npj | robotics

Article

https://doi.org/10.1038/s44182-025-00065-w

GenSwarm: Scalable Multi-Robot Code-
Policy Generation and Deployment via

Language Models

M| Check for updates

Wenkang Ji', Huaben Chen', Mingyang Chen', Guobin Zhu?, Lufeng Xu®, Roderich GroB*°, Rui Zhou?,

Ming Cao® & Shiyu Zhao'

The development of control policies for multi-robot systems traditionally follows a complex and labor-
intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research
on methods to automatically create control policies. However, these methods require iterative
processes of manually crafting and refining objective functions, thereby prolonging the development
cycle. This work introduces GenSwarm, an end-to-end system that leverages large language models
to automatically generate and deploy control policies for real-world multi-robot systems based on user
instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot
learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code
policies ensures strong reproducibility and interpretability. With its scalable software and hardware
architectures, GenSwarm supports efficient and automated policy deployment on both simulated and
real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that
may transform the development paradigm of multi-robot systems in the future.

Multi-robot systems show significant promise for applications both
indoors (for example, factory floors, warehouses, hospitals) and outdoors
(for example, transport, inspection, farming, disaster response)’. The
present paradigm of developing multi-robot systems follows a complex
and labor-intensive process that involves steps like task analysis, algo-
rithm design, code programming, simulation validation, and real-world
deployment. This paradigm requires skilled professionals who are
familiar with both theories and software/hardware implementation,
incurring high costs in human resources. Moreover, it does not adapt
well to dynamically changing tasks: the emergence of a new task requires
the repetition of the complex process.

Automatic generation and deployment of control policies for multi-
robot systems is an appealing paradigm, as it promises substantial savings in
terms of human effort and other resources”. However, this paradigm is
nontrivial to realize as a multi-robot group as a whole cannot be pro-
grammed directly; rather, a desired collective behavior can be achieved only
by programming each individual robot, which relies on its locally available
information. Previous methods for automatic development of multi-robot
systems are primarily based on optimization techniques™. For instance, an
objective function is first crafted to mathematically describe a desired task

and then optimized to generate policies through methods such as evolu-
tionary computation > or systematic search °. Despite their promise, these
optimization methods face the common limitation of requiring manual
crafting of objective functions.

Recent advances in large language models (LLMs)”" and vision lan-
guage models (VLMs)'""* offer new paradigms for developing robotic sys-
tems. In one paradigm, a language model can be deployed onboard a robot
to directly make decisions online"'°. Due to the generality of language
models, this paradigm could be used to address open-ended tasks'’™".
However, it faces challenges in terms of reproducibility, interpretability, and
hallucination. In another paradigm, a language model is used to generate
executable code policies that are subsequently uploaded for execution on-
board robots. A representative method that falls into this paradigm is Code-
as-Policy (CaP)***. Due to the white-box nature of executable code, this
paradigm offers high reproducibility and interpretability. Moreover, since
executable code usually requires fewer resources than LLMs, this paradigm
also enables real-time control on low-cost robot platforms. This is especially
relevant for large-scale multi-robot systems, where collective behaviors
emerge from robots with exceedingly limited onboard resources™ ™.
Therefore, this code-policy paradigm is adopted in our work.

9,10

"Windy lab, Department of Artificial Intelligence, Westlake University, Hangzhou, China. 2School of Automation Science and Electrical Engineering, Beihang
University, Beijing, China. ®Institute of Engineering and Technology, University of Groningen, Groningen, Netherlands. ‘Department of Computer Science,
Technical University of Darmstadt, Darmstadt, Germany. °School of Electrical and Electronic Engineering, The University of Sheffield, Sheffield, UK.

e-mail: zhaoshiyu@westlake.edu.cn

npj Robotics| (2026)4:5

http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-025-00065-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-025-00065-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-025-00065-w&domain=pdf
mailto:zhaoshiyu@westlake.edu.cn
www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

Despite the promise of the code-policy paradigm, the development
of control policies for multi-robot systems faces additional challenges
compared to single-robot systems™***’. First, the design of policies
must consider a robot’s interactions with its peers. In some situations,
the robot may compete with its peers, for example, for limited resources,
whereas in others it may cooperate with its peers to achieve a common
goal>®’'. Second, the deployment and maintenance of policies require
scalable software and hardware systems, which is particularly relevant
for multi-robot systems that may have a large number of robots. Third,
to maximize the utility of a multi-robot system, it needs to support a
wide range of tasks. In addition, some studies proposed frameworks for
automated software development such as MetaGPT*, ChatDev”’, and™.
Although broadly relevant, these frameworks are not specifically
designed for multi-robot systems.

Recently, a number of studies explored the use of LLMs for multi-robot
systems, but their applicability to general-purpose and real-world multi-
robot systems still faces significant hurdles. Of particular relevance is
LLM2Swarm®, which takes user instructions as input and outputs control
policies for individual robots. Although LLM2Swarm is intended to be task-
agnostic, its generality is yet to be experimentally verified. Moreover,
LLM2Swarm depends on manually-written demonstration examples,
restricting its zero-shot capabilities. Other methods such as SmartLLM*
focus on high-level symbolic planning and do not generate executable low-
level control policies. Furthermore, many methods are tailored for specific
tasks-such as formation control””*, cooperative navigation”, dancing***!,
or manipulation”~and thus lack the generality to address multiple multi-
robot tasks. Moreover, the validation in most of the aforementioned
methods is performed in simulation, leaving the significant challenge of
automated policy deployment on physical multi-robot systems largely
unexplored.

Here, we propose GenSwarm, an end-to-end system that can
automatically generate and deploy multi-robot policies on real-world
platforms from natural language instructions for versatile multi-robot
tasks. GenSwarm enables users to program a group of robots using
simple natural language instructions. The user instructions are auto-
matically processed via a pipeline of components, including constraint
analysis, policy design, policy generation, policy deployment in simu-
lation environments, policy deployment on real-world robots, and
policy improvement based on feedback. These components are
respectively empowered by LLM agents. GenSwarm can automatically
deploy the generated code policies as well as the required runtime
environments on real-world robots, thus achieving true end-to-end
functionality. The automatic deployment is realized by a scalable multi-
robot platform that features novel software and hardware architectures.
GenSwarm enables zero-shot policy generation without the need for
context learning based on demonstrative examples. When altered or
unseen tasks arise, the system can re-generate and re-deploy policies in
response to user requests, thereby offering high adaptability for
dynamic tasks. Furthermore, due to the use of code policies, the
approach is suitable for real-time execution on robots with limited
onboard resources.

Extensive experiments demonstrate the high success rate of GenSwarm
across various multi-robot tasks. GenSwarm consistently outperforms the
state-of-the-art methods including MetaGPT*, CaP*, and LLM2Swarm®,
achieving significant improvements of 37%, 34%, and 34% in average suc-
cess rate. GenSwarm provides a promising new paradigm for developing
multi-robot systems. Its significance lies in overcoming two limitations of
existing work. First, developing multi-robot systems is time-consuming and
labor-intensive, and this problem worsens as the number of robots
increases. Second, current multi-robot systems lack generality and flex-
ibility. They are often limited to specific tasks or cannot adapt to changing
goals and new situations in a timely manner. GenSwarm overcomes these
limitations and has the potential to transform the development paradigm of
multi-robot systems.

