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Abstract

We consider the problem of preserving weighted Riemannian metrics of positive Bakry-
Emery Ricci curvature along surgery. We establish two theorems of this type: One for
connected sums, and one for surgeries along higher-dimensional spheres. In contrast to
known surgery results for positive Ricci curvature, these results are local, i.e. we only impose
assumptions on the weighted metric locally around the sphere along which the surgery is
performed. As application we then show that all closed, simply-connected spin 5-manifolds
admit a weighted Riemannian metric of positive Bakry-Emery Ricci curvature. By a result
of Lott, this also provides new examples of manifolds with a Riemannian metric of positive
Ricci curvature.
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1 Introduction

Surgery is an essential tool in differential topology which was introduced by Milnor [31] to
eliminate certain homotopy classes of embedded spheres on a given manifolds. Recall that
for an n-dimensional manifold M" and an embedding ¢: S” x D! < M of the product
of the p-sphere with the (g + 1)-disc withn = p + g + 1, the manifold M, obtained from
M by surgery along ¢ is given by

My = M\ o(S” x DTT)° Ugpysa (DT x SP).

We also say that M, is obtained by p-surgery from M.
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In the presence of a lower curvature bound, surgery offers a promising attempt to construct
a wide class of manifolds satisfying this lower curvature bound, provided it can be preserved
along a surgery operation. This was shown to be possible for positive scalar curvature by
Schoen—Yau [42] and Gromov-Lawson [19] whenever ¢ > 2, which, in conjunction with
index theory of Dirac operators, eventually led to a full classification of closed, simply-
connected manifolds that admit a Riemannian metric of positive scalar curvature [45].

For positive Ricci curvature, it is not known whether a surgery result in the same generality
holds. In this context, we highlight the following questions:

Question 1.1 Does the connected sum M #M; of two closed n-manifolds M and M, admit
a Riemannian metric of positive Ricci curvature whenever both M| and M, admit such a
metric (assuming at least one of M| and M, is simply-connected)? As a special case, does
the connected sum M 1#(CP% or M1#(S§™ x S"7™) admit a Riemannian metric of positive
Ricci curvature whenever M| admits such a metric?

Question 1.2 Which closed, simply-connected S5-manifolds admit a Riemannian metric of
positive Ricci curvature?

Note that the connected sum operation is a particular instance of O-surgery. By the theorem
of Bonnet—Myers, a connected sum M1#M, cannot admit a Riemannian metric of positive
Ricci curvature when both M| and M> are not simply-connected. In all other cases, Question
1.1 is open. A systematic study of the connected sum problem was initiated by Burdick [9—
12], who, based on work by Perelman [34], introduced the notion of core metrics. These are
Riemannian metrics of positive Ricci curvature that contain an embedded round hemisphere
of the same dimension as the manifold (see Definition 4.1 below). Burdick then showed that
the connected sum of manifolds with core metrics admits a Riemannian metric of positive
Ricci curvature. While this offers a promising approach towards answering Question 1.1,
it is not well understood which manifolds among the known examples of manifolds with a
Riemannian metric of positive Ricci curvature admit core metrics, see Section 4 for a full
list.

Question 1.2 is of special interest, since it is known that all closed, simply-connected
5-manifolds admit a Riemannian metric of positive scalar curvature [19], which is a con-
sequence of the aforementioned surgery result. At the same time, there exists a particularly
simple classification of these manifolds by Smale [44] and Barden [3]. However, while there
are no known counterexamples to Question 1.2, the number of known examples admitting
a Riemannian metric of positive Ricci curvature is relatively small, see Subsection 6.6 for a
full list. In particular, among the known examples which are spin and have torsion in their
homology, the second Betti number is at most 8. On the other hand, it was shown by Sha—
Yang [43] that all closed, simply-connected 5-manifolds with torsion-free homology admit a
Riemannian metric of positive Ricci curvature, which was obtained by establishing a surgery
result for higher surgeries, i.e. p-surgeries with p > 1. This technique was subsequently
extended and generalised by Wraith [49, 50] and the first named author [36], which provided
new examples in dimensions at least 6. We also refer to [55] for a related construction. Never-
theless, all these results require strong geometric assumptions for the metrics involved, thus
limiting their possible range of applications.

The purpose of this article is to study surgery in the context of a modified Ricci tensor,
and in particular to address Questions 1.1 and 1.2 in this setting.

Definition 1.3 Let (M", g, e~/) be an n-dimensional weighted Riemannian manifold, i.e. g
is a Riemannian metric on M and f: M — R is a smooth function. Then for g € (0, o]
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the g-Bakry-Emery Ricci tensor ﬂcq of (M, g, e~f) is defined by
~ 1
Ric, = Ric® + Hess(f) — —df Q@ df.
q

The tensor ﬁcq was first introduced by Bakry and Emery [1] in the context of diffusion
processes. It also appears naturally in other settings, such as Ricci flow, general relativity and
the study of Ricci limit spaces, see e.g. [30, 32, 47] and the references therein. It was shown
by Lott [30] that if a closed #-manifold M admits a weighed Riemannian metric (g, e~/) of
ﬁcq > 0, then the product M x S? admits a Riemannian metric of positive Ricci curvature
for all p > max{2, g} (see Proposition A.5 below for a generalisation of this result). The
metric on M x S? is constructed in such a way that one can collapse the sphere S? to a
point while preserving Ric > 0, which shows that (M, g) is a collapsed Gromov—Hausdorff
limit of Riemannian manifolds of Ric > 0, and, in particular, the metric measure space
M, g, e’fdvolg) satisfies the synthetic curvature condition CD(0, n + p).

Lott’s result also shows that the existence of a weighted Riemannian metric of lf'fcq >0
leads to examples in the Riemannian case, and, similarly as in the Riemannian case, we
obtain that the fundamental group of a closed manifold with a weighted Riemannian metric
of ﬁfcq > 0 is finite. We further discuss the relation between ﬁfcq > 0 and Ric > 0 in
Appendix A below. It is worth noting that there is no difference known between the class of
manifolds admitting a weighted Riemannian metric of Iii/cq > 0 and the class of manifolds
admitting a Riemannian metric of Ric > 0.

In our first main result we consider gluing of two weighted Riemannian manifolds of
ﬁcq > 0 along isometric boundary components. This generalises a corresponding gluing
result of Perelman [34] in the Riemannian case, see also [5, 38], the survey article [24], and
Theorem 3.1 below. We denote by I the second fundamental form and by H/ the weighted
mean curvature defined by H f = H — v(f), where H is the mean curvature and v the
outward unit normal of the boundary.

TheorFeVm A Let (M1, hy, e~y and (Mo, ho, e~ 2) be two weighted Riemannian n-manifolds
with Ric, > 0 for some q € (0, o0, and suppose there exists an isometry ¢ : 3. My — 0.M>
between two boundary components .My € 0My and 0. M> < dM; such that filo.m, =

frog. If

() HYy + Hy 09 >0, and
(2) ]I3(-M| + ¢*]I3(;M2 >0,

then there exists a metric h and a smooth function f on My Uy M», which agree with h; and
fi onfll/[i outside an arbitrarily small neighbourhood of 3. M;, such that (M1 Uy M3, h, e
has Ric, > 0.

This result was independently also obtained by Ketterer [25], who additionally proved a
converse in terms of the curvature-dimension condition CD(K, N) (see [25, Theorem 1.4]).
We note that our proof of Theorem A, which is based on Perelman’s work [34], differs from
Ketterer’s proof, which is based on a construction of Kosovskii [27], see also [41].

Theorem A motivates the following generalisation of core metrics to the weighted setting:

Definition 1.4 Letg € (0, oo]. A weighted metric (g, e ofﬁcq > 0 on an n-dimensional
manifold M is called a weighted core metric with respect to g, if there exists an isometric
embedding ¢: D" < M, where we consider D" as equipped with the induced metric of a
hemisphere in the round sphere of radius 1, such that f is constant on ¢(D").
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In particular, we obtain a weighted core metric with respect to any g € (0, oc] from a
core metric by choosing a constant weight function.

Similar arguments as in the Riemannian case [10] using Theorem A instead of Perelman’s
gluing theorem now directly show that the connected sum of manifolds admitting weighted
core metrics with respect to ¢ admits a weighted Riemannian metric of ﬁfcq > 0. In fact, we
can prove the following more general result:

Theorem B Let g € (0, 00] and let M}, i = 0, ..., £ be closed manifolds such that

(1) My admits a weighted Riemannian metric of ﬁcq > 0,
(2) My, ..., My admit a weighted core metric with respect to q.

Then the connected sum Mo# ... #M, admits a weighted Riemannian metric of ﬂcq > 0.

In particular, Theorem B answers the second part of Question 1.1 affirmatively if one
replaces Ric > 0 by ﬁcq > 0, since both complex projective spaces and products of spheres
S x §"7™ with m,n — m > 2 admit core metrics by [10, 11, 37].

As pointed out by Erik Hupp, the case where ¢ = 2 and all M; withi > 1 are given by
C P2 in Theorem B also follows from the construction in [21].

The idea for the proof of Theorem B is as follows. For simplicity we assume £ = 1.
We then remove a small neighbourhood of a point in My and a small neighbourhood of the
hemisphere in M7 and attach a cylinder [0, 79] x $"~! equipped with a weighted Riemannian
metric of lich > 0 that connects the two pieces. To ensure that we can glue the cylinder
to Mo and M; using Theorem A, we will define a warped product metric on [0, fp] x S n=1
whose warping function has derivative close to 0 at # = 0 (to glue with M) and close to 1
att = to (to glue with Mp). Clearly this can be achieved by a convex function with suitable
boundary conditions. However, the Ricci curvatures of such a metric in ¢-direction are strictly
negative. To obtain a weighted Riemannian metric of Ii?cq > 0 we then carefully construct
a weight function that compensates the negative contribution of the Ricci curvature while
satisfying condition (1) of Theorem A at the gluing areas. This choice of functions is based
on the construction in [36]. It is worth noting that for the overall construction we change the
weighted Riemannian metrics on My and M only in arbitrarily small neighbourhoods of a
point in My and of the embedded hemisphere in M1, respectively.

Next, we consider higher surgeries.

Theorem C Let (M", g, e~ ) be a weighted Riemannian manifold with ﬁfcoo > 0 and let
@: 8% x D" <5 M, a+ b+ 1 = n, be an embedding such that ¢(8¢ x {0}) is a round,
totally geodesic sphere on which f is constant with vanishing normal derivative. Ifa, b > 2,
then M, admits a weighted metric ofli\idcoo > 0.

The main improvement of Theorem C compared to the known surgery results for Ric > 0
is that Theorem C is local, that is, we only need to impose conditions on the central sphere
@(S x {0}). In contrast, the surgery results for Ric > 0 in [36, 43, 50, 55] all require the
diameter of the discs ¢({x} x Db*1) for all x € S¢ to be sufficiently large compared to the
size of the sphere ¢ (5S¢ x {0}). Note that this requirement on the diameter heavily restricts
its possible applications, since in a generic setting, there is no guaranteed lower bound for
the size of tubular neighbourhoods of embedded submanifolds.

The weighted Riemannian metric constructed in Theorem C coincides with (g, e~/)
outside an arbitrarily small neighbourhood of the gluing area. For the proof we consider a
doubly warped submersion metric on the cylinder [0, o] x S¢ x sb, together with a weight
function that is constant along slices {r} x S¢ x S”. The goal is then to transition between
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a weighted metric that collapses each sphere {0} x S* x {x} to a point (to obtain the space
D1 x §%), and a weighted metric that at f = f can be glued to M \ (¢ x D?+1)°. This
results in a system of differential inequalities (to obtain IiTcoo > () for the warping functions
and the weight function with boundary conditions at t = 0, #y, for which we will construct
explicit solutions.

We apply Theorem C to closed, simply-connected spin 5-manifolds. Any such manifold
can be obtained from the sphere S° by a sequence of surgeries since the 5-dimensional spin
bordism group Qgp " is trivial. However, in general, the corresponding embeddings will
not satisfy the hypotheses of Theorem C. To obtain round and totally geodesic embeddings
S2 <5 S5 one can for example consider intersections with S5 of linear 3-dimensional
subspaces of R®. We will see in Section 6 below that this results in manifolds M> with
second homology group given by Ha(M) = (Z/n)? with n odd. To obtain more general
homology groups, we will give a procedure to slightly shift a linear subspace in a given
direction, while preserving all properties required to apply Theorem C. A careful analysis of
the possible linkings of 2-spheres in > we can produce in this way, together with Smale’s
classification of closed, simply-connected spin 5-manifold [44], results in the following.

Theorem D_All closed, simply-connected spin 5-manifolds admit a weighted Riemannian
metric of Ricy, > 0.

This answers Question 1.2 in the spin case if one replaces Ric > 0 by liTcoo > (. We note
that, in combination with Theorem B, we also obtain a partial result in the non-spin case, see
Theorem 6.15 below. Moreover, the same techniques as in the proof of Theorem D can be
applied to highly-connected (4m + 1)-manifolds, i.e. closed, (2m — 1)-connected manifolds
of dimension (4m + 1), see Theorem 6.1 below.

Since Ricos > 0 on a closed manifold implies ﬁcq > 0 for all ¢ sufficiently large,
Theorem D, together with Lott’s results [30], has the following consequence:

Corollary E Let M be a closed, simply-connected spin 5-manifold. Then there exists ¢ € N
such that M x S admits a Riemannian metric of positive Ricci curvature.

We note that, in contrast to Theorem A, it is open whether analogous results to Theorems
B, C and D also hold for Ric > 0.

This article is laid out as follows. In Section 2 we introduce weighted Riemannian man-
ifolds and recall constructions and curvature formulae for metrics on a cylinder. We then
proceed by proving Theorems A, B, C, and D in Sections 3, 4, 5, and 6, respectively. Finally,
in Appendix A, we compare the conditions lffcq > 0 and Ric > 0 and collect results that
allow to construct Riemannian metrics of Ric > 0 from weighted Riemannian metrics of
ﬁcq > 0.

2 Preliminaries

In this section, we will present the main definitions about weighted Riemannian manifolds
to fix the notation. We will also present the formulae for different types of curvature on a
Riemannian manifold of the type M = I x X with the metric 1 = dt*> + g;, where X a
Riemannian manifold, / C R aninterval and g; denotes a smoothly varying metric on {¢} x X
for each t € I. These explicit computations will be used in the various steps needed to prove
Theorems A—C.

