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Introduction—The T2K experiment [1] measures three-
flavor neutrino mixing parameters by observing the dis-
appearance of v, (,) and the appearance of v, (7,) over a
distance of 295 km in a narrow-band, predominantly v, or
v, beam, which peaks at an energy of 0.6 GeV. Data
corresponding to 3.6 x 10?! protons on target (POT) were
analyzed with major improvements to the neutrino flux and
interaction modeling compared to previous studies [2].
New photon- and proton-tagged near detector (ND) sam-
ples, as well as a new, charged current neutrino-enhanced
muon-neutrino sample with tagged pions (v,CClz™"-like)
in the far detector, are included in the analysis for the first
time. This Letter reports T2K’s latest measurements of
neutrino mixing parameters after these improvements,
which mark a significant step forward in the robustness
of our analysis, particularly due to improvements in
modeling and constraining neutrino interaction uncertain-
ties, and supersede previous results produced with the same
dataset. Comparable measurements have also been reported
by NOvVA [3], and future experiments such as Hyper-
Kamiokande [4] and DUNE [5] aim to further improve the
precision and discovery potential in neutrino oscillation
physics.

T2K experiment—Protons of 30 GeV energy, accelerated
by the J-PARC main ring, collide and interact with a graphite
target, producing pions and kaons that are focused by a
system of three magnetic horns and decay inside a
96-m-long tunnel. Depending on the direction of the current
flowing in the horns, either positively or negatively charged
hadrons are focused, producing a neutrino- (v-mode) or
antineutrino-enhanced (7-mode) beam.

Two near detectors are located 280 m away from the
graphite target—one on axis (INGRID) [6] and the other
2.5° off axis (ND280) [1] with respect to the beam
direction. They sample the unoscillated beam by monitor-
ing its direction, intensity, and flavor content as well as
constraining uncertainties in the neutrino interaction model.
The far detector, Super-Kamiokande (SK) [7], is a 50-kton
water-Cherenkov detector located beneath a 1-km rock
overburden within the Kamioka mine in Japan. It measures
the oscillated neutrino flux 295 km away from its pro-
duction point at 2.5° off axis.

The analysis reported in this Letter uses all data collected
by T2K from January 2010 to February 2020, correspond-
ing to an SK exposure of 19.7 x 10?° POT in v-mode and
16.3 x 10?° POT in z-mode. The same number of POT was
used in a previous analysis [2].

Neutrino flux prediction—The neutrino flux Monte Carlo
(MC) simulation uses the FLUKA 2011.2 [8,9] interaction
model for proton interactions inside the target and GEANT3
[10] for interactions outside the target. Hadron production in
the target is tuned to external datasets [11-13]. The flux
depends on the beamline conditions and the measured
proton beam profile. The prediction accounts for the beam
conditions during each operating period.

The resulting flux model [14] is used to estimate the
unoscillated v-mode and r-mode fluxes at all detectors, for
all contributing neutrino flavors, as well as their correlated
uncertainties. INGRID is used to monitor the beam direc-
tion and validate the neutrino flux simulation. The uncer-
tainty on the measured beam direction is included in
the flux uncertainties used in the oscillation parameter
measurement.

This analysis includes new constraints from the NA61/
SHINE replica target datasets [13], including high-statistics
measurements of 7+ production as well as, for the first
time, K* and proton production measurements. Among
other improvements these constraints reduce the v, flux
uncertainty to below 4% for energies up to 7 GeV.

Neutrino interaction modeling—The nominal model
prediction was generated with the neutrino event generator
NEUT 5.4.0 [15]. In this analysis, important improvements
to the estimated neutrino interaction uncertainties were
made, increasing the number of free parameters by 26
compared with the previous analysis [2], for a total of 75.

Pionless: New degrees of freedom were included to
cover theoretical uncertainties in nuclear effects for
charged-current (CC) quasielastic (CCQE), multinucleon
(2p2h), and hard-scattering processes.

