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SUMMARY

Effective management of air quality and climate change requires recognition
of their fundamental coupling through atmospheric oxidation capacity (AOC),
which governs the atmosphere’'s self-cleansing capacity. However, policies
often overlook the nonlinear chemical feedbacks inherent to AOC, leading to
fragmented strategies that risk unintended consequences. Here we
demonstrate that uncoordinated strategies, such as reducing fossil
fuel-related NOx without concurrent methane controls, can suppress OH
radicals, inadvertently prolonging methane’s lifetime. This “chemical
lockdown paradox”, observed during COVID-19 lockdowns, reveals critical
trade-offs, where short-term air quality gains may increase methane
accumulation, offsetting the climate benefits of CO, abatement. Given AOC's
spatial heterogeneity, such effects can extend beyond local scales. We thus
propose a regulatory framework integrating AOC dynamics through
coordinated multi-pollutant controls, advanced multiscale AOC monitoring,
and improved Earth system models with fully-coupled chemical feedbacks.
This framework paves a science-based pathway for synergistically managing

air quality and climate mitigation throughout the decarbonization transition.

AOC: THE UNSEEN ATMOSPHERIC GOVERNOR

Air pollution and climate change constitute two intrinsically linked
environmental crises that pose severe threats to human health and ecosystem
security. This linkage stems from the fact that many anthropogenically emitted
gases and particulate matter simultaneously impact both air quality and
climate warming. Consequently, mitigation efforts targeting one crisis

inevitably influence the other. Nevertheless, conventional policy frameworks
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have predominantly emphasized targeted reductions of specific pollutants,
including nitrogen oxides (NOy), sulfur dioxide (SO,), fine particulate matter
(PM5), methane (CH4), and carbon dioxide (CO;). However, atmospheric
responses to such emission controls are often nonlinear and complex. A critical
yet often overlooked factor governing these responses is the Atmospheric
Oxidation Capacity (AOC), which refers to the ability of the atmosphere to
cleanse itself of pollutants through chemical oxidation (Figure 7). AOC plays a
decisive role in regulating the atmospheric lifetime of potent greenhouse gases
such as CH4', while simultaneously determining the formation of secondary
pollutants like ozone and PM> 523, both of which are also significant climate
forcers. Emission reduction strategies targeting individual pollutants without
accounting for their interactive effects on AOC, risk triggering unintended
atmospheric consequences that may undermine both air quality gains and

climate mitigation efforts*>.

The COVID-19 lockdowns offered a compelling real-world illustration of
this systemic risk. Rapid declines in transportation and industrial activity led to
sharp reductions in NOx emissions, which is a common target in
decarbonization and clean air policies®’. However, this decrease also
suppressed the formation of hydroxyl radical (OH), the atmosphere’s primary
oxidant, leading to a decline in atmospheric cleansing capacity and consequent
accumulation of CH,8°. Studies indicate that the reduction in OH levels during
early 2020 contributed to a 53% increase in the methane growth rate anomaly?,
partially offsetting the climate benefits associated with reduced CO»
emissions. This “chemical lockdown paradox” underscores a critical
governance challenge: effective polices must consider not only what we
remove from the atmosphere, but also how those removals affect the very

processes that sustain atmospheric health. If CH4 accumulation outpaces AOC
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recovery, a destabilizing “runaway” effects could occur'®, potentially collapsing

the atmospheric self-cleansing capacity.

Analogous trade-offs are evident in regional air quality management. For
example, stringent NOx reduction in the absence of concurrent controls on
volatile organic compounds (VOCs) has in some urban regions inadvertently
increased ozone pollution'-12, Likewise, efforts to reduce PM, s concentrations
by controlling aerosol precursors may modify photolysis rates and alter
oxidative pathways, in some cases raising surface ozone levels in certain
regions'3-14, Studies suggest that a major driver of ozone increase in the North
China Plain was the approximately 40% reduction in PM; 5 between 2013-2017,
which slowed the aerosol sink of hydroperoxyl radical (HO,) and thereby
accelerated ozone production®. These unintended consequences highlight the
inherent constraints of isolated emission control strategies. To achieve
synergistic improvements in both ozone and PMy s, policies must be designed

with a holistic understanding of their combined effect on AOC.

The integration of AOC into air quality and climate governance is growing
increasingly urgent amid rapidly evolving emission policies. Although global
efforts to reduce fossil fuel consumption and decarbonize energy systems are
essential, these initiatives may profoundly reshape the atmospheric chemical
environment, notably altering the abundance of OH?2. Effectively addressing
climate change and protecting air quality therefore require a nuanced,
systems-oriented approach centered on sustaining AOC. In this perspective, we
systematically evaluate the key chemical drivers and regional variations of
AQOC, identify critical knowledge gaps in current modelling frameworks, and
propose an integrated framework for monitoring and governing AOC across
scales. By establishing AOC as a central scientific and policy nexus in

atmospheric and climate governance, co-designed strategies can be
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developed, optimized, and implemented to enhance atmospheric resilience and

deliver dual environmental and climate benefits.

CURRENT UNDERSTANDING OF TROPOSPHERIC AOC

Fundamental Chemistry and Governing Mechanisms

The stability of AOC hinges on a finely tuned set of chemical reactions
dominated by OH radicals (Figure 7)'>. These radicals are generated globally
via the photolysis of ozone in the presence of water vapor. Through catalytic
oxidation, OH radicals remove pollutants such as CH,4, CO, and VOCs, a process
that simultaneously produces peroxy radicals (RO,). The resulting peroxy
radicals subsequently oxidize NO to NO,, which undergoes photolysis to
regenerate O3z and recycle NO, thereby sustaining the oxidative cycle. Radical
propagation terminates either through the reaction between OH and NO,,
forming nitric acid (HNOs), or via peroxy radical recombination, which produces
stable peroxides (ROOH)'®. Notably, the very mechanisms responsible for
atmospheric cleansing also regenerate ozone and promote the formation of
secondary aerosols, both of which act as potent air pollutants and short-lived
climate forcers. Thus, the processes that maintain atmospheric self-cleansing
capacity are intrinsically double-edged, sustaining a delicate balance highly

sensitive to external perturbations.

