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Abstract
We consider the problem of preserving weighted Riemannian metrics of positive Bakry-
Émery Ricci curvature along surgery. We establish two theorems of this type: One for
connected sums, and one for surgeries along higher-dimensional spheres. In contrast to
known surgery results for positive Ricci curvature, these results are local, i.e. we only impose
assumptions on the weighted metric locally around the sphere along which the surgery is
performed. As application we then show that all closed, simply-connected spin 5-manifolds
admit a weighted Riemannian metric of positive Bakry-Émery Ricci curvature. By a result
of Lott, this also provides new examples of manifolds with a Riemannian metric of positive
Ricci curvature.
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1 Introduction

Surgery is an essential tool in differential topology which was introduced by Milnor [31] to
eliminate certain homotopy classes of embedded spheres on a given manifolds. Recall that
for an n-dimensional manifold Mn and an embedding ϕ : S p × Dq+1 ↪→ M of the product
of the p-sphere with the (q + 1)-disc with n = p + q + 1, the manifold Mϕ obtained from
M by surgery along ϕ is given by

Mϕ = M \ ϕ(S p × Dq+1)◦ ∪S p×Sq (Dq+1 × S p).

We also say that Mϕ is obtained by p-surgery from M .
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In the presence of a lower curvature bound, surgery offers a promising attempt to construct
a wide class of manifolds satisfying this lower curvature bound, provided it can be preserved
along a surgery operation. This was shown to be possible for positive scalar curvature by
Schoen–Yau [42] and Gromov–Lawson [19] whenever q ≥ 2, which, in conjunction with
index theory of Dirac operators, eventually led to a full classification of closed, simply-
connected manifolds that admit a Riemannian metric of positive scalar curvature [45].

For positive Ricci curvature, it is not knownwhether a surgery result in the same generality
holds. In this context, we highlight the following questions:

Question 1.1 Does the connected sum M1#M2 of two closed n-manifolds M1 and M2 admit
a Riemannian metric of positive Ricci curvature whenever both M1 and M2 admit such a
metric (assuming at least one of M1 and M2 is simply-connected)? As a special case, does
the connected sum M1#CP

n
2 or M1#(Sm × Sn−m) admit a Riemannian metric of positive

Ricci curvature whenever M1 admits such a metric?

Question 1.2 Which closed, simply-connected 5-manifolds admit a Riemannian metric of
positive Ricci curvature?

Note that the connected sum operation is a particular instance of 0-surgery. By the theorem
of Bonnet–Myers, a connected sum M1#M2 cannot admit a Riemannian metric of positive
Ricci curvature when both M1 and M2 are not simply-connected. In all other cases, Question
1.1 is open. A systematic study of the connected sum problem was initiated by Burdick [9–
12], who, based on work by Perelman [34], introduced the notion of core metrics. These are
Riemannian metrics of positive Ricci curvature that contain an embedded round hemisphere
of the same dimension as the manifold (see Definition 4.1 below). Burdick then showed that
the connected sum of manifolds with core metrics admits a Riemannian metric of positive
Ricci curvature. While this offers a promising approach towards answering Question 1.1,
it is not well understood which manifolds among the known examples of manifolds with a
Riemannian metric of positive Ricci curvature admit core metrics, see Section 4 for a full
list.

Question 1.2 is of special interest, since it is known that all closed, simply-connected
5-manifolds admit a Riemannian metric of positive scalar curvature [19], which is a con-
sequence of the aforementioned surgery result. At the same time, there exists a particularly
simple classification of these manifolds by Smale [44] and Barden [3]. However, while there
are no known counterexamples to Question 1.2, the number of known examples admitting
a Riemannian metric of positive Ricci curvature is relatively small, see Subsection 6.6 for a
full list. In particular, among the known examples which are spin and have torsion in their
homology, the second Betti number is at most 8. On the other hand, it was shown by Sha–
Yang [43] that all closed, simply-connected 5-manifolds with torsion-free homology admit a
Riemannian metric of positive Ricci curvature, which was obtained by establishing a surgery
result for higher surgeries, i.e. p-surgeries with p ≥ 1. This technique was subsequently
extended and generalised byWraith [49, 50] and the first named author [36], which provided
new examples in dimensions at least 6.We also refer to [55] for a related construction. Never-
theless, all these results require strong geometric assumptions for the metrics involved, thus
limiting their possible range of applications.

The purpose of this article is to study surgery in the context of a modified Ricci tensor,
and in particular to address Questions 1.1 and 1.2 in this setting.

Definition 1.3 Let (Mn, g, e− f ) be an n-dimensional weighted Riemannian manifold, i.e. g
is a Riemannian metric on M and f : M → R is a smooth function. Then for q ∈ (0,∞]
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the q-Bakry-Emery Ricci tensor ˜Ricq of (M, g, e− f ) is defined by

˜Ricq = Ricg + Hess( f ) − 1

q
d f ⊗ d f .

The tensor ˜Ricq was first introduced by Bakry and Émery [1] in the context of diffusion
processes. It also appears naturally in other settings, such as Ricci flow, general relativity and
the study of Ricci limit spaces, see e.g. [30, 32, 47] and the references therein. It was shown
by Lott [30] that if a closed n-manifold M admits a weighed Riemannian metric (g, e− f ) of
˜Ricq > 0, then the product M × S p admits a Riemannian metric of positive Ricci curvature
for all p ≥ max{2, q} (see Proposition A.5 below for a generalisation of this result). The
metric on M × S p is constructed in such a way that one can collapse the sphere S p to a
point while preserving Ric > 0, which shows that (M, g) is a collapsed Gromov–Hausdorff
limit of Riemannian manifolds of Ric > 0, and, in particular, the metric measure space
(M, g, e− f dvolg) satisfies the synthetic curvature condition CD(0, n + p).

Lott’s result also shows that the existence of a weighted Riemannian metric of ˜Ricq > 0
leads to examples in the Riemannian case, and, similarly as in the Riemannian case, we
obtain that the fundamental group of a closed manifold with a weighted Riemannian metric
of ˜Ricq > 0 is finite. We further discuss the relation between ˜Ricq > 0 and Ric > 0 in
Appendix A below. It is worth noting that there is no difference known between the class of
manifolds admitting a weighted Riemannian metric of ˜Ricq > 0 and the class of manifolds
admitting a Riemannian metric of Ric > 0.

In our first main result we consider gluing of two weighted Riemannian manifolds of
˜Ricq > 0 along isometric boundary components. This generalises a corresponding gluing
result of Perelman [34] in the Riemannian case, see also [5, 38], the survey article [24], and
Theorem 3.1 below. We denote by II the second fundamental form and by H f the weighted
mean curvature defined by H f = H − ν( f ), where H is the mean curvature and ν the
outward unit normal of the boundary.

Theorem A Let (M1, h1, e− f1) and (M2, h2, e− f2) be twoweighted Riemannian n-manifolds
with ˜Ricq > 0 for some q ∈ (0,∞], and suppose there exists an isometry φ : ∂cM1 → ∂cM2

between two boundary components ∂cM1 ⊆ ∂M1 and ∂cM2 ⊆ ∂M2 such that f1|∂cM1 =
f2 ◦ φ. If

(1) H f1
∂cM1

+ H f2
∂cM2

◦ φ ≥ 0, and
(2) II∂cM1 + φ∗II∂cM2 ≥ 0,

then there exists a metric h and a smooth function f on M1 ∪φ M2, which agree with hi and
fi on Mi outside an arbitrarily small neighbourhood of ∂cMi , such that (M1 ∪φ M2, h, e− f )

has ˜Ricq > 0.

This result was independently also obtained by Ketterer [25], who additionally proved a
converse in terms of the curvature-dimension condition CD(K , N ) (see [25, Theorem 1.4]).
We note that our proof of Theorem A, which is based on Perelman’s work [34], differs from
Ketterer’s proof, which is based on a construction of Kosovskii [27], see also [41].

TheoremAmotivates the following generalisation of core metrics to the weighted setting:

Definition 1.4 Let q ∈ (0,∞]. A weighted metric (g, e− f ) of ˜Ricq > 0 on an n-dimensional
manifold M is called a weighted core metric with respect to q , if there exists an isometric
embedding ϕ : Dn ↪→ M , where we consider Dn as equipped with the induced metric of a
hemisphere in the round sphere of radius 1, such that f is constant on ϕ(Dn).
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In particular, we obtain a weighted core metric with respect to any q ∈ (0,∞] from a
core metric by choosing a constant weight function.

Similar arguments as in the Riemannian case [10] using TheoremA instead of Perelman’s
gluing theorem now directly show that the connected sum of manifolds admitting weighted
core metrics with respect to q admits a weighted Riemannian metric of ˜Ricq > 0. In fact, we
can prove the following more general result:

Theorem B Let q ∈ (0,∞] and let Mn
i , i = 0, . . . , � be closed manifolds such that

(1) M0 admits a weighted Riemannian metric of ˜Ricq > 0,
(2) M1, . . . , M� admit a weighted core metric with respect to q.

Then the connected sum M0# . . . #M� admits a weighted Riemannian metric of ˜Ricq > 0.

In particular, Theorem B answers the second part of Question 1.1 affirmatively if one
replaces Ric > 0 by ˜Ricq > 0, since both complex projective spaces and products of spheres
Sm × Sn−m with m, n − m ≥ 2 admit core metrics by [10, 11, 37].

As pointed out by Erik Hupp, the case where q = 2 and all Mi with i ≥ 1 are given by
CP2 in Theorem B also follows from the construction in [21].

The idea for the proof of Theorem B is as follows. For simplicity we assume � = 1.
We then remove a small neighbourhood of a point in M0 and a small neighbourhood of the
hemisphere in M1 and attach a cylinder [0, t0]× Sn−1 equipped with a weighted Riemannian
metric of ˜Ricq > 0 that connects the two pieces. To ensure that we can glue the cylinder
to M0 and M1 using Theorem A, we will define a warped product metric on [0, t0] × Sn−1

whose warping function has derivative close to 0 at t = 0 (to glue with M1) and close to 1
at t = t0 (to glue with M0). Clearly this can be achieved by a convex function with suitable
boundary conditions. However, the Ricci curvatures of such ametric in t-direction are strictly
negative. To obtain a weighted Riemannian metric of ˜Ricq > 0 we then carefully construct
a weight function that compensates the negative contribution of the Ricci curvature while
satisfying condition (1) of Theorem A at the gluing areas. This choice of functions is based
on the construction in [36]. It is worth noting that for the overall construction we change the
weighted Riemannian metrics on M0 and M1 only in arbitrarily small neighbourhoods of a
point in M0 and of the embedded hemisphere in M1, respectively.

Next, we consider higher surgeries.

Theorem C Let (Mn, g, e− f ) be a weighted Riemannian manifold with ˜Ric∞ > 0 and let
ϕ : Sa × Db+1 ↪→ M, a + b + 1 = n, be an embedding such that ϕ(Sa × {0}) is a round,
totally geodesic sphere on which f is constant with vanishing normal derivative. If a, b ≥ 2,
then Mϕ admits a weighted metric of ˜Ric∞ > 0.

The main improvement of Theorem C compared to the known surgery results for Ric > 0
is that Theorem C is local, that is, we only need to impose conditions on the central sphere
ϕ(Sa × {0}). In contrast, the surgery results for Ric > 0 in [36, 43, 50, 55] all require the
diameter of the discs ϕ({x} × Db+1) for all x ∈ Sa to be sufficiently large compared to the
size of the sphere ϕ(Sa × {0}). Note that this requirement on the diameter heavily restricts
its possible applications, since in a generic setting, there is no guaranteed lower bound for
the size of tubular neighbourhoods of embedded submanifolds.

The weighted Riemannian metric constructed in Theorem C coincides with (g, e− f )

outside an arbitrarily small neighbourhood of the gluing area. For the proof we consider a
doubly warped submersion metric on the cylinder [0, t0] × Sa × Sb, together with a weight
function that is constant along slices {t} × Sa × Sb. The goal is then to transition between
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a weighted metric that collapses each sphere {0} × Sa × {x} to a point (to obtain the space
Da+1 × Sb), and a weighted metric that at t = t0 can be glued to M \ ϕ(Sa × Db+1)◦. This
results in a system of differential inequalities (to obtain ˜Ric∞ > 0) for the warping functions
and the weight function with boundary conditions at t = 0, t0, for which we will construct
explicit solutions.

We apply Theorem C to closed, simply-connected spin 5-manifolds. Any such manifold
can be obtained from the sphere S5 by a sequence of surgeries since the 5-dimensional spin
bordism group �

Spin
5 is trivial. However, in general, the corresponding embeddings will

not satisfy the hypotheses of Theorem C. To obtain round and totally geodesic embeddings
S2 ↪→ S5, one can for example consider intersections with S5 of linear 3-dimensional
subspaces of R6. We will see in Section 6 below that this results in manifolds M5 with
second homology group given by H2(M) ∼= (Z/n)2 with n odd. To obtain more general
homology groups, we will give a procedure to slightly shift a linear subspace in a given
direction, while preserving all properties required to apply Theorem C. A careful analysis of
the possible linkings of 2-spheres in S5 we can produce in this way, together with Smale’s
classification of closed, simply-connected spin 5-manifold [44], results in the following.

Theorem D All closed, simply-connected spin 5-manifolds admit a weighted Riemannian
metric of ˜Ric∞ > 0.

This answers Question 1.2 in the spin case if one replaces Ric > 0 by ˜Ric∞ > 0. We note
that, in combination with Theorem B, we also obtain a partial result in the non-spin case, see
Theorem 6.15 below. Moreover, the same techniques as in the proof of Theorem D can be
applied to highly-connected (4m + 1)-manifolds, i.e. closed, (2m − 1)-connected manifolds
of dimension (4m + 1), see Theorem 6.1 below.

Since ˜Ric∞ > 0 on a closed manifold implies ˜Ricq > 0 for all q sufficiently large,
Theorem D, together with Lott’s results [30], has the following consequence:

Corollary E Let M be a closed, simply-connected spin 5-manifold. Then there exists q ∈ N

such that M × Sq admits a Riemannian metric of positive Ricci curvature.

We note that, in contrast to Theorem A, it is open whether analogous results to Theorems
B, C and D also hold for Ric > 0.

This article is laid out as follows. In Section 2 we introduce weighted Riemannian man-
ifolds and recall constructions and curvature formulae for metrics on a cylinder. We then
proceed by proving Theorems A, B, C, and D in Sections 3, 4, 5, and 6, respectively. Finally,
in Appendix A, we compare the conditions ˜Ricq > 0 and Ric > 0 and collect results that
allow to construct Riemannian metrics of Ric > 0 from weighted Riemannian metrics of
˜Ricq > 0.

2 Preliminaries

In this section, we will present the main definitions about weighted Riemannian manifolds
to fix the notation. We will also present the formulae for different types of curvature on a
Riemannian manifold of the type M = I × X with the metric h = dt2 + gt , where X a
Riemannianmanifold, I ⊂ R an interval and gt denotes a smoothly varyingmetric on {t}×X
for each t ∈ I . These explicit computations will be used in the various steps needed to prove
Theorems A–C.

For a hypersurface N ⊆ M in a Riemannian manifold (M, g) with (local) unit normal
field ν, we denote by II(u, v) = g(∇uν, v) its second fundamental form and by H = trgII its
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mean curvature. When N is the boundary of M , we choose ν to be the outward pointing unit
normal.

2.1 Weighted Riemannianmanifolds

In this section, we establish basic facts on weighted Riemannian manifolds. For further
background literature, we refer to [30, 47], and the references therein.

Definition 2.1 Given a smooth manifold M , a Riemannian metric g on M , and a smooth
function f : M → R, we call the triple (M, g, e− f ) a weighted Riemannian manifold.

If dvolg denotes the Riemannian volume measure, then one can view a weighted Rie-
mannian manifold (M, g, e− f ) as a Riemannian manifold (M, g) equipped with a measure
e− f dvolg .

Definition 2.2 For a given q ∈ (0,∞], we define the q-Bakry-Emery-Ricci tensor ˜Ricq of
(M, g, e− f ) as

˜Ricq = Ricg + Hess( f ) − 1

q
d f ⊗ d f ,

where Ricg stands for the Ricci tensor of (M, g). Using the convention 1
∞ = 0, the ∞-

Bakry-Emery-Ricci tensor is given by

˜Ric∞ = Ricg + Hess( f ) .

Note that ˜Ricq depends on both the metric g and the weight function f . Whenever the
metric and weight function are not clear from the context, we will indicate the dependence by
writing ˜Ricg, fq . We will also refer to ˜Ricq as the weighted Ricci curvatures of (M, g, e− f ).