Ad hoc uncertainties in the low four-momentum transfer
(Q?) response for CCQE interactions were replaced with
physics-motivated parameters that vary the impact of Pauli
blocking and the effect of nuclear transparency on the
inclusive cross section. An effective parameterization of the
latter was derived by comparison to the NuWro [16,17]
implementation of the optical potential [18]. New uncer-
tainties on the nuclear ground state for CCQE events, which
parametrize the shell structure of the missing momentum
(Pmiss) and missing energy (E,;) response in the initial
state spectral function (SF), were included [19,20]. The
Benhar SF [21] incorporates multinucleon knockout in the
Eiss > 100 MeV, pis > 300 MeV region. These events
account for 5% of all CCQE interactions; a 200% nor-
malization uncertainty was applied to cover differences
between NEUT and NuWro predictions. Following
Ref. [22], a three-momentum-transfer-dependent freedom
on the nucleon removal energy (NRE) was added [23].
Additional freedom for 2p2h interactions was included by
separating some of the existing uncertainties by the struck
nucleon pair (proton-neutron vs proton-proton and neutron-
neutron).

Single-pion production (SPP): Uncertainties on the
free parameters in the NEUT implementation [2] of the
Rein-Sehgal SPP model [24] were motivated by fitting [19]
to hydrogen- and deuterium-target data [25,26] from ANL
[27,28] and BNL [29-31], and checking coverage against
hydrocarbon-target data [32-38]. Variations of these
parameters exhibit a minimal change to both the shape
of the final-state pion kinematics, which have previously
been observed to be poorly predicted at both ND280 and

261801-4



PHYSICAL REVIEW LETTERS 135, 261801 (2025)

SK [2], and to the relative rate of charged and neutral pion
production. To cover measurements of pion kinematic
spectra in T2K [39] and MINERvA [40], new parameters
were developed to vary the resonance decay kinematics
and the total neutral pion production rate [19]. Previously,
NRE effects were only included in NEUT for pionless
hard-scatter processes. Here, an approximation of this
effect, and an associated uncertainty, was motivated by
comparing NEUT predictions to those from NuWro for
0 < NREgpp < 50 MeV.

Multiple pions: New uncertainties were developed for
multiple-pion production in the low hadronic mass region,
1.3 < W < 2.0 GeV. Reference [41] motivated separate
uncertainties on the axial and vector parts of the nucleon
form factors, replacing an effective 100%, Q*-dependent,
uncertainty on the previous Bodek-Yang correction [42].
Additionally, a new uncertainty covering the difference
between the NEUT and AGKY models [43] was included
on the shape of the two-dimensional pion multiplicity and
invariant hadronic mass distributions.

Final-state interactions: A new 16% uncertainty on the
cross section for pion charge-exchange reactions for p, >
500 MeV was included [44]. As the new ND selections are
sensitive to proton kinematics, an uncertainty was added
that varies the fraction of events that include intranuclear
nucleon rescattering while keeping the leptonic observables
unmodified. The size of this uncertainty (30%) was moti-
vated by a recent analysis of nuclear transparency data [45].

Near detector analysis—The neutrino flux and interac-
tion models were constrained by fitting the unoscillated CC
event spectra at the ND280. Three time projection cham-
bers (TPCs) [46] with two fine-grained detectors (FGDs)
[47] sandwiched between them track particles from inter-
actions in the FGD target mass. Electromagnetic calorim-
eters surrounding the TPCs and FGDs, as well as the TPCs,
are used to tag photons.

Selected CC events were separated into different samples
according to the FGD in which the interaction occurred,
the beam mode, the muon charge, and the reconstructed
final-state particle multiplicities. Negatively charged muon
candidates selected in r-mode were divided into five
samples per FGD: (1) at least one photon (CC-photon);
(2) no photons, pions, or protons (CCOz0p); (3) no photons
or pions and at least one proton (CCOzNp); (4) no photons
and one positively charged pion (CC1 z™); and (5) all other
CC events (CC-Other). Positively and negatively charged
muon candidates in p-mode are each divided into three
samples per FGD: (1) no pions (CCOx); (2) one pion with
opposite charge to the muon (CClx); and (3) all other CC
events (CC-Other). Positively charged muon candidates
in v-mode were not separately selected as the predicted
contamination was 4%, compared to 30% negatively
charged muon contamination in 7-mode [48].

Newly added proton-tagged samples offer enhanced
abilities to constrain the Q> dependence of several

400 , ]
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[5) - J
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G L i
o L D . CC other |
=
2 i — Pre-fit Total i
§ 100~ -+ ND Data 7
Z L ]
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FIG. 1. Data and model predictions before and after the ND280
fit for the v-mode FGD1 CCOz0p sample binned in p,. The fit
includes p, <30 GeV for all ND280 samples, but the range is
truncated here for readability. The postfit prediction is broken
down by interaction channel. The predicted event rate from o
contamination in v-mode is neglected in the figure as it only
contributes at the subpercent level.

uncertainties with data. Since ND280 achieves reliable
proton tracking efficiency for momenta 2450 MeV, sam-
ples with (without) protons generally correspond to higher
(lower) average Q. The new photon-tagged sample helps
constrain 7° production uncertainties, and increases the
purity of other samples.