Results

Overview of GenSwarm

The pipeline of GenSwarm consists of three modules: task analysis, code
generation, and code deployment and improvement (Fig. 1).

The task analysis module takes as input user instructions in the form of
natural language about the desired multi-robot task (Fig. 1a). For example,
to achieve a predator-prey encircling task, the user instruction could be
“The robots need to surround the target prey by evenly
distributingthemselvesalongacirclewitharadiusof
1, centered on the prey.” From the user instruction, an LLM agent
extracts constraints that compose a constraint pool. Each constraint spe-
cifies what a robot shall or shall not do, such as reaching a target location or
not colliding with obstacles. Since the constraint pool comprehensively
captures the task requirements, every subsequent step must align with the
constraints, thereby ensuring the task is achieved as intended. Based on the
constraints, an LLM agent generates a skill library where each skill corre-
sponds to a Python function. At this stage, merely the function’s name and
description are generated; the main body of the function will be generated at
a later stage. Skills can be classified as either global or local. Global skills
involve global coordination such as goal assignment, whereas local skills are
executed onboard each robot based on locally available information.

The code generation module generates the code for the main body of
each skill function (Fig. 1b). First, a skill graph is constructed by an LLM
agent to describe the hierarchical dependencies between the skills and to
indicate the constraints that each skill must satisfy. The skill graph guides the
code generation process: low-level skills are generated first, and high-level
skills thereafter, thereby enhancing code reuse and reducing the need for
repetitive code modifications due to lower-level errors. Once the main body
of each skill function has been generated, an LLM agent reviews whether the
function aligns with the associated constraints, and makes modifications if
necessary. After the review, static code checks are performed, and an LLM
agent makes modifications if necessary, ensuring the code is executable.

The code deployment and improvement module realizes automatic
code deployment in simulated and real-world robotic platforms (Fig. 1¢). It
relies on novel hardware and software systems, which will be detailed in the
following section. It introduces multi-modal feedback mechanisms that can
automatically identify issues during execution and effectively adjust policies
based on feedback. Specifically, execution results in the simulation can be
automatically collected in the format of video clips. A VLM agent assesses
the video clips to generate feedback on whether the desired task is suc-
cessfully completed. In addition, an interface for human feedback is
incorporated. It enables users to efficiently modify the policy by providing
natural language feedback.

The global-local control structure can be automatically determined and
implemented by the proposed pipeline. During the task analysis stage, the
LLM agent judges whether the task requires global skills for global cen-
tralized coordination or merely local skills for local distributed execution.
This structural decision is encoded in the skill graph to guide code gen-
eration, and the resulting architecture determines the deployment model: if
global skills are generated, they execute once on the control station using
global information, after which local skills are deployed to each robot for
distributed execution based only on the local information exposed by the
system APIs.

Software and Hardware Platform
Automatic deployment is nontrivial as code execution depends on complex
runtime environments consisting of various software packages. Manually
installing and configuring the runtime environments on each robot would
be inefficient as the time required scales linearly with the number of robots.
This would make deployment on large-scale multi-robot systems
impractical.

GenSwarm possesses a software framework that can automatically
deploy both the generated code and the runtime environments across all the
robots in near constant time regardless of the number of robots. In our

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

a Task analysis c Code deployment and improvement
User Critic via @ Improve =
. instruction Video — > human/ —> — code —>
l footage VLM FEEEEE via LLM
Constraint analysis
via LLM Simulation deployment
' s
Skill analysis R ©
via LLM = e
- o ‘
l T 5 O
| (o
b Code generation M s ¥
Global skill graph I | |
Local skill graph ‘
5 | ‘.
i \‘
) | | |
2) .~ \. 6 i i i
X (1 i A 4
) Nw y
Vo 3 TDepon
4 Generated code T
Function Function body .) Static code
ificati i Function review analvsis
spe_C| ication gerlera ion via LLM : y A
via LLM via LLM via Linter T
Function N a Reviewed E] Buglinfo——» Bug fixing
¥ definition o ¥, function via LLM

Fig. 1 | The pipeline of GenSwarm. GenSwarm consists of three modules: task
analysis, code generation, and code deployment and improvement. a The task
analysis module extracts constraints from user instructions and builds a skill library.
b The code generation module uses a skill graph to hierarchically create and refine

Skill function 1
Skill function 2

Python functions, ensuring constraint alignment and code reusability. ¢ Finally, the
code deployment and improvement module enables automatic code deployment in
simulation and real-world platforms, incorporating feedback from video analysis
and human input to refine policies.

experiments, automatically deploying the runtime environments on all the
robots takes about two minutes, whereas automatically deploying the gen-
erated code takes mere seconds. This makes the system particularly well-
suited for large-scale multi-robot systems, where consistent and rapid
deployment is essential.

The software framework is illustrated in Fig. 2. A control station first
generates the required code based on the pipeline described earlier and
connects with each robot through Ansible via WiFi and SSH (Methods).
With predefined automated scripts in the format of Playbook, each robot
performs a series of tasks such as installing and configuring the Docker
environment. After the Docker environment is ready, two pre-built Docker
images are pulled: one containing the ROS environment used for robot
operation, and the other containing the Python environment required for
code execution. Once the execution environments are ready, the generated
code is transmitted to all robots and then executed onboard. The proposed
software framework heavily relies on two techniques, Ansible and Docker
(Methods), which work together to simplify and streamline the code

deployment on multiple robots. This integration ensures that the deploy-
ment process is both repeatable and efficient, drastically reducing the time
required to make a group of robots operational. Moreover, the framework is
designed to be portable across different hardware platforms, a feature
enabled by its modular software architecture, which is detailed in the
Methods section.

The hardware framework is illustrated in Fig. 3. A new multi-robot
platform, which is a major upgrade of our previous robotic platform™, was
developed to support GenSwarm. Each ground robot has onboard com-
putational, control, and communication resources that are necessary for
autonomous code deployment and execution®. Considering that multi-
robot experiments involve a large number of operations, such as starting and
shutting down robots, we developed novel features for the multi-robot
platform such as one-click all start, one-click all sleep, and wireless data
retrieval, significantly reducing experimental costs. It is worth mentioning
that the perception of each robot is emulated. Specifically, the motion
information of all the robots is collected by an indoor positioning system

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

Autonomous deployment
in each robot

Docker
R Pull
Ny — ,
Docker Dogker 7
images registry 5
Generate . 1%1 Robot-base O
ao container
> 5 Code policy P e i
container

Mount

Deploy and configure
environment

Pull
[Robot-base —
source code
—_— Code policy GitHub

Run :

A Other configurations

IP address: 192.168.50.200
IP address: 192.168.50.201

Execute
v
9 B e D
o —
Code Ansible Playbook
management

l Display

L]

Monitor

P o
LLM User instruction
Control station

Fig. 2 | Software components of GenSwarm. A control station generates the

required code based on the proposed pipeline and uses Ansible to wirelessly connect
to each robot. First, each robot runs Playbook-defined tasks, such as installing and
configuring the Docker environment. Then, two pre-built Docker images are pulled:

Task: Flocking

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
& Q) :
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Simulation deployment

= ~

©
C

®

Task: Encircling

Task: Pursuing

one with the ROS environment for robot operation, and the other with the Python
environment for code execution. Once the environments are ready, the generated
code is transmitted to all robots and then executed onboard.

and then distributed to all robots through an MQTT coordination server so
that each robot receives only information about its surroundings (Fig. 3).
The generated code policies access the required information by calling APIs
(application programming interfaces) that enforce hard-coded physical
limitations. For instance, the sensing API restricts a robot’s perception to a
fixed local radius (1 m in our experiments), while the motion API clamps
velocity commands to a predefined maximum speed. In the future, the
sensing API could be realized by onboard vision systems. As the indoor
positioning system can provide high-precision measurements, we also
exposed our multi-robot system to different levels of measurement noise in
real-world experiments. Although performance gradually deteriorates as the
noise level increases, the system is still reasonably stable for low to moderate

levels of noise. The real-world noise robustness results are provided in
Supplementary Fig. 1.

Demonstration of GenSwarm

To demonstrate the workflow of GenSwarm, we show the end-to-end
generation process of a representative multi-robot task “predator-prey
encircling” (Fig. 4). In this task, multiple predator robots should follow and
surround a prey robot that moves randomly. The user instruction is shown
in Fig. 4a. From the user instruction, six constraints were generated by an
LLM agent (Fig. 4b). For instance, one of the constraints is “Collisio-
nAvoidance” with the description as “Ensure aminimumdistance
greater than the sum of the robot's radius, other

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w Article

Robot swarm

a Robot hardware components b

~_Control board

1=

c Experimental environment

User station
Motion capture

Mecanum
wheel

Decomposition view N
2

Battery < . bét -
~ obot swarm
Onboard = -
computer —~ < ‘
Bottom view Side view 2 = |
d Implementation architecture
Onboard system i Control station
y ::/c?rl'r?r?:;ynd Subtask User instruction

Control board <——— Code for robot Tl

States of self / ; MQTT

Subtasks

Code for allocator

States in local
environment

PWM signal

neighbors / obstacles / target server

Motor
Robot state
L

Robot 1
Robot 2 .—’

Fig. 3 | Hardware components of GenSwarm. The figure shows: a the robot
hardware components, b the assembled robot swarm, ¢ the experimental environ-
ment, and d the implementation architecture. As a major upgrade of our previous
robotic platform **, each robot has the onboard computational, control, and com-
munication resources to support autonomous code deployment and execution. The
multi-robot system features one-click all start, one-click all sleep, and wireless data

Indoor positioning system

Code for robot
Process data

f

State of robot swarm

Monitor data

retrieval functions that can significantly reduce experimental costs. Since the robots
do not have onboard vision systems, the perception was emulated with relevant
motion information being collected by an indoor motion capture system, and then
distributed to the robots through an MQTT coordination server, ensuring each
robot receives only the local information of its surroundings.

robots' radii, and a pre-defined distance threshold
from all other robots and obstacles within the per-
ception range”.

Based on those constraints, six skills (merely the names and descrip-
tions) are generated (Fig. 4c). One of them is a global skill that will be
executed on the control station, whereas the others are local skills that will be
executed on each robot in a distributed manner. The purpose of the global
skill, named “Allocate initial angles”, is goal assignment, that
is, to assign the desired relative angular position of each robot when
encircling the target. Goal assignment is a common technique adopted in
multi-robot tasks, especially when there is a global constraint such as a
geometric shape that multiple robots must satisfy ***.

For tasks like flocking and aggregation that do not involve global
goals or constraints, GenSwarm generates distributed policies whose
execution merely relies on local information. In contrast, for tasks like
shaping that involve global goals or constraints, GenSwarm usually
generates combinations of centralized coordination (e.g., position
assignment) and distributed control. It is notable that GenSwarm auto-
matically selects and generates control structures, ranging from pure
distributed control to hybrid centralized coordination plus distributed
control, which reflect the characteristics of the task. This selection

process leverages the LLM’s strong prior knowledge, learned from its vast
training data of robotics literature and code, to associate a high-level task
description with a typical and effective control paradigm. In the resulting
hybrid architecture, a global skill runs only once on the control station to
perform one-time centralized coordination (e.g., initial goal assignment).
After this, each robot executes local skills in a distributed manner, relying
entirely on local information that is strictly enforced by the system’s
sensing and motion APIs. The flexibility of augmenting pure distributed
control with hybrid centralized coordination allows GenSwarm to adapt
across a wide range of multi-robot tasks.

Based on those skills and the consequently generated skill graph that
describes their hierarchical dependencies, LLM agents further generate and
then review the main-body code of each skill function (Fig. 4d). Logical or
grammatical code errors can be identified and corrected. Once the skill
functions pass the review process and static code analysis, they are auto-
matically deployed and executed in the simulation environment. Then, a
VLM agent reviews the video clip of the simulation execution and provides
feedback for improving the code (Fig. 4e). After that, the generated code is
automatically deployed on real-world robotic platforms. It is worth men-
tioning that human feedback can be incorporated to adjust the code policy
(Fig. 4e). For instance, if the human feedback is “Forming a circle

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w Article

Skill graph

a User instruction b Constraint pool) . C .
Align with constraint
The robots need to surround the TargetPositionAssignment il | Global
target prey by evenly ‘\\ //_,:; 1 Allocate_ini‘tial_angles
distributing themselves along a DistanceMaintenance . i
! : : o] Local Skillgraph
circle with a radius of 1, " 3) Update_velocity
- 6

CollisionAvoidance .~

centered on the prey, with each
robot assigned a specific angle,
and adjust their positions in

3) Navigate_to_target /

VelocityControl et o 3. ¥
5 4) Check_reached_target x 20

real-time based on the prey's PositionResolution -
movement to achieve coordinated 5) Compute_target_position N\
encirclement. RealTimeAdaptability -~ 6) Avoid_collisions 5)
Constraint analysis Skill analysisv ,
/
d Function body writing Function definition ¢
Compute the target position around the prey def update_velocity(prey_position: np.ndarray,
target_position = compute_current_target_position(prey position, assigned_angle, € assigned_angle: float,
radius=1.0) n | n current_position: np.ndarray,
FU Ct o current_velocity: np.ndarray,
AAAAAA bOdy surrounding_robots_info: list,
Adjust velocity to avoid collisions ertlng surrounding_obstacles_info: list,
adjusted_velocity = avoid_collisions(current_position, desired_velocity, self_radius, max_speed: float,
surrounding_robots_info, surrounding_obstacles_info, distance_threshold) position_resolution: float,
distance_threshold: float,

repulsion_strength: float) -> None

Set the adjusted velocity Description:

set_self_velocity(adjusted_velocity) (,”L”\\
» pass
. . . Replace s

Function review and code analysis) LA

\ / ;

i —) Error: update_velocity: Unexpected \

i . P . - g -_— == keyword argument 'repulsion_strength’ 1
parameter is defined but not passed e . Stati d » in function call 1

to the “avoid_collisions™ function. L Review aIIC (_:0 S . : ;

analysis

Y / Debug error :
Fix Added parameter K i
= 1

- Correct: grammar check passed for !

