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Abstract

This manuscript presents the first approach which is capable of finding the opti-
mal connectivity and elevation of grid-shell structures acting in pure compression
(or pure tension) for long-span scenarios; i.e. under the combined effects of a
prescribed external loading and the design-dependent self-weight of the structure
itself. The method derived herein involves solving a second-order cone optimiza-
tion problem, thereby ensuring convexity and obtaining globally optimal results for
a given discretization of the design domain. Several numerical examples are pre-
sented, illustrating hitherto unknown or unconfirmed characteristics of this class
of optimal structures. For example, it is found that, as self-weight becomes more
significant, both the optimal topology and the optimal elevation profile of the struc-
ture change, highlighting the importance of optimizing both topology and geometry
simultaneously from the earliest stages of design. It is shown that this approach
can obtain solutions with greater accuracy and several orders of magnitude more
quickly than a standard 3D layout/truss topology optimization approach. Python
scripts and Rhino/Grasshopper files are provided for the examples shown.

Keywords: Ground structure method, Form-finding, Grid-shell,

1. Introduction

Grid-shells can be used as lightweight and elegant structures, which are espe-
cially suited to long-span roofs and similar structures. The term grid-shell was
originally applied to timber structures constructed by deforming an initially flat
network of thin elements [1]. However, it has since come to be used for any shell
structure constructed from discrete elements [2]; it is the latter definition which is
adopted herein.

1.1. Current methods for form-finding and optimization

To ensure an axially loaded design, a wide variety of form-finding approaches
have been developed. These typically correspond to problems which would, in
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other structural optimization communities, be referred to as size and/or shape
optimization. This means that the connectivity or topology of the design is fixed,
usually by specifying an initial structure. Such methods include particle-spring
approaches, dynamic relaxation and force-density methods, as well as physical
modeling approaches [2].

A key issue in applying any of these approaches to long-span structures is the
ability to model the weight of the structure itself. The simplest and most common
approximation is to size the (straight) element based only on the axial load, and
then apply a force equal to half the element’s weight at each end [3, 4]. This
approximation ignores the bending effects of the weight, which may be substantial,
especially in longer elements. A refinement of this approach is to divide each
element into multiple shorter sub-elements [5]. A more realistic approach is to
distribute the loading along the element, typically resulting in parabolic forms,
based on the assumption of constant cross-sections [6].

Regardless of the self-weight model used, these form-finding approaches typi-
cally do not alter the initial connectivity of the problem. Within the few studies
that attempt to take this into account, genetic algorithms are typically employed
[7, 8], these are very flexible in what may be considered, but there is no guarantee
that even a locally optimal solution will be obtained. In [9], gradient-based op-
timization is used, ensuring that the results are at least locally optimal, however
the problem was still non-convex and non-linear, so global optimality could not be
obtained, and a only a restricted set of possible elements was employed.

Within the broader field of axially loaded structures (e.g. trusses), the opti-
mization of topology is typically achieved through the use of the ground structure
method [10], also known as truss topology optimization or layout optimization.
Continuum-based topology optimization methods (e.g. based on finite element
type meshes) are also available [11], however, these are less suited to structures
containing slender elements such as grid-shells, and so will not be discussed here.

Layout optimization requires as input only the geometry of the permissible
design domain, the location and nature of the support conditions and the forces to
be supported. The design domain is then populated with nodes, and every possible
pair of nodes is connected with lines representing the bars of the truss. This
network of bar elements forms the ground structure. A mathematical optimization
problem is then solved to find the minimum material structure contained within
the ground structure that satisfies the loading and support conditions. In the basic
case of a static loading regime, this becomes a linear programming problem which
can be solved to global optimality rapidly, even for millions of potential elements.

There are no additional challenges involved with applying this method in 3D
space, although the number of nodes required to obtain the same nodal spacing
will be much larger. The computational demands (in 2D or 3D problems) can be
reduced by using the member adding method [12], without impacting the resulting
optimal solution. Using the member adding approach, problems containing billions
of potential elements can be tackled.

One of the key challenges in applying truss topology optimization approaches in
the design of grid-shells or other roof structures, is that the applied loading should
move to track the structure as the topology optimization progresses. This can be
implemented through the use of transmissible loads [13], where the representative
point loads of the grid-shell are transmitted through or attached to vertical lines
passing through the nodes. Two formulations of transmissible loads are commonly
used, although if only single layer structures are permitted then they are equivalent
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[4, 14]. However, to obtain accurate results with either approach, a very dense
distribution of nodes must be adopted in the ground structure/domain, particularly
in the vertical direction. This can result in computationally expensive problems.
Jiang et al. [4] suggest an iterative approach of refining the design domain to allow
results to be obtained with fewer nodes, however this was still found to be 3 to
4 orders of magnitude slower than fixed-topology approaches such as the force
density method.

For roofs of particularly long spans, a large portion of the loading is generated
by the self-weight of the structure itself, as other imposed loads are restricted to
e.g. wind and snow loading. The classical method of addressing this within the
layout optimization framework is again to add a point load at the end of each
element, equal to one half of its weight [15]. As with other form-finding methods,
this produces acceptable results in problems of moderate span; but at long spans
this erroneously favors solutions containing long elements, maximizing the ‘free’
bending capacity. To address this, Fairclough et al. [16] developed an approach
where each element is curved and variable in cross-section such that, at all points, it
experiences a uniform, purely axial stress under the combined effect of the applied
loads and the self-weight.

In contrast to the numerical methods described above, exact analytical results
for minimum material structures (a.k.a. Michell structures) are challenging to
obtain, and as such only a few are known [17]. In particular, 3D examples of exact
optimal structures have been obtained only for two classes of problems. Firstly,
axisymmetric problems [17, Chapter 5], most notably the torsion sphere identified
in the seminal work of Michell [18]. Secondly, funicular structures, also known as
Prager-structures, which are compression-only (or tension-only) structures, where
the point of application of the load is to be optimized alongside the structural
form.

For these Prager-structures, significant initial work focused on cases where
the elements were restricted to lie along Cartesian directions [19], referred to as
archgrids. The methodology involved assuming the two sets of arches could be
optimized independently, and then noting that the optimal elevations of each layer
were coincident, leading to a single-layer structure (the equal elevation condition).
This work also identified that for an optimal planar arch under external loading
(i.e. without self-weight), the average of the slope value squared must be 1 (the
unit mean square slope condition).

Later, [20] extended the work on arch-grids to cases where self-weight of the
structure was to be considered. It was found that the unit mean square slope
condition was no longer valid and must be replaced by a much more complicated
equation [20, Eqn 19], which results in a greater rise for a given problem when
self-weight is included. Meanwhile, the equal elevation condition continued to
hold, demonstrating that a single layer structure is still suitable when self-weight
is considered.

Extending the archgrid concept to problems where the layout of elements is
also to be considered was achieved by [21] for certain classes of problems. It was
also noted that the vertical displacement at any point in such a structure was
proportional to the elevation at that point, and that the layouts obtained achieve
the minimum material usage for under either a limit on maximum stress or on
minimum stiffness. It is notable that consideration of the effects of the structure’s
self-weight loading was not included in [21].

Recently, there has been a revival in interest in optimal design of vault and grid-
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shell structures, aligning with ambitions for efficient and sustainable construction.
The most widely applicable results for the problem of combined topology and ge-
ometry optimization have been obtained by [22]. For problems where self-weight
is not considered, this shows that the minimum material layout and elevation at
each point can be obtained as the solution of a convex optimization problem. An
analytical approach was presented, alongside a ground-structure based numerical
approach which allowed the use of second-order cone programming to solve the
problem. This allows for standard solvers to be used, significantly easing imple-
mentation, and as the optimization problems are convex, globally optimal results
can be found. However, the self-weight of the structures was not considered, and so
the applicability of the problems is limited to shorter spans and/or more lightweight
materials. Structures designed for longer spans using this method would become
overloaded due to the extra forces generated by their own weight and would be
likely to fail.

1.2. Research gaps and contributions of this paper

It has been shown that a wide range of optimization and form-finding methods
already exist to support the design of axially loaded structures. However, none
of the existing methods provide all of the features necessary to rigorously identify
the most material-efficient form for a long-span grid-shell design problem. The
requirements for such a method can be summarised as:

• To optimize both the topology and geometry of the grid-shell, allowing for
a full exploration of the design space.

• To attain the globally minimum volume for the specified problem.

• To be applicable to long-span problems by accurately modeling the effects of
self-weight. (When self-weight is neglected or modeled in a simplified way,
the resulting designs will usually be unsafe under the true loads.)

• To be solvable with a practicable level of computational cost.

Existing form-finding and optimization methods, reviewed in Section 1.1, all fail in
at least one of these criteria. In contrast, the novel methodology proposed herein
satisfies all four of the above requirements, and is thus fully applicable to the
problem of long-span grid-shell design.

The approach, summarised in Figure 1, is based on the use of a 2D ground
structure where the elevations of each node are not explicitly included in the op-
timization, but are instead reconstructed from the optimal solution. This concept
has never previously been applied in contexts where self-weight loadings need to
be considered.

In order to correctly include self-weight within the optimization, each individual
element in the ground structure should take the optimal form to resist the combined
effect of the loads applied to it. This form is known as the catenary of equal stress,
and is defined by the presence of uniform, axial-only stresses under the combination
of external loading and self-weight. Appendix A demonstrates that the simpler
lumped model, although common in the literature, cannot be used within the
proposed framework.

These ideas are combined with the aim of attaining a convex optimization
problem in order to allow for globally optimal solutions to be obtained. A convex
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formulation is found, but only after some relaxations to the physical constraints.
This means that there are feasible solutions to the optimization problem which
do not correspond to a physically meaningful structure. However, proofs are also
provided herein to show that for optimal solutions of the problem, these relaxations
are not active. In other words, the globally optimal solution always corresponds
to a physical structure.

By using this convex optimization approach, it now becomes possible to obtain
globally optimal solutions to the problem of long-span grid-shell optimization.
From these unique results, several characteristics of this class of problem are newly
identified:

• The optimal topology often changes as span increases.

