

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236744/>

Version: Supplemental Material

Article:

Rowell, D.A., Hammerman, N.M., Golding, K.M. et al. (2025) Multi-scale observations during the 2024 mass coral bleaching event on Heron Reef, Australia. *Marine Biology*, 173. 17. ISSN: 0025-3162

<https://doi.org/10.1007/s00227-025-04759-5>

This is an author produced version of an article published in *Marine Biology*, made available via the University of Leeds Research Outputs Policy under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

UNIVERSITY OF LEEDS

**University of
Sheffield**

**UNIVERSITY
of York**

1 **Supplementary Material**

2

3 Title: Multi-scale observations during the 2024 mass coral bleaching event on Heron Reef, Australia; Journal: Marine Biology

4 Authors: Devin A. Rowell, Nicholas M. Hammerman, Kirsten M. Golding, Tania Marie Kenyon, Zoe Meziere, Courtney Morgans, Kristen Taylor Brown, Faye
5 F. Diederiks, David E. Carrasco Rivera, Karen Eigeland, Roima Paewai-Huggins, Kathryn Markey, Maria Beger, Fiona Chong, Gabriella Donno, Alice Dutton,
6 Wanchien Victoria Hsiao, Stuart Kininmonth, Caitlin A. Lawson, Heather Middleton, Gal Eyal, and Chris Roelfsema.

7

8 Affiliation and e-mail address of the corresponding author: Devin A. Rowell, devin.rowell@uq.edu.au, Marine Spatial Ecology Lab, School of the Environment,
9 The University of Queensland, Brisbane, Australia; Centre of Marine Science, The University of Queensland, Brisbane, Australia.

10

11 **Supplemental Table 1** The location of temperature and light loggers deployed across Heron Reef between August 2023 - June 2024. Note that ElectricBlue
12 EnvLoggers and HOBO® loggers record temperature only, while Odyssey loggers record temperature as well as PAR.

Reef zone	Site name	Latitude and Longitude	Depth (m)	Equipment deployed	Dates deployed	Sampling interval (minutes)
Leeward north	Libby's Lair	23.43453 S, 151.93353 E	10–15	HOBO® TidbiT MX (MX2203)	1/8/2023 to 14/5/2024	15 min
	Eco 1	23.47193 S, 151.97746 E	4–8	H1, O2	10/12/2023 to 8/6/2024	H1 10 min; O1 15 min
Windward east	Eco 1	23.472 S, 151.979317 E	10–14	H1	10/12/2023 to 8/6/2024	10 min
	Eco 2	23.47086 S, 151.95296 E	4–7	O1	13/10/2023 to 8/6/2024	15 min
	Eco 2	23.47083 S, 151.9526 E	9–13	H1	13/10/2023 to 8/6/2024	10 min
Windward west	Coral Gardens	23.44666 S, 151.91176 E	4–8	H1, O1	14/10/2023 to 11/6/2024	H1 10 min; O1 15 min
	Coral Gardens	23.44664 S, 151.91139 E	9–13	H1 (x2)	14/10/2023 to 11/6/2024	10 min

Reef zone	Site name	Latitude and Longitude	Depth (m)	Equipment deployed	Dates deployed	Sampling interval (minutes)
Reef Flat	Halfway Site 1	23.45042 S, 151.91724 E	4–8	O1 (x2)	16/10/2023 to 14/6/2024	15 min
	Halfway Site 1	23.45023 S, 151.91698 E	9–13	H1, O1	16/10/2023 to 14/6/2024	H1 10 min; O1 15 min
	Coral Gardens reef flat	23.4452 S, 151.91268 E	1–2	H1, O1	15/10/2023 to 14/6/2024	H1 10 min; O1 15 min
	Halfway reef flat	23.44841 S, 151.91821 E	1–2	H1	14/10/2023 to 14/6/2024	10 min
	Reef crest	23.4589 S, 151.9296 E	0.8	HOBO® 64K Pendant (UA-001-64)	1/8/2023 to 7/5/2024	60 min
	Research Beach - nearshore (#2)	23.44447 S, 151.91341 E	1–2	ElectricBlue EnvLogger (version T7.3)	13/12 2023 to 31/7/2024	60 min
	Research Beach - offshore (#3)	23.44552 S, 151.91311 E	1–2	ElectricBlue EnvLogger (version T7.3)	13/12 2023 to 31/7/2024	60 min
	North Beach - nearshore (#4)	23.43958 S, 151.91722 E	1–2	ElectricBlue EnvLogger (version T7.3)	13/12 2023 to 31/7/2024	60 min
	North Beach - offshore (#5)	23.43811 S, 151.91744 E	1–2	ElectricBlue EnvLogger (version T7.3)	13/12 2023 to 29/6/2024	60 min
	Shark Bay (#6)	23.44305 S, 151.92055 E	1–2	ElectricBlue EnvLogger (version T7.3)	13/12 2023 to 31/7/2024	60 min

13 H1 = HOBO® Pendant Mx Temperature/light Data Logger - IC-MX2202 (Bluetooth model)

14 O1 = Odyssey® Submersible Photosynthetic Active Radiation (PAR) Logger

15

16 **Supplemental Table 2** The location of ecological data collection sites across Heron Reef between September 2022 - September 2024. Note that coordinates for
 17 photo quadrat transects are at the start of each transect.

