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Abstract 
 

Health Technology Assessment (HTA) evaluations play a crucial role in informing decisions related to 

the adoption, reimbursement, and utilization of healthcare technologies. To ensure robust and reliable 

outcomes, HTA requires a diverse range of evidence, which may vary depending on the specific 

technology under evaluation, the questions to be answered, and the available data sources. It is imperative 

to design and conduct studies that generate high-quality and pertinent evidence to facilitate effective HTA 

evaluations. Furthermore, sophisticated and appropriate statistical methodologies are often necessary to 

analyze and interpret the collected data in HTA assessments. Recognizing the lack of discussion and best 

practice recommendations to fulfill the HTA needs, the American Statistical Association (ASA) 

Biopharmaceutical Section (BIOP) Health Technology Assessment (HTA) Scientific Working Group 

(SWG) has undertaken an initiative to assess the HTA landscape in major global markets. We aim to offer 

strategic considerations for evidence planning related to HTA, alongside specific statistical methodologies 

commonly used in delivering clinical evidence and demonstrating value. Our targeted audience includes 

statisticians working in clinical development who may not be familiar with the intricacies and specific 

needs of HTA. This paper focuses specifically on study designs and statistical methods. This paper sheds 

light on the challenges that persist in study design and analytic approaches concerning HTA evidence 

requirements and discusses potential opportunities and mitigations. By bridging the knowledge gap in 

HTA needs and offering practical guidance on study designs and statistical methods, this research 

advances the field of statistics within HTA. 

 

Key words: Health technology assessment, study design, statistical methodologies, reimbursement 
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1. Introduction and the importance of evidence/data in Health Technology Assessment   

Health Technology Assessment (HTA) is a multidisciplinary process that uses transparent and principled 

methods to evaluate the value and impact of health technology at various stages throughout its lifecycle. 

The purpose is to inform decision-making to promote an equitable, efficient, and high-quality health 

system. In recent years, notable advances and innovations in HTA have taken place. For example, the new 

EU HTA regulation, known as Regulation (EU) 2021/2282 (EU, 2024), was adopted in December 2021, 

and it establishes a framework for HTA cooperation among the EU member states.  In the new process by 

the EU HTA regulation, the HTA dossier addresses the evidence needs of medicine regulators alongside 

those of HTA bodies to enable a joint clinical assessment (JCA) by the European Medicines Agency 

(EMA) and EU HTA. Generating a single set of evidence for these stakeholders and EU healthcare payers 

should make decisions on pricing and reimbursement quicker and easier (EMA, 2019). The companion 

paper (Jen et al., 2025) provides more details on the HTA framework and EU HTA regulation.  

 

The new process, alongside a growing trend to consider HTA requirements prior to marketing 

authorization (Hampson et al., 2022), and the application of advanced statistical methodologies to meet 

these requirements, will necessitate biopharmaceutical industry statisticians not only understand these 

advanced methodologies but also acquire knowledge of the new process.  Recognizing the current 

knowledge gap, the American Statistical Association (ASA) Biopharmaceutical Section (BIOP) Health 

Technology Assessment (HTA) Scientific Working Group (SWG) has undertaken efforts to assess the 

HTA landscape in major markets worldwide focusing on statistical perspectives. The goal of the SWG is 

to introduce the conceptual framework of HTA evaluations, review key HTA guidance documents from 

major markets, discuss the evidence needs of major health authorities, address the challenges and 

opportunities in this field, and provide guidance on how statisticians can contribute to the field in a 

precompetitive space. The SWG has established two workstreams for this effort. Workstream 1 (WS1) 

focuses on understanding the current landscape of HTA submission requirements and identifying key 

challenges. Workstream 2 (WS2) conducts a landscape assessment of study design and statistical 
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methodologies for HTA submissions, presented here. The outputs from the two workstreams are 

presented in two papers. These provide  complementary views of the current state of HTA evaluations 

and offer insights into addressing the challenges faced by statisticians in this field.  

 

The value of a new technology (a healthcare intervention such as drug, device, or service) is assessed 

within the context of the healthcare system (HCS) in the country or region. This assessment considers the 

available technology options and informs decision making on the adoption, pricing and reimbursement of 

the new technology. Factors considered include comparative effectiveness, safety, cost-effectiveness, ease 

of use for a user or in the HCS, and long-term perspectives. Subgroups for whom the new technology 

might be particularly effective or represent high value for money will be accounted for as well as 

prevalence of the disease, disease burden and patient preferences. In addition, evidence needs may change 

over time, for example if further technologies become available while evaluations are ongoing.   

 

These multifaceted evidence needs will rarely be coverable by a single source.  Usually, evidence from 

several sources (for example randomized controlled trials (RCTs), observational studies, or clinical 

practice) needs to be synthesized. Specific study designs which combine evidence from several sources 

can be considered, or evidence synthesis methods allowing for formal statistical synthesis of results from 

existing studies can be used. When outcomes, populations, time spans or other features are not consistent 

across sources, statistical methods of population adjustment, extrapolation, mapping, or data 

transportability methods may be required. A comprehensive evidence base will be fundamental to meet 

the payers’ needs, ultimately facilitating decision-making within the HCS and improving patients’ 

outcomes. 

 

Study designs which aim to fill evidence gaps not covered in the submission to obtain marketing 

authorization are discussed in Section 2. Recent developments in statistical methodology for the areas of 

comparative effectiveness, cost-effectiveness and utility assessment involving patient reported outcomes 
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(PROs), treatment switching, extrapolation, and subgroup analysis are reviewed in Section 3. We close 

with a summary of findings and main implications, methodologic challenges and research needs, and 

highlight the importance of early planning.  

 

2. Early integration of payer requirements in trial design for enhanced market access 

2.0 Early HTA in evidence planning at study design stage 

Some countries require little additional evidence to successfully achieve reimbursement other than 

demonstrating a favorable benefit-risk profile to regulatory authorities. In the United States, for instance, 

market authorization allows immediate product launch readiness. However, many countries require 

additional evidence of clinical efficacy and safety, and/or favorable cost-effectiveness for drug 

reimbursement and patient access after regulatory approval. To optimize market access campaign, it is 

essential to consider HTA and payer requirements early in the clinical trial design. By engaging 

stakeholders (i.e., patients, clinicians, payers and other relevant parties), designing studies with relevant 

endpoints, incorporating real-world evidence (RWE), and aligning with HTA guidelines, Health 

Technology Developers (HTDs) can increase the likelihood of positive reimbursement decisions and 

successful market access. This proactive approach aims to ensure that new therapies reach patients faster, 

thereby potentially improving public health outcomes. 

 

2.1 Identifying potential evidence gaps during study design to meet HTA requirements  

Tunis and Turkelson (2012) conducted a comprehensive analysis using HTA as a tool to identify evidence 

gaps and inform the design of comparative effectiveness research. This study underscores the critical role 

of HTA in setting priorities for future health research, highlighting how systematic reviews often reveal 

significant knowledge gaps in common and critical clinical areas. Key evidence gaps identified by the 

authors include the insufficient duration of studies, which may not allow for adequate follow-up, 
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especially in diseases requiring long-term observation. Additionally, they pointed out the mismatch 

between internal and external validity, where highly selective patient populations in studies may not 

accurately reflect real-world clinical practice. Moreover, some outcomes assessed in studies may lack 

clinical relevance (Tunis & Turkelson, 2012). Most recently, a guidance titled “Guidance on Validity of 

Clinical Studies” was adapted by European HTA Member State Coordination Group on HTA in 

September 2024.  This document introduces three key concepts for assessing the certainty of relative 

effectiveness results from clinical studies. It also discusses the strengths, weaknesses, and 

recommendations for various study designs. Although these discussions and recommendations do not 

apply to evidence syntheses from multiple sources, the publication of this guidance underscores the 

importance of considering different design options and selecting appropriate ones to meet HTA 

requirements, particularly in the context of the upcoming Joint Clinical Assessment (JCA).  

