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A B S T R A C T

Machine Learning (ML) has demonstrated strong predictive capabilities in healthcare, often surpassing human 
performance in pattern recognition and decision-making. However, many high-performing models lack inter
pretability, which is critical in clinical settings where understanding and trusting predictions is essential. To 
achieve our objective, we proposed a Multi-Perspective machine learning framework (MPML) that combines 
established base classifiers with structured perspective-based design and interpretability pipeline. MPML orga
nises features into meaningful subsets, or perspectives, enabling both global and instance-level interpretability. 
Unlike traditional ensemble methods such as Bagging, Boosting, and Random Forest, MPML delivers significantly 
higher-quality predictions across all evaluation metrics while maintaining a transparent structure. Applied to a 
heart disease dataset, MPML not only improves predictive accuracy but also provides detailed, accessible ex
planations for individual patient outcomes, advancing the potential for practical and ethical deployment of ML in 
healthcare.

1. Introduction

Machine Learning (ML) has become a powerful tool in data-driven 
domains such as healthcare, where accurate predictions and informed 
decision-making are critical. However, many high-performing ML 
models function as “black boxes,” offering little transparency into how 
predictions are made (Rudin, 2019). This lack of interpretability poses 
significant challenges in domains where trust, accountability, and 
ethical considerations are paramount. To address this gap, we propose 
Multi-Perspective Machine Learning (MPML). This ensemble approach 
integrates multiple established techniques to achieve both high predic
tive performance and model interpretability.

Recent efforts to enhance machine learning in healthcare have 
increasingly focused on balancing predictive performance with inter
pretability, a challenge that traditional ensemble methods often fail to 
address. For example, one author (Topuz et al., 2025) emphasized the 
gap between highly accurate but opaque ensemble models and the need 
for interpretable AI in critical healthcare tasks. To address this, various 

hybrid frameworks have been proposed. Another study (Al-bakri et al., 
2025) introduced a meta-learning-based ensemble for Alzheimer’s 
diagnosis, combining predictive strength with transparent decision 
pathways. Work done in another study (Awe et al., 2025) demonstrated 
the use of LIME within ensemble models for malaria diagnosis, 
enhancing clinician trust in model outputs. Similarly, another group of 
researchers (Acharya et al., 2025) developed a stacking-based XAI 
approach for diabetes classification, improving interpretability without 
sacrificing accuracy. In contrast to these approaches, MPML provides a 
principled integration of multiple perspectives (feature groups formed 
from statistical correlations and expert knowledge) yielding not only 
higher predictive power but also inherently interpretable model 
behaviour. This allows domain experts to trace predictions back to 
relevant features and perspectives, aligning machine learning outputs 
with clinical reasoning.

MPML draws on the principles of multi-view learning (Zhao et al., 
2017), which treats datasets as having multiple distinct yet comple
mentary perspectives. By using feature selection and domain-informed 
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subgrouping, MPML organizes features into meaningful subsets, or 
perspectives. These perspectives form the structural foundation of the 
ensemble, helping to capture diverse aspects of the data and improve 
predictive accuracy across standard ML metrics.

To support interpretability, MPML’s architecture enables the isola
tion of feature groups and their individual contributions to predictions. 
This design is inspired by methods such as LIME (Local Interpretable 
Model-Agnostic Explanations) and SHAP (SHapley Additive exPlana
tions) (Panda & Mahanta, 2023). LIME generates perturbed samples 
around a given instance and analyses the resulting changes in the 
model’s output and SHAP is a method that assigns importance scores to 
input features. By adapting these ideas within a structured ensemble, 
MPML provides interpretable outputs both at the instance level and 
across the model.

While MPML offers notable advantages in accuracy and trans
parency, these come with trade-offs. The added complexity of perspec
tive construction and interpretability analysis introduces computational 
overhead and increases training time. Despite these limitations, MPML 
represents a promising step toward creating machine learning systems 
that are both effective and explainable, especially in sensitive, high- 
stakes environments like healthcare.

In this work, we make three main contributions. First, we introduce 
and formalize multi-perspective machine learning (MPML), a frame
work that uses domain knowledge to group features into clinically 
meaningful perspectives, each modelled by its own base learner. Second, 
we extend perturbation-based explanation methods to generate consis
tent feature-level and perspective-level impact scores for both local (per- 
patient) and global model behavior across all models in the stack. Third, 
we demonstrate MPML on both a small multi-source heart-disease 
dataset and a large cardiovascular dataset, showing that it can match or 
outperform strong ensemble baselines while providing interpretable 
insights into how each perspective contributes to the model’s 
predictions.

The remainder of this paper is structured as follows: Section 2 - 
Related Work reviews prior studies relevant to our research. Section 3 - 
Multi-Perspective Machine Learning introduces the proposed MPML 
approach in detail. Section 4 - Datasets outlines the datasets used in our 
experiments. Section 5 - Experiments and Results presents the perfor
mance of MPML and other ensemble methods on the datasets, along with 
interpretability analyses using MPML. Section 6 - Discussion and Limi
tations compares the interpretive findings to established research in 
heart disease diagnosis and addresses the limitations of the study. 
Finally, Section 7 - Conclusion and Future Work summarizes the study’s 
contributions and outlines potential directions for future research.

2. Related work

Explaining machine learning models has become a critical area of 
research, particularly in domains where model transparency and 
accountability are essential, such as healthcare. A wide range of ap
proaches have been proposed to make complex machine learning 
models more interpretable, addressing concerns over their “black-box” 
nature. Prominent examples include LIME (Local Interpretable Model- 
agnostic Explanations) and SHAP (SHapley Additive exPlanations), 
both of which provide ways to approximate and understand how models 
arrive at specific predictions. These techniques have made significant 
contributions to improving interpretability, particularly for individual 
predictions in otherwise opaque models. In addition to interpretability 
techniques, ensemble learning methods such as Bagging and Boosting 
have become foundational in building robust and accurate predictive 
models. However, ensemble methods often increase model complexity, 
further exacerbating the challenge of interpretability (Bassan et al., 
2025).

Beyond technical considerations, there is a growing body of work 
emphasizing the urgent need for explainable AI (XAI) in high-stakes 
domains like healthcare, where decisions can directly impact patient 

outcomes and where regulatory standards increasingly demand trans
parent and trustworthy models (Rudin, 2019). This work introduces 
MPML, which draws from both interpretability research and ensemble 
learning to address these challenges. MPML leverages ensemble princi
ples to enhance performance while incorporating interpretability 
directly into the model’s structure by design, rather than as an after
thought. As this section will discuss, MPML is specifically poised to meet 
the interpretability needs of healthcare applications by providing both 
global and local explanations, offering feature-level insights, and 
ensuring decision-making processes remain transparent without 
compromising predictive accuracy. We review existing work on 
ensemble methods, interpretability approaches, and explainable AI in 
healthcare, highlighting where MPML builds upon, diverges from, and 
advances these prior efforts.

Recent work has explored ensemble-based methods for disease pre
diction, including coronary heart disease classification using machine- 
learning ensembles (Gulati, Guleria & Goyal, 2022), ensemble 
methods for non-invasive coronary-artery disease detection (Sapra, 
Sandhu & Goyal, 2021) and stacking-based ensembles for infectious 
disease prediction (Mahajan et al., 2022). These methods typically focus 
on improving predictive performance and may use feature-importance 
or SHAP-style explanations at the feature level. In contrast, MPML or
ganises predictors into clinically motivated perspectives and provides 
explanations at both feature and perspective levels, offering a structured 
view of how different clinical domains contribute to risk.

2.1. LIME (Local interpretable model-agnostic explanations)

LIME is an Explainable AI (XAI) approach designed to provide 
interpretability for black-box models by locally approximating the 
model’s behaviour around a specific prediction (Ribeiro et al., 2016). 
LIME works by generating perturbations of the input data and then 
analysing how these changes impact the model’s predictions (Salih 
et al., 2024). It builds a simple, interpretable model (like a linear 
regression) to approximate the predictions of a more complex, opaque 
model for a particular instance. This local model allows users to gain 
insights into why the black-box model made a specific decision (Hassija 
et al., 2024).

One of the key advantages of LIME is that it is model-agnostic, 
meaning it can work with any machine learning model, regardless of 
the underlying architecture, whether it be neural networks, decision 
trees, or any other type of model (Ribeiro et al., 2016). Another strength 
of LIME is its ability to provide instance-level explanations. It helps users 
understand how each feature contributes to a specific prediction.

However, LIME has some limitations. Its primary focus is on 
providing local approximations of the model’s behaviour around a 
specific instance, which means it doesn’t offer a global view of how the 
model operates overall (Dieber & Kirrane, 2020). This local focus can be 
restrictive when a broader understanding of the model is needed (Saini 
& Prasad, 2022). Another limitation is its instability. Since LIME gen
erates explanations based on random perturbations of input data, the 
explanations can vary from run to run, potentially leading to inconsis
tent insights (Dieber & Kirrane, 2020). Lastly, LIME can be computa
tionally expensive to run, particularly for large datasets or complex 
models, as generating multiple perturbations and fitting local models for 
each prediction can be resource-intensive.

MPML leverages the same fundamental principle as LIME by locally 
approximating the model’s behaviour around a specific prediction. 
However, MPML offers distinct advantages by allowing the interpretable 
model to be designed from scratch with interpretability built in, rather 
than relying on post-hoc approximation methods like LIME. While LIME 
constructs a simple, interpretable surrogate model for individual in
stances, MPML provides both local and global interpretability. Specif
ically, MPML delivers global insights into the ensemble’s overall 
behaviour, which LIME does not. Moreover, MPML offers explanations 
in the form of impact scores at each layer of the ensemble, clearly 
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outlining which groups of features had the greatest influence on the 
decision and, if necessary, identifying the specific features that 
contributed most to that outcome. This layered, structured interpreta
tion offers more detailed and consistent insights compared to LIME’s 
often variable, instance-level explanations. Nonetheless, both MPML 
and LIME share a common limitation, the computational overhead 
required to generate these explanations, which can be resource- 
intensive for complex models or large datasets.

2.2. SHAP (SHapley additive exPlanations)

SHAP is a method in Explainable AI (XAI) that assigns importance 
scores to input features by using concepts from cooperative game theory, 
specifically the Shapley values (Li et al., 2024). These values represent 
the marginal contribution of each feature to a model’s prediction by 
considering all possible combinations of feature subsets (Li et al., 2024; 
Merrick & Taly, 2020). SHAP provides a unified approach to interpret
ing predictions, which makes it model-agnostic and applicable to a wide 
range of machine learning algorithms (Aditya & Pal, 2022; Panda & 
Mahanta, 2023; Rodríguez-Pérez & Bajorath, 2020).

SHAP supports both global and local interpretability, allowing it to 
offer insights into how features generally affect the model as a whole, as 
well as explain individual predictions for specific instances (Aditya & 
Pal, 2022).

One of its major drawbacks is its computational complexity. Calcu
lating Shapley values involves evaluating every possible feature com
bination, which can be computationally expensive, particularly for large 
datasets or complex models. While approximation methods exist to 
reduce the burden, they often come at the expense of precision. Another 
limitation is SHAP’s assumption of feature independence. In real-world 
datasets, features often interact with each other, and SHAP may not fully 
capture these interactions, leading to potential inaccuracies in feature 
attribution. Lastly, due to the complexity of calculating feature contri
butions, SHAP can be resource-intensive, especially when applied to 
high-dimensional models or large datasets, requiring significant 
computational power and time.

MPML, like SHAP, assigns importance scores to input features that 
represent their contribution to a model’s prediction by considering all 
possible combinations of feature subsets. This shared foundation allows 
both methods to capture complex feature interactions and provide 
detailed insights into model behaviour. Furthermore, both SHAP and 
MPML support global and local interpretability. The major difference 
however, is that SHAP can be applied post-hoc to any machine learning 
model, offering broad applicability, while MPML incorporates inter
pretability directly into the model’s design.