Ecological Scale	Analysis	Geomorphic Zone	Site Name	Latitude	Longitude	Depth (m)	Time Period
Community	Photo quadrat transects	Leeward North Slope	Junction	-23.43534	151.90776	5	23/03/2024 - 27/03/2024
Community	Photo quadrat transects	Leeward North Slope	Plate Ledge	-23.43448	151.91478	5	23/03/2024 - 27/03/2025
Community	Photo quadrat transects	Leeward North Slope	Coral Grotto	-23.43392	151.92148	5	23/03/2024 - 27/03/2026
Community	Photo quadrat transects	Leeward North Slope	Cascades	-23.43335	151.93030	5	23/03/2024 - 27/03/2027
Community	Photo quadrat transects	Leeward North Slope	Libby's Lair	-23.43531	151.94222	5	23/03/2024 - 27/03/2028
Community	Photo quadrat transects	Leeward North Slope	NWTR7	-23.42922	151.95096	5	23/03/2024 - 27/03/2029
Community	Photo quadrat transects	Leeward North Slope	NWTR6	-23.43338	151.96100	5	23/03/2024 - 27/03/2030
Community	Photo quadrat transects	Leeward North Slope	NETR5	-23.43189	151.98615	5	23/03/2024 - 27/03/2031
Community	Photo quadrat transects	Windward West Slope	NETR4	-23.42959	151.99692	5	23/03/2024 - 27/03/2032
Community	Photo quadrat transects	Windward West Slope	SETR3	-23.45677	151.99469	5	23/03/2024 - 27/03/2033
Community	Photo quadrat transects	Windward West Slope	SETR2	-23.46758	151.98650	5	23/03/2024 - 27/03/2034
Community	Photo quadrat transects	Windward West Slope	SETR1	-23.47281	151.97134	5	23/03/2024 - 27/03/2035
Community	Photo quadrat transects	Windward West Slope	SETR0	-23.47034	151.94987	5	23/03/2024 - 27/03/2036
Community	Photo quadrat transects	Windward East Slope	Harry's Bommie	-23.46044	151.92997	5	23/03/2024 - 27/03/2037
Community	Photo quadrat transects	Windward East Slope	Coral Canyons	-23.45369	151.92227	5	23/03/2024 - 27/03/2038
Community	Photo quadrat transects	Windward East Slope	Halfway	-23.44928	151.91516	5	23/03/2024 - 27/03/2039
Community	Photo quadrat transects	Windward East Slope	Coral Gardens	-23.44621	151.91085	5	23/03/2024 - 27/03/2040
Community	Photo quadrat transects	Windward East Slope	Heron Bommie	-23.44208	151.90537	5	23/03/2024 - 27/03/2041

Community	Photo quadrat transects	Reef Flat	RF Blue Pools	-23.44271	151.91950	1-2	23/03/2024 - 27/03/2042
Community	Photo quadrat transects	Reef Flat	RF Research Beach	-23.44253	151.91100	1-2	23/03/2024 - 27/03/2043
Community	Photo quadrat transects	Reef Flat	RF West	-23.44141	151.91125	1-2	23/03/2024 - 27/03/2044
Colony	Coral demography plots	Leeward North Slope	Libby's Lair	-23.43458	151.93364	6-8	13/09/2022; 14/09/2023; 10/09/2024
Colony	Coral demography plots	Windward West Slope	Coral Gardens	-23.44729	151.91197	6-8	14/09/2022; 13/09/2023; 08/09/2024
Colony	Different substrate types	Windward West Slope	Halfway Interlocked	-23.44985	151.91723	8-10	18/02/2024 - 5/3/2024
Colony	Different substrate types	Windward West Slope	Halfway Loose	-23.45025	151.91725	8-10	18/02/2024 - 5/3/2024
Colony	Different substrate types	Windward West Slope	Halfway Hard Carbonate	-23.45043	151.91783	8-10	18/02/2024 - 5/3/2024
Colony	Juvenile coral quadrats	Windward West Slope	Site 1: Halfway	-23.4511	151.91818	8-10	14/02/2024 - 15/2/2024
Colony	Juvenile coral quadrats	Windward West Slope	Site 2: Halfway	-23.45239	151.9201	8-10	14/02/2024 - 15/2/2024
Colony	Coral fragments collection	Leeward North Slope	Libby's Lair	151.93645	-23.43528	5-12	7/02/2024
Colony	Coral fragments collection	Leeward North Slope	BA1	151.95106	-23.42804	5-12	5/02/2024
Colony	Coral fragments collection	Leeward North Slope	BA2	151.92026	-23.43407	5-12	5/02/2024
Colony	Coral fragments collection	Windward East Slope	H5B	151.99738	-23.43217	5-12	3/02/2024
Colony	Coral fragments collection	Windward East Slope	H5A	151.99555	-23.4526	5-12	3/02/2024
Colony	Coral fragments collection	Windward East Slope	FR1	151.97793	-23.47209	5-12	4/02/2024
Colony	Coral fragments collection	Windward East Slope	FR2	151.95106	-23.47082	5-12	4/02/2024
Colony	Coral fragments collection	Windward West Slope	FL1	151.92568	-23.45617	5-12	6/02/2024
Colony	Coral fragments collection	Windward West Slope	Coral Gardens	151.9106	-23.44570	5-12	6/02/2024
Colony	Coral fragments collection	Windward West Slope	Heron Bommie	151.90358	-23.44094	5-12	7/02/2024