For q ′ ≥ q we have that ˜Ricq > 0 implies ˜Ricq ′ > 0. Since ˜Ricq = Ric for all q whenever
f is constant, a Riemannian manifold of Ric > 0 satisfies ˜Ricq > 0 for all q with respect to
a constant weight function.

Definition 2.3 Let (Mn, g, e− f ) be a weighted Riemannian manifold an let Nn−1 ⊆ M be
an embedded hypersurface. For x ∈ N , let ν ∈ TxM be a unit normal to N . Then theweighted
mean curvature H f at x with respect to ν is defined by

H f = H − g(ν,∇ f ).

Just like for the mean curvature, we will choose ν as the outward pointing unit normal when
N = ∂M .

2.2 Weighted Riemannianmetrics on a cylinder

In this sectionwe establish curvature formulae forweightedRiemannianmetrics on a cylinder,
which we will need in the proof of Theorems A–C.

Let us consider a product Mn = I × Xn−1, where I is an interval, and a metric h on M
given by

h = dt2 + gt ,

where gt is a smoothly varying family of Riemannian metrics on X . We will set g′
t = ∂

∂t gt

and g′′
t = ∂2

∂t2
gt .
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Lemma 2.4 ([37, Lemma 2.1]) The second fundamental form of a slice {t}× X with respect
to the unit normal ∂t is given by

II{t}×X = 1

2
g′
t .

Furthermore, the Ricci curvatures of the Riemannian manifold (M, h) at (t, x) ∈ M are
given as follows:

Rich(∂t , ∂t ) = −1

2
trgt g

′′
t + 1

4
‖g′

t‖2gt ,

Rich(v, ∂t ) = −1

2
v(trgt g

′
t ) + 1

2

∑

i

(∇gt
ei g

′
t )(v, ei ),

Rich(u, v) = Ricgt (u, v) − 1

2
g′′
t (u, v) + 1

2

n−1
∑

i=1

g′
t (u, ei )g

′
t (v, ei ) − 1

4
g′
t (u, v)trgt g

′
t .

Here u, v ∈ Tx X and (ei ) is an orthonormal basis of Tx X with respect to gt .

Now let f : M → R be a smooth function andwe set ft = f (t, ·) : X → R. The following
Lemma, together with Lemma 2.4, provides the weighted Ricci curvatures of the weighted
Riemannian manifold (M, h, e− f ).

Lemma 2.5 Given x ∈ M, for any u, v ∈ Tx X we have

Hessh( f )(∂t , ∂t ) = f ′′
t ,

Hessh( f )(u, ∂t ) = 1

2
u( f ′

t ),

Hessh( f )(u, v) = 1

2
f ′
t g

′
t (u, v) + Hessgt ( ft )(u, v)

and

(d f ⊗ d f )(∂t , ∂t ) = ( f ′
t )

2,

(d f ⊗ d f )(u, ∂t ) = f ′
t d ft (u),

(d f ⊗ d f )(u, v) = d ft (u)d ft (v) ,

where we are using the shorthand notation

f ′
t = ∂

∂t f and f ′′
t = ∂2

∂t2
f .

Proof We extend u and v to local vector fields around x ∈ X , and then constantly to local
vector fields around (t, x) ∈ M . First we calculate the Levi-Civita connection of h. Since
[u, ∂t ] = [v, ∂t ] = 0 and [u, v] ∈ T X , we obtain from the Koszul formula, where we denote
by ∇ t the Levi-Civita connection of the metric gt :

∇∂t ∂t = 0 , h(∇u∂t , v) = h(∇∂t u, v) = 1

2
g′
t (u, v),

h(∇u∂t ,∂t ) = h(∇∂t u, ∂t ) = 0 , ∇uv = −1

2
g′
t (u, v)∂t + ∇ t

uv.

We have h(∇ f , ∂t ) = ∂t f = f ′
t and h(∇ f , u) = u( f ) = u( ft ) = gt (∇ ft , u). Thus,

∇ f = f ′
t ∂t + ∇ ft .
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It follows that

Hessh( f )(u, v) = h(∇u∇ f , v) = h(∇u( f
′
t ∂t ) + ∇u∇ ft , v)

= h(u( f ′
t )∂t , v) + f ′

t h(∇u∂t , v) + Hessgt ( ft )(u, v)

= 1

2
f ′
t g

′
t (u, v) + Hessgt ( ft )(u, v),

Hessh( f )(u, ∂t ) = h(∇u∇ f , ∂t ) = h(u( f ′
t )∂t + f ′

t ∇u∂t + ∇u∇ ft , ∂t )

= u( f ′
t ) − 1

2
g′
t (u,∇ ft ) = u( f ′

t ) − 1

2
∂t u( ft ) = 1

2
u( f ′

t ),

Hessh( f )(∂t , ∂t ) = h(∇∂t ∇ f , ∂t ) = ∂t h(∇ f , ∂t ) = f ′′
t .

��
We now consider the special case where h is given by a doubly warped submersion metric

and f is constant on the hypersurfaces {t} × X . This case will be important in the proof of
Theorems B and C.

For a, b ∈ N we consider the projection Sa × Sb
π−→ Sa . The vertical distribution

V = ker π∗ is then simply given by T Sb. Let H ⊆ T (Sa × Sb) be a distribution that is
complementary to V , so we have a decomposition

T (Sa × Sb) = H ⊕ V.

The projection ontoH, which we call the horizontal distribution, according to this composi-
tion will again be denoted by H, and similarly, the projection onto V is again denoted by V .
Then for any α, β > 0 we define the metric

gα,β = α2H∗π∗ds2a + β2ds2b

and obtain a Riemannian submersion (Sa × Sb, gα,β) → (Sa, α2ds2a ) with totally geodesic
fibres isometric to (Sb, β2ds2b ). Conversely, for any Riemannian submersion (Sa × Sb, g) →
(Sa, α2ds2a ) with totally geodesic fibres isometric to (Sb, β2ds2b ) we define H = V⊥ and
obtain that g is given by gα,β , see also [4, Theorem 9.59].

We consider the A-tensor of g1,1,, i.e.

Auv = H∇HuVv + V∇HuHv,

where ∇ denotes the Levi–Civita connection of g1,1 and u and v denote vector fields on
Sa × Sb, (for more details and basic properties of the A-tensor we refer to [4, Section 9.C]).
As in [4, 9.33], for a horizontal vector u and vertical vector v in Tx (Sa × Sb) we set

(Au, Au) =
∑

i

g1,1(Auui , Auui ),

(Av, Av) =
∑

i

g1,1(Aui v, Aui v),

((δ̌A)u, v) = −
∑

i

g1,1(∇g1,1
ui A)ui u, v),

where (ui ) is an orthonormal basis of Hx .

Lemma 2.6 Let I be an interval and let α, β : I → (0,∞), f : I → R be smooth functions.
For a, b ∈ N and a horizontal distribution H ⊆ T (Sa × Sb) as above consider the metric

h = dt2 + gα(t),β(t) = dt2 + α(t)2H∗π∗ds2a + β(t)2ds2b .
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We consider f as a function defined on I × Sa × Sb by composing it with the projection
onto the first factor. Then, for q ∈ (0,∞], the weighted Ricci curvatures of the weighted
Riemannian manifold (I × Sa × Sb, h, e− f ) are given by

˜Ricq(∂t , ∂t ) = −a
α′′

α
− b

β ′′

β
+ f ′′ − 1

q
f ′2,

˜Ricq( uα , u
α
) = −α′′

α
+ (a − 1)

1 − α′2

α2 − b
α′β ′

αβ
+ f ′ α′

α
− 2

β2

α4 (Au, Au),

˜Ricq( v
β
, v

β
) = −β ′′

β
+ (b − 1)

1 − β ′2

β2 − a
α′β ′

αβ
+ f ′ β ′

β
+ β2

α4 (Av, Av),

˜Ricq( uα , v
β
) = − β

α3 ((δ̌A)u, v),

˜Ricq(∂t , u
α
) = ˜Ricq(∂t , v

β
) = 0.

Here u and v are unit horizontal and vertical vectors, respectively, and A denotes the A-
tensor.

Proof Let Aα,β denote the A-tensor of gα,β . Then, for horizontal vectors u1, u2 and a vertical
vector v we have

Aα,β
u1 u2 = Au1u2, Aα,β

u1 v = β2

α2 Au1v, (δ̌A)α,β = 1

α2 δ̌A ,

see e.g. [4, Lemma 9.69]. Here we are using that the Levi–Civita connection, and therefore

the A-tensor, does not change under scalar multiplication, so that Aα,β = A1, β
α . It follows

that

(Aα,β
u , Aα,β

u )α,β = β2

α2 (Au, Au),

(Aα,βv, Aα,βv)α,β = β4

α2 (Av, Av),

((δ̌A)α,βu, v)α,β = β2

α2 ((δ̌A)u, v).

The claim now follows from Lemmas 2.4 and 2.5, together with the formulae for the Ricci
curvatures of the metric gα,β in [4, Proposition 9.36]. ��

In the case where the horizontal distribution is given by T Sa , we obtain that gα,β is a
productmetric and the A-tensor vanishes.We therefore obtain the following as a consequence.

Lemma 2.7 Let I be an interval and let α, β : I → (0,∞), f : I → R be smooth functions.
For a, b ∈ N define the metric gα,β on I × Sa × Sb by

h = dt2 + α(t)2ds2a + β(t)2ds2b .

We consider f as a function defined on I × Sa × Sb by composing it with the projection
onto the first factor. Then, for q ∈ (0,∞], the weighted Ricci curvatures of the weighted
Riemannian manifold (I × Sa × Sb, h, e− f ) are given by

˜Ricq(∂t , ∂t ) = −a
α′′

α
− b

β ′′

β
+ f ′′ − 1

q
f ′2,
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˜Ricq( uα , u
α
) = −α′′

α
+ (a − 1)

1 − α′2

α2 − b
α′β ′

αβ
+ f ′ α′

α
,

˜Ricq( v
β
, v

β
) = −β ′′

β
+ (b − 1)

1 − β ′2

β2 − a
α′β ′

αβ
+ f ′ β ′

β
,

˜Ricq(∂t , u
α
) = ˜Ricq(∂t , v

β
) = ˜Ricq( uα , v

β
) = 0.

Here u and v are unit tangent vectors of (Sa, ds2a ) and (Sb, ds2b ), respectively.

Using Lemma 2.7, one can calculate the Ricci curvatures of a metric obtained by adding
a third warping function.

Lemma 2.8 Let I1, I2 be intervals and let α, β : I1 × I2 → (0,∞) and γ : I1 → (0,∞) be
smooth functions. For a, b ∈ N define the metric h on I1 × I2 × Sa × Sb by

h = dt2 + γ (t)2ds2 + α(t, s)2ds2a + β(t, s)2ds2b ,

where I1 and I2 are parametrized by t and s, respectively. Then the Ricci curvatures of the
metric h are given as follows:

Ric(∂t , ∂t ) = −a
αt t

α
− b

βt t

β
− γ ′′

γ
,

Ric(∂t , ∂s
γ

) = 1

γ

(

−a
αts

α
− b

βts

β
+ a

αsγ
′

αγ
+ b

βsγ
′

βγ

)

,

Ric( ∂s
γ

, ∂s
γ

) = 1

γ 2

(

−a
αss

α
− b

βss

β

)

− γ ′′

γ
− a

αtγ
′

αγ
− b

βtγ
′

βγ
,

Ric( u
α

, u
α

) = 1

γ 2

(

−αss

α
− (a − 1)

α2
s

α2 − b
αsβs

αβ

)

− αt t

α
+ (a − 1)

1 − α2
t

α2 − b
αtβt

αβ
− αtγ

′

αγ
,

Ric( v
β

, v
β

) = 1

γ 2

(

−βss

β
− (b − 1)

β2
s

β2 − a
αsβs

αβ

)

− βt t

β
+ (b − 1)

1 − β2
t

β2 − a
αtβt

αβ
− βtγ

′

βγ
,

Ric(∂t , u
α

) = Ric(∂t , v
β
) = Ric( ∂s

γ
, u

α
) = Ric( ∂s

γ
, v

β
) = Ric( u

α
, v

β
) = 0.

Here u and v are unit tangent vectors of (Sa, ds2a ) and (Sb, ds2b ), respectively.

Proof We write h as dt2 + gt with

gt = γ (t)2
(

ds2 + α(t, s)2

γ (t)2
ds2a + β(t, s)2

γ (t)2
ds2b

)

.

Like in the proof of Lemma 2.5, the Levi–Civita connection ∇ t of the metric gt is given by

∇ t
∂s

∂s = 0,

∇ t
∂s
u = ∇ t

u∂s = αs

α
u,

∇ t
∂s

v = ∇ t
v∂s = βs

β
v,

∇ t
uu

′ = −αsα

γ 2 〈u, u′〉Sa + ∇Sa
u u′,

∇ t
vv

′ = −βsβ

γ 2 〈v, v′〉Sb + ∇Sb
v v′,

123



Surgery and positive Bakry–Émery Ricci curvature Page 11 of 46    38 

∇ t
uv = 0.

Here u, u′ ∈ T Sa and v, v′ ∈ T Sb.
Since the Ricci tensor is invariant under scalar multiplication, we obtain the Ricci curva-

tures of the metric gt from Lemma 2.7. Inserting this into the formulae of Lemma 2.4 then
results in the Ricci curvatures of the metric h as claimed. ��

The following functions will be useful in the proof of Theorems B and C to construct
suitable doubly warped product metrics.

Lemma 2.9 For any λ ∈ (0, 1), ε, r > 0, a > 0 and b > 1, there exist t0 > 0 and functions
β, γ : [0, t0] → (0,∞) satisfying the differential inequalities

− a
γ ′′

γ
− b

β ′′

β
> 0,

− β ′′

β
+ (b − 1)

1 − β ′2

β2 − a
γ ′β ′

γβ
> 0,

and the boundary conditions

γ (0) = 1, β(0) = r ,

γ ′(0) ≤ ε, β ′(0) = 0,

γ ′(t0) ≥ 0, β ′(t0) ≥ λ.

These functions are constructed in [36, Sections 3.2 and 3.3]. Notice that, compared to the
corresponding statement in [36], we changed the notation and denoted h, f , λ and cos(R/N )

in [36] by β, γ , ε and λ, respectively. We also omitted conclusions (3.7) and (3.10) being
positive in [36], as we do not need them here.

Finally, we construct a weightedmetric of ˜Ric∞ > 0 on a cylinder that transitions between
two given metrics of positive Ricci curvature.

Lemma 2.10 Let (gt )t∈[0,1] be a smoothly varying family of Riemannian metrics of posi-
tive Ricci curvature on a closed manifold M. Then for any λ ∈ R there exists a weighted
Riemannian metric (g, e− f ) of ˜Ric∞ > 0 on [0, 1] × M such that

(1) the induced metrics of g on {0}×M and {1}×M are isometric to g0 and g1, respectively,
(2) the boundary components {0} × M and {1} × M are both totally geodesic, and
(3) the function f is constant at both t = 0 and t = 1, and the normal derivative of f at

{1} × M is a constant λ, i.e. d f (ν) = λ where ν is the outward unit normal.

Proof Since M is compact, there exist c,C > 0 so that for any t ∈ [0, 1] and any unit vectors
u, v ∈ T M with respect to gt all of the expressions

|trgt g′
t |, |v(trgt g

′
t )|, |(∇ t

ug
′
t )(v, u)|, |g′

t (u, v)|, |g′′
t (u, v)|, |trgt g′′

t |
are all bounded by C and

Ricgt (u, u) ≥ c.

Now for a ∈ (0, 1), let χa : [0, 3
a ] → [0, 1] be a smooth function with the following proper-

ties:

(1) χa(0) = 0, χa(
3
a ) = 1,

(2) χ ′
a(0) = χ ′

a(
3
a ) = 0,

(3) |χ ′
a |, |χ ′′

a | ≤ a.
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Such a function can for example be obtained by smoothing the C1-function

χa(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a
4 t

2, t ∈ [0, 1],
a
2 t − a

4 , t ∈ [1, 2
a ],

− a
4

(

t − 2+a
a

)2 + 1, t ∈ [ 2a , 2+a
a ],

1, t ∈ [ 2+a
a , 3

a ].
We now define the weighted metric (g, e− f ) on [0, 3

a ] × M by imposing

g = dt2 + gχa(t),

f ′(t, x) = 2Ca

(

t − 3

a

)

+ λ, f (0) = 0.