• Although the optimal elevation profile requires higher maximum rise when
self-weight is more significant, the optimal elevation at each point within the
structure can increase or decrease with increasing span.

• Unlike the weightless scenario, the optimal topology under self-weight may
require connections which were not the locations of loads or supports in the
problem.

The presented numerical approach is fully flexible in terms of the geometry of
the grid-shell footprint (including non-convex domains and holes), the loading to be
applied, the support conditions (including full pin and roller pin supports) and the
material properties. Scenarios for which there is no possible structure correspond
to infeasible optimization problems. Python scripts and Rhino/Grasshopper files
are provided to encourage uptake; the approach is sufficiently computationally
efficient to allow problems with hundreds of thousands of potential elements to be
solved on a laptop computer in a matter of seconds.

The structure of this paper is as follows; Section 2 first discusses two simpler
approaches which satisfy only some of the requirements above, but allow for key
concepts and notation to be introduced. Section 3 then derives the new procedure
for grid-shell optimization under self-weight loading. The new formulation is tested
on a range of examples in Section 4 and concluding remarks are given in Section
5.

2. Current state-of-the-art

To understand the approach proposed in this paper, it is useful to first consider
some simpler scenarios. These are based on existing methods in the literature, with
minor additional refinements as needed. Note that the novel optimization problem
derived in Section 3 begins its derivation from basic principles; it is outlined within
each sub-section here why it is not possible to directly progress from these methods
to an approach satisfying all the requirements set out in Section 1.2.

2.1. Grid-shell topology and geometry optimization without self-weight

Firstly, the weightless vault formulation of [22] is recalled. For clarity, the
discretised formulation is discussed here. This method does not satisfy the re-
quirements in Section 1.2 as it cannot consider self-weight loads and is therefore
non-conservative, particularly at longer spans. Furthermore, attempting to di-
rectly modify this approach to include self-weight would result in the formulation
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(a) User-defined design domain,
supports and loads (2D).

(b) Discretize design domain
with nodes.

(c) Connect each pair of nodes to
form the ground-structure.

(d) Solve convex, conic
optimization problem.

Equation (1). Equation (20).

(e) Reconstruct optimal elevations.Equation (4). Equation (26) then (6).

(f) Render optimal structure.

Procedure for negligible
self-weight, after [22].

Proposed procedure for when
self-weight is significant

Figure 1: Summary of methodology developed herein, compared to existing approach [22] for
cases where self-weight can be neglected. Note that the initial setup process is common to
both cases, with the key differences being the formulation of the optimization problem and the
reconstruction of the optimal elevations. The procedures for when self-weight is negligible are
recapped in Section 2.1, whilst the new procedure including self-weight is derived in Section 3.
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Figure 2: Notation for grid-shell topology and geometry optimization without self-weight. The
blue lines show elements in the ground structure defined in the horizontal plane. The highlighted
element is also shown (in brown) as it would be in the optimal solution, once the end-points are
projected to their optimal elevations for the final structure. The force, q̂, acting on the nodes
is aligned to the final centre-line of the element, i.e. at an angle of θ to the horizontal.

in Appendix A which is shown to produce solutions which are not physically real-
izable. Nonetheless, the existence of this method in the simpler, weightless context
inspires confidence in the seemingly unlikely approach to obtaining convexity which
will be required in Section 3.1.

In this vault layout optimization approach, the allowable design domain is
defined in plan, and locations of applied loads and supports are also specified
(Figure 1a). This 2D domain is discretised using a dense array of nodes (Figure
1b), and every pair of nodes is connected by a potential structural element (Figure
1c). Conceptually, nodes are allowed to move in the vertical direction to obtain
the optimal shape (except where vertical support is provided at a node), and any
applied forces move vertically with the associated node.

When formulating the mathematical optimization problem, for each potential
element two optimization variables are required, si and qi, representing the hor-
izontal and vertical component of the axial force in element i, over the set of
members M . The objective function is to minimize the total volume, calculated
on a per-element basis and then summed over all elements in the ground-structure.
For a single element, as shown in Figure 2 with stress σi the volume is given by l̂ q̂

σi
.

In the original presentation, the objective function was the normalised volume (i.e.
volume divided by the allowable stress), but for more practical cases it is conve-
nient to include σ in the objective calculation directly. Geometrical relationships
from Figure 2 can then be used to re-write this in terms of si and qi.

The required optimization problem is then given by,

min
∑

i∈M

li
σi

(

si +
q2i
si

)

, (1a)

s.t. Bs = fxy, (1b)

Dq = fz, (1c)

s ≥ 0, (1d)

where li is the horizontal length of potential structural element i, and the objec-
tive function to be minimized being the summation of all element volumes. The
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matrix B contains in-plane direction cosines (± cosϕ and ± sinϕ) such that (1b)
enforces in-plane equilibrium at each node subject to horizontal components of ex-
ternal forces fxy. Matrix D contains entries of 0, -1 and 1 such that (1c) enforces
equilibrium in the vertical direction at each node with vertical components of ex-
ternal forces fz. Finally, the positivity of the s variables ensures that all elements
remain in compression. Conversely, the q variables may be positive or negative,
corresponding to elements with an upwards or downwards slope respectively. Note
that, as only a single loading condition is permitted, for practical problems fxy is
typically zero.

Problem (1) can be transformed into a convex conic problem by assigning an
additional variable ri to each potential element, which is defined as

2ri ≥
q2i
si

. (2)

The variables ri are then used in the objective function. Note that this transfor-
mation is a relaxation of the problem (1), in that the original problem demands
equality of (2), however this would not be a convex constraint. However, as the
introduction of any slack in (2) would increase the objective without affecting any
other constraints, it is easy to see that this relaxation will not be in effect at the
optimum solution.

Note that a feasible solution to the formulation (1) does not require that the
resulting structure be single layered. However, it was proven in [22] that an optimal
solution to the problem will permit a consistent, single-layered elevation function
across the domain. A more intuitive demonstration for this was also given in [23,
Fig 3]. It is possible to obtain the required heights of each node of the gridshell in
the final optimal solution by progressively moving along each non-zero element in
the solution, calculating its slope by the ratio between qi and si [23]. However, the
elevations can also be obtained directly from the dual of problem (1). The dual
problem can be derived through kinematic principles (or obtained through conic
duality principles [24]) and is written as,

max
u,w,t1,t2,t3

f
T
z w + f

T
xyu (3a)

s.t. B
T
u + t2 =

1

σ
l, (3b)

D
T
w + t3 = 0, (3c)

t1 =
2

σ
l, (3d)

(

2t1,it2,i ≥ t23,i
)

∀i ∈ M. (3e)

In this formulation, the variables u and w represent virtual displacements in the
horizontal and vertical direction. The optimal elevation, z at a point is calculated
from the virtual strain at the optimum by the relationship

z = −σ

2
w. (4)

where the inclusion of σ is due to the use of the real volume as an objective.
Conversely, the original formulation scaled the objective function, and therefore
found w directly in units of distance.
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Figure 3: Notation for the problem of truss topology optimization with continuous self-weight,
a single element shown in elevation in the vertical plane containing the element. The element
number subscript i is omitted for clarity. The indicated forces acting on the nodes are aligned
to the element centreline at the respective point.

However, a structure designed through this approach neglects the impact of
the self-weight of the structure itself. This will lead to unsafe and under-designed
structures, particularly as span lengths increase.

2.2. Truss topology optimization with continuous self-weight

As previously mentioned, it is common in truss optimization problems to model
self-weight as forces applied directly onto the endpoints of an element, neglecting
the effect within the element itself. Whilst this has been effective as an approxi-
mation for trusses of moderate span, it is not possible to use this approach within
the framework outlined in Section 2.1. This is discussed in detail in Appendix A.
Instead, a model must be applied which correctly accounts for the self-weight in
a continuous manner. The catenary of equal stress is the arching/sagging shape
which results in uniform axial stresses only under the combined action of self-
weight and a thrust force [25]. For a given strength-to-weight ratio of material,
the centre-line of this catenary is fixed. Meanwhile, the cross-sections vary along
the length of the catenary, to ensure uniformity of stress; but under a change in
applied load, the forces and required area at each point increase linearly. These
characteristics lead to the possibility for these catenaries to be employed within
the truss layout optimization framework, and will also prove to be advantageous
in the formulation to be developed herein.

In this section, a catenary truss formulation is given, based on [16], but ex-
tended to 3D. To simplify the upcoming adaption to compressive grid-shell prob-
lems, it will be assumed that only compressive members are to be permitted, and
that the ground structure does not contain any elements which are exactly aligned
in the vertical direction (as those require special treatment). Even with these
modifications, the approach in this section is not applicable to grid-shell design as
the positions of external loads must be specified in advance. Transmissible load-
ing methods e.g. [4, 14] could be incorporated to address this, but the approach
then becomes hugely computationally expensive, hence why this has not been well
explored in literature or practice.

The 3D case has not been outlined in previous literature, but is obtained with
a few modifications. Specifically, each element can be thought of within its own
local 2D coordinate system in the plane containing the element and the vertical
axis; within this plane the classical 2D equations apply, as shown in Figure 3.
The end-forces then have to be returned to the global coordinate system. Vertical
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forces are unchanged, but the horizontal force q̂ cos θ must be resolved by using
the in-plane angle ϕ as defined in Fig. 2 to become q̂ cos θ sinϕ and q̂ cos θ cosϕ in
the x and y directions respectively.

The resulting optimization problem thus becomes,

min
q̂

∑

i∈M

q̂i cos θi
ρg

(tanαB,i − tanαA,i) , (5a)

s.t. B̄q̂ = fxy, (5b)

D̄q̂ = fz, (5c)

q̂ ≥ 0, (5d)

where B̄ contains direction cosines in the x and y directions (± cos θi cosϕi

and ± cos θi sinϕi respectively). The matrix D̄ contains the vertical coefficients,
cos θi tanαA,i and cos θi tanαB,i. The optimization variables, here denoted by
q̂ = [q̂1, q̂2, ..., q̂m]T, are defined as the equivalent force directed straight between
the points A and B. ρg is the unit weight of the material.