19 **Supplemental Table 3** ReefCloud label set used to classify benthic cover within photo quadrats, including
 20 the hard coral bleaching status and morphotype used for the analyses in this paper. Within ReefCloud, 50
 21 random points were overlaid onto each photo quadrat and assigned a benthic classification by the machine
 22 (F1 > 0.8), typically down to morphotype or family level (Roelfsema et al. 2021; Supplementary Table 2).
 23 Training points were only annotated as bleached if the coral was distinctly white or fluorescent, to avoid
 24 model confusion between bleaching and healthy pale morphs.

Broad Category	ReefCloud Label	Hard Coral Bleaching Status	Hard Coral Morphotype
Hard coral	<i>Acropora</i> Branching	Not Bleached	Branching
	<i>Acropora</i> Branching Bleached	Bleached	Branching
	<i>Acropora</i> Digitate	Not Bleached	Branching
	<i>Acropora</i> Digitate Bleached	Bleached	Branching
	<i>Acropora</i> Hispidose	Not Bleached	Branching
	<i>Acropora</i> Hispidose Bleached	Bleached	Branching
	<i>Acropora</i> Other (<i>Isopora</i>)	Not Bleached	Branching
	<i>Acropora</i> Other Bleached	Bleached	Branching
	<i>Pocillopora</i>	Not Bleached	Branching
	<i>Pocillopora</i> Bleached	Bleached	Branching
	<i>Porites</i> Branching	Not Bleached	Branching
	<i>Porites</i> Branching Bleached	Bleached	Branching
	Branching Other	Not Bleached	Branching
	Branching Other Bleached	Bleached	Branching
	Favid Mussid	Not Bleached	Massive
	Favid Mussid Bleached	Bleached	Massive
	<i>Porites</i> Massive	Not Bleached	Massive
	<i>Porites</i> Massive Bleached	Bleached	Massive
	Massive Other	Not Bleached	Massive
	Massive Other Bleached	Bleached	Massive
	<i>Acropora</i> Tabulate and Corymbose	Not Bleached	Plate/Encrusting
	<i>Acropora</i> Tabulate and Corymbose Bleached	Bleached	Plate/Encrusting
	Acroporidae Plate Encrusting (<i>Montipora</i>)	Not Bleached	Plate/Encrusting
	Acroporidae Plate Encrusting Bleached	Bleached	Plate/Encrusting
	Foliose or Plate with ridges	Not Bleached	Plate/Encrusting
	Foliose or Plate with ridges Bleached	Bleached	Plate/Encrusting
	Foliose or Plate with round corallites	Not Bleached	Plate/Encrusting
	Foliose or Plate with round corallites Bleached	Bleached	Plate/Encrusting
	<i>Porites</i> Encrusting	Not Bleached	Plate/Encrusting
	<i>Porites</i> Encrusting Bleached	Bleached	Plate/Encrusting
	Solitary coral	Not Bleached	-
	Solitary coral Bleached	Bleached	-
Soft Coral	Alcyoniidae Soft Coral	-	-
	Alcyoniidae Soft Coral Bleached	-	-
	Gorgonian	-	-
	Gorgonian Bleached	-	-
	Soft Coral Other	-	-

Soft Coral Bleached		-	-
Other	Sessile Invertebrate Other	-	-
Invertebrates	Crown of Thorns Sea Star	-	-
	Mobile Invertebrate	-	-
Algae	BMA Sand	-	-
	<i>Caulerpa</i>	-	-
	<i>Chlorodesmis</i>	-	-
	Crustose Coralline Algae on DHC	-	-
	Crustose Coralline Algae on Rubble	-	-
	<i>Dictyota</i> species	-	-
	Epithelial Algal Matrix on DHC	-	-
	Epithelial Algal Matrix on Rubble	-	-
	<i>Halimeda</i>	-	-
	<i>Lobophora</i> Species	-	-
	<i>Padina</i>	-	-
	<i>Sargassum</i>	-	-
	<i>Turbinaria</i> algae	-	-
	Algae Other	-	-
Cyanobacteria	Cyano species	-	-
Seagrass	Seagrass	-	-
Abiotic Cover	Sand	-	-
Other	Transect gear	-	-
	Unclear	-	-
	Unknown	-	-
	Water	-	-
	All Other	-	-

25

26 **Supplemental Table 4** Genera that were recorded and grouped into Merulinidae and Pocilloporidae for coral

27 demography plot analyses.