AOC exhibits complex, nonlinear responses to anthropogenic emissions.
For example, although increased NOy concentrations generally enhance global
OH production, thereby shortening the atmospheric lifetimes of CH, and CO,
changes in NOyx emissions do not consistently lead to proportional changes in
atmospheric concentrations due to OH-mediated feedbacks (Box 1 scenario ¢
and d)'/. In contrast, reductions in CH4 emissions directly lower its atmospheric

burden and decrease OH consumption, resulting in higher OH concentrations

4
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(Box 1 scenario a). The behavior of CO is more complex. Although it dominates
global OH turnover, its atmospheric abundance arises not only from direct
emission but largely from CHj4 oxidation through HCHO intermediates. The
latter process consumes about 2.5 OH radicals per CHs molecule, compared to
only one OH per directly emitted CO molecule. As a result, CH; emissions exert
a stronger influence on the atmospheric oxidation system, owing to their
greater cumulative OH consumption and their role as the primary source of CO,
whereas CO emission perturbations have a comparatively minor effect (Box 1
scenario b)'8. Stabilizing AOC therefore necessitates carefully balanced,

multi-pollutant reduction strategies (Box 1 scenario f).

Moreover, climate change may perturb AOC through multiple pathways.
Elevated temperatures and water vapor levels could enhance OH production by
accelerating ozone photolysis. However, this can be counteracted by the
temperature-dependent acceleration of CHs; oxidation Kkinetics, which
consumes OH and may moderate the net increase in OH concentration (Box 1
scenario g and h). Furthermore, climate-driven increases in biogenic emissions,
notably N>O, contribute to stratospheric O3 depletion. The resulting increase in
tropospheric ultraviolet radiation elevates surface OH concentrations and
shortens the lifetime of CH;'® (Box 1 scenario e). These interacting feedbacks
complicate atmospheric predictions and highlight the necessity of integrated

chemistry-climate assessments.
Quantifying AOC: Metrics and Interpretation

Quantifying AOC across scales remains a fundamental challenge, yet is
essential for understanding atmospheric chemistry and climate interactions.
Accurate quantification requires the careful selection of appropriate metrics
aligned with specific research objectives. From a kinetic perspective, we

distinguish two principal metrics: (1) the OH concentration, an intensive

S
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property governing oxidative potential, and (2) the net O3 production rate
(P(03)), an extensive property characterizing chemical transformation rates.
These complementary metrics serve distinct but interrelated roles in

atmospheric process analysis.

OH concentration provides a foundational measure of AOC, particularly on
larger scales. Atmospheric trace gases degradation is primarily driven by three
key oxidants, namely OH, O3, and NO3. OH and NOj3 radicals exhibit extremely
short lifetimes, typically under one minute, resulting in pronounced spatial
heterogeneity tied to the distribution of their precursors. Appropriate
spatiotemporal averaging of these radical concentrations yields a robust
intensive parameter that quantitatively represents AOC while inherently
accounting for variability. In practice, OH concentration is widely adopted as a
proxy due to its central role in oxidizing most trace gases. Although this
simplification may lead to a modest underestimation of total AOC, it provides a

standardized and practical framework for cross-scale comparison. For

long-lived species such as CH,4, decadal-average OH concentrations provide a
robust measure of the atmosphere’s self-cleansing capacity and remain the

benchmark for global AOC assessment.

In the context of regional air quality, metrics of prompt oxidation rate, such
as P(03), offer more direct insight into secondary pollutant formation. This
process involves the radical-driven oxidation of primary pollutants such as NOy,
VOCs, generating intermediate species whose conversion efficiency to
secondary products like O3 and SOA depends strongly on local chemical
conditions. Tropospheric O3 concentrations have approximately doubled since
the pre-industrial eraZ3, suggesting a rise in P(03) and thus an increase in AOC.
In contrast, Earth system models indicate that global mean OH concentrations

have varied by less than 10% over the same period?4, though uncertainties in
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chemical mechanisms complicate these estimates?>. This divergence
underscores the need to tailor AOC definitions to the process and timescale of
interest. The historical rise in O3 reflects a coupled atmospheric response,
where increased O3 production from anthropogenic emissions accompanies
OH stabilization through NOx-mediated HOyx cycling, illustrating a nonlinear
feedback within the oxidation system. Thus, P(03) serves as a valuable
diagnostic of chemical efficiency in pollutant formation, revealing aspects of

oxidation chemistry that are not captured by OH concentrations alone.

In polluted environments with high aerosol loading, AOC assessment
requires additional considerations. Multiphase chemistry necessitates
supplementary metrics, such as Oy (=03+NO,) and secondary aerosol mass
fractions, to fully capture oxidation processes. Nevertheless, in this perspective,
we focus mainly on gas-phase reactions to reduce system complexity, while
clarifying how OH-mediated hydrocarbon oxidation couples air pollution with

climate change.
Key Drivers and Chemical Regimes of AOC

The spatial distribution of AOC is primarily governed by emission patterns,
with NOx serving as the dominant driver of its variability26. This regulatory role
manifests as a clear contrast between chemical regimes, where polluted urban
regions are often NOy-saturated, suppressing oxidation efficiency, whereas
remote regions are typically NOx-limited, with oxidative capacity tightly coupled
to NOyx availability20-21, State-of-the-art box model simulations capture this
contrast, revealing the distinct responses of OH concentration and in-situ P(O3)
to varying NO levels across urban, forest, and marine environments (Figure 2)%/.
A key feature emerging from these simulations is the divergent behavior of the
two AOC metrics across NO concentrations spanning six orders of magnitude.

OH concentrations remain relatively stable, maintaining levels between (1-5)x

7/
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108 cm3 with less than fivefold variation. In contrast, P(O53) exhibits pronounced
nonlinearity, transitioning from slightly negative values in pristine marine air
(ppt NO levels, mixing ratios of parts per trillion) through maximum production
rates (tens of ppb/h, parts per billion per hour) in moderately polluted urban air
(a few ppb NO, parts per billion) to nearly zero in heavily polluted urban air (tens

of ppb NO).

