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ABSTRACT

The sub-barrier fusion hindrance phenomenon is systematically observed in heavy-ion systems, but its evidence
for light-mass cases of astrophysical interest, like C+C, C+0 and O+ O, is controversial. Their low-energy
behaviour may be clarified by studying slightly heavier systems, so to extrapolate their trend to the lighter
cases. In this work, fusion of >C + 28Si has been measured down to deep sub-barrier energies, using ?8Si beams
from the XTU Tandem accelerator of LNL on thin '2C targets. Two different set-ups were employed: 1) the
fusion-evaporation residues were identified by a detector telescope following an electrostatic beam separator,
and 2) coincidences between the y-ray array AGATA and segmented silicon detectors DSSD were performed,
where the evaporated light charged particles were identified by pulse shape analysis. Fusion cross sections have
been obtained in the wide range ¢ ~#150 mb — 42 nb. Coupled-channel (CC) calculations using a Woods-Saxon
potential reproduce the data above ~0.1 mb. Below that, hindrance shows up and the CC results overestimate the
cross sections which get close to the one-dimensional potential tunnelling limit. This suggests that the coupling
strengths gradually vanish, as predicted by the adiabatic model. The hindrance threshold follows a recently

updated phenomenological systematics.

1. Introduction

The phenomenon of low-energy hindrance in heavy-ion fusion is a
topic of ongoing experimental and theoretical interest. It was first ob-
served for the system “Ni + 89Y [1], and it is experimentally recognised
by the increasing logarithmic slope of the excitation function (or by a
maximum of the S-factor) showing up at low energies.

From the theoretical point of view, extending the standard coupled-
channels (CC) model to describe the hindrance effect is a theoretical
challenge [2-5]. A few years ago, Simenel et al. [6,7] pointed out that
the Pauli exclusion principle hinders the overlap of the two colliding
nuclei, thereby influencing the ion-ion potential. As a consequence, the
Coulomb barrier turns out to be thicker and higher, and low-energy
fusion hindrance is produced.

For medium-mass systems, where the fusion Q-value is negative, hin-
drance has been systematically observed at various cross-section levels
and dummyTXdummy- with different features. Representative cases are
®4Nj + *Ni [8], 10 + 298pb [9] and 8Ni + 3*Fe [10]. In the case of
light systems, the S-factor maximum becomes broader and the hindrance
threshold is more difficult to recognise. Such light systems have positive
fusion Q-value, implying that the existence of an S-factor maximum is
not algebraically necessary [8]. Indeed, the fusion hindrance is neither
well-established nor understood in those cases. This creates uncertain-
ties when extrapolating their trend to astrophysical energies, where it
may influence the reaction rates in stellar environments [11-13].

In more detail, '2C + !0 [14] and !2C + !2C (see [15,16] and
Refs. therein), the existence and the features of that phenomenon are
obscured by the presence of several low-energy oscillations of the S-
factor [17-21]. The case of 12C + 3C [22] is completely different be-
cause no oscillations and no hindrance have been observed. As the en-
ergy decreases, the S-factor tends to develop a maximum; however, it
then increases again.

In this respect, we point out that recent theoretical studies [23,24]
indicate the absence of the hindrance effect in both '>C + !213C.
Uzawa and Hagino propose a modified fitting procedure in the low-
energy range, and show that the resulting astrophysical S-factors do
not show any hindrance within the range of error bars for both
systems.

Because of these various features, it was proposed to study slightly
heavier systems [25], to provide a reliable starting point for the extrap-
olation to lighter ones in the expected energy range of hindrance. We re-
cently investigated the cases '2C + 2+20Mg [26,27] and '2C + 30Si [28].
It was observed that the hindrance energy thresholds for these systems
follow the empirical estimate of Ref. [29], updated from the original
formulation on the basis of those recent results and the newly published

ones on '°0 + “8Ca [30]. Moreover, the cross sections for '>C + 2*Mg,
30si seem to approach the one-dimensional potential tunnelling limit at
the lowest measured energies.

The hindrance threshold for '2C + 2*Mg corresponds to the rather
large fusion cross section ~0.9 mb, however, the experimental uncer-
tainties are large and make that identification somewhat doubtful for
this system.

In this work, we present the results of the detailed experimental
study of 12C + 28Si, whose purpose has been to identify the hindrance
phenomenon (if any), and to determine the fusion behaviour below the
hindrance threshold down to far sub-barrier energies, trying to clarify
as well the possible influence on hindrance of the well-known oblate
deformation of ?8Si, in contrast with the prolate shape of 24*Mg and
the spherical structure of VSi (see Ref. [31]). This information will be
essential for recognising how adequate the extrapolation of the trend is
to astrophysically relevant cases, on the basis of measured cross-sections
at very low energies. Previous fusion data on '2C + 28Si are available
only well above the barrier [32-36].