We have
∂
∂t gχa(t) = χ ′

a(t)g
′
χa(t),

∂2

∂t2
gχa(t) = χ ′

a(t)
2g′′

χa(t) + χ ′′
a (t)g′

χa(t).

Hence, by Lemmas 2.4 and 2.5, we can estimate the weighted Ricci curvatures of (g, e− f )

as follows:

˜Ric∞(∂t , ∂t ) ≥ −1

2
C(a2 + a) + 2Ca > Ca,

|˜Ric∞(∂t , v)| ≤ n + 1

2
aC,

˜Ric∞(v, v) ≥ c − 1

2
C(a2 + a) − 1

2
nC2a2 − 1

4
C2a2 − 1

2
Ca(6C + λ) ≥ c − C ′a,

where C ′ > 0 is a suitable constant (which depends on λ and C , but not on a). Thus, the
weighted Ricci curvatures are positive if and only if

Ca(c − C ′a) >

(

n + 1

2
aC

)2

,

i.e. if and only if

c − C ′a >

(

n + 1

2

)2

aC,

which is satisfied for all a sufficiently small.
Finally, we obtain a weighted metric on [0, 1] × M by pulling back (g, e− f ) along a

diffeomorphism (t, x) �→ (φ(t), x), whereφ : [0, 1] → [0, 3
a ] is a diffeomorphism satisfying

φ(1) = 3
a . ��

3 Perelman’s Gluing Theorem

The goal of this section is to prove Theorem A. Before doing so, we first recall the corre-
sponding result in the Riemannian case:

Theorem 3.1 ([34], see also [5], [38]) Let (M1, h1) and (M2, h2) be two Riemannian n-
manifolds of positive Ricci curvature and suppose that there exists an isometry φ : ∂cM1 →
∂cM2 between two boundary components ∂cM1 ⊆ ∂M1 and ∂cM2 ⊆ ∂M2 such that II∂cM1 +
φ∗II∂cM2 ≥ 0. Then there exists a Riemannian metric of positive Ricci curvature on M1∪φ M2

that coincides with hi on Mi outside an arbitrarily small neighbourhood of ∂cMi .
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Theorem 3.1 is proven by smoothing the C0-metric h1 ∪φ h2 on M1 ∪φ M2 using spline
interpolation. This is achieved in three main steps: First, a spline interpolation of degree
3 produces a C1-regular metric, from which one then obtains a C2-regular metric by a
subsequent spline interpolation of degree 5. Finally, general smoothing results give a metric
of C∞-regularity. The condition on the second fundamental forms ensures that the Ricci
curvature is positive after the first step, while there is no additional assumption needed to
preserve positive Ricci curvature in the other subsequent steps.

To prove Theorem A, we will simultaneously smooth the metric and the weight function
according to a similar smoothing process, mostly following the arguments presented in [5,
Section 2]. To simplify the proof we will combine the second and third step and construct
a C∞-regular metric and function after having obtained C1-regularity by using mollifying
techniques as in [38].

We note that an alternative proof of Theorem 3.1 was obtained by Schlichting [41], which
is based on a gluing result for Alexandrov spaces due to Kosovskii [27].

In our setting, we start by considering twoweightedRiemannianmanifolds (M1, h1, e− f1)

and (M2, h2, e− f2) and suppose that there exists a weighted isometry φ : ∂M1 → ∂M2, i.e.
φ is a diffeomorphism satisfying

• φ∗h2
∣

∣

∂M2
= h1

∣

∣

∂M1
and

• f2 ◦ φ = f1
∣

∣

∂M1
.

At this point we do not impose any conditions on the second fundamental forms or weighted
mean curvature.

As described in [5, Section 2.1], the glued space W = M1 ∪φ M2 carries a canonical
smooth structure so that the embeddings Mi ↪→ W are smooth. We will identify each Mi

with its image in W and set X = ∂M1 = ∂M2.
By the hypotheses on hi and fi , we then obtain a continuous weighted Riemannian

metric (ĥ, e− f̂ ) on W which is smooth on W \ X and coincides with (hi , e− fi ) on Mi .
Further, by considering normal coordinates around X , we obtain a diffeomorphism between
a neighbourhood of X in Mi and the product [0, δ) × X for some δ > 0 on which hi
takes the form hi = dt2 + hi (t), where hi (t) is a smoothly varying family of Rieman-
nian metrics on X . Hence, on a tubular neighbourhood of X in W , which we identify with

(−δ, δ) × X , the weighted C0-metric (ĥ, e− f̂ ) takes the form (dt2 + ĝ(t), e− f̂t ), where
(ĝ(t), f̂t ) = (h1(−t), f1(−t, ·)) resp. (h2(t), f2(t, ·)) for t ≤ 0 resp. t ≥ 0.

Our aim is now to smooth the weighted Riemannian metric (ĥ, e− f̂ ) on (−δ, δ)×X while
preserving ˜Ricq > 0. For that, we first consider a C1-smoothing. As in Subsection 2.2, an
added ′ will denote a derivative in the t-direction.

Lemma 3.2 Consider a pair of smooth n-dimensional weighted Riemannian manifolds
(M1, h1, e− f1) and (M2, h2, e− f2) as above. For all ε > 0 sufficiently small, there is a
C1-regular metric h̃ and a C1-regular weight function f̃ over the smooth glued manifold
W = M1 ∪φ M2 that differ only inside an ε-neighbourhood of X from the continuous ĥ and
f̂ . Moreover, on the ε-neighbourhood of X, which we identify with [−ε, ε] × X, the metric
h̃ takes the form dt2 + g̃(t), and we have the following:

(1) g̃(t) and f̃ converge pointwise to ĝ(t) and f̂ , respectively, as ε → 0,
(2) The first t-derivatives g̃′(t) and f̃ ′ are uniformly bounded independent of ε,
(3) The second t-derivatives g̃′′(t) and f̃ ′′ are linear in t and satisfy
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εg̃′′(±ε) → 1

2

(

h′
2(0) − h′

1(0)
)

and ε f̃ ′′(±ε, ·) → 1

2

(

f ′
2(0, ·) − f ′

1(0, ·)
)

as ε → 0.

Proof Recall that we identified a tubular neighbourhood of X in W with (−δ, δ) × X . Our
aim is to construct a new metric h̃ on [−ε, ε] × X of the form dt2 + g̃(t) which joins with
h1 for t ≤ −ε, and with h2 for t ≥ ε. Likewise, we want to construct a new weight function
f̃ on [−ε, ε] × X which joins with f1 for t ≤ −ε, and with f2 for t ≥ ε. As pointed out in
the claim, we require both the metric h̃ and the function f̃ be at least C1-regular on W .

The construction of the metric h̃ via a cubic spline interpolation is carried out in [5,
Lemma 3 and subsequent paragraph], see also [39, Section 2.1]. We are therefore left with
constructing the function f̃ . Here we take a similar approach and define f̃ as follows. Let us
denote by fi (t) = fi (t, ·) the induced weight function of fi on the hypersurface {t} × X at
constant distance t ∈ [−ε, ε] from X , with i = 1 for t ≤ 0 and i = 2 for t ≥ 0. We then get
our desired weight function f̃ (t) := f̃ (t, ·) via a cubic spline interpolation between f1(−ε)

and f2(ε), that is

f̃ (t) = t + ε

2ε
f2(ε) − t − ε

2ε
f1(−ε) + (t − ε)2(t + ε)

4ε2

[

f ′
1(−ε) − f2(ε) − f1(−ε)

2ε

]

+

+ (t + ε)2(t − ε)

4ε2

[

f ′
2(ε) − f2(ε) − f1(−ε)

2ε

]

.

The t-derivative of this function is then

f̃ ′(t) = f2(ε) − f1(−ε)

2ε
+ 2(t2 − ε2) + (t − ε)2

4ε2

[

f ′
1(−ε) − f2(ε) − f1(−ε)

2ε

]

+

+ 2(t2 − ε2) + (t + ε)2

4ε2

[

f ′
2(ε) − f2(ε) − f1(−ε)

2ε

]

,

and it is straightforward to check that the weight function f̃ forms a C1-join with the fi at
t = ±ε and converges to f̂ as ε → 0.

We are now left to investigate the t-derivatives of f̃ . In particular, we are interested in
the limiting behaviour of f̃ (±ε) as ε → 0. By differentiating twice along t , we get the
expression

f̃ ′′(t) = 6t − 2ε

4ε2

[

f ′
1(−ε) − f2(ε) − f1(−ε)

2ε

]

+ 6t + 2ε

4ε2

[

f ′
2(ε) − f2(ε) − f1(−ε)

2ε

]

.

Applying de l’Hôpital, we have that the limiting behaviour of f̃ ′′(±ε) as ε → 0 is given by

ε · f̃ ′′(±ε) = ± 3

2

[

f ′
1(−ε) + f ′

2(ε) − f2(ε) − f1(ε)

ε

]

+ 1

2

[

f ′
2(ε) − f ′

1(−ε)
]

−→ 1

2

[

f ′
2(0) − f ′

1(0)
]

as ε → 0. Finally, using the explicit formulae above, it is a straightforward computation to
check that f̃ ′ is uniformly bounded. ��
Lemma 3.3 Working under the same setting as in Lemma 3.2, if we further assume conditions
1) and 2) of Theorem A in a strict sense, i.e. that

(1) H f1
∂M1

+ H f2
∂M2

◦ φ > 0, and
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(2) II∂M1 + φ∗II∂M2 > 0,

then for any A > 0 there exists ε̂ = ε̂(A, h1, h2, f1, f2) > 0 such that for any ε < ε̂

g̃′′(t)(u, u) < −A · g̃(t)(u, u) and 1
2 trg̃(t)g̃

′′(t) − f̃ ′′(t) < −A ,

for all t ∈ [−ε, ε] and all tangent vectors u tangent to {t} × X.

Proof Let us consider the hypersurface {t}× X obtained by slicing the collar neighbourhood
of X at any t ∈ [−ε, ε]. Applying Lemma 2.4 to the weighted mean curvatures at ∂M1 and
∂M2 with respect to their outward normal directions (see Definition 2.3), we have

H f1 = 1

2
trh1(0)h

′
1(0) − f ′

1(0), and H f2 = −1

2
trh2(0)h

′
1(0) + f ′

2(0) .

By (1) , we have that H f1+H f2 > 0, and therefore the limit of ε·[ 12 trg̃(±ε) g̃′′(±ε)− f̃ ′′(±ε)
]

as ε → 0 is negative by Lemma 3.2. Since the second t-derivatives of g̃(t) and f̃ (t) are linear
in t , we obtain the required bound.

Finally, in order to obtain that

lim
ε→0

ε · g̃′′(±ε) < 0 ,

one can proceed in a similar fashion as before, by using that II∂cM1 + φ∗II∂cM2 > 0 by
assumption (2) (see also [5, Lemma 4] for an explicit proof of the result). ��

After having established Lemmas 3.2 and 3.3 we can now prove Theorem A. As indicated
above, we proceed in two steps.

Proposition 3.4 (From continuous to C1) Let (M1, h1, e− f1) and (M2, h2, e− f2) be two
weighted Riemannian manifolds with ˜Ricq > 0 for some q ∈ (0,∞], and suppose there
exists an isometry φ : ∂cM1 → ∂cM2 between two boundary components ∂cM1 ⊆ ∂M1 and
∂cM2 ⊆ ∂M2 such that f1|∂cM1 = f2 ◦ φ. If

(1) H f1
∂cM1

+ H f2
∂cM2

◦ φ ≥ 0, and
(2) II∂cM1 + φ∗II∂cM2 ≥ 0,

then for ε > 0 sufficiently small the weighted C1-metric (h̃, e− f̃ ) defined in Lemma 3.2 has
˜Ricq > 0.

Proof We first slightly deform the metric and weight function on one of M1 and M2 while
preserving ˜Ricq > 0, so that inequalities (1) and (2) hold strictly (e.g. as in [9, Proposition
1.2.11]).

By Lemma 3.2 it suffices now to consider the ε-neighbourhood [−ε, ε] × X of X . Then,
by Lemma 3.3, we can bound the values of g̃′′(t) and 1

2 trg̃(t)g̃
′′(t) − f̃ ′′(t) from above by

any negative value by choosing ε sufficiently small. Further, by Lemma 3.2, all first order
t-derivatives of g̃(t) and f̃ (t) are bounded independently of ε.

Hence, by Lemmas 2.4 and 2.5, all terms in ˜Ricq(∂t , ∂t ) and ˜Ricq(u, u), where u is tangent
to X , that contain a second order t-derivative can be bounded below by any positive constant,
while all other terms, as well as the mixed curvatures ˜Ricq(∂t , u) are bounded independently
of ε. Hence, for ε sufficiently small, we have ˜Ricq > 0. ��
Proposition 3.5 (FromC1 to smooth)Let (M1, h1, e− f1) and (M2, h2, e− f2) be twoweighted
Riemannian manifolds with ˜Ricq > 0 for some q ∈ (0,∞], and suppose there exists an
isometry φ : ∂cM1 → ∂cM2 between two boundary components ∂cM1 ⊆ ∂M1 and ∂cM2 ⊆
∂M2 such that f1|∂cM1 = f2 ◦ φ. If
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(1) H f1
∂cM1

+ H f2
∂cM2

◦ φ ≥ 0, and
(2) II∂cM1 + φ∗II∂cM2 ≥ 0,

then it is possible to endow the gluedmanifold M1∪φM2 with a structure of a smoothweighted

Riemannian manifold of ˜Ricq > 0 that differs from the weighted C0-metric (ĥ, e− f̂ ) only in
an arbitrarily small neighbourhood of the gluing area.

Proof The statement follows directly once we apply the smoothing result of [39, Lemma 3.1]
to the C1-regular weight function and the metric of the glued manifold (M ∪φ M2, h̃, e− f̃ )

constructed in Proposition 3.4. ��
This finishes the proof of Theorem A.
Finally, we consider the special case of a doubly warped product metric.

Corollary 3.6 Let α, β : I → (0,∞), f : I → R be continuous functions that are smooth
except at finitely many points t1, . . . , t� ∈ I . Suppose that for the metric

g = dt2 + α(t)2ds2a + β(t)2ds2b

on I × Sa × Sb the weighted Riemannian metric (g, e− f ) has ˜Ricq > 0. Then we can
smooth the functions α, β, f in arbitrarily small neighbourhoods of each ti and obtain a
smooth weighted Riemannian metric of ˜Ricq > 0, provided that for each i ∈ {1, . . . , �} the
following inequalities are satisfied:

α′−(ti ) ≥ α′+(ti ),

β ′−(ti ) ≥ β ′+(ti ),

a
α′−(ti )

α(ti )
+ b

β ′−(ti )

β(ti )
− f ′−(ti ) ≥ a

α′+(ti )

α(ti )
+ b

β ′+(ti )

β(ti )
− f ′+(ti ).

Proof This directly follows from Theorem A and Lemmas 2.4 and 2.5. Note that from the
explicit form of the metric h̃ and weight function f̃ in the proof of Theorem A, it follows
that the smoothed metric is again a doubly warped product metric and the weight function
only depends on t . ��

4 Connected sums

In this section, we consider connected sums in the presence of weighted metrics of ˜Ricq > 0
and prove Theorem B. First, let us recall the techniques used in the Riemannian case.

Definition 4.1 ([10], based on [34]) A Riemannian metric g on an n-dimensional manifold
M is called a core metric, if there exists an isometric embedding ϕ : Dn ↪→ M , where we
consider Dn being equipped with the induced metric of a hemisphere in the round sphere of
radius 1.

We note that this definition slightly differs from the definition introduced in [10]. However,
a core metric in the sense of Definition 4.1 can always be deformed into a core metric in the
sense of [10] and vice versa, see [37, Lemma 2.4].

Core metrics are of interest in the context of connected sums due to the following theorem,
which is a consequence of Perelman’s gluing theorem (Theorem 3.1) together with the exis-
tence of a metric of positive Ricci curvature on Sn \ (��Dn)◦ with small second fundamental
form on each boundary component.
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Theorem 4.2 ([34],[10, Theorem B]) Let Mn
1 , . . . , Mn

� be manifolds with n ≥ 4 that admit
core metrics. Then the connected sum M1# . . . #M� admits a Riemannian metric of positive
Ricci curvature.

An immediate consequence is that a closed manifold with a core metric is simply-
connected. This follows from Theorem 4.2 in combination with the theorem of Bonnet–
Myers, or alternatively from a result of Lawson [29, Theorem 1], which only requires that
the mean curvature of ϕ(Sn−1) is non-negative.