 

To address these evidence gaps effectively, we utilize the PICO (Population, Intervention, Comparator, 

Outcome) framework to discuss specific considerations in study design. In the context of the EU HTA 

process, PICOs consolidated across the 27 member states of the European Union will be used to 

formulate HTA requirements (EU, 2024), which will be communicated to the HTDs before the JCA 

submission. 

 

2.1.1. Populations 

 

Due to local and historical variations in clinical practices, it is essential for HTDs to engage proactively 

with a broad range of stakeholders. This engagement will help identify the patient populations with unmet 

medical needs and assess the extent of these needs. Understanding the consensus among stakeholders 

regarding which patient populations should be prioritized is crucial for aligning study designs with payer 

expectations (Faulkner et al., 2021). Local variations in clinical practices can significantly influence the 
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selection of patient populations for studies. HTDs should carefully consider these differences and ensure 

that their study designs are adaptable to regional contexts. This might involve stratifying patient 

populations or developing region-specific study protocols. Identifying populations with unmet medical 

needs requires a thorough evaluation of the current treatment landscape. HTDs should assess the severity 

and scope of unmet needs across different regions and ensure that these needs are adequately addressed in 

their study designs (Sharma, 2015; Vreman et al., 2019). 

 

2.1.2 Intervention 

 

For interventions, it is crucial to consult with stakeholders. These consultations will help determine how 

to incorporate uncertainties related to dosing into both clinical and economic evaluations, ensuring that 

the intervention is appropriately assessed in different contexts or requirements specific to a country. 

Novel health technologies often present unique challenges, such as the integration into existing clinical 

practices and managing uncertainties with regard to uptake, dosing, and/or off-label use. HTDs should 

work closely with clinical practitioners and key opinion leaders to ensure that these challenges are 

addressed in the study design to generate the most appropriate evidence, allowing for a more accurate 

assessment of the intervention’s effectiveness.  Given the variability in how novel health technologies are 

utilized across regions, HTDs should ensure that their evidence generation strategies are adaptable to 

different local contexts. This may involve tailoring evidence packages to meet the specific needs and 

requirements of different regions (Fontrier et al., 2022). 

 

2.1.3 Comparator 

 

In disease areas where no standard of care (SOC) exists, choosing the right comparator for clinical trials 

becomes a critical challenge. This decision should be made in consultation with clinical development, key 
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opinion leaders (KOLs), and commercial teams to ensure that the chosen comparator is relevant and 

accepted across all target markets. HTDs need to clearly demonstrate the incremental benefits of their 

intervention beyond the SOC comparator in each market. This requires a deep understanding of the 

existing treatment landscape in each region and early collaboration between clinical and commercial 

teams to develop a coherent strategy. Nevertheless, the SOC may change, or a new competitor may 

become available at the time of HTA evaluation. 

 

In situations where direct comparative data is lacking, HTDs may need to design studies that specifically 

address these gaps. To provide a more comprehensive comparison of treatment strategies, this could 

involve performing indirect treatment comparisons to another trial with the appropriate comparator or by 

leveraging RWE, or in the extreme scenario, conducting head-to-head trials to generate the evidence.  

 

2.1.4 Outcomes 

 

While regulatory submissions typically focus on outcomes like efficacy and safety, HTA bodies also 

consider other outcomes in their decisions, such as health-related quality of life, cost-effectiveness, and 

the wider societal and economic implications of the treatment in the longer term. It is important to note 

that EU HTA highlight the importance of considering all outcomes or endpoints with the same level of 

evidence, without ranking them. This approach aims to ensure that the evaluation of treatments is 

comprehensive and takes into account all relevant outcomes, regardless of their position in the hierarchy 

of endpoints defined in the trial. HTDs must recognize these differences and ensure that their study 

designs address both regulatory and HTA requirements  (Wang et al., 2018). The choice of outcomes is 

therefore crucial. EU HTA and individual HTA agencies place great importance on patient-relevant 

endpoints that reflect a technology’s therapeutic impact on patient experiences and outcomes that are 

important to the patients. These measures can provide valuable insights into the real-world effectiveness 

of the intervention.  
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Additionally, early filings such as at the first interim database lock, overall survival data from oncology 

trials is often lacking, but it is commonly a key endpoint of interest to HTA agencies as it provides long-

term evidence from the treatment. In such cases, if the requested patient-relevant outcome is not available 

or if a HTA submission includes a surrogate/intermediate outcome , the probability of 

HTA/reimbursement success becomes low. Some statistical analyses may be planned to address this gap, 

but the uncertainty will be large. It is also important to consider the derivation of additional endpoints 

specifically for HTA use. These additional endpoints should be pre-specified in the study protocol to 

demonstrate to HTA (and regulatory) evaluators that they are not results-driven.  

 

In addition to clinical outcomes, HTDs should carefully consider how evidence related to healthcare 

resource utilization (HCRU) (e.g., medical visits, pharmacy usage) and costs will be generated and 

analyzed, and the timing for such data collection. These types of information are often critical for HTA 

assessments and can provide a more comprehensive picture of the intervention’s impact on healthcare 

systems.  

 

Collecting PROs can be particularly challenging when different instruments or versions are required by 

different HTA agencies. Due to operational complexities and to avoid burden to study participants, it is 

often not possible to include all instruments to meet every need. In this case, HTDs may need to develop 

mapping strategies to an instrument required by the local markets, ensuring that the data remains 

meaningful, relevant and comparable for decision-making. However, mapping of PRO instruments could 

only provide an approximation of participants’ experience and should not be systematically used in place 

of a proper data collection. 
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2.1.5. Other aspects of study design 

 

The phenomena of treatment switching is becoming increasingly observed in clinical trials, particularly in 

long-term studies. However, collecting the necessary data to support robust analysis of treatment 

switching requires careful planning and execution within clinical trials (Latimer et al., 2016); more details 

appear in Section 3.3.  HTDs should ensure that their study designs include mechanisms to proactively 

collect detailed data on treatment switching, including relevant baseline variables, timing, reasons, and 

subsequent outcomes. This data is crucial for accurately assessing the real-world effectiveness of the 

intervention and its comparative benefits and risks.  

 

The duration of data collection is crucial, particularly in chronic diseases or conditions requiring long-

term observation. HTDs should carefully plan the duration of follow-up and critical data to be collected as 

well as the timing of data collection to ensure that they align with both regulatory and HTA requirements. 

This may involve designing studies to capture long-term outcomes. 

 

In summary, identifying and addressing potential evidence gaps at the study design stage is a critical 

component of meeting both regulatory and HTA requirements. By understanding HTA criteria, designing 

robust protocols, conducting gap analyses, and ensuring transparent reporting, researchers can develop 

studies that provide the comprehensive evidence needed to support the assessment and adoption of new 

health technologies without compromising the integrity of the trials. 
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2.2 Trial Design Considerations in Filling Evidence Gaps 

 

This section aims to explore several study design concepts that can be utilized to generate early evidence 

in support of HTA. Table 1 provides an overview on these study designs. 
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Table 1. Study designs to generate early evidence in support of  HTA 

Design Relevance for HTA Advantages Potential challenges and 

mitigations 

FACTIVE  Provides   HTA 

evidence on the 

technology 

concurrently and 

alongside regulatory 

evidence for MA. 

Enables causal 

inference by 

appropriate 

randomisation.  

Early HTA evidence 

generation, concurrent 

with regulatory 

evidence, bridging the 

efficacy-effectiveness 

gap and enabling 

assessment of external 

validity. 

The full design is complex, 

however FACTIVE is 

suggested to be used as a 

flexible toolbox  of  which 

design parts can be used  to 

target specific evidence needs. 

Pre-submission 

randomized 

pragmatic trials 

Provides evidence on 

effectiveness of 

treatments in RW 

clinical practice. 

Combines the real-

world nature of an 

observational study 

with the scientific rigor 

of a randomized trial. 

Evidence generation under 

clinical practice conditions 

could lead to high data 

variation, a high degree of 

missingness and inconsistency 

of data. Training of clinical 

practice personnel could 

enhance the availability and 

reliability of data. 

