. eprints@whiterose.ac.uk
Whlte Rose https://eprints.whiterose.ac.uk

(o) :
Q\J) ReseCerh On"ne Universities of Leeds, Sheffield and York

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/236662/

Version: Accepted Version

Article:

Dunger-Baldauf, C., Jen, M.-H., Ren, S. et al. (2025) A landscape assessment of key
evidence needs in study design and statistical methodologies for HTA submissions.
Statistics in Biopharmaceutical Research. ISSN: 1946-6315

https://doi.org/10.1080/19466315.2025.2581122

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in Statistics in Biopharmaceutical Research is made available via the
University of Sheffield Research Publications and Copyright Policy under the terms of the
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ﬁ &, | University of

1 =
UNIVERSITY OF LEEDS Sh ffleld



mailto:eprints@whiterose.ac.uk
https://doi.org/10.1080/19466315.2025.2581122
https://eprints.whiterose.ac.uk/id/eprint/236662/
https://eprints.whiterose.ac.uk/

B

TATISTICS

Taylor & Francis
Taylor & Francis Group

Statistics in Biopharmaceutical Research

PHARMACEUTICAL |

RESEARCH

ISSN: 1946-6315 (Online) Journal homepage: www.tandfonline.com/journals/usbr20

A landscape assessment of key evidence needs
in study design and statistical methodologies for
HTA submissions

Cornelia Dunger-Baldauf, Min-Hua Jen, Shijie Ren, Xiang Zhang, Shahrul Mt-
Isa, Tae Hyun Jung, Valentina Bayer, Liang Chen, Dai Feng, Yingyi Liu, Julia
Ma & Weili He

To cite this article: Cornelia Dunger-Baldauf, Min-Hua Jen, Shijie Ren, Xiang Zhang, Shahrul
Mt-Isa, Tae Hyun Jung, Valentina Bayer, Liang Chen, Dai Feng, Yingyi Liu, Julia Ma & Weili

He (10 Nov 2025): A landscape assessment of key evidence needs in study design and
statistical methodologies for HTA submissions, Statistics in Biopharmaceutical Research, DOI:
10.1080/19466315.2025.2581122

To link to this article: https://doi.org/10.1080/19466315.2025.2581122

@ Accepted author version posted online: 10
Nov 2025.

N
CA/ Submit your article to this journal &

||I| Article views: 89

A
& View related articles &'

-

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=usbr20


https://www.tandfonline.com/journals/usbr20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19466315.2025.2581122
https://doi.org/10.1080/19466315.2025.2581122
https://www.tandfonline.com/action/authorSubmission?journalCode=usbr20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=usbr20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19466315.2025.2581122?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19466315.2025.2581122?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2025.2581122&domain=pdf&date_stamp=10%20Nov%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2025.2581122&domain=pdf&date_stamp=10%20Nov%202025
https://www.tandfonline.com/action/journalInformation?journalCode=usbr20

i i7 Check for updatesr
A landscape assessment of key evidence needs in study design and statistical methodologies for
HTA submissions

Cornelia Dunger-Baldaufl, Min-Hua Jen?, Shijie Ren’, Xiang Zhang4, Shahrul Mt-Isa’, Tae Hyun Jungé,
Valentina Bayer’, Liang Chen®, Dai Feng®, Yingyi Liu’, Julia Ma'’, and Weili He'®"

'Advanced Methodology and Data Science, Novartis, Basel, Switzerland
*Global Statistical Sciences, Eli Lilly and the company, Bracknell, UK
3University of Sheffield, Sheffield, South Yorkshire, UK

*Medical Affairs and HTA Statistics, Quantitative Clinical Sciences and Reporting, CSL Behring, King of
Prussia, Pennsylvania, USA

*Biostatistics and Research Decision Sciences (BARDS) HTA Statistics, MSD; Zurich,
Switzerland

®Office of Biostatistics, Center for Drug Evaluation and Research, FDA, SilverSpring, Maryland, USA

’Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA

8Real World Statistics & Analytics, Biometrics & RWE, Vertex, Boston, Massachusetts, USA
"MA&HTA Statistics, AbbVie, North Chicago, lllineispUSA
""MA&HTA Statistics, AbbVie, Florham Park, New Jersey, USA

*Correspondence to: Dr. Weili He, AbbVie, Florham Park, New Jersey. Email: weili.he@abbvie.com


mailto:weili.he@abbvie.com
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2025.2581122&domain=pdf

Abstract
Health Technology Assessment (HTA) evaluations play a crucial role in informing decisions related to
the adoption, reimbursement, and utilization of healthcare technologies. To ensure robust and reliable
outcomes, HTA requires a diverse range of evidence, which may vary depending on the specific
technology under evaluation, the questions to be answered, and the available data sources. It is imperative
to design and conduct studies that generate high-quality and pertinent evidence to facilitate effective HTA
evaluations. Furthermore, sophisticated and appropriate statistical methodologies are often‘necessary to
analyze and interpret the collected data in HTA assessments. Recognizing the lack of discussion and best
practice recommendations to fulfill the HTA needs, the American Statistical Association (ASA)
Biopharmaceutical Section (BIOP) Health Technology Assessment (HTA) Seientific Working Group
(SWG) has undertaken an initiative to assess the HT A landscape insmajor global markets. We aim to offer
strategic considerations for evidence planning related to HT Agralongside specific statistical methodologies
commonly used in delivering clinical evidence and demonstrating value. Our targeted audience includes
statisticians working in clinical development who may,not be familiar with the intricacies and specific
needs of HTA. This paper focuses specifically on study designs and statistical methods. This paper sheds
light on the challenges that persist in studysdesign and analytic approaches concerning HTA evidence
requirements and discusses potential @pportunities and mitigations. By bridging the knowledge gap in
HTA needs and offering practieal, guidance on study designs and statistical methods, this research

advances the field of statisti¢s within HTA.

Key words: Health technology assessment, study design, statistical methodologies, reimbursement



1. Introduction and the importance of evidence/data in Health Technology Assessment
Health Technology Assessment (HTA) is a multidisciplinary process that uses transparent and principled
methods to evaluate the value and impact of health technology at various stages throughout its lifecycle.
The purpose is to inform decision-making to promote an equitable, efficient, and high-quality health
system. In recent years, notable advances and innovations in HT A have taken place. For example, the new
EU HTA regulation, known as Regulation (EU) 2021/2282 (EU, 2024), was adopted in December 2021,
and it establishes a framework for HTA cooperation among the EU member states. In thenewiprocess by
the EU HTA regulation, the HTA dossier addresses the evidence needs of medicine segulators,alongside
those of HTA bodies to enable a joint clinical assessment (JCA) by the European Medicines Agency
(EMA) and EU HTA. Generating a single set of evidence for these stakeholders and EU healthcare payers
should make decisions on pricing and reimbursement quicker and easier'(EMA, 2019). The companion

paper (Jen et al., 2025) provides more details on the HTA framework and EU HTA regulation.

The new process, alongside a growing trend te consider HT A requirements prior to marketing
authorization (Hampson et al., 2022), and the application of advanced statistical methodologies to meet
these requirements, will necessitatedbiopharmaceutical industry statisticians not only understand these
advanced methodologies but also acquire knowledge of the new process. Recognizing the current
knowledge gap, the American Statistical Association (ASA) Biopharmaceutical Section (BIOP) Health
Technology Assessment (HTA) Scientific Working Group (SWG) has undertaken efforts to assess the
HTA landscape in major markets worldwide focusing on statistical perspectives. The goal of the SWG is
to introduce the conceptual framework of HTA evaluations, review key HT A guidance documents from
major markets, discuss the evidence needs of major health authorities, address the challenges and
opportunities in this field, and provide guidance on how statisticians can contribute to the field in a
precompetitive space. The SWG has established two workstreams for this effort. Workstream 1 (WS1)
focuses on understanding the current landscape of HT A submission requirements and identifying key

challenges. Workstream 2 (WS2) conducts a landscape assessment of study design and statistical
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methodologies for HT A submissions, presented here. The outputs from the two workstreams are
presented in two papers. These provide complementary views of the current state of HT A evaluations

and offer insights into addressing the challenges faced by statisticians in this field.

