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AbstractÐAudiovisual active speaker detection (ASD) is con-
ventionally performed by modelling the temporal synchronisa-
tion of acoustic and visual speech cues. In egocentric record-
ings, however, the efficacy of synchronisation-based methods is
compromised by occlusions, motion blur, and adverse acoustic
conditions. In this work, a novel framework is proposed that
exclusively leverages cross-modal face-voice associations to deter-
mine speaker activity. An existing face-voice association model
is integrated with a transformer-based encoder that aggregates
facial identity information by dynamically weighting each frame
based on its visual quality. This system is then coupled with
a front-end utterance segmentation method, producing a com-
plete ASD system. This work demonstrates that the proposed
system, Self-Lifting for audiovisual active speaker detection
(SL-ASD), achieves performance comparable to, and in certain
cases exceeding, that of parameter-intensive synchronisation-
based approaches with significantly fewer learnable parameters,
thereby validating the feasibility of substituting strict audiovi-
sual synchronisation modelling with flexible biometric associa-
tions in challenging egocentric scenarios. Code is available at
https://github.com/jclarke98/SL ASD.

Index TermsÐFace-voice association, Audiovisual active
speaker detection, diarisation

I. INTRODUCTION

Audiovisual active speaker detection (ASD) refers to the

task of identifying the video-framewise speaking activity of

a candidate speaker through the joint analysis of an audio

signal and its temporally aligned face track [1]±[7]. While

a candidate speaker is active, speech is present in the audio

signal and accompanied by visual speech-related cues, such as

lip movement or cheek posture [3], in the video signal. These

visual cues are observed in the face-track, which is defined as

a temporally contiguous set of face crop frames focused on

a single candidate speaker. Crucially, these audiovisual cues

must exhibit temporal alignment if the candidate speaker is

the source of the speech.

Modern approaches to ASD predominantly follow the

single-candidate paradigm which relies on this alignment:

modelling the synchronisation between speech present in the

audio signal and the visual cues indicative of speech present in

the video signal [3]±[6], [8], [9]. Recent advancements extend

this single-candidate paradigm by incorporating additional

contextual information like inter-speaker relationships [1],

This work was supported by the Centre for Doctoral Training in Speech
and Language Technologies (SLT) and their Applications funded by UKRI
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[7], [10]±[12], full-scene image modelling [13], and speaker-

specific information [14], [15]. These advancements address

challenges posed by multi-talker scenarios and noisy environ-

ments. While such extensions have yielded incremental perfor-

mance improvements, they remain fundamentally dependent

on audiovisual cues, indicative of speech, being temporally

correspondent.

In egocentric recording scenarios, it has been shown that

the efficacy of synchronisation-based approaches is signifi-

cantly diminished. This is because fine-grained visual speech

cues required for synchronisation-based approaches are often

compromised by occlusions, motion blur, or adverse lighting

conditions. Additionally, the audio signals are susceptible to

interference from overlapping speech or environmental noise.

These factors degrade the reliability of both modalities, con-

tributing to a pronounced performance disparity when com-

paring ASD systems on egocentric [16], [17] vs. exocentric

benchmarks [2].

An alternative approach emerges from face-voice associ-

ation methods, which link facial identities to voice profiles

without requiring strict audiovisual synchronisation [18]±[23].

Unlike traditional ASD approaches, which require a majority

of crisp frames, these methods operate frame-wise for facial

analysis, requiring only a single high-quality frame with

resolvable identity cues to establish a cross-modal association.

This characteristic proves advantageous in egocentric settings,

where transient moments of clear facial visibility can suf-

fice for robust associations. Prior work has explored related

ideas: for instance, permutation-invariant unimodal similarity

matrices between face and speaker embeddings have been

proposed for utterance attribution [24], though these lack

joint cross-modal training to learn a unified biometric space.

Others have integrated face-voice association as an auxiliary

component to synchronisation-based ASD systems [25], but

such hybrid approaches underperform their baseline models

even in exocentric contexts [2].

