

1 Title:

2 Age and QMP exposure affect the nutritional preferences of caged *Apis mellifera*
3 worker honeybees

4 Authors:

5 Anthony Bracuti¹: Anthony.bracuti@gmail.com

6 Zoe Lois Hudson¹: bs19zlh@leeds.ac.uk

7 Emily Hazel Pidcock¹: emilyhazelpidcock@gmail.com

8 Kane Yoon¹: kanejyoon@gmail.com

9 Elizabeth Jenness Duncan^{1*}: e.j.duncan@leeds.ac.uk

10 1. School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT
11 Leeds, United Kingdom.

12 * Corresponding author e.j.duncan@leeds.ac.uk

13

14 Short Title

15 Age and QMP effect on worker honeybee feeding

16

17 Abstract

18 Eusocial insect queens often use pheromones to prevent reproduction in the worker
19 caste, enforcing the reproductive constraint that is central to eusociality. In *A. mellifera*
20 honeybees, the queen emits several pheromones that affect worker reproduction, the

21 most important being QMP. Although the effects of QMP have been studied in some
22 detail, the mechanisms by which it brings about reproductive constraint in workers are
23 still unclear. Remarkably, QMP is also able to repress reproduction in other insects,
24 including the fruit fly *Drosophila melanogaster*, in which QMP has been shown to
25 induce a starvation-like response. Here we use caged newly-eclosed-workers with an *ad*
26 *libitum* choice of protein and sugar food sources to investigate whether QMP alters
27 dietary intake in the honeybee. We show that initially, irrespective of QMP exposure,
28 workers only consume protein, before shifting to carbohydrate after four days. We also
29 show that QMP-exposure results in an increased preference and intake of carbohydrates
30 in worker bees, raising the possibility that QMP also induces a starvation-like response
31 in honeybees.

32

33 Keywords

34 **honeybee / nutrition / pheromone / QMP / feeding**

35

36 Introduction

37 The defining feature of eusociality is the reproductive division of labour (Wilson 1971).
38 In *A. mellifera* honeybees, this is maintained in part by the presence of pheromones
39 produced by the queen (Princen, Oliveira et al. 2019), particularly Queen Mandibular
40 Pheromone (QMP), which suppresses the reproduction of workers by preventing the
41 activation of their ovaries (Hoover, Keeling et al. 2003). QMP is not the only
42 pheromone to mediate reproductive constraint in this species, however, several other
43 compounds (Mohammedi, Paris et al. 1998; Maisonnasse, Lenoir et al. 2010) and queen

44 pheromones (Wossler and Crewe 1999; Princen, Oliveira et al. 2019) are also able to
45 bring about reproductive constraint, indicating a high degree of redundancy in this
46 eusocial regulatory mechanism (Princen, Oliveira et al. 2019).

47 QMP, produced in the mandibular glands of queens (Slessor, Kaminski et al. 1990) is
48 comprised of five main compounds (Slessor, Kaminski et al. 1990; Plettner, Slessor et
49 al. 1996; Plettner, Otis et al. 1997). In addition to inhibiting reproduction QMP also
50 produces other effects in the honeybee worker including: inducing care behaviours
51 (Fischer and Grozinger 2008), regulation of swarming (Winston, Slessor et al. 1989),
52 inhibiting rearing of queens (Pettis, Higo et al. 1997), and inducing retinue behaviour
53 (Slessor, Kaminski et al. 1988). Despite the large body of research investigating the
54 different functions of this pheromone, the mechanism of action for QMP's repressive
55 effect on worker reproduction is not fully understood at a physiological, or molecular,
56 level.

57 QMP is also able to bring about the repression of reproduction in other, phylogenetically
58 diverse, species including the bumblebee *B. terrestris* (Princen, Van Oystaeyen et al.
59 2020), and the fruit fly *D. melanogaster* (Camiletti, Percival-Smith and Thompson
60 2013). With the latter species being almost 370 million years diverged from *A. mellifera*
61 (Misof, Liu et al. 2014). Work in *D. melanogaster* has shown that QMP induces a
62 starvation-like response, possibly producing reproductive repression as a by-product of
63 starvation-induced diapause (Lovegrove, Dearden and Duncan 2023). This would
64 possibly indicate that QMP may have evolved to inhibit reproduction in honeybee
65 workers via sensory exploitation of highly conserved pathways, as previously suggested
66 (Oi, van Zweden et al. 2015). An example of a target of this this sensory exploitation
67 might be Notch signalling in QMP-mediated reproductive repression in honeybee

68 workers, which has been shown to be activated by the presence of QMP (Duncan,
69 Hyink and Dearden 2016). In this scheme, the highly conserved Notch signalling
70 pathway, may have been coopted to induce reproductive constraint in worker honeybees
71 in a way which also results in reproductive constraint in those phylogenetically diverse
72 species.

73 Historically, investigations of QMP activity on the various aspects of honeybee
74 behaviour and physiology have been carried out both within a native hive environment
75 (*in alvo*, e.g. (Pankiw, Winston and Slessor 1994)), and in more sterile environments in
76 cages in laboratory settings (*in cavea*, e.g. (Pirk, Boodhoo et al. 2010)). These *in cavea*
77 experiments allow for the strict control of extraneous variables which could impact the
78 phenotype being investigated (for example, the presence of other pheromones produced
79 by the queen, or developing brood), but they may also produce workers that are not
80 entirely biologically equivalent to those reared under normal *in-hive* (*in alvo*)
81 conditions. These *in cavea* studies also require the artificial supplementation of food.
82 Different studies have used diverse feeding regimens (Williams, Cédric et al. 2013),
83 ranging from a relatively natural sugar fondant/pollen setup (Mohammedi, Paris et al.
84 1998), to a protein-heavy complete bee food (CBF, used to maximally induce ovary
85 activation) (Duncan, Hyink and Dearden 2016; Duncan, Leask and Dearden 2020).