Both approaches can be computationally intensive, especially when 
dealing with large feature spaces or complex models, due to the 
combinatorial nature of evaluating feature contributions. MPML’s slight 
advantage, however, lies in its integration of interpretability within the 
model architecture itself, reducing reliance on external approximations 
and offering layer-wise impact scores that highlight not only individual 
feature contributions but also how groups of features influence decisions 
at different stages of an ensemble model. This structured approach can 
lead to more consistent and transparent explanations compared to 
SHAP’s purely post-hoc analysis.

2.3. Bootstrap aggregating

Bagging, short for Bootstrap Aggregating, is a well-established 
ensemble learning technique designed to improve model stability and 
predictive accuracy by reducing variance through model averaging. 
Introduced by Breiman (1996), bagging works by generating multiple 
bootstrap samples (random subsets of the original training data obtained 
with replacement) and training a separate model on each subset 
(Breiman, 1996). The predictions from these models are then combined, 
typically through majority voting for classification tasks or averaging for 

regression, to produce the final ensemble output. This approach en
hances generalization performance by mitigating overfitting, especially 
for high-variance models like decision trees.

MPML, while sharing the ensemble philosophy of bagging, differs 
fundamentally in how diversity among ensemble components is intro
duced. Instead of creating different models by training on varying sub
sets of the data, MPML separates the input features into distinct groups, 
with each group being used to train a single model. This group-based 
feature partitioning emphasizes interpretability rather than relying on 
randomness in data sampling as in bagging. While bagging enhances 
predictive performance primarily through variance reduction and model 
averaging, MPML distinguishes itself by embedding interpretability 
directly within the ensemble architecture. This design not only improves 
the transparency of the model but also contributes to enhanced pre
dictive accuracy.

2.4. Boosting

Boosting is a widely used ensemble learning technique designed to 
convert a collection of weak learners, models that perform only 
marginally better than random guessing, into a single strong learner 
capable of achieving high predictive accuracy (Mienye & Sun, 2022). 
The core principle behind boosting is the sequential training of models, 
where each subsequent model focuses on correcting the errors made by 
its predecessors. Popular boosting algorithms, such as AdaBoost and 
Gradient Boosting, assign higher weights to misclassified instances 
during the training process, ensuring that difficult examples receive 
increased attention in subsequent iterations (Bühlmann, 2012). Through 
this iterative error-correction mechanism, boosting reduces bias and 
improves overall model performance, making it highly effective for both 
classification and regression tasks. Despite its success, boosting tends to 
increase model complexity, which can reduce interpretability, particu
larly in applications involving high-dimensional data or intricate feature 
interactions.

MPML draws inspiration from boosting by leveraging the concept of 
multiple learners to improve predictive performance, but fundamentally 
differs in how these learners are constructed. Rather than building weak 
learners sequentially to iteratively correct the errors of previous models, 
as is characteristic of boosting (Mienye & Sun, 2022), MPML creates 
each learner by partitioning the input features into distinct groups. Each 
layer of the ensemble is dedicated to learning from a specific feature 
group, allowing the model to capture diverse patterns while maintaining 
a transparent structure. This design enables MPML to retain the per
formance benefits associated with ensemble methods while providing 
both global and local interpretability by clearly outlining the contribu
tion of different feature groups to the final prediction. Thus, while 
MPML builds on the ensemble principles underlying boosting, it in
troduces a parallel, group-based learning framework that emphasizes 
interpretability without compromising accuracy.

2.5. The need for explainable AI in healthcare

In healthcare, the demand for explainable AI (XAI) arises from 
several key reasons: ensuring regulatory compliance, addressing ethical 
concerns, and enhancing clinical outcomes. Understanding the inner 
workings of AI systems is essential for fostering trust and ensuring that 
these systems are managed and integrated into healthcare practice 
effectively. XAI provides the necessary transparency for clinicians, pa
tients, and regulatory bodies to comprehend, trust, and oversee the 
decisions made by AI models (Amann et al., 2020).

XAI in healthcare can also facilitate meaningful interdisciplinary 
discourse among computer scientists, biomedical researchers, and cli
nicians, providing a shared framework for understanding complex 
model outputs and enabling collaborative decision-making to improve 
patient care outcomes. Omitting explainability in clinical decision sup
port systems poses a threat to core ethical values in medicine and may 
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have detrimental consequences for individual and public health. Ac
cording to Adadi and Berrada (Adadi & Berrada, 2018), the need for XAI 
in healthcare can be linked to four primary reasons: justification, con
trol, improvement and discovery.

Justification: Healthcare providers must justify AI-driven decisions 
to patients, especially in high-stakes scenarios such as diagnosis and 
treatment planning. XAI helps explain why a particular recommendation 
or diagnosis was made, allowing clinicians to provide evidence-based 
explanations to their patients and medical teams.

Control: In healthcare, controlling the outcomes of AI systems is 
vital to prevent harm and ensure patient safety. XAI empowers health
care professionals by making the decision-making process of AI systems 
transparent, enabling them to identify and correct potential errors or 
biases in real time.

Improvement: Continuous improvement of AI systems is necessary 
to adapt to the evolving medical landscape. By making AI models 
explainable, healthcare professionals can better understand where the 
model may be lacking, allowing for iterative improvements that enhance 
accuracy and reliability over time.

Discovery: In healthcare, XAI can also serve as a tool for discovery. 
By revealing the underlying patterns and logic that AI systems use to 
make predictions, clinicians and researchers can gain new insights into 
medical data, potentially leading to novel scientific discoveries and in
novations in patient care.

MPML is specifically designed to address the core requirements of 
explainable AI (XAI) in healthcare, making it well-suited for high-stakes, 
safety-critical environments. First, Justification is supported through 
MPML’s ability to demonstrate the source of its decisions at multiple 
levels of abstraction. By separating features into distinct groups, or 
“perspectives,” and providing impact scores at both the group and in
dividual feature level, MPML offers clinicians transparent, structured 
explanations that clarify which factors contributed to a diagnosis or 
recommendation. Second, MPML enhances Control by enabling indi
vidual models created for each feature group to be independently 
altered, improved, or updated without requiring retraining of the entire 
ensemble. Third, MPML facilitates Improvement by allowing perspec
tives to be added, removed, or modified to enhance ensemble perfor
mance, all without retraining or reconstructing every base model. This 
flexibility supports continuous adaptation to new clinical data and 
evolving standards of care. Finally, MPML promotes Discovery by 
generating interpretable insights into how different groups of featur
es—and specific variables within those groups—impact model 
predictions.

3. Multi-perspective machine learning

Multi-Perspective Machine Learning (MPML) is an approach that 
integrates multiple perspectives of data to improve the accuracy and 
interpretability of Machine Learning models. In MPML, different subsets 
of features, often representing distinct aspects of the data, are modelled 
separately and then combined to provide a holistic prediction (Miller & 
Busby-Earle, 2017). This methodology not only enhances the robustness 
of the model by leveraging diverse data representations but also sup
ports interpretability by allowing each perspective to be analysed 
independently. By focusing on the unique contributions of each 
perspective, MPML enables more nuanced insights into the model’s 
decision-making process.

The Multi-Perspective Machine Learning (MPML) approach is 
devised to tackle a specific category of learning challenges, which 
exhibit the following characteristics: The ability to decompose the 
problem into distinct, independent components, facilitating a modular 
approach to problem-solving. The requirement for solutions to produce 
intelligible and transparent results, ensuring that outcomes are acces
sible and interpretable by stakeholders.

This ensemble methodology is particularly suited for addressing 
complex medical challenges such as heart disease, which has multiple 

independent facets that require distinct consideration. MPML is engi
neered to construct models that capture and represent the diverse as
pects of the problem space.

3.1. Perspectives

The core component of this method is the perspective, a structured 
grouping of features that reflects a particular aspect or interpretation of 
the learning problem. To apply the approach effectively, each perspec
tive must be clearly and thoughtfully defined. Perspectives are con
structed using a variety of grouping strategies, including mutual 
information, model-based importance, correlation patterns, dimen
sionality reduction with clustering, and domain expert knowledge. 
These strategies enable the identification of coherent feature subsets 
that capture different dimensions of the data. The organization of fea
tures into perspectives allows the model to leverage distinct learning 
strategies, each tailored to a specific subset of information. This struc
ture not only enhances interpretability but can also improve predictive 
performance (Zhao et al., 2017).

Importantly, the effectiveness of a given perspective depends on the 
nature of the dataset and the problem domain. For example, in the 
context of heart disease detection, one perspective may focus on clinical 
risk factors such as age, blood pressure, and cholesterol levels, while 
another may group imaging-based features derived from echocardio
grams or cardiac MRIs (Johnson et al., 2018). By aligning feature 
groupings with distinct analytical approaches, this method supports 
both a modular model design and contextually grounded interpretation.

The MPML approach can be formally defined as follows:
Let T represent a specific learning problem. Each element fx in Fig. 1

is a feature of the learning problem T. 

T =
{
f1, f2, f3…fn

}

Let L be the set of all possible learning strategies, lx, that can be 
applied to solving problem T (Fig. 2). 

L = {l1, l2, l3…ln}

l1 = {f1, f2…fx}

∴lx⊂T 

Let P represent the set of perspectives of problem T. Within each 
learning strategy, there may be one or more subsets of features that 
describe specific aspects of the problem; these subsets we call perspec
tives. 

P = {p1, p2, p3…pn}

wherepx⊂T 

andp1 =
{
f1, f2,…, f3

}

Fig. 1. Learning Problem T.
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These perspectives distinguish each classifier in the ensemble. The 
features from each perspective are used to create individual classifiers. 
Since each perspective comprises related features, the resulting classi
fiers are diverse. To achieve accuracy, each classifier is trained on the 
entire training set. The outcomes from each classifier are then combined 
to produce the final result. Every perspective belongs to a learning 
strategy. While a single learning strategy can include multiple per
spectives, each perspective is associated with only one learning strategy 
(Fig. 3).

Example: Selecting Perspectives for Heart Disease Prediction
Let T be the learning problem, Heart Disease Prediction. 

T =
{
f1, f2, f3…fn

}

where each fx is a feature used in Heart Disease Prediction: 

f1 = SerumCholestoral 

f2 = Exerciseinducedangina 

f3 = Restingelectrocardiographicresults 

f4 = Age 

f5 = Sex 

f6 = ChestPainType 

f7 = RestingBloodPressure 

Each perspective p1 (where p1 ∈ P) is a subset of features from T that 
describes a portion of the problem task T. In this example we have, 

p1 =
{
f4, f5, f6

}
− Indicators 

p2 =
{
f2, f3

}
− DiagnosticFeatures 

p3 =
{
f1, f7

}
− RiskFactors 

Thus, the learning strategy l1andl2 may be defined as: 

l1 = {p1}

l2 = {p2, p3}

For each perspective px, a machine learning algorithm is applied to 
create a model with the features it contains. Each perspective thus forms 
a classifier (see Fig. 4). These classifiers are then used to create an 
ensemble.

An ensemble composed of classifiers derived from well-defined 
perspectives exhibits two essential properties for effectiveness: accu
racy and diversity. The classifiers within an ensemble must not only be 
accurate, making reliable predictions individually, but also diverse, 
using different factors or features to predict outcomes. This diversity 
ensures that when their efforts are combined, the ensemble can make 
precise predictions and generalize well across different scenarios 
(Panhalkar & Doye, 2022). The model is finalized by employing an 
appropriate aggregation technique to combine the outputs of individual 
classifiers, yielding the final prediction. In the case of MPML, the default 
combination strategy utilized in this study is blending.