To calculate the inclination angles α, it is required to make reference to the
definition of the catenary of equal stress from e.g. [16, Eqn. 2.1] or [25, Art. 453],
the centre-line of the element follows a curve which can be expressed in a local 2D
element coordinate system (x̌, z) as

ρg

σ
z = log

(

cos
(

−ρg

σ
x̌ + C1

))

+ C2 (6)

where C1 and C2 are constants which define the translation of the shape in the
plane. The allowable stress of the material is represented by σ. Within this
equation, the term − ρg

σ
x̌ + C1 gives the inclination angle α for any point. By

defining the end-points to be at A = (0, zA) and B = (l, zB), explicit relationships
for tanαA and tanαB can be obtained.

tanαA = −cos( ρg

σ
l) − exp

(

ρg

σ
(zB − zA)

)

sin( ρg

σ
l)

, (7)

tanαB =
cos( ρg

σ
l) − exp

(

− ρg

σ
(zB − zA)

)

sin( ρg

σ
l)

. (8)

It should be noted that the horizontal length of an element must be less than
πσ
ρg

, otherwise the element is excluded from the ground structure. Accordingly,

sin( ρg

σ
l) is always a positive number ranging in the open interval (0, 1), while

cos( ρg

σ
l) can be negative as it varies in (−1, 1).

3. Grid-shell topology and geometry optimization with continuously

distributed self-weight

In this section, an approach suitable for obtaining the optimal grid-shell sub-
jected to both external loading and its own self-weight is developed. Firstly, in
Section 3.1 the relevant optimization problem is constructed and cast as a conic
problem, which can be easily solved to global optimality. As some relaxations are
required to obtain this form, Section 3.2 describes the procedure for reconstructing
the physical structure from the solution of the optimization problem. Specifically,
it is shown that the relaxations required do not affect the solution at the optimum
points.
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Figure 4: Notation for catenary elements in the vault formulation. The forces acting on the
nodes are as shown. s, qA and qB are the corresponding optimization variables.

3.1. Formulation of the optimization problem

To formulate the convex optimization problem, this subsection will first set
out the required optimization variables (Section 3.1.1), and then derive the re-
quired objective function (Section 3.1.2 and constraints (Sections 3.1.3 and 3.1.4).
The required conic optimization problem can then be written (Section 3.1.5), and
strategies to speed up solving discussed (Section 3.1.6).

3.1.1. Optimization variables

The optimization problem formulated in this section will model the structure’s
self-weight by employing elements in the shape of the catenary of equal stress.
The key difference between these elements and straight elements is that the ver-
tical forces at each end of an element are no longer equal. Thus, the required
optimization variables for the long-span grid-shell problem will be:

• s = [s1, s2, ..., sm]T, variables representing the horizontal component of force
in each element. These variables are non-negative, with positive values rep-
resenting forces acting in a compressive manner.

• qA = [qA,1, qA,2, ..., qA,m]T, variables representing vertical component of the
force at the start of each element. Positive values represent downwards force,
i.e. Fig 4 shows a positive value for qA,i.

• qB = [qB,1, qB,1, ..., qB,m]T, variables representing vertical component of the
force at the end of each element. Positive values represent downwards force,
i.e. Fig 4 shows a negative value for qB,i.

These variables are shown visually for a single element in Figure 4. Note that
quantities defined in Figures 2 and 3 are also required for this formulation. In
particular, l refers to the horizontal length of the element as in Figure 2, and α, θ
and q̂ are as defined in Figure 3.

Conceptually, the objective function and constraints are analogous to those of
the previous formulations. Note that in problems (1) and (5) the objectives and
constraints address the same physical concerns – to minimize structural volume,
whilst enforcing equilibrium horizontally and vertically. This is also the overall
structure of the formulation derived herein. As in (1), the nodal elevations z will
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not be explicitly present in the formulation as design variables. Instead, they
will be cleverly recast after solving the optimization problem to be put forth, see
Section 3.2.2 below for details.

In the remainder of this section, the subscript indicating element number will
be dropped for clarity.

3.1.2. Objective function

In the catenary self-weight formulation in Section 2.2, the horizontal component
of the element force was defined based on the inline force q̂. Converting this to the
variables required in the grid-shell formulation necessitates the relationship,

s = q̂ cos θ. (9)

From Fig. 4, the following relationships can be observed,

qA
s

= tanαA, (10)

−qB
s

= tanαB . (11)

Combining (9), (10) and (11) with (5a) gives the following expression for the
volume of a single bar, Vi,

V =
s

ρg

(qB
s

+
qA
s

)

,

=
1

ρg
(qB + qA). (12)

This can also be intuitively understood as the total downwards force from the
element (i.e. its weight) divided by the unit weight to give the volume.

3.1.3. Equilibrium

Equilibrium is enforced in a similar way to the original vault formulation, in
that in-plane and out-of-plane equilibrium are considered separately. In-plane
equilibrium is enforced by the constraints

Bs = fxy, (13)

where B contains entries of ± cosϕ and ± sinϕ.
For out-of-plane equilibrium, changes are needed to allow for the presence of

separate force variables in qA and qB .

DAqA + DBqB = fz, (14)

where DA (resp. DB) contains all zeros except in position ij where node j is the
start (resp. end) node of element i where it contains 1.
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3.1.4. Geometrical coupling and its relaxation to a conic constraint

The values of s, qA and qB should be such that the total forces at A and B are
aligned to the centreline of a catenary of equal stress connecting the points A and
B whose elevations are equal to zA and zB , respectively, cf. Figure 4. This leads
to a coupling condition for the vectors s,qA,qB .

In the case of the grid-shells without the self-weight this coupling was simple:
qA = −qB = s zB−zA

l
. For an equally stressed catenary the relations are more

involved, and they can be obtained by combining the two groups of equations for
the tangents tanαA, tanαB : (7), (8) and (10), (11). These lead to,

qA = −s
cos( ρg

σ
l) − exp

(

ρg

σ
(zB − zA)

)

sin( ρg

σ
l)

, (15)

qB = −s
cos( ρg

σ
l) − exp

(

− ρg

σ
(zB − zA)

)

sin( ρg

σ
l)

. (16)

It is crucial to observe that the elevation differences zB − zA = zB,i − zA,i

cannot vary arbitrarily from element to element. In fact, if z is the vector of
nodal elevations, then zA,i, zB,i are the i-th entries of, respectively, DT

Az, DT
Bz.

Accordingly, (15), (16) not only entail local couplings between si, qA,i, qB,i for each
element i, but also a global compatibility condition for the vectors s,qA,qB .

A simple and natural fix would be to add the nodal elevations z as variables
and explicitly enforce (15), (16). This, however, would lead to a non-convex opti-
mization problem and, as a result, to compromising the efficiency of the method.
Instead, following the idea of [22] for grid-shells without self-weight, conditions
(15), (16) will undergo a suitable relaxation.

The relaxation will be performed in two steps. The first consists in eliminating
the slopes zB − zA. A slight rewriting of (15), (16) and putting l̄ = ρg

σ
l for brevity

yields

sin l̄ qA + cos l̄ s = s exp
(ρg

σ
(zB − zA)

)

, (17a)

sin l̄ qB + cos l̄ s = s exp
(

−ρg

σ
(zB − zA)

)

. (17b)

Side-wise multiplication of the two equalities eliminates the z values and leads to
(

sin l̄ qA + cos l̄ s
)(

sin l̄ qB + cos l̄ s
)

= s2. (18)

The above is a local coupling; when s > 0, it gives the condition for the triple
s, qA, qB , which corresponds to the shape of an equally stressed catenary for some
slope zB − zA, see Figure 4. The global compatibility with an elevation vector z is
now forgotten (although it will be shown in Section 3.2 that this global compati-
bility can be later recovered for optimal solutions).

Adding the equation (18) would still deprive the formulation of convexity. It
must be further relaxed to an inequality,

(

sin l̄ qA + cos l̄ s
)(

sin l̄ qB + cos l̄ s
)

≥ s2. (19)

Indeed, the latter can be written as the standard rotated conic quadratic constraint:
2t1t2 ≥ t23, where t1, t2 are the bracketed terms on the left-hand side and t3 =√

2s. It is a convex constraint that can be efficiently tackled by modern convex
optimization software. It is worth emphasizing that imposing the conic constraint
2t1t2 ≥ t23 canonically comes with the inequalities t1 ≥ 0, t2 ≥ 0. These are valid
here: the two factors on the left-hand side of (19) are always non-negative, which
can be seen from (17).
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3.1.5. Complete formulation

Combining the equations found in Sections 3.1.2, 3.1.3 and 3.1.4 gives the
following conic optimization problem,

min
s,qA,qB

1

ρg
1
T(qA + qB), (20a)

s.t.: Bs = fxy, (20b)

DAqA + DBqB = fz, (20c)
(

sin l̄ qA + cos l̄ s
)(

sin l̄ qB + cos l̄ s
)

≥ s2, (20d)

s ≥ 0, (20e)

where the conic constraint is repeated for each potential element, while l̄ = ρg

σ
li.

Recall that the canonical form of the conic constraint implies the two extra in-
equalities: sin l̄ qA + cos l̄ s ≥ 0 and sin l̄ qB + cos l̄ s ≥ 0.

The dual of this problem can be derived using the classical systematic methods,
see [24],

max
u,w,g1,g2,g3

f
T
z w + f

T
xyu, (21a)

s.t.: B
T

u + Cg1 + Cg2 +
√

2g3 ≤ 0, (21b)

D
T
Aw + Sg1 =

1

ρg
1, (21c)

D
T
Bw + Sg2 =

1

ρg
1, (21d)

2 g1 ◦ g2 ≥ g
◦2
3 , (21e)

where x◦y represents element-wise product of vectors, i.e. its i-th element is xiyi,
and x◦n represents element-wise power, i.e. each element of vector x is raised to
the power n. Meanwhile S = diag ([sin l̄1, sin l̄2, ..., sin l̄m]), and matrix C = diag
([cos l̄1, cos l̄2, ..., cos l̄m]). The optimization variables w = [w1, w2, ..., wn]T and
u = [ux

1 , u
y
1 , u

x
2 , ..., u

y
n]T contain virtual displacements in the vertical and horizontal

directions respectively. The remaining optimization variables g1 to g3 ∈ R
m are

auxiliary variables with no specific physical meaning, which are dual to each of the
terms in (20d).

