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Abstract

The exploitation of hierarchical information by vision models has shown signifi-
cant benefits in various segmentation tasks. However, this remains largely unexplored
in open-world scenarios, where models must cope with unknown, evolving, and un-
derrepresented labeled class spaces. Most existing hierarchy-aware segmentation ap-
proaches are not readily applicable to open-world settings. This is primarily because
they rely on architectural modifications that are incompatible with the design constraints
of open-world models. Moreover, hierarchy-aware losses are challenging to integrate
into such pipelines, as they often conflict with task-specific objectives and exacerbate
optimization complexity in already multi-objective training environments. In this work,
we demonstrate that hierarchy-aware losses can be effectively leveraged in open-world
models when optimized under a multi-objective learning framework. Specifically, we
show that gradient-based multi-objective optimization methods, such as multi-objective
gradient descent (MOGD), are well-suited for jointly optimizing hierarchical and task-
specific objectives, leading to better overall performance. To support this, we propose
SHW, a novel hierarchy-aware loss function based on the Wasserstein distance. SHW
is lightweight, model-agnostic, and encourages intra-class compactness and inter-class
separation across multiple semantic levels. The integration of SHW with MOGD yields
a general, model-agnostic framework that enables the effective exploitation of seman-
tic hierarchies in open-world segmentation tasks, improving the performance of several
recent methods.

1 Introduction

In computer vision tasks, the ability to understand and interpret a scene goes beyond rec-
ognizing individual objects. True visual understanding involves identifying the semantic
relationships between the objects present in the scene. These relationships encompass sev-
eral aspects, such as spatial positioning (how objects are arranged or oriented relative to
each other), functional interactions (the roles or actions that entities perform or are capable
of performing), and categorical associations (how objects are grouped based on similar or

© 2025. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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shared attributes). Such relationships provide context, enabling a more refined and accu-
rate interpretation of visual data. They often appear as hierarchies, which are structures that
gradually connect broad, generic categories to increasingly detailed and specific concepts.
Understanding the context of hierarchical relationships is fundamental in semantic segmen-
tation tasks, where images are partitioned into regions labeled with different object classes.
As the system learns typical spatial arrangements and inter-object relationships, it becomes
capable of producing more precise segmentation boundaries, with more accurate and less
uncertain label assignments.

In open-world tasks [24, 66], systems must adapt to an unpredictable and constantly
changing environment. In such scenarios, models must simultaneously address the following
challenges: handling imbalanced data distributions (imbalanced learning [46]), effectively
learning underrepresented classes (few-shot learning [51]), detecting samples from unknown
classes (open-set recognition [42, 59]), identifying what those unknown classes are (novel
class discovery [53]), and incrementally learning new classes without forgetting previously
acquired knowledge (class-incremental learning [64]). By exploring how classes are hierar-
chically related, it becomes possible to share knowledge among them, allowing models to
leverage previously learned patterns from other classes to make more informed predictions
under limited data conditions. This knowledge transfer benefits the learning of minority and
few-shot classes, since the model can exploit common features of a broader category to infer
about a specific class, as well as the learning of incremental classes, as the previously ac-
quired general knowledge can assist in assimilating new related concepts. Furthermore, the
understanding how classes relate to each other enables the model to construct embeddings
that are coherent with semantic relationships, bringing semantically related classes closer to-
gether and pushing unrelated ones apart, thus facilitating the recognition of pixels belonging
to unknown labels and the identification of novel classes.

Although some works in the semantic segmentation literature have explored semantic
hierarchies [27, 28, 32], most of these methods are designed for closed-world problems, in
which all classes are previously known and well-represented, limiting their applicability in
real-world scenarios. Consequently, such approaches struggle to address open-world chal-
lenges, which involve the presence of unknown or underrepresented classes and the need
for incrementally learning new classes. Existing open-world methods either overlook hi-
erarchical structures or address only isolated challenges. To the best of our knowledge, the
exploitation of class hierarchies remains unexplored in comprehensive open-world scenarios.