Furthermore, while OH concentrations at a given NO level can differ across
regimes (Figure 2a), P(03) displays a smooth, consistent functional relationship
with NO that is largely independent of the local environment (Figure 2b). This
divergence arises from regime-specific VOC characteristics, particularly their
abundance and chemical complexity, which modulate the conversion efficiency
of OH radicals to peroxy radicals. Globally, a positive feedback links O3 and OH,
where VOCs oxidation drives Oz production, which in turn photolyzes to
generate OH and accelerates further oxidation. In the marine boundary layer
(MBL), however, limited OH reactants (mainly CH4 and CO) suppress radical
propagation, while extremely low NO concentrations restrict O3 production,
constraining the sustainability of AOC. This establishes a fundamental spatial
decoupling: although the global cleansing capacity for long-lived gases like CH4
is determined by moderate OH over the vast MBL, the chemical potential for O3
production is concentrated over continents, particularly in urban and suburban
areas. The hemispheric-scale transport of O3 which has an atmospheric
lifetime of approximately one month, critically couples these chemically distinct
domains, enabling OH production via O3 photolysis even in remote areas where
local O3 chemistry results in net loss (e.g., through reactions with OH, HO, and
halogen species in the MBL)28. This Os3-mediated chemical buffering effectively
extends AOC globally, facilitating pollutant degradation even in NOx-limited

environments.
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Nevertheless, at smaller scales, the oxidation capacity is not unlimited and
can be exceeded under high emission loads, particularly in urban areas?®. When
local AOC recovery mechanisms are overwhelmed, excess pollutants are
transported downwind, moving across chemical regimes and undergoing
oxidation over broader spatial scales. This redistribution mechanism, which
links local chemistry to global AOC, represents a critical feature of atmospheric
self-cleansing. It underscores the necessity of multi-scale emission
management strategies that explicitly account for the inherent spatial

heterogeneity and nonlinearity of atmospheric oxidation processes.

DIVERGENT AOC TRENDS AND REGIONAL POLICY
LESSONS

A central question in AOC research involves determining long-term trends
in OH concentrations, given their critical role in regulating the removal of CH,4
and its associated climate impacts. Reliable quantification of OH variability is,
therefore, essential for understanding how anthropogenic emissions influence
the atmospheric lifetime and burden of CHs. The complex variations in the
decadal-scale growth rate of atmospheric CH4 underscore the urgency and

importance of this quantitative effort.

Observational records reveal that although CH4 has generally exhibited a
long-term increasing trend since industrialization, this trend was interrupted by
a distinct pause between 2000 and 2006. While the long-term increase is
largely attributed to the rise in anthropogenic emissions30, the causes of the
pause remain debated. Proposed explanations include an increase in OH
concentrations enhancing CH,4 oxidation, a temporary halt in CHs emissions
growth, or a combination of both31-32, Definitive attribution, however, is

complicated by substantial uncertainties in quantifying key processes such as
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OH concentration estimates, wetland emissions, fossil fuel leakage, and
microbial sources. Specifically, each of these factors contributes approximately
10% uncertainty to the CH4 budget. Cumulatively, these uncertainties exceed
the observed CH4 growth rate of ~0.5% yr', making it difficult to confidently

attribute both the historical pause and the subsequent renewed growth.

Model simulations from CESM2/WACCM6 initial-condition ensembles
suggest a sustained increase in global OH after the year 2000 (Figure 3)33,
which may have partly attenuated CH4 growth between 2000 and 2006, though
its magnitude appears insufficient to fully account for the stabilization. The
subsequent leveling-off of OH concentrations after 2007 coincides with the
resumption of CH, growth34, reinforcing the coupling between OH variability
and CHg4 trends. The unprecedented acceleration in CH4 growth during the 2020
COVID-19 lockdowns further illustrates how abrupt reductions in NOx
emissions can perturb global OH levels, leading to a substantial increases in
CHs growth? although elevated wetland emissions also contributed
significantly to the anomaly3°36. While this Perspective focuses on elucidating
the linkages between global OH concentrations and regional air pollution rather
than attributing specific CH4 trends, it underscores the necessity for Earth
system models to adequately resolve these critical chemistry-climate

interactions.

As global OH concentrations are primarily governed by NOy emissions and
ultraviolet radiation3’, a realistic representation of these drivers is critical for
projecting future OH levels and adjustments in CH4; atmospheric lifetime.
Among these drivers, natural NOx sources, particularly lightning, play a critical
yet poorly constrained role in the global oxidative budget°2. These emissions
are strongly modulated by weather and climate, and their representation in

models remains a major source of uncertainty. Emerging evidence indicates
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that lightning directly generates OH radicals alongside NO, with OH production
efficiencies ranging from 2% to 16%°3. As a key driver of wildfires and with
frequency projected to increase 41% by the 2090s under RCP6.0 climate
scenario®4, lightning constitutes one of the largest uncertainties in projecting
future OH levels and AOC®'. The uncertainties introduced by these complex and
variable drivers make robust observational constraints on OH levels especially
critical for evaluating model simulations. However, observational constraints
on OH beyond 2014 remain subject to significant uncertainty, primarily due to
limitations of the methyl chloroform (CH3CCls) tracer method, whose accuracy
has been severely compromised as concentrations decline below 5 pptv°0. This
scarcity of robust observational data after 2014 critically limits our ability to

evaluate model simulations and refine future projections.

The regional distribution of OH concentrations provide additional critical
insights into the atmospheric lifetime and burden of CH4. As outlined in Section
2, the spatial decoupling between global OH and O3 as AOC metrics reflects a
fundamental heterogeneity in oxidation intensity. This heterogeneity manifests
through three key mechanisms: First, tropospheric O3 production is
concentrated primarily in the Northern Hemisphere mid-latitudes®?, where major
urban and industrial regions (e.g., China, the United States, and Europe) are
located. NOyx emissions from these areas not only drive intense local
photochemistry but also help sustain OH levels in remote forested and marine
environments, thereby facilitating the global removal of CH4 (Figure 2). Second,
the spatial heterogeneity of OH concentrations leads to a pronounced tropical
dominance in the oxidation of VOCs and, consequently, in atmospheric CH4
consumption?*. Interhemispheric OH differences further modulate CH,
distribution and modify the climate-chemistry interactions in response to

anthropogenic emissions38. Third, and crucially for policy, regional-scale OH
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variations serve as a key metric for evaluating the effectiveness of air pollution
mitigation strategies, which are typically implemented at national or

subnational scales.