Note that, in practice, it is more convenient to set-up and solve the primal
problem (20). However, consideration of various aspects of the dual will be nec-
essary below. When using modern conic solvers, it is typically easy to obtain the
solutions for both problems after solving either one.

3.1.6. Member adding

Member adding [12] is a specialization of column generation which can be
used to significantly improve the speed and memory usage of a ground structure
optimization problem, whilst guaranteeing that the same globally optimal volume
will be obtained.

The procedure begins with an active ground structure consisting of a subset
of all possible connections (adjacent connectivity is usually employed). Once the
initial problem is solved, the constraints in the dual problem (21) can be checked
for inactive elements, i.e. those which were not included in the initial ground
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structure. Formally, for each element it is necessary to obtain a g1, g2, g3 satisfying
the relevant row of each constraint (21b-e). Candidate values for g1, g2, g3 are
obtained by solving the first three constraints, taking (21b) as an equality to give
a system which can be solved by simple rearrangement. These candidate values are
then checked within the conic constraint (21e), and the element is thus categorized
as violating or not violating.

If no elements were found to be violated, i.e. (21e) was satisfied for each set of
g, then the obtained values of g, combined with the incumbent solution provide a
feasible solution to (21) for the full ground structure. A feasible primal solution
is easily obtained by inserting zero values for qA, qB and s for inactive elements.
These now form a pair of primal-feasible and dual-feasible solutions, with the same
objective. Thus the strong duality theorem [24] proves that the obtained solution
is optimal for the fully connected ground structure.

This situation rarely occurs after the solution of the first sub-problem. Sev-
eral iterations are usually required, adding some violated elements to the ground
structure at each iteration. When one or more sets of candidate values for g do
not is not satisfy (21e), then the corresponding element is considered for addition
to the ground structure in the next iteration.

For example, the results presented later in Figure 16 involve a ground structure
of over 250,000 potential elements. Directly solving the problem (20) for the full
ground structure takes around between 1 and 2.5 minutes. If member adding
is used, the total time required to solve the problem is 20-40 seconds, requiring
between 5 and 7 iterations. Typically, the speed-up from member adding increases
for larger problem sizes. An additional benefit for larger problems is that much
less memory is required when member adding is used (reduced by around 90% in
the cases mentioned here), which means even larger problems can be solved. It
should be emphasized that this process is guaranteed to obtain the same optimal
volume as directly solving the full problem.

3.2. From numerical solution to physical structure

This section discusses how a solution to the pair of problems (20) and (21) is
used to construct the corresponding structural form. Reconstruction of the optimal
grid-shell is possible under two conditions stated and discussed in Section 3.2.1.
Under those conditions, primal and dual optimal solutions meet the optimality
criteria listed in Section 3.2.2. These, in turn, will pave a way to a rigorously
justified algorithm for recasting the nodal elevations z. The global compatibility
conditions (15), (16) will be evidenced, rendering the pair (20), (21) a convex
reformulation of the original, non-convex, optimal form-finding problem1 rather
than merely its relaxation.

3.2.1. Criteria for optimal fully-stressed grid-shell structures

In order that the grid-shell form is possible to construct based on the solutions
of the problems (20), (21), two criteria must be met:

• the primal problem (20) is feasible,

1The original, non-convex, form-finding problem is the primal problem (20), but where the
relaxed geometry constraint (20d) is replaced by equations (17) for each element, and z elevation
for each node is explicitly included as an optimization variable.
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• the solution (u,w) of the dual problem (21) satisfies

w <
1

ρg
(22)

(note that, a priori, w ≤ 1

ρg
by the dual conic constraints).

These criteria are of a posteriori nature since, in practice, they can be verified
only after solving the pair of problems (20), (21). Whilst the first condition is
trivially necessary for the correctness of the method, the second one is rather
abstract. Nevertheless, both conditions can be translated to natural structural
requirements, as explained below.

Firstly, it is worthwhile to mention that the analysis of the two criteria simplifies
greatly when there are no upward loads, i.e.

fz ≤ 0. (23)

Note that this loading scenario is the most frequent in practice. It turns out that, in
this case, the second criteria, (22), is automatically satisfied whenever the problem
(20) is feasible. This can be made rigorous with a rather long and technical proof,
available in the supplementary materials. But intuitively, the term fTz w in the dual
objective favours negative virtual deflections w for downward loads, and hence for
these cases it is found that w ≤ 0 < 1

ρg
.

Regardless of the loading applied, if the first criteria does not hold, i.e. the
primal problem (20) is infeasible, then there is no possible structure capable of
satisfying the specified scenario. This is because the relaxations introduced in
Section 3.1.4 only increase the possible feasible solutions, they do not exclude any
feasible structures.

To assure the feasibility of (20), it is naturally necessary to guarantee a proper
connectivity of the ground structure with respect to the loads and supports, mind-
ing that only compression is allowed. This requirement is no different than the one
for the weightless variant of the problem in (1). However, when the self-weight is
present, infeasibility may also be caused by excessive weight-to-stress ratio ρg

σ
for

the spans involved. Indeed, elements i whose horizontal length li is πσ
ρg

or more are
automatically excluded from the ground structure. Nonetheless, guaranteeing that
li <

πσ
ρg

for the whole ground structure is not a sufficient condition for feasibility,
the specific geometry and connectivity of the problem must also be considered.

It turns out that the condition (22) is also be related to keeping the ratio
ρg

σ
below a certain, problem-specific, limit. Intuitively, observe that as ρg → 0,

1

ρg
→ ∞, and so (22) does not constrain the value of w.
Thus, both criteria correspond to requiring feasibility on the equivalent weight-

less problem, plus a requirement that the material weight-to-stress ratio is ‘suffi-
ciently small’ for the spans and geometry concerned. Finding the critical value for
what is ‘sufficiently small’ is difficult as this depends on all of the problem data
including supports, domain geometry and loading (including whether these are up-
wards or downwards). However as a first approximation and intuition, this often
relates to when some distance in the domain (e.g. between adjacent supports)
reaches the maximum span of the catenary πσ

ρg
.

If upward loads are present, then one may obtain numerical solutions for which
the condition (22) fails, without causing infeasibility. Such a numerical solution
does not allow for constructing a corresponding structure that is a ‘pure’ grid-shell,
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as the original non-convex form finding problem is ill-posed. However, a physically
meaningful structure can still be proposed if lumped masses are introduced at
nodes for which w = 1

ρg
. Although this structure is less practical to construct

than the pure grid-shell structures, it provides a valid bound on the minimum
material usage. Section 3.2.3 below outlines this case.

3.2.2. Reconstruction of the optimal grid shell from an optimal primal and dual
solution

To show that the relaxations introduced in Section 3.1.4 are never active in
optimal solutions of (20), (21), one must appeal to additional properties that are
exhibited at optimality. Under the a posteriori criteria in Section 3.2.1, the opti-
mality conditions will pave the way to a globally-optimal, fully-stressed grid-shell.
Below, the essential features of the optimal primal and dual variables s,qA,qB and
u,w are listed; rigorous derivation of these from duality principles can be found
in Appendix B.

(I) The primal conic constraint (20d) is always satisfied as an equality,

(

sin l̄ qA + cos l̄ s
)(

sin l̄ qB + cos l̄ s
)

= s2. (24)

(II) Whenever s ̸= 0, the complementary slackness conditions give:

(

1

ρg
− wA

)(

sin l̄ qA + cos l̄ s
)

=
(

1

ρg
− wB

)(

sin l̄ qB + cos l̄ s
)

. (25)

(III) For every element with s = 0 there is also qA = qB = 0.

A few comments about the foregoing properties are in order. The property (I)
shows that for each non-zero element (s > 0) the forces s, qA, qB are aligned with
the shape of an equally stressed catenary as in Figure 4. However, in the case
when s = 0, the equality (24) only implies that qAqB = 0, which allows that, e.g.,
qA = 0, qB > 0. This does not adhere to the conditions (15), (16). Physically, it
corresponds to the scenario where qB does not come from a bar but represents a
lumped mass at the end B, cf. Section 3.2.3 below. The property (III) (proved
separately from (I)) rules out such a possibility.

Finally, the property (II), combined with (I), will be used below to reconstruct
the nodal elevations z that validate the global compatibility conditions (15), (16).

In the original vault formulation without self-weight (Sec. 2.1), the required
elevation at each node may be obtained from the virtual deflections in the vertical
direction, as found in the optimal dual variable w, through a simple formula:
z = −σ

2
w. For the case with self-weight the required relationship turns out to be:

z =
σ log(1 − ρgw)

2ρg
. (26)

This formula provides an extra intuition behind the second criteria in Section
3.2.1, i.e. the inequality (22): it is necessary to guarantee that the argument
of the logarithm above is positive. The very same formula was used for optimal
archgrids with self-weight by Rozvany et al. [20, Eqn. 16]. To justify it in the
broader framework developed in this paper, for each non-zero element (s > 0) the
compatibility relations (15), (16) must be evidenced. To that aim, the properties
(I), (II) of the optimal solutions will be used.
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Figure 5: A single catenary element AB in the catenary vault formulation, including repre-
sentation of the required ‘lumped mass’ relaxation. Note that, as in Figure 4, q̄A is shown
with a positive value, whilst q̄B is shown with a negative value, meanwhile x and s are always
restricted to non-negativity.

Using the formula (26) leads to:

zB − zA =
σ

2ρg

(

log(1 − ρg wB) − log(1 − ρg wA)
)

=
σ

2ρg
log

(

1 − ρg wB

1 − ρg wA

)

=
σ

2ρg
log

(

sin l̄ qA + cos l̄ s

sin l̄ qB + cos l̄ s

)

,

where to pass to the last line the complementary slackness condition (25) was
employed. Next, the equality (24) furnishes sin l̄ qB+cos l̄ s = s2/

(

sin l̄ qA+cos l̄ s
)

,
thus allowing to continue,

ρg

σ
(zB − zA) =

1

2
log

(

( sin l̄ qA + cos l̄ s

s

)2
)

= log

(

sin l̄ qA + cos l̄ s

s

)

.