According to some of the most effective approaches [30, 31, 40] of hierarchical learning
in closed-world settings, one of the most common and effective ways to exploit semantic
hierarchies is through the use of hierarchy-aware losses. However, incorporating them into
existing open-world pipelines presents several challenges: I) Typically, open-world models
already include several loss terms. Adding another one increases training complexity and
makes it more difficult to achieve consistent results, both in terms of maintaining strong
performance on the main task and in effectively acquiring the knowledge provided by the
hierarchical loss. IT) The hierarchical losses proposed for semantic segmentation are incom-
patible with most open-world models, as they require specific modifications in the model
architecture that are prohibitive of being made in most open-world pipelines [27], such as
changing the meaning or structure of their output, or are conflicting with their main loss
objectives [40].

Toward overcoming challenge I, we investigate the idea of handling the several loss terms
of the open-world model as different objectives and employ model optimization through
multi-objective gradient descent, instead of aggregating them in a single objective (a.k.a.


Citation
Citation
{Kejriwal, Kildebeck, Steininger, and Shrivastava} 2024

Citation
Citation
{Zhu, Ma, Cheng, Zhang, Zhang, and Liu} 2024

Citation
Citation
{Saini and Susan} 2023

Citation
Citation
{Song, Wang, Cai, Mondal, and Sahoo} 2023

Citation
Citation
{Nunes, Laranjeira, Oliveira, and dos Santos} 2023

Citation
Citation
{Yang, Yue, Ghamisi, Zhang, Ma, and Fang} 2024

Citation
Citation
{Troisemaine, Lemaire, Gosselin, Reiffers-Masson, Flocon-Cholet, and Vaton} 2023

Citation
Citation
{Zhou, Wang, Qi, Ye, Zhan, and Liu} 2024{}

Citation
Citation
{Kwon, Jang, Kim, Kim, and Sohn} 2024

Citation
Citation
{Landrieu and Garnot} 2021

Citation
Citation
{Li, Bao, Zheng, and Xu} 2020

Citation
Citation
{Li, Zhou, Wang, Li, and Yang} 2022

Citation
Citation
{Li, Wang, Zhou, Quan, and Yang} 2023

Citation
Citation
{Muller and Smith} 2020

Citation
Citation
{Kwon, Jang, Kim, Kim, and Sohn} 2024

Citation
Citation
{Muller and Smith} 2020


E. PEREIRA ET AL.: HIERARCHICAL MULTI-OBJ. OPEN-WORLD SEGMENTATION 3

scalarization technique [22, 26]) as done by most works of the deep learning literature. Our
motivation is grounded in insights from the multi-objective optimization literature [11, 21,
45], which demonstrate that jointly optimizing multiple objectives enables a more effective
exploration of the solution space, leading to outcomes that better satisfy each objective in-
dividually. Based on this, we hypothesize that adopting a multi-objective framework can
enhance the optimization of hierarchical-aware losses without hindering, but also improving
the optimization of the primary objectives already present in open-world models.

To address challenge II, we introduce SHW (Semantic Hierarchy-Aware Wasserstein), a
novel loss function designed to enhance the hierarchical structure of learned feature represen-
tations. SHW explicitly enforces inter-class separation and intra-class compactness across
multiple semantic levels, encouraging a structured embedding space where pixel represen-
tations align with the underlying class hierarchy. By operating directly on the output of the
feature extractor, SHW remains agnostic to the model architecture, requiring no alterations
to the model architecture. This design ensures seamless integration into existing open-world
learning pipelines, regardless of the task-specific loss functions already in use, thereby pre-
serving compatibility. Furthermore, SHW leverages the Wasserstein distance [41, 58] to
compare class distributions. Unlike traditional distance metrics, the Wasserstein formulation
captures both the magnitude and the structural geometry of differences in the feature space.
This is particularly beneficial in open-world scenarios, where data distributions are non-
stationary, imbalanced, and subject to the emergence of previously unseen classes. The use
of Wasserstein distance allows SHW to be sensitive to these complexities, providing more
stable gradients, improved generalization to underrepresented or novel classes, and better
robustness to distributional shifts [35, 37], all of which are critical for scalable and adaptive
open-world systems.