The value of a new technology (a healthcare intervention such as drug, device, or service) is assessed
within the context of the healthcare system (HCS) in the country or region. This assessment considers the
available technology options and informs decision making on the adoption, pricing and reimbursement of
the new technology. Factors considered include comparative effectiveness, safety, cost-effectiveness, ease
of use for a user or in the HCS, and long-term perspectives. Subgroups for whom the new technology
might be particularly effective or represent high value for money will be accounted for as well as
prevalence of the disease, disease burden and patient preferences. In;addition, evidence needs may change

over time, for example if further technologies become availableywhile evaluations are ongoing.

These multifaceted evidence needs will rarely.be coverable by a single source. Usually, evidence from
several sources (for example randomized controlled trials (RCTs), observational studies, or clinical
practice) needs to be synthesized. Specifics$tudy designs which combine evidence from several sources
can be considered, or evidence synthesis methods allowing for formal statistical synthesis of results from
existing studies can be used. When outcomes, populations, time spans or other features are not consistent
across sources, statistical meéthods of population adjustment, extrapolation, mapping, or data
transportability methods may be required. A comprehensive evidence base will be fundamental to meet
the payers’ needs, ultimately facilitating decision-making within the HCS and improving patients’

outcomes.

Study designs which aim to fill evidence gaps not covered in the submission to obtain marketing
authorization are discussed in Section 2. Recent developments in statistical methodology for the areas of

comparative effectiveness, cost-effectiveness and utility assessment involving patient reported outcomes
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(PROs), treatment switching, extrapolation, and subgroup analysis are reviewed in Section 3. We close
with a summary of findings and main implications, methodologic challenges and research needs, and

highlight the importance of early planning.

2. Early integration of payer requirements in trial design for enhanced market access

2.0 Early HTA in evidence planning at study design stage

Some countries require little additional evidence to successfully achieve reimbursement other:than
demonstrating a favorable benefit-risk profile to regulatory authorities. In the United States, for instance,
market authorization allows immediate product launch readiness. However, many countries require
additional evidence of clinical efficacy and safety, and/or favorable cost-effectiveness for drug
reimbursement and patient access after regulatory approval. To optimize market access campaign, it is
essential to consider HTA and payer requirements early in the clinical trial design. By engaging
stakeholders (i.e., patients, clinicians, payers and other televant parties), designing studies with relevant
endpoints, incorporating real-world evidence (RWE), and aligning with HTA guidelines, Health
Technology Developers (HTDs) canincrease the likelihood of positive reimbursement decisions and
successful market access. This proactive approach aims to ensure that new therapies reach patients faster,

thereby potentially improvingspublic health outcomes.

2.1 Identifying potential evidence gaps during study design to meet HTA requirements

Tunis and Turkelson (2012) conducted a comprehensive analysis using HTA as a tool to identify evidence
gaps and inform the design of comparative effectiveness research. This study underscores the critical role
of HTA in setting priorities for future health research, highlighting how systematic reviews often reveal
significant knowledge gaps in common and critical clinical areas. Key evidence gaps identified by the

authors include the insufficient duration of studies, which may not allow for adequate follow-up,
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especially in diseases requiring long-term observation. Additionally, they pointed out the mismatch
between internal and external validity, where highly selective patient populations in studies may not
accurately reflect real-world clinical practice. Moreover, some outcomes assessed in studies may lack
clinical relevance (Tunis & Turkelson, 2012). Most recently, a guidance titled “Guidance on Validity of
Clinical Studies” was adapted by European HTA Member State Coordination Group on HTA in
September 2024. This document introduces three key concepts for assessing the certainty of relative
effectiveness results from clinical studies. It also discusses the strengths, weaknesses, and
recommendations for various study designs. Although these discussions and recommendations do not
apply to evidence syntheses from multiple sources, the publication of this guidance underscores the
importance of considering different design options and selecting appropriaterones to meet HTA

requirements, particularly in the context of the upcoming Joint Clinical Assessment (JCA).

To address these evidence gaps effectively, we utilize the, PICO«(Population, Intervention, Comparator,
Outcome) framework to discuss specific considerations, in study design. In the context of the EU HTA
process, PICOs consolidated across the 27 member states of the European Union will be used to
formulate HT A requirements (EU, 2024), which will be communicated to the HTDs before the JCA

submission.

2.1.1. Populations

Due to local and historical variations in clinical practices, it is essential for HTDs to engage proactively
with a broad range of stakeholders. This engagement will help identify the patient populations with unmet
medical needs and assess the extent of these needs. Understanding the consensus among stakeholders
regarding which patient populations should be prioritized is crucial for aligning study designs with payer

expectations (Faulkner et al., 2021). Local variations in clinical practices can significantly influence the



selection of patient populations for studies. HTDs should carefully consider these differences and ensure
that their study designs are adaptable to regional contexts. This might involve stratifying patient
populations or developing region-specific study protocols. Identifying populations with unmet medical
needs requires a thorough evaluation of the current treatment landscape. HTDs should assess the severity
and scope of unmet needs across different regions and ensure that these needs are adequately addressed in

their study designs (Sharma, 2015; Vreman et al., 2019).

2.1.2 Intervention

For interventions, it is crucial to consult with stakeholders. These consultations will help determine how
to incorporate uncertainties related to dosing into both clinical and«€conomic evaluations, ensuring that
the intervention is appropriately assessed in different contexts orrequirements specific to a country.
Novel health technologies often present unique challenges, such as the integration into existing clinical
practices and managing uncertainties with regard to uptake, dosing, and/or off-label use. HTDs should
work closely with clinical practitioners and key opinion leaders to ensure that these challenges are
addressed in the study design to generate the most appropriate evidence, allowing for a more accurate
assessment of the intervention’s effectiveness. Given the variability in how novel health technologies are
utilized across regions, HTDs shouldiensure that their evidence generation strategies are adaptable to
different local contexts. This may involve tailoring evidence packages to meet the specific needs and

requirement$of different regions (Fontrier et al., 2022).

2.1.3 Comparator

In disease areas where no standard of care (SOC) exists, choosing the right comparator for clinical trials

becomes a critical challenge. This decision should be made in consultation with clinical development, key



opinion leaders (KOLs), and commercial teams to ensure that the chosen comparator is relevant and
accepted across all target markets. HTDs need to clearly demonstrate the incremental benefits of their
intervention beyond the SOC comparator in each market. This requires a deep understanding of the
existing treatment landscape in each region and early collaboration between clinical and commercial
teams to develop a coherent strategy. Nevertheless, the SOC may change, or a new competitor may

become available at the time of HTA evaluation.

In situations where direct comparative data is lacking, HTDs may need to design studies that specifically
address these gaps. To provide a more comprehensive comparison of treatment Strategies, this could
involve performing indirect treatment comparisons to another trial with the ‘appropriate comparator or by

leveraging RWE, or in the extreme scenario, conducting head-to-head trials'to generate the evidence.

2.1.4 Outcomes

While regulatory submissions typically focus on outcomes like efficacy and safety, HT A bodies also
consider other outcomes in their decisionsySuch as health-related quality of life, cost-effectiveness, and
the wider societal and economic implications of the treatment in the longer term. It is important to note
that EU HTA highlight the importanee of considering all outcomes or endpoints with the same level of
evidence, without ranking them. This approach aims to ensure that the evaluation of treatments is
comprehensive anditakes into account all relevant outcomes, regardless of their position in the hierarchy
of endpoints defined in the trial. HTDs must recognize these differences and ensure that their study
designs address both regulatory and HTA requirements (Wang et al., 2018). The choice of outcomes is
therefore crucial. EU HTA and individual HTA agencies place great importance on patient-relevant
endpoints that reflect a technology’s therapeutic impact on patient experiences and outcomes that are
important to the patients. These measures can provide valuable insights into the real-world effectiveness

of the intervention.



Additionally, early filings such as at the first interim database lock, overall survival data from oncology
trials is often lacking, but it is commonly a key endpoint of interest to HT A agencies as it provides long-
term evidence from the treatment. In such cases, if the requested patient-relevant outcome is not available
or if a HTA submission includes a surrogate/intermediate outcome , the probability of
HTA/reimbursement success becomes low. Some statistical analyses may be planned to address this gap,
but the uncertainty will be large. It is also important to consider the derivation of additional endpoints
specifically for HTA use. These additional endpoints should be pre-specified in the study:protocol to

demonstrate to HT A (and regulatory) evaluators that they are not results-driven!