The contrasting trends between China and the United States offer a clear
illustration of this principle (Figure 3). In the United States, OH concentrations
have declined alongside improvements in air quality3®. In China, by contrast, OH
has increased consistent with observed rise in 03*° and secondary aerosols?#,
despite reductions in primary emissions following implementation of the
national Air Quality Action plan in 201342, This divergence can be partly
attributed to differing NOx reduction strategies. China’s integrated approach
targeting both NOx and VOC control43 may help sustain regional AOC while
improving air quality'8, whereas the predominant focus on NOy reduction in the
United States**4° contributes to a more pronounced regional OH decline. Such
regional-scale OH reductions, while beneficial for local air quality, may influence
AOC beyond local scales® and introduce climate trade-offs by weakening the
CH, sink, as evidenced during the COVID-19 lockdowns#. Current Earth system
models, however, still do not fully capture these climate impacts resulting from
air quality-driven changes in CHs loss rates, despite recent efforts to

incorporate such chemistry-climate interactions*/-4°.

At regional and urban scales, the intricate interplay between reactive
nitrogen and carbon chemistry emerges as a key regulator of AOC. This
regulation is particularly evident in urban environments, where primary radical
sources such as nitrous acid (HONO) and HCHO photolysis often dominate
over Oz photolysis. This dominance explains the occurrence of winter
photochemical smog in high-emission regions, such as areas with extensive
natural gas production or petrochemical industries like the Utah Basin in the

United States, where significant emissions of oxygenated volatile organic
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compounds (OVOCs) drive winter O3 pollution®0>7, In China, unique topographic
features favor large-scale pollution accumulation, especially in the North China
Plain under stagnant atmospheric conditions, creating ideal environments for
studying these processes. Radical budget analyses based on in situ
measurements confirm the roles of reactive nitrogen species beyond NOy,
particularly HONO and nitryl chloride (CINO,), in the formation of O3 and

aerosols?8-99,

Beyond these established mechanisms, the understanding of AOC is
further complicated by recently identified chemical processes whose impacts
are not yet fully constrained®0-1. For instance, regional fertilization via
agricultural activities releases HONO and N,O, which may promote Ogj
pollution®?, offset pollution control measures®3, or alter the CH, lifetime through
troposphere-stratosphere interactions®. Similarly, the growing recognition of
reactive halogen chemistry reveals its role in urban air pollution and climate
change®4%>, offering new insights for controlling secondary pollutants.
However, the chemical behavior of short-lived halogen species remains
inadequately characterized. Of particular interest are their indirect climatic
effects mediated through changes in AOC, an aspect not yet incorporated into
current Earth system models®®. In conclusion, these non-conventional pathways
significantly enhance local AOC under intensive anthropogenic emissions,
accelerating the formation of secondary pollutants and posing novel
challenges for air quality management. The resulting complexity underscores
that the limited understanding of emission profiles and chemical mechanisms
remains a major source of uncertainty in air quality prediction and regulation

worldwide®”’.

The formation of secondary pollution is further complicated by seasonal

variations in AOC. Summer O3z pollution is primarily driven by OH-initiated
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oxidation pathways, whereas winter secondary aerosol formation involves both
gas-phase and multiphase processes®8-°. Resolving these dynamics requires
long-term observational records of OH concentrations, which are critical for
identifying the factors controlling AOC across timescales from diurnal to
seasonal’?. The importance of such datasets is underscored by a five-year in
situ study, which revealed a robust correlation between OH concentrations and
O3 photolysis rates (j(O'D)) that persisted across diverse chemical regimes’’.
Although geographically limited to a single rural site, these findings
significantly advance our understanding of AOC drivers. Furthermore,
decadal-scale OH measurements are essential for tracking the evolution of air
pollution and its associated climate feedbacks. We therefore propose
establishing a multi-scale observational network by employing comprehensive
techniques across local, regional and global scales (see Box 2). Such an
integrated network would greatly enhance our ability to interpret complex

climate-chemistry interactions through long-term, high-quality data.
AN INTEGRATED AOC GOVERNANCE FRAMEWORK

For future applied and scientific investigations, we propose exploring the
role and fate of AOC through a consolidates framework that unifies the
scientific and technical basis to address both air pollution and climate change,
consistent with existing environmental conventions (Figure 4). Future
atmospheric dynamics will be shaped by energy system transitions toward
climate mitigation targets, alongside climate-driven shifts in natural emissions,
including biogenic, wetland, lightning-derived sources. The nonlinear
atmospheric response to emissions, mediated by AOC mechanisms, exhibits
particular sensitivity to declining NOx emissions, a trend expected to intensify.
To optimize regional air quality strategies, mitigation roadmaps must rigorously

account for AOC feedbacks, necessitating targeted research to strengthen the
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scientific basis for implementing a win-win strategy that simultaneously
improves air pollution control and climate change mitigation. These efforts
must also be contextualized within the broader scope of other international

environmental conventions.
Navigating the Energy Transitions Green Paradox

The global energy transition is accelerating decarbonization across fossil
fuel-intensive sectors, including heavy industry, transportation, and power
generation. Current technological pathways for emission reduction can be
classified into three categories based on their impacts on atmospheric
chemistry: (1) the adoption of zero-emission technologies, such as
photovoltaics, wind, hydroelectric, and nuclear power, enables the simultaneous
reduction of CO, and NOx emissions; (2) the shift to hydrogen (Hy) fuel cells
reduces CO;, and NOx emissions at the point of use but can be accompanied by
unintended release of reduced chemical species, such as fugitive H, emissions
across the supply chain; and (3) the combustion of H, or ammonia, as a
replacement for fossil fuels, reduces CO, emissions but may be offset by

elevated NOx formation from high combustion temperature and by H, leakage.