Through the integration of our solutions for challenges I and II, we construct a unified
framework (MO-SHW) that enables open-world models to effectively leverage semantic
class hierarchies. Empirical results show that our framework effectively improves closed-
world segmentation and consistently enhances the performance of open-world models yield-
ing significant improvements for state-of-the-art methods in the sub-tasks of open-set seman-
tic segmentation and few-shot class-incremental semantic segmentation.

Summary of contributions:

i We are the first to enable the effective exploitation of class hierarchies in compre-
hensive open-world semantic segmentation, resulting in consistent improvements in
performance across multiple sub-tasks.

ii We introduce a model-agnostic hierarchy-aware representation learning framework
that augments open-world semantic segmentation pipelines with awareness of seman-
tic hierarchy. The framework offers seamless plug-and-play integration, requires no
modifications to the model architecture, ensures ease of adoption, and introduces only
minor computational and memory overhead.

iii We show that employing gradient-based multi-objective optimization significantly im-
proves training outcomes when using hierarchy-aware loss functions, by better balanc-
ing competing objectives.

iv We propose SHW, a novel Wasserstein-based hierarchy-aware loss function that en-
forces hierarchical consistency among pixel embeddings in open-world models.
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2 Background and Related Work

2.1 Open-World Semantic Segmentation

In real-world scenarios, systems usually operate in open long-tailed data scenarios [38],
where they have to continuously adapt and learn from limited and unseen data. When these
challenges are simultaneously encountered in the same scenario, they are studied under the
umbrella of Open World Recognition [38, 66] - a paradigm in machine learning that aims
to overcome the limitations of closed-world models by enabling them to recognize when
faced with something unknown and incorporate this new information into their learning
process. Ideally, open-world models must deal with several subtasks, such as imbalanced
learning [7], few-shot learning [10], open-set recognition [42], novel class discovery [63]
and class-incremental learning [60]. However, in the context of semantic segmentation,
only a few methods have been proposed to jointly handle more than one subtask. Some
methods [8, 16] separate the open-world problem in three sequential steps: (1) Open-Set Se-
mantic Segmentation (6.1.1), to classify pixels from known classes and recognize unknown;
(2) Manual labeling of unknown pixels (with human supervision), to group them in novel
classes; and (3) Few-Shot Class-Incremental Semantic Segmentation (6.1.2), to learn these
novel classes. Some other works [50, 54] replace step (2) with the use of automatic learning
strategies to identify novel classes, a.k.a. Novel Class Discovery. Open-World methods ex-
ploiting class hierarchies. While some existing methods leverage hierarchical relationships
among classes to address open-world challenges, they are tailored to tackle only specific sub-
tasks in isolation. For example, certain incremental learning approaches [20, 25] utilize class
hierarchy information to facilitate knowledge expansion. However, these methods are gen-
erally evaluated on closed-world benchmarks and do not address key open-world challenges
such as the handling of underrepresented or unknown classes. Our proposed methodology is
task-agnostic and seamlessly integrates into existing open-world pipelines providing plug-
and-play exploitation of semantic class hierarchies to a wide range of models and subtasks.
To the best of our knowledge, our work is the first to provide hierarchy-aware learning across
a broader spectrum of subtasks in the open world.