Merulinidae	Pocilloporidae
<i>Astrea</i>	<i>Pocillopora</i>
<i>Cyphastrea</i>	<i>Seriatopora</i>
<i>Dipsastraea</i>	<i>Stylophora</i>
<i>Echinopora</i>	
<i>Favites</i>	
<i>Goniastrea</i>	
<i>Hydnophora</i>	
<i>Leptoria</i>	
<i>Merulina</i>	
<i>Mycedium</i>	
<i>Oulophyllia</i>	
<i>Platygyra</i>	

28

29 The CoralWatch program has historically relied upon changes to average colour scores as an indicator of potential bleaching events (Figure S6 and Table S5).
 30 However, data collected during the 2024 mass bleaching event at Heron Island revealed that this metric is insufficient when used on its own to signal bleaching
 31 events to citizen scientists. A chi-squared test found statistically significant differences in the frequency distribution of colour scores before and during the
 32 bleaching event across all zones (p -value < 0.001 ; Table S6; Presented in Manuscript Section 3.2.2). We then tested the difference between the average colour
 33 scores across each of the four zones before and after the bleaching with a Welch's t-test. The differences between average colour scores were only significant in
 34 the Leeward North and Reef Flat zones (p -value < 0.001 and p -value = 0.004, respectively; Table S5).
 35 Coral species exhibit varying levels of susceptibility and resilience to thermal stress, leading to significant differences in colour as they enter and recover from a
 36 bleaching event. As a result, averaging colour scores across a coral colony, and across surveys can produce a deceptively high overall score, which obscures the
 37 fine-scale differences in coral colour during the progression of bleaching. Due to variation in coral colour when entering and recovering from bleaching events,
 38 average colour scores recorded during the bleaching event remained high (Table S5). This limitation meant that bleaching events could only be identified after a
 39 substantial number of corals had already become fully bleached. As a result of these findings, the approach to recording and reporting bleaching events in the
 40 CoralWatch global coral health database has been improved and now incorporates changes to the frequency distribution of recorded colour scores to assist in the
 41 early detection and communication of bleaching events.

42
 43 **Supplemental Table 5** Average CoralWatch colour scores calculated across the four reef zones before and during the 2024 mass bleaching event. Due to
 44 variation in coral colour when entering and recovering from bleaching events, average colour scores recorded during the bleaching event remained high.
 45 *Indicates statistical significance at $p = <0.005$.

Zone	Before				During				Welch's t-test		
	Ave. colour score	Min	Max	SE	Ave. colour score	Min	Max	SE	t	df	p
Leeward north	3.05	1	6	0.05	2.68	1	6	0.04	5.65	668.25	2.35E-08*
Windward west	2.97	1.5	5.5	0.05	3.03	1	6	0.07	-0.73	504.26	0.468
Windward east	2.62	2	5	0.11	2.44	1	4.5	0.1	1.23	110.87	0.221
Reef flat	3.34	1	5.5	0.03	3.18	1	6	0.05	2.89	860.77	0.004*

47 **Supplemental Table 6** Chi-squared test results comparing the frequency distribution of colour scores before and
 48 during the bleaching event for each of the four Heron Reef zones.

Zone	X-Squared	P
Leeward north	140.72	< 2.2e-16
Windward west	196.5	< 2.2e-16
Windward east	63.151	2.71E-12
Reef flat	145.11	< 2.2e-16

49
 50 **Supplemental Table 7** Summary statistics of log coral size ratio ($\log_2(\text{new size}/\text{old size})$) across two sites before
 51 (2022-23) and after (2023-24) the bleaching event (time period). n is the number of corals recorded.

Site	Time period	n	mean	sd	min	Q1	median	Q3	max
Coral Gardens	2022-23	104	-0.259	1.677	-6.567	-0.764	0.135	0.574	4.100
	2023-24	39	-0.653	1.4	-4.826	-1.249	-0.237	0.101	1.964
Libby's Lair	2022-23	233	0.084	1.164	-5.997	-0.412	0.068	0.588	3.495
	2023-24	99	-0.548	1.0	-4.739	-0.943	-0.399	0.184	0.976

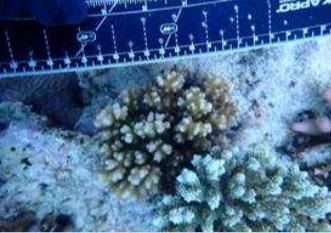
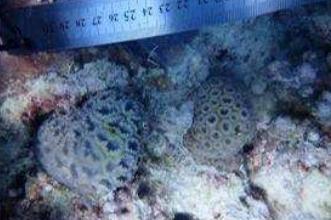
52
 53 **Supplemental Table 8** Summary statistics of log coral size ratio ($\log_2(\text{new size}/\text{old size})$) across the four most
 54 abundant taxa groups before (2022-23) and after (2023-24) the bleaching event (time period). n is the number of
 55 corals recorded.