For a hypersurface N € M in a Riemannian manifold (M, g) with (local) unit normal
field v, we denote by I(u, v) = g(V,v, v) its second fundamental form and by H = tr Il its
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mean curvature. When N is the boundary of M, we choose v to be the outward pointing unit
normal.

2.1 Weighted Riemannian manifolds

In this section, we establish basic facts on weighted Riemannian manifolds. For further
background literature, we refer to [30, 47], and the references therein.

Definition 2.1 Given a smooth manifold M, a Riemannian metric g on M, and a smooth
function f: M — R, we call the triple (M, g, e~/) a weighted Riemannian manifold.

If dvolg denotes the Riemannian volume measure, then one can view a weighted Rie-
mannian manifold (M, g, e~ /) as a Riemannian manifold (M, g) equipped with a measure
~Jdvol
e~/ dvoly.

Definition 2.2 For a given g € (0, co], we define the g-Bakry-Emery-Ricci tensor ﬁcq of
(M, g,e ) as

~ 1
Ric, = Ric® 4+ Hess(f) — —df @ df ,
q

where Ric? stands for the Ricci tensor of (M, g). Using the convention é = 0, the oco-
Bakry-Emery-Ricci tensor is given by

Ricoo = Ric® + Hess(f) .

Note that Ifi/cq depends on both the metric g and the weight function f. Whenever the
metric and weight function are not clear from the context, we will indicate the dependence by
writing R1C§ . We will also refer to Rqu as the weighted Ricci curvatures of (M, g, e -,

For ¢’ > g we have that RICq > ( implies RICq' > (. Since Rqu = Ric for all ¢ whenever
f is constant, a Riemannian manifold of Ric > 0 satisfies RICq > 0 for all ¢ with respect to

a constant weight function.

Definition 2.3 Let (M”, g, e~/) be a weighted Riemannian manifold an let N*~! € M be
an embedded hypersurface. Forx € N,letv € Ty M be a unit normal to N. Then the weighted
mean curvature H' at x with respect to v is defined by

Hf =H - g, V).

Just like for the mean curvature, we will choose v as the outward pointing unit normal when
N =0M.

2.2 Weighted Riemannian metrics on a cylinder

In this section we establish curvature formulae for weighted Riemannian metrics on a cylinder,
which we will need in the proof of Theorems A—C.
Let us consider a product M" =1 x X n=1 \where [ is an interval, and a metric h on M
given by
h=dt 2 + g,

where g; is a smoothly varying family of Riemannian metrics on X. We will set g; = % gt

" 02
and g/ = 3281
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Lemma 2.4 ([37, Lemma 2.1]) The second fundamental form of a slice {t} x X with respect

to the unit normal 0, is given by
1

Lixx = Egz/-

Furthermore, the Ricci curvatures of the Riemannian manifold (M, h) at (t,x) € M are
given as follows:

. 1 1
Ric" (3, 8;) = — 3t gl + Zug;nﬁ,,

. 1 1
Ric" (v, 8) = —Svltrg gD + 5 D (Ve gD, i),
i

n—1

. . 1 1 1
Ric" (1, v) = Ric% (u,v) — Egl”(u, v) + 3 Zgl’(u, eNg (v, e) — Zg;(u, v)trg, g

i=1

Here u,v € T, X and (e;) is an orthonormal basis of T, X with respect to g;.

Now let f: M — Rbeasmooth functionandweset f; = f(¢,-): X — R.Thefollowing
Lemma, together with Lemma 2.4, provides the weighted Ricci curvatures of the weighted
Riemannian manifold (M, h, e~ 7).

Lemma 2.5 Given x € M, for any u, v € Ty X we have
Hess" (£)(0;, ) = f/,
Hess" (f)(u, 3) = %u(f/),
Hess" (f)(u, v) = % Vg1 (u, v) + Hess® (f;)(u, v)

and

@f ®@df)(d, a) = (f))2,
@f @df)(u, d) = fldf,(u),
@df @ df)(u,v) = df,(wdf,(v),

where we are using the shorthand notation
/ 9 " 92
fl=2f and f! =2 f.
Proof We extend u and v to local vector fields around x € X, and then constantly to local
vector fields around (¢, x) € M. First we calculate the Levi-Civita connection of 4. Since

[u, ;] = [v, 9;] = 0and [u, v] € T X, we obtain from the Koszul formula, where we denote
by V! the Levi-Civita connection of the metric g;:

1
Vo 0r =0, h(Vyd;, v) =h(Vyu,v) = ng(u, v),
1
h(Vy8:,0,) = h(Va,u,3) =0 , Vo= —Eg,/(u, v)d; + V).
We have h(Vf,8,) = 0, f = f/ and h(V f,u) = u(f) = u(f;) = &(V f;, u). Thus,

Vi=fa+Vf.
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It follows that
Hess" (f)(u, v) = h(V,V £, v) = h(Vu(f/3) + ViV fi, v)
=h@(f))3,v) + f{h(V,d, v) + Hess® (f;)(u, v)

1 !’ ! g
=3 7 8;(u, v) + Hess® (f)(u, v),

Hess" (f)(u, ;) = h(VuV f, 8) = h(u(f)d; + £/ Vuds + ViV fr, ;)
1 1 1
= u(f)) = 5810V fi) = u(f)) = S0u(f) = Su(f),
Hess" (f) (3, 8;) = h(Vo,V f,8) = yh(Vf, ) = f/.
O

‘We now consider the special case where # is given by a doubly warped submersion metric
and f is constant on the hypersurfaces {¢t} x X. This case will be important in the proof of
Theorems B and C.

For a,b € N we consider the projection §¢ x S’ L, $9. The vertical distribution
V = ker m, is then simply given by TS”. Let H C T (S x S?) be a distribution that is
complementary to V, so we have a decomposition

TS x SPY=HoV.

The projection onto H, which we call the horizontal distribution, according to this composi-
tion will again be denoted by 7, and similarly, the projection onto V is again denoted by V.
Then for any «, 8 > 0 we define the metric

Sup = @*H*w*ds? + pPdsy

and obtain a Riemannian submersion (§¢ x S, 8a,p) — (89, azdsg) with totally geodesic
fibres isometric to (S, ,82ds,3). Conversely, for any Riemannian submersion (S¢ x sb, g) —
(84, ozzdsg) with totally geodesic fibres isometric to (s?, ﬂzdsg) we define H = V+ and
obtain that g is given by g g, see also [4, Theorem 9.59].

We consider the A-tensor of g1 1, i.e.

Ayv = HVy, Vv + V'V, Ho,

where V denotes the Levi—Civita connection of g;,; and # and v denote vector fields on
S9 x S (for more details and basic properties of the A-tensor we refer to [4, Section 9.C]).
As in [4, 9.33], for a horizontal vector u and vertical vector v in Ty (S x S?) we set

(A, A) = Y 11 (Aui, Agui),

L

(Av, Av) = ) " g11(Ay v, Ay v),
i
((Au,v) == g1V Ay, v),
i

where (u;) is an orthonormal basis of H,.

Lemma 2.6 Let I be an interval and let o, B: I — (0, 00), f: I — R be smooth functions.
For a, b € N and a horizontal distribution H € T (S x Sb) as above consider the metric

h = dt® 4 gow) pay = di* + a()*H n*ds? + B(1)ds;.
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We consider f as a function defined on I x S* x SP by composing it with the projection
onto the first factor. Then, for g € (0, o0), the weighted Ricci curvatures of the weighted
Riemannian manifold (I x S* x b, h,e~1) are given by

1 "
5T 1
Ric, (0, 0;) = o _ bﬂ Iy

o /3 q
~ o 1—0{’2 O{/ﬂ/ o :32
Rlcq(g,ﬁ):—;+(a—l) — _bﬁ+f’g—2y(Au,Au),
~ ﬁ// 1 _ '3/2 a/ﬁ/ /,B/ /32
Ricg (5. ) = = + (b= D —a—p + ' + (5 (Av, Av),
=~ B«
Ricy (5. §) = = —5(@Au, v),

Ric, (3, %) = Ricg (3, %) = 0.

Here u and v are unit horizontal and vertical vectors, respectively, and A denotes the A-
tensor.

Proof Let A%# denote the A-tensor of 8a,p- Then, for horizontal vectors u1, u; and a vertical
vector v we have
2

B « |
Ay = A, AfPv =5 A0, GAF = —BA,
see e.g. [4, Lemma 9.69]. Here we are using that the Levi—Civita connection, and therefore

. 1. . B
the A-tensor, does not change under scalar multiplication, so that A%P — Ala It follows
that

132
(A‘;’ﬁ7 Az’ﬂ)a,ﬂ = E(Aua Ay),

4
(A%Pv, A%Pu), p = 'B—Z(Av, Av),
o

< B .
(BA*Pu,v)p = a—z((rSA)u, v).

The claim now follows from Lemmas 2.4 and 2.5, together with the formulae for the Ricci
curvatures of the metric gy g in [4, Proposition 9.36]. m]

In the case where the horizontal distribution is given by 7'S%, we obtain that g, g is a
product metric and the A-tensor vanishes. We therefore obtain the following as a consequence.

Lemma 2.7 Let I be an interval and let o, B: I — (0, 00), f: I — R be smooth functions.
For a, b € N define the metric g4, g on I x §% x St by

h = di® + a(t)’ds2 + B(1)*ds}.

We consider f as a function defined on I x S x S by composing it with the projection
onto the first factor. Then, for q € (0, ool, the weighted Ricci curvatures of the weighted
Riemannian manifold (I x 8¢ x S?, h, e=1) are given by

" Y 1

li\'l j— o " 72
icgy(0,0) =—a— —b—+ f" ——f7,
o ‘3 q
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~ o ]_a/2 Ol,ﬂ/ ,Ol/
Ricy (3, 3) = T +(a— 1)7 - bﬁ +f P
~ ﬂ// 1—,3/2 a/ﬁ’ ,,3/
Ricy(g, ) =——+ 0 —-1) —a + =,

“ep B B? af B

Ricy (3, %) = Ricy (3, §) = Ricy (%, %) =0.
Here u and v are unit tangent vectors of (5¢, dsf) and (S, dsZ), respectively.

Using Lemma 2.7, one can calculate the Ricci curvatures of a metric obtained by adding
a third warping function.

Lemma 2.8 Let I, I, be intervals and let o, B: 11 x I — (0,00) and y: I} — (0, 00) be
smooth functions. For a, b € N define the metric h on I} x I x §¢ x S’ by

h=dt*+ )/(1‘)2ds2 + a(t, s)zdsg + B(t, s)zdsg,

where 11 and I are parametrized by t and s, respectively. Then the Ricci curvatures of the
metric h are given as follows:

’

"
Ric(d; ,9; ) = g2 —b@ _ L’
o B v
p 1 / ’
Ric(d, , &) = — <_a% _ P 04 +bﬂsy > ’
oy o p ay By
Ric(%, &) = Lz (_a& _b&> _v eyt By
v’y y B Y o By
1 Uss Cl2 Clsﬂs Oyt 1-0{1‘2 atﬂt OltJ//
RIC(5’5)=P<_7_(61_1)%_ af —;-i-(a—l) o2 _baﬂ_ay,
1 ” 2 8. 1 g2 ,
RIC(E ,%):7(_&_(b_1)752_a053l%>_@_i_(b_l) 2131 _aoltﬂ, _ Bty
Y p B op B B apB By

Ric(d; , ) =Ric(d, §) = Ric(%, 4y = Ric(%, %) =Ric(4, £) =0.
Here u and v are unit tangent vectors of (8¢, dsaz) and (S, dsg), respectively.

Proof We write h as dt* + g; with

alt,s)? 5 B,  ,
02 Bt ds”)'

Like in the proof of Lemma 2.5, the Levi—Civita connection V' of the metric g, is given by

g =y®)? (ds2 +

v} 35 =0,
Qg

Vi u = V,d = —s
Vé v = V,ﬁas = &v,

: B

(o407 a

Viu' = _ﬁw,uwsa + V3,
Vi = _bb (v, v )gp + Vfbv’,

J/2
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Viv=0.

Here u,u’ € TS% and v, v’ € T SP.

Since the Ricci tensor is invariant under scalar multiplication, we obtain the Ricci curva-
tures of the metric g, from Lemma 2.7. Inserting this into the formulae of Lemma 2.4 then
results in the Ricci curvatures of the metric 4 as claimed. O

The following functions will be useful in the proof of Theorems B and C to construct
suitable doubly warped product metrics.

Lemma29 Forany i € (0,1),e,r > 0,a > 0and b > 1, there exist ty > 0 and functions
B,v: 10, ] — (0, 0o) satisfying the differential inequalities

" "
L
Y B
B’ 1— ,3/2 v'B
-S4 —all s,
B B? vB
and the boundary conditions
y(©0) =1, BO) =r,
y'(0) <e, B'(0) =0,
¥ (to) = 0, B (t0) = %.

These functions are constructed in [36, Sections 3.2 and 3.3]. Notice that, compared to the
corresponding statement in [36], we changed the notation and denoted &, f, A and cos(R/N)
in [36] by B, v, € and A, respectively. We also omitted conclusions (3.7) and (3.10) being
positive in [36], as we do not need them here.

Finally, we construct a weighted metric of Rico, > 0 on a cylinder that transitions between
two given metrics of positive Ricci curvature.

Lemma 2.10 Let (g;)c[0,1] be a smoothly varying family of Riemannian metrics of posi-
tive Ricci curvature on a closed ~manifold M. Then for any A € R there exists a weighted
Riemannian metric (g, e_f) of Ricoo > 00n [0, 1] x M such that

(1) the induced metrics of g on {0} x M and {1} x M are isometric to go and g1, respectively,

(2) the boundary components {0} x M and {1} x M are both totally geodesic, and

(3) the function f is constant at botht = 0 and t = 1, and the normal derivative of f at
{1} x M is a constant A, i.e. df (v) = A where v is the outward unit normal.

Proof Since M is compact, there exist ¢, C > 0 so that for any ¢ € [0, 1] and any unit vectors
u, v € TM with respect to g; all of the expressions

ltrg, g7l [(trg, g1 (V) (W )l gy (u, V)1, I8/ (u, v)], Itrg, g7 |

are all bounded by C and
Ric® (u, u) > c.

