
Vol.:(0123456789)

Artificial Intelligence Review (2024) 57:250
https://doi.org/10.1007/s10462-024-10862-8

A brief review of hypernetworks in deep learning

Vinod Kumar Chauhan1 · Jiandong Zhou1,2 · Ping Lu1 · Soheila Molaei1 · 
David A. Clifton1,3

Accepted: 13 July 2024 / Published online: 13 August 2024 
© The Author(s) 2024

Abstract
Hypernetworks, or hypernets for short, are neural networks that generate weights for 
another neural network, known as the target network. They have emerged as a powerful 
deep learning technique that allows for greater flexibility, adaptability, dynamism, faster 
training, information sharing, and model compression. Hypernets have shown promising 
results in a variety of deep learning problems, including continual learning, causal 
inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, 
natural language processing, and reinforcement learning. Despite their success across 
different problem settings, there is currently no comprehensive review available to inform 
researchers about the latest developments and to assist in utilizing hypernets. To fill this 
gap, we review the progress in hypernets. We present an illustrative example of training 
deep neural networks using hypernets and propose categorizing hypernets based on five 
design criteria: inputs, outputs, variability of inputs and outputs, and the architecture 
of hypernets. We also review applications of hypernets across different deep learning 
problem settings, followed by a discussion of general scenarios where hypernets can be 
effectively employed. Finally, we discuss the challenges and future directions that remain 
underexplored in the field of hypernets. We believe that hypernetworks have the potential 
to revolutionize the field of deep learning. They offer a new way to design and train neural 
networks, and they have the potential to improve the performance of deep learning models 
on a variety of tasks. Through this review, we aim to inspire further advancements in deep 
learning through hypernetworks.
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1  Introduction

Deep learning has revolutionized the field of artificial intelligence by enabling remarkable 
advancements in various domains, including computer vision (Chauhan et  al. 2024a), 
natural language processing (NLP) (Devlin et al. 2019), causal inference (Chauhan et al. 
2023a), and reinforcement learning (Li 2017). Standard deep neural networks (DNNs) 
have proven to be powerful tools for learning complex representations from data. However, 
despite their success, standard DNNs remain restrictive in certain conditions. For example, 
once a DNN is trained, its weights as well as its architecture are fixed (Rohanian et  al. 
2023; Vaswani et al. 2017), and any changes to weights or architecture require re-training 
the DNN. This lack of adaptability and dynamism restricts the flexibility of DNNs, making 
them less suitable for scenarios where dynamic adjustments or data adaptivity are required 
(Ha et al. 2017; Brock et al. 2018). DNNs generally have a large number of weights and 
need substantial amounts of data to optimize those weights (Alzubaidi et al. 2021). This 
can be challenging in situations where large amounts of data are not available. For example, 
in healthcare, collecting sufficient data for rare diseases can be particularly difficult due to 
the limited number of patients available per year (Wiens et al. 2014). Finally, uncertainty 
quantification in DNNs’ predictions is essential as it provides a measure of confidence, 
enabling better decision-making in high-stakes applications (Chauhan et  al. 2024b). 
Existing uncertainty quantification techniques have limitations, such as the need to train 
multiple models (Abdar et al. 2021), and uncertainty quantification is still considered an 
open problem (Kristiadi et al. 2019). Similarly, domain adaptation, domain generalization, 
adversarial defence, neural style transfer, and neural architecture search are important 
problems that remain unsolved, where hypernets can provide effective solutions as 
discussed in Sect. 4.

Hypernetworks (or hypernets in short) have emerged as a promising architectural 
paradigm to enhance the flexibility (through data adaptivity and dynamic architectures) and 
performance of DNNs. Hypernets are a class of neural networks that generate the weights/
parameters of another neural network called the target/main/primary network, where both 
networks are trained in an end-to-end differentiable manner (Ha et  al. 2017). Hypernets 
complement existing DNNs and provide a new framework to train DNNs, resulting in 
a new class of DNNs called HyperDNNs (please refer to Sect.  2 for details). The key 
characteristics and advantages of hypernets that offer applications across different problem 
settings are discussed below. 

(a)	 Soft weight sharing: Hypernetworks can be trained to generate the weights of multiple 
DNNs for solving related tasks (Chauhan et al. 2024c; Oswald et al. 2020). This is 
called soft weight sharing because, unlike hard weight sharing which involves shared 
layers among tasks (e.g., in multitasking), different DNNs are generated by a common 
hypernet through task conditioning. This helps share information among tasks and can 
be used for transfer learning or dynamic information sharing (Chauhan et al. 2024c).

(b)	 Dynamic architectures: Hypernetworks can be used to generate the weights of a 
network with a dynamic architecture, where the number of layers or the structure of 
the network changes during training or inference. This can be particularly useful for 
tasks where the target network structure is not known at training time (Ha et al. 2017).

(c)	 Data-adaptive DNNs: Unlike standard DNNs whose weights are fixed at inference time, 
HyperDNNs can generate a target network customized to the needs of the data. In such 
cases, hypernets are conditioned on the input data to adapt to the data (Sun et al. 2017).
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(d)	 Uncertainty quantification: Hypernets can effectively train uncertainty-aware DNNs 
by leveraging techniques like sampling multiple inputs from the noise distribution 
(Krueger et al. 2018) or incorporating dropout within the hypernets themselves 
(Chauhan et al. 2023b). By generating multiple sets of weights for the main network, 
hypernets create an ensemble of models, each with different parameter configurations. 
This ensemble-based approach aids in estimating uncertainty in the model predictions, 
a crucial aspect for safety-critical applications like healthcare, where having a measure 
of confidence in predictions is essential.

(e)	 Parameter efficiency: HyperDNNs, i.e., DNNs trained with hypernets, can have fewer 
weights than the corresponding standard DNNs, resulting in weight compression (Zhao 
et al. 2020). This can be particularly useful when working with limited resources, 
limited data, or high-dimensional data and can result in faster training than the 
corresponding DNN (Navon et al. 2021).

 Ha et  al. (2017) coined the term hypernets (also referred to as meta-networks or meta-
models) and trained the target network and hypernet in an end-to-end differentiable way. 
However, the concept of learnable context-dependent weights was discussed even earlier, 
such as fast weights in Schmidhuber (1992, 1993) and HyperNEAT (Stanley et al. 2009). 
Our discussion on hypernets focuses on neural networks generating weights for the target 
neural network due to their popularity, expressiveness, and flexibility (Vaswani et al. 2017; 
Chauhan et  al. 2024a). Recently, hypernets have gained significant attention and have 
produced state-of-the-art (SOTA) results across several deep learning problems, including 
ensemble learning (Kristiadi et al. 2019), multitasking (Tay et al. 2021), neural architecture 
search (Zhang et al. 2019), continual learning (Oswald et al. 2020), weight pruning (Liu 
et al. 2019), Bayesian neural networks (Deutsch et al. 2019), generative models (Deutsch 
et  al. 2019), hyperparameter optimization (Lorraine and Duvenaud 2018), information 
sharing (Chauhan et al. 2024c), adversarial defence (Sun et al. 2017), and reinforcement 
learning (RL) (Rezaei-Shoshtari et al. 2023) (please refer to Sect. 4 for more details).