Taxa	Time period	n	mean	sd	min	Q1	median	Q3	max
<i>Acropora</i>	2022-23	137	0.170	1.415	-6.567	-0.437	0.088	0.698	3.495
	2023-24	53	-0.531	1.201	-4.500	-1.126	-0.375	0.323	1.954
Merulinidae	2022-23	65	-0.112	0.503	-1.619	-0.406	-0.078	0.173	0.969
	2023-24	42	-0.626	0.989	-4.739	-1.094	-0.500	-0.050	0.778
<i>Montipora</i>	2022-23	52	-0.249	1.147	-3.321	-0.776	0.106	0.570	1.317
	2023-24	17	-0.972	1.468	-4.826	-1.343	-0.417	0.024	0.462
Pocilloporidae	2022-23	55	0.110	1.827	-5.997	-0.394	0.515	1.060	4.100
	2023-24	7	-0.264	0.645	-1.310	-0.586	-0.057	0.156	0.381

56
 57 **Supplemental Table 9** Post-hoc Dunn's test statistics for pair-wise comparisons of $\log_2(\text{new size}/\text{old size})$ across
 58 the four most abundant taxa groups before (2022-23) the bleaching event. Log size ratio differences across taxa were
 59 not significant at 95% significance level.

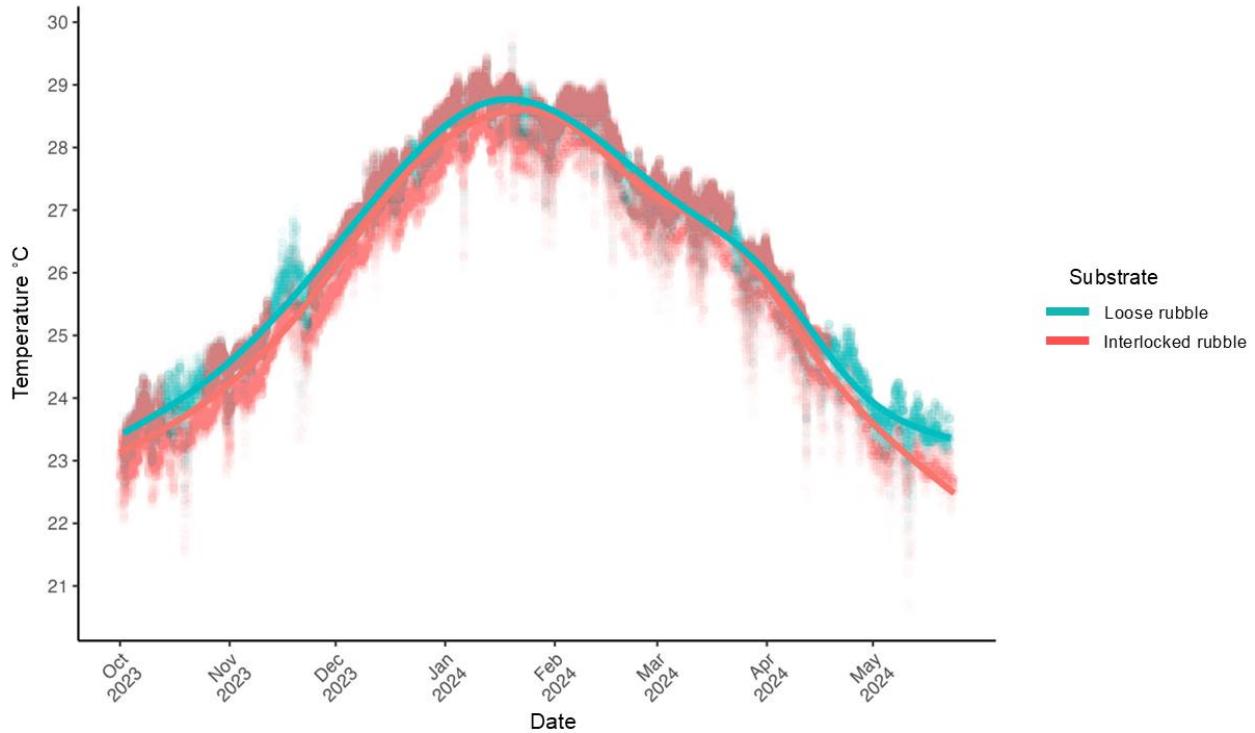
Comparison	Z	P unadjusted	P adjusted
<i>Acropora</i> -Merulinidae	1.90	0.057	0.342
<i>Acropora</i> - <i>Montipora</i>	1.04	0.297	1.00
Merulinidae- <i>Montipora</i>	-0.588	0.556	1.00
<i>Acropora</i> -Pocilloporidae	-0.998	0.319	1.00
Merulinidae-Pocilloporidae	-2.36	0.018	0.109
<i>Montipora</i> -Pocilloporidae	-1.68	0.093	0.560

62 **Supplemental Table 10** Conditional odds ratios (using the R function ‘odds.ratio()’) of mortality by site (Libby’s
63 Lair and Coral Gardens) and by taxa (*Acropora*, Merulinidae, *Montipora*, and Pocilloporidae).



