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Abstract – Eusocial insect queens often use pheromones to prevent reproduction in the worker caste, enforc-
ing the reproductive constraint that is central to eusociality. In A. mellifera honeybees, the queen emits several 
pheromones that affect worker reproduction, the most important being QMP. Although the effects of QMP 
have been studied in some detail, the mechanisms by which it brings about reproductive constraint in workers 
are still unclear. Remarkably, QMP is also able to repress reproduction in other insects, including the fruit fly 
Drosophila melanogaster, in which QMP has been shown to induce a starvation-like response. Here we use 
caged newly eclosed workers with an ad libitum choice of protein and sugar food sources to investigate whether 
QMP alters dietary intake in the honeybee. We show that initially, irrespective of QMP exposure, workers only 
consume protein, before shifting to carbohydrate after 4 days. We also show that QMP exposure results in an 
increased preference and intake of carbohydrates in worker bees, raising the possibility that QMP also induces 
a starvation-like response in honeybees.
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1.  INTRODUCTION

 The defining feature of eusociality is the 
reproductive division of labour (Wilson 1971). 
In A. mellifera honeybees, this is maintained in 
part by the presence of pheromones produced 
by the queen (Princen et al. 2019), particularly 
queen mandibular pheromone (QMP), which 
suppresses the reproduction of workers by pre-
venting the activation of their ovaries (Hoover 
et al. 2003). QMP is not the only pheromone to 
mediate reproductive constraint in this species; 
however, several other compounds (Mohammedi 
et al. 1998; Maisonnasse et al. 2010) and queen 

pheromones (Wossler and Crewe 1999; Princen 
et al. 2019) are also able to bring about repro-
ductive constraint, indicating a high degree of 
redundancy in this eusocial regulatory mecha-
nism (Princen et al. 2019).

QMP, produced in the mandibular glands of 
queens (Slessor et al. 1990), is comprised of five 
main compounds (Slessor et al. 1990; Plettner 
et al. 1996, 1997). In addition to inhibiting repro-
duction, QMP also produces other effects in the 
honeybee worker, including inducing care behav-
iours (Fischer and Grozinger 2008), regulation of 
swarming (Winston et al. 1989), inhibiting rear-
ing of queens (Pettis et al. 1997), and inducing 
retinue behaviour (Slessor et al. 1988). Despite 
the large body of research investigating the dif-
ferent functions of this pheromone, the mecha-
nism of action for QMP’s repressive effect on 
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worker reproduction is not fully understood at a 
physiological, or molecular, level.

QMP is also able to bring about the repres-
sion of reproduction in other, phylogenetically 
diverse, species including the bumblebee B. ter-
restris (Princen et al. 2020), and the fruit fly D. 
melanogaster (Camiletti et al. 2013). With the 
latter species being almost 370 million years 
diverged from A. mellifera (Misof et al. 2014). 
Work in D. melanogaster has shown that QMP 
induces a starvation-like response, possibly pro-
ducing reproductive repression as a by-product 
of starvation-induced diapause (Lovegrove et al. 
2023). This would possibly indicate that QMP 
may have evolved to inhibit reproduction in 
honeybee workers via sensory exploitation of 
highly conserved pathways, as previously sug-
gested (Oi et al. 2015). An example of a target of 
this sensory exploitation might be Notch signal-
ling in QMP-mediated reproductive repression 
in honeybee workers, which has been shown to 
be activated by the presence of QMP (Duncan 
et al. 2016). In this scheme, the highly conserved 
Notch signalling pathway may have been coopted 
to induce reproductive constraint in worker hon-
eybees in a way which also results in reproduc-
tive constraint in those phylogenetically diverse 
species.