We have used two different and complementary setups to investi-
gate the fusion excitation function of '2C + 28Si down to cross sections
as small as ~40nb. The measurements were performed at Laboratori
Nazionali di Legnaro (LNL) of INFN, using the electrostatic deflector
setup [10] for the high-energy part, and the AGATA y-ray spectrom-
eter [37] associated with segmented silicon detectors (DSSD) for the
identification of evaporated light charged particles, at the lower ener-
gies.

Sect. II describes the experimental set-ups and methods of data anal-
ysis, and shows the results that are then compared in Sect. III with
CC calculations. Systematic trends are discussed in Section IV compar-
ing with near-by systems and concerning the astrophysical aspects of
the results as well. Section V presents the conclusions of the present
work.

2. Experimental set-ups

The 28Si beams of the XTU Tandem at LNL were employed, with cur-
rents 15-30 pnA, in the energy range 29.5-54 MeV. Thin '?C targets
~50 ug/cm? were used, with isotopic enrichment of 99.8%, to minimise
the beam energy corrections and straggling effects that may increase the
unwanted background. In the measurements with the electrostatic sepa-
rator set-up of LNL, the evaporation residues (ER) were detected using a
AE — E gas-silicon detector and large position-sensitive micro-channel
plates (MCP) detectors. Two time of flights (ToF) were measured be-
tween the silicon detector and the two MCP.
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Fig. 1. Two-dimensional spectrum Time-of-Flight vs Energy measured atE,,, =
43 MeV and §,,, =3 °. The group of evaporation residue (ER) events is indicated,
well separated from beam-like ions. The insert shows the angular distribution
of ER, together with the Gaussian fit, at the same energy.

Fig. 2. Schematic view of the setup used for the AGATA-DSSD measurements.
The target (not shown in the figure) is placed between the two DSSD.

The beam control and yield normalisation to the Rutherford cross
section were ensured by four silicon detectors placed at 6,,,=16° in
the scattering chamber (see Ref. [10] for further details).

The ER angular distribution was measured at E;,, = 43 MeV in the
0,,, range from -7 ° to +8°, and it is reported in Fig. 1. It is well fitted
by a single Gaussian curve (red line), and it allowed us to extrapolate its
shape to the other energies where the fusion yield was measured at only
0,5 =2° (or 3° at low energies). The fusion cross section was obtained
by integrating that distribution. Standard PACE4 calculations [38] an-
ticipate that the shape of the angular distribution does not appreciably
vary with energy in the measured range. This has been validated by
several previous measurements (see e.g. Refs. [28,39]). The systematic
error on the cross-section scale is estimated to be +7-8% as in previous
experiments with that setup [10].

Following the technique introduced by Jiang et al. [40], we extended
the fusion excitation function down to very small cross sections, using
the y-ray tracking spectrometer AGATA [37] and two annular Double
Sided Silicon strip Detectors (DSSD) (4" diameter) placed 5 cm upstream
and downstream of the target (see Fig. 2). Their thicknesses were 0.5 and
1.5mm, respectively, covering the angular ranges 6,,, = 139.6°-162.7°
and 23.0°-40.4°, and have been used to detect coincident events between
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Fig. 3. (top panel) Events detected in an intermediate ring (6 ~29°) of the for-
ward DSSD. Protons and « particles are identified through pulse shape analy-
sis (psa), plotting the maximum of the signal derivative (I,,) vs their energy
E. (bottom panel) Energy spectrum of the corresponding a particles. Several
particle groups populating different states in the *Ar residual nucleus can be
observed.

the evaporated light charged particles and the prompt y-rays emitted
from the various residual nuclei (see Fig. 2 of Ref. [41]).

The measurements were performed at four 28Si beam energies with
this setup, i.e., E;,, = 50, 34 MeV, to overlap with points taken with the
electrostatic deflector, and at the very low energies of 31 and 29.5 MeV.
Nickel absorbers of calibrated thickness were placed in front of the two
DSSD (15um for the forward one, and 2um for the backward one) to
stop the scattered beam, target recoils, and the electrons coming from
the target. Particle identification by pulse shape analysis was made pos-
sible by installing both DSSD with the ohmic side facing the target [42].
Fig. 3 (top panel) shows the good separation obtained between evapo-
rated protons and a-particles down to rather low energies. The direct
population of states in the exit channels can then be observed, fixing an
emission angle, by projecting this matrix onto the energy axis. This is
shown in the bottom panel of Fig. 3, for the a-particles selected in the
top matrix.