SAT with ECA Contextualizes 

information on a 

technology’s 
effectiveness and 

safety where direct 

comparisons are not 

available.  

Provides evidence on 

relative effectiveness 

and safety not available 

otherwise. 

Population-adjustment 

approaches would usually be 

required and need to assume 

that there are no unobserved 

confounders. Where feasible, 

randomisation could be 

considered, or a target trial 

approach. 

RWE/D in HTA Complements 

evidence from 

traditional RCTs to 

provide a more 

comprehensive 

evaluation of 

technologies. 

Provides insight into 

long-term effectiveness 

/safety, and support 

cost-effectiveness or 

utility evaluation  

Inconsistent or missing data. 

Potential for bias (e.g.selection, 

information bias) and 

confounding. The use of 

registries, randomization where 

feasible e.g. pragmatic trials, 

and modelling could be 

considered. 

FACTIVE = Flexible Augmented Clinical Trial for Improved evidence generation;  MA = Marketing 

authorization; SAT = Single arm trial;  ECA = External control arm; RWE/D = Real world evidence/data 
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2.2.1 FACTIVE Study Design 

To facilitate simultaneous and concurrent evidence generation for regulators and payers, Flexible 

Augmented Clinical Trials for Improved eVidence gEneration (FACTIVE), a new class of trial designs 

was developed (Dunger-Baldauf et al., 2023). FACTIVE envisions flexible augmentation of confirmatory 

RCTs with concurrent and close-to-real-world elements. Certain well-defined treatment effects are 

estimated in the confirmatory part (core RCT) and other complementary treatment effects in a concurrent 

real-world part. High quality data are generated for both parts under one single protocol. The use of 

randomization ensures rigorous statistical inference and interpretation within and between the different 

parts of the trial. This enables payers to access their required evidence before marketing authorization, 

thereby supporting earlier patient access.  FACTIVE designs can be tailored to the evidence needs of the 

technology, as illustrated in Yateman (2022). With early and comprehensive planning, FACTIVE could 

be designed to fill evidence gaps which might exist in available sources, for example for evidence 

synthesis. While the proposed augmented design offers various opportunities to increase the value of a 

technology, evidence needs related to the practical usability of a technology in a health care system will 

still need to be addressed post-marketing authorization, albeit likely with fewer studies, as some evidence 

typically collected in post-approval studies would, through the application of the FACTIVE design, be 

available pre-approval.  

 

2.2.2 Pragmatic randomized clinical trials (PrCTs) 

 

Pre-submission Pragmatic randomized clinical trials (PrCTs) play a crucial role in HTA by providing 

evidence on the effectiveness of treatments in real-world clinical practice. These trials encompass a 

diverse and representative population, allowing for broader inclusion and exclusion criteria, thus 

reflecting the heterogeneity of patients encountered in routine healthcare settings. Pragmatic trials 

“combine the real-world nature of an observational study with the scientific rigor of a randomized trial 
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and thereby give better answers to questions that are relevant to day-to-day clinical practice”  (Zuidgeest 

et al., 2017).  

 

The key design elements of PrCTs revolve around randomization, population, setting (primary care 

instead of research sites; fewer scheduled visits; drugs procured from pharmacies instead of HTDs 

supplying them), comparators (usual care instead of placebo), a variety of data sources (e.g., case report 

forms, electronic health records, insurance claims, mobile apps data) and outcomes (including HCRU, 

costs and PROs). PrCTs often have a simpler trial design with increased generalizability, but may be  

subject to pitfalls, such as selection bias, lack of treatment blinding, more missing data and nonadherence 

at treatment, and often require a large sample size (Le-Rademacher et al., 2023). The PRECIS-2 tool 

(Loudon et al., 2015) helps trial teams design PrCTs, by adjusting how explanatory (i.e., run under 

controlled conditions, on a homogenous population) or pragmatic a trial is, based on nine domains, with 

the goal of making the trial results more relevant to stakeholders. There is a continuum between 

explanatory trials (with high internal validity) and pragmatic trials (with high external validity), and a trial 

may contain elements of both categories. A recent trend is to incorporate pragmatic trial elements into an 

RCT, rather than have a full-fledged PrCT. 

 

The questions addressed by PrCTs should be discussed with both regulators and payers upfront, 

considering a potentially smaller treatment effect in a real-world population, and the scarcity of HTA 

guidelines for PrCTs. The Salford lung study (Leather et al., 2020) is an example of a PrCT, phase III, 

which evaluated the effectiveness of a pre-licensed treatment. Its design and endpoints were discussed 

with regulators and the National Institute of Health and Care Excellence (NICE) as the main stakeholders. 
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2.2.3 Single-Arm trial using external control arm 

 

The use of external control arms (ECAs) in single-arm trials (SATs) is becoming increasingly prevalent in 

HTA studies as traditional RCTs are facing practical and ethical concerns (ICON, 2021). In cases where a 

direct comparison group is unavailable, an ECA—constructed from clinical trial data or real-world data 

(RWD), whether retrospective or prospective—is crucial for contextualizing information regarding a 

product's clinical efficacy, safety, and cost-effectiveness. The reliability of findings depends on the 

comparability of the ECA and the SAT, which should encompass several key aspects (Appiah et al., 

2024; Curtis et al., 2023; Patel et al., 2021; Sola-Morales et al., 2023).  

 

First, addressing potential heterogeneity is essential for improving comparability, as failure to do so can 

introduce bias and undermine the reliability of results. This requires clearly defining patient populations 

and ensuring that external control patients are drawn from the same source population as those in the 

reference trial. Second, consistent outcome selection and definition between the ECA and SAT are also 

essential. Any variation in how outcomes are selected or defined can lead to misleading comparisons and 

obscure the true effects of the treatment. Third, any discrepancies in data collection methods or 

definitions across different trial settings require clear explanations to maintain transparency. This is 

because differences in how data is gathered, measured, or recorded can significantly impact the 

interpretation of results. Fourth, both geographical and temporal factors must be carefully considered 

when selecting data sources. Variations in healthcare systems and SOC practices across regions and over 

time can significantly influence treatment outcomes. Therefore, it's crucial to ensure alignment with the 

specific healthcare setting of the HTA submission and minimize temporal discrepancies between the ECA 

and SAT data. If a SAT and an external pragmatic trial are planned to be conducted concurrently, 

randomization of patients to either part could be considered to minimize confounding in technology 

assignment (application of the FACTIVE design). When using historical data, careful evaluation of 

potential changes in standard of care practices and their impact on comparability is necessary. 
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The HTA submission must clearly articulate the rationale for selecting the ECA data source and 

acknowledge any associated limitation. Such transparency is essential for establishing credibility and 

facilitating informed decision-making by HTA bodies. The use of patient-level data is highlighted as 

important for thoroughly evaluating comparability, data quality, and controlling for confounding 

variables. Employing sensitivity analyses can further evaluate the robustness of results in the face of data 

limitations (Curtis et al., 2023; Sola-Morales et al., 2023). Section 3 provides details on the statistical 

methodologies employed for such analysis.  

 

While single arm trials alone may provide limited value in determining the relative effectiveness of the 

evaluated health technology against its comparator, data from SATs coupling with external sources as 

controls could allow comparative analysis to be performed. Under this circumstance, the target trial 

(Hernan and Robins, 2016;  Hampson et al, 2023) emulation framework should be considered to properly 

formulate the causal inference questions, and thereby increase the internal validity and statistical precision 

of the comparative effective analysis. 

  

 

2.2.4 Use of RWE/D in HTA 

 

The scientific evidence generated from RWD and RWE are becoming increasingly important in HTA, 

complementing traditional RCTs to provide a more comprehensive evaluation of health technologies 

(Makady et al., 2017). While RCT remains the primary source of evidence for evaluating drug efficacy 

due to their rigorous design and ability to demonstrate causality, it has limitations in external validity. The 

strict eligibility criteria and controlled environments of RCTs often differ significantly from routine 

clinical practice, creating an efficacy-effectiveness gap (Eichler et al., 2011). RWD and RWE play a 

crucial role in bridging this gap by capturing treatment performance in real-world clinical settings, either 
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post-market or as part of pivotal trials, thereby enhancing the generalizability of HTA findings across 

diverse patient populations. They provide valuable insights into long-term outcomes, safety profiles, and 

cost-effectiveness—factors essential for informed healthcare decision-making (Akehurst et al., 2023; 

Makady et al., 2017). 