This work diverges from previous methods [24], [25] by

exclusively leveraging face-voice association as the foundation

for ASD, circumventing the reliance on synchronisation-based

modelling altogether. The presented system adapts an existing

face-voice association model and integrates it with a front-

end utterance segmentation system. This integrated system,

namely Self-Lifting for audiovisual active speaker detection

https://github.com/jclarke98/SL_ASD


(SL-ASD), enables the attribution of utterance-level speech

segments to their corresponding visually identifiable speak-

ers. Critically, this work incorporates a transformer encoder

that aggregates the temporal context provided by video data,

dynamically weighting each frame’s contribution based on

its visual quality to produce a single discriminative identity

embedding [15]. This aggregation leverages video data with-

out reintroducing dependence on fine-grained visual cuesÐa

vulnerability of synchronisation-based methods.

The approach presented in this work demonstrates that

purely cross-modal identity associations, when enhanced with

frame-quality informed aggregation, and a robust segmenta-

tion front-end achieves performance comparable to parameter-

intensive synchronisation-based methods in egocentric set-

tings. This work underscores the viability of withdrawing

from approaches primarily dependent on audiovisual temporal

correspondence modelling in the challenging context of ego-

centric recordings.

II. FACE-VOICE ASSOCIATION FOR AUDIOVISUAL ACTIVE

SPEAKER DETECTION

In the following, synchronisation-based ASD is replaced

by SL-ASD, which consists of a two-stage framework: (1)

speaker-invariant utterance segmentation and (2) face-voice

association with frame-quality informed aggregation. Unlike

conventional ASD systems that model temporal audiovisual

correspondence, the SL-ASD approach exploits cross-modal

identity associations. This design directly addresses egocentric

challenges where transient visual clarity suffices for biometric

linking, but not for synchronisation-based approaches.

Figure 1. SL-ASD framework, dotted lines of utteraces indicate only
utterances belonging to a single speaker are passed through the pipeline at a
time during training, in this case u1. Colours indicate modality. Bars adjacent
to end faces indicate probability of a face-voice match.

A. Notation and Overview

Typically, egocentric datasets, such as Ego4D [16], consist

of a collection of video clips denoted by C. Each video clip

c ∈ C comprises two primary components: an audio signal

Ac and a video signal Vc. The video component is further

decomposed into a set of face tracks, denoted by Fc. Each

face track corresponds to a sequence of temporally contiguous

face crop bounding boxes that focus on a single identity and

is represented by the tensor Fi,j ∈ R
Ti,j×C×H×W , where i

is the identity index, j is track index, Ti,j is the number of

frames in the face track, C is the number of channels, and H

and W denote the height and width of each bounding box,

respectively.

Similarly, the audio component of each video clip is decom-

posed into a set of utterances, denoted by Uc. An utterance

is defined as a short segment of speech spoken by a single

speaker and is represented by the vector ui,k ∈ R
TAk , where

k is the index for the utterance and TAk
denotes its duration

in audio samples.

B. Speaker-Invariant Utterance Segmentation

The correspondence between an individual’s visual appear-

ance and vocal characteristics has been well established in

the literature [26], [27]. Face-voice association frameworks

have been developed to exploit this relationship by learning

joint embedding spaces in which speaker embeddings and face

embeddings corresponding to the same identity are positioned

in close proximity, while embeddings of different identities are

separated by greater distances [19], [20], [22]. This principle

is leveraged in this work and applied to the task of ASD.

Speaker-invariant utterances are first extracted from the

audio component of each video clip ∀Ac. The performance

of the front-end utterance segmenter is critical to the overall

effectiveness of the framework. Errors such as missed detec-

tions, false detections, and utterances containing overlapping

speech propagate uncorrected throughout the pipeline, leading

to significant degradation in system performance. Given these

considerations, and due to having exhibited robust perfor-

mance during the Ego4D audio-only diarisation challenge,

the Pyannote.audio-speaker-diarization-3.1 [28] model was

selected as the segmentation front-end for this work. However,

multiple segmentation approaches were explored, and their

respective results are presented in Section IV.