Adjust velocity to avoid collisions pmm=TTTSSS=s EENY 8o 5

{ adjusted_velocity = avoid_collisions(.., .., = ..,,L:r‘@pulsionistr‘engtﬁ)} Y Generated function: update velocity. :
Tt - code I

/ |

. - - 1

e Simulation experiment Deploy / Improve |

Result:
- q |
Critic via SWgEss.
Record Feedback:
VLM
—— — The robots successfully met

all critical constraints, forming
Result video and maintaining a coordinated
encirclement of the prey.

I
1
1
1
1
1
I
1
1
1
I
1
1
1
1
1
1
1
1
1
1

Real-world experiment

Modify the ~compute_

Forming a circle
current_target_positi

with a radius of 1

Human R .
Record critic meter seems a bit LLM ©n function to have
—_— N large; perhaps 0.8 ——>» a default radius of
meters would be 0.8 meters instead of
Result video better. 1.0 meters.
Human feedback Solution

skills and a consequently generated skill graph, LLM agents generated and reviewed
the main-body code of each skill function. e The code was deployed in simulation

environments, reviewed via video feedback by VLM agents, and refined with human
feedback. Once validated, it was automatically deployed on real-world robots.

Fig. 4 | A demonstration of the complete workflow of GenSwarm. a The user

specified a predator-prey encircling task via natural language. b Six constraints were
extracted from the task by LLM agents. ¢ Six skills were generated and categorized
into global (e.g., goal assignment) and local (e.g., update velocity). d Based on those

Non-stop one-take videos are attached to show the complete work-
flows of GenSwarm (Movies 1 and 2). In terms of time consumption, the
steps of code generation, deployment onto real-world robots, and
improvement based on human feedback took approximately six, two, and
two minutes, respectively. The time duration of code generation can be
significantly shortened if LLMs’ efficiency can be improved in the future.
The time of deployment can be shortened to a few seconds if the runtime
environment has been pre-installed on the robots and merely the generated

with a radius of 1 meter seems a bit large; perhaps 0.8
meters would be better.”, GenSwarm can adjust the corresponding
parameter from 1 to 0.8, enabling efficient human-in-the-loop policy
adjustment. The ability of human-in-the-loop adjustment provides a
practical approach to adapt to newly emerged situations such as robot faults.
While this adaptation may not occur in real-time (e.g., at millisecond-level
latency), it still offers an effective way for rapid reprogramming and

redeployment.

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

initial

Flocking Aggregation

Pursuing Exploration Covering Crossing Encircling Shaping

Bridging

Clustering

P final

AR

Fig. 5| Results by GenSwarm for ten multi-robot tasks. The ten tasks include aggregation, flocking, shaping, encircling, crossing, coverage, exploration, pursuing, bridging,
and clustering. These tasks cover a wide range of scenarios, from cooperative to competitive, aiming to comprehensively evaluate the effectiveness of GenSwarm.

code needs to be deployed. As elaborated above, GenSwarm consists of
multiple LLM agents that play different roles. All LLMs and VLMs in
GenSwarm are used out-of-the-box without fine-tuning. This design was
made to maximize reproducibility, enabling any user to directly deploy the
system using off-the-shelf models. Each LLM agent is set up in advance by a
prompt involving role description, environment description, robot
description, and available APIs. For instance, regarding environment
description, the prompt may be “The environment is composed of
a 2D plane with obstacles and robots”. Regarding robot
description, the prompt may be “The maximum speed of each agent
is 0.5 m/s”. Regarding APIs, the prompt may be “There are two
types of APIs: local and global. Local APIs canonly be
called by the robot itself, and global APIs can be
called by a centralized controller”. Examples of local

APIs are “get self position” and “get surroundin-
g_robots_ info”. Examples of global APIs are “get all ro-
bots 1d” and “get_all robots_initial position” While
merely some representative examples are provided here, the complete
prompts and APIs can be found in our open-source repository (see Code
Availability).

Performance Evaluation

Different tasks. The performance of GenSwarm was evaluated on ten
different multi-robot tasks, including aggregation, flocking, shaping,
encircling, crossing, coverage, exploration, pursuing, bridging, and
clustering (Fig. 5). These tasks cover a wide range of scenarios, from
cooperative to competitive, aiming to comprehensively evaluate the
effectiveness of GenSwarm. Details of the tasks and the evaluation

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

a Success rates of 10 tasks b Comparison & ablation experiments
100
o o oo oo o | ours
ti | 1 ours w/o vim
aggregation _ 80 ° ° = @o ° 6 ° 1 cap
2\°, @ ° o 9 70 °] metagpt
flocking ?—2—‘;‘—3—? 4 60 [o> @m oo ° ° 3) »
o]
o ° o olo
@
shaping ?—n—’{—9—$ @ 40 o 00
9]
a o o ol o o
encircling +—3+§—'? 20 ° o
°
aggregation flocking crossing
covering E—F—@ 100
F— oo ° o ° | ours
|) — [ours w/o vim
exploration 80 q odo - © | cap
S - o ° o o® oo o o metagpt
pursuing o $ 60 o| ® ® i °
=]| 1 1
- o [e<] [} @® o o oo
@
bridging $—“°—H ¢ 40 o ° ° °
9]
a co o0
clustering E‘B—Q 20) ° —
o o
0 1
0 20 40 60 80 100 shaping encircling covering

Success rates (%)

Fig. 6 | Success rate of different LLMs on different tasks. a The success rates of
GenSwarm across ten multi-robot tasks. One hundred independent trials, from user
instructions to code execution in simulation, were run for each task. Hence, 1,000
trials in total were run and the average success rate was 81%. b The comparison
between GenSwarm, CaP, MetaGPT, LLM2Swarm and GenSwarm without VLM

feedback across six representative tasks. One hundred independent trials, from user
instructions to code execution in simulation, were run for each method and each
task. The average success rates of GenSwarm, GenSwarm without VLM, CaP,
MetaGPT, and LLM2Swarm were 74%, 71%, 40%, 37%, and 40%, respectively.

metrics are given in Methods. The LLM used here was 01-mini, one of the
state-of-the-art LLMs. One hundred independent trials, starting from
user instruction to code execution in simulation, were run for each of the
ten tasks. The average success rate over the 1,000 trials for 10 tasks was
81%. The respective success rate for each task is presented in Fig. 6a.