The energy of the evaporated particle, when associated with its emis-
sion angle, yields the total excitation of the system. By correlating this
excitation energy with the y-ray energy, one can identify the events be-
longing to a certain evaporation channel. Fig. 4 shows, as a representa-
tive example, this correlation matrix obtained at E,,, = 50 MeV, where
all events detected by the two DSSD have been considered (top panel).
The bottom panel is the projection on the E, axis, where one can recog-
nise the y-lines marked in the matrix.

This representation is useful even at very low energies, as shown in
Fig. 5 for E,,, =31 MeV, where the eight fusion events populating 3¥Ar
by 2p evaporation (corresponding to a cross section of ~200 nb) are very
cleanly identified.

For each experimental run/energy, the ER level schemes provided us
with the number of y-particle coincidence events associated with each
y transition feeding the corresponding ground states. Electron conver-
sion might compete with gamma decay; however, it brings a very small
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tion of the matrix onto the E, axis.

E EY =2167 keV, 2> 0* 38A
12 = i

S 10 - N ’
() C
\Z’ E
|_|Jé 8; - .

= e b b by PRI BN T ANV S NN SR M S MY

2150 2160 2170 2180 2190
E, (keV)

Fig. 5. Zoomed matrix for the 2p evaporation channel *¥Ar excitation energy
(E,,.) vs y-ray energy at E;,, = 31 MeV, where the few fusion events are clearly

identified. The total fusion cross section at this energy, including the other ob-
served evaporation channel (1) is (3.0+1.1) 10~* mb, please see Table 1.

contribution (a few per thousand) to those transitions [43] in the mass
region A~36-40.

The normalisation between different runs was ensured by two
50 mm? silicon monitor detectors, installed at 6,,, =12° at around 50 cm
from the target. Finally, the absolute cross section scale was fixed, tak-
ing as reference the energy point at E;,, =50 MeV that was measured
also using the electrostatic deflector set-up, whose absolute efficiency is
well known for the present system (and several others). Normalising this
way the excitation function to the electrostatic deflector results, takes
into account also the possible contribution of pure neutron evaporation
channels that are not obviously observed in the AGATA-DSSD coinci-
dences, and actually not even in the y-ray singles spectra at any energy.
Moreover, the normalization also takes into account possible effects due
to the angular distribution of gamma rays since Agata does not cover all
0 angles in the present configuration. We point out that the adopted nor-
malisation, above the barrier, brings the point at E;,, = 34 MeV in very
good agreement with the nearby ones obtained with the electrostatic
deflector.

Physics Letters B 872 (2026) 140084

Table 1

Fusion cross sections of '>C + 28Si
measured in this work via AGATA-
DSSD coincidences. The data for the
observed evaporation channels at each
energy are specified. The quoted errors
are statistical uncertainties. The upper
cross section limits quoted for the 1p
channel at the two lowest energies,
correspond to the case where one coin-
cidence event would have been clearly

identified.
channel o (mb)
E,, (MeV)=8.71
(1p <1.51075)
2p 2.62+1.31 1073
la 1.54+1.09 107>
Total 4.16+1.70 1073
E,, (MeV)=9.16
(1p <1.5107)
2p 1.6+0.6 10~
la 1.4+0.9 10~*
Total 3.0+1.1 10
E., (MeV)=10.06
1p 0.0054+0.0011
2p 0.0066+0.0007
la 0.0027+0.0006
Total 0.0147+0.0015
E., (MeV)=14.94
1p 17.50+0.09
2p 68.2+0.1
1pln 6.39+0.04
1pla 53.3+0.2
la 7.33+0.05
Inla 0.58+0.01
2a 4.80+0.03
Total 158+1

Subsequently, those yields were normalised using 1) the AGATA effi-
ciency vs y-ray energy in the used geometry, obtained by a measurement
with a 1%2Eu source, performed just after the experiment, in agreement
with the simulations of Ref. [37], extending to high y-ray energies, and
2) the DSSD detectors’ efficiencies. These are determined by their angu-
lar coverage (~26% of 4r), by kinematics and by the electronic thresh-
olds. The sum of all such normalised yields of coincident events, plus
those directly feeding the ER ground states (see e.g. Fig. 3), is then pro-
portional to the fusion cross section measured in the considered run.