Inverting the logarithm leads to the condition (17a). The condition (17b) can be
checked similarly, and, together, they are equivalent to (15), (16). Readily, the
solutions, and the method itself by extension, are rigorously validated for data
that satisfy the criteria in Section 3.2.1.

Once the optimal elevations of the nodes are known from (26), centerlines for
each element can be obtained using the centerline equation (6). This allows for
graphical representation of the structure. The cross-section area at each point
along the element is found based on the total force at that point,

cross-section area =
s

σ cosα
=

s

σ cos
(

− ρg

σ
x̌ + C1

) , (27)

(refer to Section 2.2 for meanings of symbols).

3.2.3. A lumped mass interpretation for cases where the optimal structure is not
fully stressed

This section will discuss the case where an optimal solution is obtained to (20),
(21) which does not comply with the a posteriori criteria (22), i.e. w = 1

ρg
for at
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least some nodes. Note that, as discussed in Section 3.2.1, this case occurs only
when there are upwards loads present and the self weight is relatively large (or,
equivalently, spans are long).

As w → 1

ρg
, equation (26) implies that z → −∞. So the original, non-convex

problem attains the optimum only at the limit. Nonetheless, the convex problem
(20) attains the same optimum value with no issue as z is not explicitly present,
however the reconstruction process in Section 3.2.2 no longer applies.

The original non-convex form-finding problem inherently assumes that all ma-
terial must be fully stressed. The relaxation of moving from the equality (18) to
the inequality (19) can be understood as removing this assumption, and in so doing
unlocks a more interpretable physical structure for these cases.

Assume that, for some element, (19) is a strict inequality. This means that
the vertical forces qA and qB are not aligned to the end-points of a catenary
of equal stress with horizontal length l and thrust s, see Figure 4. From the
direction of the inequality, the values of qA and/or qB can only be larger (in the
downwards direction) than expected from the definition of the equally stressed
catenary. Physically, such surplus can be understood as putting lumped masses
xA, xB ≥ 0 at the respective endpoints (which always act downwards, i.e. are
positive). This is illustrated graphically in Figure 5, from which the following
relations may be observed,

qA = q̄A + xA, qB = q̄B + xB , (28)

where q̄A, q̄B are the aligned forces, i.e. they satisfy
(

sin l̄ q̄A + cos l̄ s
)(

sin l̄ q̄B +
cos l̄ s

)

= s2.
Note that the objective function is calculated based on the total vertical forces

q, not the aligned force q̄. This means that any lumped masses which occur in a
solution are correctly counted as part of the structural volume.

There are now two possible ways in which upwards loads may be resisted by
the structure. These correspond to (22) being true or false respectively:

• Grid-shell regions, as described above, where fully-stressed frameworks trans-
mit the load back to some supports, and w < 1

ρg
.

• Counterweight regions where the weight of material acting at each node is
exactly equal to the upward force applied at that node, permitting vertical
equilibrium to be attained without recourse to supports, and w = 1

ρg
.

Note that these definitions operate node-wise, i.e. it is possible for the minimum
material solution to contain some grid-shell regions and some counterweight re-
gions.

Supplementary material section S2 proves these further features for these op-
timal solutions:

(SI) No real element (i.e. with s > 0) can connect between a node in a counter-
weight region and a node in a grid-shell region.

(SII) Within counterweight regions, in the usual case where fxy = 0, there is an
optimal solution consisting only of lumped masses, which allows elevations
of each node to be chosen arbitrarily. Otherwise, the procedure to obtain
valid elevations is shown in the supplementary material.
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So for cases containing both region types, the optimal structure would be discon-
nected between the grid-shell and counterweights. Disconnected ‘floating’ regions
of material are likely to be impractical, and are clearly in unstable equilibrium.
Nonetheless, this solution can still be used as a lower bound on the material re-
quired to support the given scenario. Extra elements added to ensure connectivity
would require only nominal cross-sections. Furthermore, the solution in the grid-
shell regions acts independently and can still be utilized even if the counterweight
areas are deemed impractical.

4. Examples

A series of numerical examples are now presented to demonstrate the efficacy of
the method and to demonstrate characteristics of optimal vaults under significant
self-weight.

To allow illustration and comparisons between structures with negligible impact
from self-weight and those where self-weight is dominating, each example is con-
sidered across a varying range of values for unit weight (ρg) of the material used.
Note that, throughout the derivation section, it is the strength-to-weight ratio of
the material which is used in calculations. Thus, a proportional increase in both
unit weight and allowable stress implies only a uniform scaling of the thickness
of each element. In other words, increasing the unit weight could be equivalently
thought of as increasing the span (for fixed material properties) or reducing the
allowable stress (for a constant span and material weight). Presentation in terms
of unit weight is chosen here for ease of rendering and visually comparing the re-
sulting forms – in this way, changes in structure elevations and element thicknesses
in the images are solely due to the impact of the self-weight.

To highlight this, results are presented in normalised form. For context, values
given at ρg = 1 σ

L
correspond to L = 4.4m for the material values observed in

the Armadillo vault [26, Stress = 0.1 MPa, density 2320 kg/m3]. The impact of
self weight can be significantly reduced by increasing the allowable design stress,
however this is likely to be less desirable in practical terms as it may increase the
impact of second-order effects such as buckling.

Problems have been solved using MOSEK [27], interfaced via the CVXPY pro-
gramming interface [28]. The CVXPY interface has a substantial processing over-
head when adding many rotated quadratic cones. Therefore, the rotated quadratic
cone (20d) is re-written as the equivalent standard quadratic form

(qA + qB) sin l̄ + 2s cos l̄ ≥
√

(

sin l̄(qA − qB)
)2

+ (2s)2. (29)

Example python scripts and Rhino/Grasshopper files are provided [29], and the
use of CVXPY means that alternative open-source solvers can easily be used if
MOSEK license is not available.

4.1. One-way spanning barrel vault

To validate the formulation proposed here, a very simple example will be con-
sidered. The example is as shown in Fig. 6, and consists of a ground structure of
12 nodes, with point loads applied at the mid-span and pinned supports along 2
edges.
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Figure 6: Barrel vault: Problem setup, consisting of nodal supports at two edges of a rectangular
domain with span L, with point loads F applied to the centre/apex line.

As this is essentially a 1-dimensional problem, the expected solution will be a
series of four identical parallel pointed arches. Because of this, it is possible to
enumerate all possible solutions to this problem through the changing of a single
height variable. This will give a suitable comparison by which to validate the
numerical solutions. Here, the enumerated solutions have been obtained through
the 3D ground structure method using Peregrine [30], which implements the cate-
nary self-weight model from [16]. This has been solved for pre-determined loading
points at various heights as shown in Figure 7.

This procedure has been repeated for materials ranging from very lightweight
to very heavy. The black crosses in Figure 7 show the optimal height and volume
obtained by the vault formulation proposed here. This allows more precise identifi-
cation of the optimal height compared to the finite step size used in the exhaustive
approach.

From Figure 7 it can be seen that the problem is relatively in-sensitive to
changes in elevation when self-weight is negligible, particularly with respect to
structures that are taller than the optimal height. However, when self-weight is
more significant, the importance of selecting the optimal height is increased, with
larger volume increases observed for structures which are either too tall or too
short. Furthermore, there are significant differences in the results between the
case with negligible self-weight and when self-weight is significant. Adding self-
weight requires significantly more material to be used and the curvature of the
elements to be increased, demonstrating the importance of considering self-weight
in the form-finding stage.

Figure 8 shows the same example but with additional nodes in the ground
structure. From this it can be seen that the shape of the catenary of equal stress
is successfully obtained as a series of curved segments, attaining the same material
usage, as expected. This is in contrast to the lumped mass formulation (Appendix
A) where the optimal volume changes with nodal resolution.

4.2. Square domain with distributed load

The next problem to be considered is a square domain with pin supports at all
edge nodes, with the domain discretized by an 11 × 11 grid of nodes (121 nodes
total). Point loads of equal magnitude are added at all unsupported internal
nodes. The problem has again been solved with materials ranging from very light
to very heavy and the total volumes are shown in Figure 9. The problem has been
solved with the load applied in both an upward or downward direction. It can be
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Figure 7: Barrel vault: Enumerated solutions for problem heights at 0.02L spacing, and material
unit weights in 0.1 σ

L
increments. Selected rendered forms shown for ρg = 0.001 σ

L
≈ 0 and
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L
. Black crosses mark the obtained solutions using formulation (20d) for the same

values of unit weight.

seen that when self-weight is less significant, the upward and downward loadings
produce structures with similar volumes, and where the forms are close to mirror
images of one another (Figure 9b and d). However, as self-weight becomes more
significant, the forms diverge (Figure 9c and e). In both cases, the arching/sagging
of the elements becomes more pronounced, with the downward load this causes an
increase in height and with upward load the height reduces. For this example,
the structure for upward loading undergoes only minor changes until ρg ≈ 15 σ

L
,

when it abruptly switches to a counterweight solution across the entire domain
near-simultaneously, which continues to be the optimal solution for ρg → ∞. For
an example with upward loading which demonstrates the separation of the solution
into regions, see Figure S1 in the supplementary materials.

For downward loads, the volume increases as self-weight becomes more signifi-
cant. The volume tends to infinity, with an asymptote at ρg ≈ 4 σ

L
, beyond which

the problem is infeasible. Rozvany et al. [20] considered a problem similar to this,
but with a fixed topology of elements parallel to the domain edges – an archgrid.
This can be easily modeled using the proposed approach by simply restricting the
elements available in the ground structure, and the results of this are also shown in
Figure 9, where it can be seen that optimizing the topology permits a significant
material saving of almost 25% in cases with significant self-weight (ρg = 2 σ

L
).
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Figure 8: Barrel Vault: Output from catenary vault formulation at higher resolution showing
how an individual element (blue) forms part of the arch and the correctly determined heights
of intermediate nodes (black).

