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ABSTRACT 21 

Tuberculosis (TB) is the greatest cause of infectious disease deaths worldwide. In highly-22 

affected countries, effective tuberculosis control requires prompt identification and treatment 23 

of individuals with active disease. We examined the performance of tuberculosis case-finding in 24 

low- and middle-income counties, based on a comprehensive analysis of tuberculosis diagnosis 25 

data reported to WHO. Using these data we estimated the total number of individuals correctly 26 

and incorrectly diagnosed with tuberculosis, for 111 countries with a collective 6.8 million 27 

tuberculosis notifications in 2023. Here we estimate that in 2023, 2.05 (1.83-2.27) million 28 

individuals were incorrectly diagnosed with tuberculosis (false-positive), and 1.00 (0.71-1.36) 29 

million received a false-negative diagnosis, at an assumed 25% disease prevalence among 30 

individuals evaluated for TB. As many as three out of every ten tuberculosis notifications may 31 

not have tuberculosis, and many individuals with tuberculosis receive false-negative diagnoses. 32 

As compared to current diagnostic performance, scaling-up new PCR-based diagnostics would 33 

substantially reduce under-diagnosis but only produce a small reduction in false-positive 34 

diagnoses. Major improvements in TB diagnosis will likely require higher-sensitivity 35 

bacteriological tests combined with reduced reliance on clinical diagnosis. 36 

  37 
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Introduction 38 

Routine facility-based evaluation of individuals with signs and symptoms of tuberculosis (TB) 39 

plays a central role in efforts to address TB (1). However, the test most commonly used to 40 

diagnose TB in many countries—sputum smear microscopy—has limited sensitivity (2, 3). 41 

Several cartridge-based polymerase chain reaction (PCR) tests have recently been developed, 42 

and while these rapid diagnostic tests (RDTs) provide substantial improvements in sensitivity 43 

compared to smear microscopy they are not yet universally available (4). Both smear 44 

microscopy and RDTs are bacteriological tests, which provide the strongest evidence for a TB 45 

diagnosis. However, reviews of cohort studies of individuals found to be bacteriologically 46 

negative on initial TB evaluation have reported high rates of subsequent TB diagnosis (5). For 47 

these reasons, a negative result in initial bacteriological testing does not conclusively exclude 48 

TB, and many TB diagnoses are based on clinical evaluation, following a negative bacteriological 49 

test result. For 2023, 38% of TB diagnoses were made clinically, without bacteriological 50 

confirmation (6). Clinical evaluation can include chest radiography (if available), reported 51 

symptoms, and the presence of health conditions or other patient characteristics suggestive of 52 

TB (7). Although clinical evaluation will result in additional individuals being diagnosed with TB, 53 

studies have not demonstrated high sensitivity and specificity (8). For these reasons, routine TB 54 

diagnosis will incorrectly identify some individuals as having TB, and fail to diagnose some 55 

individuals with the disease.  56 

Both false-positive and false-negative diagnoses can harm patients. A false-positive diagnosis 57 

exposes patients to the health risks and financial burden associated with TB treatment (9), as 58 

well as the social and psychological consequences of a major disease diagnosis. False-positive 59 

diagnosis also delays treatment of the health condition that led the patient to seek care (10-12). 60 

A false-negative diagnosis will delay TB treatment, allowing ongoing lung damage, mortality 61 

risks, and transmission (13). 62 
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In this study we estimated the performance of TB diagnosis in 2023 for 111 low- and middle-63 

income countries (98% of global incidence). To do so, we synthesized national data on notified 64 

TB diagnoses with published evidence on sensitivity and specificity at each step of TB diagnosis, 65 

identifying the combination of diagnostic parameters and outcomes consistent with available 66 

evidence. For the cohort of individuals evaluated for TB, we re-estimated results for values of 67 

initial TB prevalence ranging from 5% to 50%, using 25% as a base-case), based on the 68 

distribution of values reported by diagnostic accuracy studies (14, 15). From this analysis we 69 

estimate the number of false-positive and false-negative TB diagnoses resulting from current 70 

diagnostic approaches. Based on this analysis we explore the potential impact of alternative 71 

approaches that could be taken to improve diagnostic outcomes, including further adoption of 72 

current RDTs to replace smear microscopy, changes in clinical practices, and further 73 

improvements in RDT performance.  74 

 75 

Results  76 

The WHO Global TB database includes data for 134 low- and middle-income countries. We 77 

excluded 8 countries with missing data on laboratory-confirmed (i.e., bacteriologically positive) 78 

or clinically diagnosed cases, and a further 15 countries with <100 pulmonary TB notifications 79 

(Table S1). The final analysis included 111 countries, with 4,205,535 laboratory-confirmed cases 80 

(62%) and 2,562,902 clinically diagnosed cases (38%). The fraction laboratory-confirmed ranged 81 

from 13% to 97% (interquartile range (IQR): 64-84%), with this fraction lower on average for 82 

countries with higher TB rates (Fig. 1). Across countries 5% of notifications were HIV-positive 83 

(IQR: 1-12%), and 48% were tested using an RDT (IQR: 31-80%).  84 

 85 

[Fig. 1] 86 

 87 
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Diagnostic algorithm performance 88 

Assuming initial TB prevalence (true prevalence of TB amongst people evaluated for TB) of 25%, 89 

we estimated an overall algorithm sensitivity (fraction of individuals with TB who receive a TB 90 

diagnosis) of 82.6% (95% uncertainty interval: 78.1, 86.6) and specificity (fraction of individuals 91 

without TB who receive a TB-negative diagnosis) of 88.0% (85.6, 90.2), when performance was 92 

pooled across all countries included in the analysis. The positive predictive value (fraction 93 

diagnosed TB-positive who truly have TB) was estimated as 69.7% (66.4, 73.0), and the negative 94 

predictive value (fraction diagnosed TB-negative who do not have TB) was 93.8% (92.5, 95.1). 95 

Overall, 86.7% (85.3, 87.8) of diagnoses were estimated to be correct. The estimated positive 96 

predictive value increased with higher values of initial TB prevalence, from 39.7% (33.9, 45.8) at 97 

5% prevalence to 79.6% (76.5, 82.7) at 50% prevalence. The negative predictive value decreased 98 

with higher TB prevalence, from 98.7% (98.5, 99.0) at 5% prevalence to 85.6% (82.1, 88.8) at 50% 99 

prevalence (Table 1). Estimates for algorithm sensitivity and specificity also changed with 100 

different assumptions for initial TB prevalence, with the inferred performance of clinical 101 

diagnosis adjusting to match reported data. Extended Data Table 1 shows global estimates for 102 

performance at each step of TB diagnosis (bacteriological testing vs. clinical diagnosis). 103 