2.2 Hierarchy-Aware Semantic Segmentation

Several works in the semantic segmentation literature have been designed with the purpose
of exploring the information of class hierarchies. They usually exploit hierarchical informa-
tion through modifications in the network architecture, specific loss objectives, or learning
embeddings with hierarchical coherence. As they were typically designed for closed-world
problems, they are not properly equipped to effectively operate in more realistic data sce-
narios. Hierarchy-Aware Architectures [32, 33, 39, 56] encode the class hierarchy di-
rectly into the network structure. They typically construct structured neural modules, which
replicate the hierarchy semantics, to replace the class-agnostic segmentation head of exist-
ing standard segmentation models, producing a hierarchy-aligned architecture. This often
causes significant architectural modifications, hindering generality as the model becomes
more specific and complex, and leading to scalability issues, as the number of parameters
usually increases with the size of the hierarchy. Hierarchy-Aware Losses [40] are designed
to incorporate the class hierarchy into the learning process by directly penalizing predictions
that violate hierarchical relationships. These objectives are parameterized by the class hi-
erarchy, ensuring that the model’s predictions respect the structured relationships between
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classes. However, incorporating hierarchical losses can introduce additional complexity to
already intricate pipelines, such as those designed for open-world problems, burdening mod-
els that already feature multiple loss terms, complicating the training process, and conse-
quently hindering performance improvements. Hierarchy-Aware Embeddings [27, 30, 31]
aim to capture multiple levels of class abstraction within a single embedding representa-
tion, ensuring that similar or related classes are positioned closer together in the embedding
space, thus reflecting their hierarchical relationships. Specifically, some approaches [27]
parameterize the hierarchical embedding space using hierarchical models, which intuitively
organize embeddings to mirror the structure of the class hierarchy. These models are often
computationally intensive and require adjustments in the network architecture to accom-
modate different hierarchies. This leads to increased complexity and resource demands,
making them less practical for large-scale applications. Employing Hierarchy-Aware Ap-
proaches in Open-World Pipelines. Although the closed-world literature offers a variety
of hierarchy-aware methods (e.g. loss functions) that are relatively easy to integrate and have
shown promising result, these approaches are generally unsuitable for open-world segmen-
tation models. For instance, HSSN* [30, 31] introduces the Focal Tree-Min Loss, which
enforces hierarchy-consistent predictions, and the Tree-Triplet Loss, which imposes hierar-
chical separation margins on pixel embeddings across distinct semantic classes. However,
both rely on a multi-label classification paradigm that requires architectural changes incom-
patible with most open-world segmentation frameworks. Likewise, HCE [40] proposes a
hierarchy-aware cross-entropy formulation to account for inter-class hierarchical relations.
However, in open-world settings, where label spaces may be incomplete, dynamic, or un-
known, such objectives often conflict with the primary task losses, limiting their applicabil-
ity. To the best of our knowledge, no current hierarchy-aware semantic segmentation method
is directly compatible with open-world models without imposing significant constraints or
introducing incompatibilities.

3 Methodology

With the goal of enabling the effective exploitation of semantic hierarchies in open-world
segmentation models, we propose MO-SHW (Fig. 1) - a unified model optimization frame-
work that integrates two complementary components: the SHW loss (Section 3.2) and a
gradient-based multi-objective optimization (Section 3.1). This integration combines the
structural benefits of SHW, which enforces hierarchical organization in pixel embeddings
with seamless adaptability, with the broader exploratory capacity of multi-objective opti-
mization, which allows for a more balanced and principled trade-off among competing ob-
jectives. By employing gradient-balancing methods, our approach ensures the simultaneous
and efficient optimization of both task-specific and auxiliary hierarchy-aware losses. The fi-
nal framework is model-agnostic, lightweight, and easily integrable into existing open-world
pipelines. As demonstrated in our experiments, this joint formulation improves segmentation
performance across several open-world methods and different subtasks.