Core metrics are difficult to construct in general. To the best of our knowledge, the fol-
lowing are all the known examples of manifolds admitting a core metric:

(C1) the sphere Sn and the compact rank one symmetric spaces CPn , HPn and OP2 (see
[34],[10]),

(C2) linear sphere bundles and projective bundles with fibre CPn , HPn or OP2 over man-
ifolds with core metrics (see [11, 36, 37]),

(C3) products of manifolds with core metrics (see [37]),
(C4) connected sums of manifolds with core metrics (see [12]),
(C5) manifolds obtained as boundaries of certain plumbings (see [9]),
(C6) certain manifolds that decompose as the union of two disc bundles, such as the Wu

manifold W 5 (see [37]).

A natural generalisation of core metrics are weighted core metrics (Definition 1.4). By
using Theorem A, we have the following equivalent characterisations.

Lemma 4.3 Let Mn be a manifold and let q ∈ (0,∞]. Then the following are equivalent.

(1) M admits a weighted core metric with respect to q.
(2) M admits a weighted metric of ˜Ricq > 0 and an embedding Dn ⊆ M such that on the

boundary ∂(M \ Dn◦) we have the following:

(a) the induced metric is round and the weight function is constant;
(b) the second fundamental form and the weighted mean curvature are positive.

(3) M admits a weighted metric of ˜Ricq > 0 and an embedding Dn ⊆ M such that on the
boundary ∂(M \ Dn◦) we have the following:

(a) the induced metric is round and the weight function is constant;
(b) the second fundamental form and the weighted mean curvature are non-negative.

Proof The proof goes along the same lines as the proof of [37, Lemma2.18] by usingTheorem
A instead of Theorem 3.1. ��

It is clear that a core metric defines a weighted core metric with respect to any q ∈
(0,∞] by choosing a constant weight function. Furthermore, just like for coremetrics, closed
manifolds with a weighted core metric are simply-connected. This follows from a result
of Moore–Woolgar [32, Theorem 1.5], which only requires the weighted mean curvature
on the boundary be non-negative, or, alternatively, from Theorem B in combination with
Proposition A.2. A further connection between core metrics and weighted core metrics is
given in Proposition A.6 below.

By adapting the proof of Theorem 4.2 using Theorem A instead of the gluing theorem
for positive Ricci curvature, we could directly generalise it to the weighted setting and show
that the connected sum of manifolds with weighted core metrics with respect to q admits a
weighted metric of ˜Ricq > 0. Note, however, that Theorem B is more general as it allows
one additional summand that does not need to admit a weighted core metric.

The main ingredient in the proof of Theorem B is the following proposition.
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Proposition 4.4 Let (Mn, g, e− f ) be a weighted Riemannian manifold of ˜Ricq > 0 for some
q ∈ (0,∞] and let x ∈ M with∇ fx = 0. Then for any ε > 0 and any r > 0 sufficiently small
there exists a weighted Riemannian metric (g′, e− f ′

) of ˜Ricq > 0 on M \ Br
2
(x)◦ which, up

to a positive constant factor, coincides with (g, e− f ) on M \ Br (x)◦ and such that

(1) the induced metric of g′ on the boundary ∂Br
2
(x) ∼= Sn−1 is given by R2 ·ds2n−1 for some

R > 0;
(2) the principal curvatures of g′ at ∂Br

2
(x) with respect to the inward normal of ∂Br

2
(x) ⊆

Br
2
(x) are bounded from below by − ε

R ,
(3) the weight function f ′ is constant on ∂Br

2
(x) and has vanishing normal derivative.

The balls Br (x) and Br
2
(x) used in Proposition 4.4 are determined using g. The weighted

metric (g′, e− f ′
) we will construct in the proof will differ drastically from (g, e− f ) on

Br (x) \ Br
2
(x)◦. In fact, the diameter of Br (x) \ Br

2
(x)◦ with respect to the metric g′ goes

to ∞ as ε → 0.
Given Proposition 4.4, we can now prove Theorem B.

Proof of Theorem B We assume � = 1. The statement for general � then follows inductively
by applying �-times the result for � = 1. We denote by (g0, e− f0) the weighted metric of
˜Ricq > 0 on M0 and by (g1, e− f1) the weighted core metric on M1.

Since M0 is closed, there exists a point x ∈ M0 with ∇ f0x = 0. Hence, we can apply
Proposition 4.4 and, after rescaling, obtain for any ε > 0 a weighted metric of ˜Ricq > 0 on
M0 \ Dn◦ such that the boundary is round with principal curvatures bounded from below
by −ε and such that the weight function is constant on the boundary with vanishing normal
derivatives.

To glue this weightedmetric toM1\Dn◦, we apply Lemma 4.3 to obtain aweightedmetric
of ˜Ricq > 0 on M1 \Dn◦ with round boundary and strictly positive second fundamental form
and weighted mean curvature, and such that the weight function is constant on the boundary.
Hence, by Theorem A, after shifting one of the weight functions by a suitable constant, for
ε sufficiently small we can glue M0 \ Dn◦ to M1 \ Dn◦ along the boundary and obtain a
weighted metric of ˜Ricq > 0 on the connected sum M0#M1. ��

It now remains to prove Proposition 4.4. The first step in the proof is to deform the
weightedmetric locally around the point x with∇ fx = 0 into aweightedmetricwith constant
weight function and constant sectional curvature equal to 1. This is a direct adaptation of
the corresponding statement for positive Ricci curvature first established in [18] (where it
is shown for negative Ricci curvature, but the arguments work similarly for positive Ricci
curvature), see also [51, Theorem 1.10] and [40, Lemma 4.3].We follow the line of arguments
given in [40, Lemma 4.3 and Corollary 4.4] and begin by establishing the following more
general deformation result first.

Lemma 4.5 Let (Mn, g0, e− f0) be a weighted Riemannian manifold of ˜Ricq > 0 and let
N p ⊆ M be a compact embedded submanifold. Let (g1, e− f1) be a weighted metric of
˜Ricq > 0 defined on an open neighbourhood U of N. If the 1-jets of g0 and g1 and the

1-jets of f0 and f1 coincide on N, then there exists a weighted metric (ḡ, e− f̄ ) of ˜Ricq > 0
on M that coincides with (g0, e− f0) on M \ U and coincides with (g1, e− f1) on an open
neighbourhood of N (which is contained in U).

Proof Consider for t ∈ [0, 1] the weighted metric (gt , e− ft ) on U defined by
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gt = (1 − t)g0 + tg1,

ft = (1 − t) f0 + t f1.

Since the 1-jets of (g0, e− f0) and (g1, e− f1) coincide on N and the sectional curvature (and
therefore also the Ricci curvatures) and the hessian depend linearly on the second derivatives
of the metric and the weight function respectively, we have that the weighted Ricci curvature
˜Ric

gt , ft
q on N is given by

˜Ric
gt , ft
q = (1 − t)˜Ric

g0, f0
q + t ˜Ric

g1, f1
q .

In particular, ˜Ric
gt , ft
q > 0 on N and, by compactness, this also holds in a small neighbour-

hood of N . By local flexibility, see [2, Theorem 1.2], we can extend (gt , e− ft ) to a global
deformation of (g0, e− f0) which is constant on M \ U and coincides with (gt , e− ft ) on a
neighbourhood of N . ��

The special case where N is 0-dimensional gives the following consequence:

Corollary 4.6 Let (Mn, g, e− f ) be a weighted Riemannian manifold of ˜Ricq > 0 and let
x ∈ M with ∇ fx = 0. Then, for any open neighbourhood U of x, the weighted metric
(g, e− f ) can be deformed into a weighted metric of ˜Ricq > 0 that coincides with (g, e− f )

on M \ U and has constant weight function and constant sectional curvature 1 on a small
neighbourhood of x.

Proof By considering normal coordinates around x , we can write the metric g locally as
gi j = δi j +O(r2), where r denotes the distance from x . In particular, the 1-jets of g coincide
with the 1-jets of the roundmetric of radius 1 on a sphere in normal coordinates. Furthermore,
since ∇ fx = 0, the 1-jets of f at x coincide with the 1-jets of a constant function. Hence,
by Lemma 4.5 where we set N = {x}, we can deform (g, e− f ) as required. ��
Proof of Proposition 4.4 We apply Corollary 4.6 to deform the weighted metric in a small
neighbourhood of x to have constant sectional curvature 1 and constant weight function, that
is, we can write g on Br (x) for some r > 0 sufficiently small as the warped product

g = dt2 + sin2(t)ds2n−1.

Here we identified Br (x)with the space obtained from [0, r ]×Sn−1 by collapsing {0}×Sn−1

to a point. We set λ = cos(r). We will now modify the weighted metric on this part to satisfy
the required conditions.

To do so, we consider for some t0 > 0 a weighted metric (gβ, e− f ) on [0, t0] × Sn−1 of
the form

gβ = dt2 + β(t)2ds2n−1, f = −q ln(γ (t))

where β, γ : [0, t0] → (0,∞) are two smooth functions. By Lemma 2.7, the weighted Ricci
curvatures for (gβ, e− f ) are given as follows (here we set α to be constant):

˜Ricq(∂t , ∂t ) = −(n − 1)
β ′′

β
− q

γ ′′

γ
,

˜Ricq( v
β
, v

β
) = −β ′′

β
+ (n − 2)

1 − β ′2

β2 − q
β ′γ ′

βγ
,

˜Ricq(∂t , v
β
) = 0,
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where v is a unit tangent vector of (Sn−1, ds2n−1).
The second fundamental form of the hypersurface {t} × Sn−1 with respect to the metric

metric gβ and the unit normal ∂t is given by

II( u
β
, u

β
) = β ′

β
,

see Lemma 2.4. Hence, to glue the weighted metric (gβ, e− f ) using Theorem A, with the
weighted metric on M \ Br (x) the following boundary conditions at t = t0 are sufficient:

β ′(t0) ≥ λ,

γ ′(t0) ≥ 0.

Note that we do not need to prescribe the value of β at t = t0, as we can globally rescale

the metric (i.e. replacing t0, β, γ by μt0, μβ
( ·

μ

)

, μγ
( ·

μ

)

, respectively) to satisfy this

condition. Furthermore, the value of γ at t = t0 also does not need to be prescribed as we
can always add a constant function to f .

For the required conditions (1)–(3) to hold, the following boundary conditions at t = 0
need to be satisfied:

β ′(0) ≤ ε,

γ ′(0) = 0.

We start by setting

β(t) = N cos

(

t − t ′

N

)

on [0, t ′], where N , t ′ > 0 are chosen so that β(t ′) = 1 and β ′(0) = ε, and we choose t ′ as
the smallest such value (to ensure β > 0). In particular, we have β ′(t ′) = 0. If we define γ

to be constant on [0, t ′], it is easily verified that the weighted Ricci curvatures are positive.
Hence, the same holds if we slightly perturb γ to have vanishing derivative at t = 0 and
strictly positive derivative at t = t ′.

Next, we extend the functions β, γ by the functions obtained in Lemma 2.9 (which we
need to shift by t ′), where the parameters a, b, λ, ε, r in Lemma 2.9 are set as q, (n −
1), λ, γ ′(t ′), γ (t ′), respectively. It then follows from Lemma 2.9 that the weighted Ricci
curvatures are positive and the boundary conditions at t = t0 are satisfied. ��

5 Higher surgeries

In this section, we prove TheoremC.We assume that (Mn, g, e− f ) is a weighted Riemannian
manifold of ˜Ricq > 0 and ϕ : Sa × Db+1 ↪→ M is an embedding with a + b + 1 = n. As
a first step, we deform the metric and weight functions near the image of ϕ into a standard
form.

Proposition 5.1 Suppose that ϕ(Sa × {0}) is round and totally geodesic and the weight
function f is constant on ϕ(Sa ×{0}) with vanishing normal derivatives. Then there exists a
weightedRiemannianmetric (ḡ, e− f̄ ) of ˜Ricq > 0 on M and an embedding ϕ̄ : Sa×Db+1 ↪→
M isotopic to ϕ such that the following holds:

(1) The weighted metric (ḡ, e− f̄ ) coincides with (g, e− f ) outside an arbitrarily small neigh-
bourhood of ϕ(Sa × {0}),
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(2) The pull-back ϕ̄∗ḡ on Sa × Db+1 is a metric of Ric > 0 such that the projection onto
(Sa, ds2a ) is a Riemannian submersion with SO(b + 1)-connection and totally geodesic
fibres isometric to the induced metric of a ball of radius ε in the round sphere of radius
r , for some ε, r > 0,

(3) The weight function f̄ is constant on ϕ̄(Sa × Db+1).

To prove Proposition 5.1, we first make a general consideration. Let (M, g) be a Rieman-
nian manifold and let N ⊆ M be an embedded submanifold. Let ν(N ) → N be the normal
bundle of N in M . Recall that the normal connection ∇⊥ on ν(N ) → N is defined by

∇⊥
XU = (∇XU )⊥,

where ∇ is the Levi–Civita connection of M , X is tangent to N ,U ∈ ν(N ) and (·)⊥ denotes
the orthogonal projection onto ν(N ).

Let Dεν(N ) → N denote the disc bundle of ν(N ) → N of radius ε > 0. Then for any
r > 0, there exists a unique Riemannian metric gN ,r on Dεν(N ) so that

(1) (Dεν(N ), gN ,r ) → (N , g|N ) is a Riemannian submersion with totally geodesic fibres
isometric to the induced metric of a ball of radius ε > 0 in the round sphere of radius r ,

(2) The connection of this Riemannian submersion coincides with ∇⊥, in particular, it is
induced by a SO(m)-connection of the corresponding principal SO(m)-bundle,

see [4, 9.59].
The 1-jets of the metrics g and gN ,r on N differ by the second fundamental form of g on

N . In particular, if N is totally geodesic, we have the following:

Lemma 5.2 ([28]) Let (M, g) be a Riemannian manifold and let N ⊆ M be an embedded
totally geodesic submanifold. For r > 0 consider the metric gN ,r defined above. Then, when
we identify Dεν(N ) with a tubular neighbourhood of N in M via the exponential map, the
1-jets of the metrics g and gN ,r coincide on N.

Using this, we can now prove Proposition 5.1.

Proof of Proposition 5.1 To simplify notation, we will write ϕ(Sa) instead of ϕ(Sa × {0}).
Let gr ,ε denote the metric gϕ(Sa),r on Dεν(ϕ(Sa)) considered above. For r sufficiently small,
this metric has positive Ricci curvature, see e.g. [4, 9.70]. Following Lemma 5.2, we view
gr ,ε as a metric on a tubular neighbourhood of ϕ(Sa). Therefore, Lemma 5.2 implies that
the 1-jets of the weighted metrics (g, e− f ) and (gr ,ε, e− f0), where f0 is the constant value
of f on ϕ(Sa), coincide on ϕ(Sa). Using weighted metrics of ˜Ricq > 0, one can then

deform (g, e− f ) into a new weighted metric (ḡ, e− f̄ ) that coincides with (gr ,ε, e− f0) on a
neighbourhood of ϕ(Sa), and with (g, e− f ) outside a (bigger) neighbourhood of ϕ(Sa). We
stress that these neighbourhoods can be chosen arbitrarily small, see [2, Theorem 1.2] and
[51, Theorem 1.10].

Thus, the restriction of (ḡ, e− f̄ ) to Dε′ν(ϕ(Sa)) is given by (gr ,ε′ , e− f0) for ε′ > 0
sufficiently small. Since the normal bundle ν(ϕ(Sa)) is trivial, with a trivialisation given by
the differential ϕ∗|Sa , we can identify Dε′ν(ϕ(Sa)) with Sa × Db+1. In other words, we
obtain an embedding ϕ̄ : Sa × Db+1 ↪→ M on which the weight function f̄ is constant and
the metric ḡ is a submersion metric, as stated in (2) and (3).

