
Vol.:(0123456789)

Artificial Intelligence Review (2024) 57:250
https://doi.org/10.1007/s10462-024-10862-8

A brief review of hypernetworks in deep learning

Vinod Kumar Chauhan1 · Jiandong Zhou1,2 · Ping Lu1 · Soheila Molaei1 ·
David A. Clifton1,3

Accepted: 13 July 2024 / Published online: 13 August 2024
© The Author(s) 2024

Abstract
Hypernetworks, or hypernets for short, are neural networks that generate weights for
another neural network, known as the target network. They have emerged as a powerful
deep learning technique that allows for greater flexibility, adaptability, dynamism, faster
training, information sharing, and model compression. Hypernets have shown promising
results in a variety of deep learning problems, including continual learning, causal
inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning,
natural language processing, and reinforcement learning. Despite their success across
different problem settings, there is currently no comprehensive review available to inform
researchers about the latest developments and to assist in utilizing hypernets. To fill this
gap, we review the progress in hypernets. We present an illustrative example of training
deep neural networks using hypernets and propose categorizing hypernets based on five
design criteria: inputs, outputs, variability of inputs and outputs, and the architecture
of hypernets. We also review applications of hypernets across different deep learning
problem settings, followed by a discussion of general scenarios where hypernets can be
effectively employed. Finally, we discuss the challenges and future directions that remain
underexplored in the field of hypernets. We believe that hypernetworks have the potential
to revolutionize the field of deep learning. They offer a new way to design and train neural
networks, and they have the potential to improve the performance of deep learning models
on a variety of tasks. Through this review, we aim to inspire further advancements in deep
learning through hypernetworks.

Keywords  Hypernetworks · Deep learning · Neural networks · Parameter generation ·
Weight generation

 *	 Vinod Kumar Chauhan
	 vinod.kumar@eng.ox.ac.uk

1	 Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
2	 School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
3	 Oxford-Suzhou Institute of Advanced Research (OSCAR), Suzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-10862-8&domain=pdf

	 V. K. Chauhan et al.250  Page 2 of 29

1  Introduction

Deep learning has revolutionized the field of artificial intelligence by enabling remarkable
advancements in various domains, including computer vision (Chauhan et al. 2024a),
natural language processing (NLP) (Devlin et al. 2019), causal inference (Chauhan et al.
2023a), and reinforcement learning (Li 2017). Standard deep neural networks (DNNs)
have proven to be powerful tools for learning complex representations from data. However,
despite their success, standard DNNs remain restrictive in certain conditions. For example,
once a DNN is trained, its weights as well as its architecture are fixed (Rohanian et al.
2023; Vaswani et al. 2017), and any changes to weights or architecture require re-training
the DNN. This lack of adaptability and dynamism restricts the flexibility of DNNs, making
them less suitable for scenarios where dynamic adjustments or data adaptivity are required
(Ha et al. 2017; Brock et al. 2018). DNNs generally have a large number of weights and
need substantial amounts of data to optimize those weights (Alzubaidi et al. 2021). This
can be challenging in situations where large amounts of data are not available. For example,
in healthcare, collecting sufficient data for rare diseases can be particularly difficult due to
the limited number of patients available per year (Wiens et al. 2014). Finally, uncertainty
quantification in DNNs’ predictions is essential as it provides a measure of confidence,
enabling better decision-making in high-stakes applications (Chauhan et al. 2024b).
Existing uncertainty quantification techniques have limitations, such as the need to train
multiple models (Abdar et al. 2021), and uncertainty quantification is still considered an
open problem (Kristiadi et al. 2019). Similarly, domain adaptation, domain generalization,
adversarial defence, neural style transfer, and neural architecture search are important
problems that remain unsolved, where hypernets can provide effective solutions as
discussed in Sect. 4.

Hypernetworks (or hypernets in short) have emerged as a promising architectural
paradigm to enhance the flexibility (through data adaptivity and dynamic architectures) and
performance of DNNs. Hypernets are a class of neural networks that generate the weights/
parameters of another neural network called the target/main/primary network, where both
networks are trained in an end-to-end differentiable manner (Ha et al. 2017). Hypernets
complement existing DNNs and provide a new framework to train DNNs, resulting in
a new class of DNNs called HyperDNNs (please refer to Sect. 2 for details). The key
characteristics and advantages of hypernets that offer applications across different problem
settings are discussed below.

(a)	 Soft weight sharing: Hypernetworks can be trained to generate the weights of multiple
DNNs for solving related tasks (Chauhan et al. 2024c; Oswald et al. 2020). This is
called soft weight sharing because, unlike hard weight sharing which involves shared
layers among tasks (e.g., in multitasking), different DNNs are generated by a common
hypernet through task conditioning. This helps share information among tasks and can
be used for transfer learning or dynamic information sharing (Chauhan et al. 2024c).

(b)	 Dynamic architectures: Hypernetworks can be used to generate the weights of a
network with a dynamic architecture, where the number of layers or the structure of
the network changes during training or inference. This can be particularly useful for
tasks where the target network structure is not known at training time (Ha et al. 2017).

(c)	 Data-adaptive DNNs: Unlike standard DNNs whose weights are fixed at inference time,
HyperDNNs can generate a target network customized to the needs of the data. In such
cases, hypernets are conditioned on the input data to adapt to the data (Sun et al. 2017).

A brief review of hypernetworks in deep learning﻿	 Page 3 of 29  250

(d)	 Uncertainty quantification: Hypernets can effectively train uncertainty-aware DNNs
by leveraging techniques like sampling multiple inputs from the noise distribution
(Krueger et al. 2018) or incorporating dropout within the hypernets themselves
(Chauhan et al. 2023b). By generating multiple sets of weights for the main network,
hypernets create an ensemble of models, each with different parameter configurations.
This ensemble-based approach aids in estimating uncertainty in the model predictions,
a crucial aspect for safety-critical applications like healthcare, where having a measure
of confidence in predictions is essential.

(e)	 Parameter efficiency: HyperDNNs, i.e., DNNs trained with hypernets, can have fewer
weights than the corresponding standard DNNs, resulting in weight compression (Zhao
et al. 2020). This can be particularly useful when working with limited resources,
limited data, or high-dimensional data and can result in faster training than the
corresponding DNN (Navon et al. 2021).

 Ha et al. (2017) coined the term hypernets (also referred to as meta-networks or meta-
models) and trained the target network and hypernet in an end-to-end differentiable way.
However, the concept of learnable context-dependent weights was discussed even earlier,
such as fast weights in Schmidhuber (1992, 1993) and HyperNEAT (Stanley et al. 2009).
Our discussion on hypernets focuses on neural networks generating weights for the target
neural network due to their popularity, expressiveness, and flexibility (Vaswani et al. 2017;
Chauhan et al. 2024a). Recently, hypernets have gained significant attention and have
produced state-of-the-art (SOTA) results across several deep learning problems, including
ensemble learning (Kristiadi et al. 2019), multitasking (Tay et al. 2021), neural architecture
search (Zhang et al. 2019), continual learning (Oswald et al. 2020), weight pruning (Liu
et al. 2019), Bayesian neural networks (Deutsch et al. 2019), generative models (Deutsch
et al. 2019), hyperparameter optimization (Lorraine and Duvenaud 2018), information
sharing (Chauhan et al. 2024c), adversarial defence (Sun et al. 2017), and reinforcement
learning (RL) (Rezaei-Shoshtari et al. 2023) (please refer to Sect. 4 for more details).

Despite the success of hypernets across different problem settings, to the best of our
knowledge, there is no review of hypernets to guide researchers about the developments
and to help in utilizing hypernets. To fill this gap, we provide a brief review of hypernets
in deep learning. We illustrate hypernets using an example and differentiate HyperDNNs
from DNNs (Sect. 2). To facilitate better understanding and organization, we propose a
systematic categorization of hypernets based on five distinct design criteria, resulting in
different classifications that consider factors such as (i) input characteristics, (ii) output
characteristics, (iii) variability of inputs, (iv) variability of outputs, and (v) the architecture
of hypernets (Sect. 3). Furthermore, we offer a comprehensive overview of the diverse
applications of hypernets in deep learning, spanning various problem settings (Sect. 4).
By examining real-world applications, we aim to demonstrate the practical advantages and
potential impact of hypernetworks. Additionally, we discuss some scenarios and pose direct
questions to understand if we can apply hypernets to a given problem (Sect. 5). Finally, we
discuss the challenges and future directions of hypernet research (Sect. 6). This includes
addressing initialization, stability, and complexity concerns, as well as exploring avenues
for enhancing the theoretical understanding and uncertainty quantification of DNNs. By
providing a comprehensive review of hypernetworks, this paper aims to serve as a valuable
resource for researchers and practitioners in the field. Through this review, we hope to
inspire further advancements in deep learning by leveraging the potential of hypernets to
develop more flexible, high-performing models.

	 V. K. Chauhan et al.250  Page 4 of 29

Contributions: This review paper makes the following key contributions:

•	 To the best of our knowledge, we present the first review on hypernetworks in deep
learning, which have shown impressive results across several deep learning problems.

•	 We propose categorizing hypernets based on five design criteria, leading to different
classifications of hypernets, such as based on inputs, outputs, variability of inputs and
outputs, and architecture of hypernets.

•	 We present a comprehensive overview of applications of hypernetworks across
different problem settings, such as uncertainty quantification, continual learning, causal
inference, transfer learning, and federated learning, and summarize our review, as per
our categorization, in a table (Table 2).

•	 We explore broad scenarios for hypernet applications, drawing from existing use cases
and hypernet characteristics. This exploration aims to equip researchers with actionable
insights into when to leverage hypernets in their problem setting.

•	 Finally, we identify the challenges and future directions of hypernetwork research,
including initialization, stability, scalability, and efficiency concerns, and the need for
theoretical understanding and interpretability of hypernetworks. By highlighting these
areas, we aim to inspire further advancements in hypernetworks and provide guidance
for researchers interested in addressing these challenges.

The rest of the paper is organized as follows: Sect. 2 provides a comprehensive background
on hypernets, while Sect. 3 introduces a novel categorization scheme for hypernets. The
diverse applications of hypernets across various problems are discussed in Sect. 4, followed
by an exploration of specific scenarios where hypernets can be effectively employed in
Sect. 5. Addressing challenges and delineating future research directions is the focus of
Sect. 6, and finally, the concluding remarks are discussed in Sect. 7.

2 � Background

In this section, we discuss and differentiate the workings of standard deep neural networks
(DNNs) and DNNs trained with hypernetworks, referred to as HyperDNNs, using a generic
example. Figure 1 illustrates the structural differences and gradient flows in DNNs and
HyperDNNs. Both solve the same problem using the same DNN architecture at inference
time. However, differences exist in their training processes, specifically in gradient flow
and weight optimization, making hypernets an alternative way of training DNNs.

Let us denote a dataset using X, Y to solve a general task T  , where X is a matrix of
features and Y is a vector of labels, and x ∈ X denotes one data point and y ∈ Y is the
corresponding label. Let a DNN be denoted as a function F(X;Θ) , where X denotes the
inputs and Θ represents the weights of the DNN. During the forward pass, inputs x ∈ X
pass through the layers of F to produce predictions ŷ ∈ Ŷ  , which are then used along with
true labels y ∈ Y to calculate an objective function that measures the discrepancy between
actual values and the values predicted by the model using a loss function L(Y , Ŷ) . During
the backward pass, DNNs typically use backpropagation to propagate the error backwards
through the layers and calculate gradients of L with respect to Θ . Optimization algorithms,
such as Adam (Kingma and Ba 2014), use these gradients to update the weights. At the end
of the training, we receive optimized weights Θ that are used at inference time in the DNN

A brief review of hypernetworks in deep learning﻿	 Page 5 of 29  250

F(X;Θ) to make predictions with the test data for solving task T  . Thus, in standard DNNs,
Θ are the learnable weights.