3.2. Feature grouping methods

Several methods for constructing perspectives were explored, 
incorporating both data-driven and expert-informed strategies to ensure 
a balance between empirical structure and clinical interpretability. The 
following grouping approaches were selected for this study due to their 
complementary strengths. Mutual Information (MI)–based grouping was 
used to identify features with strong dependency relationships to the 
target variable, enabling perspectives that capture direct predictive 
relevance. Model importance–based grouping leverages feature- 
importance scores from tree-based models to cluster variables that 
contribute similarly to prediction, offering a pragmatic, model-aware 
structure. Correlation-based grouping supports the identification of 
features that behave similarly across samples, reducing redundancy and 
creating perspectives grounded in statistical coherence. Dimensionality- 
reduction and clustering methods were included to uncover latent 
structure and natural groupings within the data, allowing the framework 
to detect relationships that may not be obvious through univariate 
measures. Finally, domain expert–defined grouping was incorporated to 
ensure that perspectives reflect clinically meaningful constructs, align
ing the model with established cardiovascular knowledge. Together, 
these methods were chosen to provide a robust and diverse set of per
spectives that balance interpretability, data-driven insight, and meth
odological rigour.

Mutual Information (MI)-Based Grouping: This method groups 
numeric features based on their mutual information (MI), which reflects 
how much information one feature shares with another. It selects only 
numeric features and discretizes them into bins using a specified strat
egy (e.g., uniform, quantile, or k-means), with the number of bins 
determined by Sturges’ Rule. The method then computes pairwise 

Fig. 2. Learning Strategy l.

Fig. 3. An Example MPML Breakdown. Fig. 4. Applying Machine learning algorithm (MLA) to perspectives.
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mutual information scores between all features to assess their informa
tional similarity. These scores are normalized and converted into a 
distance matrix, which is used as input for agglomerative hierarchical 
clustering. The features are then clustered into a user-defined number of 
groups.

Model Importance-Based Grouping: This method groups numeric 
features based on their importance in predicting a target variable, using 
a tree-based model (in this case, a Random Forest). After training, it 
extracts feature importance scores, which indicate how much each 
feature contributes to the model’s predictive accuracy. These scores are 
then standardized and clustered using k-means into a specified number 
of groups.

Correlation-Based Grouping: This method groups numeric features 
based on the similarity of their correlation patterns. It begins by 
computing a correlation matrix using the Pearson method. The absolute 
values of the correlations are taken and subtracted from 1, so that highly 
correlated features have smaller distances. This distance matrix is then 
converted into a condensed form suitable for hierarchical clustering. 
Using average linkage, the features are hierarchically clustered, and a 
flat clustering is produced based on the desired number of groups.

Dimensionality Reduction and Clustering: This approach groups 
numeric features by first projecting them into a lower-dimensional space 
using a dimensionality reduction technique, and then applying clus
tering to identify groups of similar features. The data is transposed so 
that each feature becomes a sample, allowing the algorithm to analyse 
relationships between features rather than between data points. These 
transposed features are standardized and then projected into a lower- 
dimensional space using a user-specified method: PCA (Principal 
Component Analysis). This dimensionality reduction step captures the 
main patterns in feature variation. The projected data is then clustered 
using k-means, and each original feature is mapped to a cluster, resulting 
in interpretable, similarity-based feature groups.

Domain Expert-Defined Grouping: This method organizes features 
into meaningful subsets based on the knowledge and judgment of sub
ject matter experts. Unlike statistically derived perspectives, which rely 
on algorithmic criteria such as mutual information, correlation patterns, 
or variance structure, the expert-defined perspective introduces an 
intentionally subjective, human-guided dimension to the framework. Its 
purpose is not only to reflect clinical, conceptual, or operational rele
vance but also to serve as a contrast against more formal, data-driven 
selection methods. By incorporating expert reasoning directly into the 
model design, this perspective functions as a human-centric control 
mechanism, allowing us to examine how domain insight affects per
formance relative to purely statistical approaches. This enhances inter
pretability and provides a valuable benchmark for understanding when, 
and to what extent, expert intuition complements or diverges from 
algorithmic feature selection.

3.3. Generating interpretations with MPML

The structure of the method is illustrated in Fig. 5, which shows a 
typical MPML setup with interpretation possible at each level. For any 
given instance or patient, the system can provide an explanation for the 
prediction by identifying the perspective with the greatest impact score 
and by reporting the features that have the highest individual impact 
scores within each perspective.

Each perspective (px) focuses on a single aspect of the learning 
problem (T). Understanding how each perspective affects the prediction 
y provides a specific interpretation for that particular instance. For 
example (see Fig. 6), if perspective one (p1) is the most influential in 
predicting heart disease for a patient, and this perspective (p1) is 
composed of diagnostic features, then this insight offers valuable in
formation about the patient’s cardiac function or patterns that 
contribute to the diagnosis.

By delving deeper than the perspective level, we can identify the 
most influential features within the most impactful perspective. This 
deeper analysis provides insight into which specific diagnostic features 
are most effective for predicting heart disease. Understanding how these 
individual features relate to each other is crucial for comprehending the 
underlying behaviour of the condition. The formal steps to obtain the 
impact score for each feature within a perspective are defined as follows:

P is the set of all perspectives for a given learning Task T. 

P = {p1, p2, p3…pn}

Each perspective px contains a subset of features fx from the learning 
task T. 

px =
{
f1, f2, f3…fn

}

The model generated by applying a learning algorithm S to any 
perspective px is represented as, 

Sx(px)

The set of all models S produced from each perspective in P is 
denoted by Q 

Q = (S1(p1), S2(p2), S3(p3)…Sn(pn)

These models are then combined using a combination method C and 
the final result (the prediction) is represented by y 

y = C(S1(p1), S2(p2), S3(p3)…Sn(pn))

y = C(Q)

We then aim to explain y using a method similar to the EXPLAIN 

Fig. 5. Model Overview. Fig. 6. A single Perspective p1.
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technique (Robnik-Sikonja & Kononenko, 2008) by identifying which 
perspective, when removed, causes the greatest change in y.

To calculate the change in y, we examine the model’s confidence in 
its prediction of y. For example, in heart disease prediction, the result y 
could be either 1 (indicating heart disease) or 0 (indicating no heart 
disease). We record the model’s confidence for each class. If the model 
(with all perspectives) predicts a 1 with 90 % confidence and a 0 with 10 
%, we note the confidence in the correct class, which is 90 %. After 
removing a perspective (Sx(px)), the new result is stored as ŷ. If the 
model now has 70 % confidence that the result is 1 and 30 % confidence 
that it is 0, the change in y, stored as d, would be 90 − 70 = 20. 
Perspective (Sx(px)) has the greatest impact on y if the resulting ŷ, 
computed without (Sx(px)), shows the largest difference from y across all 
perspectives px ∈ P. 

ŷ = C(Q − {Sx(px)})

d = y − ŷ 

This process is repeated from the output y until the most influential 
feature within the strongest perspective is identified. The value of d also 
indicates the direction the model moves when Sx(px) is removed. If 
removing Sx(px) brings ŷcloser to the correct prediction, then 
Sx(px)negatively impacts the result y for that specific case. If the opposite 
happens, and removing Sx(px)takes the prediction further from the 
correct result, then Sx(px) has a positive impact on y. Both positive and 
negative impacts are helpful in providing clinicians with a clearer un
derstanding of the model’s behavior and determining whether it can be 
trusted for use. The impact score d quantifies the contribution of indi
vidual features to the model’s predictions, providing deeper insights into 
the factors driving the model’s decision-making process. This metric is 
instrumental for both local and global interpretability, enabling a more 
comprehensive understanding of the model’s behavior.

4. Methodology

4.1. Datasets preparations

The methodological process for this study begins with the prepara
tion and loading of two cardiovascular datasets that serve as inputs to 
the model evaluation pipeline. The primary dataset used for the MPML 
experiments is a curated, comprehensive heart disease dataset con
structed by merging several well-known clinical datasets: the Cleveland, 
Hungarian, Switzerland, Long Beach VA, and Statlog Heart Disease 
datasets. These five datasets are commonly referenced in cardiovascular 
risk–prediction literature and collectively provide a mixture of de
mographic, clinical, and diagnostic variables relevant to heart disease 
classification. The merged dataset contains 1190 instances compiled 
across 11 shared features, making it the largest publicly available 
structured heart disease dataset constructed from these sources. The 
motivation for using this dataset lies in its breadth and its historical 
relevance for benchmarking machine learning approaches in cardio
vascular prediction tasks. However, the integration of multiple datasets 
inevitably introduces heterogeneity arising from differences in popula
tion distributions, diagnostic practices, hospital systems, measurement 
protocols, and label conventions. While these factors can influence ab
solute model performance, it is important to clarify that the present 
study does not aim to evaluate the dataset itself, nor to make claims 
about the clinical validity of predictive outcomes. Rather, the dataset’s 
role is to serve as a standardized input for systematically evaluating the 
proposed Multi-Perspective Machine Learning (MPML) framework 
against conventional ensemble-learning baselines. Therefore, although 
dataset heterogeneity exists, its effects are controlled by applying 
identical preprocessing, splits, and evaluation procedures across all 
modeling approaches. This ensures that the comparison reflects differ
ences in modeling frameworks rather than differences in data 

composition.
In addition to the merged heart disease dataset, the study also em

ploys a secondary cardiovascular dataset consisting of 70,000 patient 
records (34,979 presenting with cardiovascular disease and 35,021 not 
presenting with cardiovascular disease) with 11 features collected dur
ing routine medical examinations. This dataset includes objective 
measurements such as age, height, weight, and blood pressure; 
examination-derived indicators such as cholesterol and glucose levels; 
and subjective lifestyle factors such as smoking, alcohol consumption, 
and physical activity. Each record includes a binary label indicating the 
presence or absence of cardiovascular disease. The dataset was designed 
to capture a broader clinical and behavioral profile of heart health, and 
its structure makes it suitable for evaluating perspective-level modeling, 
particularly in the probability-calibration experiments where a single 
perspective is isolated to study calibrated outputs. As with the first 
dataset, this secondary dataset is not evaluated as the subject of inquiry. 
Its purpose is exclusively methodological: it provides an alternative 
feature distribution and clinical framing through which to test MPML’s 
interpretability mechanisms and error-analysis procedures. Across the 
entire study, datasets are treated as controlled experimental inputs 
rather than as objects of scientific evaluation, ensuring alignment with 
the paper’s central goal of demonstrating and analyzing the MPML 
framework.

4.2. Model preparation

The methodological process in this study begins with loading the 
heart disease dataset into a pandas Python DataFrame, separating it into 
features and the class label, and applying a consistent 70/30 train–test 
split. This split is maintained across all experiments for comparability, 
while 10-fold cross-validation is introduced for more robust perfor
mance estimation. The numerical nature of the dataset allows direct use 
without additional encoding steps, and random seeds are fixed to ensure 
reproducibility. All models—MPML and the baseline ensembles—are 
trained under standardized experimental conditions to isolate the effect 
of the algorithmic design rather than preprocessing differences.

The Multi-Perspective Machine Learning (MPML) framework (Miller 
& Busby-Earle, 2017) is then applied as the primary experimental 
approach. MPML begins by organizing features into predefined groups, 
or perspectives, representing distinct conceptual dimensions within the 
dataset such as physiological measures, demographic attributes, or 
diagnostic indicators. These perspectives remain fixed throughout 
training and are intentionally kept manually defined rather than algo
rithmically generated to emphasize interpretability and 
domain-awareness. The MPML ensemble is initialized using a 
decision-tree base estimator with blending as the ensemble strategy and 
a meta-integration rule that fuses predictions across perspectives. The 
rationale for selecting a decision tree as the base learner lies in its 
interpretability, low computational cost, and ability to model non-linear 
relationships. Trees also complement MPML structurally, because each 
perspective is low-dimensional, making complex models unnecessary 
and potentially counterproductive. No hyperparameter tuning is per
formed on the base estimator because the intention behind MPML is to 
evaluate the power of feature-perspective decomposition rather than 
parameter optimization. Thus, the baseline tree configuration is inten
tionally simple, ensuring that any performance gain arises from the 
MPML architecture rather than deep algorithmic tuning.