Now fora € (0, 1), let x,: [0, %] — [0, 1] be a smooth function with the following proper-
ties:

(1) xa(0) =0, xa(3) =1,

2) %,(0) = x,(3) =0,

3 xals Ixg1 < a
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Such a function can for example be obtained by smoothing the C!-function

412, 1 €0,1],
a a 2
=1%o relldl
—F = E) L rely B
2+a 3
1, rel[==, 2]

We now define the weighted metric (g, e~/) on [0, g] x M by imposing
g =dr* + gy, ).

3
f(t,x) =2Ca (z - 7) +x, f(0)=0.
a
We have ,
B 8xa) = Xa D&y o8y = Xa 8y, ) + Xi (D)8, 1)-

Hence, by Lemmas 2.4 and 2.5, we can estimate the weighted Ricci curvatures of (g, et )
as follows:

_ 1
Ricoo (3, 8;) > —EC(az +a) +2Ca > Ca,

—~ 1
IRicoo (31, v)| <

aC,
1 2.2 1 /
an —ECa(6C+A)ZC—Ca,

where C’ > 0 is a suitable constant (which depends on A and C, but not on a). Thus, the
weighted Ricci curvatures are positive if and only if

5T 1 2 1 2.2
Ricyo (v, v) ZC—EC(CZ +a)—§nC a” —

1 2
Ca(c—C'a) > (n; aC) ,

i.e. if and only if

1\2
c—Cla> <n+ ) aC,
2
which is satisfied for all a sufficiently small.
Finally, we obtain a weighted metric on [0, 1] x M by pulling back (g, e~/) along a
diffeomorphism (¢, x) > (¢ (¢), x), where¢: [0, 1] — [0, g]isadiffeomorphism satisfying

¢(1) = 2. s

3 Perelman’s Gluing Theorem

The goal of this section is to prove Theorem A. Before doing so, we first recall the corre-
sponding result in the Riemannian case:

Theorem 3.1 ([34], see also [5], [38]) Let (M1, hy) and (M3, hy) be two Riemannian n-
manifolds of positive Ricci curvature and suppose that there exists an isometry ¢: 0. M1 —
0. M3 between two boundary components 9. M1 € dM1 and 3. My C My such that Wy, p, +
¢*ly.pm, = 0. Then there exists a Riemannian metric of positive Ricci curvature on MUy M»
that coincides with h; on M; outside an arbitrarily small neighbourhood of 9. M;.
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Theorem 3.1 is proven by smoothing the C%-metric i1 Uy h on My Uy M> using spline
interpolation. This is achieved in three main steps: First, a spline interpolation of degree
3 produces a C'-regular metric, from which one then obtains a C2-regular metric by a
subsequent spline interpolation of degree 5. Finally, general smoothing results give a metric
of C*°-regularity. The condition on the second fundamental forms ensures that the Ricci
curvature is positive after the first step, while there is no additional assumption needed to
preserve positive Ricci curvature in the other subsequent steps.

To prove Theorem A, we will simultaneously smooth the metric and the weight function
according to a similar smoothing process, mostly following the arguments presented in [,
Section 2]. To simplify the proof we will combine the second and third step and construct
a C*-regular metric and function after having obtained C!-regularity by using mollifying
techniques as in [38].

We note that an alternative proof of Theorem 3.1 was obtained by Schlichting [41], which
is based on a gluing result for Alexandrov spaces due to Kosovskii [27].

In our setting, we start by considering two weighted Riemannian manifolds (M, h1, e~
and (M>, ho, e~ 2) and suppose that there exists a weighted isometry ¢: M| — Mo, i.e.
¢ is a diffeomorphism satisfying

° ¢*h2|8M2 = N[y, and

e frop= f1|8M|'

At this point we do not impose any conditions on the second fundamental forms or weighted
mean curvature.

As described in [5, Section 2.1], the glued space W = M; Uy M> carries a canonical
smooth structure so that the embeddings M; < W are smooth. We will identify each M;
with its image in W and set X = aM| = 0 M>.

By the hypotheses on #; and f;, we then obtain a continuous weighted Riemannian
metric (ﬁ, e~ /) on W which is smooth on W \ X and coincides with (k;, e~ ') on M;.
Further, by considering normal coordinates around X, we obtain a diffeomorphism between
a neighbourhood of X in M; and the product [0, §) x X for some § > 0 on which A;
takes the form h; = dt® + h; (1), where h;(t) is a smoothly varying family of Rieman-
nian metrics on X. Hence, on a tubular neigthourhood of X in W, which we ideptify with
(-6, 8)Ax X, the weighted CY-metric (ﬁ, e~ ') takes the form (dt® + §(¢), e~ ), where
(@), f1) = (hi(=1), fi(=t,)) resp. (ha(t), fa(t,-)) fort < OFCSP 1=0.

Our aim 1s now to smooth the weighted Riemannian metric (h e_f )on (=4, 8) x X while
preserving RICq > 0. For that, we first consider a C!-smoothing. As in Subsection 2.2, an
added ' will denote a derivative in the z-direction.

Lemma 3.2 Consider a pair of smooth n-dimensional weighted Riemannian manifolds
(Ml hi, e~ and (Ma, hy, e=12) as above. For all ¢ > 0 sufficiently small, there is a
Cl-regular metric h and a C' -regular weight function f over the smooth glued mamfold
W = M Uy M; that differ only inside an e-neighbourhood of X from the continuous h and
f. Moreover, on the e-neighbourhood of X, which we identify with [—e, €] x X, the metric
h takes the form dt?® + §(t), and we have the following:

(1) g() and f converge pointwise t0~§(z) and f , respectively, as ¢ — 0,
(2) The first t-derivatives g'(t) and f’ are uniformly bounded independent of e,
(3) The second t-derivatives g"(t) and f" are linear in t and satisfy
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1 - 1
eg (Le) — E( 50) — 1\ (0)) and ef"(xe,) — 3 (/200,) — f{(0,)
ase — 0.

Proof Recall that we identified a tubular neighbourhood of X in W with (=6, §) x X. Our
aim is to construct a new metric / on [—e¢, €] x X of the form dr% + g(¢) which joins with
hy fort < —¢, and with hj for t > ¢. Likewise, we want to construct a new weight function
f on [—¢, €] x X which joins with f] for t < —e, and with f; for r > ¢. As pointed out in
the claim, we require both the metric / and the function f be at least C!-regular on W.

The construction of the metric / via a cubic spline interpolation is carried out in [5,
Lemma 3 and subsequent paragraph], see also [39, Section 2.1]. We are therefore left with
constructing the function f . Here we take a similar approach and define f as follows. Let us
denote by fi(t) = fi(z, -) the induced weight function of f; on the hypersurface {r} x X at
constant distance ¢ € [—e¢, €] from X, withi = 1 fortr < 0andi = 2 fort > 0. We then get
our desired weight function f (t) := f (t, -) via a cubic spline interpolation between fj(—¢)
and f>(¢), thatis

Aﬂoztzgﬁ@>—C&Eﬁow)+“‘”zf4”ﬂ[ﬂ@w)—ﬁmggj“_”]+
(t +8ii§t —¢) |:f2/(5) _ L) —28f1(—8)] '
The ¢-derivative of this function is then
fm>=ﬁ@);f“”)+zal_%ij“_8y[ﬁcw>—f“”;g“_”]+
N 212 — 82;— (t +¢)* [fz/(g) _ fale) —28f1(—8)] ’

and it is straightforward to check that the weight function f forms a C'-join with the f; at
t = £¢ and converges to f ase — 0.

We are now left to investigate the 7-derivatives of f . In particular, we are interested in
the limiting behaviour of f(+¢) as ¢ — 0. By differentiating twice along 7, we get the
expression

6t — 2¢
4g2

@) =

fale) — fl(—s)] '

[f{(—é‘) e - fl(—S)} N 61 4 2¢
£ 2¢e

Applying de I’Hopital, we have that the limiting behaviour of f "(+e) as ¢ — 0 is given by

L) = fE)] 1
Sera

~ 3
o Fite =23 | e+ fio) - 7~ fi-o)

1 / /
— 5 [5O - £0)]

as ¢ — 0. Finally, using the explicit formulae above, it is a straightforward computation to
check that f” is uniformly bounded. O

Lemma 3.3 Working under the same setting as in Lemma 3.2, if we further assume conditions
1) and 2) of Theorem A in a strict sense, i.e. that

(1) Hy +H3 o¢ >0, and

@ Springer



Surgery and positive Bakry—Emery Ricci curvature Page150f46 38

(2) Typr + ¢*Mapr, > 0,
then for any A > 0 there exists € = £(A, hy, ha, f1, f2) > 0 such that for any ¢ < &

g, u) < —A-g)u,u) and Strying" (1) — (1) < —A
forallt € [—e¢, €] and all tangent vectors u tangent to {t} x X.

Proof Let us consider the hypersurface {¢r} x X obtained by slicing the collar neighbourhood
of X atany ¢ € [—e¢, €]. Applying Lemma 2.4 to the weighted mean curvatures at d M and
d M, with respect to their outward normal directions (see Definition 2.3), we have

HI' = 1trh h;(0) — f{(0), and H> = Lol 0) + £3(0)
B 10111 1Y), ) h2(0)1 2V

By (1), we have that H/1 + H/2 > 0, and therefore the limit of ¢ - [%trg(is)g”(:ta) — f”(:i:s)]
as & — (0 isnegative by Lemma 3.2. Since the second z-derivatives of g(¢) and f () are linear
in ¢, we obtain the required bound.

Finally, in order to obtain that

lime-g"(+e) <0,
e—0

one can proceed in a similar fashion as before, by using that Iy p, + ¢*Iy.m, > O by
assumption (2) (see also [5, Lemma 4] for an explicit proof of the result). O

After having established Lemmas 3.2 and 3.3 we can now prove Theorem A. As indicated
above, we proceed in two steps.

Proposition 3.4 (From continuous to CY Let (My, hy, e~y and (Mo, ho, e=12) be two
weighted Riemannian manifolds with ﬁcq > 0 for some q € (0, 00], and suppose there
exists an isometry ¢: 9. M1 — d.M> between two boundary components 0. M1 € dM1 and
o.My C OM; such that fils.m, = fro¢. If

(1) H', +H%, 0¢ >0 and
(2) Toy.m, + ¢*Lo.m, = 0,

then for ¢ > 0 sufficiently small the weighted C Vmetric (h, e/ ) defined in Lemma 3.2 has
Ric,; > 0.

Proof We first slightly deform the metric and weight function on one of M| and M, while
preserving ﬁcq > 0, so that inequalities (1) and (2) hold strictly (e.g. as in [9, Proposition
1.2.11]).

By Lemma 3.2 it suffices now to consider the e-neighbourhood [—¢, €] x X of X. Then,
by Lemma 3.3, we can bound the values of g”(¢) and %trg(,)g”(t) — F”(r) from above by
any negative value by choosing ¢ sufficiently small. Further, by Lemma 3.2, all first order
t-derivatives of g(¢) and f (¢) are bounded independently of ¢.

Hence, by Lemmas 2.4 and 2.5, all terms in Iich (¢, 9;) and ﬁcq (u, u), where u is tangent
to X, that contain a second order 7-derivative can be bounded below by any positive constant,
while all other terms, as well as the mixed curvatures ﬁcq (0¢, u) are bounded independently
of . Hence, for ¢ sufficiently small, we have lich > 0. O

Proposition 3.5 (From C! tosmooth) Let (M, hy, e~ /1) and (M>, ha, e~ 2) be two weighted
Riemannian manifolds with ﬂcq > 0 for some q € (0, oo], and suppose there exists an
isometry ¢: 0. M1 — 9. My between two boundary components o.My C M1 and 3. M C
3M2 such that f1|3(:M1 = f2 o (]5 If
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() HYy +Hy 0 =0, and
() Wy.m, + ¢*Uym, = 0,
then it is possible to endow the glued manifold MUy M with a structure of a smooth weighted

Riemannian manifold of liich > 0 that differs from the weighted C°-metric (fl, e/ ) only in
an arbitrarily small neighbourhood of the gluing area.

Proof The statement follows directly once we apply the smoothing result of [39, Lemma 3.1]

to the C! -regular weight function and the metric of the glued manifold (M Uy M, h, e’-f )
constructed in Proposition 3.4. O

This finishes the proof of Theorem A.
Finally, we consider the special case of a doubly warped product metric.

Corollary 3.6 Let o, 8: I — (0,00), f: I — R be continuous functions that are smooth
except at finitely many points t1, . .., ty € 1. Suppose that for the metric

g =dr* +a(t)’ds? + B(1)*ds}

on I x §% x Sb the weighted Riemannian metric (g, e~7) has ﬁcq > 0. Then we can
smooth the functions «, B, f in arbitrarily small neighbourhoods of each t; and obtain a
smooth weighted Riemannian metric of ﬁcq > 0, provided that for eachi € {1, ..., £} the
Sfollowing inequalities are satisfied:

ol (1) = o (1),

B_(1) = Bl (1),
al(t) B, o () BL()
o PPBan T % T Ban

Proof This directly follows from Theorem A and Lemmas 2.4 and 2.5. Note that from the
explicit form of the metric / and weight function f in the proof of Theorem A, it follows
that the smoothed metric is again a doubly warped product metric and the weight function
only depends on ?. O

— fi@).

4 Connected sums

In this section, we consider connected sums in the presence of weighted metrics of ﬁfcq >0
and prove Theorem B. First, let us recall the techniques used in the Riemannian case.

Definition 4.1 ([10], based on [34]) A Riemannian metric g on an n-dimensional manifold
M is called a core metric, if there exists an isometric embedding ¢: D" < M, where we
consider D" being equipped with the induced metric of a hemisphere in the round sphere of
radius 1.

We note that this definition slightly differs from the definition introduced in [10]. However,
a core metric in the sense of Definition 4.1 can always be deformed into a core metric in the
sense of [10] and vice versa, see [37, Lemma 2.4].

Core metrics are of interest in the context of connected sums due to the following theorem,
which is a consequence of Perelman’s gluing theorem (Theorem 3.1) together with the exis-
tence of a metric of positive Ricci curvature on S” \ (U, D™)° with small second fundamental
form on each boundary component.
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Theorem 4.2 ([34],[10, Theorem B]) Let MY, ..., M} be manifolds with n > 4 that admit
core metrics. Then the connected sum M # . ..#M; admits a Riemannian metric of positive
Ricci curvature.

An immediate consequence is that a closed manifold with a core metric is simply-
connected. This follows from Theorem 4.2 in combination with the theorem of Bonnet—
Myers, or alternatively from a result of Lawson [29, Theorem 1], which only requires that
the mean curvature of ¢(S"~1) is non-negative.