3.1 Multi-Objective Optimization for Hierarchy-Aware Open-World
Models

Deep learning models are traditionally trained using single-objective loss functions that ag-
gregate multiple objectives into a single scalar value through weighted sums - a method
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Figure 1: Overview of the proposed MO-SHW methodology. It comprises two key com-
ponents: (A) the Semantic Hierarchical Wasserstein (SHW) loss (Sec.3.2), which operates
directly on pixel class distributions explicitly enforcing inter-class separation and intra-class
compactness across multiple semantic levels to encourage a structured embedding space
where pixel representations are aligned with the underlying class hierarchy; and (B) a
multi-objective optimization strategy (Sec. 3.1) based on Gradient Descent (MOGD). Un-
like scalarization, which aggregates multiple objectives into a single weighted loss, MOGD
treats each objective independently, offering several advantages in terms of solution-space
exploration, parameter tuning, and convergence guarantees.

known as Scalarization [22, 26]. However, this approach has several limitations that can
hinder effective model training in complex, multi-objective optimization scenarios. Scalar-
ization often requires manual tuning of loss term weights, lacks convergence guarantees to
Pareto-optimal solutions, and is prone to suboptimal trade-offs - especially in non-convex or
conflicting objective settings [22]. It also struggles to identify "unsupported” yet valuable
solutions and is susceptible to gradient interference between tasks, which can destabilize
training and reduce optimization efficiency [14].

These limitations are especially critical in open-world scenarios, where models are re-
quired to simultaneously optimize a diverse set of objectives (e.g. segmentation accuracy,
novelty detection, and semantic consistency). The challenge is further exacerbated when
integrating additional objectives, such as hierarchy-aware losses, alongside task-specific
losses. In such complex multi-objective settings, scalarization tends to oversimplify the
optimization landscape, often leading to suboptimal solutions or unstable training dynamics.

To address these limitations, we reformulate model training as a multiobjective optimiza-
tion (MOO) problem. Our hypothesis is that treating each objective as a distinct optimization
target allows for a more principled and balanced training process. Rather than collapsing
all objectives into a single function, a MOO formulation enables simultaneous optimiza-
tion of multiple loss functions, which we expect to improve model optimization across both
standard and hierarchy-informed evaluation metrics alongside with its overall segmentation
performance.
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Among the available MOO strategies (detailed in Appendix 6.1.3), we adopt a gradient-
balancing algorithm due to its ability to effectively balance theoretical robustness with com-
putational efficiency. Unlike Pareto-based algorithms, which are computationally inten-
sive, or loss-weighting heuristics, which lack formal convergence guarantees, gradient-based
approaches scale well with modern deep learning pipelines while providing theoretically
grounded convergence to Pareto-stationary solutions [11]. Specifically, we adopt Aligned-
MTL [47] as our gradient-balancing multi-objective optimization algorithm due to its strong
empirical performance in recent comparative studies [34].

3.2 SHW: Semantic Hierarchy-aware Wasserstein Loss

Our goal is to design a loss function that encourages the model to learn feature represen-
tations aligned with the semantic structure of the class hierarchy, bringing embeddings of
semantically similar classes closer together while pushing apart those of semantically distant
classes. To ensure compatibility with a wide range of model architectures, the proposed loss
should not depend directly on the model’s output (e.g., predicted labels) or require any mod-
ifications to the architecture itself. To this end, we propose leveraging the Wasserstein dis-
tance D,, (Appendix 6.1.4), approximated via DbTSW [52], to act directly on pixel embed-
dings, reorganizing their structure in the feature space by comparing the distances between
their associated class distributions. The use of this distance is particularly advantageous for
open-world learning, as it enables the model to better capture semantic relationships [35, 36],
handle uncertainty, and deal more effectively with novel or out-of-distribution inputs [13].

We introduce a contrastive learning objective, Lsyw (Eq. 3), designed to compare class
distributions across multiple levels of a class hierarchy H, guided by two core principles:
promoting intra-class proximity (Eq. 1) and enforcing inter-class separation (Eq. 2). The first
component, Liny,, €ncourages each class node v to move closer to its parent class v,,, while
simultaneously pushing it away from all other non-parent classes u € I'(v) at the same higher
hierarchical level. The second component, Liner, aims to increase the separation between v
and its immediate siblings s € S(v), that is, the other child nodes sharing the same parent.
The overall loss is defined as:

eXp(_Dw(Va VP)) 1
Li, ra(V) = —log . - _
t ZMEF(V) exp(—DW(V, u) )(1) Lmter(V) = log Zses(v) exp(—Dw (V7 S)) 2)
Lsaw = Y 4i(v) (1L< (v)+ L (v)) 3)
SHW = 1 |F(V)‘ intra |S<V)| inter

where A, is a scaling parameter that imposes a fixed penalty based on a node’s position in
the class hierarchy. This is grounded in the intuition that distances in the feature space should
reflect the degree of semantic similarity: pairs of similar classes at deeper (more specific)
levels of the hierarchy should be pulled closer together, while pairs at higher (more general)
levels may tolerate greater separation. Accordingly, we apply stronger penalties to classes
at lower levels of the hierarchy and weaker penalties to those at higher levels. In this sense,
we define A;(v) = exp(1/(|L| — level(v)), where L is set of hierarchical levels, following the
formulation shown to outperform alternative penalty schemes in prior work [61].
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4 Experimental Evaluation

4.1 Multi-Objective Optimization for Hierarchy-Aware Losses

Table 1: Quantitative results of the comparison between model optimization strategies em-
ploying hierarchical-aware losses in the Cityscapes [12] dataset. Values in green indicate
MOGD gains against Scalarization.

Lo . Scalarization Multi-objective GD
Objective Functions
| CEloss| HAloss| mlIoU% 1 | CEloss| HA loss | mIoU% 1
CE (flat model) | 0.1891 — 80.97 | — — —
CE + HCE [40] [VISIGRAPP 20] 0.1830 0.1957 81.09 0.1697 (-0.0133)  0.1763 (-0.0194)  81.88 (+0.81)
CE + HSSN* [31] [TPAMI"23] 0.1755 0.3364 81.62 0.1659 (-0.0095)  0.3105 (-0.0259)  82.09 (+0.47)
CE + SHW (Section 3.2) 0.1673 -2.1563 82.03 0.1431 (-0.0242)  -2.4216 (-0.2653)  83.19 (+1.16)

This experiment aims to evaluate the effectiveness of our proposed multi-objective op-
timization strategy (described in Section 3.1) for training models with additional hierarchy-
aware losses, compared to the conventional single-objective scalarization approach. We eval-
uate these optimization strategies using three distinct loss functions: HCE [40], a widely
adopted formulation of hierarchy-aware loss in computer vision; HSSN* [31], currently
one of the best-performing methods for hierarchy-aware semantic segmentation in closed-
world settings; and our proposed SHW loss (see Section 3.2). Experimental Setup: Given
that HCE and HSSN* are not readily adaptable to open-world models (as discussed in
Section 2.2), this evaluation is conducted within a standard closed-world setting using the
Cityscapes dataset and the DeepLabV3+ architecture with a ResNet-101 backbone trained
for 90K iterations. See Appendix 6.2 for other details. Quantitative Results: As shown
in Table 1, the multi-objective optimization strategy led to consistent and substantial im-
provements across all evaluated loss functions. These results demonstrate that the proposed
approach can identify solutions that more effectively optimize the targeted objectives, all
within the same training budget. The observed improvements in individual loss metrics
align with insights from the multi-objective optimization literature [22], which suggest that
simultaneously optimizing multiple objectives enables a more thorough exploration of the
solution space, allowing superior trade-offs and better fulfillment of each objective. These
findings provide strong empirical support for our hypothesis that multi-objective optimiza-
tion not only enables the seamless incorporation of hierarchy-aware losses into open-world
segmentation models, but also improves overall performance by jointly enhancing both aux-
iliary (hierarchical) and primary (task-specific) learning. objectives. SHW in closed-world:
Although the primary objective of the proposed SHW loss is its employment in open-world
tasks (Section 4.2), experimental results also reveal strong performance in closed-world
settings. Specifically, SHW achieves a notable improvement of nearly 2% in mloU under
the multi-objective optimization framework when compared to standard flat segmentation.
Qualitative Results: please see Appendix 6.3.2.