The rapid adoption of electric vehicles (EVs) serves as a prime example of
the potential atmospheric impacts of the zero-emission technological pathway
in the energy transition. Shifting to EVs powered by grid electricity from
renewable sources eliminates a primary source of CO, and especially NOx
emissions in urban environments, but this transition introduces complex side
effects that require thorough investigation. The COVID-19 lockdowns provide a
revealing natural experiment analogous in many ways to the EVs transition, as
transportation emissions via internal combustion engine vehicles was
drastically reduced during this time. This emission reduction revealed the

nonlinear behavior and critical importance of AOC in secondary pollution
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formation’2. Global observations showed that although NOy reductions
improved air quality in some regions’3, China experienced secondary pollution
bursts (O3, particulate nitrate, and organics)’4’> and global CH4 loss rates
declined undesirably*. These divergent, region-specific outcomes demonstrate
that the impacts of fossil fuels phase-out depend strongly on local chemical
regimes, shaped by the interplay of anthropogenic and biogenic emissions with
meteorological conditions. Notably, the air quality benefits are localized, but the
potential increases in CH4 levels may exacerbate global climate impacts. This
disparity creates disproportionate burdens for developing countries,
underscoring a critical equity dilemma in climate mitigation policy. The EVs
transition thus serves as a critical warning, highlighting the imperative to
strategically manage AOC in order to navigate these inequities and complex

trade-offs.

Given the anticipated nearterm persistence of CH4 and reactive carbon
emissions, maintaining AOC will necessitate the strategic deployment of NOx
emissions, despite their inherent trade-off with local air quality. This approach
is grounded in the spatial interdependence of the oxidation system: relocating
NOx-emitting industries to tropical regions, which are characterized by high
oxidation capacity and function under NOx-limited chemical regimes, could
enhance the OH levels responsible for global CH, removal, while reducing
ground-level O3 and NOy in populated areas’®. This offers a promising pathway
to co-managing air quality and climate mitigation. However, implementing such
geoengineering strategies is not a direct decision but a complex prospect
fraught with challenges. It first demands comprehensive evaluation across
three critical dimensions: (1) the ethical assessment of pollution burden
redistribution and its socioeconomic consequences, (2) a rigorous cost-benefit

analysis comparing AOC gains against local environmental and health costs,
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and (3) the establishment of equitable compensation frameworks, potentially
integrated with carbon market mechanisms, to address regional disparities in
environmental impacts. Furthermore, even if deemed ethically and
economically viable, realizing this potential depends critically on the availability
of accurate numerical models capable of simulating the complex interactions
among meteorology, climate, and atmospheric chemistry in response to
anthropogenic emission changes®®. At present, the utility of Earth system
models for this task is hindered by considerable uncertainties, including
inaccuracies in emission inventories, oversimplified chemical mechanisms, and
insufficient coupling of key climate-chemistry feedbacks. Therefore, advancing
the predictive capability of these models is an essential prerequisite to
translating the concept of emission redistribution into credible, policy-relevant

strategies.

Hydrogen, as a clean energy carrier and carbon-neutral fuel, represents a
promising alternative pathway toward carbon neutrality, especially as
electrification generates surplus electricity for its production via electrolysis.
However, the large-scale deployment of Ho-based technologies, whether in fuel
cells or through combustion of Hy or ammonia, introduces substantial
atmospheric risks that extend well beyond engineering and economic
constraints. The primary common risk is fugitive emission of H, and its
precursor, CH,, across the supply chain. For instance, the ‘blue hydrogen’
process, which utilizes CH4 as feedstock to produce Hy with CO, byproducts,
offers one potential pathway to meet global energy needs. Yet even with
perfect CO, capture, this approach remains prone to fugitive emissions of H,
and CH,4 during transport and use, which could increase atmospheric CH,
levels, thereby offsetting potential climate benefits'’. 77. Additionally, H,

combustion produces water vapor that may influence climate systems from
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local to global scales’8, and could potentially impact stratospheric chemistry’®.
Furthermore, the use of ammonia (NHs3) as a potential H, carrier and fuel, may

alter particulate acidity and exacerbate urban air pollution®.

These emerging risks necessitate a full life-cycle environmental impact
assessment of Hy prior to large-scale deployment?®l, particularly regarding the
response of atmospheric self-cleansing capacity to shifting emission patterns,
a relationship clearly demonstrated through historical OH records that reveal
how energy system transitions have fundamentally reshaped AOC.
Consequently, climate governance must undergo a fundamental paradigm shift
by elevating AOC stabilization to the same strategic priority as CO, mitigation
within policy frameworks. This is essential to avoid trading near-term gains for
long-term crises, such as compromised AOC, accelerated CH4-driven warming,
and the inequitable pollution redistribution. This requires policies that integrate
chemical feedback mechanisms, informed by advanced atmospheric research
and historical evidence, to maintain Earth’s self-cleansing capacity while

achieving emission targets.
Advancing Next-Generation AOC Model Development

(a) Improving OH Chemistry in VOC-Rich Environments

Current atmospheric chemistry models systematically underestimate AOC
in environments dominated by biogenic VOCs (BVOCs) and OVOCs, particularly
under low-NOyx conditions#>0>82 This persistent model bias, evidenced by
consistent discrepancies between measured and simulated OH radical
concentrations?®. 8384 points to critical gaps in our mechanistic understanding
of VOCs oxidation pathways?6. Key uncertainties involve the autoxidation
mechanisms of BVOC- and OVOC-derived RO, radicals, their
temperature-dependent H-shift tunneling kinetics, and the contribution of

unimolecular RO, reactions to OH recycling?. 8586, To address these gaps,
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integrated laboratory, theoretical, and field studies are required to quantify the
rates and products of RO, isomerization and fragmentation reactions under
atmospherically relevant conditions. Incorporating these refined mechanisms
into next-generation chemical models is essential for accurate projection of OH
radical concentrations and AOC. This advancement is particularly urgent given
ongoing policy-driven emission changes, such as afforestation increasing
BVOC emissions and decarbonization reducing anthropogenic NOyx emissions,
and will provide a more robust scientific foundation for climate and air quality