Core metrics are difficult to construct in general. To the best of our knowledge, the fol-
lowing are all the known examples of manifolds admitting a core metric:

(C1) the sphere S" and the compact rank one symmetric spaces CP", HP” and QP2 (see
[341,[10D),

(C2) linear sphere bundles and projective bundles with fibre CP", HP" or O P? over man-
ifolds with core metrics (see [11, 36, 37]),

(C3) products of manifolds with core metrics (see [37]),

(C4) connected sums of manifolds with core metrics (see [12]),

(C5) manifolds obtained as boundaries of certain plumbings (see [9]),

(C6) certain manifolds that decompose as the union of two disc bundles, such as the Wu
manifold W3 (see [37]).

A natural generalisation of core metrics are weighted core metrics (Definition 1.4). By
using Theorem A, we have the following equivalent characterisations.

Lemma4.3 Let M" be a manifold and let g € (0, 00]. Then the following are equivalent.

(1) M admits a weighted core metric v with respect to q.
(2) M admits a weighted metric of Ric, > 0 and an embedding D" € M such that on the
boundary 9(M \ D"°) we have the following:

(a) the induced metric is round and the weight function is constant;
(b) the second fundamental form and the weighted mean curvature are positive.

(3) M admits a weighted metric of ﬂcq > 0 and an embedding D" C M such that on the
boundary (M \ D"°) we have the following:

(a) the induced metric is round and the weight function is constant;
(b) the second fundamental form and the weighted mean curvature are non-negative.

Proof The proof goes along the same lines as the proof of [37, Lemma 2.18] by using Theorem
A instead of Theorem 3.1. O

It is clear that a core metric defines a weighted core metric with respect to any g €
(0, oo] by choosing a constant weight function. Furthermore, just like for core metrics, closed
manifolds with a weighted core metric are simply-connected. This follows from a result
of Moore—Woolgar [32, Theorem 1.5], which only requires the weighted mean curvature
on the boundary be non-negative, or, alternatively, from Theorem B in combination with
Proposition A.2. A further connection between core metrics and weighted core metrics is
given in Proposition A.6 below.

By adapting the proof of Theorem 4.2 using Theorem A instead of the gluing theorem
for positive Ricci curvature, we could directly generalise it to the weighted setting and show
that the connected sum of manifolds with weighted core metrics with respect to ¢ admits a
weighted metric of ﬁfcq > 0. Note, however, that Theorem B is more general as it allows
one additional summand that does not need to admit a weighted core metric.

The main ingredient in the proof of Theorem B is the following proposition.
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Proposition 4.4 Let (M", g, e~ ) be a weighted Riemannian manifold oflich > 0 for some
g € (0,00]andlet x € M withV f, = 0. Then for any & 3\/0 and anyr > 0 sufficiently small
there exists a weighted Riemannian metric (g', e=1") of Ricy, > 0on M\ B% (x)°® which, up

to a positive constant factor, coincides with (g, e~1) on M \ B, (x)° and such that

(1) the induced metric of g’ on the boundary 8B% (x) = §" 1 js given by R? -dsrzl_lforsome
R > 0;

(2) the principal curvatures of g’ at BB% (x) with respect to the inward normal of 0 B : (x) <
B% (x) are bounded from below by — %,

(3) the weight function ' is constant on BB% (x) and has vanishing normal derivative.

The balls B, (x) and B% (x) used in Proposition 4.4 are determined using g. The weighted

metric (g, e~/") we will construct in the proof will differ drastically from (g,e~/) on
B (x)\ B% (x)°. In fact, the diameter of B,(x) \ B : (x)° with respect to the metric g’ goes
tooo ase — 0.

Given Proposition 4.4, we can now prove Theorem B.

Proof of Theorem B We assume £ = 1. The statement for general £ then follows inductively
by applying ¢-times the result for £ = 1. We denote by (go, e~/0) the weighted metric of
ﬁcq > 0 on My and by (g1, e_f‘) the weighted core metric on M.

Since My is closed, there exists a point x € My with V fy, = 0. Hence, we can apply
Proposition 4.4 and, after rescaling, obtain for any ¢ > 0 a weighted metric of ﬁcq > 0 on
My \ D"° such that the boundary is round with principal curvatures bounded from below
by —¢ and such that the weight function is constant on the boundary with vanishing normal
derivatives.

To glue this weighted metric to M\ D"°, we apply Lemma 4.3 to obtain a weighted metric
of ﬂcq > 0 on M\ D"° with round boundary and strictly positive second fundamental form
and weighted mean curvature, and such that the weight function is constant on the boundary.
Hence, by Theorem A, after shifting one of the weight functions by a suitable constant, for
¢ sufficiently small we can glue My \ D"° to M; \ D"° along the boundary and obtain a
weighted metric of ﬁfcq > 0 on the connected sum Mo#M]. O

It now remains to prove Proposition 4.4. The first step in the proof is to deform the
weighted metric locally around the point x with V f,, = O into a weighted metric with constant
weight function and constant sectional curvature equal to 1. This is a direct adaptation of
the corresponding statement for positive Ricci curvature first established in [18] (where it
is shown for negative Ricci curvature, but the arguments work similarly for positive Ricci
curvature), see also [51, Theorem 1.10] and [40, Lemma 4.3]. We follow the line of arguments
given in [40, Lemma 4.3 and Corollary 4.4] and begin by establishing the following more
general deformation result first.

Lemma4.5 Let (M", go, e~ 70) be a weighted Riemannian manifold of ﬁcq > 0 and let
NP C M be a compact embedded submanifold. Let (g1, e~ 1) be a weighted metric of
If'fcq > 0 defined on an open neighbourhood U of N. If the 1-jets of go and g1 and the
1-jets of fo and fi coincide on N, then there exists a weighted metric (3, e=/) ofﬁcq >0
on M that coincides with (g, e fyon M \ U and coincides with (g1, e 1y on an open
neighbourhood of N (which is contained in U ).

Proof Consider for ¢t € [0, 1] the weighted metric (g;, e~ /1) on U defined by
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g =1 —1go+1g1,
fi=0=1)fo+1f1.

Since the 1-jets of (go, e~ /0y and (g1, e~ /1) coincide on N and the sectional curvature (and
therefore also the Ricci curvatures) and the hessian depend linearly on the second derivatives
of the metric and the weight function respectively, we have that the weighted Ricci curvature

Ri cz’ T on N is given by

lffci”f' =(1— t)lffcimfo + tﬁcgl’ﬁ.

g fr

In particular, RIC > 0 on N and, by compactness, this also holds in a small neighbour-

hood of N. By local flexibility, see [2, Theorem 1.2], we can extend (g;, e fytoa global
deformation of (g, ¢—f0) which is constant on M \ U and coincides with (g;, e fyona
neighbourhood of N. O

The special case where N is O-dimensional gives the following consequence:

Corollary 4.6 Let (M", g, e~ be a weighted Riemannian manifold of ﬁcq > 0 and let
x € M with V f, = 0. Then, for any open neighbourhood U of x, the weighted metric
(g, =) can be deformed into a weighted metric olecq > 0 that coincides with (g, e~7)
on M \ U and has constant weight function and constant sectional curvature 1 on a small
neighbourhood of x.

Proof By considering normal coordinates around x, we can write the metric g locally as
gij = dij+ O (r?), where r denotes the distance from x. In particular, the 1-jets of g coincide
with the 1-jets of the round metric of radius 1 on a sphere in normal coordinates. Furthermore,
since V fy = 0, the 1-jets of f at x coincide with the 1-jets of a constant function. Hence,
by Lemma 4.5 where we set N = {x}, we can deform (g, e~/ as required. ]

Proof of Proposition 4.4 We apply Corollary 4.6 to deform the weighted metric in a small
neighbourhood of x to have constant sectional curvature 1 and constant weight function, that
is, we can write g on B, (x) for some r > 0 sufficiently small as the warped product

g = dr* +sin’(t)ds>_,

Here we identified B, (x) with the space obtained from [0, 7] x §n—1 by collapsing {0} x §n—1
to a point. We set A = cos(r). We will now modify the weighted metric on this part to satisfy
the required conditions.

To do so, we consider for some #) > 0 a weighted metric (gg, e_f) on [0, 7] x S"~1 of
the form

gp =dt* + p()’dsy_|. f=—qIn(y(®)

where 8, y : [0, to] — (0, co) are two smooth functions. By Lemma 2.7, the weighted Ricci
curvatures for (gg, e~ /) are given as follows (here we set « to be constant):

Ric, (3. 8) = —(n — 1)% - qy—
~ ” 1— 2 1o,
Ricq(§,§)=—%+(n—2) ﬂf —qij; .

Ricy (3, %) =0,
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where v is a unit tangent vector of (sm-1 ds,fil).
The second fundamental form of the hypersurface {r} x $"~! with respect to the metric

metric gg and the unit normal 9, is given by

_F

u u
G ="
see Lemma 2.4. Hence, to glue the weighted metric (gg, e~/ using Theorem A, with the
weighted metric on M \ B, (x) the following boundary conditions at ¢t = f¢ are sufficient:

B'(t0) = &,

y'(to) = 0.
Note that we do not need to prescribe the value of 8 at t = #y, as we can globally rescale
the metric (i.e. replacing ty, B8, y by uto, u (;) , Ly (;), respectively) to satisfy this
condition. Furthermore, the value of y at ¢t = #y also does not need to be prescribed as we
can always add a constant function to f.

For the required conditions (1)—(3) to hold, the following boundary conditions at ¢t = 0
need to be satisfied:

B'0) <e,
y'(0) = 0.

t—t
B(t) = N cos (T)

on [0, '], where N,t’ > 0 are chosen so that 8(t') = 1 and B’(0) = &, and we choose ¢’ as
the smallest such value (to ensure 8 > 0). In particular, we have 8'(¢+') = 0. If we define y
to be constant on [0, 7], it is easily verified that the weighted Ricci curvatures are positive.
Hence, the same holds if we slightly perturb y to have vanishing derivative at r = 0 and
strictly positive derivative at = ¢’.

Next, we extend the functions g, y by the functions obtained in Lemma 2.9 (which we
need to shift by t’), where the parameters a, b, A, &, r in Lemma 2.9 are set as ¢, (n —
1), A, ¥/ (t)), y(t'), respectively. It then follows from Lemma 2.9 that the weighted Ricci
curvatures are positive and the boundary conditions at t = #q are satisfied. O

We start by setting

5 Higher surgeries

In this sectionf,vwe prove Theorem C. We assume that (M", g, e Nisa weighted Riemannian
manifold of Ric, > 0 and ¢: § x Dbt < M is an embedding with a + b + 1 = n. As
a first step, we deform the metric and weight functions near the image of ¢ into a standard
form.

Proposition 5.1 Suppose that ¢(S* x {0}) is round and totally geodesic and the weight
function f is constant on ¢(S? x {0}) with vanishing normal derivatives. Then there exists a
weighted Riemannian metric (g, e~ 1) ofﬁcq > 0on M and an embedding §: §° x DP*! —
M isotopic to ¢ such that the following holds:

(1) The weighted metric (g, e_f) coincides with (g, e~/ outside an arbitrarily small neigh-
bourhood of (S x {0}),
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(2) The pull-back §*g on §* x DPT' is a metric of Ric > O such that the projection onto
(S4, dsg) is a Riemannian submersion with SO (b + 1)-connection and totally geodesic
fibres isometric to the induced metric of a ball of radius € in the round sphere of radius
r, for some g, r > 0,

(3) The weight function f is constant on $(S¢ x DP*1).

To prove Proposition 5.1, we first make a general consideration. Let (M, g) be a Rieman-
nian manifold and let N € M be an embedded submanifold. Let v(N) — N be the normal
bundle of N in M. Recall that the normal connection V+ on v(N) — N is defined by

ViU = (VxU)?t,

where V is the Levi—Civita connection of M, X is tangentto N, U € v(N) and ()* denotes
the orthogonal projection onto v(N).

Let D.v(N) — N denote the disc bundle of v(N) — N of radius ¢ > 0. Then for any
r > 0, there exists a unique Riemannian metric gy » on Dgv(N) so that

(1) (Dgv(N), gn,r) = (N, gln) is a Riemannian submersion with totally geodesic fibres
isometric to the induced metric of a ball of radius ¢ > 0 in the round sphere of radius r,

(2) The connection of this Riemannian submersion coincides with VL, in particular, it is
induced by a S O (m)-connection of the corresponding principal S O (m)-bundle,

see [4, 9.59].
The 1-jets of the metrics g and gy, on N differ by the second fundamental form of g on
N. In particular, if N is totally geodesic, we have the following:

Lemma 5.2 ([28]) Let (M, g) be a Riemannian manifold and let N C M be an embedded
totally geodesic submanifold. For r > 0 consider the metric gy, defined above. Then, when
we identify D.v(N) with a tubular neighbourhood of N in M via the exponential map, the
1-jets of the metrics g and gy ., coincide on N.

Using this, we can now prove Proposition 5.1.

Proof of Proposition 5.1 To simplify notation, we will write ¢(S%) instead of ¢(S* x {0}).
Let g, . denote the metric gy (sa) - on Dyv(¢(59)) considered above. For r sufficiently small,
this metric has positive Ricci curvature, see e.g. [4, 9.70]. Following Lemma 5.2, we view
8r.¢ as a metric on a tubular neighbourhood of ¢(S%). Therefore, Lemma 5.2 implies that
the 1-jets of the weighted metrics (g, e~/) and (8r.e e~ /o), where fy is the constant value
of f on ¢(5%), coincide on ¢(S?). Using weighted metrics of Iich > 0, one can then
deform (g, e~ /) into a new weighted metric (g, e~/ that coincides with (8r.e» ey ona
neighbourhood of ¢(S$¢), and with (g, e~/ outside a (bi gger) neighbourhood of ¢ (5%). We
stress that these neighbourhoods can be chosen arbitrarily small, see [2, Theorem 1.2] and
[51, Theorem 1.10]. )

Thus, the restriction of (g, e~/) to Dyv(p(S%)) is given by (g, o, e~ ) for &/ > 0
sufficiently small. Since the normal bundle v(¢(S“)) is trivial, with a trivialisation given by
the differential ¢,|s«, we can identify Dy v(¢(S?)) with S¢ x D+ In other words, we
obtain an embedding @: §¢ x D?*! < M on which the weight function f is constant and
the metric g is a submersion metric, as stated in (2) and (3).