In addition to clinical outcomes, HTDs should carefully consider hew evidence related to healthcare
resource utilization (HCRU) (e.g., medical visits, pharmacy usage) and costs will be generated and
analyzed, and the timing for such data collection. These types ofsinformation are often critical for HTA
assessments and can provide a more comprehensive picture of the intervention’s impact on healthcare

systems.

Collecting PROs can be particularly c¢hallenging when different instruments or versions are required by
different HTA agencies. Due to operational complexities and to avoid burden to study participants, it is
often not possible to includefall instruments to meet every need. In this case, HTDs may need to develop
mapping strategies to an instrument required by the local markets, ensuring that the data remains
meaningful, relevant and comparable for decision-making. However, mapping of PRO instruments could
only provide an approximation of participants’ experience and should not be systematically used in place

of a proper data collection.



2.1.5. Other aspects of study design

The phenomena of treatment switching is becoming increasingly observed in clinical trials, particularly in
long-term studies. However, collecting the necessary data to support robust analysis of treatment
switching requires careful planning and execution within clinical trials (Latimer et al., 2016); more details
appear in Section 3.3. HTDs should ensure that their study designs include mechanisms to proactively
collect detailed data on treatment switching, including relevant baseline variables, timing, feasensyand
subsequent outcomes. This data is crucial for accurately assessing the real-world effectiveness of the

intervention and its comparative benefits and risks.

The duration of data collection is crucial, particularly in chronic diseases or/conditions requiring long-
term observation. HTDs should carefully plan the duration of-fellow-up and critical data to be collected as
well as the timing of data collection to ensure that they align with both regulatory and HTA requirements.

This may involve designing studies to capture.long-term outcomes.

In summary, identifying and addressing potential evidence gaps at the study design stage is a critical
component of meeting both regulatory and HTA requirements. By understanding HTA criteria, designing
robust protocols, conducting gap analyses, and ensuring transparent reporting, researchers can develop
studies that provide the comprehensive evidence needed to support the assessment and adoption of new

health technelogiesiwithout compromising the integrity of the trials.
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2.2 Trial Design Considerations in Filling Evidence Gaps

This section aims to explore several study design concepts that can be utilized to generate early evidence

in support of HTA. Table 1 provides an overview on these study designs.
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Table 1. Study designs to generate early evidence in support of HTA

Design Relevance for HTA Advantages Potential challenges and
mitigations
FACTIVE Provides HTA Early HTA evidence The full design is complex,
evidence on the generation, concurrent | however FACTIVE is
technology with regulatory suggested to be used as a

concurrently and
alongside regulatory
evidence for MA.
Enables causal
inference by
appropriate
randomisation.

evidence, bridging the
efficacy-effectiveness
gap and enabling
assessment of external
validity.

flexible toolbox of which
design parts can be used to
target specific evidence needs.

Pre-submission
randomized
pragmatic trials

Provides evidence on
effectiveness of
treatments in RW
clinical practice.

Combines the real-
world nature of an
observational study
with the scientific rigor
of a randomized trial.

Evidence generation under
clinical praetice conditions
could lead to high data
variation, a high degree of
missingness and inconsistency
of data. Training of clinical
practice personnel could
enhance the availability and

reliability of data.

SAT with ECA | Contextualizes Provides'evidence on Population-adjustment
information on a relative effectiveness approaches would usually be
technology’s and safety not available | required and need to assume
effectiveness and otherwise. that there are no unobserved
safety where direct confounders. Where feasible,
comparisons are not randomisation could be
available. considered, or a target trial

approach.

RWE/D in HTA | Complements Provides insight into Inconsistent or missing data.

evidence from
traditional RCTs to
provide a more
comprehensive
evaluation of
technologies.

long-term effectiveness
/safety, and support
cost-effectiveness or
utility evaluation

Potential for bias (e.g.selection,
information bias) and
confounding. The use of
registries, randomization where
feasible e.g. pragmatic trials,
and modelling could be
considered.

FACTIVE = Flexible Augmented Clinical Trial for Improved evidence generation; MA = Marketing

authorization; SAT = Single arm trial; ECA = External control arm; RWE/D = Real world evidence/data

12




2.2.1 FACTIVE Study Design
To facilitate simultaneous and concurrent evidence generation for regulators and payers, Flexible
Augmented Clinical Trials for Improved eVidence gEneration (FACTIVE), a new class of trial designs
was developed (Dunger-Baldauf et al., 2023). FACTIVE envisions flexible augmentation of confirmatory
RCTs with concurrent and close-to-real-world elements. Certain well-defined treatment effects are
estimated in the confirmatory part (core RCT) and other complementary treatment effects in a concurrent
real-world part. High quality data are generated for both parts under one single protocol. The use of
randomization ensures rigorous statistical inference and interpretation within and between, the different
parts of the trial. This enables payers to access their required evidence before marketing authorization,
thereby supporting earlier patient access. FACTIVE designs can be tailored'to the evidence needs of the
technology, as illustrated in Yateman (2022). With early and comprehensive planning, FACTIVE could
be designed to fill evidence gaps which might exist in availablésoutces, for example for evidence
synthesis. While the proposed augmented design offers variousiopportunities to increase the value of a
technology, evidence needs related to the practical usability of a technology in a health care system will
still need to be addressed post-marketing authorization, albeit likely with fewer studies, as some evidence
typically collected in post-approval studies'would, through the application of the FACTIVE design, be

available pre-approval.

2.2.2 Pragmatie randomized clinical trials (PrCTs)

Pre-submission Pragmatic randomized clinical trials (PrCTs) play a crucial role in HTA by providing
evidence on the effectiveness of treatments in real-world clinical practice. These trials encompass a
diverse and representative population, allowing for broader inclusion and exclusion criteria, thus
reflecting the heterogeneity of patients encountered in routine healthcare settings. Pragmatic trials

“combine the real-world nature of an observational study with the scientific rigor of a randomized trial
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and thereby give better answers to questions that are relevant to day-to-day clinical practice” (Zuidgeest

et al., 2017).

The key design elements of PrCTs revolve around randomization, population, setting (primary care
instead of research sites; fewer scheduled visits; drugs procured from pharmacies instead of HTDs
supplying them), comparators (usual care instead of placebo), a variety of data sources (e.g., case report
forms, electronic health records, insurance claims, mobile apps data) and outcomes (includingtHCRU,
costs and PROs). PrCTs often have a simpler trial design with increased generalizability, but may be
subject to pitfalls, such as selection bias, lack of treatment blinding, more missing data and nonadherence
at treatment, and often require a large sample size (Le-Rademacher et al.; 2023). The PRECIS-2 tool
(Loudon et al., 2015) helps trial teams design PrCTs, by adjusting hew explanatory (i.e., run under
controlled conditions, on a homogenous population) or pragmatic atrial is, based on nine domains, with
the goal of making the trial results more relevant to stakeholderssThere is a continuum between
explanatory trials (with high internal validity).and pragmatic trials (with high external validity), and a trial
may contain elements of both categories. A recent trend is to incorporate pragmatic trial elements into an

RCT, rather than have a full-fledged PrCT:

The questions addressed by/Pr€Ts should be discussed with both regulators and payers upfront,
considering a potentially smaller treatment effect in a real-world population, and the scarcity of HTA
guidelines for PrCTs. The Salford lung study (Leather et al., 2020) is an example of a PrCT, phase III,
which evaluated the effectiveness of a pre-licensed treatment. Its design and endpoints were discussed

with regulators and the National Institute of Health and Care Excellence (NICE) as the main stakeholders.
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2.2.3 Single-Arm trial using external control arm

The use of external control arms (ECAs) in single-arm trials (SATs) is becoming increasingly prevalent in
HTA studies as traditional RCTs are facing practical and ethical concerns (ICON, 2021). In cases where a
direct comparison group is unavailable, an ECA—constructed from clinical trial data or real-world data
(RWD), whether retrospective or prospective—is crucial for contextualizing information regarding a
product's clinical efficacy, safety, and cost-effectiveness. The reliability of findings depends on, the
comparability of the ECA and the SAT, which should encompass several key aspects (Appiah.et al.,

2024; Curtis et al., 2023; Patel et al., 2021; Sola-Morales et al., 2023).