At the various energies, the evaporation channels observed in coin-
cidence events were 1p, 2p, 1pln, la, 1pla, Inla and 2a. Details of those
channels and of the corresponding measured cross sections are listed in
Table 1.

3. Coupled-channels calculations

The fusion excitation function was calculated with the CCFULL
code [44] using the coupled-channels (CC) formalism employed in sev-
eral heavy-ion fusion reactions analyses in recent years. CCFULL takes
into account channel couplings to all orders and uses the so-called ro-
tating frame [45] or isocentrifugal [46] approximation, which consider-
ably reduces the number of channels, thus simplifying the calculations.
A Woods-Saxon potential with parameters V,=44.6 MeV, r,=1.06 fm
and a=0.61 fm was used to fit the experimental data near the barrier.

In the calculation, '2C was considered inert, while the lowest
quadrupole and octupole excitations of 28Si were included, with the
adopted deformation parameters g, =-0.41 [47] and p; =0.40 [48], re-
spectively. The quadrupole deformation parameter of 28Si is negative,
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Fig. 7. The logarithmic derivative of the energy-weighted excitation function
for 12C + 28Si, compared with the results of CC and no-coupling calculations. The
L line represents the slope expected for a constant S-factor, for each energy.

since this nucleus is oblate [31]. The mutual excitation of both 2* and
3~ states was neglected because of its very high excitation energy.

We show in Fig. 6 the obtained excitation function, where the quoted
errors are only statistical uncertainties, together with the results of CC
calculations. The lowest energy points previously obtained by Jordan et
al. [32] are also reported. One sees that the energy overlap between the
present and previous data set is marginal, and that a reasonable agree-
ment is observed, although Jordan’s data appear to be flatter vs energy.
The present experimental cross sections are well reproduced by the cal-
culation down to ~10 MeV. Below this energy, we have clear evidence
of the hindrance phenomenon, and that the three lowest energy points
approach and appear to follow the trend of the no-coupling limit.

To be noted that the low-energy behaviour of '2C + 28Si has been
evidenced, even if the experimental uncertainties are rather large, only
thanks to the measurements performed with the AGATA spectrometer.

Fig. 7 shows the logarithmic derivative (slope) of the excitation func-
tion obtained from the measured cross sections, as the incremental ratio
of two near-by points. The slope increases with decreasing energy and
touches the L4 line at around 11 MeV (green arrow). A decrease is then
observed, followed by a pronounced crossing at ~10.1 MeV (black ar-
row). This is the energy that we can associate to the hindrance threshold
in 12C + 288i.
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In the same figure, we report the results of the CC calculations and
the no-coupling limit. The theoretical curves yield a flat trend for the
slope in the plotted energy range, as actually expected. They are close to
each other, as a consequence of the rather high energies of the 2Si cou-
pled excitations. The experimental trend is well reproduced by the cal-
culations; however, not where hindrance shows up (and possibly around
11 MeV). This is expected, since one knows that a potential of WS shape
is not able, in general, to fit cross sections in the hindrance region [2].

4. Comparison with nearby systems

We refer to Fig. 8, where the abscissa is the energy with respect to the
Coulomb barrier produced by the Akyiiz-Winther (AW) potential [49].
We note the similarity between the logarithmic derivatives of the three
systems shown there. With decreasing energy, the three cases exhibit
small oscillations followed by a larger slope increase that we associate
with the onset of hindrance, at similar E/V), values. This is an indication
that the different structure of 283°Si and 2Mg has a minor influence on
the hindrance threshold.

12¢ + 2*Mg [26] (not shown here), has an analogous trend, as Fig. 4
of Ref. [27] clearly shows, but with larger experimental uncertainties.

In all cases, besides the occurrence of hindrance, smaller slope os-
cillations are systematically observed, whose origin still lacks a realistic
explanation.

The analogy between the behaviour of '?C + 28Si and other nearby
cases at low energy can be appreciated in Fig. 9, where the ratio of the
measured cross section to the calculated one in the no-coupling limit
is plotted vs the energy difference from the barrier. This representa-
tion was already used in Ref. [26]. One sees that fusion enhancement is
larger for the relatively heavier *Ca + “8Ca [50], as expected because
the coupling strengths scale with the factor Z, Z,. This more than com-
pensates the stiff structure of “Ca. Therefore, the ratio Cexp/ Onoe could
not be observed below a certain limit for this system. For 10 + “8Ca,
the enhancement is rather small, very similar to the systems 12C + 2*Mg,
308i. This is due to the limited effect of the channel couplings, given the
doubly magic nature of the two nuclei.