C. Face-Voice Association with Frame-Quality-Informed Ag-

gregation

To attribute each speaker-invariant utterance extracted by the

segmentation front-end to its corresponding visible identity, an

established face-voice association framework, namely the Self-

Lifting framework [19], was employed. This framework was

selected due to its self-supervised training protocol, which is

advantageous in ASD datasets which typically lack inter-track

identity annotationsÐi.e., identities across different tracks are

often unknown, only intra-track frames are known to be

identity-invariant. The Self-Lifting framework assumes self-

supervision by utilising an iterative refinement process through

pseudo-labelling via k-means clustering. It leverages well-

known models for face and speaker recognition, specifically

Inception-V1 [29] and ECAPA-TDNN [30], respectively. Ini-

tially pretrained on VoxCeleb [31], the Self-Lifting frame-

work was further finetuned in this work using the AVA-

ActiveSpeaker [2] and Ego4D [16] datasets. Self-lifting uses

the multi-similarity loss function during training.



The proposed system, shown in Figure 1, extracts utterances

from the segmentation front-end. These utterances are then

input into the audio branch of the finetuned Self-Lifting

model. At this point, all parameters of the Self-Lifting model

are frozen. Face tracks from the corresponding video clip

are then processed, with all frames fed through the visual

branch of the Self-Lifting model. To enhance the robustness

of the embeddings output by the visual branch, contextual

information provided by each visible identities frame sequence

is leveraged by a transformer encoder with learnable weights.

This transformer encoder attends along the sequence dimen-

sion of the embedded faces tensor for each visible identity in

the visual component of the batch. The self-attention mech-

anism deployed enables discriminative weighting of frame-

level features through learned quality estimation, dynamically

suppressing low-fidelity visual inputs while emphasising high-

quality frames. Subsequently, the sequence dimension for each

visible identity is aggregated via mean pooling, resulting in a

single quality-informed embedding for each visible identity in

the visual component of the batch.

Cross-attention is then applied, with the quality-informed

embeddings serving as queries and the output of the Self-

Lifting audio branch used as the keys and values. The output

of the cross-attention is then fed through a single feedforward

layer which collapses the embedding dimension. Here, the

cross-entropy loss function is employed.

III. EXPERIMENTS

This section describes the datasets and evaluation protocol

used to quantify the performance of the proposed SL-ASD sys-

tem and to compare its performance fairly with conventional

synchronisation-based approaches.

A. Datasets

Ego4D-AVD [16] consists of recordings captured from an

egocentric perspective. The dataset is composed of 572 distinct

video clips, each clip being 5 minutes in duration, with

some clips recorded concurrently. The audio was recorded

by a variety of wearable devices and monaurally formatted

to 16 kHz. The video recordings were sampled at 30 Hz

in high-definition resolution. Ego4D-AVD is characterised by

realistic capture conditionsÐincluding variations in illumi-

nation, occlusion, and dynamic viewpointsÐwhich render it

a challenging benchmark for ASD. The dataset is stratified

into three folds, with 379 clips allocated for training, 50

for validation, and 133 for testing. Since test annotations are

not provided, the training fold was further stratified into 120

video clips for training and 23 for development to reserve

the validation fold for final evaluation. This stratification

was performed to ensure that no identity appeared in more

than one fold. In Ego4D, the inter-track identity annotations

are consistent within video-clips. The provision of inter-

track identity annotations facilitates more robust utterance-face

comparisons by increasing the number of frames available for

comparison, whereas the absence of such annotations would

restrict comparisons to only those frames within a single track.

B. Implementation Details

Front-End Utterance Segmentation: The best performing

system used in this work was the Pyannote.audio-speaker-

diarization-3.1 system [28] for utterance segmentation. This

segmentation was performed clipwise, and for training and

development folds, it was enforced that extracted utterances

had to overlap with at least 15% the duration of a concurrent

groundtruth utterance. This condition was not enforced during

inference since groundtruth utterance boundaries would not be

available in real life deployment. It was determined empirically

that not imposing any limits on the minimum or maximum

duration of utterances led to better performance.