First, addressing potential heterogeneity is essential for improving eemparability, as failure to do so can
introduce bias and undermine the reliability of results. This requiresiclearly defining patient populations
and ensuring that external control patients are drawn from the same source population as those in the
reference trial. Second, consistent outcome selection and definition between the ECA and SAT are also
essential. Any variation in how outcomes are selected or defined can lead to misleading comparisons and
obscure the true effects of the treatment. Third, any discrepancies in data collection methods or
definitions across different trial settings require clear explanations to maintain transparency. This is
because differences in how [datais gathered, measured, or recorded can significantly impact the
interpretation of results. Foutth, both geographical and temporal factors must be carefully considered
when selecting data,sources. Variations in healthcare systems and SOC practices across regions and over
time can significantly influence treatment outcomes. Therefore, it's crucial to ensure alignment with the
specific healthcare setting of the HTA submission and minimize temporal discrepancies between the ECA
and SAT data. If a SAT and an external pragmatic trial are planned to be conducted concurrently,
randomization of patients to either part could be considered to minimize confounding in technology
assignment (application of the FACTIVE design). When using historical data, careful evaluation of

potential changes in standard of care practices and their impact on comparability is necessary.
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The HTA submission must clearly articulate the rationale for selecting the ECA data source and
acknowledge any associated limitation. Such transparency is essential for establishing credibility and
facilitating informed decision-making by HT A bodies. The use of patient-level data is highlighted as
important for thoroughly evaluating comparability, data quality, and controlling for confounding
variables. Employing sensitivity analyses can further evaluate the robustness of results in the face of data
limitations (Curtis et al., 2023; Sola-Morales et al., 2023). Section 3 provides details on the statistical

methodologies employed for such analysis.

While single arm trials alone may provide limited value in determining the relative effectiveness of the
evaluated health technology against its comparator, data from SATs:coupling with external sources as
controls could allow comparative analysis to be performed. Under this circumstance, the target trial
(Hernan and Robins, 2016; Hampson et al, 2023) emulation framework should be considered to properly
formulate the causal inference questions, and thereby increase the internal validity and statistical precision

of the comparative effective analysis.

2.2.4 Use of RWE/D in HTA

The scientific evidence generated from RWD and RWE are becoming increasingly important in HTA,
complementing traditional RCTs to provide a more comprehensive evaluation of health technologies
(Makady et al.,2017). While RCT remains the primary source of evidence for evaluating drug efficacy
due to their rigorous design and ability to demonstrate causality, it has limitations in external validity. The
strict eligibility criteria and controlled environments of RCTs often differ significantly from routine
clinical practice, creating an efficacy-effectiveness gap (Eichler et al., 2011). RWD and RWE play a

crucial role in bridging this gap by capturing treatment performance in real-world clinical settings, either
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post-market or as part of pivotal trials, thereby enhancing the generalizability of HT A findings across
diverse patient populations. They provide valuable insights into long-term outcomes, safety profiles, and
cost-effectiveness—factors essential for informed healthcare decision-making (Akehurst et al., 2023;

Makady et al., 2017).

Recognizing these benefits, HTA bodies are increasingly incorporating RWD/E into their assessment
processes as a complement to RCTs, with a consistent emphasis on rigorous study design to ensuresthe
validity of generated evidence (de Pouvourville et al., 2023; Makady et al., 2018). Key considerations for
robust RWD/E studies include identifying appropriate high-quality RWD sources, employing robust
statistical methods to minimize confounding and establish causality, and adequately accounting for
various biases at the design stage. HT A agencies emphasize the pasticular importance of fit-for-purpose
data that demonstrates both reliability and relevance. Varioussstudy'designs can maximize the utility of
RWDVJE in HTA, offering viable alternatives when RCTs ate infeasible or unethical. Pragmatic trials
discussed in Section 2.2.3 is one type of real-world studies that can evaluate the relative effectiveness of a
new intervention in a population representative of teal-world patients. It is crucial to select study designs
that align with the specific objectives ofithe HT A assessment, carefully considering all design elements,
including Estimand. Section 2 inthe'Companion article provided a discussion on the comparison and

contrast of the Estimand Framework for a study vs. PICO for a HTA evaluation (Jen et al., 2024).

However, one significant challenge in using RWD/E in HTA is the potential for biases and confounding
factors that can compromise the validity of the findings (Akehurst et al., 2023; Makady et al., 2017; Zisis
et al., 2024). RWD is subject to selection bias, information bias, and confounding due to unmeasured
variables. To address these challenges, various methodological approaches can be employed at the design
stage (Makady et al., 2017; Zisis et al., 2024). Additionally, HTDs should implement a multi-faceted

approach, including validation studies, multiple data sources for cross-verification, advanced statistical

17



methods, and comprehensive sensitivity analyses. Section 3 provides more details on statistical

methodologies for real-world studies.

2.3 Challenges, considerations, recommendations

The evolving evidentiary standard to secure market access and favorable reimbursement decision in
countries/regions is posing new challenges for clinical development programs and observational studies
utilizing RWD. To address those challenges, one key aspect is to properly integrate payers’need into the
study design. Such integration requires careful consideration on factors such as the complexity,
operational feasibility, cost and speed of clinical development program, the regulatory requirements and
plausible regulatory strategies, and anticipatory evidence need from payers‘including HT A agencies.
Navigating the intersection of those factors is a multifaceted/endeavor and often needs involvement of
multiple stakeholders within a HTD in strategic planning. /ASsHTDs prepare the launch of their products,
they should realize that clinical development and product launch are not isolated efforts. Rather, those
efforts are interconnected, and involving the commercial teams (e.g., market access) early in the
development program is crucial. A studydesign that balances both regulatory needs and HTA

requirements ensures a smoother transition from approval to market access.

While this early evidence integration approach would offer numerous benefits, we cannot underestimate
the challenges.
e First and foremost, lack of awareness and knowledge of HT A requirements (especially the new
requirements under JCA) within the clinical development program could lead to insufficient
consideration of evidence needs for HT As. Furthermore, lack of communication and coordination

between clinical development and market access/HEOR (Health Economic Outcome Research)
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teams could cause delay in clinical study design and execution, and conflict with timely
regulatory submissions.

e Secondly, while the PICO concept is not completely new to HTDs, extensive simulations that
predict PICOs need to be conducted to inform the study design and pre-specified statistical
analysis (e.g., subgroup analysis) in preparation to the JCA, and optimizing trial design using
those consolidations requires an adaption in both decision making and operational models
(EFPIA, 2024; EUnetHTA, n.d.).

e Thirdly, given the tight submission timeline of JCA (EU, 2024), HTDs are likely'to initiate early
the activities, e.g., indirect treatment comparison and pre-specified subgroup analysis, before the

readout of pivotal trial results.

In addition, innovative approaches applied to clinical development may have undesired consequences in
the HT A evaluation. For instance, in rare disease areas, SAT isnot uncommon for regulatory approval.
However, the SAT designs may not always be viewedias adequate in providing compelling evidence for
access/reimbursement decision (Institute for Quality and Efficiency in Health Care (IQWiG), 2023; Jaksa
et al., 2022). Furthermore, productsapproyvedbased on a SAT will require a standard of care (SOC) on
individual patient data (IPD) in the Health"Technology Assessment Regulation (HTAR) submission and
this requirement may limit the choice, of data from clinical practice to constitute external control arm, if
not all data is accessible to HTAR (IQVIA, 2022). Even if the IPD are available and accessible to HTAR,
additional burden on the operation side (e.g., extra efforts to anonymize data) is not ignorable, and
additional resource need to be planned for. Sometimes, implementing novel designs for early HTA
evidence generation may limit the options to use such a specific study for evidence synthesis. For
instance, retrospectively combining phase 3 RCTs with a pragmatic trial will be challenging in the best
case, up to impossible if there are additionally differences in terms of inclusion/exclusion criteria, data

sources, study setting, between the RCTs and pragmatic trial. Furthermore, the use of RWE/D in clinical

19



development and regulatory submissions comes with challenges, such as data quality issues, data

relevance to the research questions at hand, and potential biases in study design or data analysis.