policymaking.
(b) Enhancing Climate-Chemistry Feedback in AOC Projections

Biogeochemical feedbacks: Accurate projection of AOC under climate
change necessitates an integrated understanding of biogeochemical
feedbacks coupled with dynamic emission processes. Current models exhibit
substantial uncertainties, particularly in representing climate-sensitive
emissions and multi-scale chemical interactions. Addressing these gaps
demands a systematic effort to enhance the mechanistic representation of key
processes and to develop observationally constrained, predictive frameworks.
A primary challenge lies in quantifying climate-driven emissions of reactive
species. Rising temperatures amplify releases of VOCs from both
anthropogenic volatile chemical products (VCPs) and BVOCs. Concurrently,
natural methane emissions from wetlands and NOy from soils and lightning are
perturbed by warming, while increasing wildfire activity contributes substantial
reactive gases and aerosols®/0, To reduce uncertainties in these fluxes, future
work should prioritize the development of process-based emission modules
responsive to climate forcing, supported by improved mechanistic
parameterizations and multi-platform observational constraints. Advanced

monitoring technologies, such as remote sensing, eddy covariance systems,
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and chamber-based field measurements coupled with next-generation Earth
system models, will be critical to capture temperature-dependent changes in

AOC and to better project chemistry-climate feedbacks.

Tropospheric halogen chemistry: These complex interactions are further
compounded by significant uncertainties in halogen chemistry®4%°, particularly
within the MBL, where persistent knowledge gaps limit our ability to accurately
quantify oxidative processes. Major challenges include insufficient kinetic data
for critical reactions (e.g. 10+CH305), sparse measurements of reactive halogen
species (RHS) such as |0 and BrO that are essential for resolving their
spatiotemporal distributions, and poorly constrained emission estimates that
are likely to be intensified under climate change®® ®1. An especially pressing
priority is to refine the understanding of bromine (Br) in governing the
atmospheric lifetime of mercury (Hg), which currently shows high variability (4
to 40 days) due to uncertainties in Br sources. Although Br has traditionally
been ascribed to marine emissions, recent observations of elevated BrCl over
the NCP in China suggest the presence of additional, poorly quantified
terrestrial or anthropogenic sources®'. Moreover, the activation pathways of
RHS, primarily mediated by NOy, introduce further complexity, as future
reductions in NOx emissions may fundamentally reshape these mechanisms in
ways not yet captured by models. Addressing these gaps demands a targeted
research strategy aimed at enhancing the identification of RHS source and
refining their representation in model. Critical steps comprise expanding field
measurements to better constrain spatiotemporal RHS variability, conducting
laboratory studies to resolve kinetic parameters, and integrating refined
halogen emission and chemistry modules into climate-chemistry models. Such
advancements are essential for reducing uncertainties in projections of Hg

cycling and enhancing the accuracy of halogen-mediated climate feedbacks.
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Interactions with troposphere-stratosphere: Furthermore, evolving
emission patterns due to intensified industrial pollution controls are elevating
the relative importance of agricultural activities in atmospheric chemical
processes. The increased use of fertilizer and expansion of agricultural activity
are projected to enhance soil N2O emissions, which may indirectly modulate
atmospheric CH,4 levels via complex stratosphere-troposphere interactions'? 92,
Stratospheric processes introduce additional complexity, with model
ensembles suggesting that stratospheric ozone accounts for approximately
25% of surface ozone concentrations, although inter-model variability exceeds
a factor of two?3. Furthermore, emerging evidence indicates that stratospheric
air intrusions can affect climate regimes by triggering large-scale new particle
formation events?4, revealing previously underappreciated
troposphere-stratosphere interactions that require systematic investigation
under future climate scenarios. Efforts to constrain these linkages must
integrate advanced observational networks with next-generation modelling
frameworks. Critical pathways forward involve improving the mechanistic
representation of agricultural N2O and CH4 coupling within Earth system
models, achieving higher vertical resolution to quantify
stratosphere-troposphere exchange processes, and deploying targeted field
campaigns to validate the impact of stratospheric intrusions on particle

formation and radiative forcing.
(c) Coupling Methane and Chemistry in Earth System Models

Current Earth system models predominantly rely on prescribed CH4
concentrations rather than prognostic, emissions-based approaches. While
emerging model frameworks are beginning to incorporate interactive methane
cycling4/-4°, many widely used models still fail to capture the nonlinear coupling

between CH4 emissions and atmospheric concentrations, neglecting critical
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chemical feedbacks, particularly those involving radical chemistry. The
prescribed-concentration approach implicitly parameterizes OH levels using
simplified scaling factors for changes in OH precursors'®?>, introducing a
fundamental inconsistency in the representation of atmospheric oxidation
capacity. Significant uncertainties in CH4 chemical loss rates, driven largely by
poor constrains on global OH concentrations, further impede the adoption of

emission-based approaches and amplify uncertainties in climate projections.

To advance Earth system modeling towards robust, emission-driven CH4
simulations, a concerted effort is needed to reduce key mechanistic
uncertainties and develop advanced model configurations with fully interactive
CH4 chemistry. A critical priority is to significantly reduce uncertainties in
atmospheric chemical sink processes, particularly the representation of OH
chemistry. This requires refining the spatiotemporal variability of OH
concentrations within models by improving the mechanistic understanding of
radical chemistry and the representation of key drivers, such as photolysis
rates, NOy emissions, and VOC interactions. Enhanced coupling between
tropospheric chemistry and climate dynamics is also essential to capture
feedback mechanisms that modulate CH4 lifetime under evolving scenarios.
Concurrently, process-based representations of methane sources, especially
climate-sensitive wetlands, thawing permafrost, and inland waters, require
improved mechanistic modelling of their hydrological, ecological, and
biogeochemical interactions. These modelling efforts must be strongly
supported and constrained by multi-platform observations that integrate
top-down remote sensing with bottom-up field measurements, enabling
improved emissions quantification and model validation through advanced
data assimilation. Ultimately, integrating these components into coupled

emission-chemistry modules that dynamically link anthropogenic and natural
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sources with atmospheric oxidation processes will be crucial. Such
advancements will support a robust transition from concentration-driven to
emission-driven CHy representation, enabling more reliable projections of AOC

and better-informed evaluation of climate-air quality policy interactions.
Global AOC Monitoring and Science-Based Policy

The transition to low-carbon energy systems introduces complex
atmospheric trade-offs, underscoring the need to systematically monitor AOC
as a critical metric of Earth’'s atmospheric resilience. A robust global AOC
observation network would provide the essential data required to evaluate OH
concentrations, which govern the atmospheric self-cleansing capacity and the
lifetime of CH, as well as total OH reactivity that serves as a key proxy for
radical loss processes in atmospheric models. As outlined in Box 2, such an
integrated monitoring system would deliver quantitative, policy-relevant metrics
across spatial and temporal scales, bridging fundamental science and

decision-making.