Each sample was binned according to the muon candi-
date’s momentum, p,, and the cosine of the angle between
the muon momentum vector and the beam direction, cos 6,,.
An MC prediction was made using the flux, cross-section,
and ND280 detector models, and an extended binned
likelihood [49] fit to data was performed. Figure 1 shows
the data, prefit, and postfit MC distributions for the FGD1
CCOz0p sample as a function of p,. The total p value is
0.575, indicating agreement between the data fit result and
the input models. The uncertainty on the SK predicted
event rates from cross-section and flux systematics was
reduced from approximately 10%—15% to 3%—4% for each
sample by using the ND280 constraint.

SK event selection—Previous T2K analyses used five SK
samples: 1 ring p- and e-like in both v- and 7-modes and 1
ring e-like with 1 decay electron in v-mode [2] (tagging a
pion below the Cherenkov threshold). This analysis intro-
duces a,CC1 z*-like sample in v-mode, which tags pions
through two topologies: (1) one ring each from a muon and
a charged pion with one or two decay electrons (from the
pion and muon decay); and (2) one p-like ring (where the
charged pion is below the Cherenkov threshold) with two
decay electrons (from the decay of the muon and the pion).
Standard preselection criteria common to all SK samples
[2] were applied in addition to the particle-identification
(PID) requirements for the candidate u-like, z-like, and
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decay electron rings. These PID requirements reduce the
number of selected background events with primary elec-
trons or neutral pions and those produced by neutral-
current pion production processes.

The addition of the v,CC1 z*-like sample increases the
total number of selected p-like events by 42.5%, although
much of the increase is above the oscillation maximum, and
is affected by different systematics to the dominant 1 ring
u-like samples. At a reference set of oscillation parameter
values [50] (sin? 0,3 = 0.561, sin?6,5 = 0.022, sin® @, =
0.307, Am3, =2.49 x 1073 eV2, Am3; =7.53 x 107 eV?,
Ocp = —1.601, and normal ordering), 53.5 (116.6) signal
(total) events were predicted in this sample. A total of 134
data events passed the selection criteria with a total
systematic uncertainty of 4.3%. The reconstructed neutrino
energy for this sample, using only the reconstructed muon
information, is

2 2 2

e _ 2myE, + my.. —my, —my
14 k)

2(m, — E, + |p,| cos6,)

where m,, m,, mp++ are the proton, muon, and A baryon
rest masses, and E,, p,, 0, are the muon-candidate re-
constructed energy, three-momentum, and angle with
respect to the neutrino beam. Predicted and observed
ET*¢ distributions for this sample are presented in Fig. 2.
Since events do not populate the region of the oscillation
dip, we do not expect a significant increase in sensitivity
to oscillation parameters. However, this sample provides
improved control of background contributions and allows
for valuable cross-checks of the cross-section model.

18 -_| TTrT I UL | UL I UL I TTrTT I TTrTT I TTT |_-
16 :_ - Neutral Current - v, CC Inclusive _:
2 F W ccoe B v, ccin
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Reconstructed neutrino energy [GeV]

FIG. 2. The Ey° distribution for the v,CCl z"r-mode SK
sample shown for data and MC. The fit includes p-like (e-like)
events with E;°¢ < 30 (1.25) GeV, but the range is truncated here
for readability. The reference oscillation parameter values are
described in the main text. The ND280 constraint has been
applied to the MC prediction.

Oscillation analysis—The PDG parameterization of the
PMNS matrix [50] was used in the analysis. Matter effects
were included with an average Earth crust density of
2.6 g/cm?. The peak neutrino energy and baseline used by
T2K provide sensitivity to the PMNS parameters sin® 6,3,
sin® @53, dcp, and the magnitude and sign of the mass-
splitting term Am3,.

Measurements were carried out with and without a reactor
constraint (RC). The RC was included as a Gaussian prior on
sin’0;5 ~ (2.20 = 0.07) x 1072, the PDG world-average
[50-53]. Similarly, for Am3, and sin? @}, priors of (7.53 +
0.18) x 107 eV?2 and (0.307 & 0.013) were used [50]. Flat
priors were used for the other oscillation parameters. The
impact of the choice of prior on 6cp was investigated and
does not alter the conclusions of the analysis [54].