Hypernets provide an alternative way of learning weights Θ of the DNN F(X;Θ) to
solve task T  , where Θ are not directly learned but are generated by another neural network.
In this framework, we solve the same task using the same DNN architecture but with a
different training approach. Let a hypernet be denoted as H(C;Φ) which generates the task-
specific weights of the DNN F(X;Θ) , where C is a task-specific context vector that acts as
input to H and Φ are weights of the hypernet H . That is, Θ = H(C;Φ) where Φ are the only
learnable weights in the overall architecture. The context vector C can be generated from
the data (Alaluf et al. 2022), sampled from a noise distribution (Krueger et al. 2018), or
correspond to task identity/embedding (Armstrong and Clifton 2021). During the forward
pass, a task-specific context vector C is passed to the hypernet H which generates weights
Θ for the DNN F  . Then, like a standard DNN, an input x ∈ X is passed through the DNN
F to predict the output Y, and the loss is calculated as L(Y , Ŷ) . However, during the
backward pass, the error is backpropagated through the hypernet H and gradients of L are
calculated with respect to the weights of the hypernet Φ . The learning algorithm optimizes
Φ to generate Θ so that performance on the target task T is optimized. At test time, Θ
generated from the optimized hypernet H are used in the DNN F(X;Θ) to make predictions
with the test data for solving task T  . The optimization problems for the standard DNN and
the HyperDNN can be written as follows (ignoring regularization terms for simplicity):

Thus, DNNs learn their weights1 directly from the data, while in HyperDNNs the weights
of the hypernet are learned, and the weights of the DNN are generated by the hypernet.
For a specific example of a comparison of DNN and HyperDNN architectures and their
workings, please refer to our work in causal inference (Chauhan et al. 2024c).

(1)DNN: min
Θ

F(X;Θ), HyperDNN: min
Φ

F(X;Θ) = F(X;H(C;Φ)).

Fig. 1   An overview of the architectures and gradient flows for a standard DNN F(X;Θ) and the same DNN
implemented with hypernets, referred to as HyperDNN F(X;Θ) = F(X;H(C;Φ)) . For the DNN, gradients
flow through the DNN, and DNN weights Θ are learned during training. For the HyperDNN, gradients flow
through the hypernet, and hypernet weights Φ are learned during training to produce DNN weights Θ as
outputs

1  We have used weights and parameters interchangeably.

	 V. K. Chauhan et al.250  Page 6 of 29

As discussed in Sect. 1, training a DNN with a hypernet, i.e., HyperDNN presents
several advantages over directly training a DNN. However, these advantages are
application-specific and cannot be generalized across all tasks or applications. For
instance, a key feature of hypernets is soft-weight sharing, which enables information
sharing among related components. This information sharing is particularly valuable
in settings with limited data, leading to performance improvements for HyperDNNs in
such scenarios. In general, HyperDNNs are beneficial for applications with limited data,
problems requiring data-adaptive networks, dynamic network architectures, parameter
efficiency, and uncertainty quantification. A detailed discussion of scenarios where
HyperDNNs can be useful is provided in Sect. 5.

In general, if a task can be solved using standard DNNs, it is advisable to use them
instead of hypernets. As depicted in Fig. 1, HyperDNNs require an additional DNN to
solve the same task. Despite the advantages offered by hypernets, this additional DNN
introduces complexities in training and implementing HyperDNNs. For example, the
initialization of HyperDNNs is more challenging than DNNs because the weights of the
target network are generated at the output layer of the hypernet. Classical initialization
techniques do not guarantee that the weights of the target network are initialized within
the same range. However, adaptive optimizers, such as Adam (Kingma and Ba 2014),
can mitigate this issue to some extent. Another significant challenge with HyperDNNs is
their scalability. Since the weights of the target network are generated at the output layer
of the hypernet, this approach can present difficulties when dealing with large target
networks. Scalability issues can be managed using various weight generation strategies.
Therefore, when using HyperDNNs, practitioners should consider employing adaptive
optimizers, implementing different weight generation strategies, and using approaches
to stabilize training, such as spectral norms. For a detailed discussion on the challenges
associated with HyperDNNs, please refer to Sect. 6.

3 � Categorization of hypernetworks

In this section, we propose to categorize the hypernetworks based on five design criteria,
as depicted in Fig. 2 and as given below:

Fig. 2   Proposed categorization of hypernets based on five design criteria

A brief review of hypernetworks in deep learning﻿	 Page 7 of 29  250

(a)	 Input-based, i.e., what kind of input is taken by the hypernetworks to generate the target
neural network weights?

(b)	 Output-based, i.e., how are the outputs, that is, the target weights generated?
(c)	 Variability of inputs, i.e., are the inputs of hypernet fixed?
(d)	 Variability of outputs, i.e., does the target network have a fixed number of weights?

and
(e)	 Architecture-based, i.e., what kind of architecture does hypernet use to generate the

target weights?

We discuss these in the following subsections. One can categorize hypernets based on
the architecture of the target network but that is not considered because hypernets mostly
generate target weights independent of their architecture.

3.1 � Input‑based hypernetworks

Hypernetworks take a context vector as an input and generate weights of the target DNN
as output. Depending on what context vector is used, we can have the following types of
hypernetworks.

Task-conditioned hypernetworks These hypernetworks take task-specific
information as input. The task information can be in the form of task identity/embedding,
hyperparameters, architectures, or any other task-specific cues. The hypernetwork
generates weights that are tailored to the specific task. This allows the hypernet to adapt
its behavior accordingly and allows information sharing, through soft weight sharing of
hypernets, among the tasks, resulting in better performance on the tasks. For example,
Chauhan et al. (2024c) applied hypernets to solve treatment effects estimation problem in
causal inference that uses an identity or embedding of potential outcome (PO) functions to
generate weights corresponding to the PO function. The hypernetworks enabled dynamic
end-to-end inter-treatment information sharing among treatment groups and helped to
calculate reliable treatment estimates in observational studies with limited-size datasets.
Similarly, task-conditioned hypernets have been used to solve other problems, including
multitasking (Navon et al. 2021), NLP (Ha et al. 2017), and continual learning (Oswald
et al. 2020).

Data-conditioned hypernetworks These hypernetworks are conditioned on the data
that the target network is being trained on. The hypernetwork generates weights based on
the characteristics of the input data. This enables the neural network to dynamically adjust
its behavior based on the specific input pattern or features, leading to more flexible and
adaptive models, and resulting in better generalization to unseen data. For example, Alaluf
et al. (2022) applied hypernets for image editing where the input of hypernet is based on
the input images and initial approximation of reconstruction to generate modulations to the
weights of the pre-trained generator. Similarly, data-conditioned hypernets have been used
to solve other problems, such as adversarial defence (Sun et al. 2017), knowledge graphs
learning (Balažević et al. 2019) and shape learning (Littwin and Wolf 2019).

Noise-conditioned hypernetworks These hypernetworks are not conditioned on
any input data or task cues, but rather on randomly sampled noise. This makes them
more general-purpose and helps in predictive uncertainty quantification for DNNs, but
it also means that they may not perform as well as task-conditioned or data-conditioned
hypernetworks on multiple tasks or datasets. For example, Krueger et al. (2018) applied
hypernetworks to approximate Bayesian inference in the DNNs and evaluated the approach

	 V. K. Chauhan et al.250  Page 8 of 29

for active learning, model uncertainty, regularization, and anomaly detection. Similarly,
noise-conditioned hypernets have been used to solve other problems, such as manifold
learning (Deutsch et al. 2019) and uncertainty quantification (Ratzlaff and Fuxin 2019).

These different types of conditioning enable hypernetworks to enhance the flexibility
(through adaptability and dynamic architectures), and performance of deep learning
models in various contexts. The specific type of hypernetwork that is used will depend on
the specific task or application. For example, task-conditioned hypernets are suitable for
information sharing among multiple tasks, data-conditioned hypernets are suitable to deal
with conditions where DNN need to adapt to input data, and noise-conditioned hypernets
are suitable for uncertainty quantification in the predictions.

3.2 � Output‑based hypernetworks

Based on the outputs of hypernets, i.e., weight generation strategy, we classify
hypernetworks according to whether all weights are generated together or not. This
classification of hypernetworks is important because it controls the scalability and
complexity of the hypernetworks, as typically DNNs have a large number of weights, and
producing all of them together can make the size of the last layer of hypernets large. So,
there are ways to manage the complexity of the hypernets that lead to different strategies
of weight generation, as discussed below. It is possible to train HyperDNN with fewer
weights than the target DNN—this is called weight compression (Zhao et al. 2020). We
compared and summarized the characteristics of various weight generation strategies in
Table 1. The first column represents the considered characteristic for comparison, while
the following three columns correspond to three different weight generation strategies. The
values in each row indicate whether a particular weight generation strategy provides the
specified feature or not.

Generate Once These hypernetworks generate weights of the entire target DNN
altogether. This approach uses all the generated weights, and weights of each layer are
generated together, unlike the other weight generation strategies. However, this weight
generation approach is not suitable for large target networks because that can lead to
complex hypernets. For example, Shamsian et al. (2021), Galanti and Wolf (2020), Zhang
et al. (2019) used generate once weight generation.

Generate Multiple These hypernetworks have multiple heads for producing weights
(sometimes referred to as split/multi-head hypernets) and this weight generation approach
can complement the other approaches. This simplifies the complexity and reduces the
number of weights required in the last layer of the hypernets by the number of head times.
This approach does not need additional embeddings, and in general, uses all the generated
weights, unlike component-wise and chunk-wise weight generation approaches where
some weights remain unused. For example, Beck et al. (2023), Rezaei-Shoshtari et al.
(2023), Chauhan et al. (2024c) used generate multiple strategy to produce target weights.

Generate Chunk-wise Chunk-wise hypernetworks generate weights of the target net-
work in chunks. This can lead to not using some of the generated weights because the
weights are generated as per the chunk size, which may not match the layer sizes. If the
chunk size is smaller than the layer size, then all the weights of a layer may not be gener-
ated together. Moreover, these hypernets need additional embeddings to distinguish dif-
ferent chunks and to produce specific weights for the chunks. However, overall chunk-
wise weight generation leads to reducing complexity and improving the scalability of

A brief review of hypernetworks in deep learning﻿	 Page 9 of 29  250

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f d
iff

er
en

t w
ei

gh
t g

en
er

at
io

n
str

at
eg

ie
s,

i.e
.,

ou
tp

ut
-b

as
ed

 h
yp

er
ne

tw
or

ks

W
ei

gh
t-g

en
er

at
io

n →
 /C

ha
ra

ct
er

is
-

tic
s↓

G

en
er

at
e

on
ce

G
en

er
at

e
co

m
po

ne
nt

-w
is

e
G

en
er

at
e

ch
un

k-
w

is
e

G
en

er
at

e
m

ul
tip

le

W
ei

gh
t g

en
er

at
io

n
G

en
er

at
es

 a
ll

ta
rg

et
 w

ei
gh

ts

to
ge

th
er

G
en

er
at

es
 ta

rg
et

 w
ei

gh
ts

 fo
r o

ne

co
m

po
ne

nt
 a

t a
 ti

m
e

G
en

er
at

es
 ta

rg
et

 w
ei

gh
ts

 in
 c

hu
nk

s
C

om
pl

em
en

ts
 a

ll
ot

he
r w

ei
gh

t
ge

ne
ra

tio
n

str
at

eg
ie

s s
o

ca
n

ge
ne

ra
te

w

ei
gh

ts
 li

ke
 a

ny
 o

f t
he

 o
th

er
Effi

ci
en

t u
se

 o
f g

en
er

at
ed

 w
ei

gh
ts

Ye
s

N
o

as
 so

m
e

w
ei

gh
ts

 c
an

 st
ay

 u
nu

se
d

Ye
s

D
ep

en
ds

 o
n

th
e

ba
se

 st
ra

te
gy

A
re

 a
ll

w
ei

gh
ts

 o
f a

 la
ye

r g
en

er
at

ed

to
ge

th
er

Ye
s

Ye
s

N
o

D
ep

en
ds

 o
n

th
e

ba
se

 st
ra

te
gy

Th
e

co
m

pl
ex

ity
 o

f o
ut

pu
t s

pa
ce

H
ig

he
st

Lo
w

er
 th

an
 g

en
er

at
e

on
ce

Lo
w

es
t

C
an

 fu
rth

er
 im

pr
ov

e
C

hu
nk

-w
is

e
ge

ne
ra

tio
n

Th
e

co
m

pl
ex

ity
 o

f i
np

ut
 sp

ac
e

Lo
w

es
t

M
or

e
co

m
pl

ex
 th

an
 ‘g

en
er

at
e

on
ce

’ b
ut

 lo
w

er
 th

an
 c

hu
nk

-w
is

e
ge

ne
ra

tio
n

if
th

e
nu

m
be

r o
f t

ar
ge

t
la

ye
rs

 is
 fe

w
er

 th
an

 th
e

nu
m

be
r o

f
ch

un
ks

H
ig

he
st

(a
ss

um
in

g
th

e
nu

m
be

r o
f

ch
un

ks
 is

 m
or

e
th

an
 th

e
nu

m
be

r o
f

ta
rg

et
 la

ye
rs

)

D
oe

s n
ot

 h
av

e
an

y
eff

ec
t o

n
in

pu
t

sp
ac

e
co

m
pl

ex
ity

	 V. K. Chauhan et al.250  Page 10 of 29

hypernets. For example, Chauhan et al. (2024c), Oswald et al. (2020) used chunk-wise
weight generation.