Finally, by the uniqueness of tubular neighbourhoods, see e.g. [20, Theorem 4.5.3], there
exists a smooth map A : Sa → SO(b + 1), such that ϕ is isotopic to ϕ̄ ◦ φ, where φ : Sa ×
Db+1 → Sa × Db+1 is the diffeomorphism defined by

φ(x, y) = (x, Ax y).
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Hence, replacing ϕ̄ by ϕ̄ ◦ φ results in the required embedding. ��
Conclusion (2) of Proposition 5.1 implies that the Riemannian submersion (Sa ×

Db+1, ϕ̄∗ḡ) π−→ (Sa, ds2a ), where π = prSa , restricts to a Riemannian submersion on Sa ×Sb

and is determined by it. In other words, if H denotes the horizontal distribution of the Rie-
mannian submersion Sa × Sb → Sa , as in Subsection 2.2, we can write ϕ∗ḡ as

ϕ̄∗ḡ = dt2 + H∗π∗ds2a + r2 sin2
(

t

r

)

ds2b (5.1)

with t ∈ [0, ε].
We will now modify the weighted metric (ϕ̄∗ḡ, e− f̄ ◦ϕ) on [0, ε] × Sa × Sb in several

steps to collapse the Sa-factor instead of the Sb-factor. The first step consists of transitioning
to a totally geodesic boundary. In the following,Hwill always denote an arbitrary horizontal
distribution for the submersion Sa × Sb → Sa and we fix q ∈ (0,∞].
Lemma 5.3 For any r > 0, t0 ∈ (0, r π

2 ), f0 ∈ R and μ > 0 sufficiently small, there exist
t1 < t0 and a weighted Riemannian metric (g1, e− f1) of ˜Ricq > 0 on [t1, t0] × Sa × Sb such
that the following holds:

(1) g1 is isometric to dt2 +H∗π∗ds2a + r2 sin2
( t
r

)

ds2b near t = t0 and f ≡ f0 near t = t0,
(2) At t = t1, the boundary {t1} × Sa × Sb is totally geodesic and the induced metric is

H∗π∗ds2a + μ2ds2b ,
(3) At t = t1, the weight function f1 is constant and has constant normal derivative.

Proof Let λ ∈ (cos( t0r ), 1) so that for any unit horizontal vector u and any unit vertical vector
v we have

(

(a − 1) − 2r2 sin2
(

tλ
r

)

(Au, Au)

)

b − 1

r2
> r2 sin2

(

tλ
r

)

(

(δ̌A)u, v
)2

.

Here tλ ∈ (0, t0) is defined by imposing cos( tλr ) = λ, and A denotes the A-tensor ofH with
respect to the metricH∗π∗ds2a + ds2b (cf. Section 2). Since tλ → 0 as λ → 1, this inequality
is satisfied for all λ sufficiently close to 1. We will use this estimate later to show that the
weighted metric we construct has ˜Ricq > 0.

Now fix t ′0 ∈ (tλ, t0), so that cos(
t ′0
r ) < λ. As a first step, we replace the function r sin

( ·
r

)

by a function whose derivative does not exceed λ. For that, let β̃1 : [t ′1, t ′0] → [0,∞) be a
smooth function with the following properties:

(1) β̃1(t ′1) = 0 and β̃ ′
1(t

′
1) = λ,

(2) β̃ ′′
1 < 0,

(3) β̃1(t ′0) = r sin(
t ′0
r ) and β̃ ′

1(t
′
0) = cos(

t ′0
r ).

Such a function can for example be obtained by modifying the C1-function

t �→
{

r sin
( t
r

)

, t ∈ [tλ, t ′0],
λ(t − tλ) + r sin

( tλ
r

)

, t ∈ [t ′1, tλ]
with t ′1 = − r

λ
sin( tλr ) + tλ, into a smooth function with strictly negative second derivative.

We then consider the metric

g̃1 = dt2 + H∗π∗ds2a + β̃1(t)
2ds2b
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on [t ′1, t ′0] × Sa × Sb. We now use Lemma 2.6 to analyse its Ricci curvatures. First note
that, since β̃ ′′ < 0, we have positive Ricci curvature in t-direction. Thus, the metric g̃1 has
positive Ricci curvature if and only if

Ric(u, u)Ric(v, v) > Ric(u, v)2

for all horizontal vectors u and vertical vectors v. Since β̃1 ≤ r sin( tλr ) and β̃ ′
1 ≤ λ = cos( tλr ),

we have
1 − β̃ ′2

1

β̃2
1

≥ 1 − cos2
( tλ
r

)

r2 sin2
( tλ
r

) = 1

r2
.

Hence, by the choice of λ, it follows from Lemma 2.6 that g̃1 has positive Ricci curvature.
Next, consider the functions β, γ : [0, t0] → (0,∞) obtained in Lemma 2.9, where the

parameters a, b are set to q, b, respectively (andwe replace q by a finite value in case q = ∞).
To avoid confusion with existing notation, here we denote by t ′′1 the variable t0 > 0 of Lemma
2.9, and the ε, r are arbitrary.

For r ′ > 0 consider the functions

βr ′(t) = r ′β
(

t

r ′

)

, γr ′ = r ′γ
(

t

r ′

)

and define the metric
ḡ1 = dt2 + H∗π∗ds2a + βr ′(t)2ds2b

and the weight function
f̄1 = −q ln (γr ′)

on [0, r ′t ′′1 ] × Sa × Sb. It then follows from Lemmas 2.6 and 2.9 that for all r ′ sufficiently
small the weighted Riemannian metric (ḡ1, f̄1) has ˜Ricq > 0.

Now, by possibly choosing r ′ smaller, we can assume that βr ′(r ′t ′′1 ) ≤ β̃1(t ′0), so there
exists t ′′′1 with βr ′(r ′t ′′1 ) = β̃1(t ′′′1 ). Thus, by shifting the interval [0, r ′t ′′1 ] by −r ′t ′′1 + t ′′′1 , we
can glue the weighted metric (ḡ1, f̄1 − f̄1(r ′

1t
′′
1 ) + f0) on [−r ′t ′′1 + t ′′′1 , t ′′′1 ] × Sa × Sb with

(g̃1, f0) on [t ′′′1 , t0] × Sa × Sb using Corollary 3.6 to obtain a weighted metric (g1, e− f1)

of ˜Ricq > 0 satisfying the required conditions. By choosing t ′ smaller, we can realise any
sufficiently small value of μ. ��

Having achieved a totally geodesic boundary, we now proceed by “untwisting” the bundle.

Lemma 5.4 For any λ2 and any μ > 0 sufficiently small there exists a weighted Riemannian
metric (g2, e− f2) of ˜Ric∞ > 0 on [0, 1] × Sa × Sb with the following properties:

(1) the induced metric of g2 on {1} × Sa × Sb is given by H∗π∗ds2a + μ2ds2b ,
(2) the induced metric of g2 on {0} × Sa × Sb is given by the product ds2a + μ2ds2b ,
(3) the boundaries {0} × Sa × Sb and {1} × Sa × Sb are totally geodesic,
(4) the function f and its normal derivative are constant at both t = 0 and t = 1 and the

normal derivative at t = 1 is given by −λ2.

Proof Let Ht , t ∈ [0, 1], be a smoothly varying path of horizontal distributions with H0 =
T Sa and H1 = H. For each t ∈ [0, 1], we define the metric

gt = H∗
t π

∗ds2a + μ2ds2b .

By compactness, for μ sufficiently small, each metric gt has positive Ricci curvature. The
claim now directly follows from Lemma 2.10. ��
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Finally, we collapse the sphere Sa .

Lemma 5.5 For any λ3, μ > 0, there exist t3 < 0 and smooth functions α3, β3 : [t3, 0] →
[0,∞), f3 : [t3, 0] → R such that for the Riemannian metric

g3 = dt2 + α3(t)
2ds2a + β3(t)

2ds2b

the following holds:

(1) α3 is odd at t = t3 with α′
3(t3) = 1 with α3|(t3,0) > 0, and both β3 and f3 are even at

t = t3 with β3 > 0,
(2) α3(0) = 1 and α′

3(0) = 0,
(3) β3(0) = μ and β ′

3(0) = 0,
(4) f ′

3(0) = −λ3,
(5) the weighted Riemannian metric (g3, e− f3) has ˜Ric∞ > 0.

Proof We will simply set β3 ≡ μ. To obtain α3, we start by defining, for ε > 0, the function
α̃3 on (−∞, 0] to be a smooth function with the following properties:

(1) α̃3(0) = 1 and α̃′
3(0) = 0,

(2) α̃′
3 ∈ [0, ε],

(3) α̃′′
3 < 0.

Further, we define f̃3 : (−∞, 0] → R by f̃3(t) = −λ3t .
Consider the metric

g̃3 = dt2 + α̃3(t)
2ds2a + β3(t)

2ds2b

on [t̃3, 0], where t̃3 is the unique value with α̃3(t̃3) = 0. We now use Lemma 2.7 to analyse
the weighted Ricci curvatures of (g̃3, e− f̃3).

Since f̃ ′′
3 = 0, β ′

3 = β ′′
3 ≡ 0 and α̃′′

3 < 0, we directly obtain that ˜Ric∞(∂t , ∂t ) and
˜Ric∞( v

β3
, v

β3
) are both positive. Thus, it remains to consider ˜Ric∞( u

α̃3
, u

α̃3
). Here we obtain

˜Ric∞
(

u

α̃3
,
u

α̃3

)

= − α̃′′
3

α̃3
+ (a − 1)

1 − α̃′2
3

α̃2
3

− λ3
α̃′
3

α̃3

> (a − 1)
1 − ε2

α̃2
3

− λ3
ε

α̃3
≥ 1

α̃3

(

(a − 1)(1 − ε2) − λ3ε
)

,

where we used that α̃3 ≤ 1. For ε sufficiently small, this expression is positive.
Let now tε be the value for which α̃3(tε) = ε and consider for t3 = tε − arcsin(ε) the

functions

α3(t) =
{

sin(t − t3), t ∈ [t3, tε],
α̃3(t), t ∈ [tε, 0]

and

f3(t) =
{

f̃3(tε), t ∈ [t3, tε],
f̃3(t), t ∈ [tε, 0].

For the metric
g3 = dt2 + α3(t)

2ds2a + β3(t)
2ds2b

we then have that (g3, e− f3) has ˜Ric∞ > 0 and all the required boundary conditions are
satisfied. It remains to smooth the functions α3 and f3 at t = tε using Corollary 3.6, i.e. we
need to consider the following expressions:
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α′
3−(tε) − α′

3+(tε) = cos(arcsin(ε)) − α̃′
3(tε) ≥ cos(arcsin(ε)) − ε,

a
α′
3−(tε)

α3(tε)
− a

α′
3+(tε)

α3(tε)
− λ3 = a

cos(arcsin(ε))

ε
− a

α̃′
3(tε)

ε
− λ3

≥ a
cos(arcsin(ε))

ε
− a − λ3.

Both expressions are strictly positive for ε sufficiently small, so we can apply Corollary 3.6.
��

Proof of Theorem C Suppose (Mn, g, e− f ) is a weighted Riemannian manifold of ˜Ric∞ > 0
and ϕ : Sa × Db+1 ↪→ M , is an embedding satisfying the hypotheses of Theorem C.

By Proposition 5.1, we can assume that on ϕ(Sa × Db+1) the metric g is of the form (5.1)
for some r , ε > 0, horizontal distribution H, and the weight function f is constant. As a
first step, for t0 ∈ (0,min(ε, r π

2 )], we replace g on [0, t0] × Sa × Sb by the weighted metric
of ˜Ric∞ > 0 on [t1, t0] × Sa × Sb constructed in Lemma 5.3. By item (1) of Lemma 5.3,
the resulting weighted metric is again smooth and by items (2) and (3) the new boundary
{t1} × Sa × Sb is totally geodesic with induced metric given by

H∗π∗ds2a + μ2ds2b

for all μ > 0 sufficiently small. Further, the weight function is constant along the boundary
with constant normal derivative.

Next, by possibly choosing μ smaller, we attach a cylinder [0, 1] × Sa × Sb equipped
with the weighted metric constructed in Lemma 5.4 using Theorem A. Thus, we now have
the same conclusion as before, but we additionally obtain that the metric is a product metric

ds2a + μ2ds2b

on the boundary.
Finally, by again possibly choosingμ smaller, we attach another cylinder [t3, 0]× Sa × Sb

equipped with the weighted metric constructed in Lemma 5.5 using Theorem A. By item (1)
of Lemma 5.5, this defines in fact a metric on the space obtained from [t3, 0] × Sa × Sb by
collapsing {t3} × Sa × {x} for all x ∈ Sb, that is, on Da+1 × Sb. Hence, we have performed
a surgery operation along ϕ. ��

6 Highly-connectedmanifolds

In this section we apply Theorem C to (2m − 1)-connected (4m + 1)-manifolds with m ≥ 1
and prove the following result:

Theorem 6.1 Let M4m+1 be a closed, (2m−1)-connected 2m-parallelisable manifold. Then
there exists a homotopy sphere�4m+1 such that M#� admits a weighted Riemannian metric
of ˜Ric∞ > 0.

Since there exists no exotic sphere in dimension 5, and since a closed, simply-connected
5-manifold is 2-parallelisable if and only if it is spin, we obtain Theorem D from Theorem
6.1 by setting m = 1.

For m ≥ 2, it was shown by Crowley–Wraith [16] that Theorem 6.1 holds if one replaces
the condition ˜Ric∞ > 0 with the intermediate condition of 2-positive Ricci curvature. Like
in [16], we will use Wall’s classification of handlebodies [46] to identify the manifolds we
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construct. In dimension 5, one can alternatively also use the classification of closed, simply-
connected 5-manifolds by Smale [44] and Barden [3].

Our techniques could also be used to constructmetrics of ˜Ric∞ > 0 on (2m−2)-connected
(4m − 1)-manifolds. We note, however, that this case is already covered by Crowley–Wraith
[15] for the stronger condition of Ric > 0.

Remark 6.2 Similarly as in Corollary E, it follows from Theorem 6.1 that for any such man-
ifold M there exists a homotopy sphere �4m+1 such that for all q ∈ N sufficiently large,
the manifold (M#�) × Sq admits a Riemannian metric of Ric > 0. It remains an open
question whether the connected sum with � is necessary, i.e. whether the manifold M × Sq

admits a Riemannian metric of Ric > 0. This would follow directly if one could show that
(M#�) × Sq is in fact diffeomorphic to M × Sq .

If we identify M × Sq and (M#�) × Sq as topological manifolds in the obvious way,
easy arguments in smoothing theory show that the corresponding smooth structures are not
concordant, and hence not isotopic, when � is not the standard sphere. However, this does
not rule out the existence of a diffeomorphism between the two smooth structures. To the
best of our knowledge, this problem is open.

The strategy for the proof of Theorem 6.1 is as follows. By the work of Wall [46] and
Crowley–Wraith [15, 16], all manifolds M in Theorem 6.1, after possibly a connected sum
with a homotopy sphere, can be realised as the boundary of a handlebody, i.e. a manifold
obtained by attaching (2m + 1)-handles to the disc D4m+2. Since the effect of a handle
attachment to the boundary is a surgery operation, we can use TheoremC to obtain aweighted
metric of ˜Ric∞ > 0 on the boundary, provided the assumptions on the metric required in
Theorem C are satisfied. The embeddings for the surgery operation we use will be obtained
from intersections of the sphere S4m+1 with a (2m + 1)-dimensional affine subspace in
R
4m+2. It then remains to construct a metric on S4m+1 for which we can apply Theorem C,

and, by using classification results of Wall [46], to show that these embeddings realise all
possibly handlebodies.

6.1 Wall’s classification of handlebodies

In this section, we recall Wall’s classification of handlebodies [46]. We also refer to [15,
Section 3], [16, Section 2]. A handlebody of dimension 4m + 2 as defined by Smale [44] is
a manifold obtained from the disc D4m+2 by attaching handles D2m+1 × D2m+1 along the
boundary S2m × D2m+1. The set of diffeomorphism classes of handlebodies of dimension
4m + 2 is denoted by H(4m + 2).

Following [15, Section 3], we define the quadratic module π2m{SO(2m + 1)} as the
quadruple

π2m{SO(2m + 1)} = (π2m(SO(2m + 1)),Z, h, p),

where h : π2m(SO(2m + 1)) → Z and p : Z → π2m(SO(2m + 1)) are the maps

h(ξ) = e(ξ), p(k) = k · τS2m+1 .

Here, we have identified π2m(SO(2m + 1)) with the set of isomorphism classes of vector
bundles of rank (2m + 1) over the sphere S2m+1, and e(ξ) denotes the Euler number of the
bundle ξ and τS2m+1 the tangent bundle of S2m+1. In particular, the group π2m(SO(2m + 1))
is finite so the map h is trivial and we do not need to consider it.

An extended quadratic form over π2m{SO(2m + 1)} is a triple (H , λ, μ) where H is a
finitely generated free abelian group, λ : H × H → Z is a skew-symmetric bilinear form,
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and μ : H → π2m(SO(2m + 1)) is a map satisfying

μ(x + y) = μ(x) + μ(y) + p(λ(x, y)).