Finally, by the uniqueness of tubular neighbourhoods, see e.g. [20, Theorem 4.5.3], there
exists a smooth map A: § — SO (b + 1), such that ¢ is isotopic to ¢ o ¢, where ¢: S x
DP*1 5 §¢ x Db+l s the diffeomorphism defined by

¢(X, )’) = (X, Axy)
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Hence, replacing ¢ by ¢ o ¢ results in the required embedding. O

Conclusion (2) of Proposition 5.1 implies that the Riemannian submersion (S¢ x
Dbl 0*g) LN (84, dsg), where m = pr ., restricts to a Riemannian submersion on S¢ x st
and is determined by it. In other words, if H denotes the horizontal distribution of the Rie-
mannian submersion $9 x S — S, as in Subsection 2.2, we can write @*g as

t
¢*g = dt® + H*m*ds? + r? sin’ <;) dsy (5.1

with ¢ € [0, ¢]. B

We will now modify the weighted metric (¢p*g, e~ 7°?) on [0, £] x S x S? in several
steps to collapse the S¢-factor instead of the S?-factor. The first step consists of transitioning
to a totally geodesic boundary. In the following, H will always denote an arbitrary horizontal
distribution for the submersion §¢ x S — §¢ and we fix q € (0, oc].

Lemma5.3 Foranyr > 0, tp € (0, r%), fo € Rand n > 0 sufficiently small, there exist
1 < tg and a weighted Riemannian metric (g1, e_f‘) ofRicy > Oon 11, fo] x §% x S? such
that the following holds:

(1) g is isometric to dt* + H*rr*dsg + 72 sin? (%) dsl% neart =ty and f = foneart = ty,

(2) Att = 11, the boundary {t} x S x sh s totally geodesic and the induced metric is
H*n*a’sg + /desﬁ,

(3) Att =11, the weight function f1 is constant and has constant normal derivative.

Proof Let A € (cos(’TO), 1) so that for any unit horizontal vector u and any unit vertical vector
v we have

<(a — 1) — 2r2sin? (’i> (A, Au)> ? > 2 sin? <3> ((SA)u, v)2
r r r

Here 1, € (0, 1) is defined by imposing cos(%) = A, and A denotes the A-tensor of H with
respect to the metric H*ﬂ*dsg + dsg (cf. Section 2). Since t, — 0 as & — 1, this inequality
is satisfied for all A sufficiently close to 1. We will use this estimate later to show that the

weighted metric we construct has lich > 0.

Now fix t(’) € (), ty), so that cos(%‘)) < A. As a first step, we replace the function 7 sin (;)
by a function whose derivative does not exceed A. For that, let ﬁl : [ti, t(’)] — [0,00) be a
smooth function with the following properties:

(1) Ar(r}) = 0and B (1) = &,
@ By <0

3) B =r Sin(t70) and B (1)) = Cos(%’).
Such a function can for example be obtained by modifying the C!-function

rsin (L), t € [t 1y,
At —1) +rsin (%), e, n]

with 1] = -3 sin(%) + t,, into a smooth function with strictly negative second derivative.
We then consider the metric

g1 = di* + Hin*ds? + Bi(1)*ds?
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on [1], 15] x §% x SP. We now use Lemma 2.6 to analyse its Ricci curvatures. First note

that, since B” < 0, we have positive Ricci curvature in 7-direction. Thus, the metric g; has
positive Ricci curvature if and only if

Ric(u, u)Ric(v, v) > Ric(u, v)?

for all horizontal vectors u and vertical vectors v. Since B 1<r sin(%) and Bi <A= cos(%),
we have

B T risin? (%) %

1— B2 - 1—0052(%) 1

Hence, by the choice of A, it follows from Lemma 2.6 that g has positive Ricci curvature.
Next, consider the functions 8, y : [0, tp] — (0, co0) obtained in Lemma 2.9, where the
parameters a, b are set to ¢, b, respectively (and we replace g by a finite value in case ¢ = 00).
To avoid confusion with existing notation, here we denote by ;' the variable 7y > 0 of Lemma
2.9, and the ¢, r are arbitrary.
For r’ > 0 consider the functions

Lt , [t
Br(t) =rp (;) s Ve =T (;)

g1 = dr* + H*r*ds2 + By (0)*dsp

and define the metric

and the weight function

fi=—qIn(y)
on [0, r't1 x §¢ x § b Tt then follows from Lemmas 2.6 and 2.9 that for all r’ sufficiently
small the weighted Riemannian metric (31, f1) has ﬁfcq > 0.

Now, by possibly choosing #’ smaller, we can assume that g,/ (r't{) < Bi (1), so there
exists 11" with g, (r't{') = Bl(t{”). Thus, by shifting the interval [0, r'#{'] by —r't] + té”, we
can glue the weighted metric (g1, fi — fi(r{t]) + fo) on [—r't] +1]",1]"] x § x S” with
(&1, fo) on [1]", t0] x §* x S? using Corollary 3.6 to obtain a weighted metric (g, e~/1)
of ﬁcq > 0 satisfying the required conditions. By choosing ¢’ smaller, we can realise any
sufficiently small value of . O

Having achieved a totally geodesic boundary, we now proceed by “untwisting” the bundle.

Lemma 5.4 Forany Ay and any > 0 sufficiently small there exists a weighted Riemannian
metric (g2, e~ 12) of Ricso > 0 0n [0, 1] x §¢ x S? with the following properties:

(1) the induced metric of g2 on {1} x S* x S” is given by H*m*ds? + p,zds,f,

(2) the induced metric of g on {0} x S* x S? is given by the product dsg + /desg,

(3) the boundaries {0} x S* x S? and {1} x §% x S? are totally geodesic,

(4) the function f and its normal derivative are constant at botht = 0 and t = 1 and the
normal derivative at t = 1 is given by —\».

Proof Let H,, t € [0, 1], be a smoothly varying path of horizontal distributions with Hy =
TS% and H{ = H. For each ¢ € [0, 1], we define the metric

g = Hin*ds2 + p’dsj.
By compactness, for u sufficiently small, each metric g; has positive Ricci curvature. The

claim now directly follows from Lemma 2.10. O
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Finally, we collapse the sphere S¢.

Lemma 5.5 For any A3, u > 0, there exist t3 < 0 and smooth functions a3, 83: [t3,0] —
[0, 00), f3: [t3,0] — R such that for the Riemannian metric

g3 = di* + a3(0)*ds? + B3(1)%ds}
the following holds:

(1) a3 is odd at t = t3 with Otg(t3) = 1 with a3| 5,0y > 0, and both B3 and f3 are even at
t = t3 with B3 > 0,

) a3(0) =1and ag(O) =0,

(3) B3(0) = wand B5(0) = 0,

(4) f300) = =23,

(5) the weighted Riemannian metric (g3, e —13) has RlcOo > 0.

Proof We will simply set 83 = . To obtain o3, we start by defining, for ¢ > 0, the function
a3 on (—o0, 0] to be a smooth function with the following properties:

(1) &(0) =1 and @ (0) = 0,
2) [0 e,
(3) N//

Further, we define f3: (—00,0] - R by f3(t) = —\3t.
Consider the metric
gy = di® +a3(0)*ds? + B3(1)%ds?

on [73, 0], where 73 is the unique value with @3 (t3) = 0. We now use Lemma 2.7 to analyse

the weighted Ricci curvatures of (g3, e —13),
Since f =0, /33 = /3 = 0 and ag < 0, we dlrectly obtain that Rlcoo(at, d;) and

RlCoo( 5 By ~-) are both positive. Thus, it remains to consider RlCoo(a ' & £L). Here we obtain

— u u a’ 1— &/2 &l
m%(fc)=—%+m—n st
o3 o o3

1—¢ £ 1 2
> (@— g =M = = ((a = D(1 — %) — A3¢)

where we used that @3 < 1. For ¢ sufficiently small, this expression is positive.
Let now £, be the value for which &3(z,) = ¢ and consider for 3 = t, — arcsin(e) the
functions

sin(t — 13), t € [13, te],
az(t) = [~
as (1), t €[t 0]
and ~
f3te), t€ln,tel,

ﬁm:hm,mmm.

For the metric
= di* 4+ a3(1)%ds2 + B3 (1)*ds}

we then have that (g3, e~/3) has liivcoo > 0 and all the required boundary conditions are
satisfied. It remains to smooth the functions o3 and f3 at t = ¢, using Corollary 3.6, i.e. we
need to consider the following expressions:
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oy _(te) — a3, (t:) = cos(arcsin(e)) — a3 (t:) > cos(arcsin(e)) — &,
aé_(ts) B 0‘%_,_(&) s=a

a a
az(te) asz(te) & &
cos(arcsin(e))
>a— = —a

cos(arcsin(e)) a&é(le) _

3

— A3.

e
Both expressions are strictly positive for ¢ sufficiently small, so we can apply Corollary 3.6.
O

Proof of Theorem C Suppose (M", g, e~/ ) is a weighted Riemannian manifold of Rices > 0
and ¢: §% x Dt < M, is an embedding satisfying the hypotheses of Theorem C.

By Proposition 5.1, we can assume that on ¢(S% x D’*1) the metric g is of the form (5.1)
for some r, & > 0, horizontal distribution H, and the weight function f is constant. As a
first step, for 79 € (0, min(e, r%)], we replace g on [0, 79] x §¢ x Sb by the weighted metric
of IiTcoo > 0on [f], fg] X $¢ x S? constructed in Lemma 5.3. By item (1) of Lemma 5.3,
the resulting weighted metric is again smooth and by items (2) and (3) the new boundary
{1} x §¢ x S? is totally geodesic with induced metric given by

Hm*ds? 4 u’dsp
for all u > O sufficiently small. Further, the weight function is constant along the boundary
with constant normal derivative.
Next, by possibly choosing x smaller, we attach a cylinder [0, 1] x §¢ x S? equipped

with the weighted metric constructed in Lemma 5.4 using Theorem A. Thus, we now have
the same conclusion as before, but we additionally obtain that the metric is a product metric

dsg + ,uzdsg

on the boundary.

Finally, by again possibly choosing u smaller, we attach another cylinder [r3, 0] x S% x S?
equipped with the weighted metric constructed in Lemma 5.5 using Theorem A. By item (1)
of Lemma 5.5, this defines in fact a metric on the space obtained from [#3, 0] x S¢ x sb by
collapsing {r3} x §¢ x {x} forall x € SP, that is, on D! x S?. Hence, we have performed
a surgery operation along ¢. O

6 Highly-connected manifolds

In this section we apply Theorem C to (2m — 1)-connected (4m + 1)-manifolds withm > 1
and prove the following result:

Theorem 6.1 Let M*"+! be a closed, (2m — 1)-connected 2m-parallelisable manifold. Then
thei:g exists a homotopy sphere 4" such that M#X admits a weighted Riemannian metric
of Ricyo, > 0.

Since there exists no exotic sphere in dimension 5, and since a closed, simply-connected
5-manifold is 2-parallelisable if and only if it is spin, we obtain Theorem D from Theorem
6.1 by settingm = 1.

For m > 2, it was shown by Crowley—Wraith [16] that Theorem 6.1 holds if one replaces
the condition Rics, > 0 with the intermediate condition of 2-positive Ricci curvature. Like
in [16], we will use Wall’s classification of handlebodies [46] to identify the manifolds we
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construct. In dimension 5, one can alternatively also use the classification of closed, simply-
connected 5-manifolds by Smale [44] and Barden [3].

Our techniques could also be used to construct metrics of Ii?coo > Oon (2m—2)-connected
(4m — 1)-manifolds. We note, however, that this case is already covered by Crowley—Wraith
[15] for the stronger condition of Ric > 0.

Remark 6.2 Similarly as in Corollary E, it follows from Theorem 6.1 that for any such man-
ifold M there exists a homotopy sphere £#"*! such that for all ¢ € N sufficiently large,
the manifold (M#X) x S9 admits a Riemannian metric of Ric > 0. It remains an open
question whether the connected sum with X is necessary, i.e. whether the manifold M x S¢
admits a Riemannian metric of Ric > 0. This would follow directly if one could show that
(M#X) x 87 is in fact diffeomorphic to M x S9.

If we identify M x S? and (M#X) x S? as topological manifolds in the obvious way,
easy arguments in smoothing theory show that the corresponding smooth structures are not
concordant, and hence not isotopic, when X is not the standard sphere. However, this does
not rule out the existence of a diffeomorphism between the two smooth structures. To the
best of our knowledge, this problem is open.

The strategy for the proof of Theorem 6.1 is as follows. By the work of Wall [46] and
Crowley—Wraith [15, 16], all manifolds M in Theorem 6.1, after possibly a connected sum
with a homotopy sphere, can be realised as the boundary of a handlebody, i.e. a manifold
obtained by attaching (2m + 1)-handles to the disc D*"*2. Since the effect of a handle
attachment to the boundary is a surgery operation, we can use Theorem C to obtain a weighted
metric of IiTcoo > 0 on the boundary, provided the assumptions on the metric required in
Theorem C are satisfied. The embeddings for the surgery operation we use will be obtained
from intersections of the sphere S*"*! with a (2m + 1)-dimensional affine subspace in
R*"+2 Tt then remains to construct a metric on S*"*+1 for which we can apply Theorem C,
and, by using classification results of Wall [46], to show that these embeddings realise all
possibly handlebodies.

6.1 Wall’s classification of handlebodies

In this section, we recall Wall’s classification of handlebodies [46]. We also refer to [15,
Section 3], [16, Section 2]. A handlebody of dimension 4m + 2 as defined by Smale [44] is
a manifold obtained from the disc D*"*?2 by attaching handles D>"*! x D?"*! along the
boundary §2" x D*"*!, The set of diffeomorphism classes of handlebodies of dimension
4m + 2 is denoted by H(4m + 2).

Following [15, Section 3], we define the quadratic module 17, {SO(2m + 1)} as the
quadruple

T {SO(2m + 1)} = (m2m (SO (2m + 1)), Z, h, p),

where h: 72, (SO2m + 1)) - Z and p: Z — 712, (SO (2m + 1)) are the maps
h(g) = e(%‘)v p(k) = k . fs2m+l .

Here, we have identified 72, (SO (2m + 1)) with the set of isomorphism classes of vector
bundles of rank (2m + 1) over the sphere §2m+1 and e(£) denotes the Euler number of the
bundle & and tgm+1 the tangent bundle of §2m+l 1n particular, the group 2, (SO (2m + 1))
is finite so the map h is trivial and we do not need to consider it.

