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Introduction—The T2K experiment [1] measures three-
flavor neutrino mixing parameters by observing the dis-
appearance of νμ (ν̄μ) and the appearance of νe (ν̄e) over a
distance of 295 km in a narrow-band, predominantly νμ or

ν̄μ beam, which peaks at an energy of 0.6 GeV. Data

corresponding to 3.6 × 1021 protons on target (POT) were
analyzed with major improvements to the neutrino flux and
interaction modeling compared to previous studies [2].
New photon- and proton-tagged near detector (ND) sam-
ples, as well as a new, charged current neutrino-enhanced
muon-neutrino sample with tagged pions (νμCC1π

þ-like)

in the far detector, are included in the analysis for the first
time. This Letter reports T2K’s latest measurements of
neutrino mixing parameters after these improvements,
which mark a significant step forward in the robustness
of our analysis, particularly due to improvements in
modeling and constraining neutrino interaction uncertain-
ties, and supersede previous results produced with the same
dataset. Comparable measurements have also been reported
by NOvA [3], and future experiments such as Hyper-
Kamiokande [4] and DUNE [5] aim to further improve the
precision and discovery potential in neutrino oscillation
physics.
T2K experiment—Protons of 30 GeVenergy, accelerated

by the J-PARCmain ring, collide and interact with a graphite
target, producing pions and kaons that are focused by a
system of three magnetic horns and decay inside a
96-m-long tunnel. Depending on the direction of the current
flowing in the horns, either positively or negatively charged
hadrons are focused, producing a neutrino- (ν-mode) or
antineutrino-enhanced (ν̄-mode) beam.
Two near detectors are located 280 m away from the

graphite target—one on axis (INGRID) [6] and the other
2.5° off axis (ND280) [1] with respect to the beam
direction. They sample the unoscillated beam by monitor-
ing its direction, intensity, and flavor content as well as
constraining uncertainties in the neutrino interaction model.
The far detector, Super-Kamiokande (SK) [7], is a 50-kton
water-Cherenkov detector located beneath a 1-km rock
overburden within the Kamioka mine in Japan. It measures
the oscillated neutrino flux 295 km away from its pro-
duction point at 2.5° off axis.
The analysis reported in this Letter uses all data collected

by T2K from January 2010 to February 2020, correspond-

ing to an SK exposure of 19.7 × 1020 POT in ν-mode and

16.3 × 1020 POT in ν̄-mode. The same number of POTwas
used in a previous analysis [2].
Neutrino flux prediction—The neutrino flux Monte Carlo

(MC) simulation uses the FLUKA 2011.2 [8,9] interaction
model for proton interactions inside the target and GEANT3
[10] for interactions outside the target. Hadron production in
the target is tuned to external datasets [11–13]. The flux
depends on the beamline conditions and the measured
proton beam profile. The prediction accounts for the beam
conditions during each operating period.

The resulting flux model [14] is used to estimate the
unoscillated ν-mode and ν̄-mode fluxes at all detectors, for
all contributing neutrino flavors, as well as their correlated
uncertainties. INGRID is used to monitor the beam direc-
tion and validate the neutrino flux simulation. The uncer-
tainty on the measured beam direction is included in
the flux uncertainties used in the oscillation parameter
measurement.
This analysis includes new constraints from the NA61/

SHINE replica target datasets [13], including high-statistics

measurements of π� production as well as, for the first

time, K� and proton production measurements. Among
other improvements these constraints reduce the νμ flux

uncertainty to below 4% for energies up to 7 GeV.
Neutrino interaction modeling—The nominal model

prediction was generated with the neutrino event generator
NEUT 5.4.0 [15]. In this analysis, important improvements
to the estimated neutrino interaction uncertainties were
made, increasing the number of free parameters by 26
compared with the previous analysis [2], for a total of 75.
Pionless: New degrees of freedom were included to

cover theoretical uncertainties in nuclear effects for
charged-current (CC) quasielastic (CCQE), multinucleon
(2p2h), and hard-scattering processes.
Ad hoc uncertainties in the low four-momentum transfer

