the ~ best-fit y* values for the ACDM model and the hybrid
ACDM and hybrid models, respectively. We note that model, as detailed in Sec. Il A. In Fig. 9, we provide a
the combination of PI18(A; ) + DESI + SHOES suggestsa ~ comparison between the Bayesian posterior for the
46 preference for A; > 1 under ACDM. We caution that ~ coupling parameter 1/¢; and the corresponding profile
this data combination makes use of discrepant data sets  likelihood using the PI18 + DESI + SHOES dataset. In
(P118 and SHOES) and should thus be interpreted with a  Fig. 10, we show the breakdown of the y* contribution
grain of salt. Under the hybrid model, the A; parameter  from each experiment for the profile likelihood on Hj in
moves toward the ACDM value by ~0.8¢ but remains  the hybrid model, for the combination of the experiments
discrepant with A; = 1 at the 30 level. listed in the legend and described in Sec. III A.

In this appendix, we provide a breakdown of the y* fit
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TABLE VI.
likelihood combinations.

Best-fit y?-values of overall and individual datasets considered in this work for the ACDM and hybrid models for various

Data

Model Total ;(2 Pl118 DESI SDSS SN SHOES
P118 ACDM 2766.53 2766.53
Hybrid 2766.55 2766.55
P118 4+ DESI ACDM 2783.32 2768.82 14.50
Hybrid 2780.51 2767.64 12.87
P118 + DESI + SN ACDM 4195.78 2768.03 15.69 1412.06
Hybrid 4194.54 2767.28 14.14 1413.12
P118 + DESI + SHOES ACDM 4105.02 2773.33 12.85 1318.84
Hybrid 4092.07 2768.53 14.38 1309.16
PI18 4+ SDSS ACDM 2779.28 2767.03 12.25
Hybrid 2778.87 2766.86 12.01
P118 + SN ACDM 4177.11 2766.79 1410.32
Hybrid 4177.03 2766.65 1410.38
P118 + SHOES ACDM 4091.93 2772.62 1319.31
Hybrid 4075.63 2769.23 1306.40
P118 + SDSS + SN ACDM 4190.30 2766.61 12.84 1410.85
Hybrid 4190.27 2766.66 12.58 1411.03
P118 + SDSS + SHOES ACDM 4105.04 2770.40 12.72 1321.92
Hybrid 4096.50 2768.35 15.71 1312.44
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--- Bayesian MCMC III A 50 DESI BAO
0.8 /! \ Pantheon+ with SHOES
l’ ‘\‘ 40 —— Total
1
0.6 / ‘\‘
o III \
0.4 / \
/ \
/ \
/ “
0.2 / \
,/ \\
,a’/ AN
0.0 —— S
0.02 0.04 0.06 0.08
1/¢;

FIG. 9. Comparison between the Bayesian posterior for the
coupling parameter 1/¢; and the corresponding profile likelihood
using the P118 + DESI 4 SHOES dataset as detailed in Sec. III A.
Even though there is a potential prior volume effect related to the
ACDM limit of the hybrid model (1/¢; — 0), we see that the
posteriors from the Bayesian MCMC analysis are reliable and do
not appear to show a bias toward 1/¢; = 0, as both likelihood
curves are very similar and exhibit a maximum around the best-fit
value of 1/¢; ~0.06.

FIG. 10. Breakdown of the y> contribution (normalized to its
respective minimum) from each experiment for the profile
likelihood on Hj in the hybrid model, derived for the combina-
tion of the experiments listed in the legend and described in
Sec. III A: the P118 dataset is shown in dashed red, DESI BAO in
dotted yellow, and Pantheon + SN with the SH(ES calibration in
dash-dotted green. The total y*> — »2. is depicted in solid black
and is the quantity optimized for producing the profile likelihood
for this combination of data.
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