Generate Component-wise Component-wise weights generation strategy generates
weights for each individual component (such as layer or channel) of the target model
separately. This is helpful in generating specific weights because different layers or
channels represent different features or patterns in the network. However, similar to
the chunk-wise approach, component-wise hypernets need an embedding for each
component to distinguish among different components and produce weights specific to
that component. They also help to reduce the complexity and improve the scalability
of hypernets. Since the weights are generated as per the size of the largest layer so
this weight generation approach can lead to not using some of weights in smaller
layers. This strategy can be seen as a special case of a chunk-wise weight generation
approach, where one chunk is equal to the size of one component. For example, Zhao
et al. (2020), Alaluf et al. (2022), Mahabadi et al. (2021) used component-wise weight
generation.

By classifying hypernetworks based on their weight generation strategy, we can
make informed choices that may help control the scalability and complexity of the
hypernetworks effectively. Each type of weight generation strategy offers unique
benefits and considerations based on the specific characteristics and requirements
of the task at hand. The comparative study of characteristics of different weight
generation approaches is summarized in Table 1.

3.3 � Variability of inputs

We can categorize hypernets based on the variability of the inputs. We have two
classes, static inputs and dynamic inputs, as discussed below.

Static Inputs If the inputs are predefined and are fixed then the hypernet is called
static with respect to the inputs. For example, multitasking (Mahabadi et al. 2021) has
fixed number of tasks leading to fixed number of inputs. It is to be noted that here fixed
input only means fixed tasks identities, however hypernets can learn embeddings for
different tasks.

Dynamic Inputs If the inputs change and generally are dependent on data on which
the target network is trained, then the hypernet is called dynamic with respect to the
inputs. Dynamic inputs help hypernetworks to introduce a new level of adaptability by
dynamically generating the weights of the target network. This dynamic weight generation
enables hypernetworks to respond to input-dependent context and adjust their behavior
accordingly. By generating network weights based on specific inputs, hypernetworks can
capture intricate patterns and dependencies that may vary across different instances of
data. This adaptability leads to enhanced model performance, especially in scenarios with
complex and evolving data distributions (Volk et al. 2022). Thus, dynamic input-based
hypernets help in domain adaptation (Volk et al. 2022), density estimation (Höfer et al.
2023) and knowledge graph learning (Balažević et al. 2019) etc.

This can be seen as a super categorization over input-based hypernets where task-
conditioned hypernets fall in the static inputs category while random-noise and data-
conditioned hypernets fall in the dynamic category. Both the categories have their own
advantages as static inputs help in information sharing (Chauhan et al. 2024c), transfer
learning (Oswald et al. 2020), and are suitable where we have multiple tasks to solve

A brief review of hypernetworks in deep learning﻿	 Page 11 of 29  250

(Shamsian et al. 2021). On the other hand, dynamic inputs give hypernets adaptability
to new conditions unknown during training (Balažević et al. 2019).

3.4 � Variability of outputs

When classifying hypernetworks based on the nature of the target network’s weights,
we can categorize them into two types, static outputs or dynamic outputs, as discussed
below.

Static Outputs If weights of the target network are fixed in size, then the hypernet is
called static with respect to the outputs. In this case, the target network is also static. For
example, Pan et al. (2018), Szatkowski et al. (2022) produce static weights.

Dynamic Outputs If weights of the target network are not fixed, i.e., the architecture
varies in size, then the hypernet is called dynamic with respect to the outputs, and the
target network is also a dynamic network as it can have different architecture depending on
the input of the hypernet. The dynamic weights can be generated, mainly, in two situations,
first when the hypernet architecture is dynamic, e.g., Ha et al. (2017) used recurrent neural
network (RNN) to propose HyperRNN based on non-shared weights. Second, the dynamic
weights can be generated when the inputs are dynamic, i.e., hypernet adapts as per the
input data, e.g., Littwin and Wolf (2019) applied convolutional neural network (CNN)
based hypernet to generate dynamic weights for shape learning from an image of a shape.
Similarly, Peng et al. (2020), Li et al. (2020) also produce dynamic weights.

3.5 � Dynamism in hypernetworks

This is a super categorization of Subsection 3.3 and 3.4 into broader category based on the
dynamism in inputs or outputs of the hypernets, as discussed below.

Static Hypernets If input of a hypernet is fixed, i.e., predefined and number of weights
produced by hypernet for the target network are fixed, i.e., the architecture is fixed, then
the hypernet is called as a static hypernet. This kind of hypernets work with predefined
inputs, e.g., task identities, which can be learned as embeddings, but the tasks being solved
remain same. For example, heterogeneous treatment effect estimation (Chauhan et al.
2024c) where number of treatment groups or potential outcome functions are fixed, and
architecture of the target network (in this case potential outcome functions) is also fixed.

Dynamic Hypernets If input of a hypernet is based on input of target network, i.e.,
input data, or number of weights produced by hypernet for the target network are variable,
i.e., the architecture is dynamic, then the hypernet is called as a dynamic hypernet. For
example, Sendera et al. (2023a) applied data-conditioned hypernet to few-shot learning by
combining kernels and hypernets. The kernels were used to extract support information
from data of different tasks that act as input to the hypernet which generates weights for the
target task. Zhang et al. (2019) applied hypernetworks for neural architecture search where
they modeled neural architectures of a DNN as graph and used them as input to hypernet to
generate the target network weights. So, the target network has variable architecture, and is
a dynamic hypernet based on the dynamic outputs.

	 V. K. Chauhan et al.250  Page 12 of 29

3.6 � Architecture of hypernetworks

In the categorization of hypernetworks based on their architectures, we can classify them
into four major types: multi-layer perceptrons (MLPs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and attention-based networks, as given below.

MLPs MLP based hypernetworks employ a dense and fully connected architecture,
allowing every input neuron to connect with every output neuron. This architecture enables
a comprehensive weight generation process by considering the entire input information,
e.g., (Chauhan et al. 2024c).

CNNs CNN hypernetworks, on the other hand, leverage convolutional layers to capture
local patterns and spatial information. These hypernetworks excel in tasks involving
spatial data, such as an image or video analysis, by extracting features from the input and
generating weights or parameters accordingly, e.g., Nirkin et al. (2021) employed MLP to
implement hypernets.

RNNs RNN hypernetworks incorporate recurrent connections in their architecture,
facilitating feedback loops and sequential information processing. They dynamically
generate weights or parameters based on previous states or inputs, making them well-
suited for tasks involving sequential data, such as natural language processing or time
series analysis, e.g., Ha et al. (2017) employed RNN to implement hypernets.

Attention Attention-based hypernetworks incorporate attention mechanisms (Vaswani
et al. 2017) into their architecture. By selectively focusing on relevant input features, these
hypernetworks generate weights for the target network, allowing them to capture long-
range dependencies and improve the quality of generated outputs, e.g., Volk et al. (2022)
employed attention to implement hypernets.

Each type of architecture has its own strengths and applicability, enabling hypernetworks
to adapt and generate weights in a manner that aligns with the specific characteristics and
demands of the target network and the data being processed.

4 � Applications of hypernetworks

Hypernetworks have demonstrated their effectiveness and versatility across a wide range
of domains and tasks in deep learning. In this section, we discuss some of the important
applications2 of hypernetworks and highlight their contributions to advancing the
SOTA in these areas. We summarize the applications of hypernets as per our proposed
categorization and also provide links to code repositories for the benefit of the researchers,
wherever available, in Table 2.

Continual learning Continual learning, also known as lifelong learning or incremental
learning, is a machine learning paradigm that focuses on the ability of a model to learn
and adapt continuously over time, in a sequential manner, without forgetting previously
learned knowledge. Unlike traditional batch learning, which assumes static and independ-
ent training and testing sets, continual learning deals with dynamic and non-stationary
data distributions, where new data arrives incrementally, and the model needs to adapt to
these changes while retaining previously acquired knowledge. The challenge in continual

2  We have explored 50 important papers (arranged by publication year) while considering at least one
application in each distinct problem setting. This is not an exhaustive list and it is possible that we may have
missed important references.

A brief review of hypernetworks in deep learning﻿	 Page 13 of 29  250

Ta
bl

e 
2  

Im
po

rta
nt

 a
pp

lic
at

io
ns

 o
f h

yp
er

ne
tw

or
ks

, a
rr

an
ge

d
by

 a
sc

en
di

ng
 p

ub
lic

at
io

n
ye

ar
, a

nd
 th

ei
r c

at
eg

or
iz

at
io

n
ba

se
d

on
 In

pu
t:

(i)
 ta

sk
-c

on
di

tio
ne

d,
 (i

i)
no

is
e-

co
nd

iti
on

ed
,

an
d

(ii
i)

da
ta

-c
on

di
tio

ne
d;

 o
ut

pu
t,

i.e
.,

w
ei

gh
t g

en
er

at
io

n:
 (i

) g
en

er
at

e
on

ce
, (

ii)
 g

en
er

at
e

co
m

po
ne

nt
-w

is
e,

 (i
ii)

 g
en

er
at

e
ch

un
k-

w
is

e,
 a

nd
 (i

v)
 g

en
er

at
e

m
ul

tip
le

; I
np

ut
 v

ar
ia

bi
l-

ity
: (

i)
st

at
ic

 in
pu

ts
, a

nd
 (i

i)
dy

na
m

ic
 in

pu
ts

; O
ut

pu
t v

ar
ia

bi
lit

y:
 (i

) s
ta

tic
 w

ei
gh

ts
, a

nd
 (i

i)
dy

na
m

ic
 w

ei
gh

ts
; a

nd
 a

rc
hi

te
ct

ur
e

of
 h

yp
er

ne
ts

 (S
N

 S
er

ia
l N

um
be

r,
Re

f.
Re

fe
re

nc
e,

D

L
D

ee
p

Le
ar

ni
ng

, R
L

Re
in

fo
rc

em
en

t l
ea

rn
in

g)

SN
Re

fe
re

nc
es

D
L

pr
ob

le
m

In
pu

t
O

ut
pu

t
In

pu
t v

ar
.

O
ut

 v
ar

.
A

rc
hi

te
ct

ur
e

C
od

e

(i)
(ii

)
(ii

i)
(i)

(ii
)

(ii
i)

(iv
)

(i)
(ii

)
(i)

(ii
)

1
H

a
et

 a
l.

(2
01

7)
Im

ag
e

cl
as

si
fic

at
io

n,

N
LP

✓

✓

✓

✓

✓

R
N

N
, M

LP

2
K

ru
eg

er
 e

t a
l.

(2
01

8)
U

nc
er

ta
in

ty

qu
an

tifi
ca

tio
n

✓

✓

✓

✓

M
LP

3
Su

n
et

 a
l.

(2
01

7)
A

dv
er

sa
ria

l d
ef

en
ce

✓

✓

✓

✓

M
LP

4
Lo

rr
ai

ne
 a

nd
 D

uv
en

au
d

(2
01

8)
H

yp
er

pa
ra

m
et

er

op
tim

iz
at

io
n

✓

✓

✓

✓

M
LP

5
B

ro
ck

 e
t a

l.
(2

01
8)

N
eu

ra
l a

rc
hi

te
ct

ur
e

se
ar

ch
✓

✓

✓

✓

C

N
N

ht
tp

s:
//​g

ith
ub

.​c
om

/​a
jb

ro
​

ck
/​S

M
A

SH
6

Pa
n

et
 a

l.
(2

01
8)

Sp
at

io
-te

m
po

ra
l

le
ar

ni
ng

✓

✓

✓

✓

M
LP

, R
N

N
, C

N
N

7
Zh

an
g

et
 a

l.
(2

01
9)

N
eu

ra
l a

rc
hi

te
ct

ur
e

se
ar

ch
✓

✓

✓

✓

M

LP

8
D

eu
ts

ch
 e

t a
l.