 104 

[Table 1] 105 

 106 

Estimated diagnostic performance varied across world regions, with the highest algorithm 107 

sensitivity estimated for the European region (86.2% (81.8, 90.1)), and lowest for the Americas 108 

region (74.7% (69.3, 79.7)). This variation arises from differences in the use of clinical diagnosis 109 

across regions, as well as differences in RDT coverage. Extended Data Table 2 shows 110 

performance estimates by world region, country income level, and for WHO-identified high-TB 111 

burden countries.  112 
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Total numbers with each diagnostic outcome 113 

Assuming 25% initial TB prevalence, an estimated 22.86 (20.98, 25.00) million individuals were 114 

evaluated for TB in 2023, of whom 5.72 (5.25, 6.25) million had TB disease. Of those with TB, an 115 

estimated 4.72 (4.49, 4.94) million were correctly diagnosed with TB, and 1.00 (0.71, 1.36) 116 

million did not receive a TB diagnosis (false-negative). Of the 17.15 (15.74, 18.75) million without 117 

TB, an estimated 2.05 (1.83, 2.27) million were incorrectly diagnosed with TB (false-positive). 118 

Overall yield (number diagnosed with TB divided by number evaluated for TB) was estimated as 119 

29.7% (27.1, 32.2). Fig. 2 shows global outcomes for each stage of diagnosis, with clinical 120 

diagnosis estimated to be responsible for 22% of all true-positive diagnoses, and 75% of all 121 

false-positives). These diagnostic outcomes were sensitive to assumptions about initial TB 122 

prevalence (Extended Data Table 3). The estimated number of false-positive diagnoses declined 123 

with higher values for initial TB prevalence, ranging from 4.08 (3.67, 4.47) million at 5% TB 124 

prevalence to 1.38 (1.17, 1.59) million at 50% TB prevalence. The estimated number of false-125 

negative diagnoses exhibited a non-monotonic relationship with initial TB prevalence, varying 126 

from 0.80 (0.57, 1.07) million at 5% TB prevalence, to 1.02 (0.74, 1.36) million at 15% TB 127 

prevalence, to 0.82 (0.53, 1.20) million at 50% TB prevalence.  128 

 129 

[Fig. 2] 130 

 131 

Table 2 shows the number of true-positive, true-negative, false-positive, and false-negative 132 

diagnoses by country group, with the number of false-positive and false-negative diagnoses 133 

greatest in the South-East Asia region, consistent with the share of overall TB burden in this 134 

region. The relative number of false-positive and false-negative diagnoses varied across world 135 

regions, from a low of 0.60 (0.40, 0.88) false-positive diagnoses for every false-negative 136 
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diagnosis estimated for the Americas region, up to 4.03 (2.52, 6.09) in the Western Pacific region 137 

(global average: 2.12 (1.39, 3.09)). 138 

 139 

[Table 2] 140 

 141 

Approaches for improving diagnostic outcomes 142 

We compared our main analysis with several hypothetical scenarios exploring approaches for 143 

improving TB diagnostic outcomes. When we assumed RDT coverage would increase to fully 144 

replace smear microscopy (Full RDT adoption scenario), overall algorithm sensitivity increased 145 

by 5.2 (2.5, 8.1) percentage points, enabling an additional 0.30 (0.14, 0.48) million individuals to 146 

be correctly diagnosed with TB. This change reduced the number of false-negative diagnoses by 147 

one third, increased the number of individuals receiving a bacteriologically-confirmed TB 148 

diagnosis by 0.89 (0.61, 1.19) million, and produced a small, non-significant reduction in the 149 

number of false-positive diagnoses. When we allowed for reduced clinician willingness to 150 

diagnose patients clinically (Reduced clinical diagnosis scenario), this increased overall 151 

algorithm specificity to 92.5% (90.9, 93.9) and produced large reductions in the number of false-152 

positive diagnoses (0.77 (0.68, 0.86) million). However, this scenario also resulted in an 153 

additional 0.23 (0.18, 0.29) million false negative diagnoses. When we allowed for improvements 154 

in practices around clinical diagnosis (Improved clinical algorithms scenario), algorithm 155 

specificity increased to 94.0% (92.4, 95.3) and false-positive diagnoses dropped by 1.02 (0.88, 156 

1.17) million, with no loss of sensitivity. When we allowed for introduction of improved, more 157 

sensitive RDTs, with concomitant reductions in clinical diagnosis (Improved RDTs, reduced 158 

clinical diagnosis) this produced the greatest increases in algorithm sensitivity and accurate 159 

diagnosis, with the number of false-negative and false-positive diagnoses reduced by 0.45 (0.28, 160 

0.64) million (a 45% reduction) and 0.73 (0.45, 1.00) million (a 47% reduction), respectively. 161 
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Table 3 reports the number of individuals receiving each diagnostic outcome under these 162 

counterfactual scenarios, as compared to the main analysis. Extended Data Tables 4 and 5 163 

report the implications for algorithm sensitivity, specificity, and other measures of diagnostic 164 

performance. 165 

 166 

[Table 3] 167 

 168 

Sensitivity analyses 169 

Fig. S1 shows partial rank correlation coefficients quantifying the sensitivity of results to 170 

parameter changes. In these analyses, total false-positive diagnoses was most strongly 171 

associated with specificity parameters, with higher specificity associated with lower numbers of 172 

false-positive diagnoses. Total false-negative diagnoses had a strong negative association with 173 

the sensitivity of clinical diagnosis, and a strong positive relationship with the fraction of culture-174 

negative TB. Extended Data Tables 6 and 7 reports estimated diagnostic outcomes under 175 

alternative analytic specifications. When we used published reviews of Xpert MTB-RIF as the 176 

source of RDT sensitivity and specificity (vs. Xpert Ultra in the main analysis) results were largely 177 

similar, with a small increase in false-negative diagnoses (to 1.14 (0.82, 1.54) million) and a 178 

small reduction in false-positive diagnosis (to 1.85 (1.64, 2.06) million). When we re-estimated 179 

results assuming higher sensitivity and specificity for clinical diagnosis, the estimated number 180 

of false-negative and false-positive diagnoses were both reduced, to 0.72 (0.47, 1.04) and 1.78 181 

(1.52, 2.03) million respectively. When we assumed lower sensitivity and specificity for clinical 182 

diagnosis both false-negative and false-positive diagnoses increased (1.30 (0.96, 1.70) and 2.35 183 

(2.14, 2.55) million respectively). When we assumed 25% of individuals never receive an initial 184 

bacteriological test, false-positive diagnoses declined slightly (1.90 (1.60, 2.19) million) and 185 

false-negative diagnoses increased substantially (2.77 (1.63, 4.52) million). Extended Data Table 186 
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7 reports algorithm sensitivity, specificity, positive predictive value, and negative predictive value 187 

for these alternative specifications. Fig. 3 shows how the probabilities of false-positive diagnosis 188 

and false-negative diagnosis change with different values for initial TB prevalence and the 189 

fraction laboratory-confirmed. Extended Data Fig. 1 shows similar results for the three 190 

alternative specifications. 191 

 192 

Discussion 193 

This study examined the performance of routine TB diagnosis in low- and middle-income 194 

countries. Assuming 25% TB prevalence among individuals evaluated for TB, we estimated 195 

average algorithm sensitivity to be approximately 80% and specificity approximately 90%, such 196 

that individuals evaluated for TB had a one-in-eight chance of receiving an incorrect diagnosis. 197 