For a given handlebody W of dimension (4m + 2), we can define an extended quadratic
form (HW , λW , μW ) by setting HW := H2m+1(W , ∂W ), λW as the intersection form of
W , and μW (x) as the isomorphism class of the normal bundle of an embedding of S2m+1

representing x ∈ H2m+1(W , ∂W ) ∼= H2m+1(W ).
The classification of handlebodies is now as follows:

Theorem 6.3 ([46], [16, Theorem 2.2]) The assignment W �→ (HW , λW , μW ) defines a
bijection between H(4m + 2) and the set of isomorphism classes of extended quadratic
forms over π2m{SO(2m + 1)}. Moreover, every isomorphism of extended quadratic forms
(HW1 , λW1 , μW1)

∼= (HW2 , λW2 , μW2) is realised by a diffeomorphism W1 ∼= W2.

Wecan determine the associated extended quadratic form of a handlebody from the attach-
ing maps as follows. Let ϕ1, . . . , ϕ� : S2m × D2m+1 ↪→ S4m+1 be embeddings with pairwise
disjoint images. We extend each embedding ϕi |S2m×{0} to a map D2m+1 ↪→ D4m+2. By the
relative Whitney embedding theorem [48, Theorem 5], we can assume that these maps are
embeddings, and by the uniqueness of tubular neighbourhoods (see e.g. [20, Section 4.5])
we can extend them to embeddings ϕ̄i : D2m+1 × D2m+1 ↪→ D4m+2 satisfying

ϕi (x, y) = ϕ̄i (x, φi x y)

for smooth functions φi : S2m → SO(2m + 1).
The following two lemmas are well-known. We inculde their proofs for convenience.

Lemma 6.4 Let A ∈ Z
�×� be the oriented intersectionmatrix of the embeddings ϕ̄i |D2m+1×{0}.

Then the handlebody W obtained by attaching handles along the embeddings ϕi has associ-
ated extended quadratic form given by (Z�, A, ([φ1], . . . , [φ�])).
Proof Let Si ⊆ W be the (2m + 1)-sphere consisting of the two discs ϕ̄i (D2m+1 × {0}) and
D2m+1 × {0} in the i-th attached handle D2m+1 × D2m+1. Then W is homotopy equivalent
to the one-point union

S1 ∨ �· · · ∨ S�,

so that HW ∼= Z
� is generated by the spheres S1, . . . , S�. Since the spheres Si intersect each

other only in D4m+2, this shows that λW is given by A. Moreover, the functions φi are the
clutching functions of the normal bundle of Si , which shows that μW = ([φ1], . . . , [φ�]). ��

We will be interested in the boundary of a handlebody. For that, we have the following
result:

Lemma 6.5 Let W ∈ H(4m + 2) be a handlebody.

(1) If HW ∼= Z, then ∂W is the total space of a linear S2m+1-bundle over S2m.
(2) If HW ∼= Z

2 and there exists a basis of HW in which λW is represented by the matrix
(

0 1
−1 0

)

,

then ∂W is a homotopy sphere.
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Proof First, suppose HW ∼= Z. By Lemma 6.4, the manifold W is obtained from D4m+2 by
attaching a single handle along an embedding ϕ : S2m × D2m+1 ↪→ S4m+1. We write the
sphere S4m+1 as

S4m+1 ∼= (S2m × D2m+1) ∪S2m×S2m (D2m+1 × S2m).

Then, by the Wu–Whitney embedding theorem [52] and the uniqueness of tubular neigh-
bourhoods, the embedding ϕ is isotopic to an embedding

(x, y) �→ (x, φx y)

into the first factor, where φ : S2m → SO(2m + 1) is a smooth map. Hence, the manifold
∂W is diffeomorphic to

(D2m+1 × S2m) ∪φ (D2m+1 × S2m),

i.e. the total space of the linear S2m+1-bundle with clutching function φ.
Now suppose that HW ∼= Z

2 and λW is given by
(

0 1
−1 0

)

.

Since ∂W is obtained from the sphere S4m+1 by a sequence of 2m-surgeries, it is simply-
connected (see [31]). Further, since W has non-trivial homology only in degrees 0 and
(2m + 1), it follows from Poincaré duality, the universal coefficient theorem and the long
exact sequence of the pair (W , ∂W ), that ∂W has possibly non-trivial homology groups only
in degrees 0, 2m, 2m + 1 and 4m + 1. For degrees 2m and 2m + 1, we obtain the following
exact sequence:

0 −→ H2m+1(∂W ) −→ H2m+1(W ) −→ H2m+1(W , ∂W ) −→ H2m(∂W ) −→ 0 .

By Poincaré duality, the map H2m+1(W ) → H2m+1(W , ∂W ) is given by λW . Since λW is
invertible, it follows that both H2m+1(∂W ) and H2m(∂W ) are trivial. It follows that ∂W is
a simply-connected homology sphere, and hence a homotopy sphere by the Hurewicz and
Whitehead theorems. ��

6.2 Geometric setup

In this section, we define a metric of Ric > 0 on the sphere S4m+1 so that the intersections of
certain (2m + 1)-dimensional affine subspaces with S4m+1 are round and totally geodesic.

We begin by defining such a metric for a single affine subspace that is “close” to a linear
subspace.

Proposition 6.6 Let S ⊆ S2m+1 be a totally geodesic round m-sphere in a round (2m + 1)-
sphere, i.e. there exists an (m+1)-dimensional subspace W ⊆ R

2m+2 with S = W ∩ S2m+1.
Let Ŵ ⊆ R

2m+2 be a (2m + 1)-dimensional subspace containing W with unit sphere Ŝ =
S2m+1∩ Ŵ . For ε > 0, let Sε ⊆ S2m+1 be the submanifold obtained by moving S by distance
ε (w.r.t the metric on S2m+1) in orthogonal direction to Ŝ, i.e.

Sε = cos(ε)S + sin(ε)N ,

where N ∈ Ŵ⊥ is a unit normal. Then, for any δ > 0 and all ε > 0 sufficiently small,
there exists a Riemannian metric g of positive Ricci curvature on S2m+1 with the following
properties:
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(1) g is the round metric of radius 1 on the complement of Aε,6ε(Ŝ) ∩ Bδ(S),
(2) the submanifold S3ε ⊆ S2m+1 is round and totally geodesic.

We first show that there exists a metric that satisfies item (2) and leaves the metric
unchanged on the complement of Aε,6ε(Ŝ). Here Aε,6ε(Ŝ) denotes the annulus around Ŝ
with inner and outer radii given by ε and 6ε, respectively.

Lemma 6.7 For every ε > 0 sufficiently small, there exists a smooth function hε : [0, π
2 ] →

[0,∞) such that the following holds:

(1) hε(t) = cos(t) for all t /∈ (ε, 6ε).
(2) hε converges to t �→ cos(t) as ε → 0 in the C1-norm.
(3) h′

ε(3ε) = 0.
(4) The doubly warped product metric

dt2 + h2ε(t)ds
2
m + sin2(t)ds2m

on S2m+1 has Ricci curvatures ≥ ρ for some ρ > 0 independent of ε.

Proof Let ν > 1 and consider the function h1 : R → R defined by

h1(t) = cos(νε) cosh

(

t − νε

ν

)

− ν sin(νε) sinh

(

t − νε

ν

)

,

i.e. h1 is the unique function whose value and derivative at t = νε coincide with those of the
cosine function at the same point, and satisfies h′′

1 = 1
ν2
h1.

A calculation now shows that h1 has vanishing first derivative at

tε = ν arctanh(ν tan(νε)) + νε.

By l’Hôpital’s rule, we obtain that tε
ε
converges to ν(ν2 + 1) as ε → 0. In particular, for ν

sufficiently close to 1 (e.g. for ν4 < 3
2 ) and ε sufficiently small, we have tε < 3

ν
ε.

Now consider the function h2 : R → R defined by

h2(t) = cos( 6
ν
ε) − h1(tε)

3νε( 2
ν2

− 1)
(t − 3νε) + h1(tε),

i.e. h2 is the unique linear function with h2(3νε) = h1(tε) and h2(
6
ν
ε) = cos( 6

ν
ε). We then

define h̃ε : [0, π
2 ] → [0,∞) by

h̃ε(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

h1(t), t ∈ [νε, tε],
h1(tε), t ∈ [tε, 3νε],
h2(t), t ∈ [3νε, 6

ν
ε],

cos(t), else.

A sketch of the graph of the function h̃ε is given in Figure 1.
If ε is sufficiently small and ν > 1 sufficiently close to 1 so that tε < 3

ν
ε, the function h̃ε is

well-defined and continuous, and satisfies h̃′
ε(3ε) = 0. Furthermore, we have h̃ε(t) = cos(t)

for all t /∈ (νε, 6
ν
ε), which is strictly contained in (ε, 6ε). Moreover, except at the points

t = νε, tε, 3νε, 6
ν
ε it is smooth. We will now show that the function h̃ε satisfies the required

properties and that we can smooth it so that these properties are preserved.
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Fig. 1 Sketch of the graph of the function h̃ε

For the C1-convergence, we have that h̃ε is contained in the interval [cos( 6
ν
ε), 1] on

[0, 6
ν
ε]. Furthermore, the derivatives of h1 are contained in the interval [− sin(νε), 0] on

[νε, tε] and a calculation shows that

h′
2(

6
ν
ε)

sin( 6
ν
ε)

→ ν6 + ν4 − 36

36(2 − ν2)

as ε → 0. For ν sufficiently close to 1, this expression is strictly bigger than−1. In particular,
for ε sufficiently small and ν sufficiently close to 1, the derivative of h2 is contained in
the interval [− sin( 6

ν
ε), 0]. Thus, h̃′

ε is contained in the interval [− sin( 6
ν
ε), 0] on [0, 6

ν
ε],

showing the required convergence.
For the Ricci curvatures, by Lemma 2.7, the following inequalities need to be satisfied:

− m
h̃′′

ε

h̃ε

+ m ≥ ρ,

− h̃′′
ε

h̃ε

+ (m − 1)
1 − h̃′ 2

ε

h̃2ε
− m cot(t)

h̃′
ε

h̃ε

≥ ρ,

m − m cot(t)
h̃′

ε

h̃ε

≥ ρ.

The C1-convergence, together with the fact that h̃′′
ε ≤ 1

ν2
h̃ε , implies that for fixed ν and for

ε sufficiently small, such ρ exists.
Finally, we define hε as the function obtained from h̃ε by smoothing at the points of

non-smoothness. For that, around each of these points, we choose neighbourhoods of size
so small that they do not contain the points t = ε, 3ε, 6ε, and smooth out the function h̃ε

using Corollary 3.6 (where we use a constant weight function), see also [36, Corollary 3.2].
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To guarantee that the Ricci curvatures are still positive for the resulting function, we need to
verify that at each of these points the left-hand side derivative is at least the right-hand side
derivative. This is clear at the points t = νε, tε, 3νε. At t = 6

ν
ε this follows from the fact

that the quotient
h′
2(

6
ν
ε)

sin( 6
ν
ε)

converges to a value strictly bigger than −1 for ν sufficiently close

to 1 as seen above. ��
Proof of Proposition 6.6 The round metric on S2m+1 can be expressed as

ds22m+1 = dt2 + cos2(t)ds22m,

where t ∈ [−π
2 , π

2 ] is the signed distance from Ŝ. Moreover, the round metric ds22m on S2m

can be written as
ds22m = ds2 + cos2(s)ds2m + sin2(s)ds2m−1,

where s ∈ [0, π
2 ] is the distance from St in (Ŝt , ds22m). Hence, we can write

ds22m+1 = dt2 + cos2(t)
(

ds2 + cos2(s)ds2m + sin2(s)ds2m−1

)

and the spheres Ŝ and Sε correspond to the sets {t = 0} and {t = ε, s = 0}, respectively.
For given δ, ε > 0 with ε sufficiently small we will now modify this metric on the set

{ε ≤ t ≤ 6ε, 0 ≤ s ≤ δ′}, where ε2+δ′2 ≤ δ2. By the triangle inequality this set is contained
in Aε,6ε(Ŝ) ∩ Bδ(S). To simplify the notation we will write δ instead of δ′ in the following.

Let α̃ : [−π
2 , π

2 ] × [0, π
2 ] → [0,∞) be a smooth function and consider the metric

gα̃ = dt2 + cos2(t)ds2 + α̃(t, s)2 cos2(s)ds2m + cos2(t) sin2(s)ds2m−1.

Then, by Lemma 2.8, the Ricci curvatures of the metric gα̃ are given as follows:

Ric(∂t , ∂t ) =m

(

1 − α̃t t

α̃

)

,

Ric(∂t ,
∂s
γ

) = m

cos(t)

(

− α̃st

α̃
+ tan(s)

α̃t

α̃
− tan(t)

α̃s

α̃
+ tan(s) tan(t)

)

,

Ric( ∂s
γ

, ∂s
γ

) = m

cos2(t)

(

1 − α̃ss

α̃
+ 2 tan(s)

α̃s

α̃

)

+ m

(

1 + tan(t)
α̃t

α̃

)

,

Ric( u
α
, u

α
) = 1

cos2(t)

(

− α̃ss

α̃
+ 2m tan(s)

α̃s

α̃
− (m − 1)

α̃2
s

α̃2 − (m − 1) tan2(s)

−(m − 1) cot(s)
α̃s

α̃
+ m

)

− α̃t t

α̃
+ (m − 1)

1 − α̃2
t cos

2(s)

α̃2 cos2(s)
+ m tan(t)

α̃t

α̃
,

Ric( v
β
, v

β
) =m

(

1 + 1

cos2(t)

(

1 − cot(s)
α̃s

α̃

)

+ tan(t)
α̃t

α̃

)

,

Ric(∂t , u
α
) =Ric(∂t , v

β
) = Ric( ∂s

γ
, u

α
) = Ric( ∂s

γ
, v

β
) = Ric( u

α
, v

β
) = 0.

Here we set γ (t) = cos(t), α(t, s) = α̃(t, s) cos(s), β(t, s) = cos(t) sin(s) and u and v are
unit tangent vectors of (Sm, ds2m) and (Sm−1, ds2m−1), respectively.

Now let χ : R → [0, 1] be a smooth function with χ |(−∞,0] ≡ 1 and χ |[1,∞) ≡ 0 (which
necessarily is non-constant on [0, 1]) and set

α̃(t, s) = χ
( s

δ

)

hε(t) +
(

1 − χ
( s

δ

))

cos(t),
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where hε is the function obtained in Lemma 6.7. Then for t /∈ (ε, 6ε) or s > δ we have
α̃(t, s) = cos(t), so that gα̃ coincides with the round metric at these points. Furthermore, the
second fundamental form of the submanifold {t} × {s} × Sm × {v} is given by

II
( u

α
,
u

α

)

= αt

α
∂t + αs

α

∂s

γ
,

which is given at (t, s) = (3ε, 0) by

II
( u

α
,
u

α

)

= h′
ε(3ε)

hε(3ε)
∂t + χ ′(0)

δ

hε(3ε) − cos(3ε)

hε(3ε)

∂s

γ
= 0,

so S3ε is totally geodesic in (S2m+1, gα̃).
It remains to show that for ε sufficiently small, the metric gα̃ has positive Ricci curvature.

Since hε converges to t �→ cos(t) in C1 as ε → 0, we can bound |α̃t + sin(t)|, |α̃s |, |α̃ss | and
|α̃st | uniformly by any positive constant by choosing ε sufficiently small. The same holds for
| cot(s)α̃s |, since χ ′ ( s

δ

) · cot(s) converges to 0 as s → 0.
We now calculate as follows:

− α̃t t

α̃
= χ

( s

δ

) −h′′
ε

hε

hε

α̃
+

(

1 − χ
( s

δ

)) cos(t)

α̃
.

When h′′
ε (t) ≤ 0, this expression is non-negative. Otherwise we take ε > 0 small enough so

hε(t)
cos(t) <

m− ρ
2

m−ρ
, where we assume ρ < m. Then, using that − h′′

ε

hε
≥ ρ−m

m by Lemma 6.7 and
that α̃(t) ≥ cos(t), we have

−h′′
ε

hε

hε

α̃
>

ρ − m

m

m − ρ
2

m − ρ
≥ −1 + ρ

2m
.

Since
(

1 − χ
( s

δ

)) cos(t)
α̃

≥ 0, we obtain for all t the estimate

− α̃t t

α̃
≥ −1 + ρ

2m
.

Hence, the Ricci curvature Ric(∂t , ∂t ) is bounded from below by a positive constant that
is independent of ε.

Further, by choosing ε small enough, we can bound |Ric(∂t , ∂s
γ

)| uniformly by any positive

constant, while the Ricci curvatures Ric( ∂s
γ

, ∂s
γ

) and Ric( v
β
, v

β
) converge to 2m as ε → 0.