86 In colonies, young workers perform nursing and brood-care tasks which require pollen
87 (Crailsheim 1990; Robinson 1992), whereas older foragers consume nectar to fuel flight
88 (Crailsheim 1990). There has been some investigation into the preference of honeybee
89 workers for different food types, such as the preferences for honeybees towards more
90 metabolisable forms of protein (Pernal and Currie 2000; Pirk, Boodhoo et al. 2010).
91 Food preference and nutrient intake therefore vary with worker behavioural role and

92 physiological state. Several pheromones have been shown to affect these feeding
93 dynamics, for example, (E)- β -ocimene produced by brood simulates foraging and brood
94 care (Maisonnasse, Lenoir et al. 2010; He, Zhang et al. 2016), while QMP alters lipid
95 metabolism and fat body composition (Fischer and Grozinger 2008; Corby-Harris,
96 Snyder et al. 2022) as well as protecting against starvation (Fischer and Grozinger
97 2008). However, the relationship between QMP exposure, feeding preferences and diet
98 consumption has not been directly examined *in cavea* conditions. This study aimed to
99 investigate the effect of QMP exposure on feeding preferences *in cavea* for queenless *A.*
100 *mellifera* workers; as well as testing the hypothesis that, similarly to *D. melanogaster*
101 fruit flies, QMP induces starvation-like behaviour in worker honeybees, by, for
102 example, increasing the amount of food being eaten.

103

104 Methods105 Honeybee Husbandry

106 Polystyrene national-type hives of honeybees were kept at the University of Leeds, with
107 standard beekeeping practice. Colonies were fed sugar fondant (BeeCandee,
108 Beekeeping Supplies UK) during winter and spring, and pollen cake (ApiCandy,
109 Beekeeping Supplies UK) during the early spring.

110 For experiments, frames of eclosing brood were taken from multiple queen-right hives
111 over the summers (May-September) of 2023 and 2024.

112 *In cavea* experiments

113 Brood frames from the hives were emptied of adult bees and placed into a 35°C
114 incubator for up to 24 h. All the workers which eclosed in this time were mixed, and

115 100 of these bees were randomly assigned to metal cages (10 cm x 10 cm x 5.5 cm steel
116 with removable glass front and air holes, www.small-life.co.uk). The caged bees were
117 kept in the dark at 35°C, fed *ad libitum* sugar fondant (3:1 ground table sugar to honey
118 by weight), pollen cake (7:3 ground pollen supplied from LiveMoor, to honey by
119 weight), and water, refreshed every 24h, recording consumption of each food type.

120 Each cage was provided treatment in the form of queen pheromone or solvent control
121 (ethanol) every 24h. QMP was provided as a 20 µl aliquot of 0.1 Queen equivalent per
122 day (Qe; 1 Qe is the amount of pheromone produced in a day by a single queen: 261.8
123 µg ODA, 104.7 µg HDA of both enantiomers combined, 26.2 µg HOB, and 2.62 µg
124 HVA (Pankiw, Winston et al. 1996), supplied by Intko Supply Ltd. Canada) in ethanol
125 on a microscope slide on the bottom of the cage, with the slide replaced every 24h.

126 Dead bees were also removed, and deaths recorded, every 24h.

127 After 10 days all remaining bees were dissected to remove their ovaries, which were
128 analysed to confirm QMP-mediated repression of workers. Some cages were taken
129 through to day 20, however high mortality rates made this data unreliable and so it was
130 censored.

131

132 Statistics

133 Graphs were produced in R using the ggplot2 (Wickham 2016) package and finished in
134 Microsoft PowerPoint. For the consumption graph, means of each average consumption
135 for each day were calculated and standard deviation used for error bars. For the Cohen's
136 D graph, Cohen's D values were calculated measuring the effect size between fondant

137 consumption by treatment for each day, with the error bars representing the upper and
138 lower limits.

139 All analysis was performed in R (R Core Team 2021): The difference of food given to
140 the bees and food removed from the bees 24h later for each cage was calculated into a
141 feeding difference value for each of fondant and pollen. This value was then used to do
142 individual pairwise comparisons between each of the treatments for each day via GLM
143 using a distribution determined via the descdist package from the fitdistrplus package
144 (Delignette-Muller and Dutang 2015) in R. For gaussian fitted models, an ANOVA was
145 performed using an F-test, while for the gamma fitted models, a Log-Rank test was used
146 to generate significance values. When these were significant, post-hoc comparisons
147 were undertaken using a Sidak adjustment for multiple comparisons at a given time
148 point.

149 Overall significance of treatment effect on food consumption was also calculated using
150 the data aggregated across all days, using a GLM with gaussian distribution. Cage was
151 initially introduced as a covariate, but was found not to significantly predict
152 consumption difference, and so was excluded. The data distribution was determined
153 using the descdist function from the fitdistrplus package (Delignette-Muller and Dutang
154 2015) in R. Significance was determined using ANOVA with F-test, followed by Sidak
155 post-hoc adjustments as described above

156

157 Results

158 *Food Preferences switch from protein-rich food to carbohydrate rich food*

159 Over the course of two summers, a total of 70 ethanol and 62 QMP cages were
160 investigated, and their food intake (either fondant or pollen) was recorded daily.
161 As seen in Fig. 1a, irrespective of treatment, newly eclosed workers initially prefer
162 protein-rich pollen cake, before a switch of preference to the carbohydrate rich sugar
163 fondant occurring during the fifth day after eclosure. By day 10, the consumption of
164 pollen cake falls to almost zero. This is consistent with previously published research
165 showing the initial importance of protein-rich food in the days immediately after
166 eclosure (Pernal and Currie 2000; Pirk, Boodhoo et al. 2010).