Two different statistical approaches were used to extract
constraints on the oscillation parameters of interest from a
likelihood function, the form of which remained unchanged
from Ref. [2]. One used a Markov chain Monte Carlo
(MCMC) method [55,56], to simultaneously fit the data
from ND280 and SK, producing posterior distributions
from which credible intervals were constructed. The other
performed a piecewise fit and marginalized over the
parameters associated with the propagated ND280 con-
straint to provide frequentist confidence intervals, both with
the constant Ay? and Feldman-Cousins (FC) [57] methods.

Table I presents the posterior predictive p values [58—60]
for all SK samples. After accounting for the “look else-
where effect” using the Bonferroni correction [61], all
samples pass the 5% threshold. This suggests that the
model provides a plausible description of the data within
the considered parameter space.

Simulated data studies (SDSs)—These study the impact
of alternative interaction models and data-driven modifi-
cations of predictions at ND280 and SK, to check the
completeness of our systematic uncertainty model, and are
essential tests of the robustness of our result. Changes to
sin? 0,3 and Am3, were deemed significant if the bias to
the center of a 26 confidence interval was greater than
50% of the 10 Asimov interval width, or if the size of a

TABLE I. Posterior predictive p values for every FD sample,
from the fit including the RC.
Sample p value
1Rp-like v-mode 0.35
v-mode 0.84
v,CC1 7t -like v-mode 0.96
1Re-like v-mode 0.13
p-mode 0.63
1Re-like 1de v-mode 0.89
Total 0.86
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TABLE II. Differences in the oscillation parameter constraints
observed in the new and most impactful SDS. “Bias” shows
changes to the center of the 26 confidence interval divided by the
lo Asimov interval width, and “size” is the change in size of the
one-dimensional, 2¢, FC-corrected interval.

SDS Sin2923 Am%z 6CP
HF CRPA Bias —-25.1% 84.9% —-11.2%
Size 2% -5.4% 1%
Martini 1z Bias —3.2% —-18.5% —1.7%
Size —0.2% —1% 2%
Non-CCQE Bias 10.4% -76.3% —-0.5%
Size 3.0% —1% —3%
SPP low-Q? Bias 14.1% 18.6% —6.11%
Size 2% —-1.6% —2.2%

one-dimensional, 2o, FC-corrected interval changed by
more than 10%. If a significant bias was found, additional
smearing was applied to the relevant intervals. For Jcp,
biases to interval boundaries that change the inclusion or
exclusion of a physically interesting point in parameter
space, e.g., 8cp = [—r,0, ], are reported as part of the
result; but due to the non-Gaussian nature of the Jcp
likelihood additional smearing was not applied to reported
intervals.

Various SDSs were described in Ref. [2] and have also
been carried out in this analysis. New SDSs for this analysis
are: replacing the default single-pion production model
with the Martini et al. 1zx model [62,63] to test the
robustness of the model for the ,CC1 77" -like SK sample;
and altering the default nuclear response to the Hartree-
Fock Continuum Random Phase Approximation (HF
CRPA) [64,65] to test the new proton-tagged ND280
samples. In total 19 SDSs were performed. New SDSs
and those with the most significant impact are shown in
Table II. The observed bias on the center of the Am3, 26
interval exceeded the bias condition for both the HF CRPA
and non-CCQE SDS. As a result, the Am3, contour was
smeared by 3.1 x 1073 eV?, determined from the quad-
rature sum of the biases on Am3, from all SDSs. Addi-
tionally, a single SDS (SPP low-Q? [40]) was found
to change the 90% confidence interval of dcp such that
Ocp = & is not excluded.

Oscillation results and discussion—Figure 3 shows
credible regions in the sin?#;5-5cp plane produced with
and without the RC applied. The measurement of sin” 65
without the RC applied is consistent with the PDG value.
When marginalized over both mass orderings, the best-fit
value of sin’@,; with (without) the RC applied is
22,1709 x 1073 (23.5159 x 1073).