Despite the success of hypernets across different problem settings, to the best of our 
knowledge, there is no review of hypernets to guide researchers about the developments 
and to help in utilizing hypernets. To fill this gap, we provide a brief review of hypernets 
in deep learning. We illustrate hypernets using an example and differentiate HyperDNNs 
from DNNs (Sect.  2). To facilitate better understanding and organization, we propose a 
systematic categorization of hypernets based on five distinct design criteria, resulting in 
different classifications that consider factors such as (i) input characteristics, (ii) output 
characteristics, (iii) variability of inputs, (iv) variability of outputs, and (v) the architecture 
of hypernets (Sect.  3). Furthermore, we offer a comprehensive overview of the diverse 
applications of hypernets in deep learning, spanning various problem settings (Sect.  4). 
By examining real-world applications, we aim to demonstrate the practical advantages and 
potential impact of hypernetworks. Additionally, we discuss some scenarios and pose direct 
questions to understand if we can apply hypernets to a given problem (Sect. 5). Finally, we 
discuss the challenges and future directions of hypernet research (Sect. 6). This includes 
addressing initialization, stability, and complexity concerns, as well as exploring avenues 
for enhancing the theoretical understanding and uncertainty quantification of DNNs. By 
providing a comprehensive review of hypernetworks, this paper aims to serve as a valuable 
resource for researchers and practitioners in the field. Through this review, we hope to 
inspire further advancements in deep learning by leveraging the potential of hypernets to 
develop more flexible, high-performing models.
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Contributions: This review paper makes the following key contributions:

•	 To the best of our knowledge, we present the first review on hypernetworks in deep 
learning, which have shown impressive results across several deep learning problems.

•	 We propose categorizing hypernets based on five design criteria, leading to different 
classifications of hypernets, such as based on inputs, outputs, variability of inputs and 
outputs, and architecture of hypernets.

•	 We present a comprehensive overview of applications of hypernetworks across 
different problem settings, such as uncertainty quantification, continual learning, causal 
inference, transfer learning, and federated learning, and summarize our review, as per 
our categorization, in a table (Table 2).

•	 We explore broad scenarios for hypernet applications, drawing from existing use cases 
and hypernet characteristics. This exploration aims to equip researchers with actionable 
insights into when to leverage hypernets in their problem setting.

•	 Finally, we identify the challenges and future directions of hypernetwork research, 
including initialization, stability, scalability, and efficiency concerns, and the need for 
theoretical understanding and interpretability of hypernetworks. By highlighting these 
areas, we aim to inspire further advancements in hypernetworks and provide guidance 
for researchers interested in addressing these challenges.

The rest of the paper is organized as follows: Sect. 2 provides a comprehensive background 
on hypernets, while Sect. 3 introduces a novel categorization scheme for hypernets. The 
diverse applications of hypernets across various problems are discussed in Sect. 4, followed 
by an exploration of specific scenarios where hypernets can be effectively employed in 
Sect.  5. Addressing challenges and delineating future research directions is the focus of 
Sect. 6, and finally, the concluding remarks are discussed in Sect. 7.

2 � Background

In this section, we discuss and differentiate the workings of standard deep neural networks 
(DNNs) and DNNs trained with hypernetworks, referred to as HyperDNNs, using a generic 
example. Figure  1 illustrates the structural differences and gradient flows in DNNs and 
HyperDNNs. Both solve the same problem using the same DNN architecture at inference 
time. However, differences exist in their training processes, specifically in gradient flow 
and weight optimization, making hypernets an alternative way of training DNNs.

Let us denote a dataset using X, Y to solve a general task T  , where X is a matrix of 
features and Y is a vector of labels, and x ∈ X denotes one data point and y ∈ Y  is the 
corresponding label. Let a DNN be denoted as a function F(X;Θ) , where X denotes the 
inputs and Θ represents the weights of the DNN. During the forward pass, inputs x ∈ X 
pass through the layers of F  to produce predictions ŷ ∈ Ŷ  , which are then used along with 
true labels y ∈ Y  to calculate an objective function that measures the discrepancy between 
actual values and the values predicted by the model using a loss function L(Y , Ŷ) . During 
the backward pass, DNNs typically use backpropagation to propagate the error backwards 
through the layers and calculate gradients of L with respect to Θ . Optimization algorithms, 
such as Adam (Kingma and Ba 2014), use these gradients to update the weights. At the end 
of the training, we receive optimized weights Θ that are used at inference time in the DNN 
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F(X;Θ) to make predictions with the test data for solving task T  . Thus, in standard DNNs, 
Θ are the learnable weights.

Hypernets provide an alternative way of learning weights Θ of the DNN F(X;Θ) to 
solve task T  , where Θ are not directly learned but are generated by another neural network. 
In this framework, we solve the same task using the same DNN architecture but with a 
different training approach. Let a hypernet be denoted as H(C;Φ) which generates the task-
specific weights of the DNN F(X;Θ) , where C is a task-specific context vector that acts as 
input to H and Φ are weights of the hypernet H . That is, Θ = H(C;Φ) where Φ are the only 
learnable weights in the overall architecture. The context vector C can be generated from 
the data (Alaluf et al. 2022), sampled from a noise distribution (Krueger et al. 2018), or 
correspond to task identity/embedding (Armstrong and Clifton 2021). During the forward 
pass, a task-specific context vector C is passed to the hypernet H which generates weights 
Θ for the DNN F  . Then, like a standard DNN, an input x ∈ X is passed through the DNN 
F  to predict the output Y, and the loss is calculated as L(Y , Ŷ) . However, during the 
backward pass, the error is backpropagated through the hypernet H and gradients of L are 
calculated with respect to the weights of the hypernet Φ . The learning algorithm optimizes 
Φ to generate Θ so that performance on the target task T  is optimized. At test time, Θ 
generated from the optimized hypernet H are used in the DNN F(X;Θ) to make predictions 
with the test data for solving task T  . The optimization problems for the standard DNN and 
the HyperDNN can be written as follows (ignoring regularization terms for simplicity):

Thus, DNNs learn their weights1 directly from the data, while in HyperDNNs the weights 
of the hypernet are learned, and the weights of the DNN are generated by the hypernet. 
For a specific example of a comparison of DNN and HyperDNN architectures and their 
workings, please refer to our work in causal inference (Chauhan et al. 2024c).

(1)DNN: min
Θ

F(X;Θ), HyperDNN: min
Φ

F(X;Θ) = F(X;H(C;Φ)).

Fig. 1   An overview of the architectures and gradient flows for a standard DNN F(X;Θ) and the same DNN 
implemented with hypernets, referred to as HyperDNN F(X;Θ) = F(X;H(C;Φ)) . For the DNN, gradients 
flow through the DNN, and DNN weights Θ are learned during training. For the HyperDNN, gradients flow 
through the hypernet, and hypernet weights Φ are learned during training to produce DNN weights Θ as 
outputs

1  We have used weights and parameters interchangeably.
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As discussed in Sect. 1, training a DNN with a hypernet, i.e., HyperDNN presents 
several advantages over directly training a DNN. However, these advantages are 
application-specific and cannot be generalized across all tasks or applications. For 
instance, a key feature of hypernets is soft-weight sharing, which enables information 
sharing among related components. This information sharing is particularly valuable 
in settings with limited data, leading to performance improvements for HyperDNNs in 
such scenarios. In general, HyperDNNs are beneficial for applications with limited data, 
problems requiring data-adaptive networks, dynamic network architectures, parameter 
efficiency, and uncertainty quantification. A detailed discussion of scenarios where 
HyperDNNs can be useful is provided in Sect. 5.