(2
01

9)
M

an
ifo

ld
 le

ar
ni

ng
✓

✓

✓

✓

C

N
N

9
R

at
zl

aff
 a

nd
 F

ux
in

(2

01
9)

U
nc

er
ta

in
ty

qu

an
tifi

ca
tio

n
✓

✓

✓

✓

✓

G

A
N

10
Li

u
et

 a
l.

(2
01

9)
W

ei
gh

t p
ru

ni
ng

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​li
uz

e​
ch

un
/​M

et
aP

​ru
ni

ng
11

B
al

až
ev

ić
 e

t a
l.

(2
01

9)
K

no
w

le
dg

e
gr

ap
hs

le

ar
ni

ng
✓

✓

✓

✓

M

LP
ht

tp
s:

//​g
ith

ub
.​c

om
/​ib

al
a​

ze
vi

c/
​H

yp
ER

12
Li

ttw
in

 a
nd

 W
ol

f (
20

19
)

Sh
ap

e
le

ar
ni

ng
✓

✓

✓

✓

C

N
N

ht
tp

s:
//​g

ith
ub

.​c
om

/​g
id

il​
itt

w
in

/​D
ee

p-
​M

et
a

13
K

ris
tia

di
 e

t a
l.

(2
01

9)
U

nc
er

ta
in

ty

qu
an

tifi
ca

tio
n

✓

✓

✓

✓

M
LP

14
K

lo
ce

k
et

 a
l.

(2
01

9)
Im

ag
e

pr
oc

es
si

ng
✓

✓

✓

✓

C

N
N

https://github.com/ajbrock/SMASH
https://github.com/ajbrock/SMASH
https://github.com/liuzechun/MetaPruning
https://github.com/liuzechun/MetaPruning
https://github.com/ibalazevic/HypER
https://github.com/ibalazevic/HypER
https://github.com/gidilittwin/Deep-Meta
https://github.com/gidilittwin/Deep-Meta

	 V. K. Chauhan et al.250  Page 14 of 29

Ta
bl

e 
2  

(c
on

tin
ue

d)

SN
Re

fe
re

nc
es

D
L

pr
ob

le
m

In
pu

t
O

ut
pu

t
In

pu
t v

ar
.

O
ut

 v
ar

.
A

rc
hi

te
ct

ur
e

C
od

e

(i)
(ii

)
(ii

i)
(i)

(ii
)

(ii
i)

(iv
)

(i)
(ii

)
(i)

(ii
)

15
O

sw
al

d
et

 a
l.

(2
02

0)
C

on
tin

ua
l l

ea
rn

in
g,

tra

ns
fe

r l
ea

rn
in

g
✓

✓

✓

✓

✓

✓

M

LP
ht

tp
s:

//​g
ith

ub
.​c

om
/​c

hr
he

​
nn

in
g/

​hy
pe

r​c
l

16
Zh

ao
 e

t a
l.

(2
02

0)
Fe

w
-s

ho
t l

ea
rn

in
g

✓

✓

✓

✓

M
LP

17
G

al
an

ti
an

d
W

ol
f (

20
20

)
C

om
pl

ex
ity

 o
f N

N
✓

✓

✓

✓

M

LP
18

Li
 e

t a
l.

(2
02

0)
W

ei
gh

t p
ru

ni
ng

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​o
fs

ou
​

nd
of

/​d
hp

19
Pe

ng
 e

t a
l.

(2
02

0)
N

eu
ra

l a
rc

hi
te

ct
ur

e
se

ar
ch

✓

✓

✓

✓

C
N

N
ht

tp
s:

//​g
ith

ub
.​c

om
/​m

ic
ro

​
so

ft/
​C

re
am

20
N

av
on

 e
t a

l.
(2

02
1)

Pa
re

to
-F

ro
nt

 L
ea

rn
in

g
(m

ul
ti-

ta
sk

in
g,

fa

irn
es

s,
im

ag
e

se
gm

en
ta

tio
n)

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​A
vi

vN
​

av
on

/​p
ar

et
o-

​hy
pe

r​n
et

w
o​

rk
s

21
Sh

am
si

an
 e

t a
l.

(2
02

1)
Fe

de
ra

te
d

Le
ar

ni
ng

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​A
vi

vS
​

ha
m

/​p
Fe

dH
N

22
N

irk
in

 e
t a

l.
(2

02
1)

Se
m

an
tic

 se
gm

en
ta

tio
n

✓

✓

✓

✓

✓

C
N

N
ht

tp
s:

//​n
irk

in
.​c

om
/​h

yp
er

​
se

g
23

M
ah

ab
ad

i e
t a

l.
(2

02
1)

M
ul

tit
as

ki
ng

, N
LP

,
la

ng
ua

ge
 m

od
el

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​ra
be

e​
hk

/​h
yp

er
​fo

rm
er

24
Sa

ra
fia

n
et

 a
l.

(2
02

1)
R

L
✓

✓

✓

✓

M

LP
ht

tp
s:

//​g
ith

ub
.​c

om
/​k

ey
na

​
ns

/​H
yp

eR
L

25
H

ua
ng

 e
t a

l.
(2

02
1)

C
on

tin
ua

l R
L

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​rv
l-​

la
b-

​ut
or

o​n
to

/​H
yp

er
​C

R
L

26
Sh

ih
 e

t a
l.

(2
02

1)
D

en
si

ty
 e

sti
m

at
io

n
✓

✓

✓

✓

M

LP
27

M
ul

le
r (

20
21

)
N

eu
ra

l i
m

ag
e

en
ha

nc
em

en
t

✓

✓

✓

✓

M
LP

28
H

en
ni

ng
 e

t a
l.

(2
02

1)
C

on
tin

ua
l l

ea
rn

in
g

✓

✓

✓

✓

M
LP

https://github.com/chrhenning/hypercl
https://github.com/chrhenning/hypercl
https://github.com/ofsoundof/dhp
https://github.com/ofsoundof/dhp
https://github.com/microsoft/Cream
https://github.com/microsoft/Cream
https://github.com/AvivNavon/pareto-hypernetworks
https://github.com/AvivNavon/pareto-hypernetworks
https://github.com/AvivNavon/pareto-hypernetworks
https://github.com/AvivSham/pFedHN
https://github.com/AvivSham/pFedHN
https://nirkin.com/hyperseg
https://nirkin.com/hyperseg
https://github.com/rabeehk/hyperformer
https://github.com/rabeehk/hyperformer
https://github.com/keynans/HypeRL
https://github.com/keynans/HypeRL
https://github.com/rvl-lab-utoronto/HyperCRL
https://github.com/rvl-lab-utoronto/HyperCRL

A brief review of hypernetworks in deep learning﻿	 Page 15 of 29  250

Ta
bl

e 
2  

(c
on

tin
ue

d)

SN
Re

fe
re

nc
es

D
L

pr
ob

le
m

In
pu

t
O

ut
pu

t
In

pu
t v

ar
.

O
ut

 v
ar

.
A

rc
hi

te
ct

ur
e

C
od

e

(i)
(ii

)
(ii

i)
(i)

(ii
)

(ii
i)

(iv
)

(i)
(ii

)
(i)

(ii
)

29
Eh

re
t e

t a
l.

(2
02

1)
C

on
tin

ua
l l

ea
rn

in
g

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​m
ar

ia
​

ce
r/​c

l_
​in

_​r
nn

s
30

La
m

b
et

 a
l.

(2
02

1)
A

da
pt

at
io

n
of

 n
eu

ra
l

ne
tw

or
k

ar
ch

ite
ct

ur
es

✓

✓

✓

✓

M
LP

31
N

gu
ye

n
et

 a
l.

(2
02

1)
N

et
w

or
k

co
m

pr
es

si
on

✓

✓

✓

✓

M
LP

32
B

en
sa

do
un

 e
t a

l.
(2

02
1)

In
te

rn
al

 le
ar

ni
ng

(c

om
pu

te
r v

is
io

n)
✓

✓

✓

✓

C

N
N

ht
tp

s:
//​g

ith
ub

.​c
om

/​R
ap

ha
​

el
B

en
​sT

A
U

/​M
et

aI
​nt

er
n​

al
Le

a​r
ni

ng
33

de
 A

vi
la

 B
el

bu
te

-P
er

es

et
 a

l.
(2

02
1)

Le
ar

ni
ng

 d
iff

er
en

tia
l

eq
ua

tio
ns

✓

✓

✓

✓

M
LP

34
A

la
lu

f e
t a

l.
(2

02
2)

Im
ag

e
ed

iti
ng

✓

✓

✓

✓

C
N

N
ht

tp
s:

//​y
uv

al
-​a

la
lu

f.​
gi

th
ub

.​io
/​h

yp
er

​sty
le

/
35

Vo
lk

 e
t a

l.
(2

02
2)

D
om

ai
n

ad
ap

ta
tio

n,

N
LP

✓

✓

✓

✓

✓

A
tte

nt
io

n
ht

tp
s:

//​g
ith

ub
.​c

om
/​T

om
er

​
Vo

lk
/​H

yp
er

-​P
A

D
A

36
O

h
an

d
Pe

ng
 2

02
2)

A
ut

on
om

ou
s d

riv
in

g
✓

✓

✓

✓

A

tte
nt

io
n,

 R
N

N
, C

N
N

,
M

LP
37

W
ul

la
ch

 e
t a

l.
(2

02
2)

N
LP

✓

✓

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​to
m

er
​

w
ul

/​C
ha

rL
​ev

el
H

​yp
er

N
​

et
w

or
​ks

38
Q

u
et

 a
l.

(2
02

2)
D

om
ai

n
ge

ne
ra

liz
at

io
n

✓

✓

✓

✓

M
LP

39
Sp

ur
ek

 e
t a

l.
(2

02
2)

3D
 p

oi
nt

 c
lo

ud

pr
oc

es
si

ng
✓

✓

✓

✓

M

LP

40
D

in
h

et
 a

l.
(2

02
2)

Im
ag

e
pr

oc
es

si
ng

✓

✓

✓

✓

C
N

N
ht

tp
s:

//​g
ith

ub
.​c

om
/​V

in
A

I​
Re

se
a​r

ch
/​H

yp
er

​In
ve

r​te
r

41
Y

in
 e

t a
l.

(2
02

2)
Fe

w
-s

ho
t l

ea
rn

in
g

✓

✓

✓

✓

C
N

N
ht

tp
s:

//​g
ith

ub
.​c

om
/​fa

ce
b​

oo
kr

e​s
ea

rc
h/

​sy
lp

h-
​fe

w
-​

sh
ot

-​d
et

ec
​tio

n

https://github.com/mariacer/cl_in_rnns
https://github.com/mariacer/cl_in_rnns
https://github.com/RaphaelBensTAU/MetaInternalLearning
https://github.com/RaphaelBensTAU/MetaInternalLearning
https://github.com/RaphaelBensTAU/MetaInternalLearning
https://yuval-alaluf.github.io/hyperstyle/
https://yuval-alaluf.github.io/hyperstyle/
https://github.com/TomerVolk/Hyper-PADA
https://github.com/TomerVolk/Hyper-PADA
https://github.com/tomerwul/CharLevelHyperNetworks
https://github.com/tomerwul/CharLevelHyperNetworks
https://github.com/tomerwul/CharLevelHyperNetworks
https://github.com/VinAIResearch/HyperInverter
https://github.com/VinAIResearch/HyperInverter
https://github.com/facebookresearch/sylph-few-shot-detection
https://github.com/facebookresearch/sylph-few-shot-detection
https://github.com/facebookresearch/sylph-few-shot-detection

	 V. K. Chauhan et al.250  Page 16 of 29

Ta
bl

e 
2  

(c
on

tin
ue

d)

SN
Re

fe
re

nc
es

D
L

pr
ob

le
m

In
pu

t
O

ut
pu

t
In

pu
t v

ar
.

O
ut

 v
ar

.
A

rc
hi

te
ct

ur
e

C
od

e

(i)
(ii

)
(ii

i)
(i)

(ii
)

(ii
i)

(iv
)

(i)
(ii

)
(i)

(ii
)

42
C

ha
uh

an
 e

t a
l.