4.2 [Evaluating the Proposed Framework in Open-World Pipelines

The following experiments are designed to evaluate the impact of our proposed framework
(MO-SHW), which combines the SHW loss with a multi-objective optimization strategy
using a gradient-balancing algorithm, on open-world semantic segmentation pipelines. To
ensure a comprehensive evaluation, we adopt a standard protocol in the open-world semantic
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segmentation literature and conduct independent assessments for each of the key subtasks:
open-set semantic segmentation and few-shot class-incremental semantic segmentation. A
more detailed description of the experimental setups is provided in Appendix 6.2.

Table 2: Quantitative evaluation of open-set semantic segmentation on the Street-
Harzards [19] dataset.

Anomaly Segmentation Closed-Set Open-Set Segmentation
Method AUPRCT  FPRos | mloUt  O-IoU;s T  O-loUsg? O-ToUt
DML [8] [1ccv21] 14.7 17.3 53.9 - - -
MSP [ICLR17] 7.5 27.9 65.0 32.7 40.2 35.1
ODIN [ICLR 18] 7.0 28.7 65.0 26.4 339 28.8
OE [ICLR’19] 14.6 17.7 61.7 43.7 44.1 43.8
OOD-H [GCPR’19] 19.7 56.2 66.6 33.7 343 339
Energy [NurlPS20] 12.9 18.2 63.3 41.7 44.9 42.7
ReAct [NurlPS™21] 10.9 21.2 62.7 33.0 36.2 34.0
OH*MSP [CoRR™21] 18.8 30.9 66.6 433 44.2 43.6
ML [1cML22] 11.6 22.5 65.0 39.6 44.5 41.2
AEM [CVPRw 23] 30.7 99.7 71.3 353 54.6 414
RbA [1CcCV™23] 50.1 96.9 73.2 10.4 12.1 10.9
DH [17] [ECCV22] 30.2 13.0 63.0 46.1 453 45.8
DH + MO-SHW (ours) 359 12.1 66.3 47.2 46.6 46.9
M2A [44] [CVPR 23] 58.1 14.9 72.3 59.9 59.7 59.8
M2A + MO-SHW (ours) 58.7 15.3 74.1 60.7 60.2 60.3

Open-Set Semantic Segmentation (OSSS). For this subtask, we selected DenseHybrid [17]
and Mask2-Anomaly [44], two of the most recent and best-performing methods in the liter-
ature, as base models. We integrated our framework into their respective pipelines and com-
pared the resulting models against their original versions as well as other prominent baselines
from the open-set segmentation literature. Quantitative Results: Table 2 presents the com-
parative results. Overall, the MO+SHW-augmented models consistently outperform their
original counterparts and competing baselines, with pronounced improvements observed for
the DenseHybrid variant. The anomaly segmentation metrics reveal that incorporating MO-
SHW enhances the models’ ability to detect out-of-distribution pixels. Specifically, Dense-
Hybrid benefited from a notable reduction in false positives, while Mask2 Anomaly experi-
enced a marginal increase. In line with the observations of Section 4.1, the proposed frame-
work substantially improved performance in closed-world sem. segmentation, suggesting
improved dense prediction capabilities. Furthermore, the open-set recognition metrics indi-
cate that MO-SHW introduces modest but meaningful gains in the models’ ability to identify
unknown classes. These findings confirm that MO-SHW effectively boosts the general pre-
dictive performance of models in open-set semantic segmentation tasks, by simultaneously
enhancing the recognition of both known (closed-set) and unknown (open-set) categories.
Few-Shot Class-Incremental Semantic Segmentation (FSCISS). We integrated the our
framework into the pipelines of two traditional methods for this task: PIFS [9] and GAPS [43].
The performance of the resulting MO-SHW-augmented models was then compared against
their original versions as well as other notable approaches from the FSCILSS literature.
Quantitative Results: As reported in Table 3, the MO-SHW-extended models consistently
outperform their respective baselines across all evaluation metrics. Notably, improvements
in mloU,., demonstrate that our approach enhances the models’ capacity to learn novel