 

Recognizing these benefits, HTA bodies are increasingly incorporating RWD/E into their assessment 

processes as a complement to RCTs, with a consistent emphasis on rigorous study design to ensure the 

validity of generated evidence (de Pouvourville et al., 2023; Makady et al., 2018). Key considerations for 

robust RWD/E studies include identifying appropriate high-quality RWD sources, employing robust 

statistical methods to minimize confounding and establish causality, and adequately accounting for 

various biases at the design stage. HTA agencies emphasize the particular importance of fit-for-purpose 

data that demonstrates both reliability and relevance. Various study designs can maximize the utility of 

RWD/E in HTA, offering viable alternatives when RCTs are infeasible or unethical. Pragmatic trials 

discussed in Section 2.2.3 is one type of real-world studies that can evaluate the relative effectiveness of a 

new intervention in a population representative of real-world patients. It is crucial to select study designs 

that align with the specific objectives of the HTA assessment, carefully considering all design elements, 

including Estimand.  Section 2 in the Companion article provided a discussion on the comparison and 

contrast of the Estimand Framework for a study vs. PICO for a HTA evaluation (Jen et al., 2024).  

 

However, one significant challenge in using RWD/E in HTA is the potential for biases and confounding 

factors that can compromise the validity of the findings (Akehurst et al., 2023; Makady et al., 2017; Zisis 

et al., 2024). RWD is subject to selection bias, information bias, and confounding due to unmeasured 

variables. To address these challenges, various methodological approaches can be employed at the design 

stage (Makady et al., 2017; Zisis et al., 2024). Additionally, HTDs should implement a multi-faceted 

approach, including validation studies, multiple data sources for cross-verification, advanced statistical 
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methods, and comprehensive sensitivity analyses. Section 3 provides more details on statistical 

methodologies for real-world studies.  

 

2.3 Challenges, considerations, recommendations  

 

The evolving evidentiary standard to secure market access and favorable reimbursement decision in 

countries/regions is posing new challenges for clinical development programs and observational studies 

utilizing RWD. To address those challenges, one key aspect is to properly integrate payers’ need into the 

study design. Such integration requires careful consideration on factors such as the complexity, 

operational feasibility, cost and speed of clinical development program, the regulatory requirements and 

plausible regulatory strategies, and anticipatory evidence need from payers including HTA agencies. 

Navigating the intersection of those factors is a multifaceted endeavor and often needs involvement of 

multiple stakeholders within a HTD in strategic planning. As HTDs prepare the launch of their products, 

they should realize that clinical development and product launch are not isolated efforts. Rather, those 

efforts are interconnected, and involving the commercial teams (e.g., market access) early in the 

development program is crucial. A study design that balances both regulatory needs and HTA 

requirements ensures a smoother transition from approval to market access. 

 

While this early evidence integration approach would offer numerous benefits, we cannot underestimate 

the challenges.  

● First and foremost, lack of awareness and knowledge of HTA requirements (especially the new 

requirements under JCA) within the clinical development program could lead to insufficient 

consideration of evidence needs for HTAs. Furthermore, lack of communication and coordination 

between clinical development and market access/HEOR (Health Economic Outcome Research) 
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teams could cause delay in clinical study design and execution, and conflict with timely 

regulatory submissions.  

● Secondly, while the PICO concept is not completely new to HTDs, extensive simulations that 

predict PICOs need to be conducted to inform the study design and pre-specified statistical 

analysis (e.g., subgroup analysis) in preparation to the JCA, and optimizing trial design using 

those consolidations requires an adaption in both decision making and operational models 

(EFPIA, 2024; EUnetHTA, n.d.).  

● Thirdly, given the tight submission timeline of JCA (EU, 2024), HTDs are likely to initiate early 

the activities, e.g., indirect treatment comparison and pre-specified subgroup analysis, before the 

readout of pivotal trial results.  

 

In addition, innovative approaches applied to clinical development may have undesired consequences in 

the HTA evaluation. For instance, in rare disease areas, SAT is not uncommon for regulatory approval. 

However, the SAT designs may not always be viewed as adequate in providing compelling evidence for 

access/reimbursement decision (Institute for Quality and Efficiency in Health Care (IQWiG), 2023; Jaksa 

et al., 2022). Furthermore, products approved based on a SAT will require a standard of care (SOC) on 

individual patient data (IPD) in the Health Technology Assessment Regulation (HTAR) submission and 

this requirement may limit the choice of data from clinical practice to constitute external control arm, if 

not all data is accessible to HTAR (IQVIA, 2022). Even if the IPD are available and accessible to HTAR, 

additional burden on the operation side (e.g., extra efforts to anonymize data) is not ignorable, and 

additional resource need to be planned for.  Sometimes, implementing novel designs for early HTA 

evidence generation may limit the options to use such a specific study for evidence synthesis. For 

instance, retrospectively combining phase 3 RCTs with a pragmatic trial will be challenging in the best 

case, up to impossible if there are additionally differences in terms of inclusion/exclusion criteria, data 

sources, study setting, between the RCTs and pragmatic trial.  Furthermore, the use of RWE/D in clinical 
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development and regulatory submissions comes with challenges, such as data quality issues, data 

relevance to the research questions at hand, and potential biases in study design or data analysis. 

 

To address those challenges, HTDs should take efforts both externally and internally.  

● Externally, HTDs should proactively engage with local HTA bodies (e.g., NICE, Federal Joint 

Committee, Germany (G-BA))  and other local stakeholders (e.g., physicians) to better 

understand the evidentiary requirements for benefit categorization.  To prepare for JCA, it would 

be beneficial for HTDs to solicit feedback from both EMA and JSC through parallel consultation. 

These proactive engagements could potentially streamline evidence generation plans, addressing 

market authorization and access/reimbursement simultaneously.   

● Internally, close collaboration among clinical development, regulatory and market access teams is 

the key to ensure alignment and optimized evidence generation from clinical trials. A few 

possible tasks that could be conducted under such collaboration include: to explore the possibility 

to influence trial eligibility criteria and make target population closer to payer-relevant 

populations; to understand the relationship between payer-relevant populations in each market 

and the label population; to probe if there exist heterogeneous treatment effect and safety profiles 

of different subgroups in the trial and if they exist, their impact on the HTA evaluation. And 

harmonize the potential subgroup analysis from each market and/or plan necessary analysis to 

extrapolate clinical evidence from label population to more generalized payer-relevant 

populations.  

● Lastly, while it is critical and essential to call for closer collaboration between clinical 

development teams and commercial teams to incorporate as many elements required in HTA into 

trial design or to generate evidence from other sources, once the study design is finalized, 

commercial teams will need to discuss the implications of proposed trial design to HTAs and 

propose any mitigation plan (sometimes at risk) to address gaps in evidence need from the current 

clinical trials. 
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In summary, successful navigation of these complexities requires collaboration, adaptability, and a 

scientific-driven, systematic approach by HTDs. By integrating clinical development, regulatory and 

HTA strategies, HTDs could optimize evidence generation and achieve successful market 

access/reimbursement decisions. 

 

3. Analysis methods to fulfill different HTA needs 

 

A comprehensive evaluation of clinical effectiveness, cost-effectiveness, and quality of life is paramount 

to fulfill HTA needs beyond clinical trial evidence. This endeavor necessitates the employment of various 

evidence synthesis methods to integrate clinical evidence from diverse sources. Indirect treatment 

comparisons (ITCs), such as the Bucher method, network meta-analysis (NMA), matching-adjusted 

indirect comparison (MAIC), simulated treatment comparison (STC), and multilevel network meta-

regression (ML-NMR), play a pivotal role in addressing variations of comparative study populations 

when direct head-to-head trials are lacking. 