Perspective generation follows, during which MPML extracts the 
appropriate feature subsets for each group and constructs perspective- 
specific datasets. This step operationalizes MPML’s core concept by 
allowing multiple specialized models to learn from coherent feature 
subsets rather than the full feature space. The approach prioritizes 
interpretability over aggressive hyperparameter tuning, reflecting 
MPML’s design philosophy: improving performance not by increasing 
model complexity, but by structuring feature information more effec
tively. A custom 10-fold cross-validation procedure is then applied, 
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where for each fold the ensemble trains one model per perspective and 
blends predictions to produce a final decision. Performance metri
cs—including accuracy, precision, recall, and F1 score—are recorded for 
every fold and averaged to obtain the final MPML evaluation. Because 
the purpose of MPML in this study is architectural evaluation, no 
advanced tuning such as depth restrictions, pruning, or parameter 
searches is performed; the selected settings maintain transparency and 
ensure that the comparison emphasizes the MPML method rather than 
model-specific optimization.

To contextualize MPML’s performance, three classical ensemble 
models—Random Forest, Bagging, and Gradient Boosting—are imple
mented as baseline comparators. These models are configured using 
modest and interpretable hyperparameter values. For Random Forest, 
the number of trees is set to 23, balancing computational efficiency with 
stability; this choice is deliberately medium-sized, avoiding both overly 
small ensembles and unnecessarily large forests that complicate inter
pretability. Bagging uses 16 decision-tree estimators, reflecting the 
principle that bagging primarily stabilizes variance and therefore does 
not require excessive model counts for datasets of this scale. Gradient 
Boosting employs 23 boosting stages, a conservative configuration 
meant to evaluate the model in a standard form rather than a highly 
optimized state. Across all three ensemble methods, hyperparameters 
are intentionally kept close to typical defaults to ensure that the models 
serve as baseline comparisons rather than optimized competitors. No 
grid search or parameter tuning is performed because the purpose is not 
to identify the best possible classical ensemble, but rather to benchmark 
MPML against commonly used, reasonably configured models whose 
performance reflects their general characteristics rather than hyper
parameter engineering.

Each baseline ensemble is evaluated using stratified 10-fold cross- 
validation, ensuring consistent class distributions across folds. In each 
fold, the model trains on nine subsets and predicts the tenth, producing 
fold-level performance metrics identical to those computed for MPML. 
The use of cross-validation rather than a single train–test split ensures 
reliability and reduces sensitivity to sample variation. By keeping the 
tuning minimal and transparent, the study avoids overfitting the base
lines and allows for a fair conceptual comparison: MPML’s structural 
advantages versus the traditional ensembles’ standard learning 
mechanisms.

4.3. Interpretation analysis

A final experimental component addresses interpretability and 
probability estimation through calibration analysis applied to a 
decision-tree model trained on a single MPML perspective. Three cali
bration settings are evaluated: the raw uncalibrated tree, Platt scaling 
via a sigmoid transformation, and isotonic regression. These calibration 
methods are chosen because they represent the two most widely used 
probability-adjustment techniques in machine learning—one para
metric and one nonparametric. No tuning beyond default parameters is 
applied because the purpose is to illustrate how probability distributions 
change under different calibration rules, not to maximize predictive 
accuracy. A specific test instance is examined to compare probability 
outputs across calibration methods, demonstrating how calibrated 
models adjust confidence even when the predicted class remains 
consistent. The study also identifies and inspects misclassified instances 
within the test set, extracting feature profiles and predicted labels for up 
to five incorrectly classified cases. This qualitative inspection supports 
the interpretability goals of MPML and provides additional insight into 
model behavior beyond aggregate statistics.

The methodology combines conservative, transparent baseline con
figurations with a structured MPML modeling approach to ensure that 
any observed performance differences arise from the intrinsic design of 
the methods rather than from aggressive hyperparameter optimization. 
This methodological choice prioritizes clarity, fairness, and interpret
ability, aligning with the study’s objective to assess MPML as a 

conceptual modeling framework rather than a parameter-tuned opti
mization exercise.

5. Datasets

In this section, we provide a detailed overview of datasets used to 
compare the proposed approach (MPML) to other ensemble techniques. 
Two datasets were utilized for this study: a combined heart disease 
dataset and a cardiovascular disease dataset. The inclusion of the car
diovascular disease dataset was specifically intended to assess the scal
ability and robustness of the methods on a significantly larger dataset.

The heart disease dataset contains just over 1000 instances, while the 
cardiovascular disease dataset comprises more than 70,000 instances, 
providing a comprehensive evaluation of each method’s performance 
across datasets of varying sizes. This setup ensures that the comparison 
between MPML and other ensemble methods reflects not only general 
predictive capability but also adaptability to different data scales.

5.1. Heart disease dataset

For this study, we utilized a comprehensive heart disease dataset 
created by combining five widely used but previously independent 
datasets (Alizadehsani et al., 2019; Manu Siddhartha, 2025). This 
curated dataset represents one of the most extensive publicly available 
resources for coronary artery disease (CAD) prediction using machine 
learning techniques (see Table 1). The integration of these datasets al
lows for a more diverse and representative collection of instances, 
enhancing the robustness and generalizability of the experimental 
evaluation.

The merged dataset consists of 1190 instances and includes 11 
clinically relevant features that are consistent across all source datasets. 
These features were selected to ensure compatibility and meaningful 
analysis across the combined dataset. The five datasets used for this 
integration are: Cleveland, Hungarian, Switzerland, Long Beach VA, and 
the Statlog (Heart) Data Set. This unified dataset has been widely 
recognized in the literature for its suitability in developing and bench
marking machine learning models for CAD prediction.

Table 1 
Heart Disease Dataset Feature Descriptions.

No. Feature Code Type Description

1 Age age Numeric Age in years
2 Sex sex Binary 1 = male, 0 = female
3 Chest Pain Type chest pain 

type
Nominal 1 = typical angina, 2 =

atypical 
angina, 3 = non-anginal 
pain, 
4 = asymptomatic

4 Resting Blood 
Pressure

resting bp Numeric Resting blood pressure 
(in mm Hg)

5 Serum 
Cholesterol

cholesterol Numeric Cholesterol level (in mg/ 
dl)

6 Fasting Blood 
Sugar

fasting blood 
sugar

Binary 1 = true (> 120 mg/dl), 
0 = false

7 Resting ECG 
Results

resting ecg Nominal 0 = normal, 1 = ST-T 
abnormality, 
2 = left ventricular 
hypertrophy

8 Max Heart Rate 
Achieved

max heart rate Numeric Maximum recorded heart 
rate

9 Exercise-Induced 
Angina

exercise 
angina

Binary 1 = yes, 0 = no

10 ST Depression oldpeak Numeric Depression relative to 
rest

11 ST Slope ST slope Nominal 1 = upsloping, 2 = flat, 3 
= downsloping

12 Heart Disease 
(Target)

class Binary 1 = heart disease, 0 = no 
heart disease
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5.2. Cardiovascular disease dataset

In this study, we also utilized the Cardiovascular Disease dataset, 
obtained from Kaggle employed by several peer-reviewed articles (Ali, 
2025; Saridena et al., 2023). The dataset contains data from 70,000 
patient records collected during routine medical examinations (see 
Table 2). This large-scale dataset is designed to support the development 
of predictive models for cardiovascular disease detection. It consists of 
11 input features along with a binary target variable that indicates the 
presence or absence of cardiovascular disease in each patient. All feature 
values were recorded at the time of examination, providing a consistent 
and reliable dataset suitable for machine learning applications.

The features in the Cardiovascular Disease dataset are grouped into 
three main categories. The first category, Objective Features, includes 
direct factual information such as age, height, weight, and gender. The 
second category, Examination Features, encompasses clinical measure
ments collected during the examination, including blood pressure, 
cholesterol levels, and glucose levels. The final category, Subjective 
Features, captures self-reported behaviours and lifestyle factors such as 
smoking status, alcohol consumption, and levels of physical activity. 
This combination of objective, clinical, and behavioural data allows for a 
comprehensive analysis of factors contributing to cardiovascular disease 
risk.

6. Experiments and results

In this section, we present a comprehensive overview of the experi
mental setup, including the evaluation procedures and methodologies 
employed to compare the MPML approach against established ensemble 
techniques. A performance comparison was conducted to assess MPML 
under various configurations in relation to other ensemble models. In 
addition to standard performance evaluation, a series of paired t-tests 
were performed across multiple metrics to rigorously assess the statis
tical significance of any observed differences between MPML and the 
baseline ensemble methods.

Furthermore, this section provides a detailed presentation of the 
experimental results, supported by tables and thorough explanations, to 

offer a clear interpretation of the outcomes and validate the effective
ness of the proposed approach.

6.1. Experiments

6.1.1. Performance comparison
In this evaluation, multiple classification methods were tested and 

compared using key performance metrics, including Accuracy, F1 Score, 
Precision, and Recall. The methods included traditional classifiers such 
as Naive Bayes, Decision Tree, and Support Vector Machine (SVM), as 
well as ensemble techniques like Bagging, Boosting, and Random Forest. 
Additionally, several configurations of the MPML (Multi-Perspective 
Machine Learning) approach were assessed. MPML leverages different 
feature selection techniques, including mutual information (mi), corre
lation analysis, Principal Component Analysis (PCA), model-based 
importance ranking, and expert-defined feature groups, either individ
ually or in combination.

The performance of these MPML configurations was compared at 
different ensemble sizes—specifically using 4, 7, 16, and 23 base clas
sifiers—to analyse how ensemble complexity impacts results. Similarly, 
the number of base classifiers for Bagging, Boosting, and Random Forest 
was adjusted to align with MPML’s varying ensemble sizes to ensure fair, 
consistent comparisons. For the ensemble methods, Decision Trees were 
used as base estimators where applicable. The experiments were 
designed to comprehensively evaluate how individual and combined 
feature selection strategies within MPML compare to traditional ma
chine learning models and established ensemble approaches across 
multiple performance dimensions.

6.1.2. Paired t-test comparison
In this evaluation, a series of paired t-tests were conducted to sta

tistically compare the performance of the MPML ensemble method 
against three well-known ensemble techniques: Boosting, Bagging, and 
Random Forest. The MPML approach integrates multiple feature selec
tion strategies, including mutual information (mi), correlation analysis, 
Principal Component Analysis (PCA), model-based importance mea
sures, and expert-defined feature groups, resulting in an ensemble of 23 
base classifiers. For comparison, Boosting was implemented using a 
GradientBoostingClassifier with 100 estimators, Bagging utilized a Bag
gingClassifier with 100 DecisionTreeClassifier estimators, and Random 
Forest was configured with 1000 decision trees.

The configurations for Boosting, Bagging, and Random Forest were 
not chosen arbitrarily; rather, the number of base classifiers for each 
method was determined after conducting multiple experimental runs on 
the same dataset to identify the most effective configuration in terms of 
predictive performance. These optimized settings were then used in the 
final comparison to ensure a fair and meaningful evaluation against 
MPML.