In general, if a task can be solved using standard DNNs, it is advisable to use them 
instead of hypernets. As depicted in Fig. 1, HyperDNNs require an additional DNN to 
solve the same task. Despite the advantages offered by hypernets, this additional DNN 
introduces complexities in training and implementing HyperDNNs. For example, the 
initialization of HyperDNNs is more challenging than DNNs because the weights of the 
target network are generated at the output layer of the hypernet. Classical initialization 
techniques do not guarantee that the weights of the target network are initialized within 
the same range. However, adaptive optimizers, such as Adam (Kingma and Ba 2014), 
can mitigate this issue to some extent. Another significant challenge with HyperDNNs is 
their scalability. Since the weights of the target network are generated at the output layer 
of the hypernet, this approach can present difficulties when dealing with large target 
networks. Scalability issues can be managed using various weight generation strategies. 
Therefore, when using HyperDNNs, practitioners should consider employing adaptive 
optimizers, implementing different weight generation strategies, and using approaches 
to stabilize training, such as spectral norms. For a detailed discussion on the challenges 
associated with HyperDNNs, please refer to Sect. 6.

3 � Categorization of hypernetworks

In this section, we propose to categorize the hypernetworks based on five design criteria, 
as depicted in Fig. 2 and as given below: 

Fig. 2   Proposed categorization of hypernets based on five design criteria
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(a)	 Input-based, i.e., what kind of input is taken by the hypernetworks to generate the target 
neural network weights?

(b)	 Output-based, i.e., how are the outputs, that is, the target weights generated?
(c)	 Variability of inputs, i.e., are the inputs of hypernet fixed?
(d)	 Variability of outputs, i.e., does the target network have a fixed number of weights? 

and
(e)	 Architecture-based, i.e., what kind of architecture does hypernet use to generate the 

target weights?

We discuss these in the following subsections. One can categorize hypernets based on 
the architecture of the target network but that is not considered because hypernets mostly 
generate target weights independent of their architecture.

3.1 � Input‑based hypernetworks

Hypernetworks take a context vector as an input and generate weights of the target DNN 
as output. Depending on what context vector is used, we can have the following types of 
hypernetworks.

Task-conditioned hypernetworks  These hypernetworks take task-specific 
information as input. The task information can be in the form of task identity/embedding, 
hyperparameters, architectures, or any other task-specific cues. The hypernetwork 
generates weights that are tailored to the specific task. This allows the hypernet to adapt 
its behavior accordingly and allows information sharing, through soft weight sharing of 
hypernets, among the tasks, resulting in better performance on the tasks. For example, 
Chauhan et al. (2024c) applied hypernets to solve treatment effects estimation problem in 
causal inference that uses an identity or embedding of potential outcome (PO) functions to 
generate weights corresponding to the PO function. The hypernetworks enabled dynamic 
end-to-end inter-treatment information sharing among treatment groups and helped to 
calculate reliable treatment estimates in observational studies with limited-size datasets. 
Similarly, task-conditioned hypernets have been used to solve other problems, including 
multitasking (Navon et  al. 2021), NLP (Ha et  al. 2017), and continual learning (Oswald 
et al. 2020).

Data-conditioned hypernetworks  These hypernetworks are conditioned on the data 
that the target network is being trained on. The hypernetwork generates weights based on 
the characteristics of the input data. This enables the neural network to dynamically adjust 
its behavior based on the specific input pattern or features, leading to more flexible and 
adaptive models, and resulting in better generalization to unseen data. For example, Alaluf 
et al. (2022) applied hypernets for image editing where the input of hypernet is based on 
the input images and initial approximation of reconstruction to generate modulations to the 
weights of the pre-trained generator. Similarly, data-conditioned hypernets have been used 
to solve other problems, such as adversarial defence (Sun et al. 2017), knowledge graphs 
learning (Balažević et al. 2019) and shape learning (Littwin and Wolf 2019).

Noise-conditioned hypernetworks  These hypernetworks are not conditioned on 
any input data or task cues, but rather on randomly sampled noise. This makes them 
more general-purpose and helps in predictive uncertainty quantification for DNNs, but 
it also means that they may not perform as well as task-conditioned or data-conditioned 
hypernetworks on multiple tasks or datasets. For example, Krueger et  al. (2018) applied 
hypernetworks to approximate Bayesian inference in the DNNs and evaluated the approach 
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for active learning, model uncertainty, regularization, and anomaly detection. Similarly, 
noise-conditioned hypernets have been used to solve other problems, such as manifold 
learning (Deutsch et al. 2019) and uncertainty quantification (Ratzlaff and Fuxin 2019).

These different types of conditioning enable hypernetworks to enhance the flexibility 
(through adaptability and dynamic architectures), and performance of deep learning 
models in various contexts. The specific type of hypernetwork that is used will depend on 
the specific task or application. For example, task-conditioned hypernets are suitable for 
information sharing among multiple tasks, data-conditioned hypernets are suitable to deal 
with conditions where DNN need to adapt to input data, and noise-conditioned hypernets 
are suitable for uncertainty quantification in the predictions.

3.2 � Output‑based hypernetworks

Based on the outputs of hypernets, i.e., weight generation strategy, we classify 
hypernetworks according to whether all weights are generated together or not. This 
classification of hypernetworks is important because it controls the scalability and 
complexity of the hypernetworks, as typically DNNs have a large number of weights, and 
producing all of them together can make the size of the last layer of hypernets large. So, 
there are ways to manage the complexity of the hypernets that lead to different strategies 
of weight generation, as discussed below. It is possible to train HyperDNN with fewer 
weights than the target DNN—this is called weight compression (Zhao et al. 2020). We 
compared and summarized the characteristics of various weight generation strategies in 
Table 1. The first column represents the considered characteristic for comparison, while 
the following three columns correspond to three different weight generation strategies. The 
values in each row indicate whether a particular weight generation strategy provides the 
specified feature or not.

Generate Once  These hypernetworks generate weights of the entire target DNN 
altogether. This approach uses all the generated weights, and weights of each layer are 
generated together, unlike the other weight generation strategies. However, this weight 
generation approach is not suitable for large target networks because that can lead to 
complex hypernets. For example, Shamsian et al. (2021), Galanti and Wolf (2020), Zhang 
et al. (2019) used generate once weight generation.

Generate Multiple  These hypernetworks have multiple heads for producing weights 
(sometimes referred to as split/multi-head hypernets) and this weight generation approach 
can complement the other approaches. This simplifies the complexity and reduces the 
number of weights required in the last layer of the hypernets by the number of head times. 
This approach does not need additional embeddings, and in general, uses all the generated 
weights, unlike component-wise and chunk-wise weight generation approaches where 
some weights remain unused. For example, Beck et  al. (2023), Rezaei-Shoshtari et  al. 
(2023), Chauhan et al. (2024c) used generate multiple strategy to produce target weights.

Generate Chunk-wise Chunk-wise hypernetworks generate weights of the target net-
work in chunks. This can lead to not using some of the generated weights because the 
weights are generated as per the chunk size, which may not match the layer sizes. If the 
chunk size is smaller than the layer size, then all the weights of a layer may not be gener-
ated together. Moreover, these hypernets need additional embeddings to distinguish dif-
ferent chunks and to produce specific weights for the chunks. However, overall chunk-
wise weight generation leads to reducing complexity and improving the scalability of 
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hypernets. For example, Chauhan et  al. (2024c), Oswald et  al. (2020) used chunk-wise 
weight generation.