To address those challenges, HTDs should take efforts both externally and internally.

e Externally, HTDs should proactively engage with local HT A bodies (e.g., NICE, Federal Joint
Committee, Germany (G-BA)) and other local stakeholders (e.g., physicians) to better
understand the evidentiary requirements for benefit categorization. To prepare forJCA, ittwould
be beneficial for HTDs to solicit feedback from both EMA and JSC through parallel'consultation.
These proactive engagements could potentially streamline evidence generation plans, addressing
market authorization and access/reimbursement simultaneously.

e Internally, close collaboration among clinical developmentgregulatory and market access teams is
the key to ensure alignment and optimized evidence generation from clinical trials. A few
possible tasks that could be conducted under such cellaboration include: to explore the possibility
to influence trial eligibility criteria and make target population closer to payer-relevant
populations; to understand the relationship:between payer-relevant populations in each market
and the label population; togprobe if there exist heterogeneous treatment effect and safety profiles
of different subgroups in‘the trialand if they exist, their impact on the HTA evaluation. And
harmonize the potenitial subgroup analysis from each market and/or plan necessary analysis to
extrapolate clinical évidence from label population to more generalized payer-relevant
populations.

e Lastly, while it is critical and essential to call for closer collaboration between clinical
development teams and commercial teams to incorporate as many elements required in HT A into
trial design or to generate evidence from other sources, once the study design is finalized,
commercial teams will need to discuss the implications of proposed trial design to HT As and
propose any mitigation plan (sometimes at risk) to address gaps in evidence need from the current

clinical trials.
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In summary, successful navigation of these complexities requires collaboration, adaptability, and a
scientific-driven, systematic approach by HTDs. By integrating clinical development, regulatory and
HTA strategies, HTDs could optimize evidence generation and achieve successful market

access/reimbursement decisions.

3. Analysis methods to fulfill different HT A needs

A comprehensive evaluation of clinical effectiveness, cost-effectiveness, and quality of life is paramount
to fulfill HTA needs beyond clinical trial evidence. This endeavor necessitates the employment of various
evidence synthesis methods to integrate clinical evidence from diverse sources. Indirect treatment
comparisons (ITCs), such as the Bucher method, networkimeta-analysis (NMA), matching-adjusted
indirect comparison (MAIC), simulated treatment comparison (STC), and multilevel network meta-
regression (ML-NMR), play a pivotal role in addressing variations of comparative study populations

when direct head-to-head trials are lacking.

Clinical trials often have limited durations, necessitating the use of extrapolation techniques to estimate
longer-term outcomes to demonstrate the value of a product to payers. Standard or flexible parametric
modelling, Bayesian methods, and leveraging external data with longer-term follow-up can be employed
to address this limitation. Additionally, treatment switching, a now common occurrence in clinical trials,
can introduce bias and must be addressed through appropriate methods. Adjustment for treatment
switching phenomena allows for a “cleaner” treatment effect to be estimated, yet still accounts for

actuality in the real-life clinical practice.
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More so in HTA than in regulatory approvals, health utility and PRO evidence are essential components
in the context of health economics and quality of life (QoL). Their analyses also vary in importance,
approaches and complexities based on different jurisdictions. Additionally, subgroup analyses play
crucial roles for identifying potential heterogeneity and uncertainty in treatment effects across different

patient populations to better inform national decision-making.

This section continues to address these topics in more detail.

3.1 Evidence synthesis method

Evidence synthesis plays a pivotal role in integrating data from diverse,sources. This section delves into
specific evidence synthesis methods.

3.1.1 Meta-analysis and network meta-analysis

Evidence-based healthcare decision-making in HTA requires comparison of all relevant competing
treatments. However, robustly designed R€Ts\that simultaneously compare all treatments of interest are
rarely available. Therefore, evidence synthesis including both direct and indirect evidence plays a critical
role in decision-making by HTA agencies, providing useful information on the comparative effectiveness

of multiple treatments.

Meta-analysis (MA) is a statistical method for combining or pooling results from multiple studies. It
could be a pairwise meta-analysis where there are two interventions of interest, or Network MA (NMA)
where multiple treatments are of interest. NMA compares multiple treatments by using both direct
comparisons of interventions within randomized controlled trials and indirect comparisons across trials
via a common comparator (Dias et al., 2018). In MA/NMA, studies refer to RCTs unless otherwise
specified. Both pairwise MA and NMA can be conducted using either frequentist or Bayesian framework
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with the Bayesian framework being more commonly adopted in practice. For the NMA, in particular, due
to the advantages of being able to incorporate prior knowledge or expert opinion through the use of prior
distribution; directly providing probabilistic statements about efficacy and ranking of treatment; and being

highly flexible and able to handle complex models and small sample size.

Pairwise MA and NMA share a common assumption of homogeneity. NMA has additional assumptions
related to homogeneity, transitivity and consistency due to combining direct and indirect evidenceiacross
a network of studies. This requires the distribution of treatment effect modifiers to be balanced between
studies (Phillippo et al., 2018). Pairwise MA could be considered as a special case of NMA where there
are only two treatments in the network. Either fixed effect or random effectssmodel could be used in
MA/NMA. The two types of models differ in assumptions and theiminterpretations. A fixed effect model
assumes that there is a common treatment effect, and the variation is,due to sampling error. Heterogeneity
is expected in evidence synthesis because it combines studies that may have clinical and methodological
heterogeneity. A random effects model would.be preferred as it allows for heterogeneity in the treatment
effects by assuming exchangeability of treatment effects. In the case of limited data, an informative prior

could be used to help the estimationyof theheterogeneity parameter between the studies (Ren et al., 2018).

Various guidance is available for conducting a Bayesian NMA (Dias et al., 2013; Hoaglin et al., 2011).
They cover the details of fanalysis for various types of endpoints including categorical, binary, or
continuous./Erequentist NMA approach can be found in Lumley (2002). Woods et al. illustrated how to
conduct NMA' of survival outcomes by assuming that the proportional hazards (PH) assumption holds
(Woods et al., 2010). The model can incorporate data reported using hazard ratio (HR), median survival
as well as count data (i.e., number of events and sample size). A limitation of the Woods approach,
however, was the fact that it does not account for violation of the PH assumption, which could potentially
introduce bias to the results. PH assumption should be assessed for time to event outcomes source

publications by reconstruction patient-level survival data by digitalizing Kaplan-Meier curves when
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reported (Guyot et al., 2012). The fractional polynomial model (FP) (Jansen, 2011) and Royston-Parmar
model (Freeman & Carpenter, 2017) could be considered when any included studies have shown

departures from the PH assumption.

3.1.2 Indirect treatment comparison

Indirect treatment comparison (ITC) refers to a comparison of different treatments that haye not been
directly compared with each other in a head-to-head (H2H) trial. It is often used when there is,no
evidence or insufficient evidence from H2H trials or when more than two medical intérventions are of
interest. Traditional ITC methods include the Bucher method, NMA, or population-adjusted indirect
comparison (PAIC) methods such as MAIC or STC (Phillippo et als32018)./Novel ITC methods have also
been developed to overcome challenges of traditional ITC methods, for example, ML-NMR (Phillippo,
Dias, Ades, Belger, et al. (2020). The earliest technique for adjusted ITC was introduced by Bucher et al.
(1997). The Bucher method is based on the odds ratio (OR) as the measure of treatment effect. The
Bucher method can be applied in star-shaped networks to obtain indirect comparisons of each pair of
treatments via a shared comparator.dt.is‘also applicable to more complex networks including closed
loops, but only in the form of pairwise.comparison (Tingle et al., 2024). The Bucher method assumes the
relative treatment effects are constant.across included trials. It has the advantage of preserving the within-
study randomization, However, the Bucher method may lead to biased results when the distribution of
effect modifiers is imbalanced between trials. In addition, the Bucher method is not applicable for multi-

arm trials as it assumes independence of pairwise comparisons (Bucher et al., 1997).

When the assumption of transitivity is violated, traditional methods of indirect comparisons, such as
NMA and Bucher’s method, can produce biased results (HTA Coordination Group, 2024; Phillippo et al.,
2016). MAIC and STC with relaxed assumptions were developed. These methods adjust for imbalances

in baseline covariates between studies to provide unbiased estimates of treatment effects in a setting when
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IPD from one study are available alongside aggregated data (AgD) from a published study (HTA
Coordination Group, 2024; Phillippo et al., 2016). MAIC uses IPD to match relevant baseline
characteristics reported in a comparator's trial with AgD, subsequently re-weighting outcomes to facilitate
comparison with the published outcomes (Signorovitch et al., 2012). In contrast, STC involves fitting
outcome regression models using IPD to predict outcomes for a comparator's population, and then

comparing these predicted outcomes with those reported in the publication (Phillippo et al., 2018).