Historically, investigations of QMP activity 
on the various aspects of honeybee behaviour 
and physiology have been carried out both within 
a native hive environment (in alvo, e.g. (Pankiw 
et al. 1994)), and in more sterile environments in 
cages in laboratory settings (in cavea, e.g. (Pirk 
et al. 2010)). These in cavea experiments allow 
for the strict control of extraneous variables 
which could impact the phenotype being inves-
tigated (for example, the presence of other pher-
omones produced by the queen, or developing 
brood), but they may also produce workers that 
are not entirely biologically equivalent to those 
reared under normal in-hive (in alvo) conditions. 
These in cavea studies also require the artificial 
supplementation of food. Different studies have 
used diverse feeding regimens (Williams et al. 
2013), ranging from a relatively natural sugar 
fondant/pollen setup (Mohammedi et al. 1998) 
to a protein-heavy complete bee food (CBF, used 

to maximally induce ovary activation) (Duncan 
et al. 2016, 2020).

In colonies, young workers perform nurs-
ing and brood-care tasks which require pollen 
(Crailsheim 1990; Robinson 1992), whereas 
older foragers consume nectar to fuel flight 
(Crailsheim 1990). There has been some inves-
tigation into the preference of honeybee work-
ers for different food types, such as the prefer-
ences of honeybees towards more metabolisable 
forms of protein (Pernal and Currie 2000; Pirk 
et al. 2010). Food preference and nutrient intake 
therefore vary with worker behavioural role and 
physiological state. Several pheromones have 
been shown to affect these feeding dynamics; 
for example, (E)-β-ocimene produced by brood 
simulates foraging and brood care (Maison-
nasse et al. 2010; He et al. 2016), while QMP 
alters lipid metabolism and fat body composi-
tion (Fischer and Grozinger 2008; Corby-Harris 
et al. 2022) as well as protecting against star-
vation (Fischer and Grozinger 2008). However, 
the relationship between QMP exposure, feed-
ing preferences, and diet consumption has not 
been directly examined in cavea conditions. 
This study aimed to investigate the effect of 
QMP exposure on feeding preferences in cavea 
for queenless A. mellifera workers, as well as 
testing the hypothesis that, similarly to D. mela-
nogaster fruit flies, QMP induces starvation-like 
behaviour in worker honeybees by, for example, 
increasing the amount of food being eaten.

2. � METHODS

2.1. � Honeybee husbandry

Polystyrene national-type hives of honeybees 
were kept at the University of Leeds, with standard 
beekeeping practice. Colonies were fed sugar fon-
dant (BeeCandee, Beekeeping Supplies UK) dur-
ing winter and spring and pollen cake (ApiCandy, 
Beekeeping Supplies UK) during the early spring.

For experiments, frames of eclosing brood 
were taken from multiple queen-right hives over 
the summers (May–September) of 2023 and 2024.
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2.2. � In cavea experiments

Brood frames from the hives were emptied 
of adult bees and placed into a 35 °C incubator 
for up to 24 h. All the workers which eclosed 
in this time were mixed, and 100 of these 
bees were randomly assigned to metal cages 
(10 cm × 10 cm × 5.5 cm steel with removable 
glass front and air holes, www.​small-​life.​co.​
uk). The caged bees were kept in the dark at 
35 °C, fed ad libitum sugar fondant (3:1 ground 
table sugar to honey by weight), pollen cake 
(7:3 ground pollen supplied from LiveMoor to 
honey by weight), and water, refreshed every 
24 h, recording consumption of each food type.

Each cage was provided treatment in the form 
of queen pheromone or solvent control (ethanol) 
every 24 h. QMP was provided as a 20 µl aliquot 
of 0.1 Queen equivalent per day (Qe; 1 Qe is 
the amount of pheromone produced in a day by 
a single queen: 261.8 µg ODA, 104.7 μg HDA 
of both enantiomers combined, 26.2 µg HOB, 
and 2.62 µg HVA (Pankiw et al. 1996), supplied 
by Intko Supply Ltd., Canada) in ethanol on a 
microscope slide on the bottom of the cage, with 
the slide replaced every 24 h. Dead bees were 
also removed, and deaths recorded, every 24 h.

After 10 days, all remaining bees were dis-
sected to remove their ovaries, which were ana-
lysed to confirm QMP-mediated repression of 
workers. Some cages were taken through to day 
20; however, high mortality rates made this data 
unreliable, and so it was censored.