Generate Component-wise Component-wise weights generation strategy generates 
weights for each individual component (such as layer or channel) of the target model 
separately. This is helpful in generating specific weights because different layers or 
channels represent different features or patterns in the network. However, similar to 
the chunk-wise approach, component-wise hypernets need an embedding for each 
component to distinguish among different components and produce weights specific to 
that component. They also help to reduce the complexity and improve the scalability 
of hypernets. Since the weights are generated as per the size of the largest layer so 
this weight generation approach can lead to not using some of weights in smaller 
layers. This strategy can be seen as a special case of a chunk-wise weight generation 
approach, where one chunk is equal to the size of one component. For example, Zhao 
et al. (2020), Alaluf et al. (2022), Mahabadi et al. (2021) used component-wise weight 
generation.

By classifying hypernetworks based on their weight generation strategy, we can 
make informed choices that may help control the scalability and complexity of the 
hypernetworks effectively. Each type of weight generation strategy offers unique 
benefits and considerations based on the specific characteristics and requirements 
of the task at hand. The comparative study of characteristics of different weight 
generation approaches is summarized in Table 1.

3.3 � Variability of inputs

We can categorize hypernets based on the variability of the inputs. We have two 
classes, static inputs and dynamic inputs, as discussed below.

Static Inputs  If the inputs are predefined and are fixed then the hypernet is called 
static with respect to the inputs. For example, multitasking (Mahabadi et al. 2021) has 
fixed number of tasks leading to fixed number of inputs. It is to be noted that here fixed 
input only means fixed tasks identities, however hypernets can learn embeddings for 
different tasks.

Dynamic Inputs  If the inputs change and generally are dependent on data on which 
the target network is trained, then the hypernet is called dynamic with respect to the 
inputs. Dynamic inputs help hypernetworks to introduce a new level of adaptability by 
dynamically generating the weights of the target network. This dynamic weight generation 
enables hypernetworks to respond to input-dependent context and adjust their behavior 
accordingly. By generating network weights based on specific inputs, hypernetworks can 
capture intricate patterns and dependencies that may vary across different instances of 
data. This adaptability leads to enhanced model performance, especially in scenarios with 
complex and evolving data distributions (Volk et  al. 2022). Thus, dynamic input-based 
hypernets help in domain adaptation (Volk et  al. 2022), density estimation (Höfer et  al. 
2023) and knowledge graph learning (Balažević et al. 2019) etc.

This can be seen as a super categorization over input-based hypernets where task-
conditioned hypernets fall in the static inputs category while random-noise and data-
conditioned hypernets fall in the dynamic category. Both the categories have their own 
advantages as static inputs help in information sharing (Chauhan et al. 2024c), transfer 
learning (Oswald et al. 2020), and are suitable where we have multiple tasks to solve 
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(Shamsian et al. 2021). On the other hand, dynamic inputs give hypernets adaptability 
to new conditions unknown during training (Balažević et al. 2019).

3.4 � Variability of outputs

When classifying hypernetworks based on the nature of the target network’s weights, 
we can categorize them into two types, static outputs or dynamic outputs, as discussed 
below.

Static Outputs If weights of the target network are fixed in size, then the hypernet is 
called static with respect to the outputs. In this case, the target network is also static. For 
example, Pan et al. (2018), Szatkowski et al. (2022) produce static weights.

Dynamic Outputs  If weights of the target network are not fixed, i.e., the architecture 
varies in size, then the hypernet is called dynamic with respect to the outputs, and the 
target network is also a dynamic network as it can have different architecture depending on 
the input of the hypernet. The dynamic weights can be generated, mainly, in two situations, 
first when the hypernet architecture is dynamic, e.g., Ha et al. (2017) used recurrent neural 
network (RNN) to propose HyperRNN based on non-shared weights. Second, the dynamic 
weights can be generated when the inputs are dynamic, i.e., hypernet adapts as per the 
input data, e.g., Littwin and Wolf (2019) applied convolutional neural network (CNN) 
based hypernet to generate dynamic weights for shape learning from an image of a shape. 
Similarly, Peng et al. (2020), Li et al. (2020) also produce dynamic weights.

3.5 � Dynamism in hypernetworks

This is a super categorization of Subsection 3.3 and 3.4 into broader category based on the 
dynamism in inputs or outputs of the hypernets, as discussed below.

Static Hypernets If input of a hypernet is fixed, i.e., predefined and number of weights 
produced by hypernet for the target network are fixed, i.e., the architecture is fixed, then 
the hypernet is called as a static hypernet. This kind of hypernets work with predefined 
inputs, e.g., task identities, which can be learned as embeddings, but the tasks being solved 
remain same. For example, heterogeneous treatment effect estimation (Chauhan et  al. 
2024c) where number of treatment groups or potential outcome functions are fixed, and 
architecture of the target network (in this case potential outcome functions) is also fixed.

Dynamic Hypernets  If input of a hypernet is based on input of target network, i.e., 
input data, or number of weights produced by hypernet for the target network are variable, 
i.e., the architecture is dynamic, then the hypernet is called as a dynamic hypernet. For 
example, Sendera et al. (2023a) applied data-conditioned hypernet to few-shot learning by 
combining kernels and hypernets. The kernels were used to extract support information 
from data of different tasks that act as input to the hypernet which generates weights for the 
target task. Zhang et al. (2019) applied hypernetworks for neural architecture search where 
they modeled neural architectures of a DNN as graph and used them as input to hypernet to 
generate the target network weights. So, the target network has variable architecture, and is 
a dynamic hypernet based on the dynamic outputs.



	 V. K. Chauhan et al.250  Page 12 of 29

3.6 � Architecture of hypernetworks

In the categorization of hypernetworks based on their architectures, we can classify them 
into four major types: multi-layer perceptrons (MLPs), convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and attention-based networks, as given below.

MLPs  MLP based hypernetworks employ a dense and fully connected architecture, 
allowing every input neuron to connect with every output neuron. This architecture enables 
a comprehensive weight generation process by considering the entire input information, 
e.g., (Chauhan et al. 2024c).

CNNs CNN hypernetworks, on the other hand, leverage convolutional layers to capture 
local patterns and spatial information. These hypernetworks excel in tasks involving 
spatial data, such as an image or video analysis, by extracting features from the input and 
generating weights or parameters accordingly, e.g., Nirkin et al. (2021) employed MLP to 
implement hypernets.

RNNs  RNN hypernetworks incorporate recurrent connections in their architecture, 
facilitating feedback loops and sequential information processing. They dynamically 
generate weights or parameters based on previous states or inputs, making them well-
suited for tasks involving sequential data, such as natural language processing or time 
series analysis, e.g., Ha et al. (2017) employed RNN to implement hypernets.

Attention Attention-based hypernetworks incorporate attention mechanisms (Vaswani 
et al. 2017) into their architecture. By selectively focusing on relevant input features, these 
hypernetworks generate weights for the target network, allowing them to capture long-
range dependencies and improve the quality of generated outputs, e.g., Volk et al. (2022) 
employed attention to implement hypernets.

Each type of architecture has its own strengths and applicability, enabling hypernetworks 
to adapt and generate weights in a manner that aligns with the specific characteristics and 
demands of the target network and the data being processed.