Conditional odds ratio		
Site	Libby’s Lair	3.50
	Coral Gardens	5.66
Taxa	Acropora	4.38
	Merulinidae	2.54
	Montipora	7.31
	Pocilloporidae	16.1

64

65 **Supplemental Table 11** PERMANOVA results from coral morphotype community composition analysis between
66 substrates (loose rubble beds vs. interlocked rubble beds vs. hard carbonate plots).

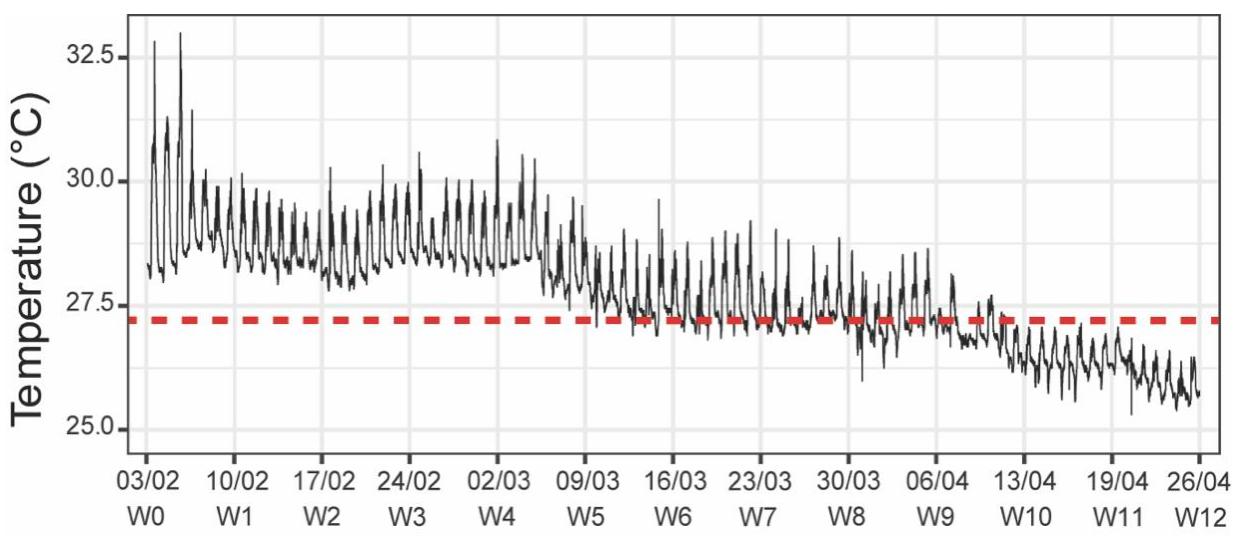

Source	df	SS	MS	Pseudo-F	P(perm)	Unique perms
Substrate	2	3668.6	1834.3	3.0269	0.067	999
Site	5	2969.8	593.97	1.1304	0.326	998
Res	41	21544	525.45			
Total	48	28182				

67

	2022	2023	2024
<i>Acropora</i> Libby's Lair 31.2			
<i>Pocillopora</i> Libby's Lair 76.35			
<i>Montipora</i> Coral Gardens 23.23			
<i>Dipsastraea</i> (L) <i>Astrea</i> (R) Libby's Lair 36.17			