Implementation this network requires coordinated advances across
multiple measurement technologies (Box 2). Existing ground-based
atmospheric supersites require upgrades with next-generation instrumentation
capable of simultaneous radical measurements and reactivity quantification.
The high costs of these technologies must be reduced through innovation in
laser spectroscopy and sensor miniaturization to enhance accessible.
Concurrently, novel satellite remote sensing methodologies must be developed
to achieve global mapping of OH distributions, extending coverage beyond
ground-based limitations®®. These parallel developments require sustained
international funding to establish standardized measurement protocols, ensure
cross-platform data compatibility, and maintain the long-term monitoring

necessary for detecting critical climate-chemistry feedback mechanisms.
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The proposed AOC monitoring network offers equally significant scientific
and policy applications. By characterizing spatiotemporal patterns in AOC, it
would enable optimization of emission reduction strategies. For instance,
guiding industrial sitting decisions that balance local air quality goals with
global atmospheric cleansing needs. The network's data products would
provide empirical benchmarks for assessing compliance with international
climate agreements like the Global Methane Pledge and Paris Agreement.

Furthermore, integration of AOC metrics into Earth system models would help

resolve current uncertainties in CH4-OH feedback mechanisms that currently

constrain climate projections.

To operationalize this framework, we propose establishing an International
AOC Science Alliance that brings together atmospheric chemists, remote
sensing experts, and policy specialists. This consortium would oversee three
primary functions: (1) harmonization of measurement standards and quality
assurance across observational platforms; (2) development of open-access
data repositories featuring real-time analytics capabilities; and (3) translation of
scientific observations into actionable policy guidance for clean energy
transitions. Through such a coordinated global effort, it becomes feasible to
navigate the complex atmospheric impacts of decarbonization while preserving

the Earth’s self-cleansing capacity during this critical transition.

GOVERNING AOC FOR CLIMATE AND AIR QUALITY
CO-BENEFITS

The transition toward carbon neutrality confronts a critical atmospheric
governance challenge: sustaining Earth's self-cleansing capacity while
simultaneously improving regional air quality and meeting global climate

objectives. Policymakers urgently need predictive, systemic tools capable of
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quantifying the trade-offs and co-benefits between air quality management and
climate mitigation. However, a significant gap persists between current
atmospheric science capabilities and policy requirements. Existing climate
governance frameworks, including the Paris Agreement and Global Methane
Pledge, often lack mechanistic links to atmospheric chemistry, leaving
regulators without actionable insights into how emission changes impact
oxidative capacity, pollutant lifetimes, or secondary formation. To bridge this
gap, we propose an innovative AOC framework that translates complex
chemical processes into policy-operational metrics. This approach moves
beyond reactive regulation by embedding atmospheric feedbacks directly into
policy design, enabling proactive and integrated decision-making. We call for
the adoption of dynamic, chemistry-informed governance tools that align
emission pathways with AOC stability, ensuring that climate strategies do not
inadvertently compromise atmospheric resilience. Furthermore, we urge
enhanced collaboration between scientific and policy communities to
co-develop scalable, regionally tailored approaches that maintain oxidation
capacity throughout deep decarbonization. Looking forward, AOC must be
elevated from a passive chemical metric to a central governance pillar,
enabling smarter and more adaptive climate policy grounded in the realities of

atmospheric science.
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Figures and Tables:

Natural sources and Meteorological conditions:
marine, wetland, soil, biogenic, lightning, wild fire, radiation, clouds
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Figure 1: Schematic representation of tropospheric chemistry-climate
interactions. OH governs the atmospheric lifetime of CHy4, a potent greenhouse
gas, and drives the formation of secondary pollutants such as ozone and PMj s,
which also act as significant climate forcers. It plays a critical role in linking air
pollution and climate forcing by mediating key atmospheric chemical
processes. Orange-highlighted species in the left panel represent reactive
gases from anthropogenic and biogenic sources that undergo OH-initiated
oxidation, while those marked in black denote emitted non-reactive greenhouse
gases and pollutants. Blue arrows indicate the oxidation pathways of reactive
carbon compounds (e.g., CH4, CO, and VOCs), leading to the formation of
secondary pollutants including O3 and PM,s. The red arrow denotes the
photolysis of O3 to O('D), followed by reaction with water vapor, representing
the dominant global source of OH. The black arrow denotes the oxidation
processes involving NOx, SO,, and VOCs that contribute to the production of
secondary aerosols, such as nitrate, sulfate, and organic aerosols. The inset
presents a simplified scheme of global tropospheric photochemistry. CH,4
serves as a key representative of OH-oxidized gases (including CO, H,, VOCs),
producing HO2 and RO»; RO» is a placeholder for peroxy radicals like HO, and
RO» which react with NO to form NOy; ROOH represents peroxides (e.g., HOOH,
ROOH, and ROOR), which act as critical precursors to particulate matter (PM)
and influence cloud formation, thereby affecting climate.
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Figure 2: Dependence of OH concentration and net ozone production rate
(P(03)) on NO levels across marine, forest, and urban environments.
Simulations were conducted using a chemical box model incorporating the
RACM2-LIM1 mechanism, which has been validated against field campaigns?”.
The principal distinction among the simulated environments lies in their VOC
compositions. VOC profile were derived from field observations at
representative locations: the tropical Atlantic Ocean (marine)28, Amazon Forest
(forest)?/, and Beijing (urban)?8. In each scenario, VOC concentrations were
held fixed at observed levels, as were other trace gases and meteorological
parameters. Simulations were conducted under clear-sky, summer-like
conditions using daytime-averaged values (08:00-17:00 local time) and run for
one week to achieve steady state. To explicitly evaluate the NO dependence,
the observed NO concentration at each site was systematically scaled from
0.01 to 100 times the site-specific mean value (denoted by black dots). P(O3)
represents the net ozone production rate, calculated as the difference between
gross ozone formation from NO oxidation by peroxy radicals and total oxidant
loss via ozone reactions with radicals and NO,. The detailed methodology for
this calculation has been described previously®®.
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Figure 3: Time series of annual mean OH concentrations for China, the United
States, and the global average, normalized to the year 2000. OH
concentrations are derived from a 15-member initial-condition ensemble
simulation conducted with the Community Earth System Model version 2-Whole
Atmosphere Community Climate Model version 6 (CESM2-WACCM®6). All
simulations used identical boundary conditions, with variations across
members resulting from perturbations in initial conditions33. The model covers
the period 2000 to 2014 at a spatial resolution is 0.96°x12.5°. The shaded
regions represent the range between the minimum and maximum values
across the ensemble members.
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Figure 4: A proposed framework for future decision-making from the
perspective of AOC. The transition to carbon neutrality will substantially alter
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energy production and associated emission patterns. Simultaneously, natural
emissions, such as those from biogenic sources, wetlands, and lightning,
respond to ongoing climate change. The AOC critically influences the
atmospheric lifetime of trace gases and the conversion of pollutants. To
support effective regional air quality improvement, a scientifically grounded
mitigation strategy should seek to regulate the AOC through balanced regional
and global distribution.
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Box 1: Global atmospheric composition responses to emission or boundary