For those with TB, these results imply that one million could have received a false-negative 198 

diagnosis in 2023. For those without TB we estimated that as many as two million could have 199 

received an incorrect diagnosis of TB. If correct, these results imply that as many as three out of 200 

every ten individuals diagnosed with TB may not have TB. While numbers of false-positive and 201 

false-negative diagnoses varied across settings, most settings were estimated to have at least as 202 

many false-positive diagnoses as false-negative, and particularly so in the high-incidence 203 

settings representing the majority of global TB cases. 204 

False-negative diagnoses stem from inadequate algorithm sensitivity. While novel RDTs have 205 

better sensitivity than smear microscopy (14), they will still give false-negative results for some 206 

patients, and coverage is not universal (6). For these reasons clinical diagnosis still plays a major 207 

role, and in our analysis was responsible for one-fifth of all true-positive diagnoses. The average 208 

algorithm sensitivity estimated in this analysis is generally consistent with studies of TB care 209 

cascades in high-burden settings, which have identified diagnosis as a key point at which 210 

individuals with TB are lost from the cascade (16-18). This large number of missed diagnoses, 211 
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and their negative consequences (ongoing morbidity, mortality, and transmission) have 212 

motivated major investments in TB diagnostics over the last 20 years. 213 

 False-positive TB diagnosis has received substantially less attention. Most studies that have 214 

examined the potential numbers incorrectly diagnosed with TB have focused on active case-215 

finding interventions, for which starting TB prevalence is typically low (19-21), or the risks posed 216 

by low-specificity serological tests (22, 23). However, one study has estimated the positive 217 

predictive value of TB diagnosis in India could be as low as 62% (24), consistent with the results 218 

of our analysis.  219 

The comparatively low attention paid to false-positive diagnosis could stem from more minor 220 

health consequences being attributed to these diagnostic errors, compared to false-negative 221 

diagnoses. However, while the harms associated with false-negative diagnosis are well 222 

understood, little is known about the health consequences of false-positive diagnosis (7). 223 

Studies that have examined the relative weight placed on false-positive and false-negative 224 

diagnoses have found clinicians to consider false-negative diagnosis approximately twice as 225 

harmful as false-positive diagnosis, and have argued this ratio should be substantially higher 226 

(25, 26). These studies considered only the treatment costs of false-positive diagnosis, and the 227 

risk of treatment side effects. Many economic evaluations of TB diagnostics have taken the 228 

same approach (27, 28), or have just considered the economic implications.  However, false-229 

positive diagnosis can also lead to harms associated with delayed treatment of the health 230 

condition causing the individual’s symptoms, patient-incurred costs of unnecessary TB 231 

treatment (29), and the emotional toll and stigma attached to a TB diagnosis. Moreover, the side-232 

effects of current TB treatment regimens are neither trivial nor rare, even for first-line regimens 233 

(30). A false-positive diagnosis may also trigger unnecessary services to identify and treat TB 234 

infection among household members. While some false-positive diagnoses will result from 235 

transient respiratory infections, others will reflect more serious infections (e.g., pneumonia), or 236 
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progressive, high-morbidity conditions such as lung cancer, heart failure, and COPD (31). In an 237 

analysis of individuals incorrectly diagnosed with TB in Brazil, estimated mortality was 2-3 times 238 

higher than for individuals with true-positive TB over the 2 years following diagnosis, with lung 239 

cancer and non-TB respiratory disorders being the most common causes (32). While lung cancer 240 

likely represents a minority of false-positive diagnoses, it is clear that at least some individuals 241 

incorrectly diagnosed with TB will face major health consequences.  242 

As part of our study we explored the potential impact of approaches that could be taken to 243 

improve TB diagnosis. Full adoption of currently-available RDTs is likely the most immediately 244 

actionable of the counterfactual scenarios, with many countries making concerted efforts to 245 

increase RDT coverage. We found that full adoption of RDTs could reduce the number of false-246 

negative diagnoses by one-third. The absolute increase in algorithm sensitivity in this scenario 247 

(5.2%) is smaller than the increase in sensitivity estimated for RDTs when compared to smear 248 

microscopy in diagnostic trials (14), illustrating the important role currently played by clinical 249 

diagnosis in identifying TB cases previously missed by smear microscopy (33). There are many 250 

challenges to achieving high RDT coverage, but these results highlight the benefits that would be 251 

realized with higher coverage, which could both reduce TB mortality and shorten the duration of 252 

infectiousness for individuals who would otherwise receive a false-negative diagnosis. While full 253 

RDT adoption was also projected to produce improvements in algorithm specificity, the absolute 254 

number of false-positive diagnoses only dropped by a small amount. This decrease was driven 255 

by reductions in clinical diagnosis following a negative RDT result (as compared to smear 256 

microscopy) (34), and had substantial uncertainty. As the majority of false-positive diagnoses 257 

result from clinical diagnosis, a more direct approach to addressing this issue would be to 258 

increase the level of clinical suspicion required to diagnose TB. However, while we found that 259 

this approach could potentially produce substantial reductions in false-positive diagnosis (0.8 260 

million), it would do so at the cost of additional false-negative TB diagnoses (0.2 million). These 261 

additional missed TB diagnoses would likely represent substantial increases in TB morbidity and 262 
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death, suggesting that efforts to discourage clinical diagnosis could have harmful 263 

consequences that do not outweigh the benefits. In contrast, efforts to identify improved clinical 264 

diagnostic algorithms (potentially including greater access to non-bacteriological diagnostics 265 

such as chest radiography) could improve algorithm specificity while protecting sensitivity. In a 266 

final scenario, we estimated the potential impact of improved RDTs (to achieve the same 267 

sensitivity as culture) with concomitant changes in clinical diagnosis. Under this scenario, both 268 

false-negatives and false-positives were substantially reduced. Beyond full adoption of current 269 

RDTs, this scenario may represent the best target for future innovation in TB diagnostics, as the 270 

development of high-sensitivity diagnostics reduces the need for clinical diagnosis to catch 271 

those missed by the initial test. Such behavior change in response to higher sensitivity 272 

diagnostics has already been observed for currently-available RDTs (34). While not examined in 273 

this analysis, improvements in diagnostics for other conditions with a similar clinical 274 

presentation could also play a role in reducing false-positive TB diagnosis, by reducing the pool 275 

of individuals with unexplained TB-like symptoms.  276 

This study has several limitations. First, there is little evidence on true TB prevalence among 277 

individuals evaluated for TB. This is an important input to our analysis, and likely varies across 278 

country settings. For this reason, we estimated results for a range of prevalence values, and 279 

even with high initial prevalence the number of false-positive diagnoses was still substantial. 280 