The present case '2C + 28Si has an enhancement larger than the other
systems cited here above. In particular, the enhancement observed for
12¢ + 286j is larger than for '2C + 30Si. This is due to the deformed
(oblate) character of 28Si while 0Si is spherical. Also, the lowest 2+
excitation is lower and stronger in the 28Si case [47].

The very small cross sections that have been measured for 12C + 28Si
allow showing that the enhancement ratio reduces to one at the lowest
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Fig. 8. Logarithmic derivatives of the energy-weighted excitation functions for
12C + 28Si (in red), '2C + Mg (blue dots) [27] and '2C + °Si (open green
dots). The three L lines are close to each other.
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energies (even if errors are rather large). The trend at even lower en-
ergies is unknown, and the question is: do the cross-sections follow the
no-coupling limit or go below that, taking into account that the signifi-
cance of a two-body potential becomes questionable at the very low en-
ergies where the ion-ion distances are smaller than the touching point?
This is an interesting issue that warrants further investigation.

Fig. 10 reports the systematics of the fusion hindrance threshold for
light and medium-light systems as recently presented in Ref. [30]. The
open blue symbols represent, with increasing system parameter ¢, 1B+
108, 12¢ + 12¢, 12C + 90 and '°0 + 160, which were obtained by ex-
trapolating the corresponding data from higher energies using the hin-
drance model [51] (no error bars were quoted for these points in that
work).

Indeed, this kind of representation was originally developed by Jiang
et al. [29] for heavier stiff systems, even if the light systems of astrophys-
ical relevance were included in the fit (blue dashed line). No particular
importance was attributed to the mass symmetry of the system. Obvi-
ously, the present case '>C + 28Si and the near-by ones '2C + 30Si,
2426Mg had not yet been measured, as well as '°0 + *3Ca. These sys-
tems have been included in the updated fit of Ref. [30] (solid red line),
that well reproduces heavier systems with ¢ values outside the range of
the Figure.
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On the other side, the new fit does not include the astrophysical
systems and the result differs from the previous one, in particular for
those light cases, predicting for them a higher hindrance threshold. This
is a direct consequence of the behaviour of the medium-light systems
established in recent years (including the present case 12C + 28Si), which
places on more solid grounds the extrapolation into the region of the
light astrophysical systems at very low energies.

The higher fitted hindrance threshold in that mass region may ap-
pear a minimal variation, but it may lead to significant changes in the
value of the S-factors/reaction rates. This is especially true for reac-
tions occurring in the late evolution of massive stars and in type-Ia su-
pernovae [52], modifying the nucleosynthesis processes and thus the
abundance of many isotopes. The specific consequences of those reduced
astrophysical reaction rates depend on the details of the stellar environ-
ment and go beyond the scope of the present work.

5. Summary

We have presented the results of the experimental study of fusion
near and below the barrier of the heavy-ion system '>C + 28Si. The
measurements were performed at LNL 1) by the electrostatic beam de-
flector set-up and 2) by the y-ray tracking spectrometer AGATA [37] in
coincidence with two annular DSSD detecting the light charged parti-
cles evaporated from the compound nucleus “°Ca. The combination of
the two methods allowed us to measure a wide range of fusion cross sec-
tions from above the barrier down to very small values ~42nb. We note
that, for the first time, the integration of two complementary setups has
been applied to fusion studies far below the barrier.

Particle identification was performed by pulse shape discrimination
in the DSSD [42]. The direct population of states in the exit channels
could be observed in the energy spectrum of the evaporated particles
(a’s and protons), by selecting an emission # angle. Several groups of
particles are observed with good energy resolution.

CC calculations using a WS potential are able to reproduce the cross
sections down to about E_,~10.1 MeV, corresponding to ¢ ~15 ub,
where the hindrance phenomenon shows up. This is also clearly indi-
cated by the trend of the logarithmic derivative of the excitation func-
tion. The behaviour of nearby systems, as far as that slope is concerned,
is quite similar.

This similarity also shows up for the trend of the excitation functions
at very low energies, that is, the cross sections are consistent with the
simple tunnelling of a one-dimensional potential barrier. This behaviour
is beyond doubt for the present case '>C + 23Si. Whether, at still smaller
energies, the cross sections follow the no-coupling limit or turn out to be
even lower should be clarified by further experimental investigations.

Significant consequences may follow for the lighter systems relevant
for astrophysics. Indeed, the hindrance effect in those cases would re-
duce the reaction rate of carbon and oxygen burning in the astrophysical
environments.
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