Finally, using the estimate − α̃t t
α̃

≥ −1 + ρ
2m , we obtain that the Ricci curvature Ric( u

α
, u

α
)

is bounded from below by a function that converges to

(m − 1)

(

− tan2(s)

cos2(t)
+ 1 − sin2(t) cos2(s)

cos2(t) cos2(s)

)

+ m

(

1

cos2(t)
− tan(t)

sin(t)

cos(t)

)

−1 + ρ

2m
= 2m − 1 + ρ

2m

as ε → 0. Hence, all the Ricci curvatures are positive for ε sufficiently small. ��
We now consider a finite collection W1, . . . ,W� ⊆ R

4m+2 of oriented (2m + 1)-
dimensional subspaces such that each pairwise intersection Wi ∩ Wj , i �= j has dimension
at most 1. We define the intersection matrix A = (ai j ) ∈ {−1, 0, 1}�×� as follows:
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ai j =

⎧

⎪

⎨

⎪

⎩

1, dim(Wi ∩ Wj ) = 0 and the oriented intersection number of Wi and Wj is 1,

−1, dim(Wi ∩ Wj ) = 0 and the oriented intersection number of Wi and Wj is − 1,

0, else.

Recall that the oriented intersection number of Wi and Wj is obtained by the sign of the
determinant of the matrix

(

Bi B j
)

,

where Bi , resp. Bj , is a (4m + 2) × (2m + 1)-matrix whose columns form an oriented basis
of Wi , resp. Wj .

Our goal is now to slightly move the subspaces Wi using Proposition 6.6 so that the
corresponding spheres do not intersect each other. To ensure that we can apply Proposition
6.6 for each intersection of subspaces, we consider a graph GA = (V , E), where we define
V = {1, . . . , �} as the set of vertices and

E = {{i, j} | i �= j and ai j = 0}
as the set of edges. Recall that a clique of a graph is a complete subgraph.

Proposition 6.8 Let W1, . . . ,W� ⊆ R
4m+2 be oriented (2m + 1)-dimensional linear sub-

spaces, let A denote their intersection matrix and GA = (VA, EA) the corresponding graph.
Suppose the following:

(1) Every simple closed path in GA is contained in a clique,
(2) For every clique of GA the corresponding subspaces are contained in a subspace of

codimension 1.

Then there exist oriented (2m + 1)-dimensional affine subspaces W ′
1, . . . ,W

′
� ⊆ R

4m+2

with intersection matrix A and a metric of positive Ricci curvature on S4m+1 such that the
intersections W ′

i ∩ S4m+1 are pairwise disjoint spheres that are round and totally geodesic.

Proof We will apply Proposition 6.6 to slightly move the subspaces Wi so that they only
intersect in at most one point, and hence the corresponding spheres do not intersect each
other, such that the oriented intersection matrix of the subspaces Wi is given by A.

We will assume that GA is connected, otherwise we apply the same argument to each
connected component. We now pick a subspaceWi0 in GA and construct a sequence of trees
T0 ⊆ T1 ⊆ . . . as follows.

The vertices of Tj are a subset of the set of maximal cliques of GA together with an
additional vertex, which will be the root of all Tj . The trivial tree T0 consists of only the root.
T1 is obtained from T0 by adding all maximal cliques of GA that contain the vertex i0 and
connecting these to the root. Next, we construct inductively the tree Tj+1 from Tj by adding
all maximal cliques of GA that intersect a leaf of Tj as vertices and connecting them in Tj+1.
Since GA is finite, we have Tj = Tj+1 for all j sufficiently large, so we obtain a finite tree
T = ⋃

j Tj , in which the subtree of vertices of distance at most j from the root is given by
Tj .

We now apply the separation process of Proposition 6.6 repeatedly to the subspaces
W1, . . . ,W� by using the tree T as follows. We start with a leaf of T , which is a maximal
clique in GA. For this maximal clique there exists precisely one vertex that also belongs
to a different maximal clique, since otherwise we could construct a simple closed path in
GA that is not entirely contained in maximal clique, which would contradict (1). We fix
the corresponding subspace to this vertex and apply Proposition 6.6 to all other subspaces
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corresponding to vertices in this maximal clique with respect to the same codimension-1
subspace Ŵ , which exists by (2). By choosing the values of ε and δ in Proposition 6.6 for
each subspaceWi accordingly, we can achieve that the neighbourhoods Aε,6ε(Ŝ)∩ Bδ(Si ) do
not intersect each other and also do not intersect any of the remaining subspaces. In this way,
all subspacesWi corresponding to vertices in this maximal clique do not intersect each other
anymore after this process, all the while the intersection number with any other subspace
remains unchanged.

Next, we remove the chosen leaf from T and pick a new leaf. Property (1) now again
ensures that precisely one vertex in this maximal clique is contained in a different maximal
clique that is a vertex in T , thus we can apply the same arguments. We repeat this process
until only the root is left. The required embeddings ϕi : S2m ↪→ S4m+1 are now given by the
intersections of each subspace Wi with S4m+1, which concludes the proof. ��

6.3 Antisymmetric integer matrices

In this section, we determine the normal forms of certain antisymmetric integer matrices.
Recall that any antisymmetric integer matrix A ∈ Z

N×N is equivalent to a block-diagonal
matrix

DN (n1, . . . , nk) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Kn1
. . .

Knk
0

. . .

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where each Kn j is of the form

Kn =
(

0 n
−n 0

)

with n ∈ Z positive.

For n, � ∈ N with n ≤ 2�− 2 if n is even and n ≤ 2�− 1 if n is odd, we define the matrix
An,� as the (2� × 2�)-matrix

An,� =
(

S2�−1 vn,�

−vTn,� 0

)

,

where S2�−1 is the antisymmetric (2� − 1) × (2� − 1)-matrix with all entries above the
diagonal equal to 1, and vn,� ∈ {−1, 0, 1}2�−1 is defined by

(vn,�)i =

⎧

⎪

⎨

⎪

⎩

(−1)i−1, i ≤ n,

0, i = 2� − 1 and n even,

1, else.

Lemma 6.9 The matrix An,� is equivalent to the diagonal matrix D2�(1,
�−1· · ·, 1, n).

Proof By performing simultaneous row and column operations, we obtain that a matrix of
the form

(

S2�−1 v

−vT 0

)
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for any v = (v1, . . . , v2�−1) ∈ R
2�−1 is equivalent to

⎛

⎜

⎜

⎝

0 1
−1 0

S2�−3 v′
−v′T 0

⎞

⎟

⎟

⎠

,

where v′ = (v3 + (v1 − v2), . . . , v2�−1 + (v1 − v2)) ∈ R
2�−3. Applying this � − 1 times

results in the matrix D2�(1,
�−1· · ·, 1,−∑2�−1

i=1 (−1)ivi ).
In the case of the matrix An,�, we have

−
2�−1
∑

i=1

(−1)i (vn,�)i = −
n

∑

i=1

(−1)i (vn,�)i −
2�−1
∑

i=n+1

(−1)i (vn,�)i =
{

n − ∑2�−1
i=n+1(−1)i , n odd,

n − ∑2�−2
i=n+1(−1)i , n even,

= n.

��
Now let ν = (n1, . . . , nk) ∈ Z

k
>0. For � ≥ 1

2 max{n j +1, k}, we construct the (2�k×2�k)-
matrix Bν,� inductively by setting Bν,� = An1,� if k = 1 and

Bν,� =
(

Bν′,� Cν′,�
−CT

ν′,� Ank ,�

)

where ν′ = (n1, . . . , nk−1) and Cν′,� is the 2�(k − 1) × 2�-matrix where each column is
equal to the (k − 1)-st column of Bν′,�.

Lemma 6.10 The matrix Bν,� is equivalent to D2�k(1,
k(�−1)· · · , 1, n1, . . . , nk).

Proof By subtracting the (k−1)-st column of Bν,� from the i-th column for all 2�(k−1)+1 ≤
i ≤ 2�k, and similarly subtracting the (k−1)-st row from the i-th row, we can eliminateCν′,�.
Since the (k−1)-st row of Cν′,� (and therefore also the (k−1)-st column of−CT

ν′,�) consists
entirely of zeros, this operation does not affect Ank ,�. Hence, the matrix Bν,� is equivalent to

(

Bν′,�
Ank ,�

)

.

Repeating this argument (k − 1)-times then results in the matrix
⎛

⎜

⎜

⎜

⎝

An1,�

An2,�

. . .

Ank ,�

⎞

⎟

⎟

⎟

⎠

.

Since each Ani ,� is equivalent to D2�(1,
�−1· · ·, 1, ni ) by Lemma 6.9, the claim follows. ��

6.4 Intersectionmatrices

In this section, we show that the matrices Bν,� can be realised as intersection matrices of
linear subspaces that satisfy the hypotheses of Proposition 6.6.
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Lemma 6.11 Let ν = (n1, . . . , nk) ∈ Z
k
>0 and � ≥ 1

2 max{n j + 1, k}. Then there exist
oriented (2m+1)-dimensional subspaces W1, . . . ,W2�k ofR4m+2 with oriented intersection
matrix given by Bν,�.

Proof Note that, after applying an automorphism of R4m+2, for every finite set of subspaces
Wi , every Wi has a basis given by the columns of the matrix

(

Pi
I2m+1,

)

where Pi ∈ R
(2m+1)×(2m+1), and I2m+1 ∈ R

(2m+1)×(2m+1) is the identity matrix. One
therefore defines the subspaces Wi by specifying matrices Pi , and the orientation will be
induced by the columns of the above matrix. Note also that a matrix of the form

(

P Q
I2m+1 I2m+1

)

with P, Q ∈ R
(2m+1)×(2m+1) has determinant det(P − Q), so that the oriented intersection

number of the subspaces Wi and Wj is given by sgn(det(Pi − Pj )).
We start by constructing subspaces W1, . . . ,W2� with oriented intersection matrix An,�.

For that, we set

Pi,n =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

diag(−i, i, . . . , i), i odd and i ≤ n,

diag(i,−i, i, . . . , i), i even and i ≤ n,

diag(i, i, 1
i , . . . ,

1
i ), n + 1 ≤ i ≤ 2� − 2,

diag(2� − 1, 2� − 1, 1
2�−1 , . . . ,

1
2�−1 ), i = 2� − 1 and n odd,

diag(2� − 1, 2� − 1, 0, . . . , 0), i = 2� − 1 and n even,

diag(−2�, 0, . . . , 0), i = 2� and n odd.

diag(−2� + 1, 0, . . . , 0), i = 2� and n even,

A computation shows that we obtain the matrix An,� with this choice of subspaces.
For a vector v = (v1, . . . , v2m+1) ∈ R

2m+1 we define the matrix Qv by

Qv =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

v1 1
v1v2 v2

v3
. . .

v2m+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

For 1 ≤ i ≤ 2�, we then define Qi,n as Qv , where v consists of the diagonal entries of Pi,n ,
i.e. Pi,n = diag(v1, . . . , v2m+1).

We now set Pi = Pi,n1 for 1 ≤ i ≤ 2�. Given ε > 0, for each j ∈ {1, . . . , k − 1} and
2 j� + 1 ≤ i ≤ 2( j + 1)�, we define

Pi = Pj,n1 + εQi−2 j�,n j+1 .

For ε sufficiently small, we then obtain the intersection matrix Bν,�. This can be seen from
the inductive definition of Bν,� as follows.

Set ν j = (n1, . . . , n j ) and recall that Bν j+1,� is obtained from Bν j ,� by setting

Bν j+1,� =
(

Bν j ,� Cν j ,�

−CT
ν j ,�

An j+1,�

)

,
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where every colummn of Cν j ,� is defined as the j-th column of Bν j ,�. Since Pi → Pj,n1 as
ε → 0 and since the subspaces defined by Pi and Pj,n1 intersect (as det(Qv) = 0 for any v),
we obtain that the oriented intersection matrix is indeed of the form

(

Bν j ,� Cν j ,�

−CT
ν j ,�

A′

)

for ε sufficiently small, where A′ ∈ R
(2m+1)×(2m+1). Furthermore, since det(Pi − Pi ′) for

2 j� ≤ i, i ′ ≤ 2( j + 1)� is given by

det(Pi−Pi ′) = ε2m+1 det(Qi−2 j�,n j+1−Qi ′−2 j�,n j+1) = ε2m+1 det(Pi−2 j�,n j+1−Pi ′−2 j�,n j+1),

we obtain the matrix A′ = An j+1,� . ��
Lemma 6.12 The connected components of the graph associated to Bν,� are of the form

G1 = ,
Godd = ... 2�

or

Gev = ... 2�−2
,

where G1 appears if and only if n1 is even, and the number of connected components of the
form Godd and Gev is given by the number of odd and even numbers among n2, . . . , nk,
respectively.

Proof By construction, the matrix An,� only has an entry above the diagonal equal to zero
when n is even, in which case the zero entry is at position (2� − 1, 2�). Moreover, the only
zero entries of the matrix Cν j ,� are at position ( j, i), where 1 ≤ i ≤ 2�.

Thus, for every j ∈ {1, . . . , k−1}, we obtain zero entries in thematrix Bν,� at the positions
( j, 2� j + i) for all 1 ≤ i ≤ 2�, and additionally also at (2�( j + 1) − 1, 2�( j + 1)) when
n j+1 is even.

Hence, we obtain a connected component of the form G1 when n1 is even. In this case,
the two vertices correspond to the subspaces W2�−1 and W2�. Furthermore, for any j ∈
{1, . . . , k − 1} we obtain a connected component of the form Godd when n j+1 is odd, where
the vertex on the left-hand side is represented byWj , and a graph of the form Gev when n j+1

is even, where the vertex in middle is represented by Wj , and the vertices on the left-hand
side by W2�( j+1)−1 and W2�( j+1). ��
Lemma 6.13 The subspaces W1, . . . ,W2�k constructed in Lemma 6.11 satisfy the require-
ments of Proposition 6.8.

Proof The first property of Proposition 6.8 follows from Lemma 6.12. For the sec-
ond property, by (the proof of) Lemma 6.12, we need to consider the subspaces
Wj ,W2�( j+1)−1,W2�( j+1) for all j ∈ {1, . . . , k−1} forwhich n j+1 is even. These are defined
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by the matrices Pj,n1 , P2�( j+1)−1 = Pj,n1 + εQ2�−1,n j+1 and P2�( j+1) = Pj,n1 + εQ2�,n j+1 ,
respectively. Hence, we need to determine the rank of the matrix

(

Pj,n1 Pj,n1 + εQ2�−1,n j+1 Pj,n1 + εQ2�,n j+1

I2m+1 I2m+1 I2m+1

)

.

By applying column operations, we obtain that this matrix has the same rank as the matrix
(

Pj,n1 εQ2�−1,n j+1 εQ2�,n j+1

I2m+1 0 0

)

.

By the definitions of P2�−1,n j+1 and P2�,n j+1 , the matrices Q2�−1,n j+1 and Q2�,n j+1 only
have non-zero entries in the upper-left 2 × 2-block. Hence, this matrix has rank at most
2m + 3 ≤ 4m + 1. ��

6.5 Proof of Theorem 6.1

Let M4m+1 be a closed, (2m − 1)-connected 2m-parallelisable manifold. By [15, Theorem
7.1], there exists a homotopy sphere �4m+1 such that M#� is the boundary of a handlebody
W . We will now construct embeddings ϕi : S2m × D2m+1 ↪→ S4m+1 that induce the same
invariants asW , such that we can perform surgeries along these embeddings while preserving
˜Ric∞ > 0.

Since λW is an antisymmetric bilinear form, there exists a basis of HW in which λW is
given by

DN (n1, . . . , nk) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Kn1
. . .

Knk
0

. . .

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where N = dim(HW ). We set ν = (n1, . . . , nk), and, for � sufficiently large, consider the
matrix Bν,�.

By Lemma 6.10, there exists a matrix T ∈ GL(2�k,Z) that carries the matrix Bν,� into

D = D2�k(1,
k(�−1)· · · , 1, n1, . . . , nk).

Furthermore, by Lemmas 6.11 and 6.13 and Proposition 6.8, there exists a metric of positive
Ricci curvature on S4m+1 and embeddings ϕ̄i : D2m+1 ↪→ D4m+2, 1 ≤ i ≤ 2�k, with
oriented intersection matrix Bν,� and such that each restriction ϕ̄i |S2m : S2m ↪→ S4m+1 is
round and totally geodesic. Moreover, the embeddings ϕ̄i |S2m have pairwise disjoint image.
We extend each embedding ϕ̄i |S2m to an embedding ϕi : S2m × D2m+1 ↪→ S4m+1 such that
the invariants of the handlebody obtained from ϕ1, . . . , ϕ� are given by

(Z2�k, Bν,�, T
−1μ),

where μ = (0,
k(�−1)· · · , 0, μW ).