 

Clinical trials often have limited durations, necessitating the use of extrapolation techniques to estimate 

longer-term outcomes to demonstrate the value of a product to payers. Standard or flexible parametric 

modelling, Bayesian methods, and leveraging external data with longer-term follow-up can be employed 

to address this limitation. Additionally, treatment switching, a now common occurrence in clinical trials, 

can introduce bias and must be addressed through appropriate methods. Adjustment for treatment 

switching phenomena allows for a “cleaner” treatment effect to be estimated, yet still accounts for 

actuality in the real-life clinical practice. 
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More so in HTA than in regulatory approvals, health utility and PRO evidence are essential components 

in the context of health economics and quality of life (QoL). Their analyses also vary in importance, 

approaches and complexities based on different jurisdictions. Additionally, subgroup analyses play 

crucial roles for identifying potential heterogeneity and uncertainty in treatment effects across different 

patient populations to better inform national decision-making.  

 

This section continues to address these topics in more detail. 

 

3.1 Evidence synthesis method  

 
Evidence synthesis plays a pivotal role in integrating data from diverse sources. This section delves into 

specific evidence synthesis methods.  

 

 

3.1.1 Meta-analysis and network meta-analysis 

 

Evidence-based healthcare decision-making in HTA requires comparison of all relevant competing 

treatments. However, robustly designed RCTs that simultaneously compare all treatments of interest are 

rarely available. Therefore, evidence synthesis including both direct and indirect evidence plays a critical 

role in decision-making by HTA agencies, providing useful information on the comparative effectiveness 

of multiple treatments.  

 

Meta-analysis (MA) is a statistical method for combining or pooling results from multiple studies. It 

could be a pairwise meta-analysis where there are two interventions of interest, or Network MA (NMA) 

where multiple treatments are of interest. NMA compares multiple treatments by using both direct 

comparisons of interventions within randomized controlled trials and indirect comparisons across trials 

via a common comparator (Dias et al., 2018). In MA/NMA, studies refer to RCTs unless otherwise 

specified. Both pairwise MA and NMA can be conducted using either frequentist or Bayesian framework 
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with the Bayesian framework being more commonly adopted in practice. For the NMA, in particular, due 

to the advantages of being able to incorporate prior knowledge or expert opinion through the use of prior 

distribution; directly providing probabilistic statements about efficacy and ranking of treatment; and being 

highly flexible and able to handle complex models and small sample size. 

 

Pairwise MA and NMA share a common assumption of homogeneity. NMA has additional assumptions 

related to homogeneity, transitivity and consistency due to combining direct and indirect evidence across 

a network of studies. This requires the distribution of treatment effect modifiers to be balanced between 

studies (Phillippo et al., 2018). Pairwise MA could be considered as a special case of NMA where there 

are only two treatments in the network. Either fixed effect or random effects model could be used in 

MA/NMA. The two types of models differ in assumptions and their interpretations. A fixed effect model 

assumes that there is a common treatment effect, and the variation is due to sampling error. Heterogeneity 

is expected in evidence synthesis because it combines studies that may have clinical and methodological 

heterogeneity. A random effects model would be preferred as it allows for heterogeneity in the treatment 

effects by assuming exchangeability of treatment effects. In the case of limited data, an informative prior 

could be used to help the estimation of the heterogeneity parameter between the studies (Ren et al., 2018). 

 

Various guidance is available for conducting a Bayesian NMA (Dias et al., 2013; Hoaglin et al., 2011). 

They cover the details of analysis for various types of endpoints including categorical, binary, or 

continuous. Frequentist NMA approach can be found in Lumley (2002). Woods et al. illustrated how to 

conduct NMA of survival outcomes by assuming that the proportional hazards (PH) assumption holds 

(Woods et al., 2010). The model can incorporate data reported using hazard ratio (HR), median survival 

as well as count data (i.e., number of events and sample size). A limitation of the Woods approach, 

however, was the fact that it does not account for violation of the PH assumption, which could potentially 

introduce bias to the results. PH assumption should be assessed for time to event outcomes source 

publications by reconstruction patient-level survival data by digitalizing Kaplan-Meier curves when 
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reported (Guyot et al., 2012). The fractional polynomial model (FP) (Jansen, 2011) and Royston-Parmar 

model (Freeman & Carpenter, 2017) could be considered when any included studies have shown 

departures from the PH assumption.  

 

3.1.2 Indirect treatment comparison  

 

Indirect treatment comparison (ITC) refers to a comparison of different treatments that have not been 

directly compared with each other in a head-to-head (H2H) trial. It is often used when there is no 

evidence or insufficient evidence from H2H trials or when more than two medical interventions are of 

interest. Traditional ITC methods include the Bucher method, NMA, or population-adjusted indirect 

comparison (PAIC) methods such as MAIC or STC (Phillippo et al., 2018). Novel ITC methods have also 

been developed to overcome challenges of traditional ITC methods, for example, ML-NMR (Phillippo, 

Dias, Ades, Belger, et al. (2020). The earliest technique for adjusted ITC was introduced by Bucher et al. 

(1997). The Bucher method is based on the odds ratio (OR) as the measure of treatment effect. The 

Bucher method can be applied in star-shaped networks to obtain indirect comparisons of each pair of 

treatments via a shared comparator. It is also applicable to more complex networks including closed 

loops, but only in the form of pairwise comparison (Tingle et al., 2024). The Bucher method assumes the 

relative treatment effects are constant across included trials. It has the advantage of preserving the within-

study randomization. However, the Bucher method may lead to biased results when the distribution of 

effect modifiers is imbalanced between trials. In addition, the Bucher method is not applicable for multi-

arm trials as it assumes independence of pairwise comparisons (Bucher et al., 1997). 

 

When the assumption of transitivity is violated, traditional methods of indirect comparisons, such as 

NMA and Bucher’s method, can produce biased results (HTA Coordination Group, 2024; Phillippo et al., 

2016). MAIC and STC with relaxed assumptions were developed. These methods adjust for imbalances 

in baseline covariates between studies to provide unbiased estimates of treatment effects in a setting when 
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IPD from one study are available alongside aggregated data (AgD) from a published study (HTA 

Coordination Group, 2024; Phillippo et al., 2016).  MAIC uses IPD to match relevant baseline 

characteristics reported in a comparator's trial with AgD, subsequently re-weighting outcomes to facilitate 

comparison with the published outcomes (Signorovitch et al., 2012). In contrast, STC involves fitting 

outcome regression models using IPD to predict outcomes for a comparator's population, and then 

comparing these predicted outcomes with those reported in the publication (Phillippo et al., 2018). 

 

MAIC and STC can be applied in two forms: anchored, for a connected network, and unanchored, for a 

disconnected network without a common comparator. The anchored forms assume conditional constancy 

of relative effects, meaning that the relative treatment effect is balanced across all effect modifiers. On the 

other hand, the unanchored forms require the much stronger assumption of conditional constancy of 

absolute effects, implying that the absolute treatment effect is balanced across all effect modifiers and 

prognostic factors. This assumption is generally considered unrealistic to meet (Phillippo et al., 2016).
 

MAIC and STC have become more commonly used in HTA submissions. However, their appropriateness 

must be carefully justified. EU HTA (EUnetHTA, n.d.) highlights that when decisions are based on 

MAIC and STC, there should be a sufficiently large treatment effect to ensure that the observed effect is 

not solely due to unmet assumptions, such as missing covariates. Unanchored methods should only be 

considered when no connected network exists, such as in single-arm trials (Phillippo et al., 2018). 