(Q2) response for CCQE interactions were replaced with
physics-motivated parameters that vary the impact of Pauli
blocking and the effect of nuclear transparency on the
inclusive cross section. An effective parameterization of the
latter was derived by comparison to the NuWro [16,17]
implementation of the optical potential [18]. New uncer-
tainties on the nuclear ground state for CCQE events, which
parametrize the shell structure of the missing momentum
(pmiss) and missing energy (Emiss) response in the initial
state spectral function (SF), were included [19,20]. The
Benhar SF [21] incorporates multinucleon knockout in the
Emiss > 100 MeV, pmiss > 300 MeV region. These events
account for 5% of all CCQE interactions; a 200% nor-
malization uncertainty was applied to cover differences
between NEUT and NuWro predictions. Following
Ref. [22], a three-momentum-transfer-dependent freedom
on the nucleon removal energy (NRE) was added [23].
Additional freedom for 2p2h interactions was included by
separating some of the existing uncertainties by the struck
nucleon pair (proton-neutron vs proton-proton and neutron-
neutron).
Single-pion production (SPP): Uncertainties on the

free parameters in the NEUT implementation [2] of the
Rein-Sehgal SPP model [24] were motivated by fitting [19]
to hydrogen- and deuterium-target data [25,26] from ANL
[27,28] and BNL [29–31], and checking coverage against
hydrocarbon-target data [32–38]. Variations of these
parameters exhibit a minimal change to both the shape
of the final-state pion kinematics, which have previously
been observed to be poorly predicted at both ND280 and
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SK [2], and to the relative rate of charged and neutral pion
production. To cover measurements of pion kinematic
spectra in T2K [39] and MINERνA [40], new parameters
were developed to vary the resonance decay kinematics
and the total neutral pion production rate [19]. Previously,
NRE effects were only included in NEUT for pionless
hard-scatter processes. Here, an approximation of this
effect, and an associated uncertainty, was motivated by
comparing NEUT predictions to those from NuWro for
0 < NRESPP < 50 MeV.
Multiple pions: New uncertainties were developed for

multiple-pion production in the low hadronic mass region,
1.3 < W < 2.0 GeV. Reference [41] motivated separate
uncertainties on the axial and vector parts of the nucleon

form factors, replacing an effective 100%, Q2-dependent,
uncertainty on the previous Bodek-Yang correction [42].
Additionally, a new uncertainty covering the difference
between the NEUT and AGKY models [43] was included
on the shape of the two-dimensional pion multiplicity and
invariant hadronic mass distributions.
Final-state interactions: A new 16% uncertainty on the

cross section for pion charge-exchange reactions for pπ >
500 MeV was included [44]. As the new ND selections are
sensitive to proton kinematics, an uncertainty was added
that varies the fraction of events that include intranuclear
nucleon rescattering while keeping the leptonic observables
unmodified. The size of this uncertainty (30%) was moti-
vated by a recent analysis of nuclear transparency data [45].
Near detector analysis—The neutrino flux and interac-

tion models were constrained by fitting the unoscillated CC
event spectra at the ND280. Three time projection cham-
bers (TPCs) [46] with two fine-grained detectors (FGDs)
[47] sandwiched between them track particles from inter-
actions in the FGD target mass. Electromagnetic calorim-
eters surrounding the TPCs and FGDs, as well as the TPCs,
are used to tag photons.
Selected CC events were separated into different samples

according to the FGD in which the interaction occurred,
the beam mode, the muon charge, and the reconstructed
final-state particle multiplicities. Negatively charged muon
candidates selected in ν-mode were divided into five
samples per FGD: (1) at least one photon (CC-photon);
(2) no photons, pions, or protons (CC0π0p); (3) no photons
or pions and at least one proton (CC0πNp); (4) no photons
and one positively charged pion (CC1 πþ); and (5) all other
CC events (CC-Other). Positively and negatively charged
muon candidates in ν̄-mode are each divided into three
samples per FGD: (1) no pions (CC0π); (2) one pion with
opposite charge to the muon (CC1π); and (3) all other CC
events (CC-Other). Positively charged muon candidates
in ν-mode were not separately selected as the predicted
contamination was 4%, compared to 30% negatively
charged muon contamination in ν̄-mode [48].
Newly added proton-tagged samples offer enhanced

abilities to constrain the Q2 dependence of several

uncertainties with data. Since ND280 achieves reliable
proton tracking efficiency for momenta ≳450 MeV, sam-
ples with (without) protons generally correspond to higher