4 � Applications of hypernetworks

Hypernetworks have demonstrated their effectiveness and versatility across a wide range 
of domains and tasks in deep learning. In this section, we discuss some of the important 
applications2 of hypernetworks and highlight their contributions to advancing the 
SOTA in these areas. We summarize the applications of hypernets as per our proposed 
categorization and also provide links to code repositories for the benefit of the researchers, 
wherever available, in Table 2.

Continual learning Continual learning, also known as lifelong learning or incremental 
learning, is a machine learning paradigm that focuses on the ability of a model to learn 
and adapt continuously over time, in a sequential manner, without forgetting previously 
learned knowledge. Unlike traditional batch learning, which assumes static and independ-
ent training and testing sets, continual learning deals with dynamic and non-stationary 
data distributions, where new data arrives incrementally, and the model needs to adapt to 
these changes while retaining previously acquired knowledge. The challenge in continual 

2  We have explored 50 important papers (arranged by publication year) while considering at least one 
application in each distinct problem setting. This is not an exhaustive list and it is possible that we may have 
missed important references.
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learning lies in mitigating catastrophic forgetting, which refers to the tendency of a model 
to forget previously learned information when it is trained on new data. To address this, 
various strategies have been proposed, including regularization techniques, rehearsal meth-
ods, dynamic architectures, and parameter isolation. Oswald et  al. (2020) modeled each 
incrementally obtained dataset as a task and applied task-conditioned hypernets for con-
tinual learning—this helped to share information among tasks. To address the catastrophic 
forgetting issue, they proposed a regularizer for rehearsing task-specific weight realiza-
tions rather than the data from previous tasks. They achieved SOTA results on benchmarks 
and empirically showed that the task-conditioned hypernets have a long capacity to retain 
memories of previous tasks. Similarly, Huang et al. (2021) and Ehret et al. (2021) applied 
task-conditioned hypernets to continual learning in reinforcement learning (RL).

Federated Learning  Federated Learning is a decentralized approach to machine 
learning where the training process is distributed across multiple devices or edge devices, 
without the need to centralize data in a single location. In this paradigm, each device or 
edge node locally trains a model using its own data, and only the model updates, rather 
than the raw data, are shared and aggregated on a central server. This enables collaborative 
learning while preserving data privacy and security. It also reduces communication costs 
and latency, making it suitable for scenarios with limited bandwidth or intermittent 
connectivity. Shamsian et  al. (2021) modeled each client machine as a task and applied 
task-conditioned hypernets to federated learning problem. They trained a central hypernet 
to generate the weights for the client models. This allowed information sharing across 
different clients while making the hypernet size independent of communication cost, as 
hypernet weights are never transmitted. The hypernet-based federated learning achieved the 
SOTA results and also showed better generalization to new clients whose distributions were 
different than the existing clients. Litany et al. (2022) extended this work to heterogeneous 
clients, i.e., clients with different neural architectures, using graph hypernetworks (Zhang 
et al. 2019).

Few-shot Learning Few-shot learning is a sub-field of machine learning that focuses 
on training models to learn new concepts or tasks with only a limited number of training 
examples. Unlike traditional machine learning approaches that typically require large 
amounts of labeled data for each task, few-shot learning aims to generalize knowledge from 
a small support set of labeled examples to classify or recognize new instances. To address 
the practical difficulties of existing techniques to operate in high-dimensional parameter 
spaces with extremely limited-data settings, Rusu et  al. (2019) applied data-conditioned 
hypernets. They employed encoder-decoder based hypernet which learns a data-dependent 
latent generative representation of model parameters that shares information between 
different tasks through soft weight sharing of hypernets. They also achieved SOTA results 
and showed that the proposed technique can capture uncertainty in the data. Sendera et al. 
(2023a) also applied data-conditioned hypernet to few-shot learning by combining kernels 
and hypernets. The kernels were used to extract support information from data of different 
tasks that act as input to the hypernet which generates weights for the target task. Similarly, 
Zhao et  al. (2020), Zięba (2022) and Sendera et  al. (2023b) also applied hypernets, and 
utilized soft weight sharing, for few-shot learning.

Manifold Learning Manifold learning is a sub-field of machine learning that focuses 
on capturing the underlying structure or geometry of high-dimensional data in lower-
dimensional representations or manifolds. It aims to uncover the intrinsic relationships 
and patterns within the data by mapping it to a lower-dimensional space, enabling better 
visualization, clustering, or classification. Hypernetworks can be utilized in the context of 
manifold learning to enhance the representation learning process. By generating weights or 
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parameters for the target network based on the input, hypernetworks can adaptively learn 
a manifold that captures the intricate data structure (Shamsian et al. 2021). Deutsch et al. 
(2019) applied noise-conditioned hypernetworks to map latent vectors for generating target 
network weights that generalize mode connectivity in loss landscape to higher dimensional 
manifolds.

AutoML AutoML, short for Automated Machine Learning, refers to the development 
of algorithms, systems, and tools that automate various aspects of the machine learning 
pipeline, e.g., neural architecture search (NAS) and automated hyperparameter 
optimization. Zhang et  al. (2019) applied hypernetworks for NAS where they modeled 
neural architectures of a DNN as graph and used them as input to hypernet to generate 
the target network weights. They achieved about 10 times faster results than the SOTA. 
Similarly, Brock et al. (2018) and Peng et al. (2020) present another example of application 
of hypernets to NAS, where they exploit soft weight sharing property of hypernets for 
information sharing among different architectures. For hyperparameter optimization, 
Lorraine and Duvenaud (2018) applied hypernets that take hyperparameters of the target 
network as input and generate optimal weights for the target network, and hence perform 
joint training for target network parameters and hyperparameters which are otherwise 
trained in nested optimization loops. The authors proved the efficacy of the proposed 
technique against the SOTA to train thousands of hyperparameters.

Pareto-front Learning  Pareto-front learning, also known as multi-objective 
optimization, is a technique that addresses problems with multiple conflicting objectives, 
e.g., multitasking has multiple tasks that may have conflicting gradients. It aims to find 
a set of solutions that represent the trade-off among different objectives, rather than a 
single optimal solution. In Pareto-front learning, the goal is to identify a set of solutions 
that cannot be improved in one objective without sacrificing performance in another 
objective. These solutions are referred to as Pareto-optimal or non-dominated solutions 
and lie on the Pareto-front, which represents the best possible trade-off between objectives. 
Navon et al. (2021) applied hypernets to learn the entire Pareto-front, which at inference 
time takes a preferential point on the Pareto-front and generates Pareto-front weights for 
the target network whose loss vector is in the direction of the ray. They showed that the 
proposed hypernets are computationally very efficient as compared with the SOTA and 
can scale to large models, such as ResNet18. This work is further extended in Hoang et al. 
(2023), where hypernet generates multiple solutions, and Tran et al. (2023), which consider 
completed scalarization functions in the Pareto-front learning.

Domain adaptation  Domain adaptation refers to the process of adapting a machine 
learning model trained on a source domain to perform well in a different target domain. It 
is a crucial challenge in machine learning when there is a shift or discrepancy between the 
distribution of the source and the target data. Hypernets can play a valuable role in domain 
adaptation by dynamically generating or adapting model parameters, architectures, or other 
components to effectively handle domain shifts. For example, Volk et al. (2022) were the 
first to propose hypernets for domain adaptation. They used data-conditioned hypernets 
where examples from the target domains are used as input to hypernet that generates 
weights for the target network. This gives hypernets ability to learn and share information 
from existing domains with target domain through shared training.