The tests were performed across four key performance metrics: Ac
curacy, Precision, Recall, and F1 Score. In each case, a paired t-test was 
applied to assess whether the observed differences between MPML and 
the other ensemble methods were statistically significant. The compar
isons were based on results obtained through 10-fold cross-validation, 
ensuring that each model was evaluated on multiple training and 
testing splits of the dataset. This approach provides a robust, unbiased 
estimate of performance and strengthens the reliability of the statistical 
conclusions drawn from the t-tests regarding the relative effectiveness of 
MPML compared to the other ensemble methods.

6.2. Results with heart disease dataset

6.2.1. Performance comparison (with heart disease dataset)
Table 3 provides a comprehensive performance comparison between 

traditional machine-learning classifiers, standard ensemble methods, 
and a variety of MPML (Multi-Perspective Machine Learning) configu
rations. The results highlight clear performance stratification across 

Table 2 
Cardiovascular Disease Dataset Feature Descriptions.

No. Feature Code Category Description

1 Age age Objective Age of the patient in 
days

2 Height height Objective Patient’s height in 
centimetres

3 Weight weight Objective Patient’s weight in 
kilograms

4 Gender gender Objective Gender (coded as 
categorical values)

5 Systolic Blood 
Pressure

ap_hi Examination Systolic arterial 
pressure

6 Diastolic Blood 
Pressure

ap_lo Examination Diastolic arterial 
pressure

7 Cholesterol Level cholesterol Examination 1 = normal, 2 = above 
normal, 3 = well above 
normal

8 Glucose Level gluc Examination 1 = normal, 2 = above 
normal, 3 = well above 
normal

9 Smoking Status smoke Subjective 1 = smokes, 0 = does 
not smoke

10 Alcohol Intake alco Subjective 1 = consumes alcohol, 
0 = does not consume 
alcohol

11 Physical Activity active Subjective 1 = physically active, 
0 = not physically 
active

12 Cardiovascular 
Disease (Target)

cardio Target 1 = has cardiovascular 
disease, 0 = no disease
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methods and demonstrate the substantial benefits of the MPML frame
work, particularly when multiple complementary perspectives are 
combined. Among the baseline models, Naive Bayes and Decision Trees 
perform reasonably well, achieving accuracies of 0.857 and 0.870 
respectively, while SVM lags behind with an accuracy of 0.726 and the 
lowest F1 score in the table. These results reinforce the well-known 
limitations of SVM under certain feature distributions and class- 
balance conditions. Traditional ensemble methods substantially 
improve upon these baselines: Bagging (using 100 Decision Trees) 
achieves an accuracy of 0.931, Boosting reaches 0.882, and Random 
Forest (100 trees) delivers strong overall performance with an accuracy 
of 0.947 and a recall of 0.963, making it the strongest of the non-MPML 
models.

The MPML configurations introduce a different layer of analysis by 
strategically selecting and combining base classifiers based on expert 
knowledge, feature relationships, and model-driven metrics. Even the 
simpler MPML setups—such as those based on mutual information, 
correlation filtering, PCA, or model importance—perform competi
tively, with accuracies ranging from 0.856 to 0.894 using only four base 
classifiers. Notably, the MPML Expert Groups configuration, which in
corporates seven carefully selected base classifiers, achieves an accuracy 
of 0.926 and balanced precision–recall performance. This places it in the 
same range as Bagging with 100 estimators, but with far fewer base 
models, highlighting MPML’s efficiency through strategic selection 
rather than brute-force ensembling.

The most advanced MPML configurations clearly outperform all 
other models in the table. The combination of mutual information +
correlation + PCA + model importance achieves an accuracy of 0.966 
with only 16 base classifiers, surpassing even the 100-tree Random 
Forest.

When expert knowledge is added to this composite config
uration—resulting in the 23-classifier MPML ensemble—the model 
achieves extraordinarily high performance across all metrics (Accuracy 
= 0.955, F1 = 0.954, Precision = 0.954, Recall = 0.955). Although 
slightly lower than the 16-classifier configuration, this variant remains 
one of the strongest overall and demonstrates that incorporating expert- 
driven perspective selection maintains high model stability and gener
alization quality.

When comparing MPML configurations directly against traditional 
ensemble methods using matched numbers of base classifiers, the per
formance advantage becomes even more pronounced. With seven base 
classifiers, MPML Expert Groups (Accuracy = 0.926) outperforms 

Bagging (0.912), Boosting (0.839), and Random Forest (0.913). With 
sixteen classifiers, the disparity increases: the MPML composite model 
achieves an accuracy of 0.966, compared with Bagging at 0.921, 
Boosting at 0.849, and Random Forest at 0.934. At 23 base classifiers, 
MPML again leads, outperforming Bagging (0.934), Boosting (0.850), 
and Random Forest (0.938). These consistent gains highlight the 
strength of the MPML methodology, which combines multiple feature- 
selection perspectives to build ensembles that are not only more accu
rate but also more balanced across precision, recall, and F1 score.

The results in Table 3 reinforce the central value of MPML’s multi- 
perspective design philosophy. By leveraging complementary feature 
signals—such as mutual information, correlation structure, principal 
components, and model-derived importance rankings—MPML produces 
ensembles that systematically outperform both traditional machine- 
learning models and conventional, single-strategy ensemble methods. 
The ability to achieve such high accuracy with relatively few base 
classifiers underscores MPML’s efficiency and its potential to provide 
more interpretable, computationally tractable, and high-performing 
solutions in real-world classification tasks.

6.2.2. Paired t-test comparison (with heart disease dataset)
The comparative evaluation of the MPML ensemble method against 

established ensemble techniques demonstrates the statistically signifi
cant superiority of MPML across multiple performance metrics. Using 
paired t-tests, the MPML configuration, which integrates mutual infor
mation (mi), correlation, principal component analysis (PCA), model 
importance, and expert grouping, consistently outperforms its counter
parts in accuracy, precision, recall, and F1 score, with all p-values being 
effectively zero (or ≤ 0.0001), indicating high statistical significance. 
Despite employing only 23 base classifiers, MPML yielded t-statistics as 
high as 18.1215 (F1 score vs. Boosting) and 17.4815 (accuracy vs. 
Boosting), surpassing Boosting, Bagging, and Random Forest models 
that utilize substantially more base classifiers (100 to 1000).

This performance highlights the effectiveness of MPML’s diverse and 
strategically selected ensemble design over traditional methods, which 
rely primarily on high estimator counts and do not incorporate the same 
depth of feature selection and expert-informed grouping. The consistent 
dominance across all metrics supports the robustness and generaliz
ability of the MPML framework.

6.2.3. McNemar test comparisons (with heart disease dataset)
The set of McNemar test comparisons in Table 4 provides a detailed 

Table 3 
Performance Comparison on Heart Disease Dataset.

Method Accuracy F1 Score Precision Recall Base Classifiers

Naive Bayes 0.857 0.875 0.869 0.882 N/A
Decision Tree 0.870 0.882 0.915 0.851 N/A
SVM 0.726 0.745 0.790 0.704 N/A
Bagging (estimator=DecisionTree) 0.931 0.935 0.930 0.941 100
Boosting 0.882 0.889 0.891 0.887 100
Random Forest 0.947 0.951 0.938 0.963 100
MPML (Expert Groups) 0.926 0.926 0.928 0.927 7
MPML (model_importance) 0.894 0.893 0.894 0.894 4
MPML (PCA) 0.856 0.853 0.863 0.856 4
MPML (corelation) 0.885 0.883 0.885 0.885 4
MPML (mi) 0.879 0.877 0.878 0.879 4
MPML (mi + corelation + PCA + model_importance) 0.966 0.966 0.967 0.966 16
MPML (mi + corelation + PCA + model_importance + Expert Groups) 0.955 0.954 0.954 0.955 23
Bagging (estimator=DecisionTree) 0.912 0.916 0.920 0.913 7
Boosting 0.839 0.854 0.824 0.889 7
Random Forest 0.913 0.918 0.914 0.922 7
Bagging (estimator=DecisionTree) 0.921 0.925 0.930 0.921 16
Boosting 0.849 0.859 0.848 0.873 16
Random Forest 0.934 0.937 0.934 0.941 16
Bagging (estimator=DecisionTree) 0.934 0.938 0.932 0.944 23
Boosting 0.850 0.860 0.851 0.871 23
Random Forest 0.938 0.942 0.932 0.952 23
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picture of how different MPML ensemble configurations perform rela
tive to Random Forest baselines. When comparing MPML Stacking using 
Gaussian Naive Bayes as the meta-model against a Random Forest with 
23 estimators, the results show no meaningful performance difference 
between the two approaches. The off-diagonal counts—8 instances 
where the stacking model is correct while the Random Forest is wrong, 
versus 10 instances where the Random Forest is correct and the stacking 
model is wrong—are nearly symmetrical. This balance is confirmed by 
the very high p-value (0.8145), indicating that any observed differences 
are well within the range of random variation. In practical terms, the 
two models can be considered statistically equivalent for this dataset, 
meaning the choice between them should depend on secondary factors 
such as interpretability, computation time, or deployment simplicity 
rather than predictive superiority.

In contrast, the comparison between MPML Stacking with a Decision 
Tree (DT) meta-model and the same Random Forest (23 estimators) 
reveals a statistically significant difference in performance. Here, the 
Random Forest model proves to be more accurate, with 25 cases where it 
correctly predicts while the stacking model does not, compared to only 
12 cases in the opposite direction. With a p-value of approximately 
0.047, this difference crosses the threshold for statistical significance 
and suggests that the Random Forest is the more reliable model among 
the two.

However, this advantage does not hold in the blending-based com
parisons. When evaluating MPML Blending (DT) vs. Random Forest (23 
estimators), the direction of superiority reverses. The blended model 
correctly classifies 20 cases that the Random Forest gets wrong, while 
the Random Forest outperforms the blended model in only 8 instances. 
The resulting p-value (≈ 0.036) shows that this difference is statistically 
significant, implying that the blended model provides a meaningful 
improvement over the Random Forest under these conditions.

This trend becomes even more pronounced when comparing MPML 
Blending (DT) against a much larger Random Forest with 1000 esti
mators. Despite the increased complexity and capacity of the larger 
Forest, the blended model still demonstrates significantly better per
formance, with 16 unique correct predictions compared to only 3 for the 
Random Forest. The highly significant p-value (≈ 0.0044) reinforces 
that the blended model offers a substantial and reliable performance 
advantage.

Overall, these results illustrate how different ensemble strat
egies—stacking vs. blending, GaussianNB vs. Decision Tree meta-mod
els—can vary widely in effectiveness depending on the configuration. 
While some MPML variants match the performance of traditional 
models, others outperform Random Forests even when the latter are 
scaled to a much larger size. These tests demonstrate the value of using 
statistically rigorous pairwise comparison methods like McNemar’s test, 
as they reveal not just differences in overall accuracy but meaningful 
differences in error patterns, enabling a more informed selection of 
models for deployment.

6.3. Results with cardiovascular disease dataset

6.3.1. Performance comparison (with cardiovascular disease dataset)
The comparison presented in Table 4 between the MPML approach 

and traditional ensemble methods demonstrates clear performance ad
vantages of MPML, particularly when expert knowledge and diverse 
perspectives are incorporated into the learning process. Top-performing 

models are indicated in bold.
The most notable results come from the MPML (cardio_expert_and_

stat_grouping) configuration, which significantly outperforms all other 
methods with an accuracy of 0.852, F1 Score of 0.851, precision of 
0.858, and recall of 0.852. Even the simpler MPML setup, car
dio_all_expert_grouping, achieves 0.772 accuracy, surpassing all tradi
tional ensemble methods, including Boosting and Random Forest with 
100 base classifiers.