Moreover, initial TB prevalence in many settings could be lower than the 25% used on our main 281 

analysis, and previous studies have assumed values between 10–20% (22, 35). In South Africa, 282 

RDT-positivity has averaged 9% since 2011, and has fallen progressively over this period (36). If 283 

true TB prevalence were 10%, the number of false-positive diagnoses would be higher than 284 

estimated in our main analysis. Additionally, as we calculate our results for fixed values of TB 285 

prevalence, the reported uncertainty intervals do not include this source of uncertainty. Second, 286 

while we estimated the performance of clinical diagnosis from a range of studies, most were 287 

from high HIV-prevalence settings, and we had limited ability to consider the variation in 288 
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performance that likely exists across settings. While we adjusted the results of these studies to 289 

account for potential misclassification of culture-negative TB, the limitations of culture as a 290 

reference standard adds uncertainty to our estimates. Third, there is limited empirical evidence 291 

to validate one of our main findings—the potentially large number of false-positive diagnoses 292 

produced by current diagnostic approaches. In part this should be expected – if most false-293 

positive individuals have self-resolving conditions, they would improve on TB treatment similar 294 

to individuals with TB, with initially incorrect diagnoses unlikely to be revisited. In addition, 295 

several studies have reported on diagnostic practices in routine settings that increase the risks 296 

of false-positive diagnosis, with sensitivity prioritized over specificity (37, 38). Perhaps the best 297 

supporting evidence is the multiple studies showing a substantial fraction of clinically-298 

diagnosed individuals to be negative when tested with culture, both from the pre-Xpert era (8) 299 

and during Xpert roll-out (27, 39). For example, of 139 individuals treated clinically following a 300 

negative Xpert result in the TB-NEAT trial, only 31 (22%) were culture-positive (39). While culture 301 

has limitations for routine TB diagnosis it should identify the large majority of adults with 302 

pulmonary TB, so the high fraction of clinically-diagnosed culture-negative TB cases in these 303 

empirical studies supports our findings. Under an alternative model specification that reduced 304 

the sensitivity of initial diagnostic tests (assuming a greater fraction of symptomatic TB is 305 

bacteriologically-negative) and made optimistic assumptions about the ability of clinical 306 

diagnosis to identify these bacteriologically-negative cases, the number of false-positive 307 

diagnoses was substantially reduced, but still greater than the number of false-negative 308 

diagnoses. Fourth, we conceptualized TB diagnosis as a single event, yet many individuals with 309 

TB make repeated diagnostic attempts before being diagnosed correctly (40). In our analysis, 310 

these multiple attempts serve to increase initial TB prevalence, by inflating the number of times 311 

an individual with TB gets assessed. As noted above, our results are robust to alternative 312 

assumptions about initial TB prevalence, and may be conservative on this point. Fifth, we used 313 

the sensitivity and specificity reported for Xpert Ultra to represent all RDTs, even though several 314 
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RDTs are now available (41). Country-reported notifications data do not record the mix of RDTs 315 

used, and we chose Xpert Ultra to represent this class of diagnostic given the substantial 316 

evidence available on its performance and its increasing use across high-burden countries. 317 

Similarly, we did not include sputum culture in the algorithms assessed in our study, given its 318 

limited use in many settings. Sixth, we did not consider age in our analysis, as several of the 319 

required variables were not stratified by age. Diagnosis of TB in children (<10% of all 320 

notifications) shares many of the challenges of adult TB diagnosis, though these challenges are 321 

magnified, with poorer sensitivity of available bacteriological tests and difficult sample 322 

collection. Seventh, our assumptions about bacteriological test sensitivity and specificity were 323 

based on data collected under research conditions. While we adjusted test sensitivity 324 

downwards to allow for culture-negative pulmonary TB, there is evidence of lower sensitivity and 325 

specificity in routine healthcare, and reporting gaps could affect the communication of 326 

laboratory results (42-45). Finally, our estimates don’t consider TB diagnoses not captured by 327 

routine reporting data. While there have been major efforts over the past decade to address 328 

under-reporting, there will still be some individuals diagnosed with TB that are not included in 329 

available data. As under-reporting of TB is most common with informal and private providers, 330 

there is little reason to believe that the performance of TB diagnosis for these individuals would 331 

be better than estimated in this analysis. 332 

The results of this analysis have several implications. Given the potentially large number of 333 

individuals receiving false-positive diagnoses, collection of empirical evidence to corroborate 334 

this finding is urgently needed, in addition to research examining the health consequences for 335 

these individuals, which are poorly understood. While potentially less surprising, the 1 million 336 

individuals estimated to receive a false-negative diagnosis is also notable, and together with the 337 

number of false-positive diagnoses provides a strong reminder of the deficiencies of current 338 

diagnostic approaches. While much progress has been made over the past 15 years, better ways 339 

to diagnose TB are urgently needed. This includes the development of more accurate RDTs that 340 
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can be used across a wider range of samples and clinical settings, and concomitant scale up of 341 

RDTs to replace lower sensitivity smear microscopy. These changes would reduce the need for 342 

clinical diagnosis, which was responsible for most false-positive diagnoses in our analysis. 343 

Beyond patient care, these findings raise questions about how to track trends in TB incidence 344 

and mortality. For many countries, epidemiological estimates depend on country-reported 345 

notifications data, assuming these notifications represents true TB disease cases (4). In settings 346 

with more false-positive diagnoses, failing to account for this could distort epidemiological 347 

estimates (7). Moreover, programmatic initiatives to improve TB case detection will also need to 348 

avoid creating incentives for overly inclusive diagnostic approaches, which could increase false-349 

positive diagnosis. 350 

Diagnosis is one of several steps in the TB care cascade, and major challenges have been 351 

documented at other parts of this cascade (40, 46, 47). However, our results reinforce the 352 

critical challenges faced to diagnose TB, and highlight the importance of achieving good 353 

diagnostic outcomes for all individuals evaluated for TB, including both individuals with and 354 

without TB.  355 

 356 

357 
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TABLES 374 

 375 

Fraction of 
cohort with TB 

Algorithm 
sensitivity (%) 

Algorithm 
specificity (%) 

Positive 
predictive value 

(%)& 

Negative 
predictive value 

(%)# 

Received 
correct 

diagnosis (%) 