An extended quadratic form over my,, {SO(2m + 1)} is a triple (H, X, ;) where H is a
finitely generated free abelian group, A: H x H — Z is a skew-symmetric bilinear form,
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and pu: H — w2, (SO (2m + 1)) is a map satisfying

nx +y) = pux) + n@y) +pAlx, y)).

For a given handlebody W of dimension (4m + 2), we can define an extended quadratic
form (Hw, Aw, uw) by setting Hy = H2m+1(W, dW), Aw as the intersection form of
W, and puw(x) as the isomorphism class of the normal bundle of an embedding of §2m+l
representing x € HX" LW, aW) = Hy,p 1 (W).

The classification of handlebodies is now as follows:

Theorem 6.3 ([46], [16, Theorem 2.2]) The assignment W +— (Hw, Aw, uw) defines a
bijection between H(4m + 2) and the set of isomorphism classes of extended quadratic
SJorms over w2, {SO(2m + 1)}. Moreover, every isomorphism of extended quadratic forms
(Hwy, Awy, kw,) = (Hw,, Aw,, w,) is realised by a diffeomorphism Wi = W,.

We can determine the associated extended quadratic form of a handlebody from the attach-
ing maps as follows. Let @1, ..., @¢: S2" x D*"+1 s §4m+1 be embeddings with pairwise
disjoint images. We extend each embedding ¢; | g2n , (o) to a map D?"*+! < D4m+2 By the
relative Whitney embedding theorem [48, Theorem 5], we can assume that these maps are
embeddings, and by the uniqueness of tubular neighbourhoods (see e.g. [20, Section 4.5])
we can extend them to embeddings @; : D"+ x D?"+1 s D¥"+2 gatisfying

@i(x,y) = @i(x, diy)
for smooth functions ¢; : $2" — SOQ2m + 1).

The following two lemmas are well-known. We inculde their proofs for convenience.

Lemma 6.4 Let A € 7.2%¢ be the oriented intersection matrix of the embeddings @; | pom+1, o
Then the handlebody W obtained by attaching handles along the embeddings ¢; has associ-
ated extended quadratic form given by (7%, A, (1], ... s [de D).

Proof Let S; € W be the (2m + 1)-sphere consisting of the two discs ¢; (D¥"+1 % {0}) and
D?"+1 5 {0} in the i-th attached handle D?"*+! x D?"*! Then W is homotopy equivalent
to the one-point union

14
SiVv---Vv Sy,

so that Hy = Z% is generated by the spheres Sy, ..., S¢. Since the spheres S; intersect each
other only in D¥"*2_ this shows that A is given by A. Moreover, the functions ¢; are the
clutching functions of the normal bundle of S;, which shows that uw = ([¢1], ..., [¢¢]). O

We will be interested in the boundary of a handlebody. For that, we have the following
result:

Lemma 6.5 Let W € H(4m + 2) be a handlebody.

(1) If Hy = Z, then dW is the total space of a linear S*"*+'-bundle over §*".
) If Hy = 72 and there exists a basis of Hw in which Aw is represented by the matrix

(50)

then OW is a homotopy sphere.
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Proof First, suppose Hy = Z. By Lemma 6.4, the manifold W is obtained from D*"*2 by
attaching a single handle along an embedding ¢: §*" x D?"*1 < §%"+1 We write the
sphere S¥"+1 as

S4m+l o~ (Szm X D2m+l) UsmesZm (D2m+l X SZM).

Then, by the Wu—Whitney embedding theorem [52] and the uniqueness of tubular neigh-
bourhoods, the embedding ¢ is isotopic to an embedding

()C, Y) = (x’¢x)’)

into the first factor, where ¢: S m _, g O(2m + 1) is a smooth map. Hence, the manifold
dW is diffeomorphic to

i.e. the total space of the linear S>"+!-bundle with clutching function ¢.
Now suppose that Hy = Z? and Ay is given by

(50)

Since dW is obtained from the sphere S*"*! by a sequence of 2m-surgeries, it is simply-
connected (see [31]). Further, since W has non-trivial homology only in degrees 0 and
(2m + 1), it follows from Poincaré duality, the universal coefficient theorem and the long
exact sequence of the pair (W, dW), that 9 W has possibly non-trivial homology groups only
in degrees 0, 2m, 2m + 1 and 4m + 1. For degrees 2m and 2m + 1, we obtain the following
exact sequence:

0 — Hypt1(OW) — Hopp1 (W) —> Hpppt (W, 0W) — Hppy (OW) — 0.

By Poincaré duality, the map Hyy41 (W) — Hapy1 (W, 0W) is given by Aw. Since Ly is
invertible, it follows that both Hy,,11(0W) and Hp,, (0W) are trivial. It follows that W is
a simply-connected homology sphere, and hence a homotopy sphere by the Hurewicz and
Whitehead theorems. O

6.2 Geometric setup

In this section, we define a metric of Ric > 0 on the sphere §4m+1 g that the intersections of
certain (2m + 1)-dimensional affine subspaces with $*"*! are round and totally geodesic.

We begin by defining such a metric for a single affine subspace that is “close” to a linear
subspace.

Proposition 6.6 Ler S C S¥"*! be a totally geodesic round m-sphere in a round 2m + 1)-
sphere, i.e. there exists an (m + 1)-dimensional subspace W C RZ"H2 yigh § = W N §2mtH,
Let W € R2+2 pe g (2m + 1)-dimensional subspace containing W with unit sphere S =
SN\ W. Fore > 0, let Se C 8§21 pe the submanifold obtained by moving S by distance
& (w.r.t the metric on ") in orthogonal direction to S, ie.

Se = cos(e)S + sin(e)N,

where N € W= is a unit normal. Then, for any § > 0 and all ¢ > 0O sufficiently small,
there exists a Riemannian metric g of positive Ricci curvature on S with the following
properties:
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(1) g is the round metric of radius 1 on the complement of A¢ 6 (3‘) N Bs(S),
(2) the submanifold S3; € S*" 11 is round and totally geodesic.

We first show that there exists a metric that satisfies item (2) and leaves the metric
unchanged on the complement of A, 6. (S). Here Ag 6:(S) denotes the annulus around S
with inner and outer radii given by & and 6¢, respectively.

Lemma 6.7 For every ¢ > 0 sufficiently small, there exists a smooth function h: [0, %] —
[0, 00) such that the following holds:

(1) he(t) =cos(t) forallt ¢ (e, 6¢).

(2) hg converges to t +— cos(t) as € — 0 in the C'-norm.
(3) h.(3e) =0.

(4) The doubly warped product metric

dt* + h2(t)ds2, + sin’ (t)ds},
on S+ has Ricci curvatures > p for some p > 0 independent of €.

Proof Let v > 1 and consider the function /;: R — R defined by

t—ve

. . t—ve
h(t) = cos(ve) cosh (T) — vsin(ve) sinh < 5 ) ,

i.e. h1 is the unique function whose value and derivative at t = ve coincide with those of the

cosine function at the same point, and satisfies h/f = v]—zhl.
A calculation now shows that /| has vanishing first derivative at

te = varctanh(v tan(ve)) + ve.

By I'Hopital’s rule, we obtain that % converges to v(v* + 1) as ¢ — 0. In particular, for v

sufficiently close to 1 (e.g. for v* < %) and ¢ sufficiently small, we have ¢, < %8.

Now consider the function /,: R — R defined by

cos(8e) — hy(ts)

h =
20) 3ve(Z — 1)

(t —3ve) + hi(te),
i.e. hy is the unique linear function with s> (3ve) = hy(t.) and hz(%s) = cos(%s). We then
define i, : [0, Z] — [0, 00) by

hi(t), te€[ve,t],
hi(ts), te€|[te,3ve],
ha(t), t € [3ve, Sel,
cos(t), else.

A sketch of the graph of the function / is given in Figure 1. ~
If ¢ is sufficiently small and v > 1 sufficiently close to 1 so that 7, < %8, the function A, is

well-defined and continuous, and satisfies 52(38) = 0. Furthermore, we have /1, () = cos(t)
for all t ¢ (ve, %8), which is strictly contained in (g, 6¢). Moreover, except at the points

t = ve,tg, 3ve, %s it is smooth. We will now show that the function % ¢ satisfies the required
properties and that we can smooth it so that these properties are preserved.
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=

ve

Fig. 1 Sketch of the graph of the function /1,

For the C'-convergence, we have that h, is contained in the interval [cos(%e), 1] on
[0, %s]. Furthermore, the derivatives of & are contained in the interval [— sin(ve), O] on

[ve, t.] and a calculation shows that
hy(Ce) 104 1* —36
—
sin(%s) 36(2 —v?)

as ¢ — 0. For v sufficiently close to 1, this expression is strictly bigger than —1. In particular,
for ¢ sufficiently small and v sufficiently close to 1, the derivative of A is contained in
the interval [— sin(%a), 0]. Thus, ﬁ; is contained in the interval [— sin(ge), 0] on [0, %8],
showing the required convergence.

For the Ricci curvatures, by Lemma 2.7, the following inequalities need to be satisfied:

T

&
—m=+m=p,

&

rn 1— i'2 i
— = 4 (m— 1) —— —mecot(t) == > p,
he hg he

/
m — mcot(t) =% > p.
&
The C'-convergence, together with the fact that 2/ < J—zfzg, implies that for fixed v and for
¢ sufficiently small, such p exists.

Finally, we define /. as the function obtained from he by smoothing at the points of
non-smoothness. For that, around each of these points, we choose neighbourhoods of size
so small that they do not contain the points 1 = ¢, 3¢, 6¢, and smooth out the function /z,
using Corollary 3.6 (where we use a constant weight function), see also [36, Corollary 3.2].
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To guarantee that the Ricci curvatures are still positive for the resulting function, we need to
verify that at each of these points the left-hand side derivative is at least the right-hand side
derivative. This is clear at the points t = ve, 1., 3ve. Att = %8 this follows from the fact

106

At . . .
that the quotient gifl(( g?) converges to a value strictly bigger than —1 for v sufficiently close

to 1 as seen above. O

Proof of Proposition 6.6 The round metric on $2”*! can be expressed as
2 2 2 2
dss,, | = dt” + cos”(t)ds3,,,
where t € [—%, %] is the signed distance from S. Moreover, the round metric dszzm on §2m
can be written as
ds3, = ds? + cos’(s)ds2 + sin®(s)ds2_,,

where s € [0, %] is the distance from S; in (St, ds2m). Hence, we can write
d52m+1 = di® + cos(t) (ds + cos? (s)ds + sin (s)dsm 1)

and the spheres S and Se correspond to the sets {t = 0} and {t = ¢, s = 0}, respectively.
For given 6, ¢ > 0 with ¢ sufficiently small we will now modify this metric on the set

{e <t <6e,0<s <8}, where e2 4487 <52, By the triangle inequality this set is contained

in Aa,f,g(.g’ ) N Bs(S). To simplify the notation we will write § instead of §’ in the following.
Leta: [—E, %] x [0, %] — [0, 00) be a smooth function and consider the metric

= dt* + cos® (t)ds + a(t, s) cos (s)ds + cos? (t) sin (s)ds 1

Then, by Lemma 2.8, the Ricci curvatures of the metric g5 are given as follows:

. Oyt
Ric(9;, 9;) =m < — 7) )
o

. P m ( Ay a; s )
Ric(9;, &) = —— +tan(s) — — tan(t) — + tan(s) tan(z) |,
v cos(t) a a a
) s o
Ric(5, ) cosz(t) <1 - 7) +m <1 + tan(t)T>
1 s a’
Rlc( 5 ( — +2m tan(s)— —(m — l)— —(m — l)tan (s)
" cos2(t)

—(m — l)cot(s)i —|—m)
a

2
2 1)
o

1 —¢; cos2(s)
a2 cos?(s)

Ric(%, Yy =m (1 + ; 1-— cot(s)% +tan(t)%
BB cos2 (1) & al’
Ric(d;, ) =Ric(d;, %) = Ric & o) = RIC( ) = Ric(g, %) =0.

a
+m tan(z)ft,
a

Here we set y (1) = cos(t), a(t,s) = a(l, s) cos(s) B(t,s) = cos(t) sin(s) and u and v are
unit tangent vectors of (S™, ds,i) and (S"™~1, m 1) respectively.

Now let x : R — [0, 1] be a smooth functlon with x|(—e0,01 = 1 and x|[1,00) = 0 (which
necessarily is non-constant on [0, 1]) and set

&t s) = x (g) he (1) + (1 —x (g)) cos(t),
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where 4, is the function obtained in Lemma 6.7. Then for ¢ ¢ (g, 6¢) or s > § we have
a(t,s) = cos(t), so that g5 coincides with the round metric at these points. Furthermore, the
second fundamental form of the submanifold {¢} x {s} x S™ x {v} is given by

u u o oy O
1(2,2) =2+ 22,
o o o oy

which is given at (¢, s) = (3¢, 0) by

uouN h,(3e) x'(0) he(3e) — cos(3e) 0 _
155 o

o) T Gt s he(3¢) y

so Sz is totally geodesic in (§2m+1 ga)-

It remains to show that for ¢ sufficiently small, the metric g4 has positive Ricci curvature.
Since h, converges to t — cos(t) in C!ase — 0, we can bound |& + sin(?)|, |&s|, |&@ss| and
|&s¢ | uniformly by any positive constant by choosing ¢ sufficiently small. The same holds for
| cot(s)a|, since x’ (%) - cot(s) converges to 0 as s — O.

We now calculate as follows:

=r ()G ()5
z  \5) o, s TV 5
When A}/ (t) < 0, this expression is non-negative. Otherwise we take ¢ > 0 small enough so

_P ” _
é’(fs((’t)) < r::l_f), where we assume p < m. Then, using that —%‘ > £ by Lemma 6.7 and

that a(¢) > cos(z), we have

o _ _ L
e _pmmm=8 o
he « m m-—p 2m

Since (1 — x (5)) %(’) > (), we obtain for all 7 the estimate

o 2m

Hence, the Ricci curvature Ric(d;, ;) is bounded from below by a positive constant that
is independent of €.