167

168 *QMP-exposed worker bees consume more fondant than those exposed to solvent control*

169 QMP has no effect on the consumption of protein (in the form of pollen cake)
170 ($F=0.0908$, $df=1316$, $P=0.7673$).

171 However, when exposed to QMP at a concentration of 0.1 Qe per day, honeybee worker
172 consumption of carbohydrates (in the form of sugar fondant) exceeds that of bees
173 exposed to solvent controls ($F=28.745$, $df=1315$, $P<0.001$). This difference is
174 statistically significant from days two to nine after eclosion, with the greatest effect size
175 occurring from days four to six (Table I and Fig. 1a, b)

176 When observing total food consumed per cage, the statistically significant difference in
177 overall fondant consumption between treatments, but not pollen consumption, can be
178 clearly seen (Fig. 1c. Fondant: $F=28.745$, $df=1315$, $P<0.001$; Pollen: $F=0.0908$,
179 $df=1315$, $P=0.7633$).

180 For each biological replicate, bees from QMP-exposed cages and solvent-only control
181 cages were dissected on day 10 to assess ovarian activity. In all cases, QMP exposure

182 resulted in statistically significant repression of ovary activity compared with the
183 ethanol-only solvent (Supplementary Fig. 1).
184 Interestingly, workers provided with fondant alone did not activate their ovaries,
185 regardless of QMP exposure (Supplementary Fig. 2). Bees fed only pollen exhibited
186 significantly lower survival (Supplementary Fig. 3), whereas those fed either pollen plus
187 fondant or fondant alone showed significantly higher survival (Supplementary Fig. 3).

188 Discussion

189 This study aimed to investigate whether QMP alters the nutritional preference of newly
190 eclosed worker honeybees. Building on previous work in *D. melanogaster*, where QMP
191 induces a starvation-like response (Lovegrove et al., 2023), we hypothesised that QMP
192 might similarly influence feeding behaviour in honeybees. Our findings support this
193 hypothesis, but only for carbohydrate consumption. QMP exposed workers showed a
194 significant and sustained increase in carbohydrate rich (fondant) consumption while
195 protein (pollen-cake) intake remained unaffected (Fig. 1).

196 That QMP exposure results in an increase in sugar consumption is perhaps
197 counterintuitive. Given that QMP-exposed bees are less reproductively active (and
198 therefore devoting fewer metabolic resources to egg production), the energy
199 requirements within these bees should theoretically be lower, all else being equal
200 (Wigglesworth 1960). Similarly, we would expect to see those bees which are more
201 reproductively active to have higher protein needs, due to the role of metabolic protein
202 in vitellogenin synthesis (Izumi, Yano et al. 1994; Wu, Yang et al. 2021). The lack of
203 difference in pollen consumption (the only protein source for honeybees in general, and
204 particularly in the cages, though there are trace amounts of amino acids in the honey

205 used in the sugar fondant), is therefore surprising, and indicates that the effect of QMP
206 on food consumption is likely unrelated to reproduction directly.

207 The increase in consumption of fondant under QMP exposure suggests that QMP may
208 be triggering a shift in perceived nutritional state or metabolic demand, consistent with a
209 starvation-like response, despite the bees being in a controlled nutrient abundant
210 environment, as was seen for *D. melanogaster*. Interestingly, nutritional state modulates
211 workers' responsiveness to QMP (Walton, Dolezal et al. 2018), further suggesting that
212 diet and pheromonal signalling interact closely in the honeybee, potentially acting
213 through shared or overlapping physiological pathways.

214 The increase in consumption of carbohydrates might also reflect a QMP-induced
215 increase in metabolic activity, possibly indicating a change in physical activity which
216 necessitates the increase in metabolism and therefore sugar consumption. However, the
217 presence of a queen has been shown to have a calming effect on workers (Grodzicki,
218 Piechowicz and Caputa 2020), and it has been shown that QMP reduces activity in
219 workers (Beggs, Glendining et al. 2007), although this latter study used much higher
220 QMP exposures than in this study, and better techniques for quantifying physical
221 activity have since been developed (Chiara and Kim 2023). It is worth applying these
222 techniques to bees reared under the conditions presented here, in order to confirm the
223 effect that QMP has on activity.

224 Notably, QMP is known to inhibit “social-aging”, whereby the innate age-based
225 polyethism of honeybees is delayed, resulting in less foraging activity (Pankiw, Huang
226 et al. 1998). This would imply that QMP should decrease sugar consumption, due to the
227 lower anticipated metabolic requirements associated with non-foraging activities as
228 foraging requires higher energy expenditure to sustain flight (Casey 1981)). However

229 confirming this would require additional data measuring physiological proxies for social
230 aging must be collected (e.g. changes in haemolymph vitellogenin titres (Nakaoka,
231 Takeuchi and Kubo 2008) or fat body lipid and protein levels (Bertholf 1925)).

232 It is also important to note that food intake patterns in caged workers are likely to differ
233 from those in colony conditions, where foragers, for example, require more nutrients to
234 sustain flight. In our caged setup, where brood and flight activity are absent, the
235 increased carbohydrate consumption observed in QMP-exposed workers may reflect a
236 shift toward a more nurse-like metabolic state. The increase in fondant consumption we
237 observed is consistent with the increased lipid storage in the fat body that comes about
238 as a result of nursing behaviours in honeybees (for royal jelly production in the
239 hypopharyngeal glands) (Crailsheim, Schneider et al. 1992; Toth and Robinson 2005).

240 This pattern is similar to that reported by Corby-Harris (2022) where exposure of young
241 bees to QMP resulted in altered fat body composition (increased lipid and decreased
242 protein) (Corby-Harris, Snyder et al. 2022), supporting the idea that QMP influences
243 nutritional metabolism as well as reproductive state.