5% 77.2 (72.5, 81.4) 93.8 (92.0, 95.2) 39.7 (33.9, 45.8) 98.7 (98.5, 99.0) 92.9 (91.3, 94.3) 
10% 79.0 (74.5, 83.1) 92.4 (90.6, 93.9) 53.8 (48.7, 58.7) 97.5 (97.0, 98.0) 91.1 (89.6, 92.3) 
15% 80.4 (75.8, 84.4) 91.0 (89.1, 92.7) 61.3 (57.1, 65.4) 96.3 (95.6, 97.0) 89.4 (88.0, 90.6) 
20% 81.6 (77.0, 85.6) 89.6 (87.5, 91.5) 66.2 (62.5, 69.8) 95.1 (94.0, 96.1) 88.0 (86.6, 89.1) 
25% 82.6 (78.1, 86.6) 88.0 (85.6, 90.2) 69.7 (66.4, 73.0) 93.8 (92.5, 95.1) 86.7 (85.3, 87.8) 
30% 83.6 (79.0, 87.5) 86.3 (83.6, 88.9) 72.4 (69.3, 75.6) 92.5 (90.7, 94.0) 85.5 (84.1, 86.7) 
35% 84.5 (79.8, 88.4) 84.5 (81.3, 87.5) 74.6 (71.6, 77.8) 91.0 (88.9, 92.9) 84.5 (83.1, 85.8) 
40% 85.3 (80.6, 89.2) 82.5 (78.8, 86.0) 76.5 (73.5, 79.6) 89.4 (86.9, 91.7) 83.6 (82.1, 85.0) 
45% 86.1 (81.4, 90.0) 80.2 (75.8, 84.4) 78.1 (75.1, 81.2) 87.6 (84.6, 90.4) 82.9 (81.2, 84.4) 

50% 86.9 (82.2, 90.7) 77.6 (72.4, 82.6) 79.6 (76.5, 82.7) 85.6 (82.1, 88.8) 82.3 (80.4, 83.9) 
 376 

Table 1: Global average estimates for the sensitivity, specificity, positive predictive value, 377 
and negative predictive value for different values of TB prevalence among individuals 378 
evaluated for TB, based on data reported through routine notifications systems. 379 

& Positive predictive value represents the fraction of individuals identified as having TB (either bacteriologically-380 
confirmed or clinically diagnosed) who truly have TB. # Negative predictive value represents the fraction of individuals 381 
identified as not having TB who truly do not have TB. Values in parentheses indicate 95% uncertainty intervals. 382 

 383 

 384 

385 
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 386 

 

Cohort evaluated for TB (mil.)  Numbers of individuals with each diagnostic outcome (mil.)  

Number evaluated 
for TB Number with TB 

True-positive 
diagnoses 

False-negative 
diagnoses 

False-positive 
diagnoses 

True-negative 
diagnoses 

Global 22.86 (20.98, 25.00) 5.72 (5.25, 6.25) 4.72 (4.49, 4.94) 1.00 (0.71, 1.36) 2.05 (1.83, 2.27) 15.09 (13.48, 16.90) 

WHO region       

Eastern mediterranean 6.02 (5.52, 6.58) 1.50 (1.38, 1.65) 1.21 (1.15, 1.27) 0.29 (0.21, 0.40) 0.42 (0.37, 0.48) 4.09 (3.67, 4.56) 

Europe 0.96 (0.88, 1.05) 0.24 (0.22, 0.26) 0.18 (0.17, 0.19) 0.06 (0.05, 0.08) 0.04 (0.03, 0.04) 0.68 (0.62, 0.76) 

Africa 1.48 (1.35, 1.64) 0.37 (0.34, 0.41) 0.31 (0.30, 0.33) 0.06 (0.04, 0.08) 0.17 (0.16, 0.19) 0.94 (0.82, 1.07) 

Americas 0.35 (0.32, 0.39) 0.09 (0.08, 0.10) 0.08 (0.07, 0.08) 0.01 (0.01, 0.02) 0.03 (0.03, 0.04) 0.23 (0.21, 0.26) 

South-East Asia 10.36 (9.38, 11.50) 2.59 (2.34, 2.87) 2.13 (2.02, 2.25) 0.45 (0.30, 0.65) 0.92 (0.81, 1.03) 6.85 (6.01, 7.80) 

Western Pacific 3.69 (3.39, 4.04) 0.92 (0.85, 1.01) 0.80 (0.76, 0.85) 0.12 (0.08, 0.17) 0.46 (0.42, 0.51) 2.31 (2.04, 2.61) 

Income level$       

Low-income 2.94 (2.67, 3.26) 0.74 (0.67, 0.82) 0.58 (0.55, 0.61) 0.16 (0.11, 0.22) 0.22 (0.19, 0.24) 1.99 (1.76, 2.25) 

Lower middle income 14.03 (12.82, 15.45) 3.51 (3.20, 3.86) 2.88 (2.74, 3.02) 0.63 (0.43, 0.87) 1.25 (1.11, 1.40) 9.27 (8.23, 10.45) 

Upper middle income 5.89 (5.42, 6.44) 1.47 (1.36, 1.61) 1.26 (1.19, 1.32) 0.21 (0.15, 0.30) 0.58 (0.52, 0.64) 3.84 (3.43, 4.31) 

High-TB burden* 20.04 (18.38, 21.92) 5.01 (4.60, 5.48) 4.18 (3.98, 4.38) 0.83 (0.58, 1.15) 1.91 (1.70, 2.11) 13.12 (11.69, 14.72) 

Table 2: Estimated number of individuals receiving true-positive, true-negative, false-387 
positive, and false-negative diagnoses in 2023, by world region, country income level, and 388 
high-TB burden classification. 389 
mil. = million. $ Income level groups based on World Bank country income classification. * High-TB burden countries 390 
represent 30 countries identified as high TB burden by WHO. Values in parentheses indicate 95% uncertainty 391 
intervals. 392 

393 
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Scenario 

Numbers of individuals with each diagnostic outcome (millions)  

True-positive 
diagnoses 

False-
negative 

diagnoses 
False-positive 

diagnoses 
True-negative 

diagnoses 

Bact.-
confirmed 
diagnosis 

Incorrect 
diagnosis 

Main analysis 
4.72 

(4.49, 4.94) 
1.00 

(0.71, 1.36) 
2.05 

(1.83, 2.27) 
15.09 

(13.48, 16.90) 
4.21 

(4.19, 4.22) 
3.05 

(2.81, 3.34) 

Counterfactual Scenario 1: Full RDT 
adoption 

5.02 
(4.71, 5.35) 

0.70 
(0.44, 1.03) 

1.95 
(1.50, 2.44) 

15.19 
(13.55, 17.01) 

5.09 
(4.81, 5.39) 

2.65 
(2.22, 3.12) 

Counterfactual Scenario 2: Reduced 
clinical diagnosis 

4.49 
(4.28, 4.69) 

1.22 
(0.89, 1.64) 

1.28 
(1.11, 1.46) 

15.87 
(14.33, 17.58) 

4.21 
(4.19, 4.22) 

2.50 
(2.20, 2.88) 

Counterfactual Scenario 3: Improved 
clinical algorithms 

4.72 
(4.49, 4.94) 