Further, by choosing & small enough, we can bound |Ric(9;, ‘?75) | uniformly by any positive
B
-~ y ’
Finally, using the estimate —% > -1+ ﬁ, we obtain that the Ricci curvature Ric(%, g)
is bounded from below by a function that converges to

2 ) 2 .
(m — 1)( tan“(s) N 1 — sin“(¢) cos (s)) +m< 1 tan(?) sm(t))

constant, while the Ricci curvatures Ric( 875) and Ric(%, %) converge to 2m as ¢ — 0.

 cos2(1) cos2(t) cos2(s) cos2(t) cos(?)
o o
—1+—=2m—-1+ —
+ 2m + 2m
as ¢ — 0. Hence, all the Ricci curvatures are positive for ¢ sufficiently small. O
We now consider a finite collection Wy, ..., W, € R*'*2 of oriented 2m + 1)-

dimensional subspaces such that each pairwise intersection W; N W;, i # j has dimension
at most 1. We define the intersection matrix A = (a;;) € {—1,0, 1}6%¢ as follows:
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1, dim(W; N W;) = 0 and the oriented intersection number of W; and W; is I,
ajj = y—1, dim(W; N W;) = 0 and the oriented intersection number of W; and W; is — 1,

0, else.

Recall that the oriented intersection number of W; and W; is obtained by the sign of the
determinant of the matrix
(Bi Bj).

where B;, resp. Bj, is a (4m + 2) x (2m + 1)-matrix whose columns form an oriented basis
of W;, resp. W;.

Our goal is now to slightly move the subspaces W; using Proposition 6.6 so that the
corresponding spheres do not intersect each other. To ensure that we can apply Proposition
6.6 for each intersection of subspaces, we consider a graph G4 = (V, E), where we define
V ={1,..., £} as the set of vertices and

E={{i,j}|i+#janda;j =0}

as the set of edges. Recall that a clique of a graph is a complete subgraph.

Proposition 6.8 Let Wy, ..., W, C R¥+2 pe oriented (2m + 1)-dimensional linear sub-
spaces, let A denote their intersection matrix and G 4 = (V4, E 4) the corresponding graph.
Suppose the following:

(1) Every simple closed path in G 4 is contained in a clique,
(2) For every clique of G s the corresponding subspaces are contained in a subspace of
codimension 1.

Then there exist oriented (2m + 1)-dimensional affine subspaces Wi, ..., W, € R*m+2
with intersection matrix A and a metric of positive Ricci curvature on S+ such that the
intersections W] N S4m+1 qre pairwise disjoint spheres that are round and totally geodesic.

Proof We will apply Proposition 6.6 to slightly move the subspaces W; so that they only
intersect in at most one point, and hence the corresponding spheres do not intersect each
other, such that the oriented intersection matrix of the subspaces W; is given by A.

We will assume that G 4 is connected, otherwise we apply the same argument to each
connected component. We now pick a subspace W;, in G 4 and construct a sequence of trees
To C Ty C ... asfollows.

The vertices of T; are a subset of the set of maximal cliques of G 4 together with an
additional vertex, which will be the root of all T';. The trivial tree T consists of only the root.
Ty is obtained from 7y by adding all maximal cliques of G 4 that contain the vertex ip and
connecting these to the root. Next, we construct inductively the tree 7} from T; by adding
all maximal cliques of G 4 that intersect a leaf of 7} as vertices and connecting themin 7’4 1.
Since G 4 is finite, we have T; = T for all j sufficiently large, so we obtain a finite tree
T=U i T in which the subtree of vertices of distance at most j from the root is given by
T;.

We now apply the separation process of Proposition 6.6 repeatedly to the subspaces
Wi, ..., W, by using the tree T as follows. We start with a leaf of 7', which is a maximal
clique in G 4. For this maximal clique there exists precisely one vertex that also belongs
to a different maximal clique, since otherwise we could construct a simple closed path in
G 4 that is not entirely contained in maximal clique, which would contradict (1). We fix
the corresponding subspace to this vertex and apply Proposition 6.6 to all other subspaces
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corresponding to vertices in this maximal clique with respect to the same codimension-1
subspace W, which exists by (2). By choosing the values of ¢ and é in Proposition 6.6 for
each subspace W; accordingly, we can achieve that the neighbourhoods A ¢, (S‘ )N Bs(S;) do
not intersect each other and also do not intersect any of the remaining subspaces. In this way,
all subspaces W; corresponding to vertices in this maximal clique do not intersect each other
anymore after this process, all the while the intersection number with any other subspace
remains unchanged.

Next, we remove the chosen leaf from 7 and pick a new leaf. Property (1) now again
ensures that precisely one vertex in this maximal clique is contained in a different maximal
clique that is a vertex in T, thus we can apply the same arguments. We repeat this process
until only the root is left. The required embeddings ¢; : > < $*"*1 are now given by the
intersections of each subspace W; with $*"*!, which concludes the proof. m}

6.3 Antisymmetric integer matrices
In this section, we determine the normal forms of certain antisymmetric integer matrices.

Recall that any antisymmetric integer matrix A € Z¥*V is equivalent to a block-diagonal

matrix
Kn,

Dy, ... om) = 0

where each Knj is of the form
0 n . ..
K, = (—n 0> with n € Z positive.

Forn,¢ € Nwithn <2¢ —2ifnisevenandn < 2¢ — 1 if n is odd, we define the matrix

Ay ¢ as the (2€ x 20)-matrix
_(S2e—1 Vny
Ant = <_”nT,e 0 >

where Sp¢—1 is the antisymmetric (2¢ — 1) x (2¢ — 1)-matrix with all entries above the
diagonal equal to 1, and v, ¢ € {—1, 0, 1}*~! is defined by

(=71 i<n,
(Vn,e)i = 10, i =2¢—1and n even,
1, else.

-1
Lemma 6.9 The matrix Ay ¢ is equivalent to the diagonal matrix Doe(1, - - -, 1, n).

Proof By performing simultaneous row and column operations, we obtain that a matrix of
the form

S2e—1 v

—T 0
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forany v = (vy,...,v20—1) € R2-1 g equivalent to
01
-10
Sz v
_U/T 0
where v/ = (v3 + (v] — v2), ..., V21 + (v] — v2)) € R¥3, Applying this £ — 1 times

. . —1 _ .
results in the matrix Dye(1, ---, 1, — Zizil ! (—D'v;).
In the case of the matrix A, ¢, we have

201 ‘ n ‘ 201 ' 201 i ad
S =D i = =S =D (o) — iy = 1" Zizapa (T modd,
;( ) (0,0 ;( ) (0,0 i§+1( ) (v, 0)i {n CYIET 1 meven,
=n.
O
Nowletv = (ny,...,ng) € Z’;O.Forﬁ > %max{nrl-l, k}, we construct the (20k x 2£k)-

matrix B, ¢ inductively by setting B, ¢ = Ay, ¢ if k = 1 and
By Cyy
B, = < g ’
" —Cf’[ At
where v/ = (ny,...,n,—1) and C ¢ is the 2¢(k — 1) x 2¢-matrix where each column is
equal to the (k — 1)-st column of B,/ ;.

k(e—1
Lemma 6.10 The matrix B, ; is equivalent to Do (1, “ ), 1,ny,...,%15).

Proof By subtracting the (k—1)-st column of B,, ¢ from the i-th column forall 2¢(k—1)+1 <
i < 2Lk, and similarly subtracting the (k — 1)-st row from the i-th row, we can eliminate C\ .
Since the (k — 1)-strow of C\/ , (and therefore also the (k — 1)-st column of —CE’ ) consists
entirely of zeros, this operation does not affect A, ¢. Hence, the matrix B, ¢ is equivalent to

(")
Ank,ll '

Repeating this argument (k — 1)-times then results in the matrix

Anl,l
Anz,(

Ank,e
Since each A,; ¢ is equivalent to Dy, (1, ‘?T-l, 1, n;) by Lemma 6.9, the claim follows. ]

6.4 Intersection matrices

In this section, we show that the matrices B, ¢ can be realised as intersection matrices of
linear subspaces that satisfy the hypotheses of Proposition 6.6.
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Lemma6.11 Letv = (ny,...,n;) € Z];O and € > %max{n_,- + 1, k}. Then there exist
oriented (2m + 1)-dimensional subspaces W1, . .., Woyy of]Rf“"+2 with oriented intersection
matrix given by B, 4.

Proof Note that, after applying an automorphism of R*"+2, for every finite set of subspaces
W;, every W; has a basis given by the columns of the matrix

P;
Dy,

where P; € Rm+Dx@mtD) “and [, 1 e REm+Dx@n+D) s the identity matrix. One
therefore defines the subspaces W; by specifying matrices P;, and the orientation will be
induced by the columns of the above matrix. Note also that a matrix of the form

(rars
D1 Dt

with P, Q € R@m+Dx@n+1) hag determinant det(P — Q), so that the oriented intersection
number of the subspaces W; and W; is given by sgn(det(P; — P;)).

We start by constructing subspaces Wi, ..., Wy, with oriented intersection matrix A, .
For that, we set

diag(—i,i,...,1), ioddandi <n,
diag(i, —i,i,...,10), ievenandi < n,
diag(i,i, +,..., b, n+1<i<20-2,
Py ={diag2t —1,2¢ — 1, 51, ..., 5-5), i =2¢—landn odd,
diag(2¢ —1,2¢ —1,0,...,0), i =2¢ — 1andn even,
diag(—2¢,0,...,0), i = 2¢ and n odd.
diag(—2¢+1,0,...,0), i = 2¢ and n even,
A computation shows that we obtain the matrix A, ¢ with this choice of subspaces.
For a vector v = (v, ..., Vamt1) € R27+1 we define the matrix Q, by
V1 1
viv2 U2
Qv = U3
V2m+1

For 1 <i < 2¢, we then define Q; , as Q,, where v consists of the diagonal entries of P; ,,
ie. P, =diag(vy, ..., v2m+1)-

We now set P, = P; ,, for1 <i <2¢. Givene > 0, foreach j € {1,...,k — 1} and
2j0+1<i<2(j+ 1)£, we define

P =Pjn +eQi2jin;,-

For ¢ sufficiently small, we then obtain the intersection matrix B, ¢. This can be seen from
the inductive definition of B, , as follows.

Setvj = (ny, ..., n;) and recall that B, ,_, ¢ is obtained from Buj,g by setting

Vj+l

Bv~,[ Cv',Z
ij+1,[ = (_CIT A ! ) s

vj, 0 gyt
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where every colummn of Cy; ¢ is defined as the j-th column of B, ¢. Since P; — Pj,, as
& — 0 and since the subspaces defined by P; and P; ,, intersect (as det(Q,) = O for any v),
we obtain that the oriented intersection matrix is indeed of the form

BVj,Z CU]',Z
T
—cl, A

for & sufficiently small, where A’ € RZm+Dx@m+1) Eyrthermore, since det(P; — P;) for
2j0 < i,i’ <2(j + 1)€is given by

2m+1 am+1
det(P;—Py) = "1 det(Qi2jeun;y — Qir—2jem; ) = €7 det(Pigjem; = Pir—2jemjii)

we obtain the matrix A" = Ay, ¢ - O

Lemma 6.12 The connected components of the graph associated to B, ¢ are of the form

Gi= e—o ) : or

where G appears if and only if ny is even, and the number of connected components of the
Jorm Goqq and Gy is given by the number of odd and even numbers among ny, . .., ng,
respectively.

Proof By construction, the matrix A, ; only has an entry above the diagonal equal to zero
when # is even, in which case the zero entry is at position (2¢ — 1, 2¢). Moreover, the only
zero entries of the matrix Cvj,g are at position (j, i), where 1 <i < 2¢.

Thus, forevery j € {1, ..., k—1}, we obtain zero entries in the matrix B, ¢ at the positions
(j,2¢j + i) forall 1 <i < 2¢, and additionally also at (2¢(j + 1) — 1,2£(j + 1)) when
nji1is even.

Hence, we obtain a connected component of the form G when n; is even. In this case,
the two vertices correspond to the subspaces Wy,—; and Wy,. Furthermore, for any j €
{1,..., k— 1} we obtain a connected component of the form G,4s When n; is odd, where
the vertex on the left-hand side is represented by W, and a graph of the form G, whenn
is even, where the vertex in middle is represented by W;, and the vertices on the left-hand
side by Wae(j+1)—1 and Wag(j11). O

Lemma 6.13 The subspaces W1, ..., Wy constructed in Lemma 6.11 satisfy the require-
ments of Proposition 6.8.

Proof The first property of Proposition 6.8 follows from Lemma 6.12. For the sec-
ond property, by (the proof of) Lemma 6.12, we need to consider the subspaces
Wi, Wag(j+1)—1, Wagj+nforall j € {1, ..., k—1} forwhichn; is even. These are defined
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by the matrices Pj n;, Poe(j+1)-1 = Pjny +€Q2¢—1,n;,, and Pagj+1y = Pjny +€0Q20n,,
respectively. Hence, we need to determine the rank of the matrix

Pj,nl Pj,n1 +8Q2€—1,nj+1 Pj,nl +8Q2€,nj+|
D41 Dy Dt

By applying column operations, we obtain that this matrix has the same rank as the matrix

<Pj.n1 €Q2u—1,njy €Q2n;4,
0 .

D 0

By the definitions of Pr—tnjy and Py p;y,s the matrices Q20—1,njy; and Qon;y, only
have non-zero entries in the upper-left 2 x 2-block. Hence, this matrix has rank at most
2m+3 <4m+ 1. O

6.5 Proof of Theorem 6.1

Let M*"t1 be a closed, (2m — 1)-connected 2m-parallelisable manifold. By [15, Theorem
7.1], there exists a homotopy sphere 4" *! such that M#X is the boundary of a handlebody
W. We will now construct embeddings ¢; : $2" x D¥"+1 s §4m+1 that induce the same
invariants as W, such that we can perform surgeries along these embeddings while preserving
ﬁfcoo > 0.

Since Aw is an antisymmetric bilinear form, there exists a basis of Hy in which Ay is
given by

K,

Dy(ny, ..., ng) = 0 ,

where N = dim(Hy). We set v = (ny, ..., ng), and, for £ sufficiently large, consider the
matrix By ¢.
By Lemma 6.10, there exists a matrix T € GL(2¢k, Z) that carries the matrix B, ¢ into
D = Dy (1, ke -l), 1,ny,...,n).