244 It is possible that QMP is able to bring about repression of worker reproduction and
245 increased sugar consumption via the role of adult diapause mechanisms in honeybees.
246 The role of diapause in QMP-mediated repression of reproduction in *D. melanogaster*
247 has been postulated (Knapp, Norman et al. 2022), whereby QMP has evolved to coopt
248 ancestral diapause mechanisms to bring about reproductive repression in that species. A
249 similar diapause-like dormancy mechanism exists in the honeybee as the winter
250 phenotype, whereby during winter, reproduction is switched off in queens, but also in
251 workers (Seeley and Visscher 1985; Knoll, Pinna et al. 2020), combined with a host of
252 other metabolic, genetic, and behavioural changes (Phillips and Demuth 1914;

253 Rockstein 1950; Owens 1971; Bresnahan, Döke et al. 2022). Interestingly, recent work
254 has shown that worker exposure to QMP components varies seasonally but does not
255 affect retinue size (Carroll, Brown et al. 2023). This suggests that although QMP levels
256 vary across the year, its behavioural effects may remain stable. The influence of QMP
257 on winter workers is an interesting area for future studies. Notably this adult
258 reproductive diapause is distinct from the larval diapause brought about by nutrient
259 stress that occurs in many insects (Hahn and Denlinger 2011). It is possible that, as is
260 suggested in the fruit fly, in *A. mellifera* QMP acts to induce elements of this adult
261 diapause to prevent worker ovary activation.

262 It is possible that QMP's ability to bring about repression of reproduction in adult
263 worker honeybees under summer conditions, is a co-option of the seasonal mechanisms
264 which bring about the repression of worker reproduction under winter conditions, and
265 that a secondary effect of this coopted mechanism is the winter phenotype's propensity
266 to consume food as necessary for maintaining temperature homeostasis in the winter
267 cluster (Owens 1971). The increased consumption in carbohydrates (but not pollen)
268 would therefore be a side-effect of QMP-mediated reproductive constraint.

269 Regardless of the reason for increased consumption of carbohydrates, the fact that the
270 overconsumption of food under QMP-exposed conditions is similar between *A.*
271 *mellifera* and *D. melanogaster* potentially demonstrates that they are bringing about
272 reproductive constraint via the same mechanism.

273

274 Acknowledgments

275 A special thank you to B. Wendy for stimulating discussions about environmental
276 control of food intake in insects. The authors also thank Marta Fiorini, Matthew
277 Chambers, Leah Bancroft, Liam Brockway, Jenna Mair, Poppy Cairney, and Yujing Bu
278 for their support and critical discussion. This work was supported by a NERC Panorama
279 PhD scholarship to A.B. and a Marie Skłodowska-Curie Individual Fellowship to E.J.D
280 (H2020-MSCA-IF-2016 752656).

281

282 **Author Declarations**

283 **Funding**

284 This work was supported by a NERC Panorama PhD scholarship to A.B. and a Marie
285 Skłodowska-Curie Individual Fellowship to E.J.D (H2020-MSCA-IF-2016 752656).

286

287 **Conflicts of Interest /Competing Interests**

288 The authors have no relevant financial or non-financial interests to disclose. The authors
289 declare that they have no potential conflict of interest in relation to the study in this
290 paper

291

292 **Ethics approval/declarations**

293 Not applicable.

294

295 **Consent to participate**

296 Not applicable

297

298 **Availability of data and material/ Data availability**

299 The data that support the findings of this study are available from the author upon
300 reasonable request.

301

302 **Authors' Contribution**

303 AB and EJD conceived and designed the experiments. AB, ZLH, EHP, and KY carried
 304 out experiments and collected data. AB analysed the data. AB and EJD wrote the paper
 305 and revised it. All authors read and approved final manuscript.

306

307 **References**

308 Beggs K.T., K.A. Glendining, N.M. Marechal, V. Vergoz, I. Nakamura, et al. (2007) Queen
 309 pheromone modulates brain dopamine function in worker honey bees. Proceedings of
 310 the National Academy of Sciences **104**(7): 2460-2464.

311 Bertholf L.M. (1925) The Moults of the Honeybee. Journal of Economic Entomology **18**(2):
 312 380-384.

313 Bresnahan S.T., M.A. Döke, T. Giray, C.M. Grozinger. (2022) Tissue-specific transcriptional
 314 patterns underlie seasonal phenotypes in honey bees (*Apis mellifera*). Molecular
 315 Ecology **31**(1): 174-184.

316 Camiletti A.L., A. Percival-Smith, G.J. Thompson. (2013) Honey bee queen mandibular
 317 pheromone inhibits ovary development and fecundity in a fruit fly. Entomologia
 318 Experimentalis et Applicata **147**(3): 262-268.

319 Carroll M.J., N.J. Brown, Z. Ruetz, V.A. Ricigliano, K.E. Anderson. (2023) Honey bee retinues
 320 workers respond similarly to queens despite seasonal differences in Queen Mandibular
 321 Pheromone (QMP) signaling. PLoS One **18**(9): e0291710.

322 Casey T.M. (1981) Insect Flight Energetics, in: Herreid C.F. and Fourtner C.R. (Eds.),
 323 Locomotion and Energetics in Arthropods, Springer US, Boston, MA, pp. 419-452.

324 Chiara V., S.-Y. Kim. (2023) AnimalTA: A highly flexible and easy-to-use program for tracking
 325 and analysing animal movement in different environments. Methods in Ecology and
 326 Evolution **14**(7): 1699-1707.

327 Corby-Harris V., L. Snyder, C. Meador, E. Watkins-DeJong, B.T. Obernesser, et al. (2022) Diet
 328 and pheromones interact to shape honey bee (*Apis mellifera*) worker physiology.
 329 Journal of Insect Physiology **143**: 104442.