Citation
Citation
{Hendrycks, Basart, Mazeika, Zou, Kwon, Mostajabi, Steinhardt, and Song} 2022

Citation
Citation
{Cen, Yun, Cai, Wang, and Liu} 2021

Citation
Citation
{Grci{¢} and {™}egvi{¢}} 2024

Citation
Citation
{Rai, Cermelli, Caputo, and Masone} 2024

Citation
Citation
{Grci{¢} and {™}egvi{¢}} 2024

Citation
Citation
{Rai, Cermelli, Caputo, and Masone} 2024

Citation
Citation
{Cermelli, Mancini, Xian, Akata, and Caputo} 2021

Citation
Citation
{Qiu, Chen, Sun, Wang, and Hauser} 2023


10 E. PEREIRA ET AL.: HIERARCHICAL MULTI-OBJ. OPEN-WORLD SEGMENTATION

Table 3: Quantitative evaluation for few-shot class-incremental semantic segmentation in the
PASCAL-5' [1] dataset.

1-shot S-shot
Method | moUpie T mloUpey 7 HM1 mloUpge T mloUpe, T HM?
Fine-Tunning \ 47.2 39 7.2 58.7 7.7 13.6
EHNet [49] [ACM-MM22] 68.4 18.8 29.1 67.9 31.3 43.5
CaLNet [48] [ACM-MM 23] 74.2 17.4 28.2 4.7 30.1 42.9
SRAA [65] [MMM24] 66.4 18.8 29.3 64.3 28.7 39.7
MBCL [62] [ISCAS 24] 65.0 19.2 29.6 66.1 28.5 40.0
PIFS [9] [BMVC21] 64.1 16.9 26.7 64.5 27.5 38.6
PIFS + MO-SHW (ours) 65.9 18.5 28.8 65.3 29.2 39.9
PIFS + GAPS [43] [CVPRw 23] 66.8 23.6 34.7 68.2 43.9 534
PIFS + GAPS + MO-SHW (ours) 68.5 25.6 37.2 68.9 46.4 554

classes with limited supervision. Concurrently, gains in mloUp,s indicate improved reten-
tion of previously acquired knowledge, suggesting that MO-SHW not only facilitates the
acquisition of new concepts but also mitigates the effects of catastrophic forgetting. These
results highlight the effectiveness of the MO-SHW framework in supporting continual learn-
ing under few-shot constraints, thereby improving both adaptability to novel information and
stability of prior knowledge in open-world segmentation scenarios.

5 Conclusion

In this paper, we address the challenge of incorporating hierarchical understanding into
open-world semantic segmentation. We proposed a novel framework that enables super-
vised open-world models to effectively leverage semantic class hierarchies, thereby improv-
ing both the robustness and generalization of their predictions. Our framework introduces
two key contributions: (i) a novel and adaptable Wasserstein-based hierarchy-aware loss
function (SHW) which enforces hierarchical consistency by promoting intra-class similarity
and inter-class separation across multiple levels of abstraction without architecture modifica-
tions; and (ii) the integration of this loss into a multi-objective optimization paradigm using
gradient-balancing methods, allowing simultaneous and balanced optimization of hierarchi-
cal and task-specific objectives. Our approach has several advantages: it is model-agnostic,
seamlessly integrates into existing pipelines, introduces minimal computational overhead,
and maintains compatibility with the training dynamics of open-world segmentation tasks.
Through experiments on several benchmarks, we empirically demonstrated that our frame-
work consistently enhances the performance of leading open-world segmentation models,
including recent methods for open-set segmentation and few-shot class-incremental learn-
ing. These results show that semantic hierarchies offer a valuable source of structural prior
knowledge, which, when properly integrated, can significantly improve open-world reason-
ing in visual scene understanding.
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