Furthermore, by Lemmas 6.11 and 6.13 and Proposition 6.8, there exists a metric of positive
Ricci curvature on $*"*! and embeddings ¢;: D>+ — D*"+2 1 < | < 24k, with
oriented intersection matrix B, ¢ and such that each restriction ¢;|gom : §2m <y gAmtl g
round and totally geodesic. Moreover, the embeddings ¢; | s« have pairwise disjoint image.
We extend each embedding ¢; | g2« to an embedding ¢; : §2m 5 p2m+l s gdm+l gych that
the invariants of the handlebody obtained from ¢y, .. ., ¢¢ are given by

@, Bue, T 0),

k(e—1)
where . = (0, ---7,0, uw).
By Theorem C, the manifold M obtained from §4m+1 by surgery along the embeddings
¢; admits a weighted Riemannian metric of Rics, > 0. Further, it is the boundary of the

handlebody with invariants

(7%, By o, T ) ~ (2%, D, ).
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By Theorem 6.3 and Lemma 6.5, there exists a manifold M; which is the connected sum of
total spaces of linear $>"+!-bundle over $2”, and a homotopy sphere ¥’ such that M#Z#%’
is diffeomorphic to My#M;. Finally, by Theorem B and (C2), the manifold Mo#M; admits
a weighted Riemannian metric of liTcoo > 0. O

6.6 Simply-connected 5-manifolds

Theorem 6.1 implies that every closed, simply-connected spin 5-manifold admits a weighted
Riemannian metric of ﬁcoo > 0. In this subsection, we consider an extension of this result
to certain non-spin manifolds.

For that, we first recall the classification of closed, simply-connected 5-manifolds by
Barden [3] and Smale [44]. For j € {—1,0, ..., oo} there exists a closed, simply-connected
5-manifold X; [3, Section 1] satisfying

Hy(X) =L [2) @Z [2

for 0 < j < oo, and H2(X_1) = Z/2, Hy(Xs) = Z. Furthermore, the second Stiefel—
Whitney class w> (X ;) is nontrivial if and only if j # 0. The classification is now given as
follows:

Theorem 6.14 ([44], [3, Theorem 2.3])

(1) Every closed, simply-connected spin 5 manifold is uniquely determined by its second
homology group. A finitely generated abelian group G can be realised by such a manifold
if and only if there exists a finite abelian group Gt such that Tors(G) = Gr & Gr.

(2) Every closed, simply-connected 5-manifold uniquely splits as M = X j#My where My
is spin.

In particular, the manifolds X and X, are the sphere > and the total space of the unique
non-trivial linear S3-bundle over S?, respectively. The manifold X_ is the Wu manifold

SU@B)/SO@3) and X1 = X_1#X_1. By Theorems B and D together with (C2) and (C6) we
obtain the following result.

Theorem 6.15 Let M be a closed, simply-connected spin 5-manifold. Then X j#M admits a
weighted Riemannian metric of Ricoo > 0 forall j € {—1,0, 1, co}.

For comparison, we have the following known examples of closed, simply-connected
5-manifolds with a Riemannian metric of positive Ricci curvature:

(1) All manifolds of the form X ;#Mg in Theorem 6.14 where j € {—1,0, 1, oo} and My
is spin and has torsion-free homology (see [43] or [14] for j € {0, oo}, and [37] for
jel-11.

(2) Closed, simply-connected 5-manifolds with positive Sasakian structures. These mani-
folds are all spin, have second Betti number at most 8 and torsion group of the form
(Z/m)ze (see [6, 7, 26] and [8, Corollary 10.2.20, Theorem 10.2.25 and Table B.4.2] for
their classification).

Appendix A Ricg > 0 vs. Ric > 0
In this section, we collect results that allow us to construct Riemannian metrics of Ric > 0

from weighted Riemannian metrics of ﬂcq > ( for some ¢. In general, we are interested in
the following question.
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Question A.1 Given a closed, weighted Riemannian manifold (M, g, e~ ') with ﬁfcq >0
for some g € (0, co], does there exist a Riemannian metric g on M with Ric > 0?

To the best of our knowledge, there is no counterexample known for this question and it
is known that the classical obstructions for Ric > 0 also hold for Ric, > 0:

Proposition A.2 Let (M", g, e~ /) be a weighted Riemannian manifold with ﬁcq > 0 such
that M is closed. Then

(1) M has finite fundamental group,
(2) If M is spin, then the a-invariant a(M) vanishes provided q < 4.

In particular, if M is simply-connected (spin or non-spin) with n # 4 and q < 4, then it
admits a Riemannian metric of positive scalar curvature.

Proof Ttems (1) and (2) are shown in [30, Theorem 1] and [17, Corollary 4.4], respectively.
The last statement follows from the fact that any closed, simply-connected manifold of
dimension at least 5 admits a metric of positive scalar curvature if and only if it is non-spin
[19] or spin with vanishing -invariant [45], and the only closed, simply-connected manifolds
in dimensions 2 and 3 are spheres. O

For further generalisations of results from Ric > 0 to ﬂcq > 0, such as the Bonnet—
Myers theorem, the Cheeger—Gromoll splitting theorem, and the Bishop—Gromov volume
comparison theorem, we refer to [30, 33, 47, 54], and the references therein. We also refer
to [22, 23, 53] for results on positive weighted sectional curvature.

Given the result of Proposition A.2, it is not clear, however, how one can construct a metric
of positive scalar curvature from a weighted metric with positive weighted Ricci curvature.
Note that in the special case where the weighted Ricci curvature is constant, the metric itself
already has positive scalar curvature by [13, Proposition 1.1]. In general, however, one can
construct examples, where the metric g even has negative sectional curvature, see e.g. [47,
Example 2.2]. On the other hand, for closed manifolds, there exists at least a point of positive
Ricci curvature:

Theorem A3 Let (M, g, e~ ) be a closed, weighted Riemannian manifold of ﬁcq > 0. Then
there exists a point in M at which g has Ric > 0.

This follows from the fact that M x S? admits a submersion metric of Ric > 0 for all
p > max{2, g} by [30, Section 2] or Proposition A.5 below (where we can replace g by a
finite value in case ¢ = oo since M is compact), together with [35, Theorem 2].

A partial positive answer to question A.1 was given by Wylie and Yeroshkin [54]. For a
one form o on a Riemannian manifold (M, g) they defined the torsion-free connection

V?‘(Y =VxY —a(X)Y —a(Y)X,
where V denotes the Levi—Civita connection of g.

Theorem A4 ([54, Theorem 2.15]) Let (M", g, e=F) be a weighted Riemannian manifold
with R101 _n > 0, such that the holonomy of the connection V' is compact. Then there
exists a Riemannian metric § on M that is compatible with V¢ and any such metric satisfies
Ric > 0.

For this theorem, one needs to extend the definition of ﬂcq to ¢ < 0 in the obvious way.
We also note that in [54, Section 5.1] several examples are given where the holonomy of virf
is not compact, showing that Theorem A.4 does not provide a full answer to Question A.1.
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Asavariation of Question A.1, we can ask whether the existence of a weighted Riemannian
metric of ﬁcq > 0 on amanifold M implies the existence of a Riemannian metric of Ric > 0
on some higher-dimensional manifold obtained from M, such as a fibre bundle with base M.
It was observed by Lott [30, Section 2] that this holds in the special case of a product M x S?
whenever p > max{2, ¢}, i.e. if M admits a weighted Riemannian metric of ﬁfcq > 0, then
M x SP admits a Riemannian metric of Ric > 0 whenever p > max{2, ¢q}. We can generalise
this as follows.

Proposition A.5 Let M be a closed manifold that admits a weighted Riemannian metric
(g, e~ offsfcq > 0. Let (NP, g) be a manifold of positive Ricci curvature and let E LM
be a fibre bundle with fibre N such that the structure group of the bundle acts via isometries
on (N, 8). If p > q, then E admits a submersion metric of positive Ricci curvature.

In particular, Proposition A.5 applies when 7 is a linear sphere bundle, or a trivial bundle
M x N — M and N is a closed manifold that admits a Riemannian metric of Ric > 0 (and
in both cases we assume that the fibre dimension is at least max{2, g}).

Proof Let V = ker(dmw) € TE be the vertical distribution of 7. By choosing a principal
connection on the associated principal G-bundle, where G denotes the structure group of
7, we obtain a Riemannian metric g on E such that (E, g) LN (M, g) is a Riemannian
submersion with totally geodesic fibres isometric to (N, ), see e.g. [4, Theorem 9.59]. We
denote by H = V! C TE the corresponding horizontal distribution. In the following, we
will denote by u, u1, up horizontal vectors, and by v, vy, vy vertical vectors. We will also
assume that all horizontal vector fields u we consider are basic, i.e. there exists a vector field
i on M such that 77, (uy) = tin(y) for all x € E. Since every vector field on M uniquely lifts
to a basic vector field on E, we can identify vector fields on M and basic vector fields on E
in this way.

For a smooth function F: M — (0, co) we now define the metric g on E as the metric
obtained from g by scaling the fibres by F2, i.e.

grlv = F(0)%8, &rln=8&ln. &r(H,V)=0.

Then (E, gF) LN (M, g) is again a Riemannian submersion. However, the fibres do not need

to be totally geodesic. Indeed, if V and V" denote the Levi—Civita connections of gand gp,
respectively, then it follows from the Koszul formula that

_ [(=F - (= u(F)
gF(V,,lu,vz):gF Vv1u+TU1,U2 .

Since fibres of 7 are totally geodesic with respect to g, it follows that g(ﬁ,l u,vy) =0, and
hence the T-tensor TF of gF (see e.g. [4, Section 9.C]) satisfies
u(F)

F
T, u= 7 v.

By the symmetries of TF (see [4,9.18d]) we also have
TS vy = —Fg(vi, 1) VF.

Moreover, we have Tqu = Tufuz =0 (see [4, 9.18a)).
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We use this to calculate the mean curvature vector v ="y, va v;, where (v;) is a vertical
orthonormal basis with respect to g, as follows:

4 VF VF
V= ;gF(UuUz) F p F
(recall that p is the dimension of N).

Next, note that [u, v] is vertical as it maps to 0 under 7, (here we need that u is basic). We
will assume for x € E that v, v; € V, are vertical vectors at x that are extended to vertical
vector fields so that any covariant derivative at x between two of these vector fields at x is
horizontal. This can for example be achieved by considering normal coordinates in the fibres
and using that the Levi—Civita connections of the fibre metrics coincide with v onv (see
[4, 9.16]). Then at x we have the following equations (for the definitions of $ and TUF , A,f
see [4, 9.33)).

@7 = = ((V017), ) = = e (7 (10) )
=Y (Vi (Fai, 0V F) )
=Y Fii, vir (Vﬁvn u) - %gF (VSVF, u)

1
= _ﬁgF([VFﬂ I/l], U)v

- - - =F
> (15w Afv) == ar (Fa, v)VF. Vyui)
i i

I _ =F
g (VF. Vo)

gr (17 AF)

1
=—=—gr([VF,ul,v),

2F
_ - ui (Fusz(F)
gr (TFul, TFuz) => &r (Tuf“h va”2> =P
;
_ [(=F uy (Fuz(F) Hess(F)(uy, uz)
8F (Vu1v7 MZ) =p F2 2 F -

Here A denotes the A-tensor of g .
We now use these equalities to analyse the Ricci curvatures of the metric gr where we set

_I

F = \/;e P

for some 7 > 0. To simplify the notation we set g, = g and similarly V' = V' , v = vF,

T! = TF and A" = AF. By [4, 9.36 and 9.69], we then have the following (note that the

second summand in [4, 9.69h], which follows from [4, 9.69f], has the wrong sign).

Ric% (vy, v2) = Ric® (vy, v2) — 181 (Vl, T,}l v) + ) (AIUI» Alvz) +t <5T1) (v1, v2),
Ric® (u, v) = g1 ((87") v.u) + &1 (Vyv'u) =1z (§4") wv) — 1+ 07, (4], 7))

— ==t — X —
=g (Vvvl, u) — 18 (((SAl) u, v) —1g (Alll, Tvl),
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Ric% (uy, u) = Ric® (uy, uz) — 231 (A}, Al,) — &1 (T'ur, T'uz)

up’
1 - —=t 1 — — 1
3 (8 (Tt o) 451 (Tt )
Hess(F)(uy, uz)

= Ric®(uy, up) — 2t g (Al A»ltz)_ F

uy
We have

81 (ﬁivl, u) =181 (ﬁll)vl, u)
(e.g. by [4, 9.69a] or the Koszul formula). Further, with our choice of F, we have

I
VieTr
p

VF =

R

H F , 1 1
M = —ui(ua(f) — —Hess(f)(u1, u2).
p p

Hence, the Ricci curvatures of g; can be written as follows:
Ric% (v1, v2) = Ric¥ (v1, 12) + O (1),
Ric® (u, v) = O(1),
Ric¥ (u1, uz) = RicS” (u1, ua) + 0(1).

Since g has Ric > 0 and (g, e~ ) has ﬁfc,, > 0, it follows that g, has Ric > 0 for all ¢
sufficiently small. O

Finally, we obtain an analogous result for weighted core metric.

Proposition A.6 Let M be a closed manifold that admits a weighted core metric (g, e~ )
with respect to q € (0, 00). Let NP be a closed manifold that admits a core metric §' and

let EZ M bea fibre bundle with fibre N such that the structure group of the bundle acts
via isometries on (N, g), where g is a metric of positive Ricci curvature on N that lies in the
same path component as g’ in the space of Ricci-positive metrics on N. If p > max{3, q},
then E admits a core metric.

In particular, the assumptions of Proposition A.6 are satisfied when 7 is the trivial bundle
M x N — M and N admits a core metric (then we can set ¢ = 2’), or when 7 is a linear
sphere bundle (then we canset § = g’ = d 512,). Further, it can be applied to projective bundles

with fibre CP", HP" or QO P2, see [37, Section 5.2].

Proof We consider the same submersion metric g, as in the proof of Proposition A.5, which
has positive Ricci curvature for all ¢ sufficiently small. Note that we can freely choose
the principal connection on the corresponding principal G-bundle. Hence, if we choose a
principal connection that is flat over the embedded hemisphere ¢(D?) € M, the metric g;
is a product

%

dsf, lpr +te 7 g
onx~! (p(DP)) = DP x N, where fj is the constant value of f on ¢(DP). In particular, the
boundary 37 ~!(@(DP)) = SP~! x N is totally geodesic.

We now consider the manifold E \ 7 ~!(¢(D?))° equipped with the induced metric. By
[9, Proposition 1.2.11] we can deform the metric g; preserving Ric > 0 so that the second
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fundamental form on the boundary is strictly positive, and for any r > 0, by [11, Theorem
C], we can assume that the metric on the boundary is given by dslzj_l +r2§’. Then, by [37,
Theorem 4.1], it follows that we can glue back in D? x N and obtain a core metric on E. O
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