330 Crailsheim K. (1990) The protein balance of the honey bee worker. Apidologie **21**(5): 417-429.

331 Crailsheim K., L.H.W. Schneider, N. Hrassnigg, G. Bühlmann, U. Brosch, et al. (1992) Pollen
 332 consumption and utilization in worker honeybees (*Apis mellifera carnica*): Dependence
 333 on individual age and function. Journal of Insect Physiology **38**(6): 409-419.

334 Delignette-Muller M.L., C. Dutang. (2015) fitdistrplus: An R Package for Fitting Distributions.
 335 Journal of Statistical Software **64**(4): 1 - 34.

336 Duncan E.J., O. Hyink, P.K. Dearden. (2016) Notch signalling mediates reproductive constraint
 337 in the adult worker honeybee. Nature Communications **7**(1): 12427.

338 Duncan E.J., M.P. Leask, P.K. Dearden. (2020) Genome architecture facilitates phenotypic
 339 plasticity in the honeybee (*Apis mellifera*). Molecular Biology and Evolution DOI:
 340 10.1093/molbev/msaa057.

341 Fischer P., C.M. Grozinger. (2008) Pheromonal regulation of starvation resistance in honey bee
 342 workers (*Apis mellifera*). Naturwissenschaften **95**(8): 723-729.

343 Grodzicki P., B. Piechowicz, M. Caputa. (2020) The Effect of the Queen's Presence on Thermal
 344 Behavior and Locomotor Activity of Small Groups of Worker Honey Bees. Insects
 345 **11**(8): 464.

346 Hahn D.A., D.L. Denlinger. (2011) Energetics of insect diapause. Annual Review of
 347 Entomology **56**: 103-121.

348 He X.J., X.C. Zhang, W.J. Jiang, A.B. Barron, J.H. Zhang, Z.J. Zeng. (2016) Starving honey bee
 349 (*Apis mellifera*) larvae signal pheromonally to worker bees. Scientific Reports **6**: 22359.

350 Hoover S.E.R., C.I. Keeling, M.L. Winston, K.N. Slessor. (2003) The effect of queen
 351 pheromones on worker honey bee ovary development. Naturwissenschaften **90**(10):
 352 477-480.

353 Izumi S., K. Yano, Y. Yamamoto, S.Y. Takahashi. (1994) Yolk proteins from insect eggs:
 354 Structure, biosynthesis and programmed degradation during embryogenesis. Journal of
 355 Insect Physiology **40**(9): 735-746.

356 Knapp R.A., V.C. Norman, J.L. Rouse, E.J. Duncan. (2022) Environmentally responsive
 357 reproduction: neuroendocrine signalling and the evolution of eusociality. Current
 358 Opinion in Insect Science **53**: 100951.

359 Knoll S., W. Pinna, A. Varcasia, A. Scala, M.G. Cappai. (2020) The honey bee (*Apis mellifera*
 360 L., 1758) and the seasonal adaptation of productions. Highlights on summer to winter
 361 transition and back to summer metabolic activity. A review. Livestock Science **235**:
 362 104011.

363 Lovegrove M.R., P.K. Dearden, E.J. Duncan. (2023) Honeybee queen mandibular pheromone
 364 induces a starvation response in *Drosophila melanogaster*. Insect Biochemistry and
 365 Molecular Biology **154**: 103908.

366 Maisonnasse A., J.-C. Lenoir, D. Beslay, D. Crauser, Y. Le Conte. (2010) E- β -Ocimene, a
 367 Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony
 368 (*Apis mellifera*). PLOS ONE **5**(10): e13531.

369 Misof B., S. Liu, K. Meusemann, R.S. Peters, A. Donath, et al. (2014) Phylogenomics resolves
 370 the timing and pattern of insect evolution. Science **346**(6210): 763-767.

371 Mohammedi A., A. Paris, D. Crauser, Y. Le Conte. (1998) Effect of aliphatic esters on ovary
 372 development of queenless bees (*Apis mellifera* L.). Naturwissenschaften **85**(9): 455-
 373 458.

374 Nakaoka T., H. Takeuchi, T. Kubo. (2008) Laying workers in queenless honeybee (*Apis*
 375 *mellifera* L.) colonies have physiological states similar to that of nurse bees but opposite
 376 that of foragers. Journal of Insect Physiology **54**(5): 806-812.

377 Oi C.A., J.S. van Zweden, R.C. Oliveira, A. Van Oystaeyen, F.S. Nascimento, T. Wenseleers.
 378 (2015) The origin and evolution of social insect queen pheromones: Novel hypotheses
 379 and outstanding problems. BioEssays **37**(7): 808-821.

380 Owens C.D. (1971) The thermology of wintering honey bee colonies. US Agricultural Research
 381 Service.

382 Pankiw T., Z.Y. Huang, M.L. Winston, G.E. Robinson. (1998) Queen mandibular gland
 383 pheromone influences worker honey bee (*Apis mellifera* L.) foraging ontogeny and
 384 juvenile hormone titers. Journal of Insect Physiology **44**(7): 685-692.

385 Pankiw T., M.L. Winston, E. Plettner, K.N. Slessor, J.S. Pettis, O.R. Taylor. (1996) Mandibular
 386 gland components of european and africanized honey bee queens (*Apis mellifera* L.).
 387 Journal of Chemical Ecology **22**(4): 605-615.

388 Pankiw T., M.L. Winston, K.N. Slessor. (1994) Variation in worker response to honey bee (*Apis*
 389 *mellifera* L.) queen mandibular pheromone (Hymenoptera: Apidae). Journal of Insect
 390 Behavior **7**(1): 1-15.

391 Pernal S.F., R.W. Currie. (2000) Pollen quality of fresh and 1-year-old single pollen diets for
 392 worker honey bees (*Apis mellifera* L.). Apidologie **31**(3): 387-409.

393 Pettis J., H. Higo, T. Pankiw, M. Winston. (1997) Queen rearing suppression in the honey bee-
 394 evidence for a fecundity signal. Insectes Sociaux **44**(4): 311-322.