Different methods. GenSwarm has been compared to three state-of-the-
art methods, MetaGPT", CaP*, and LLM2Swarm™. To ensure a fair
comparison, all baseline frameworks were configured according to their
native design paradigms (zero-shot or few-shot). For few-shot methods
like CaP and LLM2Swarm, we provided high-quality multi-robot
examples-handcrafted for CaP and drawn from the official LLM2Swarm
repository for the latter—-with minimal adaptations for our platform. The
complete prompts and code examples used for all baselines are publicly
available for reproducibility (see Code Availability). Moreover, Gen-
Swarm without VLM feedback was also compared. One hundred inde-
pendent trials, from user instructions to code execution in simulation,
were run for each method and each task. Six representative tasks were
selected, and hence 2,400 trials in total were run. The LLM used here was
GPT-40. The comparison results are shown in Fig. 6b. As can be seen,
GenSwarm achieved the highest average success rate, which was 74%,
across different tasks. The average success rates of GenSwarm without
VLM, CaP, MetaGPT, and LLM2Swarm were 71%, 40%, and 37%, and
40%, respectively. GenSwarm consistently outperforms the baselines,
achieving 34%, 37%, and 34% higher success rate than LLM2Swarm,
MetaGPT, and CaP. We also compared using finer-grained task-specific
metrics, with detailed results presented in Supplementary Fig. 2. It reveals
that GenSwarm consistently achieves superior performances across dif-
ferent tasks.

In addition, Supplementary Fig. 2 includes a benchmark against fine-
tuned state-of-the-art (SOTA) expert controllers. For distributed tasks such
as flocking and aggregation, we used the classic Boids model*; for hybrid
tasks such as shaping, crossing, covering, and encircling, we combined an
optimal assignment algorithm based on the Hungarian method with VR-
ORCA™. While these SOTA controllers achieve higher average

performance, GenSwarm’s best-performing policies reach comparable
levels in some cases, demonstrating its potential to deliver high-quality
solutions without extensive manual tuning.

Different LLMs. By comparing Fig. 6a, b, it can be seen that different
LLMs (ol-mini and GPT-40) lead to similar success rates though there
are subtle variations. We further expanded the comparison to include two
additional prominent LLMs, DeepSeek-V3 and Claude-3.7-Sonnet.
Results consistently show high success rates across these models (Sup-
plementary Fig. 3), suggesting general applicability of GenSwarm across
different types of LLMs.

Different prompts. The user instructions have a significant impact on the
performance of GenSwarm. For instance, comprehensive instructions
tend to yield better results, while ambiguous ones may lead to failures (see
examples in Supplementary Fig. 4). To systematically analyze this effect,
we designed seven representative prompt types that range from
unstructured to highly structured formats: (1) Plain-Compound
(Cohesive), which integrates both the task objective and policy into a
linguistically coherent paragraph; (2) Plain-Compound, which strictly
concatenates the verbatim text from the objective-only and policy-only
prompts; (3) Plain-Objective, which provides only the objective but no
policy; (4) Plain-Policy, which provides only the policy but omits task
objectives; (5) Plain-Narrative, which uses natural, human-like language
to describe the task but lacks formal structure or policy details; (6)
Structured-Objective, which restructures the instruction into a
“description-goal-constraint” format; and (7) Structured-Policy, which
adds explicit policies and constraints on top of the structured prompt.
Examples of the seven prompt types for an encircling task are given in
Supplementary Fig. 5. Moreover, all the previous evaluations were con-
ducted using the Plain-Compound (Cohesive) prompt type.

As shown in Supplementary Fig. 6, the inclusion of explicit policy
instructions is helpful for achieving high task success rates. Specifically,
prompt types that contained policy instructions—Plain-Compound
(Cohesive) (78%), Plain-Compound (74%), Plain-Policy (74%), and

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

Structured-Policy (74%)—yielded higher success rates. Conversely,
prompts lacking this information, such as Plain-Objective (56%), Plain-
Narrative (57%), and Structured-Objective (57%), resulted in significantly
lower success rates. This demonstrates that the presence of policy instruc-
tions is more impactful than the prompt’s format (i.e., natural vs. structured
language). Among the top performers, Plain-Policy emerges as a particu-
larly practical choice, leading to high success rates while offering the sim-
plicity of concise natural language inputs.

Discussion

This work introduced GenSwarm, an end-to-end system that automatically
generates and deploys code policies for versatile multi-robot tasks. As a
significant step toward end-to-end generation, GenSwarm presents a novel
paradigm that could potentially disrupt the current development process of
multi-robot systems. However, GenSwarm has some limitations that could
be addressed in the future. First, this study focussed on decision-making and
control. Aspects such as sensing and navigation, which are important for
practical applications, have not been incorporated. Developing and inte-
grating onboard sensing into the system would be a valuable direction for
future research. Second, we focus on the framework’s generality and end-to-
end automation in this work, rather than the novelty or optimality of the
generated policies or collective behaviors. Generating more sophisticated or
optimal policies is an important future research topic, which might be
challenging to achieve when relying solely on LLMs. Combining language
models with other techniques, such as multi-agent reinforcement learning,
could be a promising approach. Compared to language models, reinforce-
ment learning is better suited for generating more sophisticated policies,
making it a valuable complement to GenSwarm. Third, GenSwarm gen-
erates policies from scratch rather than re-using existing ones. This design
choice was made to achieve zero-shot capability. Nevertheless, re-using a
behavioral repertoire of previously generated solutions is a valuable direc-
tion for future research.

Methods

Ten Multi-Robot Tasks

The ten multi-robot tasks considered in this work are aggregation, flocking,
shaping, encircling, crossing, coverage, exploration, pursuing, bridging, and
clustering. The following gives the user instructions and evaluation metrics
of each task. Multiple metrics may be used to evaluate a task from different
aspects. It should be noted that these metrics are used solely for post-
evaluation but not incorporated into the policy generation pipeline. A task is
regarded as successful when all of its corresponding metrics exceed certain
predefined thresholds. In this way, we can automatically calculate the suc-
cess rate of each task. The termination of a simulation trial is triggered when
the execution time exceeds certain values or the task has finished in the sense
that, for example, all the robots succeed in reaching their desired positions.

Aggregation task. User instruction: “The robots need to aggre-
gate as quickly as possible and avoid colliding with
each other.”

Evaluation metric: Maximum of minimum distances, denoted as
d axmin: It quantifies the largest minimum distance between each robot and
its closest neighbor. It is defined as.

d

maxmin = X min [|p; — |l (1)

where [[p; — p;l| is the Euclidean distance between robots i and j. The task is
regarded as successful if the value of this metric is less than 1.

Flocking task. User instruction: “The robots must form a cohe-
sive flock, cooperating with all others in the envir-
onment. The three main behaviors are cohesion,
alignment, and separation: cohesion maintains con-
nectivity, alignment ensures synchronized

movement, and separation prevents collisions by
keeping robots at least 0.5 meters apart.”

Evaluation metrics: The flocking task is evaluated based on two metrics.
The task is treated as successful when both metrics exceed their corre-
sponding thresholds.

1) Spatial Variance, denoted as Vary,: It quantifies how spread out the
robots are. It is defined as

Varg,, = Z Var (P,) @)
defx,y}

where Var(P,) is the variance of the robot positions along the d dimension
(either x or y). The task is regarded as successful if the value of this metric is
less than 1.

2) Mean Dynamic Time Warping (DTW) Distance, denoted as dprw:
This metric quantifies the similarity between the trajectories of all robots. It
is defined as

1
dprw = M Z DTW(T;, Tj) 3)
i<j

where M is the total number of robot pairs, T; is the trajectory of robot i, and
DTW(T;, T)) is the DTW distance between T; and T, Here, T, =

(G y s G ™y ™)) and Ty = (Gl y)s s G ™)) The
DTW distance between them is defined as
_ . a .a b . b
DTW (T, T) = fpig, %ij d((xf, 9, (<, 7)), @)

where W is the warping path, a valid alignment between T; and T; that
satisfies constraints such as boundary, continuity, and monotonicity. The
function d(-, -) is the Euclidean distance.