Causal inference Causal inference is a field of study that focuses on understanding 
and estimating causal relationships between variables. It aims to uncover the cause-and-
effect relationships within a system by leveraging observational or experimental data. 
Causal inference is particularly important when inferring the impact of treatments/ 
interventions/ policies on outcomes of interest. Recently, we were the first to apply 
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hypernets to heterogeneous treatment effects (HTE) estimation problem (Chauhan 
et  al. 2024c). We applied task-conditioned hypernets where each potential outcome 
(PO) function is considered as a task. Embeddings of PO functions are used as input 
to hypernet that generates parameters for the corresponding PO function, i.e., factual 
and counterfactual models. Based on soft weight sharing of hypernets, this work 
presents the first general mechanism to train HTE learners that enables end-to-end 
inter-treatment information sharing among the PO functions and helps to get reliable 
estimates, especially with limited-size observational data. The proposed framework also 
incorporates dropout in the hypernet that allows to generate multiple sets of parameters 
for the PO functions and helps in uncertainty quantification.

Uncertainty quantification  Uncertainty quantification is a critical aspect of deep 
learning and decision-making that involves estimating and understanding the uncertainty 
associated with model predictions or outcomes. It provides a measure of confidence or 
reliability in the predictions made by a model, particularly in situations where the model 
encounters unseen or uncertain data. Hypernets can effectively train uncertainty aware 
DNNs by leveraging techniques like sampling multiple inputs from the noise distribution 
(Krueger et al. 2018) or incorporating dropout within the hypernets themselves (Chauhan 
et al. 2023b). By generating multiple sets of weights for the main network, hypernets create 
an ensemble of models, each with different parameter configurations. This ensemble-based 
approach aids in estimating uncertainty in the model predictions. Krueger et  al. (2018) 
proposed Bayesian hypernets that take random noise as input to produce distributions over 
the weights of the target network and showed competitive performance for uncertainty. 
Ratzlaff and Fuxin (2019) also applied noise-conditioned hypernets for uncertainty 
quantification and showed that the proposed technique provides a better estimate of 
uncertainty as compared to the ensemble learning technique. In addition, Chauhan et al. 
(2023b) used dropout in the task-conditioned hypernets to generate multiple sets of weights 
for the target network and thus helping to estimate uncertainty.

Adversarial Defence Adversarial defence in deep learning refers to the techniques used 
to enhance the robustness and resilience of models against adversarial attacks. Adversarial 
attacks involve making carefully crafted perturbations to input data in order to deceive 
or mislead deep learning models (Madry et  al. 2017). By incorporating hypernetworks, 
models can enhance their ability to detect and defend against adversarial attacks by 
dynamically generating or adapting their weights or architectures. For example, Sun et al. 
(2017) generated data-dependent adaptive convolution kernels to improve the robustness of 
CNNs against adversarial attacks and were successful in spontaneously detecting attacks 
generated by Gaussian noise, fast gradient sign methods, and black-box attack methods. 
The models developed with hypernets are highly adaptive and customized to the data. 
Similarly, Kristiadi et al. (2019), Ratzlaff and Fuxin (2019) and Krueger et al. (2018) also 
found noise-conditioned hypernets robust to adversarial examples as compared with the 
SOTA.

Multitasking Multitasking refers to the capability of a model to perform multiple tasks 
or learn multiple objectives simultaneously. It involves leveraging shared representations 
and parameters across different tasks to enhance learning efficiency and overall 
performance. Hypernets can be applied in the context of multitasking to facilitate the joint 
learning of multiple tasks by dynamically generating or adapting the model’s parameters 
or architectures. Specifically, we can train task-conditioned hypernets for multitasking 
where embedding of a task act as input to the hypernet that generates weights for the 
corresponding task. We can either generate entire model for each of the tasks or can only 
generate non-shared parts of a multitasking network. The hypernets facilitate such models 
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to share information across different tasks as well as have specific personalized model for 
each task. For example, Mahabadi et  al. (2021) applied task-conditioned hypernets that 
share knowledge across the tasks as well as generate task-specific models and achieved 
benchmark results. Navon et al. (2021) also studied task-conditioned hypernets for Pareto-
front learning to address the conflicting gradients among different objectives and obtained 
impressive results on multitasking, including fairness and image segmentation.

Reinforcement Learning  Reinforcement Learning (RL) focuses on training agents 
to make sequential decisions in an environment to maximize a cumulative reward. RL 
operates through an interaction loop where the agent takes actions, receives feedback in the 
form of rewards, and learns optimal policies through trial and error. Hypernets can be used 
to dynamically generate or adapt network architectures, model parameters, or exploration 
strategies in RL agents. By using a hypernetwork, the RL agent can effectively learn to 
customize its internal representations or policies based on the specific characteristics of 
the environment or task. For example, Sarafian et al. (2021) applied hypernets to generate 
the building blocks of RL, i.e., policy networks and Q-functions, rather than using MLPs. 
They showed faster training and improved performance on different algorithms for RL 
and in meta-RL. Similarly, noise-conditioned hypernets are used in (Vincent et al. 2023) 
to generate weights of each Bellman iteration with HyperRNN, and task-conditioned 
hypernets were used in RL for generalization across tasks (Beck et al. 2023), continual RL 
(Huang et al. 2021), and zero-shot learning (Rezaei-Shoshtari et al. 2023).

Natural Language Processing NLP is a sub-field of artificial intelligence that focuses 
on the interaction between computers and human language. It involves various tasks, such 
as language generation, sentiment analysis, machine translation, and question answering, 
among others. In the context of NLP, hypernets can be used to generate or adapt neural 
network architectures, tuning hyperparameters, for neural architecture search, and for 
transfer learning and domain adaptation etc. For example, Volk et al. (2022) applied data-
conditioned hypernet for out-of-distribution (OOD) generalization. They used T5 encoder-
decoder framework to generate a unique signature for each example from different source 
domains. This signature acts as input to the hypernet and generates parameters for the 
target network—a dynamic and adaptive network. As discussed above, Mahabadi et  al. 
(2021) applied task-conditioned hypernets to fine-tune the pre-trained language models by 
generating weights for the bottleneck adapters. In the multitasking setting, they modeled 
task, adapter location and layer id as different tasks and used embedding of these tasks as 
input to the hypernet that helps in shared learning and achieving parameter efficiency.

Computer Vision Computer vision focuses on enabling computers to understand and 
interpret visual information from images or videos. Computer vision algorithms aim to 
replicate human visual perception by detecting and recognizing objects, understanding 
their spatial relationships, extracting features, and making sense of the visual scene. Some 
applications of hypernets in computer vision are: Ha et  al. (2017), in their pioneering 
work, first applied task-conditioned hypernets for image classification, Alaluf et al. (2022) 
and  Muller (2021) applied data-conditioned hypernets, where image acts as input to 
hypernet, for image enhancement, and Ratzlaff and Fuxin (2019) applied noise-conditioned 
hypernets for image classification. Data-conditioned hypernets are also applied to semantic 
segmentation in Nirkin et  al. (2021). Some other applications of hypernets in computer 
vision are camera pose estimation (Ferens and Keller 2023), neural style transfer (Ruta 
et al. 2023), image processing/editing (Alaluf et al. 2022), and neural image enhancement 
(Muller 2021). It is to be noted that computer vision is a vast subject and encompasses 
many problem settings discussed earlier so they can be used as such with change of domain 
related data or models. For example, hypernets developed for AutoML, domain adaption, 
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continual learning, and federated learning etc. can be applied to computer vision problems 
as well.