(lower) average Q2. The new photon-tagged sample helps

constrain π0 production uncertainties, and increases the
purity of other samples.
Each sample was binned according to the muon candi-

date’s momentum, pμ, and the cosine of the angle between

the muon momentum vector and the beam direction, cos θμ.

An MC prediction was made using the flux, cross-section,
and ND280 detector models, and an extended binned
likelihood [49] fit to data was performed. Figure 1 shows
the data, prefit, and postfit MC distributions for the FGD1
CC0π0p sample as a function of pμ. The total p value is

0.575, indicating agreement between the data fit result and
the input models. The uncertainty on the SK predicted
event rates from cross-section and flux systematics was
reduced from approximately 10%–15% to 3%–4% for each
sample by using the ND280 constraint.
SK event selection—Previous T2K analyses used five SK

samples: 1 ring μ- and e-like in both ν- and ν̄-modes and 1
ring e-like with 1 decay electron in ν-mode [2] (tagging a
pion below the Cherenkov threshold). This analysis intro-
duces a νμCC1 πþ-like sample in ν-mode, which tags pions

through two topologies: (1) one ring each from a muon and
a charged pion with one or two decay electrons (from the
pion and muon decay); and (2) one μ-like ring (where the
charged pion is below the Cherenkov threshold) with two
decay electrons (from the decay of the muon and the pion).
Standard preselection criteria common to all SK samples
[2] were applied in addition to the particle-identification
(PID) requirements for the candidate μ-like, π-like, and
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decay electron rings. These PID requirements reduce the
number of selected background events with primary elec-
trons or neutral pions and those produced by neutral-
current pion production processes.
The addition of the νμCC1 πþ-like sample increases the

total number of selected μ-like events by 42.5%, although
much of the increase is above the oscillation maximum, and
is affected by different systematics to the dominant 1 ring
μ-like samples. At a reference set of oscillation parameter

values [50] (sin2 θ23 ¼ 0.561, sin2θ13 ¼ 0.022, sin2 θ12 ¼
0.307, Δm2

32
¼ 2.49× 10−3 eV2, Δm2

21
¼ 7.53× 10−5 eV2,

δCP ¼ −1.601, and normal ordering), 53.5 (116.6) signal
(total) events were predicted in this sample. A total of 134
data events passed the selection criteria with a total
systematic uncertainty of 4.3%. The reconstructed neutrino
energy for this sample, using only the reconstructed muon
information, is

Erec
ν ¼

2mpEμ þm2

Δ
þþ −m2

p −m2
μ

2
�

mp − Eμ þ jpμj cos θμ
� ;

where mp, mμ, mΔ
þþ are the proton, muon, and Δ baryon

rest masses, and Eμ, pμ, θμ are the muon-candidate re-

constructed energy, three-momentum, and angle with
respect to the neutrino beam. Predicted and observed
Erec
ν distributions for this sample are presented in Fig. 2.

Since events do not populate the region of the oscillation
dip, we do not expect a significant increase in sensitivity
to oscillation parameters. However, this sample provides
improved control of background contributions and allows
for valuable cross-checks of the cross-section model.

Oscillation analysis—The PDG parameterization of the
PMNS matrix [50] was used in the analysis. Matter effects
were included with an average Earth crust density of

2.6 g=cm3. The peak neutrino energy and baseline used by

T2K provide sensitivity to the PMNS parameters sin2 θ13,

sin2 θ23, δCP, and the magnitude and sign of the mass-

splitting term Δm2

32
.