MAIC and STC can be applied in two forms: anchored, for a connected network, and unanchored, for a
disconnected network without a common comparator. The anchored forms assume conditional constancy
of relative effects, meaning that the relative treatment effect is balanced across all effect modifiers. On the
other hand, the unanchored forms require the much stronger assumptioniof conditional constancy of
absolute effects, implying that the absolute treatment effect issbalanced across all effect modifiers and
prognostic factors. This assumption is generally considerediunrealistic to meet (Phillippo et al., 2016).
MAIC and STC have become more commonly used in\HT'A submissions. However, their appropriateness
must be carefully justified. EU HTA (EUnetHTA, n.d.) highlights that when decisions are based on
MAIC and STC, there should be a sufficiently large treatment effect to ensure that the observed effect is
not solely due to unmet assumptions, 'such’as missing covariates. Unanchored methods should only be

considered when no connectedmetwork exists, such as in single-arm trials (Phillippo et al., 2018).

The ML-NMR extends the standard NMA framework by synthesizing both IPD and AgD through a
connected network of multiple studies and treatments (Phillippo, Dias, Ades, Belger, et al., 2020). As this
method leverages IPD, unlike standard NMA, it relaxes the assumption that effect modifiers are balanced
across populations and derives population-adjusted indirect comparisons. When no covariates are
included, the ML-NMR model simplifies to a standard NMA. Conversely, when IPD are available from
all studies, it becomes an IPD network meta-regression, which is ideal but often difficult to achieve. In the

ML-NMR analysis, once the individual-level likelihoods are specified, they are integrated over the target
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population to create an aggregate-level likelihood. Studies providing only AgD are fitted by integrating
the individual-level model over the covariate distributions, linking the individual- and aggregate-levels of
the model, thereby avoiding aggregation bias. A quasi-Monte Carlo approach has been used for
integration due to its flexibility and efficiency. (Phillippo, Dias, Ades, Belger, et al., 2020). Details of the
mathematical framework and implementation of ML-NMR is introduced elsewhere (Phillippo, Dias,

Ades, Belger, et al., 2020). In addition, a case study motivated by HTA is provided.

Several studies have demonstrated the advantages of ML.-NMR. In a simulation study for,anchored ITC,
ML-NMR and STC performed similarly well under correct assumptions, effectively reducing bias, while
MAIC often increased it (Phillippo, Dias, Ades, & Welton, 2020). The study-feported that MAIC
underperformed in all scenarios considered, with issues related to sample size and population overlap.
Compared to STC, ML-NMR exhibited greater flexibility in handling larger treatment networks and could
derive estimates for any target population. In a real-life application involving four clinical trials, ML-
NMR substantially reduced the uncertainty of.the population-average relative effect estimates compared
to random-effects NMA by accounting for both within- and between-study variation (Phillippo, Dias,
Ades, Belger, et al., 2020). These findings.align with the perspectives of multiple HT A agencies. The
NICE Decision Support Unit (DSU) repott states that ML-NMR is the preferred method for population
adjustment in indirect treatment comparisons, favoring it over MAIC and STC (Abrams, 2020). The
report specifies that MAIC should not be used under any circumstances, while STC is suitable for
scenarios invelvingitwo'studies. Other HTA agencies generally support its use, provided that proper
implementation minimizes bias and accurately represents covariate distribution. Although EU HTA noted
that the current ML-NMR method has limitations, particularly its inapplicability to time-to-event
outcomes, an upcoming publication is expected to address this issue (Phillippo et al., 2024). The
extension to general likelihoods, including survival outcomes, will significantly enhance the method's

applicability and effectiveness.
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3.1.3 Non-randomized studies

Sometimes data from RCTs may not be available for an intended technology comparison, but
comparative observational studies with patient level data (IPD) might be available. Methods addressing
the potential confounding bias for comparative observational studies are discussed in the NICE DSU
technical Support Document (TSD) 17 (Faria et al., 2015). These can be broadly distinguishedby whether
only observed confounders are controlled for (assuming ignorability of technology conditional on a set of
observed confounders, "selection on observables" in the guidance) or can control for unobserved
confounders (“selection on unobservables”).Methods assuming selection on observable covariates include
regression adjustment, inverse probability weighting (IPW), doubly robust. methods, and regression on the
propensity score and matching. Methods assuming selection on unobservable covariates include

instrumental variable methods.

A wide variety of matching procedures have been proposed in the literature and, currently, there is no
consensus on how exactly matching ought to'be done and how to measure the success of the matching
procedure (Sekhon, 2011). Matching based on multivariable regression methods is detailed in existing
literature (Gelman & Hill, 2006), with further developments in PSM methods (Sekhon, 2011) and visual
assessment of matching also.discussed (Pruzek & Helmreich, 2009). Multivariable regression uses IPD
from two data sets tospredict which data set a patient is likely to belong to. Propensity score matching
(PSM) methods;havesbecome popular, although methodological review papers have suggested that they
have little advantage over traditional multivariable regression methods (Stiirmer et al., 2006). Propensity
score matching uses IPD from one data set to produce weights to match to another data set. Additionally,
applications of bootstrapping to PSM methods have been introduced (Pan & Bai, 2015).

Recent advancements include doubly robust methods, such as targeted maximum likelihood estimator

survival TMLE, all utilizing the survtmle package in R (Benkeser & Hejazi, 2017, Chen et al 2023)..
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TMLE makes use of IPD from two data sets to fit regression-based models simultaneously to both arms.
The survival TMLE package in R can use a Cox regression to model the covariates. It also leverages
ensemble machine learning techniques to estimate parameters in a flexible manner. The procedure uses

cross-validation to select the best-performing estimator from a library of candidate estimators.

NICE DSU TSD 17 recommends that the sensitivity of the results should be explored by estimating
alternative models that rely on different assumptions (Faria et al., 2015). Hence it is not unécommon for
statisticians to therefore suggest in a HTA statistical analysis plan.that all these®méthods should be

performed and the results be compared

3.2 Extrapolation

The economic evaluation of a new health technology is'ctucial’ within HTA, serving as the cornerstone for
decisions regarding market access and reimbursement."It plays a vital role in guiding policymakers on the
allocation of limited healthcare resources, aiming,to optimize their utilization. As required in HT As, cost-
effectiveness models (CEM) and budgetsimpact'models (BIM) constitute the economic evaluation.
According to various HTA guidelines (e.g., NICE and the Canadian Agency for Drugs and Technologies
in Health( CADTH)), the recommended time horizon for assessing cost-effectiveness should
comprehensively capture all relevant differences between the compared health technologies. Often, a
lifetime horizon is'deemed most suitable, particularly in chronic disease contexts where interventions can
exert long-termJmpacts on patients. However, this necessitates extrapolating beyond the typically limited
duration of clinical trials to thoroughly evaluate treatments, especially for periods extending beyond the
available data. It's imperative not to underestimate the uncertainty entailed in such extrapolation. Various
approaches exist, ranging from scientifically arguing for the expected durable effect of new health
technology (Institute for Clinical and Economic Review (ICER), 2023) to simple extrapolation, (Rheault

et al., 2023) extending observed outcomes trajectories to patients' lifetimes, and employing more complex
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statistical models, (Shah et al., 2023) including AI/ML-based analytical methods, to predict long-term

outcomes.