The task is regarded as successful if the value of this metric is less than
500. Since each trajectory has 1,000 points, the threshold of 500 indicates
that the average distance between pairs of points across two trajectories is
less than 0.5.

Shaping task. User instruction: “The robots need to form a
specific shape, with each robot assigned a unique
point on that shape. The task requires each robot to
move towards and maintain its assigned position on
the target shape.”

Evaluation metric: Procrustes Distance, denoted as d,oc: It quantifies
the similarity between the robot positions and the target shape. It is defined
as

1Y 5
diroc = min ; llp; — Qp; 1l (5)

where N is the total number of robots, p; is the current position of robot , p;
is the target position for robot i on the straight line, and Q is the optimal
permutation matrix to be solved. The task is regarded as successful if the
value of this metric is less than 0.1.

Encircling task. User instruction: “The robots need to surround
the target prey by evenly distributing themselves
alongacirclewitharadiusofl, centeredontheprey.
Each robot is assigned a specific angle, and they must
adjust their positions in real-time based on
the prey's movement to achieve coordinated
encirclement.”

Evaluation metric: Mean distance error, denoted as de;ro,: It quantifies
the average deviation of the robots’ distances from the desired radius. It is

npj Robotics| (2026)4:5

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

defined as

1 N
derror = NZ'” Pi— pprey” _rdesiredl (6)
i=1

where N is the total number of robots, p; is the position of robot 7, Pprey i the
position of the prey, and 7gesired is the desired radius. The task is regarded as
successful if the value of this metric is less than 0.1.

Crossing task. User instruction: “Each robot must maintain a
distance of at least fifteen centimeters from other
robots andobstaclestoavoidcollisions whilemoving
tothe target point, whichisthepositionof the robot
that was farthest fromit at the initial moment.”
Evaluation metric: Target Reach Ratio, denoted as pye,cn: It quantifies
the proportion of robots that successfully reached their target positions
within a certain tolerance distance (typically 0.1 meters). It is defined as

N, h
Preach = % (7)

where Nie,q, is the number of robots reached targets. The task is regarded as
successful if the value of this metric is equal to 1.

Coverage task. User instruction: “Divide the environment into
sections equal to the number of robots. Each robot
needs tomove to the center of its assigned section to
achieve full coverage of the environment.”

Evaluation metrics: The coverage task is evaluated based on two
metrics. The task is treated as successful when both metrics exceed their
corresponding thresholds.

1) Area Ratio, denoted as p,ye,: It quantifies how much of the total area
is occupied by the robots. It is defined as

Aoccupied
Parea = 5 ®
o Atotal

where Aqgccupied iS the area occupied by the robots and Ay is the total
available area. More specifically, Agccupiea 15 calculated as
occupied — (xmax — Xmin) X (ymax B ymin)’ where X max and Xmin are the
maximum and minimum x-coordinates among all the robots, respectively.
The task is regarded as successful if the value of this metric is greater than 0.8.
2) Variance of Nearest Neighbor Distances, denoted as Varxnp: It
quantifies how evenly spaced the robots are from their nearest neighbors. It
is defined as

VarNND = Var (dnea.r) (9)

where d,, is the Euclidean distance between each robot and its nearest
neighbor. The task is regarded as successful if the value of this metric is less
than 0.1.

Exploration task. User instruction: “The robots need to explore
all the unknown areas. You are required to assign an
optimal sequence of exploration areas to each robot
based on the number of robots and the unexplored
regions, and then the robots will gradually explore
these areas.”

Evaluation metric: Landmark Visit Ratio, denoted as py;gie: It quantifies
the proportion of unexplored areas (landmarks) that were successfully
visited by the robots. It is defined as

N visit
p visit Ntotal (0)

where N, is the number of visited landmarks and N, is the total number
of landmarks. A landmark is considered visited if a robot comes within a
certain distance (e.g., 0.1 meters) of the landmark center. The task is
regarded as successful if the value of this metric is equal to 1.

Pursuing task. User instruction: “Engage in flocking behavior
with all robots on the map, moving toward the lead
robot . The lead robot ' smovement is unpredictable, so
maintain cohesion by staying connected, ensure
alignment by moving in sync, and uphold separa-tion
by keeping a safe personal space. Additionally, be
cautious to avoid collisions with any obstacles in
the environment.”

Evaluation metrics: The pursuing task is evaluated based on two
metrics. The task is treated as successful when both metrics exceed their
corresponding thresholds.

1) Average distance to prey, denoted as dyg_prey: It measures the
average distance between all robots and the prey’s position. It is defined as:

davgfprey = ||pavg - Pprey” (11)
where p, is the average position of all robots, and py., is the prey’s
position. The task is regarded as successful if the value of this metric is
less than 1.

2) Maximum of minimum distances, denoted as d,,i,: It quantifies
the largest minimum distance between each robot and its closest neighbor.
Its definition is equivalent to the metric used in the aggregation task. The

task is regarded as successful if the value of this metric is less than 1.

Bridging task. User instruction: “The robots need to evenly
forma straight 1ine bridge at the position wherex is
equal to zero within the range of y between minus two
and two.”

Evaluation metric: Procrustes distance, denoted as dyoc: It quantifies
the shape similarity between the robots’ final positions and the target
straight line. Its definition is the same as the metric used in the shaping task
and hence omitted here. The task is regarded as successful if the value of this
metric is less than 0.1.

Clustering task. User instruction: “Robots with initial posi-
tions in the same quadrant need to cluster in the
designated area of that corresponding quadrant.”
Evaluation metric: Achievement Ratio, denoted as 7,gieve: This metric
evaluates the proportion of robots that successfully reach their assigned
target regions based on their initial quadrant classification. It is defined as

4
Tachieve = Zq:l]\]Nq,aChiQVEd (12)
total
where N ,chieved Tepresents the number of robots in quadrant g that reach
the corresponding target region within a tolerance of 0.1, and Ny is the
total number of robots. The task is considered successful if 7,qieve = 1,
indicating all robots meet the criteria.

Details of Software Architecture

We designed a modular architecture consisting of seven core modules, each
containing multiple classes (Supplementary Fig. 7). These classes have
inheritance, association, and composition relationships, which enhance
system design by enabling code reuse, modularity, and flexibility. The Core
Module defines the interfaces between modules, ensuring that they can
seamlessly integrate into the system as long as they follow these interfaces.
The Skill Module handles skill library operations, including the repre-
sentation of skills as a skill graph and the functionality to construct, modify,
and extend this graph. The Action Module contains all action nodes that
encompass tasks such as analyzing constraints, designing functions, writing

npj Robotics| (2026)4:5

10

www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

code, performing syntax checks, and debugging, all guided by interactions
with the LLM. The Environment Module encompasses various simulation
environments or real-world scenarios, the Constraint Module handles
constraint-related tasks, the File Module manages file storage, and the
Feedback Module processes all feedback.