2.3. � Statistics

Graphs were produced in R using the ggplot2 
(Wickham 2016) package and finished in Micro-
soft PowerPoint. For the consumption graph, 
means of each average consumption for each day 
were calculated and standard deviation was used 
for error bars. For the Cohen’s D graph, Cohen’s 
D values were calculated measuring the effect 
size between fondant consumption by treatment 
for each day, with the error bars representing the 
upper and lower limits.

All analysis was performed in R (R Core 
Team 2021): The difference of food given to 
the bees and food removed from the bees 24 h 
later for each cage was calculated into a feed-
ing difference value for each of fondant and 
pollen. This value was then used to do indi-
vidual pairwise comparisons between each of 
the treatments for each day via GLM using a 
distribution determined via the descdist pack-
age from the fitdistrplus package (Delignette-
Muller and Dutang 2015) in R. For Gaussian 
fitted models, an ANOVA was performed 
using an F-test, while for the gamma fitted 
models, a Log-Rank test was used to generate 
significance values. When these were signifi-
cant, post hoc comparisons were undertaken 
using a Sidak adjustment for multiple compari-
sons at a given time point.

Overall significance of treatment effect on 
food consumption was also calculated using 
the data aggregated across all days, using a 
GLM with Gaussian distribution. Cage was 
initially introduced as a covariate, but was 
found not to significantly predict consump-
tion difference, and so was excluded. The data 
distribution was determined using the descdist 
function from the fitdistrplus package (Del-
ignette-Muller and Dutang 2015) in R. Sig-
nificance was determined using ANOVA with 
F-test, followed by Sidak post hoc adjustments 
as described above.

3. � RESULTS

3.1. � Food preferences switch from 
protein‑rich food to carbohydrate 
rich food

Over the course of two summers, a total of 
70 ethanol and 62 QMP cages were investigated, 
and their food intake (either fondant or pollen) 
was recorded daily.

As seen in Figure 1A, irrespective of treat-
ment, newly eclosed workers initially prefer 
protein-rich pollen cake, before a switch of pref-
erence to the carbohydrate-rich sugar fondant 
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occurring during the fifth day after eclosure. By 
day 10, the consumption of pollen cake falls to 
almost zero. This is consistent with previously 
published research showing the initial impor-
tance of protein-rich food in the days immedi-
ately after eclosure (Pernal and Currie 2000; Pirk 
et al. 2010).

3.2. � QMP‑exposed worker bees consume 
more fondant than those exposed to 
solvent control

QMP has no effect on the consumption of 
protein (in the form of pollen cake) (F = 0.0908, 
df = 1316, P = 0.7673).

Figure. 1   Different food types consumed by queenless worker A. mellifera honeybees reared in cavea in the pres-
ence and absence of queen mandibular pheromone. The consumption of two food sources, sugar fondant (solid 
lines) and pollen cake (dashed lines), was measured each day for 10  days for each of two treatments: 0.1  Qe of 
QMP per day (grey lines) or ethanol solvent control (black lines). In A, the mean value is plotted for both treatments 
and food types with error bars representing one standard deviation; significance is given as *P < 0.05, **P < 0.01, 
***P < 0.001, calculated via glm with post hoc Sidak adjustment. In B, the Cohen’s D of effect size between treat-
ments of fondant consumption from panel A is shown, with the dashed line showing a value of 0.6, the threshold 
between a medium and large effect size. In C, the cumulative food consumption is shown for each treatment and food 
type; significance is given as n.s. = P > 0.05; *** = P < 0.001; calculated via glm with post hoc Sidak adjustment.
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However, when exposed to QMP at a concen-
tration of 0.1 Qe per day, honeybee worker con-
sumption of carbohydrates (in the form of sugar 
fondant) exceeds that of bees exposed to solvent 
controls (F = 28.745, df = 1315, P < 0.001). This 
difference is statistically significant from days 
two to nine after eclosion, with the greatest effect 
size occurring from days four to six (Table I and 
Figure 1A, B).