395 Phillips E.F., G.S. Demuth. (1914) The temperature of the honeybee cluster in winter. US
 396 Department of Agriculture.

397 Pirk C.W.W., C. Boodhoo, H. Human, S.W. Nicolson. (2010) The importance of protein type
 398 and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees
 399 (*Apis mellifera scutellata*). *Apidologie* **41**(1): 62-72.

400 Plettner E., G. Otis, P. Wimalaratne, M. Winston, K. Slessor, et al. (1997) Species-and caste-
 401 determined mandibular gland signals in honeybees (*Apis*). *Journal of Chemical Ecology*
 402 **23**: 363-377.

403 Plettner E., K.N. Slessor, M.L. Winston, J.E. Oliver. (1996) Caste-selective pheromone
 404 biosynthesis in honeybees. *Science* **271**(5257): 1851-1853.

405 Princen S.A., R.C. Oliveira, U.R. Ernst, J.G. Millar, J.S. van Zweden, T. Wenseleers. (2019)
 406 Honeybees possess a structurally diverse and functionally redundant set of queen
 407 pheromones. *Proceedings of the Royal Society B: Biological Sciences* **286**(1905):
 408 20190517.

409 Princen S.A., A. Van Oystaeyen, C. Petit, J.S. van Zweden, T. Wenseleers. (2020) Cross-activity
 410 of honeybee queen mandibular pheromone in bumblebees provides evidence for sensory
 411 exploitation. *Behavioral Ecology* **31**(2): 303-310.

412 R Core Team. (2021) R: A language and environment for statistical computing. , R Foundation
 413 for Statistical Computing, Vienna, Austria.

414 Robinson G.E. (1992) Regulation of division of labor in insect societies. *Annual Review of
 415 Entomology* **37**: 637-665.

416 Rockstein M. (1950) Longevity in the Adult Worker Honeybee. *Annals of the Entomological
 417 Society of America* **43**(1): 152-154.

418 Seeley T.D., P.K. Visscher. (1985) Survival of honeybees in cold climates: the critical timing of
 419 colony growth and reproduction. *Ecological Entomology* **10**(1): 81-88.

420 Slessor K.N., L.-A. Kaminski, G. King, M.L. Winston. (1990) Semiochemicals of the honeybee
 421 queen mandibular glands. *Journal of Chemical Ecology* **16**: 851-860.

422 Slessor K.N., L.-A. Kaminski, G.G.S. King, J.H. Borden, M.L. Winston. (1988) Semiochemical
 423 basis of the retinue response to queen honey bees. *Nature* **332**(6162): 354-356.

424 Toth A.L., G.E. Robinson. (2005) Worker nutrition and division of labour in honeybees. *Animal
 425 Behaviour* **69**(2): 427-435.

426 Walton A., A.G. Dolezal, M.A. Bakken, A.L. Toth. (2018) Hungry for the queen: Honeybee
 427 nutritional environment affects worker pheromone response in a life stage-dependent
 428 manner. *Functional Ecology* **32**(12): 2699-2706.

429 Wickham H. (2016) *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

430 Wigglesworth V.B. (1960) Nutrition and reproduction in insects. *Proceedings of the Nutrition
 431 Society* **19**(1): 18-23.

432 Williams G.R., A. Cédric, C. Cecilia, C. Támas, D. Vincent, et al. (2013) Standard methods for
 433 maintaining adult *Apis mellifera* in cages under *in vitro* laboratory conditions. *Journal of
 434 Apicultural Research* **52**(1): 1-36.

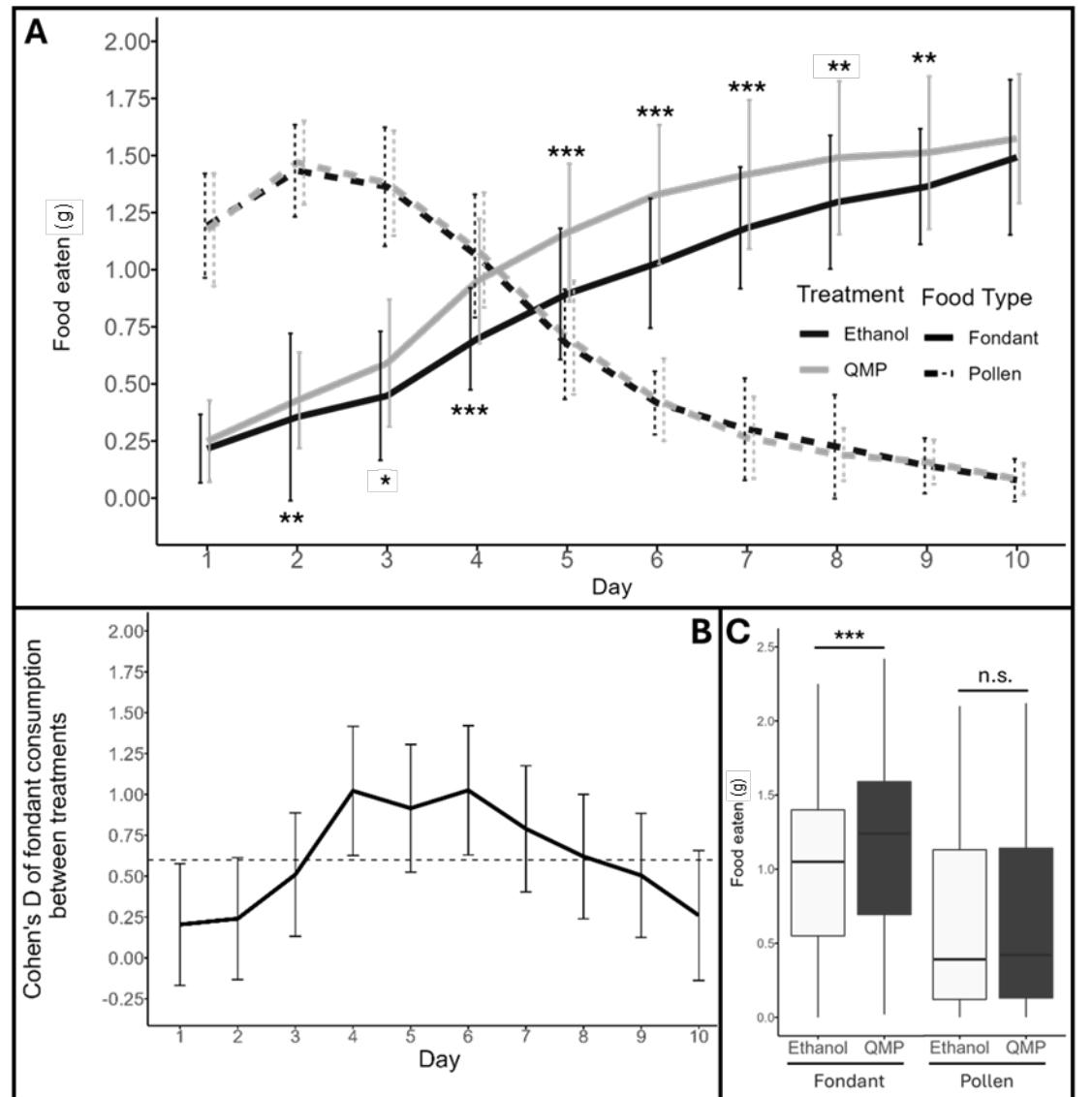
435 Wilson E.O. (1971) The insect societies.