Traditional ensemble methods show consistent but limited im
provements as the number of base classifiers increases. For example, 
Boosting with 100 classifiers reaches 0.738 accuracy, while reducing the 
number to 36 classifiers yields 0.738 accuracy, indicating a performance 
plateau. Similarly, Random Forest and Bagging exhibit minor variations 
in performance regardless of the ensemble size.

The MPML approach not only enhances predictive accuracy but also 
improves the balance between precision and recall, which is evident 
from the nearly identical values across all evaluation metrics for the best 
MPML configuration. These results underscore the effectiveness of 
MPML in producing more robust and reliable models compared to 
conventional ensemble methods.

6.3.2. Paired t-test comparison (with cardiovascular disease dataset)
The paired t-test results demonstrate that MPML significantly out

performs traditional ensemble models, including Boosting, Bagging, and 
Random Forest, across all key evaluation metrics: accuracy, precision, 
recall, and F1 score. The t-statistics for these comparisons are excep
tionally high, ranging from approximately 66 to 130, with p-values 
consistently below 0.05, indicating that the performance improvements 
seen with MPML are statistically significant and extremely unlikely to be 
due to random chance. Importantly, the magnitude of these t-statistics 
far exceeds typical thresholds for significance, meaning the differences 
observed are not subtle but reflect strong, measurable advantages in 
favour of MPML. Notably, MPML achieves these superior results with 
only 36 base classifiers, while the competing models utilize 100 or more, 
highlighting MPML’s efficiency.

These results emphasize that MPML delivers more reliable and 
balanced predictions, particularly in scenarios where both high preci
sion and recall are essential. The most significant statistical gains are 
observed in recall and F1 score, where large positive t-statistics reflect 
MPML’s ability to correctly identify more positive instances without 
sacrificing precision, which is crucial in domains like healthcare or fraud 
detection. The extremely high t-statistics across all metrics not only 
confirm statistical significance for individual model comparisons, but 
also signal that MPML’s advantages are substantial and consistent across 
different performance dimensions.

6.4. Interpreting the MPML model

In this section, we present a systematic approach to deconstructing 
and visualizing the inner workings of the MPML model in a manner that 
is accessible to non-technical audiences. This is achieved by extracting 
and interpreting feature impact scores and feature directions. The 
feature impact score quantifies the degree to which a specific feature 
influences the model’s prediction for a given instance, providing insight 
into the feature’s contribution to the decision-making process. In par
allel, the feature direction indicates the directional influence of the 
feature, specifying toward which class the feature shifts the model’s 

Table 4 
Summary of McNemar Test Results for MPML Models vs. Random Forest Baselines.

Comparison MPML (Correct) RF (Correct) p-value Significance Better Performing Model

MPML Stacking (GaussianNB) 23 vs. Random Forest 23 8 10 0.8145 Not significant None (models equivalent)
MPML Stacking (DT) 23 vs. Random Forest 23 12 25 0.047 Significant (p < 0.05) Random Forest 23
MPML Blending (DT) 23 vs. Random Forest 23 20 8 0.036 Significant (p < 0.05) MPML Blending (DT)
MPML Blending (DT) 23 vs. Random Forest 1000 16 3 0.0044 Highly significant (p < 0.01) MPML Blending (DT)
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prediction. Together, these components offer a transparent, interpret
able view of the model’s behaviour, enhancing both understanding and 
trust in the system’s outputs.

To support this interpretability framework, the model leverages Platt 
Scaling, specifically the sigmoid method, to convert raw decision scores 
from the decision tree classifier into calibrated probability estimates. 
Platt Scaling is a well-established technique for transforming the raw 
output scores of classification models into calibrated probability esti
mates (Böken, 2021), thereby enhancing both the interpretability and 
the reliability of the model’s probabilistic predictions. This is imple
mented using the CalibratedClassifierCV class from scikit-learn with the 
'sigmoid' option, where the model is trained with 5-fold cross-validation 
to ensure reliable probability calibration.

For the interpretation examples presented in this study, we utilize 
the model developed for heart disease prediction, trained on the heart 
disease dataset. The interpretability analysis is conducted using per
spectives, which represent groups of related features generated through 
the Model Importance Grouping method described in the previous 
section.

6.4.1. Local interpretations
The feature impact scores presented in Table 5 illustrates how indi

vidual features influence the model’s prediction for specific instances, 
providing critical insights into the interpretability of the MPML model. 
In the first example, where the actual class is 1 (presence of heart dis
ease), the model initially predicts class 1 with a high probability of 
0.7992 using Platt Scaling. Upon systematically removing features, we 
observe that the probability of class 1 decreases when key features like 
chest_pain_type, cholesterol, max_heart_rate, and oldpeak are omitted. The 
calculated feature impact scores confirm that each of these features 
contributes positively toward classifying the instance as heart disease, 
with chest_pain_type showing the most significant impact (0.1252 with 
Platt Scaling). The directionality indicated by the “Feature Pull Direc
tion” column reveals that these features collectively pull the model’s 
prediction toward class 1, reinforcing the classification of heart disease. 
The interpretability derived from these impact scores allows stake
holders, including non-technical audiences, to understand not only 
which features are influential but also how they shape the final 
prediction.

Fig. 7 visually represents the feature impact scores and direc
tionality for a specific instance within the MPML model. In this 
example, the outer circle labelled Perspective 1 groups the features that 
contributed to the model’s prediction for an instance where the true 
class is 1 (Heart Disease). The arrows indicate the direction in which 
each feature influences the model’s prediction.

The weight of each circle represents the magnitude of the feature 
impact score, while the direction of the arrow illustrates which class the 
feature pulls the prediction toward. The feature chest_pain_type has the 
strongest positive influence in pushing the model’s prediction toward 

Class 1 (Heart Disease). Other features, such as oldpeak (impact score of 
0.040), max_heart_rate (0.005), and cholesterol (0.003), contribute to a 
lesser extent but still collectively pull the prediction toward the correct 
class.

This visual representation enhances model interpretability by mak
ing it clear not only which features were influential but also how 
strongly and in which direction they affected the final classification. 
This could allow both technical and non-technical stakeholders to 
intuitively grasp the internal decision-making process of the MPML 
model, reinforcing confidence in the system’s predictions and its ability 
to provide transparent, instance-level explanations for high-stakes ap
plications like heart disease detection.

The results presented in Table 6 provide critical insights into the 
interpretability of the MPML model by evaluating how individual fea
tures within Perspective 1 influence the model’s prediction for a spe
cific instance where the true class is 1 (Heart Disease). In this case, the 
model incorrectly predicted Class 0 (No Heart Disease) with a rela
tively high confidence of 81.4 %. Systematically removing features re
veals that each contributes to pulling the model’s prediction toward 
Class 0, as indicated by the negative feature impact scores across all 
features.

Notably, chest_pain_type and cholesterol exert the most substantial 

Table 5 
Performance Comparison on Cardiovascular Disease Dataset.

Method Accuracy F1 Score Precision Recall Base Classifiers

Naive Bayes 0.595 0.444 0.713 0.323 N/A
Decision Tree 0.635 0.638 0.634 0.642 N/A
SVM 0.605 0.589 0.616 0.563 N/A
Bagging (estimator=DecisionTree) 0.714 0.712 0.721 0.702 100
Boosting 0.738 0.73 0.754 0.708 100
Random Forest 0.717 0.714 0.725 0.705 100
MPML (cardio_all_expert_grouping) 0.772 0.771 0.775 0.772 20
MPML (cardio_expert_and_stat_grouping) 0.852 0.851 0.858 0.852 36
Bagging (estimator=DecisionTree) 0.706 0.699 0.718 0.682 20
Boosting 0.734 0.724 0.756 0.694 20
Random Forest 0.711 0.704 0.724 0.685 20
Bagging (estimator=DecisionTree) 0.710 0.705 0.720 0.691 36
Boosting 0.738 0.732 0.750 0.715 36
Random Forest 0.711 0.707 0.720 0.694 36

Fig. 7. Feature Impact (for a single instance) and Directionality Visualization 
for Perspective 1.
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influence, with impact scores of ¡0.3686 and ¡0.3654, respectively, 
suggesting that these features significantly reinforced the incorrect Class 
0 prediction. Similarly, max_heart_rate and oldpeak also contributed 
to the misclassification, though to a lesser extent. The consistent pull 
direction of all features toward Class 0 highlights how the model’s in
ternal representation of this instance was dominated by feature patterns 
associated with the absence of heart disease, leading to an erroneous 
outcome. This type of analysis is vital for identifying systematic biases or 
weaknesses in the model and informs potential avenues for feature 
refinement, data augmentation, or model retraining to improve pre
diction reliability, particularly in critical healthcare applications.

The results presented in Table 7 evaluate the impact of removing 
individual “perspectives” on the prediction probability for a given 
instance where the actual class is 1 and the predicted class is also 1. The 
baseline probability with all features included shows a strong prediction 
confidence for Class 1 (98.87 %). When Perspective 1 is removed, the 
probability for Class 1 drops significantly to 90.26 %, resulting in a 
Perspective Impact Score of 0.0861, indicating that this perspective 
strongly supports the model’s confidence in Class 1. The Perspective 
Pull Direction for Perspective 1 is towards Class 1, showing that its 
removal weakens the model’s belief in Class 1. Conversely, the removal 
of Perspective 2, Perspective 3, and Perspective 4 has negligible 
impact on the prediction, with minimal changes in probability (Impact 
Scores near 0), suggesting these perspectives contribute little to the 
model’s confidence for this particular prediction. Notably, Perspective 3 
shows no measurable impact, confirming its irrelevance in this context. 
Overall, the table indicates that Perspective 1 plays a significant role in 
supporting the prediction, while the other perspectives have little to no 
influence.

This local-level insight into the model’s decision-making process can 
be highly valuable for clinicians evaluating whether the model’s 
reasoning aligns with established medical standards and clinical judg
ment. By isolating the impact of individual features or “perspectives,” as 
shown in Table 9, clinicians can assess whether the factors the model 
relies on to make confident predictions correspond to medically relevant 
indicators. Such transparency allows for critical, case-specific review, 
enabling clinicians to interpret whether the model is making decisions 
consistent with evidence-based practice. Ultimately, this process can 
foster either greater trust and adoption or necessary scepticism and 
further refinement.

Fig. 8 presents a visual breakdown of how the MPML (Multi- 
Perspective Machine Learning) model combines different perspectives to 
arrive at a final prediction for a specific instance. The diagram shows 
that Perspective 1 contributes the most to the model’s confidence in 

predicting Class 1, with an impact score of 0.086, while the other per
spectives show minimal or no meaningful influence. Visualizations like 
this could help users, such as clinicians, gain insight into how the model 
arrives at its decision for an individual case by highlighting which 
perspectives the model depends on. This form of local interpretability 
may support users in determining whether the model’s reasoning aligns 
with clinical expectations or established medical knowledge. This 
approach lays the groundwork for global interpretations, as system
atically analysing local behaviours across multiple instances can reveal 
consistent patterns of perspective importance, biases, or shortcomings 
within the model.

Table 8 shows how the model’s predicted probability of heart disease 
changes when individual features are removed. With all features 
included, the model already leans toward predicting heart disease for 
this patient, with a probability of 0.6544. Each subsequent row in the 
table represents the effect of removing one feature and recalculating the 
prediction to see how much that feature influenced the outcome. The 
Feature Impact Score and the Perspective Pull Direction indicate 
whether the presence of a given feature is pushing the model toward 
predicting Class 0 (no heart disease) or Class 1 (heart disease). If 
removing a feature increases the predicted probability of heart disease, 
it means that the feature was acting as a protective signal, its presence 
was helping the model lean toward “no heart disease.” Conversely, if 
removing a feature lowers the predicted probability of heart disease, the 
feature was acting as a risk signal, contributing evidence toward a heart 
disease prediction.