The above applications of hypernets are not exhaustive and some other interesting areas 
where hypernets have produced the SOTA results are knowledge graph learning (Balažević 
et al. 2019), shape learning (Littwin and Wolf 2019), network compression (Nguyen et al. 
2021), learning differential equations (de Avila Belbute-Peres et al. 2021), 3D point cloud 
processing (Spurek et  al. 2020), speech processing (Szatkowski et  al. 2022), quantum 
computing (Carrasquilla et al. 2023), and knowledge distillation (Wu et al. 2023) etc. These 
applications demonstrate the wide-ranging potential of hypernetworks in deep learning, 
enabling adaptive and task-specific parameter generation for improved model performance 
and generalization.

5 � When can we use hypernets?

After discussing what a hypernet is, how it works, its different types, and its current 
applications, the most important question is when and where to utilize hypernets. This will 
help researchers and practitioners fully harness the benefits of this versatile technique in 
deep learning. One straightforward answer to the question, ‘When can we use Hypernets?’ 
is ‘in all those application areas where it is already applied’. There is a long list of 
application areas where hypernets are already in use, and the reader’s area of interest is 
likely covered. Based on the characteristics and applications of hypernets discussed above, 
we have generalized and formulated some questions/scenarios for readers to check if 
hypernets can be applied to a specific area/problem setting. If our answer is yes to any of 
the scenarios, then we can apply hypernets to the problem setting under consideration.

Are there any related components in the problem setting under consideration? 
Here, a component can refer to a task, dataset, or neural network. This is one of the most 
important scenarios/questions, and several applications, as discussed above, fall under 
this scenario. If the answer to this question is yes, then we can employ task-conditioned 
hypernets to solve the problem under consideration, where task identity is used to generate 
the target network for the component. By conditioning on the component (task, dataset, 
or network), we can perform joint training of different components by exploiting the 
soft weight sharing of hypernets. This enables the hypernets to share information among 
components, leading to improved performance (Chauhan et  al. 2024c). Thus, sharing 
information is the key to achieving better results for related components. The question 
can be reformulated as, ‘Do we need information sharing in our problem setting?’. All the 
task-conditioned applications of hypernets discussed in Table  2 fall under this scenario. 
For example, multitasking (Mahabadi et  al. 2021) has related tasks (as components), 
and hypernets help in shared learning while having personalized networks for each task. 
Similarly, continual learning (Oswald et  al. 2020), federated learning (Shamsian et  al. 
2021), heterogeneous treatment effects estimation (Chauhan et al. 2024c), transfer learning 
(Oswald et al. 2020), and domain adaptation (Volk et al. 2022) fall under this scenario.

Do we need a data-adaptive neural network? This is another important scenario with 
several applications across different problem settings. In other words, we can ask, ‘Are we 
working in a setting where the target network has to be customized to the input data?’ or ‘Are 
the data changing regularly?’. In this scenario, we can employ data-conditioned hypernets 
that take data as input and adaptively generate the parameters of the target network. During 
training, the hypernet takes the available data and learns the intrinsic characteristics of the 
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data to generate the target network. Then, at inference time, it can take new data with slightly 
different characteristics and generate the target network based on the learned characteristics of 
the existing data. It is noted that there is some similarity between task-conditioned and data-
conditioned settings, so some problems may be modelled using either technique. From existing 
research, it is unclear when to model a problem as data-conditioned or task-conditioned, 
and it needs to be explored. However, it will depend on the problem under consideration, 
the availability of data, and the number of tasks. All the data-conditioned applications 
of hypernets discussed in Table  2 fall under this scenario. For example, in neural image 
enhancement (Muller 2021), we are interested in improving the quality of an image, so we 
need a target network specific to the image for a good quality output. Thus, data-conditioned 
hypernets are suitable for this application. Similarly, adversarial defence (Sun et  al. 2017), 
shape learning (Littwin and Wolf 2019), camera pose estimation (Ferens and Keller 2023), 
neural style transfer (Ruta et al. 2023), few-shot learning (Yin et al. 2022), and 3D point cloud 
processing (Spurek et al. 2022) fall under this scenario.

Do we need a dynamic neural network architecture? Here, dynamic neural network 
architecture means the architecture of the target network is not known or fixed at training 
time. This scenario has limited but important applications. In this case, a hypernet takes 
some information about the architecture of the target network and generates the parameters 
accordingly. For example, neural architecture search (Zhang et al. 2019) is such an application, 
which uses graph hypernetworks that take the computation graph of the target network as 
input to generate the network parameters. Similarly, another example of this scenario is when 
recurrent neural networks are implemented with hypernets (Ha et  al. 2017), which need a 
dynamic network architecture to account for a variable number of time-steps.

Do we need faster training/parameter efficiency? As discussed earlier, hypernets can 
achieve parameter efficiency or weight compression, which means that the ‘learnable’ weights 
of HyperDNN are fewer than the corresponding DNN. This is expected to achieve faster 
training as well. This could be useful for limited resource settings and would depend on the 
problem setting as well as the architecture of the hypernets. For example, as discussed earlier, 
Mahabadi et al. (2021) applied task-conditioned hypernets to fine-tune pre-trained language 
models by generating weights for the bottleneck adapters. In the multitasking setting, they 
modelled task, adapter location, and layer identity as different tasks and used embeddings 
of these tasks as input to the hypernet that helps in shared learning and achieved parameter 
efficiency. Similarly, Zhao et al. (2020) also demonstrated parameter efficiency in a few-shot 
learning setting.

Do we need uncertainty quantification? This is a specific application scenario for 
hypernets. Hypernets can be used for uncertainty quantification either using noise-conditioned 
hypernets (Krueger et al. 2018) or by using dropout in the hypernets (Chauhan et al. 2023b). 
As discussed earlier, in some settings, hypernets can produce better uncertainty estimates, 
e.g., Krueger et al. (2018) and Ratzlaff and Fuxin (2019). However, if uncertainty estimation 
is the sole purpose of the study, then existing uncertainty estimation techniques must be 
explored first. However, using dropout (Srivastava et al. 2014) in the hypernet architecture, 
similar to using dropout in standard DNNs, can complement the existing hypernets and help in 
uncertainty quantification.

The scenarios discussed have overlaps, so multiple scenarios can fit a problem under 
consideration. For example, Mahabadi et al. (2021) considered fine-tuning language models 
using hypernets, which achieved parameter efficiency and used task-conditioning (related 
component setting) to solve multiple tasks. Thus, by thinking about these broad scenarios, one 
can determine if hypernets apply to a problem setting under consideration.
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6 � Challenges and future directions

Hypernetworks have shown enormous potential in enhancing deep learning models 
with increased flexibility, efficiency, and generalization. However, several challenges 
and opportunities for future research and development remain under-explored. In this 
section, we discuss some of the key challenges and propose potential directions for future 
exploration.