However, these extrapolations have limitations; for example, simple extrapolation assumes that observed
trends will indefinitely continue, which may not always be scientifically plausible. Complex statistical
models rely on certain assumptions and are influenced by factors like data volume and completeness,
where even slight violations in assumptions or variations in data can drastically alter extrapolated wvalues.
Moreover, extrapolating lifetime or long-term outcomes from studies with limited follow=up leads to
highly variable extrapolations as time extends beyond available data. Hence, it's|crucial to conduct
sensitivity analyses to quantitatively assess uncertainties associated with . CEMSs. In assessing treatments
aimed at improving survival, extrapolation is commonly used, notably ih,oncology trials where survival
data often undergo censoring at trial completion. Extending sufvivaliimpact beyond observed data is
essential for evaluating complete benefits. Economic evaluations‘prefer estimating mean effects on time-
to-event for assessing incremental quality-adjusted life,years (QALY) gains, favoring parametric models
for survival extrapolation (NICE DSU TSD 14 (Latimer, 2011)). NICE DSU TSD 14 identifies six
parametric models, each based on different’hazard function assumptions, as standard methods.(Latimer,
2011). Model selection depends on fitito observed data and plausibility for unobserved data, with an
emphasis on systematic assessment and summarizing methods. Similar procedures are endorsed by other
agencies like CADTH. However, standard models have limitations, relying on plausible hazard function
assumptiongifor specific scenarios, with inaccurate estimates resulting from implausible assumptions.
More flexible'methods for survival analysis such as flexible parametric survival, mixture, landmark,
piecewise, cure and excess mortality models together with methods for incorporating external information
can be found in NICE DSU TSD 21 (Rutherford et al., 2020). However, the complexity of these more

advanced methods doesn't guarantee better outcomes.
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This challenge would be even more prominent with the growing wave of developing new therapeutics
based on technologies that modify a patient’s gene (gene therapies) or technologies that transplant human
cells to replace or repair damaged tissue and/or cells of a patient (cell therapies). In many instances, gene
and cell therapies are viewed to be “curative” but clinical trials usually do not have long enough follow up
data when the associated products receive regulatory approvals. Therefore, the durable effect of the new
therapy remains largely unknown when HTA agencies and other payor-oriented organizations assess
clinical and economic benefits of the products. This uncertainty could cast doubts on the détermination of
the effect of gene/cell therapies in HTA evaluations (ICER, 2022, 2023; NICE, 2023). Fusthermore, gene
and cell therapies predominantly address rare diseases characterized by considetable unmet medical
needs, often leading to clinical trials with limited sample sizes. This furtherlimits the information
available to conduct scientifically sound extrapolation, and the development of new statistical methods is
needed to address this challenge. Recently, Pan et al. developedya new Bayesian data selection approach
that is able to select and integrate data outside the clinical trialsiof an investigational gene therapy, to help

reduce the variability of the predicted outcome in the leng run (Pan et al., 2024).

3.3 Treatment switching

Treatment switching poses| challenges in estimating survival outcomes, which are crucial for economic
evaluations. Various methods have been proposed to handle treatment switching. Careful consideration of
trial characteristics;, underlying assumptions, and fit-for-purpose data is essential for selecting an

appropriate method and interpreting its results (Latimer & Abrams, 2014).

Simple methods like excluding or censoring switchers can introduce bias. The Rank Preserving Structural
Failure Time Model (RPSFTM, Robins et al, 1991) estimates the counterfactual survival time,
representing the treatment effect a patient would have experienced if they had not switched treatments. It

assumes a "common treatment effect”, where the magnitude of the treatment effect is the same regardless
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of when a patient receives the experimental treatment. The Iterative Parameter Estimation (IPE) algorithm
also assumes a "common treatment effect" and requires suitable statistical distribution models for survival
times (Latimer & Abrams, 2014). The Inverse Probability of Censoring Weights (IPCW) assigns weights
to patients based on their likelihood of switching treatments, aiming to create a hypothetical group
representing what would have happened without switching. It relies on the assumption of no unmeasured
confounders, meaning that all factors influencing both treatment switching and survival are accounted for
in the analysis (Robins & Finkelstein, 2000). Two-stage estimation (TSE) estimates counterfactual
survival times after a secondary baseline. Compared to the IPCW, it has an advantage of not requiring
data to be collected on time-dependent covariates except those at the secondary baseline. The RPSFTM,
IPE, and TSE could apply recensoring at an earlier time-point for switchers who survive during the study
to address the issue of informative censoring. However, recensoring.leads to loss of long-term
information, which is a major concern in economic evaluation®TSE\with IPCW addresses the informative
censoring and can outperform the TSE with recensoring, but it‘also relies on the assumption of no
unmeasured confounders (Latimer et al., 2019). In Ying and Tchetgen (2023), a structural cumulative
survival model (SCSM) is proposed, which uses randomization as an instrumental variable to account for
selection bias in switching. Furthermore, it‘acéommodates unmeasured confounding by leveraging initial
randomization as an instrumental'variable? The SCSM is further enhanced by developing a doubly robust
estimator, relying on a model for the;randomized arm and another model for the hazards of death

(Michiels et al., 2024). It remains unbiased even if one of the two models is mis-specified.

Treatment switching adjustment methods have assumptions and limitations. Conducting sensitivity
analyses using different methods and exploring various assumptions can provide a comprehensive
understanding of the uncertainty surrounding estimated treatment effects and cost-effectiveness results.
Collecting suitable data at baseline and over time is crucial for several methods. Additionally, it is also
important to use methods that can accommodate extrapolation beyond trial period to study lifetime

benefits of treatment.
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3.4 Patient-reported outcomes and health utilities

PROs and utilities both are important concepts in healthcare research and decision-making, particularly in
HTA and cost-effectiveness analyses. They provide insights into patients’ experiences, preferences, and
the value they place on different health states, and ensure that patient values and preferences are
considered alongside clinical and economic evidence. PROs refer to any report of a patient’s health
condition, symptoms, or quality of life directly from the patient themselves (FDA Guidance, 2009, 2018).
PROs can include measures of physical functioning, symptom severity, emotional well-being, general
health perceptions, and overall quality of life. They are typically collected,through self-reported
questionnaires or interviews, enabling patients to express their own perspectives on their health status and
treatment outcomes. PROs are valuable in HTA and healthcare decision-making because they provide a
patient-centered perspective, by capturing aspects of health that may not be captured by clinical measures
alone and allowing for a more comprehensivetassessment of the impact of a healthcare intervention on
patients’ lives. The 36-Item Short Form Survey (SF+36), 12-Item Short Form Survey (SF-12), and the
EuroQol 5-Dimension Questionnaire,(EQ<5D) are commonly used generic PRO instruments to assess
health-related QoL. (HRQoL) and health status. There are also disease-specific PRO measures that are
designed to assess the unique aspectsiand challenges associated with a particular disease or health

condition.

Health utilities, also known as preference-based measures or health-related QoL utilities, on the other
hand, are numerical values that are used to quantify the value or desirability of different health states or
outcomes. Utilities are typically represented on a scale from O to 1, where O represents a state equivalent
to death or worst possible health and 1 represents perfect health (Wailoo et al., 2023). Utilities reflect

individual preferences and can be used to compare the relative value of different health states or
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interventions. Estimates of health utility can be obtained by either direct or indirect methods. With direct
methods, utilities are often derived through preference-elicitation methods, such as time trade-off (TTO),
standard gamble (SG), or visual analog scale (VAS). These methods involve asking individuals to make
trade-off decisions or express their preferences for different health states relative to each other (Morimoto
& Fukui, 2002). These preferences are then used to assign utility values to specific health states. Health
utilities can also be indirectly elicited using generic preference-based instruments such as EQ-5D, Health
Utility Index (HUI), or Short Form 6-dimension (SF-6D), an abbreviated variation of SF-36, whichhave
been developed and validated for use across different health conditions and populations. These
instruments provide a standardized method for measuring health utilities, whichican facilitate

comparisons across different health technologies and interventions.

However, one of the potential limitations of generic preference=based instruments is that they may lack
sensitivity in specific disease contexts. In some cases, disease-specific instruments may be more
appropriate for capturing the unique aspects of a particular disease or condition. These instruments may
be designed to capture symptoms or functional limitations that are not captured by generic instruments
and may be more sensitive to changes.in health status in specific patient populations. When a disease-
specific utility measure is not available, mapping the descriptions from a disease-specific instrument to
the utility algorithm of a generic insttument is a potential alternative approach. This involves establishing
a statistical relationship between the scores on the disease-specific instrument and the scores on the
generic instrument,\which can then be used to estimate health utilities for the disease-specific instrument
(Wailoo et al.; 2023). This approach can be useful when a disease-specific instrument has been
implemented in a study, but health utilities need to be estimated for economic evaluations or comparisons

across different interventions.

Utilities are often used in cost-effectiveness analyses to calculate QALY's, a measure that combines both

quantity and quality of life. QALY allow for comparisons of the health benefits of different interventions
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and help inform resource allocation decisions. By incorporating health utilities into cost-effectiveness
analyses, decision-makers can assess the value for money of different healthcare interventions or
treatments. Utilities help in comparing the benefits and costs of interventions across different disease
areas and can inform resource allocation decisions in healthcare systems. Many HT A agencies make
specific statements about their preferences for health utility measures, but the guidelines may change over
time (RTI Health Solutions, 2022). It is important to stay informed about the current guidelines and any

changes made by HT A agencies.