68
69
70
71
72

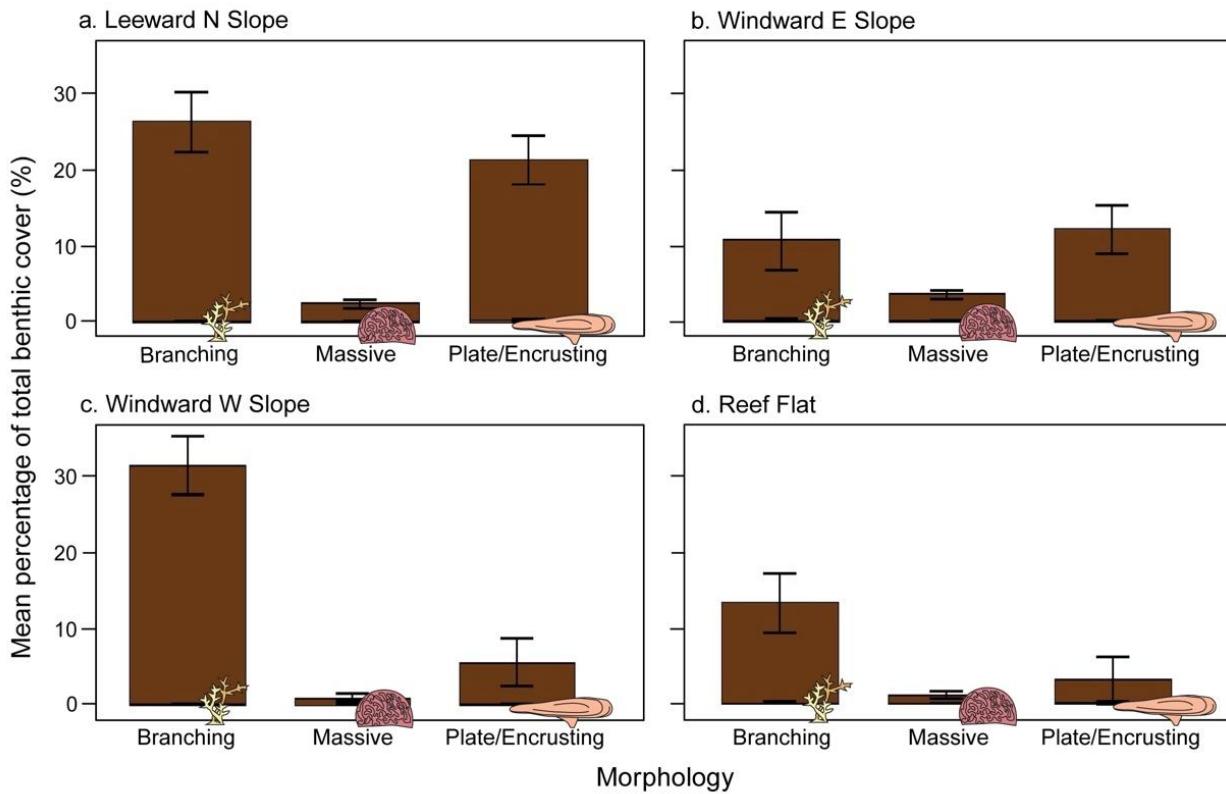
Supplemental Figure 1 Images showing the trajectories of five focal coral colonies from 2022 to 2024. The *Acropora*, *Pocillopora* and *Dipsastraea*, and *Astrea* colonies were from Libby's Lair, while the *Montipora* colony is from Coral Gardens. All photos by Fiona Chong or Victoria Hsiao.