To further explore the influence of different topologies, Figure 10 explores re-
sults with the shown selected restricted topologies. It can be seen that the decision
of which topology is preferable varies significantly for different values of self-weight,
indicating that some forms are better suited to carrying self-weight loads and others
to carrying uniform external loading. For example, the Opt-heavy form provides
the minimum material result for larger values of self-weight, but when used to
design a structure with a lightweight material it is close to the worst performing
topology tested. Meanwhile the converse is true for the Opt-light form. Even be-
tween the less efficient forms of the Archgrid and Diagonals topologies, there is a
switch in preferable topology as self-weight increases.

Generally, the impact of selecting an incorrect topology appears to increase
when self-weight is more significant, with only 3.5% between the options tested
when self-weight is negligible, and 30% variations when ρg = 2 σ

L
. Furthermore,

Figure 10 shows the importance of optimizing topology and elevations simulta-
neously, since the optimal elevation profiles vary between the different topologies
tested.

To show the benefit of the proposed approach against existing methodologies,
results will be compared for accuracy and speed against the 3D truss layout opti-
mization method with transmissible loads [14]. The comparison is carried out with
a horizontal discretization of 0.1L as previously, and with an unrestricted topology
(fully connected ground structure). To use the 3D truss layout optimization ap-
proach, the domain must also be defined and discretized in the vertical direction,
and the choice of this discretization can greatly influence the speed and accuracy
of the solution. Here a design domain with height 0.8L has been used (note that
the corresponding result in Figure 9c has maximum height 0.604L), and resulting
volumes and solution time with a range of vertical spacings are shown in Figure
11. The results show good convergence of the volume towards the vault formula-
tion result, providing further validation of the approach proposed here. However,
the transmissible load approach generally produces a non-single-surface structure,
leading to additional difficulty in interpreting the results, as shown in Figure 11c
and d, where multiple elements are seen on each vertical grid-line. Furthermore,
the time required to solve the problem using the vault formulation presented here
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Figure 9: Square domain example with distributed loads and pinned edges: (a) Optimal volumes
for materials of various unit weights. For context, relationships between the structure weight
W = ρgV and the total external loading F are given. (b)-(e) optimal solutions; (b), (c) for
downward load and (d), (e) for upward load; (b), (d) for ρg = 0.2 σ

L
and (c), (e) for ρg = 2 σ

L
.

was less than 0.6 seconds, whereas the transmissible load approach required several
orders of magnitude more computation time (up to 6 hours at the discretizations
tested here) to produce a less accurate result 2.

4.3. Square domain with point load

The next problem again concerns a square domain with sides of length L.
However, for this example, the supports are available only at the four corners, and

2Note that member adding has been used for the transmissible loading approach as well as
the vault formulation, otherwise the required times would likely be 1-2 orders of magnitude
larger, and the memory requirements would preclude solving on a standard laptop.
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Figure 10: Square based example: Results with restricted topologies. ‘Topology’ images show
the available elements in the restricted ground structures. Opt-light is based on the optimized
structure at low self-weight values (e.g. Figure 9b), manually simplified to remove equally-
optimal elements around the center of the domain. Opt-heavy is the topology identified as
optimal at high self-weight values (e.g. Figure 9c). Archgrid allows only elements aligned to
the x or y axes. Diagonals allows the two main diagonals, plus elements perpendicular to the
closest edge of the domain, based on extending the pattern observed at the center of the Opt-
light topology. Note that some ground-structure elements are not used in the optimized results,
e.g. the elements connecting to the corner points in the Diagonals result. Structure volumes, V
are shown as raw values, and also in the normalised form plotted above, i.e. normalised by the
volume of the full connectivity result from Figure 9b (V9b) or Figure 9c (V9c) as appropriate.25
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Figure 11: Square based example: Comparison of vault formulation with transmissible load
approach for ρg = 2 σ

L
, and maximum permitted height 0.8L. (a) Volume, with indication of

nodal spacings in the horizontal directions, dxy compared to the vertical nodal spacing dz (b)
Time required and (c)-(d) forms obtained using the transmissible load approach. The blue
plane cuts the domain corner-to-corner and the lines of the nodal grid are shown to highlight
the non-single-surface nature of the results. (c) dz = dxy i.e. 8 nodal divisions, (d) dz = 1

5
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i.e. 40 nodal divisions.
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Figure 12: Square example with point load: Optimal volumes for fully connected 11×11 grid,
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(identical for 5-nodes and 11×11 result) and ρg = 1.85 σ
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grid). For context, relationships between the structure weight W = ρgV and the total external
loading F are given.

the load is applied as a point load at the center of the domain acting downward.
The resulting volumes based on an 11×11 grid of nodes with a fully connected
ground-structure are plotted in Figure 12 as V11×11. It can be seen that the self-
weight dominates at shorter spans than in Section 4.2, with a much more rapid
increase in volume observed; this is to be expected as there are fewer supports and
there is no longer a proportion of the loading applied very close to the supports.
When self-weight is significant, these solutions make use of nodes other than the
loads or supports, see example in Figure 12.

When self-weight is not considered, it has been supposed that an optimal topol-
ogy must exist that involves only joints at points that are loaded or supported
(Conjecture 9.1 in [22]) although there may be equally optimal solutions with ex-
tra joints. In this case, this would imply an equally optimal solution containing 5
nodes – the loaded point plus the four supports – and a simple ×-shaped struc-
ture. To verify that the more complex solutions are beneficial, the problem was
re-analyzed using a restricted ground structure containing just those 5 nodes, and
these results are also shown in Figure 12 and Table 1 as V5-nodes. It can be seen that
the simpler topology uses significantly more material than the optimized topology,
with the optimal topology requiring around half (53.7%) of the material needed
for the simpler design when ρg = 2 σ

L
. However, for lower values of self-weight

(ρg < 1.65 σ
L

) both problems give the same solution, again implying a change in
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Table 1: Square example with point load: Optimal volumes for selected values of self-weight,
ρg as highlighted in Figures 12, 13 and/or 14. Results given for V5-nodes allowing nodes at
supports and loaded points only; V11×11 using a fully connected 11× 11 grid at fixed positions;
and V13-nodes with nodes at supports, loaded point and one optimally selected additional node
per segment as shown in 13.

ρg
(

σ
L

)

V5-nodes

(

FL
σ

)

V11×11

(

FL
σ

)

V13-nodes

(

FL
σ

)

1.65 13.8394 13.8394 13.8394
1.68 15.2528 15.2516 15.2415
1.72 17.5301 17.3435 17.3056
1.76 20.4014 19.6510 19.6100
1.80 24.0981 22.2817 22.2180
1.85 30.4425 26.1884 26.0334
2.00 80.7391 43.3682 43.3575

optimal topology when self-weight is more significant.
The results given for V11×11 are the globally optimal solutions for that dis-

cretization of the domain. However, moving the (non-loaded) nodes may further
improve the solution, as in geometry optimization which is commonly employed for
truss problems. Here a simple, semi-manual approach is used for demonstration
purposes. From observation of the optimal 11×11 forms, it is assumed that the
optimal topology involves the 5 loaded/supported points plus an additional point
in each of the 8 symmetrical segments of the domain defined by the horizontal, ver-
tical and diagonal symmetry of the problem; one of these segments is highlighted
in Figure 13 (duplicate nodes were removed for degenerate cases where the extra
node is located on a symmetry plane). The position of all the extra nodes is thus
controlled by just two variables, the horizontal and vertical position.

Figure 13a shows the resulting volumes – for a given unit weight – for all possible
locations of the additional point. This shows the simple behavior of the problem
which exhibits a single optimum location for the point, denoted as V13-nodes. Thus,
using the initial 11×11 node solution as a guide, an optimal node location can be
found easily by manually exploring different locations. With each problem taking
less than 0.1 seconds to solve, this is easily achieved using parametric modeling
software such as Rhino/Grasshopper [31]. In all cases, this proved to make only a
minor improvement to the total material usage (generally around 0.2 %, with some
cases up to 0.6 % where the optimal node position fell directly between points in
the original ground structure). The resulting volumes, V13-nodes, are also shown in
Table 1. The forms of these solutions are shown in Figure 14, while Figure 13b also
shows the location of one of the additional nodes for various levels of self-weight.

From Figures 12 and 14 it can be seen that when self-weight is low (ρg ≤ 1.65),
the optimal structure employs the most direct load-path from the point load to
the support, aligning the structure to the

√
2L length span between diagonally

opposing supports. However, when self-weight is more dominant (e.g. ρg ≥ 1.85)
it is preferable to locate as much material as possible close to the shorter spans
of length L between adjacent supports, with a secondary set of elements spanning
from the point load to these outer elements. For intermediate values of self-weight,
the transition occurs by a splitting of the original, diagonal elements.
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Figure 13: Square example with point load: Optimization of 13-node structures. (a) Contour
plot of volumes for all possible locations of the additional node for ρg = 1.76 σ

L
, with optimal

location indicated. (b) Optimal location of additional node for ρg = 1.68 σ
L

(white), ρg = 1.76 σ
L
,

ρg = 1.85 σ
L

and ρg = 2 σ
L

(black).