3.5 Subgroup analyses

Subgroup analysis involves examining the effects of a medical intervention/on specific subgroups of
patients within a larger population. These subgroups may be defined\by factors such as age, gender,
disease severity, genetic characteristics, or other relevant criteria: Subgroup analysis plays a crucial role
in HTA and helps to explore the heterogeneity. of treatment effects across different subgroups of patients.
By examining the outcomes and effectiveness of amintervention within specific subgroups, HTA agencies
can provide more targeted and personalized recommendations for its use. In addition, subgroup analysis
can explore potential differences(in safety and cost-effectiveness within different subpopulations. This
information is critical for HT Asagencies to understand the overall value and impact of an intervention

across various patient groups:

Payers, including national health systems and insurance agencies, are increasingly demanding subgroup
analyses to inform their coverage and reimbursement decisions for healthcare technologies (Aggarwal &
H, 2013). In addition to informing coverage and reimbursement decisions, subgroup analysis can help
payers optimize their resource allocation by targeting the most cost-effective interventions to the patients
who are most likely to benefit. Subgroup analyses are discussed in many HTA guidance documents (e.g.,

NICE and IQWiG). Researchers should consult the specific guidelines and recommendations provided by
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their respective country's HTA agency or relevant professional societies for more detailed and context-
specific guidance. The principles and best practice for conducting subgroup analyses for HT A purpose are

outlined in the literature (Paget et al., 2011).

The PICO framework can be used to guide subgroup definition by helping researchers identify relevant
subgroups based on the characteristics of the population, intervention, comparison, and outcomes being
studied. Performing adequate subgroup analysis can be difficult due to several statistical and
methodological challenges such as pre-specification, type I errors, multiplicity problems,lack of power
and ecological bias (Wijn et al., 2019). The interpretation and recommendations based on subgroup
analyses can also be complex and controversial. Open dialogue and careful consideration are necessary to
ensure that HT A recommendations for subpopulations are clear, transpatent, and ultimately serve the best

interests of patients and healthcare systems.

3.6 Challenges, consideration and recommendations

MA and NMA are essential statistical.methods for evidence synthesis and decision-making in HTA,
allowing for the comparison of multiple treatments by combining direct and indirect evidence. While both
pairwise MA and NMA can be‘conducted using frequentist or Bayesian frameworks, the Bayesian
approach is more commonly adopted for NMA due to its advantages. Random-effects models are
preferred overfixed-effect models to account for heterogeneity. Recommended methods for analyzing
time-to-event outcomes under the proportional hazards assumption are well-documented in the literature
(Woods et al., 2010). Alternative models like fractional polynomial or spline models should be considered

if this assumption is violated.

Traditional methods like Bucher's and NMA assume transitivity, which can lead to bias if violated. MAIC

and STC overcome this shortfall by adjusting for covariate imbalances when IPD are available from one
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study, but assumptions like conditional/absolute constancy of effects must be justified, which is often
unrealistic in the unanchored analyses. The ML-NMR extends NMA and relaxes the balanced effect
modifiers assumption. Multiple studies demonstrate ML-NMR's advantages over MAIC and STC in
reducing bias and uncertainty. NICE in the UK prefers ML-NMR over MAIC and STC, while it cautions

on the use of MAIC. These views are also supported by EUnetHTA, CADTH, and IQWiG.

In non-randomized trials when IPD are available, NICE DSU recommends a selection of methods:to
estimate the treatment effects based on observed and unobserved variables to perform indirect
comparisons. Given the lack of consensus on the best methods, the NICE DSU TSD 17 recommends
performing sensitivity analyses using multiple adjustment methods requiring«different assumptions and

comparing the results to assess the robustness of findings.

In HTA, economic evaluations often require extrapolating survival data beyond clinical trial durations to
capture full treatment benefits over a lifetime horizon:\While standard parametric survival models are
commonly used, they rely on assumptions about hazard functions that may not hold, which may lead to
inaccurate extrapolations. Other flexible methods described in NICE DSU TSD 21 can improve
extrapolations, but the increased ¢omplexity does not guarantee better performance. Bayesian methods
can also help to reduce uncertainty in long-term extrapolations by incorporating external information and
is particularly useful in gene/cell therapies. Regardless of the extrapolation method used, conducting
extensive sensitivity analyses is crucial to quantify the uncertainty associated with survival projections

informing cost-effectiveness models.

The presence of treatment switching in clinical trials is common, which can bias the survival analysis and
compromise economic evaluations relying on survival estimates. While it is known and well-accepted that
simple censoring leads to bias, more advanced statistical methods proposed to adjust for switching come

with various assumptions and limitations. Adjustment method with re-censoring has been criticized and
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should not be a method of choice when it leads to a considerable loss of information. Given the varying
assumptions, conducting sensitivity analyses using multiple switching adjustment methods is

recommended.

PROs and health utilities are critical concepts in HTA and economic evaluations for incorporating
patients' perspectives on their health status, quality of life, and preferences for different health states.
While generic PRO and utility instruments allow standardization (especially when a comparison across
disease indications is needed), disease-specific measures may better capture unique aspects of particular
conditions. Disease-specific PRO and utility instruments are generally preferred by HT A agencies, though
mapping on a generic instrument may be used in their absence. HTA agencysguidelines on PRO/utility

frequently evolve over time, and therefore should be regularly consulted:

Subgroup and subpopulation analyses are vital for understanding‘the overall value proposition across
different patient populations in HTA; with increasing demand for subgroup and subpopulation analyses to
optimize coverage decisions and resource allocation towards subgroups who benefit the most. However,
conducting robust subgroup analyses poses'statistical challenges like multiplicity issues, lack of power,
and ecological bias. Pre-specificationiof subpopulations and subgroup analyses using frameworks like

PICO could reinforce the statistical rigor and allows transparent interpretation.

4. Summary.and Conclusions

While it may not be exhaustive, this article provides reviews and discussions on how different study
design and statistical methods could help in filling evidentiary gaps in HTA submissions based on our
collective expertise. We have discussed the importance of following the PICO framework and have

delved into the specific evidence needs from population, intervention, comparator, and outcome
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perspectives, thereby noting that PICO does not handle treatment switching, in contrast to the estimand
framework. Furthermore, the statistical challenges of using RWD in HT A could only be briefly described
in this overview article. PICO and other research structuring frameworks in HTA and RWD use in HTA

are included in the research topics the SWG is working on.

Recognizing the need for early evidence generation for HTA, we have also explored various study design
concepts that allow for parallel planning of evidence collection alongside regulatory submiSsion planning.
We have highlighted the challenges and opportunities associated with planning studiés that address HTA
requirements. Additionally, we have provided a detailed overview of complex statisti¢al methods that are
essential for HTA submission. By outlining these methods and their underlying assumptions, we aim to
guide practitioners on when and how to utilize them in their own applications. We have also extensively

discussed the challenges and opportunities in the application ofithese statistical methods.

We aim to offer strategic considerations for early evidence planning related to HTA, alongside specific
statistical methodologies commonly used in delivering clinical evidence and demonstrating value. Our
targeted audience includes statisticians working in clinical development who may not be familiar with the
intricacies and specific needs of HT Ay, While we covered a wide range of topics, we did not delve deeply
into any particular area. Out goal.is to raise awareness of HTA needs and strategic considerations for
those who have not worked in this field, but who may need to understand HT A requirements to generate
evidence inelinicalidevelopment while serving HT A needs after regulatory submission. The SWG plans
to explore a few areas in greater depth, such as the use of RWE in HTA and comparing and contrasting

estimands and PICO.

In a companion paper (Jen et al., 2025), we introduced the HT A framework, outlined the requirements
from different HTA bodies, and addressed operational challenges. Furthermore, we have shared our

insights on how to tackle these challenges effectively.
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As quantitative scientists involved in medical product development, we acknowledge the significant
potential for statisticians to assume leadership roles and contribute to the HT A submission process. This
article, focusing on study design and statistical methodologies, serves as evidence of the critical roles
statisticians can play in the HTA process, ranging from strategy development and methodology design to
evidence generation. Along with the companion paper (Jen et al., 2025), we aim to provide a
comprehensive overview of the current state of HT A evaluations and offer insights into addressingsthe

challenges faced in this field.
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