Measurements were carried out with and without a reactor
constraint (RC). The RCwas included as a Gaussian prior on

sin2θ13 ∼ ð2.20� 0.07Þ × 10−2, the PDG world-average

[50–53]. Similarly, for Δm2

21
and sin2 θ12 priors of ð7.53�

0.18Þ × 10−5 eV2 and (0.307� 0.013) were used [50]. Flat
priors were used for the other oscillation parameters. The
impact of the choice of prior on δCP was investigated and
does not alter the conclusions of the analysis [54].
Two different statistical approaches were used to extract

constraints on the oscillation parameters of interest from a
likelihood function, the form of which remained unchanged
from Ref. [2]. One used a Markov chain Monte Carlo
(MCMC) method [55,56], to simultaneously fit the data
from ND280 and SK, producing posterior distributions
from which credible intervals were constructed. The other
performed a piecewise fit and marginalized over the
parameters associated with the propagated ND280 con-
straint to provide frequentist confidence intervals, both with

the constant Δχ2 and Feldman-Cousins (FC) [57] methods.
Table I presents the posterior predictive p values [58–60]

for all SK samples. After accounting for the “look else-
where effect” using the Bonferroni correction [61], all
samples pass the 5% threshold. This suggests that the
model provides a plausible description of the data within
the considered parameter space.
Simulated data studies (SDSs)—These study the impact

of alternative interaction models and data-driven modifi-
cations of predictions at ND280 and SK, to check the
completeness of our systematic uncertainty model, and are
essential tests of the robustness of our result. Changes to

sin2 θ23 and Δm2

32
were deemed significant if the bias to

the center of a 2σ confidence interval was greater than
50% of the 1σ Asimov interval width, or if the size of a
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TABLE I. Posterior predictive p values for every FD sample,
from the fit including the RC.

Sample p value

1Rμ-like ν-mode 0.35
ν̄-mode 0.84

νμCC1 πþ-like ν-mode 0.96

1Re-like ν-mode 0.13
ν̄-mode 0.63

1Re-like 1de ν-mode 0.89

Total 0.86
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one-dimensional, 2σ, FC-corrected interval changed by
more than 10%. If a significant bias was found, additional
smearing was applied to the relevant intervals. For δCP,
biases to interval boundaries that change the inclusion or
exclusion of a physically interesting point in parameter
space, e.g., δCP ¼ ½−π; 0; π�, are reported as part of the
result; but due to the non-Gaussian nature of the δCP
likelihood additional smearing was not applied to reported
intervals.
Various SDSs were described in Ref. [2] and have also

been carried out in this analysis. New SDSs for this analysis
are: replacing the default single-pion production model
with the Martini et al. 1π model [62,63] to test the
robustness of the model for the νμCC1 πþ-like SK sample;

and altering the default nuclear response to the Hartree-
Fock Continuum Random Phase Approximation (HF
CRPA) [64,65] to test the new proton-tagged ND280
samples. In total 19 SDSs were performed. New SDSs
and those with the most significant impact are shown in

Table II. The observed bias on the center of the Δm2

32
2σ

interval exceeded the bias condition for both the HF CRPA

and non-CCQE SDS. As a result, the Δm2

32
contour was

smeared by 3.1 × 10−5 eV2, determined from the quad-

rature sum of the biases on Δm2

32
from all SDSs. Addi-

tionally, a single SDS (SPP low-Q2 [40]) was found
to change the 90% confidence interval of δCP such that
δCP ¼ π is not excluded.
Oscillation results and discussion—Figure 3 shows

credible regions in the sin2 θ13–δCP plane produced with

and without the RC applied. The measurement of sin2 θ13
without the RC applied is consistent with the PDG value.
When marginalized over both mass orderings, the best-fit

value of sin2 θ13 with (without) the RC applied is

22.1þ0.6
−0.7 × 10−3 (23.5þ5.6

−3.1 × 10−3).