(2
02

4c
)

Tr
ea

tm
en

t e
ffe

ct
s

es
tim

at
io

n
✓

✓

✓

✓

✓

✓

✓

M

LP

43
B

ec
k

et
 a

l.
(2

02
3)

M
et

a-
R

L
✓

✓

✓

✓

M

LP
44

Re
za

ei
-S

ho
sh

ta
ri

et
 a

l.
(2

02
3)

Ze
ro

-s
ho

t R
L

✓

✓

✓

✓

M
LP

ht
tp

s:
//​s

ite
s.​g

oo
gl

e.
​co

m
/​

vi
ew

/​h
yp

er
​ze

ro
-​rl

45
Sz

at
ko

w
sk

i e
t a

l.
(2

02
2)

So
un

d
re

pr
es

en
ta

tio
n

✓

✓

✓

✓

C
N

N
46

H
öf

er
 e

t a
l.

(2
02

3)
D

en
si

ty
 e

sti
m

at
io

n
✓

✓

✓

✓

C

N
N

47
C

ar
ra

sq
ui

lla
 e

t a
l.

(2
02

3)
Q

ua
nt

um
 c

om
pu

tin
g

✓

✓

✓

✓

M
LP

ht
tp

s:
//​g

ith
ub

.​c
om

/​c
ar

ra
​

sq
u/

​bi
nn

c​o
de

48
Ru

ta
 e

t a
l.

(2
02

3)
N

eu
ra

l s
ty

le
 tr

an
sf

er
✓

✓

✓

✓

M

LP
49

Fe
re

ns
 a

nd
 K

el
le

r
(2

02
3)

C
am

er
a

po
se

lo

ca
liz

at
io

n
✓

✓

✓

✓

A

tte
nt

io
n,

 M
LP

ht
tp

s:
//​a

no
ny

​m
ou

s.​4
op

en
.​

sc
ie

n​c
e/

r/​h
yp

er
​po

se
-​

20
23

/​R
EA

D
M

E.
​m

d
50

W
u

et
 a

l.
(2

02
3)

K
no

w
le

dg
e

di
sti

lla
tio

n,

vi
su

al
iz

at
io

n
✓

✓

✓

✓

M

LP

https://sites.google.com/view/hyperzero-rl
https://sites.google.com/view/hyperzero-rl
https://github.com/carrasqu/binncode
https://github.com/carrasqu/binncode
https://anonymous.4open.science/r/hyperpose-2023/README.md
https://anonymous.4open.science/r/hyperpose-2023/README.md
https://anonymous.4open.science/r/hyperpose-2023/README.md

A brief review of hypernetworks in deep learning﻿	 Page 17 of 29  250

learning lies in mitigating catastrophic forgetting, which refers to the tendency of a model
to forget previously learned information when it is trained on new data. To address this,
various strategies have been proposed, including regularization techniques, rehearsal meth-
ods, dynamic architectures, and parameter isolation. Oswald et al. (2020) modeled each
incrementally obtained dataset as a task and applied task-conditioned hypernets for con-
tinual learning—this helped to share information among tasks. To address the catastrophic
forgetting issue, they proposed a regularizer for rehearsing task-specific weight realiza-
tions rather than the data from previous tasks. They achieved SOTA results on benchmarks
and empirically showed that the task-conditioned hypernets have a long capacity to retain
memories of previous tasks. Similarly, Huang et al. (2021) and Ehret et al. (2021) applied
task-conditioned hypernets to continual learning in reinforcement learning (RL).

Federated Learning Federated Learning is a decentralized approach to machine
learning where the training process is distributed across multiple devices or edge devices,
without the need to centralize data in a single location. In this paradigm, each device or
edge node locally trains a model using its own data, and only the model updates, rather
than the raw data, are shared and aggregated on a central server. This enables collaborative
learning while preserving data privacy and security. It also reduces communication costs
and latency, making it suitable for scenarios with limited bandwidth or intermittent
connectivity. Shamsian et al. (2021) modeled each client machine as a task and applied
task-conditioned hypernets to federated learning problem. They trained a central hypernet
to generate the weights for the client models. This allowed information sharing across
different clients while making the hypernet size independent of communication cost, as
hypernet weights are never transmitted. The hypernet-based federated learning achieved the
SOTA results and also showed better generalization to new clients whose distributions were
different than the existing clients. Litany et al. (2022) extended this work to heterogeneous
clients, i.e., clients with different neural architectures, using graph hypernetworks (Zhang
et al. 2019).

Few-shot Learning Few-shot learning is a sub-field of machine learning that focuses
on training models to learn new concepts or tasks with only a limited number of training
examples. Unlike traditional machine learning approaches that typically require large
amounts of labeled data for each task, few-shot learning aims to generalize knowledge from
a small support set of labeled examples to classify or recognize new instances. To address
the practical difficulties of existing techniques to operate in high-dimensional parameter
spaces with extremely limited-data settings, Rusu et al. (2019) applied data-conditioned
hypernets. They employed encoder-decoder based hypernet which learns a data-dependent
latent generative representation of model parameters that shares information between
different tasks through soft weight sharing of hypernets. They also achieved SOTA results
and showed that the proposed technique can capture uncertainty in the data. Sendera et al.
(2023a) also applied data-conditioned hypernet to few-shot learning by combining kernels
and hypernets. The kernels were used to extract support information from data of different
tasks that act as input to the hypernet which generates weights for the target task. Similarly,
Zhao et al. (2020), Zięba (2022) and Sendera et al. (2023b) also applied hypernets, and
utilized soft weight sharing, for few-shot learning.

Manifold Learning Manifold learning is a sub-field of machine learning that focuses
on capturing the underlying structure or geometry of high-dimensional data in lower-
dimensional representations or manifolds. It aims to uncover the intrinsic relationships
and patterns within the data by mapping it to a lower-dimensional space, enabling better
visualization, clustering, or classification. Hypernetworks can be utilized in the context of
manifold learning to enhance the representation learning process. By generating weights or

	 V. K. Chauhan et al.250  Page 18 of 29

parameters for the target network based on the input, hypernetworks can adaptively learn
a manifold that captures the intricate data structure (Shamsian et al. 2021). Deutsch et al.
(2019) applied noise-conditioned hypernetworks to map latent vectors for generating target
network weights that generalize mode connectivity in loss landscape to higher dimensional
manifolds.

AutoML AutoML, short for Automated Machine Learning, refers to the development
of algorithms, systems, and tools that automate various aspects of the machine learning
pipeline, e.g., neural architecture search (NAS) and automated hyperparameter
optimization. Zhang et al. (2019) applied hypernetworks for NAS where they modeled
neural architectures of a DNN as graph and used them as input to hypernet to generate
the target network weights. They achieved about 10 times faster results than the SOTA.
Similarly, Brock et al. (2018) and Peng et al. (2020) present another example of application
of hypernets to NAS, where they exploit soft weight sharing property of hypernets for
information sharing among different architectures. For hyperparameter optimization,
Lorraine and Duvenaud (2018) applied hypernets that take hyperparameters of the target
network as input and generate optimal weights for the target network, and hence perform
joint training for target network parameters and hyperparameters which are otherwise
trained in nested optimization loops. The authors proved the efficacy of the proposed
technique against the SOTA to train thousands of hyperparameters.

Pareto-front Learning Pareto-front learning, also known as multi-objective
optimization, is a technique that addresses problems with multiple conflicting objectives,
e.g., multitasking has multiple tasks that may have conflicting gradients. It aims to find
a set of solutions that represent the trade-off among different objectives, rather than a
single optimal solution. In Pareto-front learning, the goal is to identify a set of solutions
that cannot be improved in one objective without sacrificing performance in another
objective. These solutions are referred to as Pareto-optimal or non-dominated solutions
and lie on the Pareto-front, which represents the best possible trade-off between objectives.
Navon et al. (2021) applied hypernets to learn the entire Pareto-front, which at inference
time takes a preferential point on the Pareto-front and generates Pareto-front weights for
the target network whose loss vector is in the direction of the ray. They showed that the
proposed hypernets are computationally very efficient as compared with the SOTA and
can scale to large models, such as ResNet18. This work is further extended in Hoang et al.
(2023), where hypernet generates multiple solutions, and Tran et al. (2023), which consider
completed scalarization functions in the Pareto-front learning.

Domain adaptation Domain adaptation refers to the process of adapting a machine
learning model trained on a source domain to perform well in a different target domain. It
is a crucial challenge in machine learning when there is a shift or discrepancy between the
distribution of the source and the target data. Hypernets can play a valuable role in domain
adaptation by dynamically generating or adapting model parameters, architectures, or other
components to effectively handle domain shifts. For example, Volk et al. (2022) were the
first to propose hypernets for domain adaptation. They used data-conditioned hypernets
where examples from the target domains are used as input to hypernet that generates
weights for the target network. This gives hypernets ability to learn and share information
from existing domains with target domain through shared training.

Causal inference Causal inference is a field of study that focuses on understanding
and estimating causal relationships between variables. It aims to uncover the cause-and-
effect relationships within a system by leveraging observational or experimental data.
Causal inference is particularly important when inferring the impact of treatments/
interventions/ policies on outcomes of interest. Recently, we were the first to apply

A brief review of hypernetworks in deep learning﻿	 Page 19 of 29  250

hypernets to heterogeneous treatment effects (HTE) estimation problem (Chauhan
et al. 2024c). We applied task-conditioned hypernets where each potential outcome
(PO) function is considered as a task. Embeddings of PO functions are used as input
to hypernet that generates parameters for the corresponding PO function, i.e., factual
and counterfactual models. Based on soft weight sharing of hypernets, this work
presents the first general mechanism to train HTE learners that enables end-to-end
inter-treatment information sharing among the PO functions and helps to get reliable
estimates, especially with limited-size observational data. The proposed framework also
incorporates dropout in the hypernet that allows to generate multiple sets of parameters
for the PO functions and helps in uncertainty quantification.

Uncertainty quantification Uncertainty quantification is a critical aspect of deep
learning and decision-making that involves estimating and understanding the uncertainty
associated with model predictions or outcomes. It provides a measure of confidence or
reliability in the predictions made by a model, particularly in situations where the model
encounters unseen or uncertain data. Hypernets can effectively train uncertainty aware
DNNs by leveraging techniques like sampling multiple inputs from the noise distribution
(Krueger et al. 2018) or incorporating dropout within the hypernets themselves (Chauhan
et al. 2023b). By generating multiple sets of weights for the main network, hypernets create
an ensemble of models, each with different parameter configurations. This ensemble-based
approach aids in estimating uncertainty in the model predictions. Krueger et al. (2018)
proposed Bayesian hypernets that take random noise as input to produce distributions over
the weights of the target network and showed competitive performance for uncertainty.
Ratzlaff and Fuxin (2019) also applied noise-conditioned hypernets for uncertainty
quantification and showed that the proposed technique provides a better estimate of
uncertainty as compared to the ensemble learning technique. In addition, Chauhan et al.
(2023b) used dropout in the task-conditioned hypernets to generate multiple sets of weights
for the target network and thus helping to estimate uncertainty.

Adversarial Defence Adversarial defence in deep learning refers to the techniques used
to enhance the robustness and resilience of models against adversarial attacks. Adversarial
attacks involve making carefully crafted perturbations to input data in order to deceive
or mislead deep learning models (Madry et al. 2017). By incorporating hypernetworks,
models can enhance their ability to detect and defend against adversarial attacks by
dynamically generating or adapting their weights or architectures. For example, Sun et al.
(2017) generated data-dependent adaptive convolution kernels to improve the robustness of
CNNs against adversarial attacks and were successful in spontaneously detecting attacks
generated by Gaussian noise, fast gradient sign methods, and black-box attack methods.
The models developed with hypernets are highly adaptive and customized to the data.
Similarly, Kristiadi et al. (2019), Ratzlaff and Fuxin (2019) and Krueger et al. (2018) also
found noise-conditioned hypernets robust to adversarial examples as compared with the
SOTA.

Multitasking Multitasking refers to the capability of a model to perform multiple tasks
or learn multiple objectives simultaneously. It involves leveraging shared representations
and parameters across different tasks to enhance learning efficiency and overall
performance. Hypernets can be applied in the context of multitasking to facilitate the joint
learning of multiple tasks by dynamically generating or adapting the model’s parameters
or architectures. Specifically, we can train task-conditioned hypernets for multitasking
where embedding of a task act as input to the hypernet that generates weights for the
corresponding task. We can either generate entire model for each of the tasks or can only
generate non-shared parts of a multitasking network. The hypernets facilitate such models

	 V. K. Chauhan et al.250  Page 20 of 29

to share information across different tasks as well as have specific personalized model for
each task. For example, Mahabadi et al. (2021) applied task-conditioned hypernets that
share knowledge across the tasks as well as generate task-specific models and achieved
benchmark results. Navon et al. (2021) also studied task-conditioned hypernets for Pareto-
front learning to address the conflicting gradients among different objectives and obtained
impressive results on multitasking, including fairness and image segmentation.