By Theorem C, the manifold M0 obtained from S4m+1 by surgery along the embeddings
ϕi admits a weighted Riemannian metric of ˜Ric∞ > 0. Further, it is the boundary of the
handlebody with invariants

(Z2�k, Bν,�, T
−1μ) ∼ (Z2�k, D, μ).
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By Theorem 6.3 and Lemma 6.5, there exists a manifold M1 which is the connected sum of
total spaces of linear S2m+1-bundle over S2m , and a homotopy sphere�′ such that M#�#�′
is diffeomorphic to M0#M1. Finally, by Theorem B and (C2), the manifold M0#M1 admits
a weighted Riemannian metric of ˜Ric∞ > 0. ��

6.6 Simply-connected 5-manifolds

Theorem 6.1 implies that every closed, simply-connected spin 5-manifold admits a weighted
Riemannian metric of ˜Ric∞ > 0. In this subsection, we consider an extension of this result
to certain non-spin manifolds.

For that, we first recall the classification of closed, simply-connected 5-manifolds by
Barden [3] and Smale [44]. For j ∈ {−1, 0, . . . ,∞} there exists a closed, simply-connected
5-manifold X j [3, Section 1] satisfying

H2(X j ) ∼= Z
/

2 j ⊕ Z
/

2 j

for 0 ≤ j < ∞, and H2(X−1) ∼= Z/2, H2(X∞) ∼= Z. Furthermore, the second Stiefel–
Whitney class w2(X j ) is nontrivial if and only if j �= 0. The classification is now given as
follows:

Theorem 6.14 ([44], [3, Theorem 2.3])

(1) Every closed, simply-connected spin 5 manifold is uniquely determined by its second
homology group. A finitely generated abelian group G can be realised by such a manifold
if and only if there exists a finite abelian group GT such that Tors(G) ∼= GT ⊕ GT .

(2) Every closed, simply-connected 5-manifold uniquely splits as M ∼= X j#M0 where M0

is spin.

In particular, the manifolds X0 and X∞ are the sphere S5 and the total space of the unique
non-trivial linear S3-bundle over S2, respectively. The manifold X−1 is the Wu manifold
SU (3)/SO(3) and X1 = X−1#X−1. By Theorems B and D together with (C2) and (C6) we
obtain the following result.

Theorem 6.15 Let M be a closed, simply-connected spin 5-manifold. Then X j#M admits a
weighted Riemannian metric of ˜Ric∞ > 0 for all j ∈ {−1, 0, 1,∞}.

For comparison, we have the following known examples of closed, simply-connected
5-manifolds with a Riemannian metric of positive Ricci curvature:

(1) All manifolds of the form X j#M0 in Theorem 6.14 where j ∈ {−1, 0, 1,∞} and M0

is spin and has torsion-free homology (see [43] or [14] for j ∈ {0,∞}, and [37] for
j ∈ {−1, 1}).

(2) Closed, simply-connected 5-manifolds with positive Sasakian structures. These mani-
folds are all spin, have second Betti number at most 8 and torsion group of the form
(Z/m)2� (see [6, 7, 26] and [8, Corollary 10.2.20, Theorem 10.2.25 and Table B.4.2] for
their classification).

Appendix A ˜Ricq > 0 vs. Ric > 0

In this section, we collect results that allow us to construct Riemannian metrics of Ric > 0
from weighted Riemannian metrics of ˜Ricq > 0 for some q . In general, we are interested in
the following question.
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Question A.1 Given a closed, weighted Riemannian manifold (M, g, e− f ) with ˜Ricq > 0
for some q ∈ (0,∞], does there exist a Riemannian metric g̃ on M with Ric > 0?

To the best of our knowledge, there is no counterexample known for this question and it
is known that the classical obstructions for Ric > 0 also hold for ˜Ricq > 0:

Proposition A.2 Let (Mn, g, e− f ) be a weighted Riemannian manifold with ˜Ricq > 0 such
that M is closed. Then

(1) M has finite fundamental group,
(2) If M is spin, then the α-invariant α(M) vanishes provided q ≤ 4.

In particular, if M is simply-connected (spin or non-spin) with n �= 4 and q ≤ 4, then it
admits a Riemannian metric of positive scalar curvature.

Proof Items (1) and (2) are shown in [30, Theorem 1] and [17, Corollary 4.4], respectively.
The last statement follows from the fact that any closed, simply-connected manifold of
dimension at least 5 admits a metric of positive scalar curvature if and only if it is non-spin
[19] or spinwith vanishingα-invariant [45], and the only closed, simply-connectedmanifolds
in dimensions 2 and 3 are spheres. ��

For further generalisations of results from Ric > 0 to ˜Ricq > 0, such as the Bonnet–
Myers theorem, the Cheeger–Gromoll splitting theorem, and the Bishop–Gromov volume
comparison theorem, we refer to [30, 33, 47, 54], and the references therein. We also refer
to [22, 23, 53] for results on positive weighted sectional curvature.

Given the result of Proposition A.2, it is not clear, however, how one can construct a metric
of positive scalar curvature from a weighted metric with positive weighted Ricci curvature.
Note that in the special case where the weighted Ricci curvature is constant, the metric itself
already has positive scalar curvature by [13, Proposition 1.1]. In general, however, one can
construct examples, where the metric g even has negative sectional curvature, see e.g. [47,
Example 2.2]. On the other hand, for closed manifolds, there exists at least a point of positive
Ricci curvature:

Theorem A.3 Let (M, g, e− f ) be a closed, weighted Riemannianmanifold of ˜Ricq > 0. Then
there exists a point in M at which g has Ric > 0.

This follows from the fact that M × S p admits a submersion metric of Ric > 0 for all
p ≥ max{2, q} by [30, Section 2] or Proposition A.5 below (where we can replace q by a
finite value in case q = ∞ since M is compact), together with [35, Theorem 2].

A partial positive answer to question A.1 was given by Wylie and Yeroshkin [54]. For a
one form α on a Riemannian manifold (M, g) they defined the torsion-free connection

∇α
XY = ∇XY − α(X)Y − α(Y )X ,

where ∇ denotes the Levi–Civita connection of g.

Theorem A.4 ([54, Theorem 2.15]) Let (Mn, g, e− f ) be a weighted Riemannian manifold
with ˜Ric1−n > 0, such that the holonomy of the connection ∇d f is compact. Then there
exists a Riemannian metric g̃ on M that is compatible with ∇d f and any such metric satisfies
Ric > 0.

For this theorem, one needs to extend the definition of ˜Ricq to q < 0 in the obvious way.
We also note that in [54, Section 5.1] several examples are given where the holonomy of∇d f

is not compact, showing that Theorem A.4 does not provide a full answer to Question A.1.
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As a variation ofQuestionA.1,we can askwhether the existence of aweightedRiemannian
metric of ˜Ricq > 0 on amanifold M implies the existence of a Riemannian metric of Ric > 0
on some higher-dimensional manifold obtained from M , such as a fibre bundle with base M .
It was observed by Lott [30, Section 2] that this holds in the special case of a product M × S p

whenever p ≥ max{2, q}, i.e. if M admits a weighted Riemannian metric of ˜Ricq > 0, then
M×S p admits a Riemannian metric of Ric > 0 whenever p ≥ max{2, q}. We can generalise
this as follows.

Proposition A.5 Let M be a closed manifold that admits a weighted Riemannian metric
(g, e− f ) of ˜Ricq > 0. Let (N p, ĝ) be a manifold of positive Ricci curvature and let E

π−→ M
be a fibre bundle with fibre N such that the structure group of the bundle acts via isometries
on (N , ĝ). If p ≥ q, then E admits a submersion metric of positive Ricci curvature.

In particular, Proposition A.5 applies when π is a linear sphere bundle, or a trivial bundle
M × N → M and N is a closed manifold that admits a Riemannian metric of Ric > 0 (and
in both cases we assume that the fibre dimension is at least max{2, q}).

Proof Let V = ker(dπ) ⊆ T E be the vertical distribution of π . By choosing a principal
connection on the associated principal G-bundle, where G denotes the structure group of
π , we obtain a Riemannian metric ḡ on E such that (E, ḡ)

π−→ (M, g) is a Riemannian
submersion with totally geodesic fibres isometric to (N , ĝ), see e.g. [4, Theorem 9.59]. We
denote by H = V⊥ ⊆ T E the corresponding horizontal distribution. In the following, we
will denote by u, u1, u2 horizontal vectors, and by v, v1, v2 vertical vectors. We will also
assume that all horizontal vector fields u we consider are basic, i.e. there exists a vector field
ǔ on M such that π∗(ux ) = ǔπ(x) for all x ∈ E . Since every vector field on M uniquely lifts
to a basic vector field on E , we can identify vector fields on M and basic vector fields on E
in this way.

For a smooth function F : M → (0,∞) we now define the metric ḡF on E as the metric
obtained from ḡ by scaling the fibres by F2, i.e.

ḡF |V = F(π)2 ḡ, ḡF |H = ḡ|H, ḡF (H,V) = 0.

Then (E, ḡF )
π−→ (M, g) is again a Riemannian submersion. However, the fibres do not need

to be totally geodesic. Indeed, if ∇ and ∇F
denote the Levi–Civita connections of ḡ and ḡF ,

respectively, then it follows from the Koszul formula that

ḡF
(

∇F
v1
u, v2

)

= ḡF

(

∇v1u + u(F)

F
v1, v2

)

.

Since fibres of π are totally geodesic with respect to ḡ, it follows that ḡ(∇v1u, v2) = 0, and
hence the T -tensor T F of ḡF (see e.g. [4, Section 9.C]) satisfies

T F
v u = u(F)

F
v.

By the symmetries of T F (see [4, 9.18d]) we also have

T F
v1

v2 = −Fḡ(v1, v2)∇F .

Moreover, we have T F
u v = T F

u1u2 = 0 (see [4, 9.18a]).
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We use this to calculate the mean curvature vector ν = ∑

i T
F
vi

vi , where (vi ) is a vertical
orthonormal basis with respect to ḡF , as follows:

ν = −
p

∑

i=1

ḡF (vi , vi )
∇F

F
= −p

∇F

F

(recall that p is the dimension of N ).
Next, note that [u, v] is vertical as it maps to 0 under π∗ (here we need that u is basic). We

will assume for x ∈ E that v, vi ∈ Vx are vertical vectors at x that are extended to vertical
vector fields so that any covariant derivative at x between two of these vector fields at x is
horizontal. This can for example be achieved by considering normal coordinates in the fibres

and using that the Levi–Civita connections of the fibre metrics coincide with ∇F
on V (see

[4, 9.16]). Then at x we have the following equations (for the definitions of δ̂ and T F
v , AF

u
see [4, 9.33]).

ḡF ((δ̂T F )v, u) = −
∑

i

ḡF

(

(

∇F
vi
T F

)

vi
v, u

)

= −
∑

i

ḡF
(

∇F
vi

(

T F
vi

v
)

, u
)

=
∑

i

ḡF
(

∇F
vi

(Fḡ(vi , v)∇F) , u
)

=
∑

i

F ḡ(vi , v)ḡF
(

∇F
vi

∇F, u
)

= 1

F
ḡF

(

∇F
v ∇F, u

)

= − 1

2F
ḡF ([∇F, u], v),

ḡF
(

T F
v , AF

u

)

=
∑

i

ḡF
(

T F
v vi , A

F
u vi

)

= −
∑

i

ḡF
(

Fḡ(v, vi )∇F,∇F
u vi

)

= − 1

F
ḡF

(

∇F,∇F
u v

)

= − 1

2F
ḡF ([∇F, u], v),

ḡF
(

T Fu1, T
Fu2

)

=
∑

i

ḡF
(

T F
vi
u1, T

F
vi
u2

)

= p
u1(F)u2(F)

F2 ,

ḡF
(

∇F
u1ν, u2

)

= p
u1(F)u2(F)

F2 − p
Hess(F)(u1, u2)

F
.

Here AF denotes the A-tensor of ḡF .
We now use these equalities to analyse the Ricci curvatures of the metric ḡF where we set

F = √
te− f

p

for some t > 0. To simplify the notation we set ḡt = ḡF and similarly ∇ t = ∇F
, νt = νF ,

T t = T F , and At = AF . By [4, 9.36 and 9.69], we then have the following (note that the
second summand in [4, 9.69h], which follows from [4, 9.69f], has the wrong sign).

Ricḡt (v1, v2) = Ricĝ(v1, v2) − t ḡ1
(

ν1, T 1
v1

v2
) + t2 ḡ1

(

A1v1, A
1v2

) + t
(

δ̃T 1
)

(v1, v2),

Ricḡt (u, v) = ḡ1
((

δ̂T 1
)

v, u
)

+ ḡ1
(

∇ t
vν

1, u
)

− tg1
((

δ̌A1
)

u, v
)

− (1 + t)g1
(

A1
u, T

1
v

)

= ḡ1
(

∇ t
vν

1, u
)

− tg1
((

δ̌A1
)

u, v
)

− tg1
(

A1
u, T

1
v

)

,
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Ricḡt (u1, u2) = Ricg(u1, u2) − 2t ḡ1
(

A1
u1 , A

1
u2

) − ḡ1
(

T 1u1, T
1u2

)

+ 1

2

(

ḡ1
(

∇ t
u1ν

1, u2
)

+ g1
(

∇ t
u2ν

1, u1
))

= Ricg(u1, u2) − 2t ḡ1
(

A1
u1 , A

1
u2

) − p
Hess(F)(u1, u2)

F
.

We have

ḡ1
(

∇ t
vν

1, u
)

= t ḡ1
(

∇1
vν

1, u
)

(e.g. by [4, 9.69a] or the Koszul formula). Further, with our choice of F , we have

∇F = −
√
te− f

p

p
∇ f ,

Hess(F)(u1, u2)

F
= 1

p2
u1( f )u2( f ) − 1

p
Hess( f )(u1, u2).

Hence, the Ricci curvatures of ḡt can be written as follows:

Ricḡt (v1, v2) = Ricĝ(v1, v2) + O(t),

Ricḡt (u, v) = O(t),

Ricḡt (u1, u2) = ˜Ricg, fp (u1, u2) + O(t).

Since ĝ has Ric > 0 and (g, e− f ) has ˜Ricp > 0, it follows that ḡt has Ric > 0 for all t
sufficiently small. ��

Finally, we obtain an analogous result for weighted core metric.

Proposition A.6 Let M be a closed manifold that admits a weighted core metric (g, e− f )

with respect to q ∈ (0,∞). Let N p be a closed manifold that admits a core metric ĝ′ and
let E

π−→ M be a fibre bundle with fibre N such that the structure group of the bundle acts
via isometries on (N , ĝ), where ĝ is a metric of positive Ricci curvature on N that lies in the
same path component as ĝ′ in the space of Ricci-positive metrics on N. If p ≥ max{3, q},
then E admits a core metric.

In particular, the assumptions of Proposition A.6 are satisfied when π is the trivial bundle
M × N → M and N admits a core metric (then we can set ĝ = ĝ′), or when π is a linear
sphere bundle (then we can set ĝ = ĝ′ = ds2p). Further, it can be applied to projective bundles
with fibre CPn , HPn or OP2, see [37, Section 5.2].

Proof We consider the same submersion metric ḡt as in the proof of Proposition A.5, which
has positive Ricci curvature for all t sufficiently small. Note that we can freely choose
the principal connection on the corresponding principal G-bundle. Hence, if we choose a
principal connection that is flat over the embedded hemisphere ϕ(Dp) ⊆ M , the metric ḡt
is a product

ds2p|Dp + te− f0
p ĝ

on π−1(ϕ(Dp)) ∼= Dp × N , where f0 is the constant value of f on ϕ(Dp). In particular, the
boundary ∂π−1(ϕ(Dp)) ∼= S p−1 × N is totally geodesic.

We now consider the manifold E \ π−1(ϕ(Dp))◦ equipped with the induced metric. By
[9, Proposition 1.2.11] we can deform the metric ḡt preserving Ric > 0 so that the second
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fundamental form on the boundary is strictly positive, and for any r > 0, by [11, Theorem
C], we can assume that the metric on the boundary is given by ds2p−1 + r2 ĝ′. Then, by [37,
Theorem 4.1], it follows that we can glue back in Dp × N and obtain a core metric on E . ��
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