 

The ML-NMR extends the standard NMA framework by synthesizing both IPD and AgD through a 

connected network of multiple studies and treatments (Phillippo, Dias, Ades, Belger, et al., 2020). As this 

method leverages IPD, unlike standard NMA, it relaxes the assumption that effect modifiers are balanced 

across populations and derives population-adjusted indirect comparisons. When no covariates are 

included, the ML-NMR model simplifies to a standard NMA. Conversely, when IPD are available from 

all studies, it becomes an IPD network meta-regression, which is ideal but often difficult to achieve. In the 

ML-NMR analysis, once the individual-level likelihoods are specified, they are integrated over the target 
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population to create an aggregate-level likelihood. Studies providing only AgD are fitted by integrating 

the individual-level model over the covariate distributions, linking the individual- and aggregate-levels of 

the model, thereby avoiding aggregation bias. A quasi-Monte Carlo approach has been used for 

integration due to its flexibility and efficiency. (Phillippo, Dias, Ades, Belger, et al., 2020). Details of the 

mathematical framework and implementation of ML-NMR is introduced elsewhere (Phillippo, Dias, 

Ades, Belger, et al., 2020). In addition, a case study motivated by HTA is provided. 

 

Several studies have demonstrated the advantages of ML-NMR. In a simulation study for anchored ITC, 

ML-NMR and STC performed similarly well under correct assumptions, effectively reducing bias, while 

MAIC often increased it (Phillippo, Dias, Ades, & Welton, 2020). The study reported that MAIC 

underperformed in all scenarios considered, with issues related to sample size and population overlap. 

Compared to STC, ML-NMR exhibited greater flexibility in handling larger treatment networks and could 

derive estimates for any target population. In a real-life application involving four clinical trials, ML-

NMR substantially reduced the uncertainty of the population-average relative effect estimates compared 

to random-effects NMA by accounting for both within- and between-study variation (Phillippo, Dias, 

Ades, Belger, et al., 2020). These findings align with the perspectives of multiple HTA agencies. The 

NICE Decision Support Unit (DSU) report states that ML-NMR is the preferred method for population 

adjustment in indirect treatment comparisons, favoring it over MAIC and STC (Abrams, 2020). The 

report specifies that MAIC should not be used under any circumstances, while STC is suitable for 

scenarios involving two studies. Other HTA agencies generally support its use, provided that proper 

implementation minimizes bias and accurately represents covariate distribution. Although EU HTA noted 

that the current ML-NMR method has limitations, particularly its inapplicability to time-to-event 

outcomes, an upcoming publication is expected to address this issue (Phillippo et al., 2024). The 

extension to general likelihoods, including survival outcomes, will significantly enhance the method's 

applicability and effectiveness. 
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3.1.3 Non-randomized  studies 

 

Sometimes data from RCTs may not be available for an intended technology comparison, but 

comparative observational studies with patient level data (IPD) might be available.  Methods addressing 

the potential confounding bias for comparative observational studies are discussed in the NICE DSU 

technical Support Document (TSD) 17 (Faria et al., 2015). These can be broadly distinguished by whether 

only observed confounders are controlled for (assuming ignorability of technology conditional on a set of 

observed confounders,  "selection on observables" in the guidance) or can control for unobserved 

confounders (“selection on unobservables”).Methods assuming selection on observable covariates include 

regression adjustment, inverse probability weighting (IPW), doubly robust methods, and regression on the 

propensity score and matching. Methods assuming selection on unobservable covariates include 

instrumental variable methods.  

 

A wide variety of matching procedures have been proposed in the literature and, currently, there is no 

consensus on how exactly matching ought to be done and how to measure the success of the matching 

procedure (Sekhon, 2011). Matching based on multivariable regression methods is detailed in existing 

literature (Gelman & Hill, 2006), with further developments in PSM methods (Sekhon, 2011) and visual 

assessment of matching also discussed (Pruzek & Helmreich, 2009). Multivariable regression uses IPD 

from two data sets to predict which data set a patient is likely to belong to. Propensity score matching 

(PSM) methods have become popular, although methodological review papers have suggested that they 

have little advantage over traditional multivariable regression methods (Stürmer et al., 2006). Propensity 

score matching uses IPD from one data set to produce weights to match to another data set. Additionally, 

applications of bootstrapping to PSM methods have been introduced (Pan & Bai, 2015).  

Recent advancements include doubly robust methods, such as targeted maximum likelihood estimator 

survival TMLE, all utilizing the survtmle package in R (Benkeser & Hejazi, 2017, Chen et al 2023).. 
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TMLE makes use of IPD from two data sets to fit regression-based models simultaneously to both arms. 

The survival TMLE package in R can use a Cox regression to model the covariates. It also leverages 

ensemble machine learning techniques to estimate parameters in a flexible manner. The procedure uses 

cross-validation to select the best-performing estimator from a library of candidate estimators.  

NICE DSU TSD 17 recommends that the sensitivity of the results should be explored by estimating 

alternative models that rely on different assumptions (Faria et al., 2015). Hence it is not uncommon for 

statisticians to therefore suggest in a HTA statistical analysis plan.that all these methods should be 

performed and the results be compared  

 

3.2 Extrapolation 

 

The economic evaluation of a new health technology is crucial within HTA, serving as the cornerstone for 

decisions regarding market access and reimbursement. It plays a vital role in guiding policymakers on the 

allocation of limited healthcare resources, aiming to optimize their utilization. As required in HTAs, cost-

effectiveness models (CEM) and budget-impact models (BIM) constitute the economic evaluation.  

According to various HTA guidelines (e.g., NICE and the Canadian Agency for Drugs and Technologies 

in Health( CADTH)), the recommended time horizon for assessing cost-effectiveness should 

comprehensively capture all relevant differences between the compared health technologies. Often, a 

lifetime horizon is deemed most suitable, particularly in chronic disease contexts where interventions can 

exert long-term impacts on patients. However, this necessitates extrapolating beyond the typically limited 

duration of clinical trials to thoroughly evaluate treatments, especially for periods extending beyond the 

available data. It's imperative not to underestimate the uncertainty entailed in such extrapolation. Various 

approaches exist, ranging from scientifically arguing for the expected durable effect of new health 

technology (Institute for Clinical and Economic Review (ICER), 2023) to simple extrapolation, (Rheault 

et al., 2023) extending observed outcomes trajectories to patients' lifetimes, and employing more complex 
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statistical models, (Shah et al., 2023) including AI/ML-based analytical methods, to predict long-term 

outcomes.  

 

However, these extrapolations have limitations; for example, simple extrapolation assumes that observed 

trends will indefinitely continue, which may not always be scientifically plausible. Complex statistical 

models rely on certain assumptions and are influenced by factors like data volume and completeness, 

where even slight violations in assumptions or variations in data can drastically alter extrapolated values. 

Moreover, extrapolating lifetime or long-term outcomes from studies with limited follow-up leads to 

highly variable extrapolations as time extends beyond available data. Hence, it's crucial to conduct 

sensitivity analyses to quantitatively assess uncertainties associated with CEMs. In assessing treatments 

aimed at improving survival, extrapolation is commonly used, notably in oncology trials where survival 

data often undergo censoring at trial completion. Extending survival impact beyond observed data is 

essential for evaluating complete benefits. Economic evaluations prefer estimating mean effects on time-

to-event for assessing incremental quality-adjusted life years (QALY) gains, favoring parametric models 

for survival extrapolation (NICE DSU TSD 14 (Latimer, 2011)). NICE DSU TSD 14 identifies six 

parametric models, each based on different hazard function assumptions, as standard methods.(Latimer, 

2011). Model selection depends on fit to observed data and plausibility for unobserved data, with an 

emphasis on systematic assessment and summarizing methods. Similar procedures are endorsed by other 

agencies like CADTH. However, standard models have limitations, relying on plausible hazard function 

assumptions for specific scenarios, with inaccurate estimates resulting from implausible assumptions. 