In addition to using Pyannote.audio, the Silero voice activity

detector (VAD) [32], in conjunction with a derivative-based

speaker change detection algorithm [33], was also tested as a

potential utterance segmentation front-end.

Self-Lifting Finetuning: During the finetuning of the Self-

Lifting framework, the model was instantiated using the iden-

tical configuration to that presented in the original manuscript

[19], except the number of cluster centroids was reduced

from 1000 to 50 which better reflects the number of distinct

identities in the Ego4D dataset. Only the feed forward layers

after the respective pretrained encoders had parameters set to

learnable during finetuning.

SL-ASD: The final SL-ASD model is configured with all

parameters of the Self-Lifting framework set as frozen. The

only parameters that are learnable are the transformer encoder,

the cross-attention, and the feedforward layer introduced by

the ASD adaptation of Self-Lifting presented by this work.

During training, the audio component of the batch comprises

all utterances belonging to a single clipwise identity, while the

video component of the batch is leveraged to include all face

track frames for all identities within the same clip. In contrast,

during validation and inference, the audio component of the

batch is limited to single utterances. The Adam optimiser is

used, with a learning rate of 1 × 10−5 that is decayed by

a factor of 0.2 every 5 epochs. A single transformer layer

is utilised, and 4 attention-heads are employed for both the

transformer encoder and cross-attention layers.

C. Evaluation Protocol

Evaluation was performed using the Cartucho object detec-

tion mean Average Precision (mAP) [34], which adheres to the

mAP criterion from the PASCAL VOC2012 competition [35].

This evaluation protocol is consistent with the Ego4D au-

diovisual diarisation challenge [16] and recent literature [13].

Owing to the unavailability of groundtruth annotations for the

test folds of Ego4D, results were reported on the validation

fold, however the validation fold was not used during hyper-

parameter optimisation. This is in accordance with established

conventions in ASD [1], [7], [10], [11], [13], [36].

Due to its substantially different approach, this work neces-

sitates a slight modification to the standard evaluation protocol.

Rather than producing a framewise probability that each video

frame represents an active candidate speaker, an utterance is

first processed to compute the probability that each visible



identity corresponds to the person who spoke the utterance.

This probability is computed as a dependent measure across

all visible identities in the clip. Subsequently, the face tracks

that are concurrent with the utterance are identified, and

the temporally corresponding video frames are assigned the

computed probability of identity correspondence.

IV. RESULTS

The performance of SL-ASD is evaluated in the following.

First, the effects of different front-end segmentation systems

on overall performance in terms of mAP and utterance recall is

analysed in Table I. Second, a comparison to synchronisation-

based state-of-the-art methods in the egocentric domain is

presented in Table II.

Table I
PERFORMANCE OF SL-ASD SYSTEMS AND CORRESPONDING BASELINE

EVALUATIONS ON DYNAMIC EGO4D SUBSETS (EGO4D†). FOR EACH

SL-ASD SYSTEM, THE EVALUATION SUBSET IS DEFINED BY THE RECALL

OF THE FRONT-END UTTERANCE SEGMENTATION METHOD, AND THE

MAP [%] IS REPORTED FOR THE SYSTEM ALONG WITH TALKNET AND

LIGHT-ASD BASELINES.

Front-End- Ego4D† [mAP %]
Method SL-ASD TalkNet [5] Light-ASD [6]

Recall [%]

Silero 59.6 48.7 58.2 77.5
Pyannote 64.0 55.9 52.8 91.4
Groundtruth 80.1 51.0 54.3 100

Table I exhibits the performance of SL-ASD, with different

front-end utterance segmentation approaches. To fully isolate

the performance of SL-ASD and illustrate the effect the

utterance-recall has on the efficacy of the framework, SL-ASD

was also evaluated using groundtruth utterance boundaries.

Ego4D† indicates a dynamic subset of the Ego4D validation

fold, where ‘dynamic’ refers to a different (likely overlapping)

subset dependent on the front-end segmentation method used.