The core of the architecture is the Core Module, which includes a set of
interfaces and base classes that provide shared interfaces and core func-
tionality to the system’s other modules. Specifically, the Core Module uses
BaseActionNode, ActionNode, and CompositeActionNode to implement
the Composite Pattern®, ensuring consistent usage of single and composite
action nodes, thereby effectively simplifying the system’s complexity. All
actions in the Action Module inherit directly from ActionNode, and these
action nodes form the core functionality required by the framework. Take
GenerateFunctions, a CompositeActionNode, as an example: it consists of
four actions-DesignFunctionAsync, WriteFunctionsAsync, GrammarCh-
eckAsync, CodeReviewAsync, and WriteRun-executed in a specific order.
This composite node can be reused whenever GenerateFunctions is needed,
eliminating the need to rebuild the sequence. Furthermore, Gen-
erateFunctions itself can be treated as a standard ActionNode, maintaining
consistency in how single and composite actions are handled.

Moreover, the Core Module provides several key interfaces to support
the system’s diverse requirements. The Feedback interface provides a uni-
fied handling mechanism for HumanFeedback, CodeBug, and CriticFeed-
back, as shown in the Feedback Module. The BaseFile interface standardizes
the handling of various file types, coverage code files, program logs, and
Markdown documents, as shown in the File Module. The BaseEnvironment
interface offers standardized access points for different simulation envir-
onments, allowing the system to easily adapt to various runtime environ-
ments, as shown in the Environment Module. The BaseGraphNode
interface unifies the operations of ConstraintNode and SkillNode, ensuring
consistency between them and simplifying the establishment of mapping
relationships between the two. SkillNode forms SkillLayer, and multiple
SkillLayers can form a SkillGraph, constituting the layered structure of the
framework mentioned above, as shown in the Skill Module.

The proposed software architecture has the following features. First, by
defining generic interfaces and base classes, it achieves a high degree of
scalability, allowing the system to easily introduce new functional modules
or replace existing ones while maintaining overall system stability. Second,
by leveraging the composite pattern technique, which organizes objects into
tree-like structures, it unifies the handling of individual and composite skills.
Individual skills serve as leaf nodes, while composite skills are represented as
branches, allowing users to easily build complex skill structures by com-
bining and nesting different skill nodes. Third, the system supports both
simulation and real-world experimental platforms, achieving a unified
access point across different platforms.

Details of Automatic Deployment
The following introduces the tools of Ansible and Docker and how they are
integrated into our automatic deployment framework.

Ansible is an open-source automation tool that allows tasks to be
performed consistently across multiple devices. In our framework, it is used
to establish wireless connections with robots via SSH (Secure Shell, enabling
secure remote communication) and execute predefined playbooks-scripts
that outline the steps for deployment. For example, Ansible ensures direc-
tories are created, source code is copied, dependencies are installed, and
permissions are set on all robots simultaneously. This consistency reduces
human error and eliminates the need for manual intervention on individual
robots.

The Docker environment includes all the necessary components for
seamless robot operation and code execution. It is equipped with ROS
(Robot Operating System), a middleware essential for controlling and
managing robotic systems. Additionally, it includes a Python runtime
preconfigured with all dependencies required to execute the LLM-
generated code.

The deployment process begins with Ansible transferring to each
robot the necessary files, such as Python scripts, ROS configuration files,
and Dockerfiles, which define the instructions to build the containerized
environment for running the code. Once these files are in place, Ansible
uses Docker to build the Docker image, packaging the runtime envir-
onment and all necessary dependencies. It then pulls and tags prebuilt
images to reduce setup time by downloading existing configurations.
Afterward, Ansible launches the containers, starting the robot-specific
workspace and preparing it for code execution. Inside the container, the
code is compiled to ensure compatibility with the ROS environment.
Finally, the LLM-generated code is executed via ROS launch files,
allowing the experiment to run automatically without further manual
intervention.

Data availability

The data in this study are available in the main text and the supplementary
information. Other source data are available from the corresponding author
upon reasonable request.

Code availability
The code of the proposed GenSwarm system is available online: https://

github.com/WindyLab/GenSwarm.

Received: 24 February 2025; Accepted: 30 October 2025;
Published online: 09 January 2026

References

1. Dorigo, M., Theraulaz, G. & Trianni, V. Swarm robotics: Past, present,
and future. Proc. IEEE 109, 1152-1165 (2021).

2. Marques, J. A, Lorente, M.-T. & GroB, R.Multi-robot systems
research: A data-driven trend analysis, vol. 28, 537-549 (Springer,
2024).

3. Francesca, G. & Birattari, M. Automatic design of robot swarms:
Achievements and challenges. Front. Robot. Al 3, 29 (2016).

4. Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J. & GroB, R.
Supervisory control theory applied to swarm robotics. Swarm Intell.
10, 65-97 (2016).

5. Hasselmann, K., Ligot, A., Ruddick, J. & Birattari, M. Empirical
assessment and comparison of neuro-evolutionary methods for the
automatic off-line design of robot swarms. Nat. Commun. 12, 4345
(2021).

6. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V. & Birattari, M.
AutoMoDe: A novel approach to the automatic design of control
software for robot swarms. Swarm Intell. 8, 89-112 (2014).

7. Bredeche, N., Haasdijk, E. & Prieto, A. Embodied evolution in
collective robotics: A review. Frontiers in Robotics and Al 5
(2018).

8. Gauci, M., Chen, J., Li, W., Dodd, T. J. & GroB, R. Self-organized
aggregation without computation. Int. J. Robot. Res. 33, 1145-1161
(2014).

9. Brown, T. B. et al. Language models are few-shot learners. In
Proceedings of the International Conference on Neural Information
Processing Systems, 1877—1901 (2020).

10. Du, X. et al. Evaluating large language models in class-level code
generation. In Proceedings of the IEEE/ACM International Conference
on Software Engineering, 982—994 (2024).

11. Zhang, J., Huang, J., Jin, S. &Lu, S. Vision-language models for vision
tasks: A survey. I[EEE Trans. Pattern Anal. Mach. Intell. 46, 5625-5644
(2024).

12. Hurst, A. et al. GPT-40 system card. arXiv:2410.21276 (2024).

13. Xu, Y. et al. Exploring large language models for communication
games: An empirical study on werewolf. arXiv:2309.04658 (2023).

14. Ma, W. et al. Large language models play StarCraft Il: Benchmarks
and a chain of summarization approach. arXiv:2312.11865 (2023).

npj Robotics| (2026)4:5

11

https://github.com/WindyLab/GenSwarm
https://github.com/WindyLab/GenSwarm
www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Li, P., Menon, V., Gudiguntla, B., Ting, D. & Zhou, L. Challenges faced
by large language models in solving multi-agent flocking. In:
Distributed Autonomous Robotic Systems (pp.411—424) https://doi.
org/10.1007/978-3-032-04584-3_28 (2024).

Chen, W., Koenig, S. &Dilkina, B. Why solving multi-agent path finding
with large language model has not succeeded yet. In: Distributed
Autonomous Robotic Systems, pp. 411—-424. (2024).