The FC-corrected frequentist confidence intervals for
Ocp are shown in Fig. 4. The best-fit value is dcp =

2181022 (5cp = —1.37705) for normal (inverted)

T T T T \%/'y T T T \III T ‘ T T T T T T T ]
2k T / Credible Regions ]
- ISR e -
L — 20 -
—— T2K only

- T2K + Reactor 1
6 0 ) + Bestfit |
[Ze) | / 1 PDG 0, Constrainti
) N . \ —

E \\\\ \\ .“v": L1 \V coon o *)(1073

10 20 30 5 40 50 60
sin0,
FIG. 3. Credible regions in the sin’0;5—6¢p plane produced

with the MCMC analysis, shown with and without the RC
applied, and overlaid with the RC constraint from Ref. [50], for
normal ordering.

ordering with the RC applied. The data prefer values of
Scp close to —(z/2) radians, excluding values around
+(x/2) radians at >3¢ in both orderings. The CP-conserv-
ing values of 0 and 7z are excluded at the 36 level in inverted
ordering. In normal ordering, §cp =0 is excluded at
90% confidence, and although the nominal fit excludes
Ocp = 7 at 90% (Fig. 4), an SDS was found that could move
the interval boundary past 7, so this value is not excluded in
the reported result. The result was statistically limited and
can be expected to improve as more data are accumulated.

Figure 5 shows frequentist confidence intervals in the
sin® @)3;—Am3, plane for both mass orderings. The data
exhibit a weak preference for the upper octant of sin” 6,;
and the normal ordering, with best-fit values of sin’@,; =
0.559100:8 and  AmZ,= (2.5067503)) x 1073 V2. The
MCMC analysis obtains a Bayes factor with (without) the RC
applied of 2.3 (1.4) for the upper octant of 6,3 over the lower
and 2.7 (1.7) for the normal over inverted ordering.

30 e L e B L
25 E_ — Normal ordering o _E

r — Inverted ordering / AN ]

20F @@ 1oCL E
e F BN 9% CL ]
< 151 =
10F =

SE| :

O S 0 1 2 3

Scp

FIG. 4. The change in the best-fit y> observed in the frequentist
analysis as a function of dcp and the mass ordering. Shaded
regions correspond to the FC-corrected confidence intervals.
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FIG. 5. Frequentist confidence intervals are shown in the

sin’0y3-Am3, plane, produced using the constant Ay? method
with the RC applied. The Am%2 contour is smeared to cover the
SDS as described in the main text.

The measurements presented thus far assume the
PDG parameterization of the PMNS matrix. The Jarlskog
invariant, Jcp, iS a parametrization-independent way of
measuring the scale of CP violation generated by PMNS
oscillations [66,67]. A zero (nonzero) value for Jcp indi-
cates CP conservation (CP violation) in three-flavor neu-
trino mixing. The constraint on Jcp, obtained with the
MCMC analysis, and the impact of the choice of dcp prior
on that constraint, are shown in Fig. 6. The CP-conserving
value, Jop = 0, is excluded at the 90% credible interval for
both d¢cp priors: flat in dcp and flat in sin dcp. Although
changes in the prior were checked, the robustness of these
credible intervals in Jp has not been checked with SDS in
this analysis.

o
=
|

— Prior flatin 8,
o Prior flat in sind, .
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J
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-0.04
= 8,,C%:8,,C;,5,2C,;S1NJ

CP 13713%12~12723723 CP

FIG. 6. Posterior probability distributions for the Jarlskog

invariant taken from posterior distributions with priors that are

either flat in dcp (blue) or flat in sin dcp (orange), obtained with

the MCMC analysis for both orderings, with credible intervals

(CIs) shown.

Conclusions—The T2K collaboration has measured the
three-flavor PMNS neutrino oscillation parameters Ams3,,
sin® @3, sin® 0,3, Scp, Jep, and the mass ordering, using
3.6 x 10*! POT at SK. The analysis includes a new
v,CCl1 at-like SK sample; new ND event samples in
v-mode; significant improvements to the flux and neu-
trino interaction modeling; and a significantly expanded
set of SDSs to test the robustness of the analysis to
out-of-model changes. These improvements represent a
significant step forward in the development of analysis
methods that are robust to mismodeling issues, a major
obstacle for all current and future long-baseline neutrino
oscillation experiments. Our results show a weak prefer-
ence for normal ordering and the upper octant of sin® 6,5
with best-fit values of sin?6y; = 0.55970 1% and Am3, =
(2.50670037) x 1073 €V2. One of the CP-conserving val-
ues, 5cp = 0, is excluded at 90% confidence, with a best-fit
value of §cp = —2.187)22 in normal ordering with the RC
applied.
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