More flexible methods for survival analysis such as flexible parametric survival, mixture, landmark, 

piecewise, cure and excess mortality models together with methods for incorporating external information 

can be found in NICE DSU TSD 21 (Rutherford et al., 2020). However, the complexity of these more 

advanced methods doesn't guarantee better outcomes. 
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This challenge would be even more prominent with the growing wave of developing new therapeutics 

based on technologies that modify a patient’s gene (gene therapies) or technologies that transplant human 

cells to replace or repair damaged tissue and/or cells of a patient (cell therapies). In many instances, gene 

and cell therapies are viewed to be “curative” but clinical trials usually do not have long enough follow up 

data when the associated products receive regulatory approvals. Therefore, the durable effect of the new 

therapy remains largely unknown when HTA agencies and other payor-oriented organizations assess 

clinical and economic benefits of the products. This uncertainty could cast doubts on the determination of 

the effect of gene/cell therapies in HTA evaluations (ICER, 2022, 2023; NICE, 2023). Furthermore, gene 

and cell therapies predominantly address rare diseases characterized by considerable unmet medical 

needs, often leading to clinical trials with limited sample sizes.  This further limits the information 

available to conduct scientifically sound extrapolation, and the development of new statistical methods is 

needed to address this challenge. Recently, Pan et al. developed a new Bayesian data selection approach 

that is able to select and integrate data outside the clinical trials of an investigational gene therapy, to help 

reduce the variability of the predicted outcome in the long run (Pan et al., 2024).  

 

3.3 Treatment switching 

 

Treatment switching poses challenges in estimating survival outcomes, which are crucial for economic 

evaluations. Various methods have been proposed to handle treatment switching. Careful consideration of 

trial characteristics, underlying assumptions, and fit-for-purpose data is essential for selecting an 

appropriate method and interpreting its results (Latimer & Abrams, 2014). 

 

Simple methods like excluding or censoring switchers can introduce bias. The Rank Preserving Structural 

Failure Time Model (RPSFTM, Robins et al, 1991) estimates the counterfactual survival time, 

representing the treatment effect a patient would have experienced if they had not switched treatments. It 

assumes a "common treatment effect", where the magnitude of the treatment effect is the same regardless 
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of when a patient receives the experimental treatment. The Iterative Parameter Estimation (IPE) algorithm 

also assumes a "common treatment effect" and requires suitable statistical distribution models for survival 

times (Latimer & Abrams, 2014). The Inverse Probability of Censoring Weights (IPCW) assigns weights 

to patients based on their likelihood of switching treatments, aiming to create a hypothetical group 

representing what would have happened without switching. It relies on the assumption of no unmeasured 

confounders, meaning that all factors influencing both treatment switching and survival are accounted for 

in the analysis (Robins & Finkelstein, 2000). Two-stage estimation (TSE) estimates counterfactual 

survival times after a secondary baseline. Compared to the IPCW, it has an advantage of not requiring 

data to be collected on time-dependent covariates except those at the secondary baseline. The RPSFTM, 

IPE, and TSE could apply recensoring at an earlier time-point for switchers who survive during the study 

to address the issue of informative censoring. However, recensoring leads to loss of long-term 

information, which is a major concern in economic evaluation. TSE with IPCW addresses the informative 

censoring and can outperform the TSE with recensoring, but it also relies on the assumption of no 

unmeasured confounders (Latimer et al., 2019). In Ying and Tchetgen (2023), a structural cumulative 

survival model (SCSM) is proposed, which uses randomization as an instrumental variable to account for 

selection bias in switching. Furthermore, it accommodates unmeasured confounding by leveraging initial 

randomization as an instrumental variable. The SCSM is further enhanced by developing a doubly robust 

estimator, relying on a model for the randomized arm and another model for the hazards of death 

(Michiels et al., 2024). It remains unbiased even if one of the two models is mis-specified. 

 

Treatment switching adjustment methods have assumptions and limitations. Conducting sensitivity 

analyses using different methods and exploring various assumptions can provide a comprehensive 

understanding of the uncertainty surrounding estimated treatment effects and cost-effectiveness results. 

Collecting suitable data at baseline and over time is crucial for several methods. Additionally, it is also 

important to use methods that can accommodate extrapolation beyond trial period to study lifetime 

benefits of treatment. 
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3.4 Patient-reported outcomes and health utilities 

 

PROs and utilities both are important concepts in healthcare research and decision-making, particularly in 

HTA and cost-effectiveness analyses. They provide insights into patients’ experiences, preferences, and 

the value they place on different health states, and ensure that patient values and preferences are 

considered alongside clinical and economic evidence. PROs refer to any report of a patient’s health 

condition, symptoms, or quality of life directly from the patient themselves (FDA Guidance, 2009, 2018). 

PROs can include measures of physical functioning, symptom severity, emotional well-being, general 

health perceptions, and overall quality of life. They are typically collected through self-reported 

questionnaires or interviews, enabling patients to express their own perspectives on their health status and 

treatment outcomes. PROs are valuable in HTA and healthcare decision-making because they provide a 

patient-centered perspective, by capturing aspects of health that may not be captured by clinical measures 

alone and allowing for a more comprehensive assessment of the impact of a healthcare intervention on 

patients’ lives. The 36-Item Short Form Survey (SF-36), 12-Item Short Form Survey (SF-12), and the 

EuroQol 5-Dimension Questionnaire (EQ-5D) are commonly used generic PRO instruments to assess 

health-related QoL (HRQoL) and health status. There are also disease-specific PRO measures that are 

designed to assess the unique aspects and challenges associated with a particular disease or health 

condition. 

 

Health utilities, also known as preference-based measures or health-related QoL utilities, on the other 

hand, are numerical values that are used to quantify the value or desirability of different health states or 

outcomes. Utilities are typically represented on a scale from 0 to 1, where 0 represents a state equivalent 

to death or worst possible health and 1 represents perfect health (Wailoo et al., 2023). Utilities reflect 

individual preferences and can be used to compare the relative value of different health states or 
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interventions.  Estimates of health utility can be obtained by either direct or indirect methods. With direct 

methods, utilities are often derived through preference-elicitation methods, such as time trade-off (TTO), 

standard gamble (SG), or visual analog scale (VAS). These methods involve asking individuals to make 

trade-off decisions or express their preferences for different health states relative to each other (Morimoto 

& Fukui, 2002). These preferences are then used to assign utility values to specific health states. Health 

utilities can also be indirectly elicited using generic preference-based instruments such as EQ-5D, Health 

Utility Index (HUI), or Short Form 6-dimension (SF-6D), an abbreviated variation of SF-36, which have 

been developed and validated for use across different health conditions and populations. These 

instruments provide a standardized method for measuring health utilities, which can facilitate 

comparisons across different health technologies and interventions.   

 

However, one of the potential limitations of generic preference-based instruments is that they may lack 

sensitivity in specific disease contexts. In some cases, disease-specific instruments may be more 

appropriate for capturing the unique aspects of a particular disease or condition. These instruments may 

be designed to capture symptoms or functional limitations that are not captured by generic instruments 

and may be more sensitive to changes in health status in specific patient populations. When a disease-

specific utility measure is not available, mapping the descriptions from a disease-specific instrument to 

the utility algorithm of a generic instrument is a potential alternative approach. This involves establishing 

a statistical relationship between the scores on the disease-specific instrument and the scores on the 

generic instrument, which can then be used to estimate health utilities for the disease-specific instrument 

(Wailoo et al., 2023). This approach can be useful when a disease-specific instrument has been 

implemented in a study, but health utilities need to be estimated for economic evaluations or comparisons 

across different interventions. 

 

Utilities are often used in cost-effectiveness analyses to calculate QALYs, a measure that combines both 

quantity and quality of life. QALYs allow for comparisons of the health benefits of different interventions 
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and help inform resource allocation decisions. By incorporating health utilities into cost-effectiveness 

analyses, decision-makers can assess the value for money of different healthcare interventions or 

treatments. Utilities help in comparing the benefits and costs of interventions across different disease 

areas and can inform resource allocation decisions in healthcare systems. Many HTA agencies make 

specific statements about their preferences for health utility measures, but the guidelines may change over 

time (RTI Health Solutions, 2022). It is important to stay informed about the current guidelines and any 

changes made by HTA agencies.  

 

3.5 Subgroup analyses  

 

Subgroup analysis involves examining the effects of a medical intervention on specific subgroups of 

patients within a larger population. These subgroups may be defined by factors such as age, gender, 

disease severity, genetic characteristics, or other relevant criteria. Subgroup analysis plays a crucial role 

in HTA and helps to explore the heterogeneity of treatment effects across different subgroups of patients. 