1.00 
(0.71, 1.36) 

1.03 
(0.85, 1.23) 

16.12 
(14.60, 17.82) 

4.21 
(4.19, 4.22) 

2.03 
(1.71, 2.40) 

Counterfactual Scenario 4: Improved 
RDTs, reduced clinical diagnosis 

5.16 
(4.84, 5.50) 

0.55 
(0.32, 0.87) 

1.32 
(1.02, 1.65) 

15.83 
(14.28, 17.54) 

5.54 
(5.23, 5.88) 

1.87 
(1.51, 2.28) 

Table 3: Diagnostic outcomes under hypothetical scenarios for improving TB 395 
diagnosis, compared to the main analysis. 396 
RDT = WHO-approved rapid diagnostic test. Bact. = bacteriological. Values in parentheses indicate 95% uncertainty 397 
intervals. Scenario 1 (Full RDT adoption) represents 100% adoption of Xpert Ultra to replace smear microscopy in 398 
each modelled country. Scenario 2 (Reduced clinical diagnosis) assumes an increase in the specificity of clinical 399 
diagnosis to reduce the false-positive rate (1-specificity) of this diagnostic step by 50%, with a matching reduction in 400 
sensitivity consistent with the main analysis ROC curve shown in Fig. S2. Scenario 3 (Improved clinical algorithms) 401 
assumes improvements in practices around clinical diagnosis that allow the specificity of this diagnostic step to 402 
improve to reach the optimistic ROC curve shown on Fig. S2, with no loss of sensitivity. Scenario 4 (Improved RDTs, 403 
reduced clinical diagnosis) assumes the development and full adoption of improved RDTs with sensitivity equivalent 404 
to culture, and a change in clinical diagnosis practices matching the assumptions of Scenario 2 (increases specificity, 405 
reduced sensitivity). 406 

407 
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FIGURE LEGENDS/CAPTIONS  408 

 409 

Fig. 1: Number of laboratory-confirmed and clinically-diagnosed TB notifications per 410 

100,000 for each low- and middle-income country. 411 

‘Lab-confirmed’ notifications represent the sum of pulmonary TB cases bacteriologically-confirmed via smear 412 
microscopy, culture, or WHO-approved rapid diagnostic test. ‘Clinically-diagnosed’ notifications represent the sum of 413 
pulmonary TB cases that were not bacteriologically confirmed but diagnosed with TB by a clinician or other medical 414 
practitioner who has decided to give the patient a full course of TB treatment. Size of plotting symbols indicates total 415 
number of TB notifications for each country in 2023. Plot excludes one country that reported zero clinically-diagnosed 416 
notifications for 2023. 417 

 418 

 419 

Fig. 2: Estimated global number of individuals receiving true-positive, true-negative, false-420 
positive, and false-negative diagnoses, among individuals evaluated for TB disease in 2023. 421 

Analysis assumes 25% TB prevalence among individuals evaluated for TB. Values in parentheses indicate 95% 422 
uncertainty intervals. * Values represent reported notifications data for 2023. 423 

 424 

 425 

Fig. 3: Estimates of the probability of false-positive diagnosis (Panel A) and false-negative 426 
diagnosis (Panel B) for different values of initial TB prevalence and the percentage of 427 
notifications that are laboratory confirmed. 428 

Probability of false-positive diagnosis defined as the probability that someone diagnosed with TB does not have TB (1 429 
– PPV). Probability of false-negative diagnosis defined as the probability that someone diagnosed as not having TB 430 
does have TB (1 – NPV). Colors indicate different probability levels, indicated by values shown in each panel. of All 431 
inputs apart from the sensitivity and specificity of clinical diagnosis held at their global average values. Sensitivity and 432 
specificity of clinical diagnosis calculated as a function of other values, based on the ROC curve shown in Fig. S2. '+’ 433 
symbol in center of each plot represents mean values from the main analysis. 434 

 435 
436 



 21 

References 437 

1. World Health Organization. The End TB strategy. Geneva, Switzerland; 2015. 438 

2. Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence 439 

versus conventional sputum smear microscopy for tuberculosis: a systematic review. The 440 

Lancet infectious diseases. 2006;6(9):570-81. 441 

3. Cattamanchi A, Dowdy DW, Davis JL, Worodria W, Yoo S, Joloba M, et al. Sensitivity of direct 442 

versus concentrated sputum smear microscopy in HIV-infected patients suspected of 443 

having pulmonary tuberculosis. BMC infectious diseases. 2009;9:1-9. 444 

4. World Health Organization. Global TB Report 2024. Geneva2024. 445 

5. Sossen B, Richards AS, Heinsohn T, Frascella B, Balzarini F, Oradini-Alacreu A, et al. The 446 

natural history of untreated pulmonary tuberculosis in adults: a systematic review and 447 

meta-analysis. Lancet Respir Med. 2023;11(4):367-79. 448 

6. WHO Global TB Database [http://www.who.int/tb/country/data/download/en/] [Internet]. 449 

WHO Global TB Programme. 2023. 450 

7. Houben RMGJ, Lalli M, Kranzer K, Menzies NA, Schumacher SG, Dowdy DW. What if They 451 

Don’t Have Tuberculosis? The Consequences and Trade-offs Involved in False-positive 452 

Diagnoses of Tuberculosis. Clinical Infectious Diseases. 2018;68(1):150-6. 453 

8. Walusimbi S, Bwanga F, De Costa A, Haile M, Joloba M, Hoffner S. Meta-analysis to 454 

compare the accuracy of GeneXpert, MODS and the WHO 2007 algorithm for diagnosis of 455 

smear-negative pulmonary tuberculosis. BMC Infect Dis. 2013;13:507. 456 

9. World Health Organization. National surveys of costs faced by tuberculosis patients and 457 

their households 2015-2021: World Health Organization; 2022. 458 

10. Laurence YV, Griffiths UK, Vassall A. Costs to Health Services and the Patient of Treating 459 

Tuberculosis: A Systematic Literature Review. PharmacoEconomics. 2015;33(9):939-55. 460 

11. Tostmann A, Boeree MJ, Aarnoutse RE, De Lange WCM, Van Der Ven AJAM, Dekhuijzen R. 461 

Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. Journal of 462 

Gastroenterology and Hepatology. 2008;23(2):192-202. 463 

12. Munro SA, Lewin SA, Smith HJ, Engel ME, Fretheim A, Volmink J. Patient Adherence to 464 

Tuberculosis Treatment: A Systematic Review of Qualitative Research. PLOS Medicine. 465 

2007;4(7):e238. 466 

http://www.who.int/tb/country/data/download/en/


 22 

13. Moreira J, Bisig B, Muwawenimana P, Basinga P, Bisoffi Z, Haegeman F, et al. Weighing Harm 467 

in Therapeutic Decisions of Smear-Negative Pulmonary Tuberculosis. Medical Decision 468 