When observing total food consumed per 
cage, the statistically significant difference in 
overall fondant consumption between treatments, 
but not pollen consumption, can be clearly seen 
(Figure  1C; fondant: F = 28.745, df = 1315, 
P < 0.001; pollen: F = 0.0908, df = 1315, 
P = 0.7633).

For each biological replicate, bees from 
QMP-exposed cages and solvent-only control 
cages were dissected on day 10 to assess ovarian 
activity. In all cases, QMP exposure resulted in 
statistically significant repression of ovary activ-
ity compared with the ethanol-only solvent (Sup-
plementary Fig. 1).

Interestingly, workers provided with fondant 
alone did not activate their ovaries, regardless 
of QMP exposure (Supplementary Fig. 2). Bees 
fed only pollen exhibited significantly lower 
survival (Supplementary Fig. 3), whereas those 
fed either pollen plus fondant or fondant alone 

showed significantly higher survival (Supple-
mentary Fig. 3).

4. � DISCUSSION

This study aimed to investigate whether QMP 
alters the nutritional preference of newly eclosed 
worker honeybees. Building on previous work in 
D. melanogaster, where QMP induces a starva-
tion-like response (Lovegrove et al. 2023), we 
hypothesised that QMP might similarly influ-
ence feeding behaviour in honeybees. Our find-
ings support this hypothesis, but only for car-
bohydrate consumption. QMP exposed workers 
showed a significant and sustained increase in 
carbohydrate-rich (fondant) consumption while 
protein (pollen-cake) intake remained unaffected 
(Figure 1).

That QMP exposure results in an increase in 
sugar consumption is perhaps counterintuitive. 
Given that QMP-exposed bees are less reproduc-
tively active (and therefore devoting fewer meta-
bolic resources to egg production), the energy 
requirements within these bees should theoreti-
cally be lower, all else being equal (Wiggles-
worth 1960). Similarly, we would expect to see 
those bees which are more reproductively active 
to have higher protein needs, due to the role 

Table I   Results of the statistical tests investigating the differences in fondant consumption by worker honey-
bees exposed to QMP and solvent control

Day Residual degrees of 
freedom

Residual deviance Adjusted P-value Cohen’s 
D effect 
size

1 112 2.989 0.2788 0.20
2 112 46.115 0.0028 0.24
3 112 35.011 0.0102 0.51
4 112 11.681  < 0.001 1.02
5 112 9.651  < 0.001 0.92
6 112 9.663  < 0.001 1.03
7 112 9.804 0.001 0.79
8 112 10.997 0.0013 0.62
9 112 9.585 0.0086 0.50
10 112 9.778 0.1959 0.26
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of metabolic protein in vitellogenin synthesis 
(Izumi et al. 1994; Wu et al. 2021). The lack of 
difference in pollen consumption (the only pro-
tein source for honeybees in general, and particu-
larly in the cages, though there are trace amounts 
of amino acids in the honey used in the sugar 
fondant) is therefore surprising and indicates that 
the effect of QMP on food consumption is likely 
unrelated to reproduction directly.

The increase in consumption of fondant 
under QMP exposure suggests that QMP may 
be triggering a shift in perceived nutritional 
state or metabolic demand, consistent with a 
starvation-like response, despite the bees being 
in a controlled nutrient abundant environment, 
as was seen for D. melanogaster. Interestingly, 
nutritional state modulates workers’ respon-
siveness to QMP (Walton et al. 2018), further 
suggesting that diet and pheromonal signalling 
interact closely in the honeybee, potentially act-
ing through shared or overlapping physiological 
pathways.

The increase in consumption of carbohydrates 
might also reflect a QMP-induced increase in 
metabolic activity, possibly indicating a change 
in physical activity which necessitates the 
increase in metabolism and therefore sugar con-
sumption. However, the presence of a queen has 
been shown to have a calming effect on workers 
(Grodzicki et al. 2020), and it has been shown 
that QMP reduces activity in workers (Beggs 
et al. 2007), although this latter study used much 
higher QMP exposures than in this study, and 
better techniques for quantifying physical activ-
ity have since been developed (Chiara and Kim 
2023). It is worth applying these techniques to 
bees reared under the conditions presented here, 
in order to confirm the effect that QMP has on 
activity.