Ahn, M. etal. Do As | Can, Not As | Say: Grounding language in robotic
affordances. In Proceedings of the Conference on Robot Learning,
287-318 (2022).

Park, J. S. et al. Generative agents: Interactive simulacra of human
behavior. In Proceedings of the Annual ACM Symposium on User
Interface Software and Technology, 1—22 (2023).

Zheng, S., Liu, J., Feng, Y. & Lu, Z. Steve-eye: Equipping LLM-based
embodied agents with visual perception in open worlds.
arXiv:2310.13255 (2023).

Liang, J. et al. Code as policies: Language model programs for
embodied control. In Proceedings of the IEEE International
Conference on Robotics and Automation, 9493—9500 (2023).

Singh, I. et al. Progprompt: Generating situated robot task plans using
large language models. In Proceedings of the IEEE International
Conference on Robotics and Automation, 11523—11530 (2023).

Xu, M. et al. Creative robot tool use with large language models. In
Proceedings of the Workshop on Language and Robot Learning:
Language as Grounding (2023).

Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-
assembly in a thousand-robot swarm. Science 345, 795-799 (2014).
Vésarhelyi et al.Optimized flocking of autonomous drones in confined
environments. Science Robotics 3, eaat3536 (2018).

Slavkov, I. et al. Morphogenesis in robot swarms. Sci. Robot. 3,
eaau9178 (2018).

Berlinger, F., Gauci, M. & Nagpal, R. Implicit coordination for 3D
underwater collective behaviors in a fish-inspired robot swarm. Sci.
Robot. 6, eabd8668 (2021).

Zhou, X. et al. Swarm of micro flying robots in the wild. Sci. Robot. 7,
eabm5954 (2022).

Sun, G. et al. Mean-shift exploration in shape assembly of robot
swarms. Nat. Commun. 14, 3476 (2023).

Vemprala, S. H., Bonatti, R., Bucker, A. & Kapoor, A. ChatGPT for
robotics: Design principles and model abilities. IEEE Access 12,
55682-55696 (2024).

Jin, Y. et al. RobotGPT: Robot Manipulation Learning From ChatGPT.
IEEE Robot. Autom. Lett. 9, 2543-2550 (2024).

Wang, H. & Rubenstein, M. Shape formation in homogeneous swarms
using local task swapping. IEEE Trans. Robot. 36, 597-612 (2020).
Hong, S. et al. MetaGPT: Meta programming for a multi-agent
collaborative framework. In Proceedings of the International
Conference on Learning Representations (2024).

Qian, C. et al. ChatDev: Communicative agents for software
development. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 15174-15186 (2024).
Dong, Y., Jiang, X., Jin, Z. & Li, G. Self-collaboration code generation
via ChatGPT. ACM Trans. Softw. Eng. Methodol. 33, 1-38 (2024).
Strobel, V., Dorigo, M. & Fritz, M. LLM2Swarm: Robot swarms that
responsively reason, plan, and collaborate through llms. In Proceedings
of the NeurlPS 2024 Workshop on Open-World Agents (2024).
Kannan, S. S., Venkatesh, V. L. & Min, B.-C. SMART-LLM: Smart
multi-agent robot task planning using large language models. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 12140-12147 (IEEE, 2024).

Venkatesh, V. L. & Min, B.-C. ZeroCAP: Zero-shot multi-robot context
aware pattern formation via large language models. In Proceedings of
the IEEE International Conference on Robotics and Automation,
01-07 (2025).

38. Lykov, A. et al. FlockGPT: Guiding UAV flocking with linguistic
orchestration. In Proceedings of the IEEE International Symposium on
Mixed and Augmented Reality, 485-488 (2024).

39. Yu, B, Kasaei, H. & Cao, M. Co-NavGPT: Multi-robot cooperative
visual semantic navigation using large language models.
arXiv:2310.07937 (2023).

40. Jiao, A. et al. Swarm-GPT: Combining large language models with
safe motion planning for robot choreography design.
arXiv:2312.01059 (2023).

41. Vyas, V. et al. SwarmGPT-Primitive: A language-driven
choreographer for drone swarms using safe motion primitive
composition. arXiv:2412.08428 (2024).

42. Mandi, Z.,Jain, S. &Song, S. Roco: Dialectic multi-robot collaboration
with large language models. In Proceedings of the IEEE International
Conference on Robotics and Automation, 286-299 (2024).

43. Ma, Z. et al. Omnibot: A scalable vision-based robot swarm platform.
In Proceedings of the International Conference on Control &
Automation, 975-980 (2024).

44. Zhao, S. & Zelazo, D. Bearing rigidity theory and its applications for
control and estimation of network systems: Life beyond distance
rigidity. IEEE Control Syst. Mag. 39, 66-83 (2019).

45. Reynolds, C. W. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 25-34 (1987).

46. Guo, K., Wang, D., Fan, T. & Pan, J. VR-ORCA: Variable responsibility
optimal reciprocal collision avoidance. [EEE Robot. Autom. Lett. 6,
4520-4527 (2021).

47. Toohey, K. & Duckham, M. Trajectory similarity measures. Sigspatial
Spec. 7, 43-50 (2015).

48. Gamma, E., Helm, R., Johnson, R. & Vlissides, J.Design patterns:
Elements of reusable object-oriented software (Addison-Wesley,
1994).

Acknowledgements

We would like to thank Jialing Lyu for her help in editing the videos. This work
was partially supported by the STI 2030-Major Projects (Grant No.
2022ZD0208800) and National Natural Science Foundation of China (Grant
Nos. 62473320 and 62473017). Roderich GroB acknowledges support by
the OpenSwarm project, which has received funding from the European
Union’s Horizon Europe Framework Program under Grant Agreement No.
101093046, Robotics Institute Germany (BMBF Grant No. 16ME1001) and
LOEWE center emergenCITY [Grant No. LOEWE/1/12/519/03/
05.001(0016)/72].

Author contributions
S.Z.,R.G.,R.Z., and M.C. designed the research and wrote the paper; W.J.,
H.C.,M.C., G.Z., and L.X. performed research and analyzed data.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44182-025-00065-w.

Correspondence and requests for materials should be addressed to
Shiyu Zhao.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

npj Robotics| (2026)4:5

12

https://doi.org/10.1007/978-3-032-04584-3_28
https://doi.org/10.1007/978-3-032-04584-3_28
https://doi.org/10.1007/978-3-032-04584-3_28
https://doi.org/10.1038/s44182-025-00065-w
http://www.nature.com/reprints
www.nature.com/npjrobot

https://doi.org/10.1038/s44182-025-00065-w

Article

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincludedin the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

npj Robotics| (2026)4:5

13

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjrobot

	GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
	Results
	Overview of GenSwarm
	Software and Hardware Platform
	Demonstration of GenSwarm
	Performance Evaluation
	Different tasks
	Different methods
	Different LLMs
	Different prompts

	Discussion
	Methods
	Ten Multi-Robot Tasks
	Aggregation task
	Flocking task
	Shaping task
	Encircling task
	Crossing task
	Coverage task
	Exploration task
	Pursuing task
	Bridging task
	Clustering task

	Details of Software Architecture
	Details of Automatic Deployment

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