Making. 2009;29. 469 

14. Horne DJ, Kohli M, Zifodya JS, Schiller I, Dendukuri N, Tollefson D, et al. Xpert MTB/RIF and 470 

Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. 471 

Cochrane Database of Systematic Reviews. 2019(6). 472 

15. Zifodya JS, Kreniske JS, Schiller I, Kohli M, Dendukuri N, Schumacher SG, et al. Xpert Ultra 473 

versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with 474 

presumptive pulmonary tuberculosis. Cochrane Database of Systematic Reviews. 2021(2). 475 

16. Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE, Chadha VK, et al. 476 

The Tuberculosis Cascade of Care in India's Public Sector: A Systematic Review and Meta-477 

analysis. PLoS Med. 2016;13(10):e1002149. 478 

17. Naidoo P, Theron G, Rangaka MX, Chihota VN, Vaughan L, Brey ZO, et al. The South African 479 

Tuberculosis Care Cascade: Estimated Losses and Methodological Challenges. J Infect Dis. 480 

2017;216(suppl_7):S702-s13. 481 

18. Emani S, Alves K, Alves LC, da Silva DA, Oliveira PB, Castro MC, et al. Quantifying gaps in 482 

the tuberculosis care cascade in Brazil: A mathematical model study using national 483 

program data. PLoS Med. 2024;21(3):e1004361. 484 

19. Lalli M, Hamilton M, Pretorius C, Pedrazzoli D, White RG, Houben R. Investigating the 485 

impact of TB case-detection strategies and the consequences of false positive diagnosis 486 

through mathematical modelling. BMC Infect Dis. 2018;18(1):340. 487 

20. Cilloni L, Kranzer K, Stagg HR, Arinaminpathy N. Trade-offs between cost and accuracy in 488 

active case finding for tuberculosis: A dynamic modelling analysis. PLoS Med. 489 

2020;17(12):e1003456. 490 

21. Chadha VK, Praseeja P. Active tuberculosis case finding in India - The way forward. Indian J 491 

Tuberc. 2019;66(1):170-7. 492 

22. Dowdy DW, Steingart KR, Pai M. Serological testing versus other strategies for diagnosis of 493 

active tuberculosis in India: a cost-effectiveness analysis. PLoS Med. 2011;8(8):e1001074. 494 

23. Steingart KR, Flores LL, Dendukuri N, Schiller I, Laal S, Ramsay A, et al. Commercial 495 

serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an 496 

updated systematic review and meta-analysis. PLoS medicine. 2011;8(8):e1001062. 497 



 23 

24. Shewade HD, Satyanarayana S, Kumar AM. Does active case finding for tuberculosis 498 

generate more false-positives compared to passive case finding in India? Indian J Tuberc. 499 

2021;68(3):396-9. 500 

25. Moreira J, Bisig B, Muwawenimana P, Basinga P, Bisoffi Z, Haegeman F, et al. Weighing harm 501 

in therapeutic decisions of smear-negative pulmonary tuberculosis. Med Decis Making. 502 

2009;29(3):380-90. 503 

26. Basinga P, Moreira J, Bisoffi Z, Bisig B, Van den Ende J. Why are clinicians reluctant to treat 504 

smear-negative tuberculosis? An inquiry about treatment thresholds in Rwanda. Med Decis 505 

Making. 2007;27(1):53-60. 506 

27. Vassall A, van Kampen S, Sohn H, Michael JS, John KR, den Boon S, et al. Rapid diagnosis of 507 

tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness 508 

analysis. PLOS Med. 2011;8(11):e1001120-e. 509 

28. Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. Population health impact and cost-510 

effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and 511 

economic evaluation. PLoS Medicine. 2012;9(11):e1001347-e. 512 

29. Portnoy A, Yamanaka T, Nguhiu P, Nishikiori N, Garcia Baena I, Floyd K, et al. Costs incurred 513 

by people receiving tuberculosis treatment in low-income and middle-income countries: a 514 

meta-regression analysis. Lancet Global Health. 2023;11(10):e1640-e7. 515 

30. Burman W, Rucsineanu O, Horsburgh CR, Johnston J, Dorman SE, Menzies D. Research on 516 

the treatment of rifampin-susceptible tuberculosis-Time for a new approach. PLoS Med. 517 

2024;21(7):e1004438. 518 

31. Jayasooriya S, Dimambro-Denson F, Beecroft C, Balen J, Awokola B, Mitchell C, et al. 519 

Patients with presumed tuberculosis in sub-Saharan Africa that are not diagnosed with 520 

tuberculosis: a systematic review and meta-analysis. Thorax. 2023;78(1):50-60. 521 

32. Thompson RR, Kim S, Pelissari DM, Harada LO, Júnior J, Oliveira PB, et al. High mortality 522 

rates among individuals misdiagnosed with tuberculosis: a matched retrospective cohort 523 

study of individuals diagnosed with tuberculosis in Brazil. J Infect Dis. 2024. 524 

33. Theron G, Peter J, Dowdy D, Langley I, Squire SB, Dheda K. Do high rates of empirical 525 

treatment undermine the potential effect of new diagnostic tests for tuberculosis in high-526 

burden settings? Lancet Infect Dis. 2014. 527 



 24 

34. Kim S, Can MH, Agizew TB, Auld AF, Balcells ME, Bjerrum S, et al. Factors associated with 528 

tuberculosis treatment initiation among bacteriologically negative individuals evaluated for 529 

tuberculosis: An individual patient data meta-analysis. PLoS Med. 2025;22(1):e1004502. 530 

35. Keeler E, Perkins MD, Small P, Hanson C, Reed S, Cunningham J, et al. Reducing the global 531 

burden of tuberculosis: the contribution of improved diagnostics. Nature. 2006;444 Suppl 532 

1:49-57. 533 

36. da Silva MP, Cassim N, Ndlovu S, Marokane PS, Radebe M, Shapiro A, et al. More Than a 534 

Decade of GeneXpert(®)Mycobacterium tuberculosis/Rifampicin (Ultra) Testing in South 535 

Africa: Laboratory Insights from Twenty-Three Million Tests. Diagnostics (Basel). 536 

2023;13(20). 537 

37. McDowell A, Pai M. Treatment as diagnosis and diagnosis as treatment: empirical 538 

management of presumptive tuberculosis in India. Int J Tuberc Lung Dis. 2016;20(4):536-43. 539 

38. Mesfin MM, Tasew TW, Richard MJ. The quality of tuberculosis diagnosis in districts of Tigray 540 

region of northern Ethiopia. Ethiopian Journal of Health Development. 2005;19(I):13. 541 

39. Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, et al. Feasibility, accuracy, 542 

and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care 543 

settings in Africa: a multicentre, randomised, controlled trial. Lancet. 2014;383(9915):424-544 