The FC-corrected frequentist confidence intervals for

δCP are shown in Fig. 4. The best-fit value is δCP ¼

−2.18þ1.22
−0.47 (δCP ¼ −1.37þ0.41

−1.28 ) for normal (inverted)

ordering with the RC applied. The data prefer values of
δCP close to −ðπ=2Þ radians, excluding values around
þðπ=2Þ radians at >3σ in both orderings. The CP-conserv-
ing values of 0 and π are excluded at the 3σ level in inverted
ordering. In normal ordering, δCP ¼ 0 is excluded at
90% confidence, and although the nominal fit excludes
δCP ¼ π at 90% (Fig. 4), an SDS was found that could move
the interval boundary past π, so this value is not excluded in
the reported result. The result was statistically limited and
can be expected to improve as more data are accumulated.
Figure 5 shows frequentist confidence intervals in the

sin2 θ23–Δm
2

32
plane for both mass orderings. The data

exhibit a weak preference for the upper octant of sin2 θ23
and the normal ordering, with best-fit values of sin2θ23 ¼

0.559þ0.018
−0.078 and Δm2

32
¼ ð2.506þ0.039

−0.052Þ × 10−3 eV2. The

MCMC analysis obtains a Bayes factor with (without) the RC
applied of 2.3 (1.4) for the upper octant of θ23 over the lower
and 2.7 (1.7) for the normal over inverted ordering.

TABLE II. Differences in the oscillation parameter constraints

observed in the new and most impactful SDS. “Bias” shows
changes to the center of the 2σ confidence interval divided by the
1σ Asimov interval width, and “size” is the change in size of the
one-dimensional, 2σ, FC-corrected interval.

SDS sin2θ23 Δm2

32
δCP

HF CRPA Bias −25.1% 84.9% −11.2%
Size 2% −5.4% 1%

Martini 1π Bias −3.2% −18.5% −1.7%
Size −0.2% −1% 2%

Non-CCQE Bias 10.4% −76.3% −0.5%
Size 3.0% −1% −3%

SPP low-Q2 Bias 14.1% 18.6% −6.11%
Size 2% −1.6% −2.2%
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The measurements presented thus far assume the
PDG parameterization of the PMNS matrix. The Jarlskog
invariant, JCP, is a parametrization-independent way of
measuring the scale of CP violation generated by PMNS
oscillations [66,67]. A zero (nonzero) value for JCP indi-
cates CP conservation (CP violation) in three-flavor neu-
trino mixing. The constraint on JCP, obtained with the
MCMC analysis, and the impact of the choice of δCP prior
on that constraint, are shown in Fig. 6. The CP-conserving
value, JCP ¼ 0, is excluded at the 90% credible interval for
both δCP priors: flat in δCP and flat in sin δCP. Although
changes in the prior were checked, the robustness of these
credible intervals in JCP has not been checked with SDS in
this analysis.

Conclusions—The T2K collaboration has measured the
three-flavor PMNS neutrino oscillation parameters Δm2

32
,

sin2 θ13, sin
2 θ23, δCP, JCP, and the mass ordering, using

3.6 × 1021 POT at SK. The analysis includes a new
νμCC1 πþ-like SK sample; new ND event samples in

ν-mode; significant improvements to the flux and neu-
trino interaction modeling; and a significantly expanded
set of SDSs to test the robustness of the analysis to
out-of-model changes. These improvements represent a
significant step forward in the development of analysis
methods that are robust to mismodeling issues, a major
obstacle for all current and future long-baseline neutrino
oscillation experiments. Our results show a weak prefer-

ence for normal ordering and the upper octant of sin2 θ23
with best-fit values of sin2θ23 ¼ 0.559þ0.018

−0.078 and Δm2

32
¼

ð2.506þ0.039
−0.052Þ × 10−3 eV2. One of the CP-conserving val-

ues, δCP ¼ 0, is excluded at 90% confidence, with a best-fit

value of δCP ¼ −2.18þ1.22
−0.47 in normal ordering with the RC

applied.
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