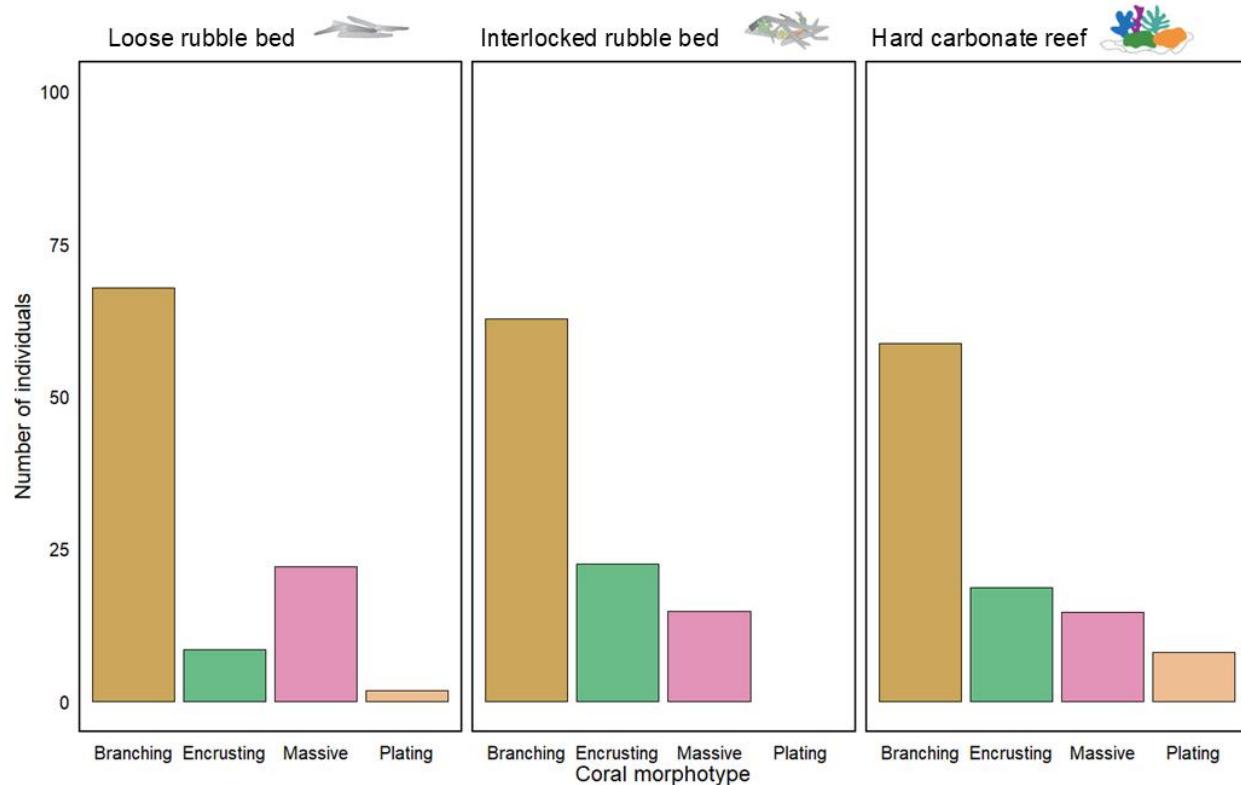


73

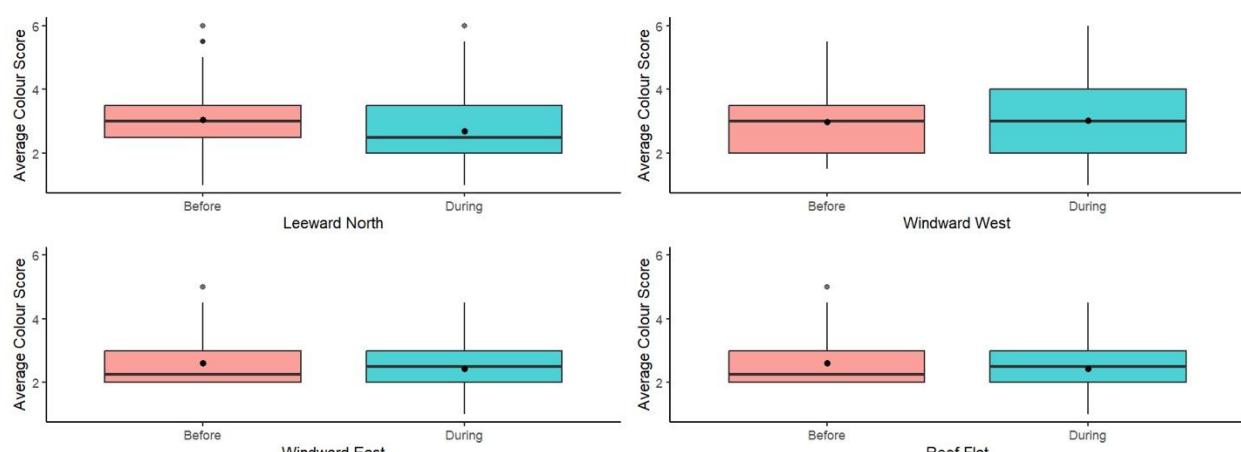
74 **Supplemental Figure 2** Mean daily temperature (°C) from October 2023 through May 2024 in the loose and
 75 interlocked rubble bed plots on the windward west slope.

76


77


78

79 **Supplemental Figure 3** Temperature profile in the common garden experiment, following the concurrent heatwave.
 80 Week 0 (W0) to Week 12 (W12) represent the time points at which phenotypic measurements were taken. Vertical
 81 grid lines are separated by one week and the red dashed line represents the climatic maximum monthly mean at
 82 Heron Reef (27.3°C).


83

84
85 **Supplemental Figure 4** Mean percentage of total benthic cover (% \pm standard error) of live hard coral prior to the
86 bleaching event, for three hard coral morphotypes (branching, massive, plate/encrusting), within each of four
87 geomorphic zones (panels a - d) on Heron Reef in November 2023. The slope was surveyed at \sim 5 m depth and the
88 reef flat at 1-2 m depth. Refer to Figure 1b for the location of each zone. Data from Carrasco Rivera et al. (2025).
89

90
91 **Supplemental Figure 5** Number of individual corals per coral morphotype (branching, encrusting, massive, plating)
92 in the three substrate typologies studied (hard carbonate, loose, or interlocked rubble beds) on the windward west
93 slope during the bleaching event (February 2024).

96
97 **Supplemental Figure 6** Average colour scores (\pm SE) of coral colonies before and during the bleaching event
98 across four reef zones (leeward north, windward west, windward east, and reef flat).

100 **References**

101 Carrasco Rivera DE, Diederiks FF, Hammerman NM, Staples T, Kovacs E, Markey K, Roelfsema CM (2025) Remote
102 sensing reveals multidecadal trends in coral cover at Heron Reef, Australia. *Remote Sens* 17: 1286.
103 <https://doi.org/10.3390/rs17071286>.

104 Roelfsema C, Kovacs EM, Markey K, Vercelloni J, Rodriguez-Ramirez A, Lopez-Marcano S, Gonzalez-Rivero M,
105 Hoegh-Guldberg O, Phinn SR (2021) Benthic and coral reef community field data for heron reef, southern
106 great barrier reef, australia, 2002–2018. *Scientific Data* 8: 84.