436 Winston M.L., K.N. Slessor, L.G. Willis, K. Naumann, H.A. Higo, et al. (1989) The influence of
 437 queen mandibular pheromones on worker attraction to swarm clusters and inhibition of
 438 queen rearing in the honey bee (*Apis mellifera* L.). *Insectes Sociaux* **36**(1): 15-27.

439 Wossler T., C., R. Crewe, M. (1999) Honeybee queen tergal gland secretion affects ovarian
 440 development in caged workers. *Apidologie* **30**(4): 311-320.

441 Wu Z., L. Yang, Q. He, S. Zhou. (2021) Regulatory Mechanisms of Vitellogenesis in Insects.
 442 *Frontiers in Cell and Developmental Biology* **8**.

443


444

445

446

447 *Table I - Results of the statistical tests investigating the differences in fondant consumption by worker honeybees*448 *exposed to QMP and solvent control*

Day	Residual degrees of freedom	Residual Deviance	Adjusted P-value	Cohen's D effect size
1	112	2.989	0.2788	0.20
2	112	46.115	0.0028	0.24
3	112	35.011	0.0102	0.51
4	112	11.681	<0.001	1.02
5	112	9.651	<0.001	0.92
6	112	9.663	<0.001	1.03
7	112	9.804	0.001	0.79
8	112	10.997	0.0013	0.62
9	112	9.585	0.0086	0.50
10	112	9.778	0.1959	0.26

450 *Figure 1 – Different food types consumed by queenless worker A. mellifera honeybees reared in cavae in the*

451 *presence and absence of Queen Mandibular Pheromone*. The consumption of two food sources: sugar fondant

452 (solid lines), and pollen cake (dashed lines); were measured each day for 10 days for each of two treatments: 0.1Qe

453 of QMP per day (grey lines), or ethanol solvent control (black lines). In A, the mean value is plotted for both

454 treatments and food types with error bars representing one standard deviation, significance is given as * = $P < 0.05$,

455 ** = $P < 0.01$, *** = $P < 0.001$, calculated via glm with post hoc Sidaak adjustment.. In B, the Cohen's D of effect size

456 between treatments of fondant consumption from panel A is shown, with the dashed line showing a value of 0.6, the

457 threshold between a medium and large effect size. In C the cumulative food consumption is shown for each of

458 treatment and food type, significance is given as n.s. = $P > 0.05$; *** = $P < 0.001$; calculated via glm with post hoc

459 Sidaak adjustment..

Title:

Age and QMP exposure affect the nutritional preferences of *Apis mellifera* worker honeybees

Supplementary Data

Journal:

Apidologie

Authors:

Anthony Bracuti¹: Anthony.bracuti@gmail.com

Zoe Lois Hudson¹: bs19zlh@leeds.ac.uk

Emily Hazel Pidcock¹: emilyhazelpidcock@gmail.com

Kane Yoon¹: kanejyoon@gmail.com

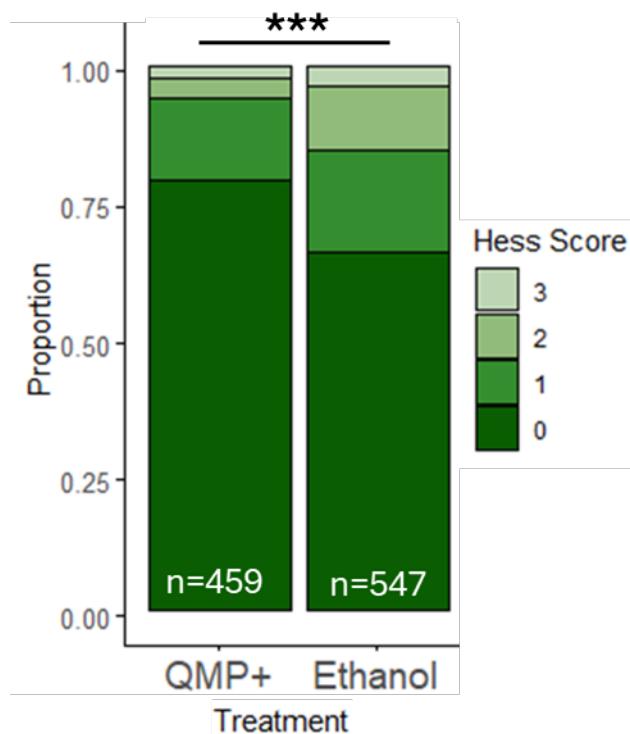
Elizabeth Jenness Duncan^{1*}: e.j.duncan@leeds.ac.uk