4.4. Example with two holes

The example in Figure 15 will now be considered. To generate a pure com-
pression structure, it is essential that supports on the convex edges3 of the domain
support the structure both vertically and horizontally, allowing the required thrust
to be generated. However, for supports on the interior of the domain, or on concave
edges, it is possible to model the existence of vertical-only (roller pin) supports.
This example has support in all three directions (full pin) at the outer bound-
ary (solid lines in Figure 15a), and vertical-only support at one of the inner hole
boundaries (dashed lines in Figure 15a). The boundary of the other hole is not
supported. A regular grid of nodes is used across the rectangle with L

40
spacing,

nodes within 0.15L of the centers of the holes are removed, and 32 equally spaced
nodes are added around each hole. Full connectivity is permitted, excluding ele-
ments that would overlap the holes; adjacent nodes around the edge of each hole

3The term convex edge is used here to denote locations on the domain boundary where the
tangent is (locally) on the outside of the domain, or the point is a corner with internal angle
less than π radians. Conversely, concave edges are those portions of the boundary where the
tangent lies (locally) inside the domain or at corners with internal angles greater than π radians.
Straight edges may also be unsupported, although equilibrium enforces that an unsupported
straight edge will have only a single arch along it, not connected to the interior of the domain.
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Figure 14: Square example with point load: Optimal ‘13-node’ solutions (plan and perspective
view) for various values of self-weight
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Figure 15: Example with two holes: (a) Problem specification, fully pinned (x, y and z direc-
tion) supports defined around outer edges indicated with solid line, and vertical-only supports
defined around one of the holes indicated with dashed line. Loading is uniform across the do-
main. (b) Optimal structure volume for various levels of self-weight. For context, relationships
between the structure weight W = ρgV and the total external loading F are given.
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Figure 16: Example with two holes: Optimal results for various values of self-weight, plan
and perspective views. These structures are identified from a ground structure of over 250,000
potential elements, requiring between 20-40 seconds to solve the optimization problem (20).

are connected with potential elements, even though these pass slightly within the
circles. Co-linear elements within the grid are removed, and the problem there-
fore contains 1117 nodes and 258,856 potential elements. Around 20-40 seconds is
required to solve the problem (20), while around 15 seconds is then needed to con-
struct and render the structure (depending on the detail of rendering the curves);
when using Grasshopper to construct the problem a further 30 seconds is needed
to construct the geometry, nodal grid and ground-structure (largely attributable
to calculating the contributing area for the applied force at each node).

This problem has been solved with various levels of self-weight, and the result-
ing volumes are shown in Figure 15b. The optimal forms are shown in Figure 16
for self-weight values of ρg = 0.1 σ

L
(self-weight negligible), ρg = 2 σ

L
(total struc-

ture weight ≈ total external load, see Figure 15b) and ρg = 3.5 σ
L

(self-weight more
than four times applied load, see Figure 15b). The optimal topologies observed are
reminiscent of those seen in the simpler square example, see Figure 10. When self-
weight is low, the optimal topology contains many elements perpendicular to the
domain edges, each with similar size; when self-weight is more significant, certain
support points appear preferable, with larger elements and more elements fanning
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Figure 17: Example with two holes: Elevation difference between optimal structures for ρg =
0.1 σ

L
and ρg = 3.5 σ

L
, shown at nodal points. The top hole is the unsupported boundary. For

context, the ρg = 0.1 σ
L

result has a maximum height of approximately 0.32L

out from a single point. In all the results, the vertical-only internal supports result
in relatively low rises on the shorter spans, efficiently allowing a larger thrust to
be generated to ensure horizontal equilibrium at those points.

In the previous examples, it has been seen that the optimal elevation increased
across the whole domain when the self-weight increased. However, whilst the
maximum elevation increases with self-weight in Figure 16, this is not the case
across the whole domain. Figure 17 shows the difference in elevation for each
node in the problem. Whilst the largest span regions (around the unsupported
hole) show significant increases in elevation, notable reductions in elevations are
also seen, particularly around the supported hole. This may be due to the need to
generate larger horizontal thrusts to ensure horizontal equilibrium of the supported
circle.

4.5. Self-intersecting example

It is interesting to note that, although the problem is specified in 2D, it is not
essential that the domain’s outer boundary is a simple closed curve. Specifically,
it is possible to consider self-intersecting domains, whilst defining that the inter-
secting parts are disconnected. To demonstrate this, the problem shown in Figure
18a will be considered. The boundary is a planar self-intersecting curve, formed
from a series of arcs. Supports are available along the boundary sections shown
with grey lines in Figure 18a, and the maximum straight line distance between two
points in the domain is denoted as L.

For such a case, no special changes need be made to the method described.
However, great care must be taken in constructing the nodal grid and connec-
tivity of the ground structure, as standard algorithms will not be able to distin-
guish between the overlapping regions. Visual modelling environments such as
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Figure 18: Self-intersecting example: (a) Problem specification. Grey edges represent locations
of supports, note that the self intersecting regions (i.e blue and purple nodal points) do not
interact, and the support shown there belongs only to the portion of the domain containing
purple node markers. The dashed tangent line and labels A, B, C refer to the regions used
to calculate the permissible ground structure. (b) Optimal volumes for different values of self-
weight. For context, relationships between the structure weight W = ρgV and the total external
loading F are given.
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Figure 19: Self-intersecting example: Results, plan and perspective view. These structures were
identified from a ground structure of over 51,000 potential elements, requiring between 2 and 5
seconds to solve the problem (20).

Rhino/Grasshopper [31] can be invaluable for this to evaluate the problem-specific
logic at each stage.

Here, the approach used was to select a point on the interior hole, and from
there take a normal and tangent line to split up the domain. Nodal points were
defined separately in the regions each side of the normal line (purple/blue points
in Figure 18), with evenly spaced points pre-defined along the normal line. The
Grasshopper Triremesh component was used to generate approximately equally
spaced points across the irregular shaped regions, and a Voronoi diagram was used
to assign forces to each point representing a uniformly distributed imposed load.
The potential element list was then generated by considering three regions (A, B,
C) of the domain defined by the tangent line (shown as a dotted line in Figure 18).
Note that any element connecting section A to section C would not be permitted,
regardless of the proximity of the points in actual 2D space. By separately consid-
ering the union of A and B and the union of B and C, potential elements can be
checked using standard approaches, and finally the ground structure is combined
for solving. The complete list of nodal coordinates and potential elements can be
found in the supplementary information.

The results shown in Figure 18b required between 2 and 5 seconds to solve
the optimization problem for each value of self-weight. Selected optimal forms are
shown in Figure 19. From Figure 18b, it can be seen that the two cases shown in
Figure 19 correspond to the cases where the self-weight is just over one quarter of
the external load, and where self-weight is just over four times the external load,
respectively.

For self-intersecting examples such as this one, it is not possible to specify
which of the overlapping regions should occur on top, or indeed to prevent the
two areas from crossing over. Nonetheless, when the overlapping regions have very
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Table 2: A qualitative comparison between the approach proposed herein and existing methods.
Green ticks indicate desirable characteristics, red crosses indicate limitations, and orange circles
indicate intermediate values or partial ability.

Self-weight included
(i.e. applicable to
long spans)

Optimal topol-
ogy found

Material usage
Computational
difficulty

This contribution Yes Yes Global minimum Low

Ground structure method
for weightless vaults [22]

No Yes Global minimum Low

3D layout optimization with
transmissible loads, e.g.
Fig. 11 herein, [14] or [4]

Yes Yes
Tends to global min-

imum for dense verti-
cal discretization

Very high

Force Density Method
Approximate

methods only
No Not minimised Low

Thrust Network Analysis
Approximate

methods only
No Not minimised Low-Moderate

Dynamic Relaxation
Approximate

methods only
No Not minimised Moderate

Particle-Springs
Approximate

methods only
No Not minimised Moderate

Continuum topology opti-
mization with transmissible
loads (e.g. [14, Fig 5c/7c])
in 3D

Good approxi-
mations possible,
but not tested with
transmissible loads

Yes

Minimum found
for high-resolution
greyscale results only,
black-and-white re-
sults prone to local
optima.

Very high

different spans, it will generally be the case that the optimal elevations will differ
sufficiently for useful results to be obtained.

5. Concluding remarks

This paper provides two key contributions, a novel methodology for the topol-
ogy and geometry optimization of long-span grid-shells, and the identification of
characteristics of such optimal structures. The concluding remarks have been di-
vided into those pertaining to the novel methodology itself (Section 5.1), and those
relating to the characteristics of the optimal structures which can now be obtained
(Section 5.2).
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5.1. The proposed method: Summary, advantages and limitations

A methodology has been presented to obtain the globally-optimal topology
and elevation profile for a pure compression grid-shell structure carrying a prede-
fined external loading plus the self-weight of the structure itself. The inclusion of
self-weight is a significant practical advantage compared to previous approaches,
as grid-shells are very often used for long-span structures where self-weight is a
significant proportion of the loading. By solving a convex conic programming prob-
lem, globally optimal solutions (for the given ground structure) can be obtained
rapidly. The method provides speed-up of several orders of magnitude compared
to a 3D truss optimization approach, whilst simultaneously increasing accuracy
and increasing the clarity of the solution by ensuring a single-layer structure is
returned.

A direct comparison with traditional form-finding approaches, such as the force
density method or dynamic relaxation, is not possible as comparable results with
accurately modeled self-weight are not available for these approaches. Nonethe-
less, as form-finding approaches do not aim to minimise the material usage, they
generally result in less materially-efficient solutions; for the non-self-weight case,
comparison between the layout optimization form-finding approach and force den-
sity methods can be found within [23] where it is found that – even for the same
topology – the ground-structure based method demands up to 20% less material
than designs obtained by the force density method, with further savings available
if the topology is also optimized. Due to the compounding effects of self-weight
loads, even greater level of savings may be obtained for long span scenarios. A sum-
mary of the advantages of the proposed approach compared to previously available
methods can be found in Table 2.

The most significant limitation of the proposed approach is one which is shared
with the vast majority of available form-finding approaches; the structure is de-
signed to resist only a single load-case. In general, it is not possible to define a
structure which is funicular under multiple load-cases, and so it is necessary to in-
voke, e.g., bending, large deformations, or move away from single layer structures.
Of the approaches in Table 2, 3D layout optimization can consider multiple load
cases, but it produces a structure which is no longer single-layered, and therefore
no longer meets many definitions of a grid-shell.

A more unique restriction on the applicability of this method particularly (in
common with [22]), is that the supports are defined as having an elevation of zero.
In other words, all the support points are at the same height. The weightless
formulation has been extended to cases where the supports lie on an inclined
plane; it is an open question whether this approach can be extended to supports
of different heights.