By examining the outcomes and effectiveness of an intervention within specific subgroups, HTA agencies 

can provide more targeted and personalized recommendations for its use. In addition, subgroup analysis 

can explore potential differences in safety and cost-effectiveness within different subpopulations. This 

information is critical for HTA agencies to understand the overall value and impact of an intervention 

across various patient groups.  

 

Payers, including national health systems and insurance agencies, are increasingly demanding subgroup 

analyses to inform their coverage and reimbursement decisions for healthcare technologies (Aggarwal & 

H, 2013). In addition to informing coverage and reimbursement decisions, subgroup analysis can help 

payers optimize their resource allocation by targeting the most cost-effective interventions to the patients 

who are most likely to benefit. Subgroup analyses are discussed in many HTA guidance documents (e.g., 

NICE and IQWiG). Researchers should consult the specific guidelines and recommendations provided by 
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their respective country's HTA agency or relevant professional societies for more detailed and context-

specific guidance. The principles and best practice for conducting subgroup analyses for HTA purpose are 

outlined in the literature (Paget et al., 2011). 

 

The PICO framework can be used to guide subgroup definition by helping researchers identify relevant 

subgroups based on the characteristics of the population, intervention, comparison, and outcomes being 

studied. Performing adequate subgroup analysis can be difficult due to several statistical and 

methodological challenges such as pre-specification, type I errors, multiplicity problems, lack of power 

and ecological bias (Wijn et al., 2019). The interpretation and recommendations based on subgroup 

analyses can also be complex and controversial. Open dialogue and careful consideration are necessary to 

ensure that HTA recommendations for subpopulations are clear, transparent, and ultimately serve the best 

interests of patients and healthcare systems. 

 

3.6 Challenges, consideration and recommendations 

 

MA and NMA are essential statistical methods for evidence synthesis and decision-making in HTA, 

allowing for the comparison of multiple treatments by combining direct and indirect evidence. While both 

pairwise MA and NMA can be conducted using frequentist or Bayesian frameworks, the Bayesian 

approach is more commonly adopted for NMA due to its advantages. Random-effects models are 

preferred over fixed-effect models to account for heterogeneity. Recommended methods for analyzing 

time-to-event outcomes under the proportional hazards assumption are well-documented in the literature 

(Woods et al., 2010). Alternative models like fractional polynomial or spline models should be considered 

if this assumption is violated.  

 

Traditional methods like Bucher's and NMA assume transitivity, which can lead to bias if violated. MAIC 

and STC overcome this shortfall by adjusting for covariate imbalances when IPD are available from one 
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study, but assumptions like conditional/absolute constancy of effects must be justified, which is often 

unrealistic in the unanchored analyses. The ML-NMR extends NMA and relaxes the balanced effect 

modifiers assumption. Multiple studies demonstrate ML-NMR's advantages over MAIC and STC in 

reducing bias and uncertainty. NICE in the UK prefers ML-NMR over MAIC and STC, while it cautions 

on the use of MAIC. These views are also supported by EUnetHTA, CADTH, and IQWiG. 

 

In non-randomized trials when IPD are available, NICE DSU recommends a selection of methods to 

estimate the treatment effects based on observed and unobserved variables to perform indirect 

comparisons. Given the lack of consensus on the best methods, the NICE DSU TSD 17 recommends 

performing sensitivity analyses using multiple adjustment methods requiring different assumptions and 

comparing the results to assess the robustness of findings.  

 

In HTA, economic evaluations often require extrapolating survival data beyond clinical trial durations to 

capture full treatment benefits over a lifetime horizon. While standard parametric survival models are 

commonly used, they rely on assumptions about hazard functions that may not hold, which may lead to 

inaccurate extrapolations. Other flexible methods described in NICE DSU TSD 21 can improve 

extrapolations, but the increased complexity does not guarantee better performance. Bayesian methods 

can also help to reduce uncertainty in long-term extrapolations by incorporating external information and 

is particularly useful in gene/cell therapies. Regardless of the extrapolation method used, conducting 

extensive sensitivity analyses is crucial to quantify the uncertainty associated with survival projections 

informing cost-effectiveness models.  

 

The presence of treatment switching in clinical trials is common, which can bias the survival analysis and 

compromise economic evaluations relying on survival estimates. While it is known and well-accepted that 

simple censoring leads to bias, more advanced statistical methods proposed to adjust for switching come 

with various assumptions and limitations. Adjustment method with re-censoring has been criticized and 
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should not be a method of choice when it leads to a considerable loss of information. Given the varying 

assumptions, conducting sensitivity analyses using multiple switching adjustment methods is 

recommended. 

 

PROs and health utilities are critical concepts in HTA and economic evaluations for incorporating 

patients' perspectives on their health status, quality of life, and preferences for different health states. 

While generic PRO and utility instruments allow standardization (especially when a comparison across 

disease indications is needed), disease-specific measures may better capture unique aspects of particular 

conditions. Disease-specific PRO and utility instruments are generally preferred by HTA agencies, though 

mapping on a generic instrument may be used in their absence. HTA agency guidelines on PRO/utility 

frequently evolve over time, and therefore should be regularly consulted. 

 

Subgroup and subpopulation analyses are vital for understanding the overall value proposition across 

different patient populations in HTA; with increasing demand for subgroup and subpopulation analyses to 

optimize coverage decisions and resource allocation towards subgroups who benefit the most. However, 

conducting robust subgroup analyses poses statistical challenges like multiplicity issues, lack of power, 

and ecological bias. Pre-specification of subpopulations and subgroup analyses using frameworks like 

PICO could reinforce the statistical rigor and allows transparent interpretation.  

 

4. Summary and Conclusions  

 

While it may not be exhaustive, this article provides reviews and discussions on how different study 

design and statistical methods could help in filling evidentiary gaps in HTA submissions based on our 

collective expertise. We have discussed the importance of following the PICO framework and have 

delved into the specific evidence needs from population, intervention, comparator, and outcome 
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perspectives, thereby noting that PICO does not handle treatment switching, in contrast to the estimand 

framework. Furthermore, the statistical challenges of using RWD in HTA could only be briefly described 

in this overview article. PICO and other research structuring frameworks in HTA and  RWD use in HTA 

are included in the research topics the SWG is working on. 

      

Recognizing the need for early evidence generation for HTA, we have also explored various study design 

concepts that allow for parallel planning of evidence collection alongside regulatory submission planning. 

We have highlighted the challenges and opportunities associated with planning studies that address HTA 

requirements. Additionally, we have provided a detailed overview of complex statistical methods that are 

essential for HTA submission. By outlining these methods and their underlying assumptions, we aim to 

guide practitioners on when and how to utilize them in their own applications. We have also extensively 

discussed the challenges and opportunities in the application of these statistical methods.  

 

We aim to offer strategic considerations for early evidence planning related to HTA, alongside specific 

statistical methodologies commonly used in delivering clinical evidence and demonstrating value. Our 

targeted audience includes statisticians working in clinical development who may not be familiar with the 

intricacies and specific needs of HTA. While we covered a wide range of topics, we did not delve deeply 

into any particular area. Our goal is to raise awareness of HTA needs and strategic considerations for 

those who have not worked in this field, but who may need to understand HTA requirements to generate 

evidence in clinical development while serving HTA needs after regulatory submission. The SWG plans 

to explore a few areas in greater depth, such as the use of RWE in HTA and comparing and contrasting 

estimands and PICO.  

 

In a companion paper (Jen et al., 2025), we introduced the HTA framework, outlined the requirements 

from different HTA bodies, and addressed operational challenges. Furthermore, we have shared our 

insights on how to tackle these challenges effectively.  
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As quantitative scientists involved in medical product development, we acknowledge the significant 

potential for statisticians to assume leadership roles and contribute to the HTA submission process. This 

article, focusing on study design and statistical methodologies, serves as evidence of the critical roles 

statisticians can play in the HTA process, ranging from strategy development and methodology design to 

evidence generation. Along with the companion paper (Jen et al., 2025), we aim to provide a 

comprehensive overview of the current state of HTA evaluations and offer insights into addressing the 

challenges faced in this field. 
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