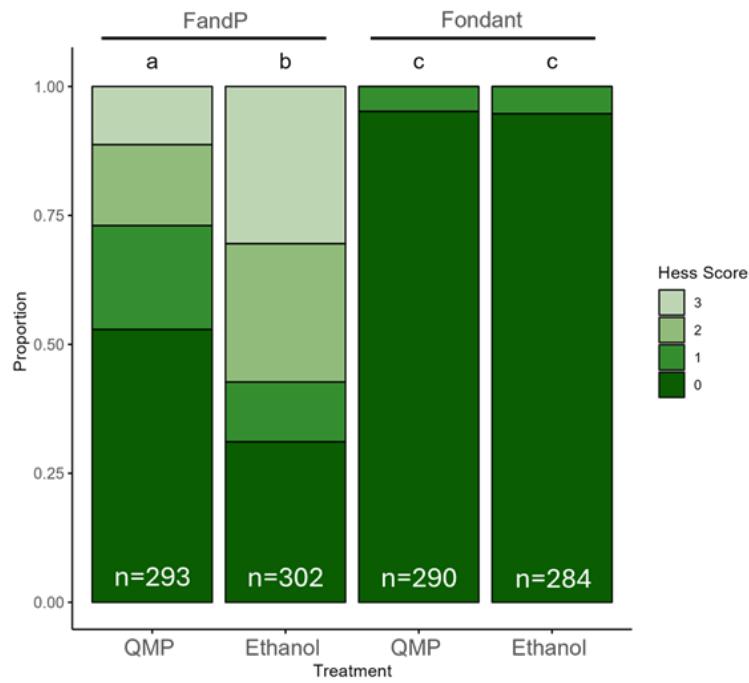
1. School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT

Leeds, United Kingdom.

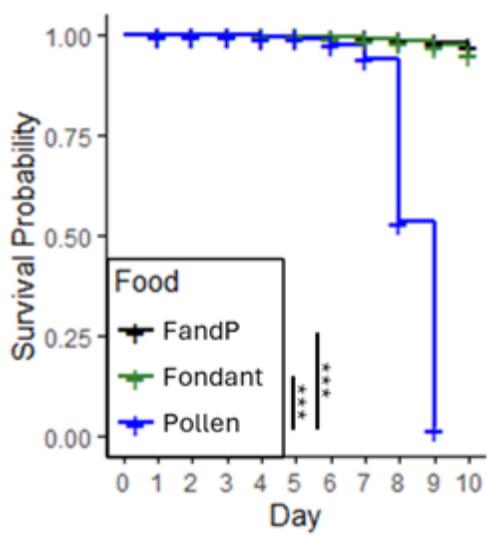
* Corresponding author e.j.duncan@leeds.ac.uk

QMP-exposure produces ovary repression in all cages




Figure 1 – Honeybee workers exposed to QMP from eclosure, show repressed ovaries when compared with bees not exposed to QMP, as measured by a modified Hess score (3 = fully developed ovum present; 2 = egg yolk visible; 1 = cell differentiation between ovum and nurse cells visible; 0 = no cell differentiation visible). The x-axis shows treatment (QMP at 0.1 Q_e per day provided as liquid on microscope slide, or ethanol solvent control), while the y-axis shows proportion of workers at each Hess score, shown in the legend. Significance was calculated using CLMM with post-hoc tukey-adjusted test; *** = $P < 0.001$.

In Figure 1, an example of a given experiment, in which six cages of each treatment are analysed for ovary activity via a modified Hess score. Similar analyses were undertaken for all experiments from which the 149 cages were taken to investigate food choice and consumption, in which all experiments indicated a significant difference in ovary activity between QMP and ethanol-only exposed worker honeybees. The overall activation was different between experiments, due to differences in origin of worker honeybees and different times of year, and so each assay was always carried out with both QMP and ethanol-only controls in order to demonstrate the efficacy of the QMP.


Honeybee workers fed only fondant do not activate their ovaries

As can be seen in Figure 2, if fed an *ad libitum* pollen and sugar fondant diet (FandP), workers activate their ovaries (though much less so if also exposed to QMP). If only fed fondant (i.e. without pollen, or any other protein source), workers do not activate their ovaries regardless of pheromone

exposure. Fondant or FandP diet has no effect on mortality in the 10-day period of this assay, however bees only fed pollen, with no fondant do not survive past day 9 (Figure 3)

Figure 2 - Showing a proportional stacked bar chart of ovary activity of *A. mellifera* workers when fed different quality foods. Ovary activity was measured via modified Hess score (0 = inactive ovaries, 1 = cell differentiation present, 2 = yolk deposition present, 3 = fully developed ovum present). The y-axis shows proportion of ovaries of a given Hess score, while the x axis shows treatment of either 0.1Qe QMP per day or ethanol solvent control, or food types of either FandP diet, or fondant only. Significance given as letters ($P<0.05$) calculated via CLMM and post-hoc tukey pairwise test. Under the FandP diet, QMP is able to repress the activity seen in the ethanol control, but under fondant diet, no activation of ovaries occurs.

Figure 3 – Showing a Kaplan-Meier survival curve of honeybee workers which have been fed different food sources. The y-axis shows survival probability and the x-axis day of experiment, food is given as colour, where “fondant” is fondant only, “pollen” is pollen only and “FandP” is a choice of either pollen or fondant. Bees fed only pollen could not survive to the end of the experiment, but there is no difference in survival between the other two food types.