Reinforcement Learning Reinforcement Learning (RL) focuses on training agents
to make sequential decisions in an environment to maximize a cumulative reward. RL
operates through an interaction loop where the agent takes actions, receives feedback in the
form of rewards, and learns optimal policies through trial and error. Hypernets can be used
to dynamically generate or adapt network architectures, model parameters, or exploration
strategies in RL agents. By using a hypernetwork, the RL agent can effectively learn to
customize its internal representations or policies based on the specific characteristics of
the environment or task. For example, Sarafian et al. (2021) applied hypernets to generate
the building blocks of RL, i.e., policy networks and Q-functions, rather than using MLPs.
They showed faster training and improved performance on different algorithms for RL
and in meta-RL. Similarly, noise-conditioned hypernets are used in (Vincent et al. 2023)
to generate weights of each Bellman iteration with HyperRNN, and task-conditioned
hypernets were used in RL for generalization across tasks (Beck et al. 2023), continual RL
(Huang et al. 2021), and zero-shot learning (Rezaei-Shoshtari et al. 2023).

Natural Language Processing NLP is a sub-field of artificial intelligence that focuses
on the interaction between computers and human language. It involves various tasks, such
as language generation, sentiment analysis, machine translation, and question answering,
among others. In the context of NLP, hypernets can be used to generate or adapt neural
network architectures, tuning hyperparameters, for neural architecture search, and for
transfer learning and domain adaptation etc. For example, Volk et al. (2022) applied data-
conditioned hypernet for out-of-distribution (OOD) generalization. They used T5 encoder-
decoder framework to generate a unique signature for each example from different source
domains. This signature acts as input to the hypernet and generates parameters for the
target network—a dynamic and adaptive network. As discussed above, Mahabadi et al.
(2021) applied task-conditioned hypernets to fine-tune the pre-trained language models by
generating weights for the bottleneck adapters. In the multitasking setting, they modeled
task, adapter location and layer id as different tasks and used embedding of these tasks as
input to the hypernet that helps in shared learning and achieving parameter efficiency.

Computer Vision Computer vision focuses on enabling computers to understand and
interpret visual information from images or videos. Computer vision algorithms aim to
replicate human visual perception by detecting and recognizing objects, understanding
their spatial relationships, extracting features, and making sense of the visual scene. Some
applications of hypernets in computer vision are: Ha et al. (2017), in their pioneering
work, first applied task-conditioned hypernets for image classification, Alaluf et al. (2022)
and Muller (2021) applied data-conditioned hypernets, where image acts as input to
hypernet, for image enhancement, and Ratzlaff and Fuxin (2019) applied noise-conditioned
hypernets for image classification. Data-conditioned hypernets are also applied to semantic
segmentation in Nirkin et al. (2021). Some other applications of hypernets in computer
vision are camera pose estimation (Ferens and Keller 2023), neural style transfer (Ruta
et al. 2023), image processing/editing (Alaluf et al. 2022), and neural image enhancement
(Muller 2021). It is to be noted that computer vision is a vast subject and encompasses
many problem settings discussed earlier so they can be used as such with change of domain
related data or models. For example, hypernets developed for AutoML, domain adaption,

A brief review of hypernetworks in deep learning﻿	 Page 21 of 29  250

continual learning, and federated learning etc. can be applied to computer vision problems
as well.

The above applications of hypernets are not exhaustive and some other interesting areas
where hypernets have produced the SOTA results are knowledge graph learning (Balažević
et al. 2019), shape learning (Littwin and Wolf 2019), network compression (Nguyen et al.
2021), learning differential equations (de Avila Belbute-Peres et al. 2021), 3D point cloud
processing (Spurek et al. 2020), speech processing (Szatkowski et al. 2022), quantum
computing (Carrasquilla et al. 2023), and knowledge distillation (Wu et al. 2023) etc. These
applications demonstrate the wide-ranging potential of hypernetworks in deep learning,
enabling adaptive and task-specific parameter generation for improved model performance
and generalization.

5 � When can we use hypernets?

After discussing what a hypernet is, how it works, its different types, and its current
applications, the most important question is when and where to utilize hypernets. This will
help researchers and practitioners fully harness the benefits of this versatile technique in
deep learning. One straightforward answer to the question, ‘When can we use Hypernets?’
is ‘in all those application areas where it is already applied’. There is a long list of
application areas where hypernets are already in use, and the reader’s area of interest is
likely covered. Based on the characteristics and applications of hypernets discussed above,
we have generalized and formulated some questions/scenarios for readers to check if
hypernets can be applied to a specific area/problem setting. If our answer is yes to any of
the scenarios, then we can apply hypernets to the problem setting under consideration.

Are there any related components in the problem setting under consideration?
Here, a component can refer to a task, dataset, or neural network. This is one of the most
important scenarios/questions, and several applications, as discussed above, fall under
this scenario. If the answer to this question is yes, then we can employ task-conditioned
hypernets to solve the problem under consideration, where task identity is used to generate
the target network for the component. By conditioning on the component (task, dataset,
or network), we can perform joint training of different components by exploiting the
soft weight sharing of hypernets. This enables the hypernets to share information among
components, leading to improved performance (Chauhan et al. 2024c). Thus, sharing
information is the key to achieving better results for related components. The question
can be reformulated as, ‘Do we need information sharing in our problem setting?’. All the
task-conditioned applications of hypernets discussed in Table 2 fall under this scenario.
For example, multitasking (Mahabadi et al. 2021) has related tasks (as components),
and hypernets help in shared learning while having personalized networks for each task.
Similarly, continual learning (Oswald et al. 2020), federated learning (Shamsian et al.
2021), heterogeneous treatment effects estimation (Chauhan et al. 2024c), transfer learning
(Oswald et al. 2020), and domain adaptation (Volk et al. 2022) fall under this scenario.

Do we need a data-adaptive neural network? This is another important scenario with
several applications across different problem settings. In other words, we can ask, ‘Are we
working in a setting where the target network has to be customized to the input data?’ or ‘Are
the data changing regularly?’. In this scenario, we can employ data-conditioned hypernets
that take data as input and adaptively generate the parameters of the target network. During
training, the hypernet takes the available data and learns the intrinsic characteristics of the

	 V. K. Chauhan et al.250  Page 22 of 29

data to generate the target network. Then, at inference time, it can take new data with slightly
different characteristics and generate the target network based on the learned characteristics of
the existing data. It is noted that there is some similarity between task-conditioned and data-
conditioned settings, so some problems may be modelled using either technique. From existing
research, it is unclear when to model a problem as data-conditioned or task-conditioned,
and it needs to be explored. However, it will depend on the problem under consideration,
the availability of data, and the number of tasks. All the data-conditioned applications
of hypernets discussed in Table 2 fall under this scenario. For example, in neural image
enhancement (Muller 2021), we are interested in improving the quality of an image, so we
need a target network specific to the image for a good quality output. Thus, data-conditioned
hypernets are suitable for this application. Similarly, adversarial defence (Sun et al. 2017),
shape learning (Littwin and Wolf 2019), camera pose estimation (Ferens and Keller 2023),
neural style transfer (Ruta et al. 2023), few-shot learning (Yin et al. 2022), and 3D point cloud
processing (Spurek et al. 2022) fall under this scenario.

Do we need a dynamic neural network architecture? Here, dynamic neural network
architecture means the architecture of the target network is not known or fixed at training
time. This scenario has limited but important applications. In this case, a hypernet takes
some information about the architecture of the target network and generates the parameters
accordingly. For example, neural architecture search (Zhang et al. 2019) is such an application,
which uses graph hypernetworks that take the computation graph of the target network as
input to generate the network parameters. Similarly, another example of this scenario is when
recurrent neural networks are implemented with hypernets (Ha et al. 2017), which need a
dynamic network architecture to account for a variable number of time-steps.

Do we need faster training/parameter efficiency? As discussed earlier, hypernets can
achieve parameter efficiency or weight compression, which means that the ‘learnable’ weights
of HyperDNN are fewer than the corresponding DNN. This is expected to achieve faster
training as well. This could be useful for limited resource settings and would depend on the
problem setting as well as the architecture of the hypernets. For example, as discussed earlier,
Mahabadi et al. (2021) applied task-conditioned hypernets to fine-tune pre-trained language
models by generating weights for the bottleneck adapters. In the multitasking setting, they
modelled task, adapter location, and layer identity as different tasks and used embeddings
of these tasks as input to the hypernet that helps in shared learning and achieved parameter
efficiency. Similarly, Zhao et al. (2020) also demonstrated parameter efficiency in a few-shot
learning setting.

Do we need uncertainty quantification? This is a specific application scenario for
hypernets. Hypernets can be used for uncertainty quantification either using noise-conditioned
hypernets (Krueger et al. 2018) or by using dropout in the hypernets (Chauhan et al. 2023b).
As discussed earlier, in some settings, hypernets can produce better uncertainty estimates,
e.g., Krueger et al. (2018) and Ratzlaff and Fuxin (2019). However, if uncertainty estimation
is the sole purpose of the study, then existing uncertainty estimation techniques must be
explored first. However, using dropout (Srivastava et al. 2014) in the hypernet architecture,
similar to using dropout in standard DNNs, can complement the existing hypernets and help in
uncertainty quantification.

The scenarios discussed have overlaps, so multiple scenarios can fit a problem under
consideration. For example, Mahabadi et al. (2021) considered fine-tuning language models
using hypernets, which achieved parameter efficiency and used task-conditioning (related
component setting) to solve multiple tasks. Thus, by thinking about these broad scenarios, one
can determine if hypernets apply to a problem setting under consideration.

A brief review of hypernetworks in deep learning﻿	 Page 23 of 29  250

6 � Challenges and future directions

Hypernetworks have shown enormous potential in enhancing deep learning models
with increased flexibility, efficiency, and generalization. However, several challenges
and opportunities for future research and development remain under-explored. In this
section, we discuss some of the key challenges and propose potential directions for future
exploration.

Initialization challenge The initialization challenge in hypernetworks refers to the
difficulty of initializing the hypernetwork parameters effectively, as finding suitable
initial values for the hypernetwork parameters is far from being resolved. One reason for
the initialization challenge is that the weights of the target network are generated at the
output layer of hypernet, and weights generation does not consider layer-wise architecture
of the target network. So, initialization of hypernet weights using classical initialization
techniques, such as Xavier (Glorot and Bengio 2010) and Kaiming initialization (He
et al. 2015), does not guarantee that weights of target network are initialized in the same
range. The performance of the hypernetwork is highly influenced by the initial state of the
target network and its parameters that are generated at the output layer of the hypernet.
If the target network is poorly initialized, it can propagate errors or uncertainties to the
hypernetwork, affecting its ability to generate or adapt parameters effectively. Chang
et al. (2020) were the first to discuss the challenge of initializing hypernets. They showed
that classical techniques of initializing DNNs do not work well with hypernets, however,
adaptive optimizers, such as Adam (Kingma and Ba 2014), can address the issue to some
extent. The authors suggested initializing the hypernet weights in a manner that allows the
target network weights to approximate the conventional initialization of DNNs. However,
it is difficult to adopt this because the weights of the target network are typically generated
together. We may solve this challenge if weight generation process is aware of the layer-
wise architecture of the target network. Moreover, recently, Beck et al. (2023) also showed
that initialization challenge of hypernets occurs even in meta-RL and classical initialization
techniques fail.

Complexity/scalability One of the primary challenges in hypernetworks is scalability
and efficiency of hypernetwork-based models. As the size and complexity of target DNNs
increase, hypernetworks also become very complex, e.g., the size of the output layer is
typically m × n where m is the number of neurons in the penultimate layer of hypernet and
n is the number of weights in the target network. So, hypernets may not be suitable for large
models unless appropriate weight-generation strategies are developed and used. Although,
there are some approaches, such as multiple weight generation (Chauhan et al. 2024c) and
chunk-wise weight generation (Brock et al. 2018) to manage the complexity of hypernets
but it needs more research to address the scalability challenge and make hypernetworks
more practical for real-world applications.