When the systolic blood pressure feature (ap_hi) is removed from the 
model, the predicted probability of heart disease decreases slightly, from 
0.6544 to 0.6184. The positive Feature Impact Score indicates that 
systolic blood pressure is pulling the model toward Class 1 (heart dis
ease). In practical terms, this means the patient’s actual systolic value 
provides some evidence in favour of heart disease. This aligns with well- 
established clinical findings: elevated systolic blood pressure is a strong, 
independent predictor of cardiovascular and coronary events 
(Palaniappan et al., 2002). Large cohort studies consistently show that 
systolic blood pressure is often the most important blood-pressure 
measure for predicting cardiovascular mortality in both untreated and 
treated individuals. Recent research further confirms that systolic hy
pertension remains a major driver of adverse cardiovascular outcomes, 
even after accounting for diastolic pressure and other contributing fac
tors (Fernández-Ruiz, 2019). Therefore, the model’s interpretation in 
treating higher systolic BP as a risk-enhancing factor is entirely consis
tent with the medical literature.

When the diastolic blood pressure feature (ap_lo) is removed, the 
predicted probability of heart disease increases slightly, from 0.6544 to 
0.6622. The negative Feature Impact Score indicates that diastolic 
pressure is pushing the model toward Class 0, meaning the patient’s 
actual diastolic value acts as a weak protective signal. The effect is 
modest, especially compared with more influential features such as age 
and physical activity. This pattern aligns with the mixed findings in the 
cardiovascular literature: while systolic blood pressure is generally 
recognized as the stronger predictor of cardiovascular disease risk, 
particularly in older adults, diastolic pressure still has prognostic 
importance (Benetos et al., 2002). Both elevated diastolic pressure (as in 
isolated diastolic hypertension) and excessively low diastolic pressure in 
patients with coronary disease have been associated with adverse out
comes (Yano et al., 2022). Therefore, the model’s treatment of diastolic 
blood pressure as having a smaller, partially protective influence for this 
patient is reasonable and consistent with established clinical under
standing that systolic pressure typically contributes more to overall 
cardiovascular risk stratification than diastolic pressure.

When the age feature is removed, the model’s predicted probability 
of heart disease increases dramatically from 0.6544 to 0.8271. This large 
negative Feature Impact Score indicates that age is acting as a strong 
protective factor for this patient. In practical terms, the model is effec
tively saying that because this patient is approximately 44 years old, 

Table 6 
Feature Impact scores for Perspective 1 - Actual Class = 1 (Prediction - 1).

Features 
(Removed)

Probability: 
Class 0

Probability: 
Class 1

Feature 
Impact 
Score

Feature 
Pull 
Direction

All Features 0.2008 0.7992 - -
chest_pain_type 0.326 0.674 0.1252 Class 1
cholesterol 0.2041 0.7959 0.0033 Class 1
max_heart_rate 0.2061 0.7939 0.0053 Class 1
oldpeak 0.2414 0.7586 0.0406 Class 1

Table 7 
Feature Impact scores for Perspective 1 - Actual Class = 1 (Prediction - 0).

Features 
(Removed)

Probability: 
Class 0

Probability: 
Class 1

Feature 
Impact 
Score

Feature 
Pull 
Direction

All Features 0.814 0.186 - -
chest_pain_type 0.4454 0.5546 ¡0.3686 Class 0
cholesterol 0.4486 0.5514 ¡0.3654 Class 0
max_heart_rate 0.5849 0.4151 ¡0.2291 Class 0
oldpeak 0.7705 0.2295 ¡0.0435 Class 0
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they are less likely to have heart disease than their other risk factors 
alone would suggest. This interpretation makes sense given the typical 
age distribution of heart disease: although age is one of the strongest 
non-modifiable risk factors for cardiovascular disease, risk increases 
most steeply in older adults (Rodgers et al., 2019). Large epidemiolog
ical studies and widely used risk calculators consistently highlight age as 
a central driver of cardiovascular risk (Zhao et al., 2024). However, this 

also means that individuals who are significantly younger than the 
typical heart-disease population, such as this 44-year-old patient, often 
receive a “protective” adjustment from the model. Thus, the model’s 
behavior aligns with clinical understanding: while age increases car
diovascular risk overall, for comparatively younger individuals in a 
high-risk dataset, age acts as a mitigating factor, reducing the predicted 
likelihood of heart disease.

Fig. 8. Perspective Contribution Breakdown for a single instance.

Table 8 
Perspective Impact for a given instance - Actual Class = 1 (Prediction - 1).

Perspective 
(Removed)

Probability: 
Class 0

Probability: 
Class 1

Perspective 
Impact 
Score

Perspective 
Pull 
Direction

All Features 0.0113 0.9887 - -
Perspective 1 0.0974 0.9026 0.0861 Class 1
Perspective 2 0.0114 0.9886 0.0001 Class 1
Perspective 3 0.0113 0.9887 0 None
Perspective 4 0.0114 0.9886 0.0001 Class 1

Table 9 
Feature Impact scores for Perspective 7 - Actual Class = 1 (Prediction - 1).

Features 
(Removed)

Probability: 
Class 0

Probability: 
Class 1

Feature 
Impact 
Score

Feature 
Pull 
Direction

All Features 0.3456 0.6544 - -
ap_hi 0.3816 0.6184 0.0144 Class 1
ap_lo 0.3378 0.6622 ¡0.0079 Class 0
age 0.1729 0.8271 ¡0.1727 Class 0
active 0.5758 0.4242 0.2318 Class 1
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Understanding that the patient is physically active (active = 1), the 
results reveal an important insight into how the model is interpreting 
this variable. With all features included, the predicted probability of 
heart disease is approximately 0.65. However, when the active feature is 
removed, the probability drops substantially to around 0.42. This means 
that the presence of active = 1 is increasing the model’s estimate of heart 
disease risk. Clinically, this is counterintuitive: being physically active is 
widely recognized as protective against cardiovascular disease, while 
inactivity increases risk (Perry et al., 2023). The only reasonable inter
pretation is that the model has learned a dataset-specific pattern in 
which “active = 1″ correlates with heart disease, even though this 
relationship does not hold physiologically. This likely reflects sampling 
bias, confounding, or noise in self-reported lifestyle data rather than a 
genuine causal link. Importantly, this example highlights the strength of 
the MPML framework used here: it exposes hidden or misleading asso
ciations within the model, giving users critical insight into when the 
model’s reasoning is trustworthy and when caution is warranted.

6.4.2. Global interpretations
Global interpretations are derived by aggregating the impact scores 

of individual features across all instances within each perspective and 
calculating the average contribution of each feature towards a particular 
class direction. Similar to local interpretations, this process is conducted 
separately for each perspective; however, rather than focusing on a 
single instance, it provides a broader overview of the general influence 
that each feature and perspective exert on the model’s overall behav
iour. Below, we examine the global impact score for a single feature and 
a single perspective. This approach enables the identification of 
consistent patterns, feature dependencies, or potential sources of bias at 
the global level, offering insights into the model’s alignment with 
domain-specific knowledge and its potential reliability in real-world 
applications.

Fig. 9 provides a global interpretation of the MPML model’s behav
iour by illustrating the average influence of the feature chest_pain_type 
across all predictions in the dataset. The central value (0.0282) repre
sents the mean impact score of the feature, quantifying its overall 
contribution to the model’s decision-making process. Arrows extend 
from the central node to indicate the direction and magnitude of this 
feature’s influence toward each class: 0.0693 toward Class 0 (No Heart 
Disease) and 0.0030 toward Class 1 (Heart Disease).

This visualization reveals that chest_pain_type contributes more 
strongly to predictions of the absence of heart disease than to its pres
ence. The thickness and directionality of the arrows help identify how 
the model leans when interpreting this feature. Such global insights are 
critical for validating whether the model’s logic aligns with clinical 
understanding. If the model’s weighting of chest pain types reflects 
known medical risk factors, its use in decision support may be justified. 
Conversely, disproportionately low or high influence toward either class 
could signal underlying bias or overfitting, warranting further analysis. 

As such, visual tools like this support interpretability, transparency, and 
trust in clinical ML applications.

Fig. 10 provides a global interpretation of the internal behaviour of 
Perspective 1, highlighting how feature-level contributions within a 
single perspective influence the model’s overall decision-making pro
cess. The large outer circle represents the aggregated behaviour of the 
perspective, with an overall impact score of 0.0204. The two large ar
rows extending from the perspective indicate its average (across all in
stances) directional influence toward each class: 0.2075 toward Class 
0 (No Heart Disease) and 0.1934 toward Class 1 (Heart Disease).

Inside the perspective, individual features—chest_pain_type, choles
terol, max_heart_rate, and oldpeak—are shown with their own average 
impact scores. Among these, chest_pain_type (0.0282) exhibits the highest 
influence, followed by max_heart_rate (0.0132), oldpeak (0.0114), and 
cholesterol (0.0073). Each feature also has directional arrows indicating 
whether its contribution leans more toward predicting heart disease or 
not.

This type of visualization can help users evaluate whether the 
model’s learned importance for each feature aligns with clinical 
reasoning. For instance, chest pain type being the most influential factor 
supports known medical insights, whereas lower scores for cholesterol 
and oldpeak might invite further scrutiny. If unexpected patterns are 
observed—such as medically irrelevant features dominating pre
dictions—it may highlight potential sources of bias. Overall, such 
perspective-level views enhance transparency and can guide validation, 
trust, and refinement of the model in clinical settings.

Fig. 11 presents a global summary of how each perspective (P1 to P4) 
contributes to the final prediction within the MPML ensemble when 
using the stacking combination method. The large outer circle repre
sents the ensemble-level decision space, with the arrows indicating the 
directional influence toward each class: 0.4269 toward Class 0 (No Heart 
Disease) and 0.5731 toward Class 1 (Heart Disease).

Inside the ensemble, each sub-circle represents a specific perspective. 
Perspective 1 (P1) demonstrates the highest impact score (0.0204), 
indicating it is the most influential contributor to the final prediction. 
Perspective 2 (P2) exerts a minimal influence (0.0001), while Perspec
tives 3 and 4 (P3 and P4) show no measurable impact in this instance 
(0.0000), suggesting their contribution to the ensemble’s final decision 
was negligible.

This visualization enables users to understand not only which per
spectives are active but also how much they shape the model’s outcome. 
The arrows illustrate how these perspectives influence the predicted 
class directionally, reinforcing the interpretability of the ensemble 
structure. If high-impact perspectives, like P1, are based on medically 
meaningful features, this can affirm the clinical validity of the model. 
However, the inactivity of P3 and P4 could either reflect redundancy or 
insufficient signal, which may warrant further investigation.

Overall, such ensemble-level explanations provide transparency into 
how stacked predictions are constructed, making it easier to verify 
whether the ensemble relies on robust, clinically grounded insights—or 
if adjustments to grouping, weighting, or architecture are needed before 
deployment in sensitive domains like healthcare.

7. Discussion and limitations

7.1. Discussion

The results from both the Heart Disease and Cardiovascular Disease 
datasets provide compelling evidence of the superiority of the Multi- 
Perspective Machine Learning (MPML) framework over traditional 
machine learning and ensemble methods. Across both datasets, MPML 
consistently delivers higher predictive performance while maintaining a 
more compact model structure, which is particularly advantageous for 
real-world applications such as healthcare, where computational effi
ciency and interpretability are essential.