The approach presented here does not explicitly consider elastic compatibility
or a constitutive relationship. However, this is not necessary; there will always
be an optimal solution which is statically determinate, and therefore automati-
cally satisfies elastic compatibility. This was shown for the weightless truss case
by Rozvany [32, Appendix], via an argument based on the structure of the linear
programming problem (statically determinate structures correspond to basic so-
lutions of the optimization problem). It can be observed that the truss problem
(5) displays the same structure, and so the argument can be directly transferred.
Furthermore, once the method herein has been performed, the obtained nodal po-
sitions can easily be used to construct the problem (5) for that case, which will
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attain the same optimal volume as obtained from (20) and almost always4 the
same optimal form.

The approach permits a limitless variety of scenarios to be investigated. Sup-
port conditions may include both pins and roller-pins, and loadings may be chosen
freely (albeit that when considering only a single load case, horizontal forces may
be of less practical interest). Footprint geometries can include holes and can even
self-intersect, while customised ground structures may be used to investigate the
effects of limiting the available topologies. If a scenario is specified for which no
solution is possible, then this is easily identified, as the corresponding primal prob-
lem (20) will be infeasible. The method could equivalently be used to design pure
tension structures by following the logic herein with signs reversed.

5.2. Characteristics of optimal grid-shell structures

Through the use of this approach, many features of optimal grid-shell structures
under self-weight loading have been discovered. It is observed that as self-weight
becomes more significant, the optimal peak height of the structure typically in-
creases. For the weightless case, the maximum elevation cannot be more than the
radius of the domain’s circumcircle, a limit which the solutions with self-weight
frequently violate. This means that these optimal solutions could not be obtained
by approximating the self-weight as an external load, even if an iterative approach
was used to re-distribute the load in the most appropriate proportion.

Whilst the overall increase in optimal height with increasing influence of self-
weight has been previously noted for simpler structures, the numerical method
presented here allows more complex scenarios which show that it is not necessarily
true that elevation should increase at all points in a structure. Particularly when
vertical-only supports are present, reducing the rise in some areas can be beneficial
in generating required horizontal thrusts.

Furthermore, it has been shown that the optimal topology can change markedly
when self-weight becomes significant. The use of an incorrect topology in either
direction (i.e. the optimal topology found for the weightless case being used for
a problem where self-weight is significant, or vice versa) is shown to increase the
material demands of the structure. Nonetheless, it is generally observed that the
penalty for an inefficient topology increases as self-weight becomes more significant,
echoing previous findings in optimization of other structure types.

Finally, it has been shown that when self-weight loading is considered, it is
possible for the optimal structure to require joints at points which are not the
locations of external loads or supports. This increases the need to optimize the
topology in these scenarios, in conjunction with the elevation function. Further-
more, it can be seen from the results that the chosen topology and the vertical
shape are closely linked, highlighting the importance of the coupled optimization
method presented here.

4The exception to this is a case where there are two or more equally optimal solutions,
(e.g. in the top row of Fig. 14 either of the two crossing arches is a valid optimal, basic,
statically determinate solution). In this case, any convex combination of the solutions is a valid
plastic design, but as it is statically indeterminate it may not be elastically valid. The interior
point method used to solve the conic problem (20) will generally return a mixed, non-basic
solution, whereas if the simplex method is used to solve (5) then one of the basic solutions
will be returned. Equally-optimal solutions are observed most frequently in cases with a single
point load and an axisymmetric domain (e.g. Fig 14), wherein the symmetry implies that the
statically indeterminate structures also satisfy compatibility. Nonetheless, there may be cases
(albeit not yet encountered by the authors) where obtaining the basic, statically determinate
structure becomes a necessity.
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Overall, the method presented here provides a powerful tool for investigat-
ing this class of material-efficient structures. This study has shown that these
structures have many interesting properties, many of which demonstrate signifi-
cant challenges to purely intuitive design approaches, or to existing fixed-topology
methods. By overcoming these issues, this method can facilitate the adoption
of such structural forms, and Python scripts and Grasshopper files implementing
examples from this paper have been made available [29] to encourage this.
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Appendix A. Lumped mass approach

Within truss optimization, it is common to consider the effects of self-weight
using a ‘lumped mass’ approach, where it is assumed that the weight of each
element can be modeled as two equal point loads acting directly on the end-points
of the element. This approach neglects the bending within a straight element
which would be required to transmit the self-weight load to the nodes. However
the simplicity of the model means it remains popular. This section will discuss the
seemingly promising approach of combining this self-weight model with the vault
design formulation. However, it will be shown that this does not produce valid
solutions.

From the weightless vault formulation (1), it can be seen that the volume of

an element i is given by li
σ

(

si +
q2i
si

)

. Using the material’s unit weight ρg and the

definition of the variable ri given in (2), then the lumped mass model in this case
would involve the imposing of self-weight forces with magnitude 0.5 ρg

σ
li (si + ri)

at each end of element i. Applying these forces involves adding these terms to the
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(a)

(b)

Figure A.20: Lumped mass formulation: Results showing inconsistency in nodal elevation calcu-
lations. Vertical red lines link elements ends which should connect at a single point, highlighting
the inconsistency

vertical equilibrium constraints, to give the optimization problem:

min
∑

i∈M

li
σi

(si + ri) , (A.1a)

s.t. Bs = fxy, (A.1b)

Dq + Zs + Zr = fz, (A.1c)

(

ri ≥
q2i
si

)

∀i
(A.1d)

s ≥ 0, (A.1e)

where the new Z matrix contains zeros everywhere except at entry i, j when ele-
ment i is connected to node j, at which point it contains the value Zi = −0.5li

ρg

σ
.

Problem (A.1) can be easily set up and solved for a given scenario. However,
the issue arises in reconstructing a physical structure corresponding to the solution.
This is not possible, as there is not a set of nodal elevations which are compatible
with the forces, q and s, in all of the bars simultaneously. The variables q and s
describe the vertical and horizontal components of the force in an element, and thus
define the inclination of its centre-line5. From this, the elevation difference between

5Note that here we cannot assume q to include an additional mass contribution as used in
Figure 5. In this formulation q defines two equal and opposite forces, so any variation in q
would be imposed downward at one end of the element and upward at the other.

42



the two ends can be calculated. It is then possible to work through the structure,
starting from the supported points with 0 elevation, and thereby establish heights
for all of the nodes. (Note: this procedure was suggested and successfully used in
the weightless case by [23] as a conceptually simpler alternative to the use of the
dual variables and also as a way to validate the solutions.)

To demonstrate the issue, (A.1) has been solved for problems representing a
quarter of the square-based domain problem, with distributed loads. When the
procedure is followed, it is found that different routes through the structure result
in different elevations of the same node. These errors are represented in Figure
A.20 by the vertical red lines. This therefore shows that the solutions of (A.1) do
not represent physically meaningful solutions.

Note that within the catenary formulation presented in this paper, the equiva-
lent process of validation via primal variables is the calculation of (non-negative)
lumped masses from the relaxed geometrical coupling condition described in 3.1.4.
This has been successfully carried out for all examples herein, validating the ana-
lytical proof of correctness of the catenary approach.

Appendix B. Analysis of the optimal primal and dual solutions

Below the properties (I)-(III) of the optimal primal and dual solutions s,qA,qB

and u,w,g1,g2,g3 are derived, see Section 3.2.2. It must be emphasized that the
criteria from Section 3.2.1 are assumed to hold throughout. In particular, the strict
inequality below holds for every node,

w <
1

ρg
(B.1)

Proof of properties (I), (II): These properties will be shown for every element for
which s > 0 at optimality.

First, from the complementary slackness for the primal constraint s ≥ 0, it
immediately follows that the dual linear constraint (21b) is an equality for such an
element. This allows to explicitly express all gj that enter the dual conic constraint
2g1g2 ≥ g23 ,

g1 = 1

sin l̄

(

1

ρg
− wA

)

, g2 = 1

sin l̄

(

1

ρg
− wB

)

, (B.2)

g3 = −
√

2
(

1

2
∆u + cos l̄

sin l̄

(

1

ρg
− wA+wB

2

)

)

, (B.3)

where ∆u represents the horizontal extension of the element, calculated as the
relevant entry of BTu. On the other hand, the primal conic constraint (20d) can
be expressed as 2t1t2 ≥ t23, where

t1 = sin l̄ qA + cos l̄ s, (B.4)

t2 = sin l̄ qB + cos l̄ s, t3 =
√

2s. (B.5)

It is well established that at optimality there holds a complementary slackness
condition associated to the conic constraints, see Section 2.5 in [33],

t1g1 + t2g2 + t3g3 = 0. (B.6)

Since s > 0, there is t3 > 0 and thus also t1, t2 > 0 due to the conic constraint. In
addition, g1, g2 > 0, due to the assumption (B.1). As result, the condition (B.6)
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implies that g3 < 0. Starting from the simple inequality a2 + b2 ≥ 2ab, the chain
below follows,

t1g1 + t2g2 ≥ 2
√

t1g1
√

t2g2

=
√

2t1t2
√

2g1g2 ≥ |t3||g3| = −t3g3,

where the second inequality simply combines the two conic constraints. By virtue
of the condition (B.6), this chain must be a chain of equalities only. The first equal-
ity implies that t1g1 = t2g2. Indeed, for positive numbers, a2 + b2 = 2ab ensures
that a = b. Up to multiplying by sin l̄ on each side, this is exactly the statement
(III). Next, the equality previous to last ensures that both conic constraints are
satisfied as equalities. In particular, 2t1t2 = t23, which furnishes the statement (II)
in the case s > 0. For s = 0 it will follow from the assertion (III), proved below.

Note that (B.1) was fundamental, since, otherwise, the complementary slack-
ness condition (B.6) could have been trivially satisfied for g1 = g2 = g3 = 0. It
was thus necessary to make sure that w < 1

ρg
.

Proof of property (III): For an element with s = 0, there must also be t3 = 0 and
so the complementary slackness condition becomes

t1g1 + t2g2 + 0 = 0. (B.7)

The definition of the primal cone requires t1, t2 ≥ 0, while property (I) furnishes
g1, g2 > 0. Hence both remaining terms are ≥ 0, and so both must be equal to 0.
This implies t1 = t2 = 0, which when combined with the initial definition s = 0
proves that qA = qB = 0.
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