Numerical stability Numerical stability in hypernetworks refers to the ability of the
model to maintain accurate and reliable computations throughout the training and inference
process. Hypernets, like standard neural networks, can encounter numerical stability
issues (Sarafian et al. 2021). One common numerical stability issue in hypernetworks is
the vanishing or exploding gradients problem. During the training process, gradients can
become extremely small or large, making it difficult for the model to effectively update the
parameters. This can result in slow convergence or unstable training dynamics. To address
numerical stability issues in hypernets, various techniques can be employed, such as
careful initialization of the model’s parameters, the use of gradient clipping, which bounds

	 V. K. Chauhan et al.250  Page 24 of 29

the gradient values to prevent them from becoming too large, and different regularization
techniques such as weight decay, dropout, and spectral norm (Chauhan et al. 2024c)
that help improve numerical stability by preventing overfitting and promoting smoother
optimization. Furthermore, similar to standard DNNs, using appropriate activation
functions, such as ReLU or Leaky ReLU, can help alleviate the vanishing gradient
problem by providing non-linearities that allow for more effective gradient propagation.
It is also important to choose appropriate optimization algorithms that are known for their
stability, such as Adam (Kingma and Ba 2014), which can handle the training dynamics of
hypernetworks more effectively (Chang et al. 2020).

Theoretical Understanding Theoretical analysis of hypernetworks involves studying
their representational capacity, learning dynamics, and generalization properties. By
understanding the theoretical foundations of hypernetworks, researchers can gain insights
into the underlying principles that drive their effectiveness and explore new avenues for
improving their performance. Just like DNNs, understanding the working of hypernets is
far from being solved. Although, there are some works that provide theoretical insights
into hypernets, e.g., Littwin et al. (2020) highlighted that infinitely wide hypernetworks
may not converge to a global minimum using gradient descent, but convexity can be
achieved by increasing the dimensionality of the hypernetwork’s output. Galanti and Wolf
(2020) also studied the modularity of hypernets and showed that hypernets can be more
efficient than the embedding-based method for mapping an input to a function. Intuitively,
hypernets map an input to one point on a low-dimensional manifold for weights of target
network (Shamsian et al. 2021)—theoretical insights into the connection between two can
be very helpful. Thus, more research into the theoretical properties of hypernets will help
to make them more popular and will also attract more research.

Uncertainty-aware deep learning Uncertainty-aware neural networks allow for more
reliable and robust predictions, especially in scenarios where uncertainty estimation is
crucial, such as decision-making under uncertainty, safety-critical applications, or when
working with limited or noisy data (Abdar et al. 2021). Despite the success of DNNs
and the development of different uncertainty quantification techniques, it still remains
an open problem to quantify the prediction uncertainty (Kristiadi et al. 2019). Hypernets
have opened a new door to uncertainty quantification as noise-conditioned hypernets
can generate distribution on target network weights and have been shown to have better
uncertainties than the SOTA (Krueger et al. 2018; Ratzlaff and Fuxin 2019). Similarly,
Chauhan et al. (2023b) used task-conditioned hypernets with dropout to generate
multiple sets of weights for the target network. Further research into this can provide
computationally efficient and effective techniques as compared with other techniques, such
as ensemble methods, which need to train multiple models.

Interpretability enhancement It will be helpful for the community to develop
methods for visualizing, analyzing, and explaining the task-specific weights generated
by hypernetworks. This includes developing intuitive visualization methods, and feature
relevance analysis techniques that provide deeper insights into the weight generation and
decision-making process of hypernetwork-based models.

Model compression and efficiency Hypernetworks can aid in model compression
and efficiency in some problem settings (Zhao et al. 2020; Mahabadi et al. 2021), where
smaller hypernets are trained to generate larger target networks that can reduce the
memory footprint and computational requirements of the model. This is particularly useful
in resource-constrained environments where memory and computational resources are
limited, and hypernets can be studied specifically for such settings.

A brief review of hypernetworks in deep learning﻿	 Page 25 of 29  250

Usage Guidelines Hypernetworks add additional complexity to solving problems.
As with HyperDNN, we have an additional network to generate weights for the target
DNN. Hypernets introduce additional hyperparameters related to the weight generation
process, e.g., what kind of weight generation should be used and how many chunks
should be used. Some research and guidelines are needed to guide the researchers
through these choices, stressing the need for a comparative study of different approaches
under varying problem settings.

Thus, the field of hypernetworks in deep learning presents several challenges and
opportunities for future research. The advancements in these areas will pave the way for
the widespread adoption and effective utilization of hypernetworks in various domains
of deep learning.

7 � Conclusion

Hypernetworks have emerged as a promising approach to enhance deep learning
models with increased flexibility, efficiency, generalization, uncertainty awareness,
and information sharing. They have opened new avenues for research and applications
across various domains. In this paper, we presented the first review of hypernetworks
in the context of deep learning. We provided an illustrative example to explain the
workings of hypernetworks and proposed a categorization based on five design criteria:
inputs, outputs, variability of inputs and outputs, and the architecture of hypernets. We
discussed some of the important applications of hypernets to different deep learning
problems, including multitasking, continual learning, federated learning, causal
inference, and computer vision. Additionally, we presented scenarios and questions to
help readers understand whether hypernets can be applied to a given problem setting.
Finally, we highlighted challenges that need to be addressed in the future. These
challenges include initialization, stability, scalability, efficiency, and the need for
theoretical insights. Future research should focus on tackling these challenges to further
advance the field of hypernetworks and make them more accessible and practical for
real-world applications. By addressing these issues, the potential of hypernetworks can
be fully realized, leading to more robust and versatile deep learning models.

Acknowledgements  This work was supported in part by the National Institute for Health Research (NIHR)
Oxford Biomedical Research Centre (BRC) and in part by InnoHK Project Programme 3.2: Human
Intelligence and AI Integration (HIAI) for the Prediction and Intervention of CVDs: Warning System at
Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE). DAC was supported by an
NIHR Research Professorship, an RAEng Research Chair, the InnoHK Hong Kong Centre for Cerebro-
cardiovascular Health Engineering (COCHE), the NIHR Oxford Biomedical Research Centre (BRC), and
the Pandemic Sciences Institute at the University of Oxford. The views expressed are those of the authors
and not necessarily those of the NHS, the NIHR, the Department of Health, the InnoHK - ITC, or the
University of Oxford.

Author contributions  V.K.C. conceptualized the study, analyzed the literature and wrote the first draft. J.Z.,
P.L. and S.M. helped to filter out the literature and prepare Table 2. D.A.C did supervision and funding
acquisition. All authors reviewed and approved the final manuscript.

Data availability  Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

	 V. K. Chauhan et al.250  Page 26 of 29

Declarations 

Conflict of interest  The authors declare that they have no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi
A, Acharya UR et al (2021) A review of uncertainty quantification in deep learning: techniques,
applications and challenges. Inf Fusion 76:243–297

Alaluf Y, Tov O, Mokady R, Gal R, Bermano A (2022) Hyperstyle: Stylegan inversion with hypernet-
works for real image editing. In Proceedings of the IEEE/CVf conference on computer vision and
pattern recognition (CVPR), pp 18511–18521

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA,
Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions. J Big Data 8:1–74

Armstrong J, Clifton D (2021) Continual learning of longitudinal health records. arXiv preprint. arXiv:​
2112.​11944

Balažević I, Allen C, Hospedales T M (2019) Hypernetwork knowledge graph embeddings. In: Artifi-
cial neural networks and machine learning—ICANN 2019: workshop and special sessions: 28th
international conference on artificial neural networks, Munich, Germany, 17–19 September 2019,
proceedings 28. Springer, Cham, pp 553–565

Beck J, Jackson M T, Vuorio R, Whiteson S (2023) Hypernetworks in meta-reinforcement learning. In:
Conference on robot learning. PMLR, pp 1478–1487

Bensadoun R, Gur S, Galanti T, Wolf L (2021) Meta internal learning. In: Ranzato M, Beygelzimer A,
Dauphin Y, Liang P, Vaughan JW (eds) Advances in neural information processing systems, vol 34.
Curran Associates, Red Hook, pp 20645–20656

Brock A, Lim T, Ritchie J, Weston N (2018) SMASH: one-shot model architecture search through
hypernetworks. In: International conference on learning representations

Carrasquilla J, Hibat-Allah M, Inack E, Makhzani A, Neklyudov K, Taylor G W, Torlai G (2023) Quan-
tum hypernetworks: training binary neural networks in quantum superposition. arXiv preprint.
arXiv:​2301.​08292

Chang O, Flokas L, Lipson H (2020) Principled weight initialization for hypernetworks. In: International
conference on learning representations

Chauhan V K, Molaei S, Tania MH, Thakur A, Zhu T, Clifton DA (2023a) Adversarial de-confounding
in individualised treatment effects estimation. In Proceedings of the 26th international conference
on artificial intelligence and statistics, vol 206. PMLR, pp 837–849

Chauhan VK, Zhou J, Molaei S, Ghosheh G, Clifton DA (2023b) Dynamic inter-treatment information
sharing for heterogeneous treatment effects estimation. arXiv preprint. arXiv:2305.15984v1

Chauhan VK, Singh S, Sharma A (2024a) HCR-Net: a deep learning based script independent hand-
written character recognition network. Multimedia Tools Appl. https://​doi.​org/​10.​1007/​
s11042-​024-​18655-5

Chauhan VK, Thakur A, O’Donoghue O, Rohanian O, Molaei S, Clifton DA (2024b) Continuous patient
state attention model for addressing irregularity in electronic health records. BMC Med Inf Decis
Mak 24(1):117

Chauhan VK, Zhou J, Ghosheh G, Molaei S, A Clifton D (2024c) Dynamic inter-treatment informa-
tion sharing for individualized treatment effects estimation. In Proceedings of the 27th international
conference on artificial intelligence and statistics, vol 238. PMLR, pp 3529–3537

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2112.11944
http://arxiv.org/abs/2112.11944
http://arxiv.org/abs/2301.08292
https://doi.org/10.1007/s11042-024-18655-5
https://doi.org/10.1007/s11042-024-18655-5

A brief review of hypernetworks in deep learning﻿	 Page 27 of 29  250

de Avila Belbute-Peres F, fan Chen Y, Sha F (2021) HyperPINN: Learning parameterized differential
equations with physics-informed hypernetworks. In: The symbiosis of deep learning and differen-
tial equations

Deutsch L, Nijkamp E, Yang Y (2019) A generative model for sampling high-performance and diverse
weights for neural networks. arXiv preprint. arXiv:​1905.​02898

Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers
for language understanding. In: Proceedings of the 2019 conference of the North American chap-
ter of the association for computational linguistics: human language technologies, vol 1 (long and
short papers), Minneapolis, Minnesota. Association for Computational Linguistics, pp 4171–4186

Dinh T M, Tran A T, Nguyen R, Hua B-S (2022) Hyperinverter: improving stylegan inversion via hyper-
network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp 11389–11398

Ehret B, Henning C, Cervera M, Meulemans A, Oswald JV, Grewe BF (2021) Continual learning in
recurrent neural networks. In: International conference on learning representations

Ferens R, Keller Y (2023) Hyperpose: camera pose localization using attention hypernetworks. arXiv
preprint. arXiv:​2303.​02610

Galanti T, Wolf L (2020) On the modularity of hypernetworks. In: Larochelle H, Ranzato M, Hadsell R,
Balcan M, Lin H (eds) Advances in neural information processing systems, vol 33. Curran Associates,
Red Hook, pp 10409–10419

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In:
Proceedings of the 13th international conference on artificial intelligence and statistics. JMLR work-
shop and conference proceedings, pp 249–256

Ha D, Dai AM, Le QV (2017) Hypernetworks. In: International conference on learning representations
He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on

ImageNet classification. In: Proceedings of the IEEE international conference on computer vision, pp
1026–1034

Henning C, Cervera M, D’Angelo F, Oswald J V, Traber R, Ehret B, Kobayashi S, Grewe BF, Sacramento J
(2021) Posterior meta-replay for continual learning. In: Beygelzimer A, Dauphin Y, Liang P, Vaughan
JW (eds) Advances in neural information processing systems. Curran Associates, Red Hook