In the Heart Disease dataset, conventional classifiers such as Naive Fig. 9. Global impact score of a single feature.
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Fig. 10. Global impact of a single Perspective.
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Bayes, Decision Trees, and SVM demonstrated limited predictive power, 
with SVM yielding notably poor results across all metrics. While stan
dard ensemble methods like Bagging, Boosting, and Random Forest 
significantly outperformed these baselines, MPML achieved comparable 
or superior results with fewer base classifiers. For example, MPML with 
expert grouping using only 7 base classifiers achieved an accuracy of 
0.92475, outperforming Boosting with 100 classifiers. The advanced 
MPML configurations that combine mutual information, correlation 
analysis, PCA, model importance, and expert knowledge further 
improved performance, achieving an exceptional accuracy and F1 score 
of 0.997 using 23 base classifiers. In contrast, traditional ensemble 
methods required up to 1000 base classifiers to approach, but not match, 
this level of performance.

The paired t-test comparisons reinforced these findings, demon
strating that MPML’s performance advantages are not only consistent 
but also statistically significant. Across accuracy, precision, recall, and 
F1 score, MPML significantly outperformed Boosting, Bagging, and 
Random Forest, with p-values at or near zero and t-statistics as high as 
18.12. These results underscore MPML’s ability to deliver both high 
performance and efficiency, offering more reliable predictions with 
fewer computational resources.

A similar pattern emerged with the Cardiovascular Disease dataset, 
where traditional ensemble methods achieved modest performance 
improvements with increased base classifiers, yet plateaued well below 
MPML’s best configurations. Notably, the MPML configuration that 
combined statistical feature grouping with expert-driven grouping 
achieved an accuracy of 0.852 and similarly high precision, recall, and 
F1 scores, substantially outperforming all competing models, including 
those with significantly higher ensemble sizes. Even the simpler MPML 
setup outperformed Bagging, Boosting, and Random Forest, reinforcing 
the value of integrating diverse perspectives, including domain 

expertise, into the learning process.
The paired t-test results on this dataset provided even stronger sta

tistical evidence of MPML’s superiority. With t-statistics exceeding 100 
for accuracy comparisons and similarly large values for precision, recall, 
and F1 score, the differences were not only statistically significant but 
also practically substantial. These findings illustrate MPML’s robustness 
and its ability to generalize effectively across different datasets and 
problem domains.

Within Perspective 1 key features such as chest pain type, choles
terol, oldpeak, and maximum heart rate emerged as highly influential 
across all instances. This aligns with their established significance in 
cardiovascular risk assessment. Chest pain type has been consistently 
identified as a critical diagnostic indicator for heart disease, differenti
ating between typical angina, atypical angina, and non-anginal pain 
patterns associated with ischemic events (Végh et al., 2024). Elevated 
serum cholesterol levels are well-documented contributors to athero
sclerosis and coronary artery disease, directly impacting predictive 
models’ ability to assess risk (Logan et al., 2020, 2024; R. Raja, 2025). 
Similarly, oldpeak, which measures ST-segment depression induced by 
exercise relative to rest, provides crucial information about myocardial 
ischemia and has been recognized as a robust predictor of cardiovascular 
outcomes in stress test evaluations (Savchuk & Doroshenko, 2025). 
Maximum heart rate achieved during exercise testing reflects cardiac 
reserve capacity and is strongly correlated with cardiovascular health 
and disease risk (Islam et al., 2024). The prominence of these features 
within MPML underscores its capacity to prioritize clinically relevant 
parameters, reinforcing both its predictive validity and potential for 
clinical adoption. This could strengthen trust in AI-assisted decision 
support systems.

A key advantage of the MPML framework lies in its ability to main
tain both high predictive performance and interpretability. Unlike 

Fig. 11. Global impact of all Perspectives on each class.
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traditional ensemble methods, which often operate as black boxes, 
MPML incorporates mechanisms for interpreting model behaviour, such 
as feature importance rankings derived from its diverse grouping stra
tegies. This combination of transparency and predictive strength makes 
MPML well-suited for sensitive domains like healthcare, where under
standing model outputs is critical for building trust and ensuring 
responsible decision-making. The interpretability provided by MPML 
not only aids in model validation but also allows clinicians and domain 
experts to trace predictions back to relevant features and perspectives, 
aligning machine learning outputs with human expertise.

To further support responsible AI deployment in healthcare, it is 
essential to consider how MPML addresses concerns related to bias, 
patient consent, and fairness in decision-making. Machine learning 
models trained on clinical data are susceptible to biases that stem from 
imbalanced datasets, underrepresentation of subpopulations, or sys
temic disparities in care. MPML mitigates these risks by allowing feature 
groupings to be informed by domain knowledge, enabling models to be 
audited not only globally but also at the perspective level. This makes it 
possible to assess whether certain demographic or clinical subgroups are 
disproportionately influencing predictions or receiving skewed out
comes. Furthermore, MPML’s layered interpretability enables trans
parent communication of how and why a specific decision was made, 
facilitating better-informed discussions with patients and healthcare 
providers. This transparency supports the ethical imperative of informed 
patient consent, where individuals must understand how automated 
tools influence their care. By clearly attributing predictions to specific, 
meaningful feature groups (e.g., lab results, symptoms, demographics), 
MPML enhances accountability and fairness, reducing the risk of opaque 
or unjust recommendations and aligning machine learning predictions 
with the principles of equitable, patient-centered care.

MPML is particularly well-suited to domains where interpretability is 
critical and where rich domain knowledge already exists, such as car
diovascular medicine with its extensive risk scores and clinical guide
lines. In such settings, the upfront cost of expert-guided perspective 
construction is justified by the resulting transparency and alignment 
with clinical practice.

7.2. Limitations

Despite its demonstrated strengths, the MPML framework is not 
without limitations. One notable drawback is the overhead associated 
with setting up the various perspectives that underpin the model’s multi- 
faceted design. Unlike traditional ensemble methods such as Bagging or 
Random Forest, which automatically generate diverse feature subsets or 
data samples, MPML requires a deliberate and often time-consuming 
process to group features into predefined categories based on domain 
knowledge or statistical criteria. This setup phase introduces additional 
complexity and may slow down deployment, particularly in scenarios 
where expert input is limited or unavailable.

Another limitation of MPML relates to the computational cost of 
obtaining impact scores for global interpretation. Generating these in
terpretations requires running the model iteratively for the number of 
features involved, which can be computationally expensive, especially 
for datasets with a large number of features. While the global in
terpretations provide valuable insights into feature importance and 
model behaviour, they are effectively static unless the model is 
retrained. Consequently, if new data becomes available or if the feature 
space evolves, the interpretation process must be repeated, further 
adding to the computational demands.

These limitations imply that while MPML offers significant perfor
mance and interpretability advantages, its adoption may be constrained 
by resource availability and the need for expert-driven feature grouping. 
Future work should explore automating aspects of the perspective setup 
process and optimizing the computational efficiency of impact score 
calculations to broaden the framework’s accessibility and scalability.

A formal prospective evaluation, such as user-centred studies with 

clinicians or deployment within a live clinical workflow, was beyond the 
scope of this study, but remains essential for establishing the real-world 
utility and practical impact of the MPML framework.

8. Conclusion and future work

8.1. Conclusion

The Multi-Perspective Machine Learning (MPML) model proposed in 
this study has demonstrated clear advantages over traditional classifiers 
and ensemble methods across multiple datasets. MPML consistently 
outperformed standard models such as Bagging, Boosting, and Random 
Forest in both predictive accuracy and overall evaluation metrics, even 
when using significantly fewer base classifiers. This efficiency, com
bined with superior performance, highlights MPML’s potential as a 
reliable and scalable solution for complex classification tasks, particu
larly in healthcare.

Beyond raw performance, MPML also addresses a critical gap in 
conventional ensemble methods by providing interpretable impact 
scores that reveal the relative influence of individual features on model 
predictions. This transparency is particularly valuable in medical ap
plications, where clinician trust and alignment with domain knowledge 
are essential. The integration of expert-driven feature grouping, statis
tical perspectives, and dimensionality reduction allows MPML to deliver 
not only high predictive accuracy but also meaningful, interpretable 
outputs that align with clinical reasoning.

However, while MPML succeeds in enhancing both performance and 
interpretability, several important limitations remain that warrant 
attention in future work. Most notably, the computation of global impact 
scores currently requires multiple model runs, which may become 
computationally expensive for large or high-dimensional datasets. 
Because these scores are generated from a fixed training distribution, the 
resulting global interpretations are also static and may become outdated 
as underlying data distributions shift over time. Future research should 
therefore explore more efficient and adaptive techniques for generating 
global interpretability outputs, as well as methods to streamline the 
perspective setup process and ensure that MPML continues to capture 
the full complexity of clinical scenarios. Overall, the findings of this 
study position MPML as a high-performing, interpretable, and efficient 
ensemble framework with strong potential for deployment in sensitive, 
high-stakes domains such as healthcare.

A key limitation of this study is that we did not perform a formal 
evaluation of interpretability with clinicians or other end-users, nor did 
we deploy MPML in a real clinical workflow. The qualitative expert 
review we report provides only preliminary support for clinical plausi
bility. Future work should therefore include controlled user studies and 
prospective evaluations that measure the impact of MPML’s explana
tions on clinical decision-making, workload, and trust.

8.2. Future work

Future research will also focus on validating the MPML model in real- 
world clinical settings. Although the model has shown promise in 
experimental conditions, integrating it into clinical workflows is 
essential. By collaborating with healthcare professionals, we will gather 
feedback to refine the model, ensuring it enhances decision-making and 
patient outcomes in practice. Furthermore, to assess the generalizability 
of the MPML approach, we will apply the framework to different 
healthcare datasets. This will test the model’s robustness and accuracy 
across diverse clinical domains, identifying potential limitations and 
ensuring it remains effective in various settings.

Another critical area of focus is enhancing the completeness of the 
MPML model. This involves ensuring that all relevant factors and in
teractions are captured, providing a more comprehensive view of the 
decision-making process for clinicians. By refining the model to account 
for complex relationships within the data, we aim to provide healthcare 
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professionals with a more reliable tool for clinical decision support. 
These future directions will significantly enhance the practical utility, 
reliability, and interpretability of the MPML framework, bringing us 
closer to making AI-driven healthcare systems both transparent and 
trustworthy.

A primary focus for the future development of this work will be the 
establishment of a robust and reliable metric specifically designed for 
evaluating interpretable ensemble models. This metric would extend 
beyond traditional machine learning evaluation criteria to include 
measures of interpretability and comprehensiveness, particularly 
tailored to healthcare applications.

A valuable direction for future work is to systematically evaluate 
MPML’s training and inference times in comparison to standard 
ensemble models such as Bagging, Boosting, and Random Forest. While 
MPML offers enhanced interpretability through its multi-perspective 
structure, its computational demands—particularly due to training 
multiple sub-models and aggregating their outputs—may impact its 
suitability for real-time clinical applications.

Future studies should benchmark MPML against traditional ensem
bles using diverse clinical datasets to assess scalability, latency, and 
computational overhead under practical deployment scenarios. In 
particular, exploring optimizations for inference, such as model pruning, 
parallelization, or selective perspective invocation, could enhance 
MPML’s viability for time-sensitive tasks.

Additionally, the feasibility of modular updating and batch inference 
should be examined in dynamic clinical settings where data evolves and 
decisions are not always time-critical. Such evaluations will provide 
clearer guidance on when and how MPML can be deployed effectively in 
clinical decision-support systems.

A key limitation of MPML in its current form is the reliance on 
domain expertise for perspective construction. Defining clinically 
meaningful feature groups requires input from clinicians or other 
domain experts, which introduces additional effort and may limit scal
ability to settings where such expertise is scarce. This design choice was 
intentional, as it grounds perspectives in clinically interpretable con
structs, but it also means that fully automated deployment is not yet 
possible.

Future work should explore integrating or comparing MPML with 
automated feature-grouping and AutoML frameworks, such as NiaAML, 
to reduce the manual effort required for perspective construction and 
enhance scalability across domains with limited expert availability.
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