condition perturbations.

Box 1 summarizes the projected response of global concentrations of CHg4, CO,
O3, OH, and NOx concentrations to minor perturbations in emissions or
boundary conditions. An upward arrow (1) indicates a positive response, a
downward arrow (1) a negative response, and a dash (-) no significant change.
In scenario a, reduced CH, emissions decrease atmospheric CH, levels and OH
consumption, leading to higher OH levels. In scenario b, although CO dominates
global OH turnover, CH4 emissions exert a stronger influence on atmospheric
oxidation system because of their greater cumulative OH consumption (2.5 vs.
1 OH radical per molecule) and their role as the primary source of CO, making
CO emission perturbations comparatively minor24. In scenario ¢ and d, higher
NOx concentrations generally enhance OH production on a global scale, thereby
shortening the atmospheric lifetimes of CHs and CO and reducing their
concentrations. However, atmospheric NOx levels do not respond
proportionally to emission changes, and O3z formation becomes relatively
insensitive to NOx due to OH-mediated feedbacks. Scenario f involves
simultaneous reduction of CH4 CO, and NOx emissions by the same factor.
Scenario e and g represent enhanced ultraviolet radiation and elevated water
vapor, respectively, both promoting OH production via ozone photolysis. In
scenario h, elevated temperature perturbs atmospheric chemistry by
accelerating CHs oxidation (an OH-consuming process that reduces it

concentration), while also promoting OH production via ozone photolysis.

Initial change Responses
Scenario Emission changes| CHy CH4 CO O3 OH NOy
lifetime
a | CHy4 ! ! ! ! 1
b 1 CO - - ! - -
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C 1 NOy l l l - 1
d | NOx 1 ] 1 - !
e t Sunlight ! ! ! ! 1
f | CHg4, CO, NOx ! - ! ! -
g 1 Hy0 ! ! ! ! 1
h t Temperature ! ! - - -
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Box 2: Summary of measurement techniques and models for interpreting AOC

for different scales.

On a global scale, the averaged OH concentration could be derived from the
decay of the CH3CCls, whose lifetime is similar to that of CH4 and thus an ideal
substance to reflects the chemical sink of CHa4. The production and emission of
CH3CCI3 has ceased by early 2000s providing a clear decay trend to calculate
the OH concentration for the last decade. However, the CH3CCl; concentrations
has recently dropped to below 5 pptv, substantially reducing the accuracy of
OH estimates. It is therefore urgent and critical to identify an alternative to
CH3CCls. An ideal alternative may be either a natural atmospheric component
or an intentionally introduced compound, but it must satisfy the following
criteria: well-defined sources, exclusive reactivity with OH radicals, an
atmospheric chemical lifetime comparable to methane, and minimal adverse
effects on human health or ecosystem. #CO is produced in the stratosphere
from the interaction of cosmic rays with nitrogen ('4N). This #CO then diffuses
into the troposphere and reaction with OH which is a major sink for CO in the
atmosphere. As the lifetime of CO is only about a month, this method could
provide hemispheric and continental OH concentrations with a time resolution
of months. For regional and local scale, the metric of interest for AOC
quantification shifts to the turnover rates of oxidations. This requires both the
OH concentration and reactivity. Direct OH measurement can be achieved by
laser-induced fluoresce or chemical ionization mass spectroscopy'®. The
chemical reactivity of the airmass could be obtained by total OH reactivity
measurements. These instrumentations could be equipped on ground-based or
airborne platforms to provide local or regional AOC information. Here shows
the summary of measurements techniques and models for interpreting AOC for

different scales.
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Resolution Metric of Requirement of Model Possible improvement
Scale interest measurements
Global Decadal CH3CCl; Earth New tracers (natural or
averaged [OH] system artificially added)
for determining model
CH,4 lifetime and
background O3
production
Continental |[OH] variationin [14CO Global Interactions between air
the time scale of model pollution and climate
months change
Regional Regional [OH] [Spatial-averaged |[Regional |Vertical profile of oxidizing
measurement of |model capacity, relation to
regional OH secondary pollution
concentration and
total reactivity
Local [OH] and total |In situ OH, total |zero-dimen Atm.ospherlc flagship _
OH reactivity to [and speciated sion model stations (comprehensive

test against
current chemical
mechanism

reactivity

measurements of other
oxidants and intermediates
species, covering
representative stations of
forest, marine, urban),
BVOCs degradation
mechanisms, OH
parameterization
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