Specifically, when evaluating each front-end segmentation

method, only face tracks with concurrent detected utterances

are used in the evaluation, all other face tracks are discarded.

Effectively, Table I illustrates two things: the recall of each

front-end segmentation method, and Ðimplicitly Ðthe quality

of the utterances extracted. False detections and speaker-

variant utterances will both induce corrupted outputs from the

Audio Branch of Self-Lifting, propagating errors throughout

the pipeline. As results in Table I show, SL-ASD outperforms

the baselines [5], [6] on the dynamic Ego4D validation subsets

(Ego4D†).

Table II presents a comparison of the proposed SL-ASD

system with state-of-the-art ASD methods on the Ego4D

validation fold. Existing ASD methods typically comprise

several million learnable parameters, with Light-ASD’s 1.0 M

parameters already being an exception, and models exceeding

SL-ASD’s performance use at least 23 M learnable parameters.

In contrast, a significantly smaller learnable parameter count

of 0.40M is achieved by the proposed SL-ASD system.

Furthermore, to provide a more complete picture of model

efficiency, the average number of floating point operations (av-

FLOPs) required per inference iteration (i.e. the number of

floating point operations (FLOPs) per bounding box face crop

in the validation set) has also been included. While the av-

FLOPs for SL-ASD remain extremely low at 0.21 GFLOPs,

comparable to Light-ASD and substantially lower than SPELL

and LoCoNet, its important to note these figures are reported in

isolation from shared ASD preprocessing modules or modules

reused as part of a wider implementation of a full modular

audiovisual diarization (AVD) pipeline [16].

More specifically, the av-FLOPs and learnable parame-

ters directly attributable to the face-recognition model and

front-end segmenter (visual branch and segment modules in

Figure 1, respectively) are excluded from the reported av-

FLOPs and parameter count calculations. This is based on the

rationale that face recognition is typically performed upstream

during face track aggregation when acquiring ASD data, and

that segmentation would be performed as part of a broader

modular-AVD pipeline [16]. Consequently, the exclusion of

these components is deemed justified. These results under-

score that, despite its compactness, SL-ASD is capable of

achieving competitive and, in certain conditions, superior per-

formance relative to more parameter- and compute-intensive

methods. This validates the feasibility of leveraging cross-

modal identity associations instead of predominantly relying

on synchronisation-based approaches to ASD in the domain

of egocentric recordings.

Table II
COMPARISON WITH THE STATE-OF-THE-ART ASD SYSTEMS ON THE

VALIDATION FOLD OF EGO4D. VALUES FOR LOCONET AND SPELL ARE

FROM THEIR RESPECTIVE MANUSCRIPTS, AV-FLOPS REFERS TO THE

AVERAGE NUMBER OF OPERATIONS REQUIRED TO PROCESS A SINGLE

BOUNDING BOX FACE CROP.

Method mAP % # Params. [M] av-FLOPs [G]

TalkNet [5] 51.0 16 0.51
Light-ASD [6] 54.3 1.0 0.20

SPELL [17] 60.7 23 8.7
LoCoNet [36] 68.4 30 0.51

SL-ASD:Silero 48.8 0.4 0.21
SL-ASD:Pyannote 59.7 0.4 0.21

SL-ASD:Groundtruth 80.1 0.4 0.21

V. CONCLUSION

This work demonstrates the feasibility of leveraging cross-

modal identity associations for ASD in egocentric recordings.

It has been shown that, by integrating an adapted face-voice

association model with a robust utterance segmentation front-

end and a transformer-based temporal aggregator, the proposed

SL-ASD system is capable of achieving performance that is

competitive with, and in certain conditions superior to, much

more parameter-intensive synchronisation-based methods. A

significant reduction in the number of learnable parameters has

been attained, when excluding non-learnable components that

are presumed to be inherently present in modular audiovisual

diarisation pipelines. Overall, it is concluded that the reliance

on temporal synchronisation can be mitigated by exploiting

biometric associations, which proves to be a viable approach

for addressing the challenges posed by occlusions, motion blur,

and noisy acoustic conditions in egocentric scenarios.
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