Initialization challenge  The initialization challenge in hypernetworks refers to the 
difficulty of initializing the hypernetwork parameters effectively, as finding suitable 
initial values for the hypernetwork parameters is far from being resolved. One reason for 
the initialization challenge is that the weights of the target network are generated at the 
output layer of hypernet, and weights generation does not consider layer-wise architecture 
of the target network. So, initialization of hypernet weights using classical initialization 
techniques, such as Xavier (Glorot and Bengio 2010) and Kaiming initialization (He 
et al. 2015), does not guarantee that weights of target network are initialized in the same 
range. The performance of the hypernetwork is highly influenced by the initial state of the 
target network and its parameters that are generated at the output layer of the hypernet. 
If the target network is poorly initialized, it can propagate errors or uncertainties to the 
hypernetwork, affecting its ability to generate or adapt parameters effectively. Chang 
et al. (2020) were the first to discuss the challenge of initializing hypernets. They showed 
that classical techniques of initializing DNNs do not work well with hypernets, however, 
adaptive optimizers, such as Adam (Kingma and Ba 2014), can address the issue to some 
extent. The authors suggested initializing the hypernet weights in a manner that allows the 
target network weights to approximate the conventional initialization of DNNs. However, 
it is difficult to adopt this because the weights of the target network are typically generated 
together. We may solve this challenge if weight generation process is aware of the layer-
wise architecture of the target network. Moreover, recently, Beck et al. (2023) also showed 
that initialization challenge of hypernets occurs even in meta-RL and classical initialization 
techniques fail.

Complexity/scalability One of the primary challenges in hypernetworks is scalability 
and efficiency of hypernetwork-based models. As the size and complexity of target DNNs 
increase, hypernetworks also become very complex, e.g., the size of the output layer is 
typically m × n where m is the number of neurons in the penultimate layer of hypernet and 
n is the number of weights in the target network. So, hypernets may not be suitable for large 
models unless appropriate weight-generation strategies are developed and used. Although, 
there are some approaches, such as multiple weight generation (Chauhan et al. 2024c) and 
chunk-wise weight generation (Brock et al. 2018) to manage the complexity of hypernets 
but it needs more research to address the scalability challenge and make hypernetworks 
more practical for real-world applications.

Numerical stability  Numerical stability in hypernetworks refers to the ability of the 
model to maintain accurate and reliable computations throughout the training and inference 
process. Hypernets, like standard neural networks, can encounter numerical stability 
issues (Sarafian et  al. 2021). One common numerical stability issue in hypernetworks is 
the vanishing or exploding gradients problem. During the training process, gradients can 
become extremely small or large, making it difficult for the model to effectively update the 
parameters. This can result in slow convergence or unstable training dynamics. To address 
numerical stability issues in hypernets, various techniques can be employed, such as 
careful initialization of the model’s parameters, the use of gradient clipping, which bounds 
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the gradient values to prevent them from becoming too large, and different regularization 
techniques such as weight decay, dropout, and spectral norm (Chauhan et  al. 2024c) 
that help improve numerical stability by preventing overfitting and promoting smoother 
optimization. Furthermore, similar to standard DNNs, using appropriate activation 
functions, such as ReLU or Leaky ReLU, can help alleviate the vanishing gradient 
problem by providing non-linearities that allow for more effective gradient propagation. 
It is also important to choose appropriate optimization algorithms that are known for their 
stability, such as Adam (Kingma and Ba 2014), which can handle the training dynamics of 
hypernetworks more effectively (Chang et al. 2020).

Theoretical Understanding  Theoretical analysis of hypernetworks involves studying 
their representational capacity, learning dynamics, and generalization properties. By 
understanding the theoretical foundations of hypernetworks, researchers can gain insights 
into the underlying principles that drive their effectiveness and explore new avenues for 
improving their performance. Just like DNNs, understanding the working of hypernets is 
far from being solved. Although, there are some works that provide theoretical insights 
into hypernets, e.g., Littwin et  al. (2020) highlighted that infinitely wide hypernetworks 
may not converge to a global minimum using gradient descent, but convexity can be 
achieved by increasing the dimensionality of the hypernetwork’s output. Galanti and Wolf 
(2020) also studied the modularity of hypernets and showed that hypernets can be more 
efficient than the embedding-based method for mapping an input to a function. Intuitively, 
hypernets map an input to one point on a low-dimensional manifold for weights of target 
network (Shamsian et al. 2021)—theoretical insights into the connection between two can 
be very helpful. Thus, more research into the theoretical properties of hypernets will help 
to make them more popular and will also attract more research.

Uncertainty-aware deep learning Uncertainty-aware neural networks allow for more 
reliable and robust predictions, especially in scenarios where uncertainty estimation is 
crucial, such as decision-making under uncertainty, safety-critical applications, or when 
working with limited or noisy data (Abdar et  al. 2021). Despite the success of DNNs 
and the development of different uncertainty quantification techniques, it still remains 
an open problem to quantify the prediction uncertainty (Kristiadi et al. 2019). Hypernets 
have opened a new door to uncertainty quantification as noise-conditioned hypernets 
can generate distribution on target network weights and have been shown to have better 
uncertainties than the SOTA (Krueger et  al. 2018; Ratzlaff and Fuxin 2019). Similarly, 
Chauhan et  al. (2023b) used task-conditioned hypernets with dropout to generate 
multiple sets of weights for the target network. Further research into this can provide 
computationally efficient and effective techniques as compared with other techniques, such 
as ensemble methods, which need to train multiple models.

Interpretability enhancement  It will be helpful for the community to develop 
methods for visualizing, analyzing, and explaining the task-specific weights generated 
by hypernetworks. This includes developing intuitive visualization methods, and feature 
relevance analysis techniques that provide deeper insights into the weight generation and 
decision-making process of hypernetwork-based models.

Model compression and efficiency  Hypernetworks can aid in model compression 
and efficiency in some problem settings (Zhao et al. 2020; Mahabadi et al. 2021), where 
smaller hypernets are trained to generate larger target networks that can reduce the 
memory footprint and computational requirements of the model. This is particularly useful 
in resource-constrained environments where memory and computational resources are 
limited, and hypernets can be studied specifically for such settings.
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Usage Guidelines  Hypernetworks add additional complexity to solving problems. 
As with HyperDNN, we have an additional network to generate weights for the target 
DNN. Hypernets introduce additional hyperparameters related to the weight generation 
process, e.g., what kind of weight generation should be used and how many chunks 
should be used. Some research and guidelines are needed to guide the researchers 
through these choices, stressing the need for a comparative study of different approaches 
under varying problem settings.

Thus, the field of hypernetworks in deep learning presents several challenges and 
opportunities for future research. The advancements in these areas will pave the way for 
the widespread adoption and effective utilization of hypernetworks in various domains 
of deep learning.

7 � Conclusion

Hypernetworks have emerged as a promising approach to enhance deep learning 
models with increased flexibility, efficiency, generalization, uncertainty awareness, 
and information sharing. They have opened new avenues for research and applications 
across various domains. In this paper, we presented the first review of hypernetworks 
in the context of deep learning. We provided an illustrative example to explain the 
workings of hypernetworks and proposed a categorization based on five design criteria: 
inputs, outputs, variability of inputs and outputs, and the architecture of hypernets. We 
discussed some of the important applications of hypernets to different deep learning 
problems, including multitasking, continual learning, federated learning, causal 
inference, and computer vision. Additionally, we presented scenarios and questions to 
help readers understand whether hypernets can be applied to a given problem setting. 
Finally, we highlighted challenges that need to be addressed in the future. These 
challenges include initialization, stability, scalability, efficiency, and the need for 
theoretical insights. Future research should focus on tackling these challenges to further 
advance the field of hypernetworks and make them more accessible and practical for 
real-world applications. By addressing these issues, the potential of hypernetworks can 
be fully realized, leading to more robust and versatile deep learning models.
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