Notably, QMP is known to inhibit “social-
aging”, whereby the innate age-based poly-
ethism of honeybees is delayed, resulting in 
less foraging activity (Pankiw et al. 1998). This 
would imply that QMP should decrease sugar 
consumption, due to the lower anticipated meta-
bolic requirements associated with non-foraging 
activities as foraging requires higher energy 

expenditure to sustain flight (Casey 1981). How-
ever, confirming this would require additional 
data measuring physiological proxies for social 
aging (e.g. changes in haemolymph vitellogenin 
titres (Nakaoka et al. 2008) or fat body lipid and 
protein levels (Bertholf 1925)).

It is also important to note that food intake 
patterns in caged workers are likely to differ from 
those in colony conditions, where foragers, for 
example, require more nutrients to sustain flight. 
In our caged setup, where brood and flight activ-
ity are absent, the increased carbohydrate con-
sumption observed in QMP-exposed workers 
may reflect a shift toward a more nurse-like met-
abolic state. The increase in fondant consump-
tion we observed is consistent with the increased 
lipid storage in the fat body that comes about 
as a result of nursing behaviours in honeybees 
(for royal jelly production in the hypopharyngeal 
glands) (Crailsheim et al. 1992; Toth and Robin-
son 2005). This pattern is similar to that reported 
by Corby-Harris et al. (2022), where exposure of 
young bees to QMP resulted in altered fat body 
composition (increased lipid and decreased pro-
tein) (Corby-Harris et al. 2022), supporting the 
idea that QMP influences nutritional metabolism 
as well as reproductive state.

It is possible that QMP is able to bring about 
repression of worker reproduction and increased 
sugar consumption via the role of adult diapause 
mechanisms in honeybees. The role of diapause 
in QMP-mediated repression of reproduction in 
D. melanogaster has been postulated (Knapp 
et al. 2022), whereby QMP has evolved to coopt 
ancestral diapause mechanisms to bring about 
reproductive repression in that species. A simi-
lar diapause-like dormancy mechanism exists in 
the honeybee as the winter phenotype, whereby 
during winter, reproduction is switched off in 
queens, but also in workers (Seeley and Viss-
cher 1985; Knoll et al. 2020), combined with a 
host of other metabolic, genetic, and behavioural 
changes (Phillips and Demuth 1914; Rockstein 
1950; Owens 1971; Bresnahan et  al. 2022). 
Interestingly, recent work has shown that worker 
exposure to QMP components varies seasonally 
but does not affect retinue size (Carroll et al. 
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2023). This suggests that although QMP levels 
vary across the year, its behavioural effects may 
remain stable. The influence of QMP on winter 
workers is an interesting area for future studies. 
Notably, this adult reproductive diapause is dis-
tinct from the larval diapause brought about by 
nutrient stress that occurs in many insects (Hahn 
and Denlinger 2011). It is possible that, as is sug-
gested in the fruit fly, in A. mellifera, QMP acts 
to induce elements of this adult diapause to pre-
vent worker ovary activation.

It is possible that QMP’s ability to 
repress reproduction in adult worker honeybees 
under summer conditions is a co-option of the 
seasonal mechanisms which bring about the 
repression of worker reproduction under winter 
conditions and that a secondary effect of this 
coopted mechanism is the winter phenotype’s 
propensity to consume food as necessary for 
maintaining temperature homeostasis in the 
winter cluster (Owens 1971). The increased 
consumption in carbohydrates (but not pollen) 
would therefore be a side effect of QMP-medi-
ated reproductive constraint.

Regardless of the reason for increased con-
sumption of carbohydrates, the fact that the 
overconsumption of food under QMP-exposed 
conditions is similar between A. mellifera and D. 
melanogaster potentially demonstrates that they 
are bringing about reproductive constraint via the 
same mechanism.
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