Hoang LP, Le DD, Tuan TA, Thang TN (2023) Improving pareto front learning via multi-sample hyper-
networks. In: Proceedings of the AAAI conference on artificial intelligence, vol 37(7), pp 7875–7883

Höfer T, Kiefer B, Messmer M, Zell A (2023) HyperPosePDF—hypernetworks predicting the probability
distribution on SO(3). In: Proceedings of the IEEE/CVF winter conference on applications of com-
puter vision (WACV), pp 2369–2379

Huang Y, Xie K, Bharadhwaj H, Shkurti F (2021) Continual model-based reinforcement learning with
hypernetworks. In: 2021 IEEE international conference on robotics and automation (ICRA). IEEE, pp
799–805

Kingma DP, Ba J (2014) ADAM: a method for stochastic optimization. arXiv preprint. arXiv:​1412.​6980
Klocek S, Maziarka Ł, Wołczyk M, Tabor J, Nowak J, Śmieja M (2019) Hypernetwork functional image

representation. In: Artificial neural networks and machine learning—ICANN 2019: workshop and spe-
cial sessions: 28th international conference on artificial neural networks, Munich, Germany, 17–19
September 2019, proceedings, vol 28. Springer, pp 496–510

Kristiadi A, Däubener S, Fischer A (2019) Predictive uncertainty quantification with compound density
networks. arXiv preprint. arXiv:​1902.​01080

Krueger D, Huang C-W, Islam R, Turner R, Lacoste A, Courville A (2018) Bayesian hypernetworks. arXiv
preprint. arXiv:​1710.​0475

Lamb A, Saveliev E, Li Y, Tschiatschek S, Longden C, Woodhead S, Hernández-Lobato JM, Turner RE,
Cameron P, Zhang C (2021) Contextual hypernetworks for novel feature adaptation. arXiv preprint.
arXiv:​2104.​05860

Li Y (2017) Deep reinforcement learning: an overview. arXiv preprint. arXiv:​1701.​07274
Li Y, Gu, S, Zhang K, Van Gool L, Timofte R (2020) DHP: differentiable meta pruning via hypernetworks.

In: Computer vision—ECCV 2020: 16th European conference, Glasgow, UK, 23–28 August 2020,
proceedings, Part VIII 16. Springer, pp 608–624

Litany O, Maron H, Acuna D, Kautz J, Chechik G, Fidler S (2022) Federated learning with heterogeneous
architectures using graph hypernetworks. arXiv preprint. arXiv:​2201.​08459

Littwin G, Wolf L (2019) Deep meta functionals for shape representation. In: Proceedings of the IEEE/CVF
international conference on computer vision, pp 1824–1833

Littwin E, Galanti T, Wolf L, Yang G (2020) On infinite-width hypernetworks. In: Advances in neural infor-
mation processing systems, vol 33. Curran Associates, Red Hook, pp 13226–13237

http://arxiv.org/abs/1905.02898
http://arxiv.org/abs/2303.02610
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1902.01080
http://arxiv.org/abs/1710.0475
http://arxiv.org/abs/2104.05860
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/2201.08459

	 V. K. Chauhan et al.250  Page 28 of 29

Liu Z, Mu H, Zhang X, Guo Z, Yang X, Cheng K-T, Sun J (2019) Metapruning: meta learning for automatic
neural network channel pruning. In: Proceedings of the IEEE/CVF international conference on com-
puter vision, pp 3296–3305

Lorraine J, Duvenaud D (2018) Stochastic hyperparameter optimization through hypernetworks. In:
Advances in neural information processing systems (NeurIPS) meta-learning workshop

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2017) Towards deep learning models resistant to
adversarial attacks. arXiv preprint. arXiv:​1706.​06083

Mahabadi R K, Ruder S, Dehghani M, Henderson J (2021) Parameter-efficient multi-task fine-tuning for
transformers via shared hypernetworks. In: Proceedings of the 59th annual meeting of the association
for computational linguistics and the 11th international joint conference on natural language process-
ing (vol 1: long papers), pp 565–576

Muller L K (2021) Overparametrization of hypernetworks at fixed flop-count enables fast neural image
enhancement. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion (CVPR) workshops, pp 284–293

Navon A, Shamsian A, Fetaya E, Chechik G (2021) Learning the pareto front with hypernetworks. In: Inter-
national conference on learning representations

Nguyen P, Tran T, Le K, Gupta S, Rana S, Nguyen D, Nguyen T, Ryan S, Venkatesh S (2021) Fast con-
ditional network compression using bayesian hypernetworks. In: Oliver N, Pérez-Cruz F, Kramer S,
Read J, Lozano JA (eds) Machine learning and knowledge discovery in databases. Research Track.
Springer, Cham, pp 330–345

Nirkin Y, Wolf L, Hassner T (2021) HyperSeg: patch-wise hypernetwork for real-time semantic segmen-
tation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp
4061–4070

Oh G, Peng H (2022) Cvae-h: Conditionalizing variational autoencoders via hypernetworks and trajec-
tory forecasting for autonomous driving. arXiv preprint. arXiv:​2201.​09874

Oswald JV, Henning C, Grewe BF, Sacramento J (2020) Continual learning with hypernetworks. In:
International conference on learning representations

Pan Z, Liang Y, Zhang J, Yi X, Yu Y, Zheng Y (2018) HyperST-Net: hypernetworks for spatio-temporal
forecasting. arXiv preprint. arXiv:​1809.​10889

Peng H, Du H, Yu H, Li Q, Liao J, Fu J (2020) Cream of the crop: distilling prioritized paths for one-
shot neural architecture search. In: Advances in neural information processing systems, vol 33.
Curran Associates, Red Hook, pp 17955–17964

Qu J, Faney T, Wang Z, Gallinari P, Yousef S, de Hemptinne J-C (2022) HMOE: hypernetwork-based
mixture of experts for domain generalization. arXiv preprint. arXiv:​2211.​08253

Ratzlaff N, Fuxin L (2019) HyperGAN: a generative model for diverse, performant neural networks. In:
International conference on machine learning. PMLR, pp 5361–5369

Rezaei-Shoshtari S, Morissette C, Hogan FR, Dudek G, Meger D (2023) Hypernetworks for zero-shot
transfer in reinforcement learning. arXiv preprint. arXiv:​2211.​15457

Rohanian O, Jauncey H, Nouriborji M, Chauhan VK, Gonalves BP, Kartsonaki C, Clinical Characterisa-
tion Group I, Merson L, Clifton D (2023) Using bottleneck adapters to identify cancer in clinical
notes under low-resource constraints. In: The 22nd workshop on biomedical natural language pro-
cessing and BioNLP shared tasks, Toronto, Canada. Association for Computational Linguistics, pp
62–78

Rusu A A, Rao D, Sygnowski J, Vinyals O, Pascanu R, Osindero S, Hadsell R (2019) Meta-learning
with latent embedding optimization. In International conference on learning representations

Ruta D, Gilbert A, Motiian S, Faieta B, Lin Z, Collomosse J (2023) HyperNST: hyper-networks for
neural style transfer. In: Karlinsky L, Michaeli T, Nishino K (eds) Computer vision—ECCV 2022
workshops. Springer, Cham, pp 201–217

Sarafian E, Keynan S, Kraus S (2021) Recomposing the reinforcement learning building blocks with
hypernetworks. In: International conference on machine learning. PMLR, pp 9301–9312

Schmidhuber J (1992) Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Comput 4(1):131–139

Schmidhuber J (1993) A ‘self-referential’ weight matrix. In: ICANN’93: proceedings of the interna-
tional conference on artificial neural networks, Amsterdam, The Netherlands, 13–16 September
1993, vol 3. Springer, London, pp 446–450

Sendera M, Przewięźlikowski M, Karanowski K, Zięba M, Tabor J, Spurek P (2023a) HyperShot: few-
shot learning by kernel hypernetworks. In: Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp 2469–2478

Sendera M, Przewięźlikowski M, Miksa J, Rajski M, Karanowski K, Zięba M, Tabor J, Spurek P (2023b)
The general framework for few-shot learning by kernel hypernetworks. Mach Vis Appl 34(4):53

http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/2201.09874
http://arxiv.org/abs/1809.10889
http://arxiv.org/abs/2211.08253
http://arxiv.org/abs/2211.15457

A brief review of hypernetworks in deep learning﻿	 Page 29 of 29  250

Shamsian A, Navon A, Fetaya E, Chechik G (2021) Personalized federated learning using hypernet-
works. In: International conference on machine learning. PMLR, pp 9489–9502

Shih A, Sadigh D, Ermon S (2021) HyperSPNS: compact and expressive probabilistic circuits. In: Ran-
zato M, Beygelzimer A, Dauphin Y, Liang P, Vaughan JW (eds) Advances in neural information
processing systems, vol 34. Curran Associates, Red Hook, pp 8571–8582

Spurek P, Winczowski S, Tabor J, Zamorski M, Zieba M, Trzciński T (2020) Hypernetwork approach to
generating point clouds. In: Proceedings of the 37th international conference on machine learning,
pp. 9099–9108

Spurek P, Zieba M, Tabor J, Trzcinski T (2022) General hypernetwork framework for creating 3d point
clouds. IEEE Trans Pattern Anal Mach Intell 44(12):9995–10008

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to
prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based encoding for evolving large-scale neu-
ral networks. Artif Life 15(2):185–212

Sun Z, Ozay M, Okatani T (2017) Hypernetworks with statistical filtering for defending adversarial
examples. arXiv preprint. arXiv:​1711.​01791

Szatkowski F, Piczak K J, Spurek P, Tabor J, Trzcinski T (2022) Hypersound: generating implicit neural
representations of audio signals with hypernetworks. In: 6th workshop on meta-learning at the confer-
ence on neural information processing systems

Tay Y, Zhao Z, Bahri D, Metzler D, Juan D-C (2021) Hypergrid transformers: towards a single model for
multiple tasks. In: International conference on learning representations

Tran T A, Hoang L P, Le D D, Tran T N (2023) A framework for controllable pareto front learning with
completed scalarization functions and its applications. arXiv preprint. arXiv:​2302.​12487

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I (2017) Atten-
tion is all you need. Advances in neural information processing systems, vol 30. Curran Associates,
Red Hook

Vincent T, Metelli A M, Belousov B, Peters J, Restelli M, D’Eramo C (2023) Parameterized projected bell-
man operator. In: Proceedings of the national conference on artificial intelligence (AAAI)

Volk T, Ben-David E, Amosy O, Chechik G, Reichart R (2022) Example-based hypernetworks for out-of-
distribution generalization. arXiv preprint. arXiv:​2203.​14276

Wiens J, Guttag J, Horvitz E (2014) A study in transfer learning: leveraging data from multiple hospitals to
enhance hospital-specific predictions. J Am Med Inf Assoc 21(4):699–706

Wu Q, Bauer D, Chen Y, Ma K-L (2023) HyperINR: a fast and predictive hypernetwork for implicit neural
representations via knowledge distillation. arXiv preprint. arXiv:​2304.​04188

Wullach T, Adler A, Minkov E (2022) Character-level hypernetworks for hate speech detection. Expert Syst
Appl 205:117571

Yin L, Perez-Rua J M, Liang K J (2022) SYLPH: a hypernetwork framework for incremental few-shot
object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 9035–9045

Zhang C, Ren M, Urtasun R (2019) Graph hypernetworks for neural architecture search. In: International
conference on learning representations

Zhao D, Kobayashi S, Sacramento J, Von Oswald J (2020) Meta-learning via hypernetworks. In: 4th Work-
shop on meta-learning at NeurIPS 2020 (MetaLearn 2020)

Zięba M (2022) Hypermaml: Few-shot adaptation of deep models with hypernetworks. arXiv preprint.
arXiv:​2205.​15745

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1711.01791
http://arxiv.org/abs/2302.12487
http://arxiv.org/abs/2203.14276
http://arxiv.org/abs/2304.04188
http://arxiv.org/abs/2205.15745

	A brief review of hypernetworks in deep learning
	Abstract
	1 Introduction
	2 Background
	3 Categorization of hypernetworks
	3.1 Input-based hypernetworks
	3.2 Output-based hypernetworks
	3.3 Variability of inputs
	3.4 Variability of outputs
	3.5 Dynamism in hypernetworks
	3.6 Architecture of hypernetworks

	4 Applications of hypernetworks
	5 When can we use hypernets?
	6 Challenges and future directions
	7 Conclusion
	Acknowledgements
	References