35. 545 

40. Hanson C, Osberg M, Brown J, Durham G, Chin DP. Finding the Missing Patients With 546 

Tuberculosis: Lessons Learned From Patient-Pathway Analyses in 5 Countries. J Infect Dis. 547 

2017;216(suppl_7):S686-s95. 548 

41. World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: 549 

diagnosis–rapid diagnostics for tuberculosis detection: World Health Organization; 2024. 550 

42. Nsawotebba A, Ibanda I, Mujuni D, Nabadda S, Nadunga D, Kabugo J, et al. Impact of 551 

randomized blinded rechecking program on the performance of the AFB Microscopy 552 

Laboratory Network in Uganda: a decadal retrospective study. BMC Infect Dis. 553 

2023;23(1):494. 554 

43. Otero L, Van Deun A, Agapito J, Ugaz R, Prellwitz G, Gotuzzo E, et al. Quality assessment of 555 

smear microscopy by stratified lot sampling of treatment follow-up slides. Int J Tuberc Lung 556 

Dis. 2011;15(2):211-6, i. 557 

44. Mekonen A, Ayele Y, Berhan Y, Woldeyohannes D, Erku W, Sisay S. Factors which 558 

contributed for low quality sputum smears for the detection of acid fast bacilli (AFB) at 559 



 25 

selected health centers in Ethiopia: A quality control perspective. PLoS One. 560 

2018;13(6):e0198947. 561 

45. Desalegn DM, Kitila KT, Balcha HM, Gebeyehu CS, Kidan YW, Amare K, et al. Misdiagnosis of 562 

pulmonary tuberculosis and associated factors in peripheral laboratories: a retrospective 563 

study, Addis Ababa, Ethiopia. BMC Res Notes. 2018;11(1):291. 564 

46. Murongazvombo AS, Dlodlo RA, Shewade HD, Robertson V, Hirao S, Pikira E, et al. Where, 565 

when, and how many tuberculosis patients are lost from presumption until treatment 566 

initiation? A step by step assessment in a rural district in Zimbabwe. Int J Infect Dis. 567 

2019;78:113-20. 568 

47. Chihota VN, Ginindza S, McCarthy K, Grant AD, Churchyard G, Fielding K. Missed 569 

Opportunities for TB Investigation in Primary Care Clinics in South Africa: Experience from 570 

the XTEND Trial. PLoS One. 2015;10(9):e0138149. 571 

572 

 573 

574 



 26 

Methods  575 

Population and data 576 

The target population included individuals evaluated for pulmonary TB disease through routine 577 

healthcare in low- and middle-income countries. We extracted data from the WHO’s Global TB 578 

Database (1) on TB notifications for 2023 (Table S2). Using these data we categorized total 579 

pulmonary notifications into the number bacteriologically-confirmed and the number clinically-580 

diagnosed. We also extracted data on the number HIV-positive and the number evaluated with 581 

an RDT. We excluded countries with <100 pulmonary TB notifications and countries with missing 582 

data on laboratory-confirmed or clinically diagnosed cases. If no values were reported for the 583 

number HIV-positive or receiving an RDT, we assumed these values were zero. This study used 584 

publicly-accessible aggregate data, and did not represent human subjects research. 585 

TB diagnosis model 586 

We analyzed notifications data using a mathematical model of TB diagnosis (schematic shown 587 

in Extended Data Fig. 2). This model assumed patients would receive an initial bacteriological 588 

test, by smear microscopy or WHO-approved RDT. Positive results would be recorded as 589 

bacteriologically-confirmed TB cases. Bacteriologically-negative patients would be evaluated 590 

clinically, and if diagnosed positive would be recorded as clinically-diagnosed TB cases. Patients 591 

not determined to have TB would not receive a TB diagnosis. We did not consider under-592 

reporting (TB diagnoses missing from national notifications data).  Model equations are shown 593 

below. 594 

Calculation of diagnostic outcomes 595 

Equations 1-6 were used to calculate the probability of the starting cohort (total individuals 596 

evaluated for TB) experiencing each diagnostic outcome by country, stratified by HIV status and 597 

whether initial testing was with smear or RDT. 598 

𝑓ℎ,𝑏
𝑇𝑃−𝑏𝑎𝑐𝑡 = 𝑝𝑡𝑏 ∗ 𝑝ℎ

ℎ𝑖𝑣 ∗ 𝑝𝑏
𝑡𝑒𝑠𝑡 ∗ 𝑠𝑒ℎ,𝑏

𝑡1 ∗ (1 − 𝑝𝑐𝑢𝑙𝑡−𝑛𝑒𝑔) ∗ (1 − 𝜅)  [1] 599 
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𝑓ℎ,𝑏
𝐹𝑃−𝑏𝑎𝑐𝑡 = (1 − 𝑝𝑡𝑏) ∗ 𝑝ℎ

ℎ𝑖𝑣 ∗ 𝑝𝑏
𝑡𝑒𝑠𝑡 ∗ (1 − 𝑠𝑝ℎ,𝑏

𝑡1 ) ∗ (1 − 𝜅) [2] 600 

𝑓ℎ,𝑏
𝑇𝑃−𝑐𝑙𝑖𝑛 = 𝑝𝑡𝑏 ∗ 𝑝ℎ

ℎ𝑖𝑣 ∗ 𝑝𝑏
𝑡𝑒𝑠𝑡 ∗ ((1 − 𝑠𝑒ℎ,𝑏

𝑡1 ∗ (1 − 𝑝𝑐𝑢𝑙𝑡−𝑛𝑒𝑔)) ∗ (1 − 𝜅) + 𝜅) ∗ 𝑠𝑒ℎ,𝑏
𝑡2  [3] 601 

𝑓ℎ,𝑏
𝐹𝑃−𝑐𝑙𝑖𝑛 = (1 − 𝑝𝑡𝑏) ∗ 𝑝ℎ

ℎ𝑖𝑣 ∗ 𝑝𝑏
𝑡𝑒𝑠𝑡 ∗ (𝑠𝑝ℎ,𝑏

𝑡1 ∗ (1 − 𝜅) + 𝜅) ∗ (1 − 𝑠𝑝ℎ,𝑏
𝑡2 ) [4] 602 

𝑓ℎ,𝑏
𝐹𝑁 = 𝑝𝑡𝑏 ∗ 𝑝ℎ

ℎ𝑖𝑣 ∗ 𝑝𝑏
𝑡𝑒𝑠𝑡 ∗ ((1 − 𝑠𝑒ℎ,𝑏

𝑡1 ∗ (1 − 𝑝𝑐𝑢𝑙𝑡−𝑛𝑒𝑔)) ∗ (1 − 𝜅) + 𝜅) ∗ (1 − 𝑠𝑒ℎ,𝑏
𝑡2 ) [5] 603 

𝑓ℎ,𝑏
𝑇𝑁 = (1 − 𝑝𝑡𝑏) ∗ 𝑝ℎ

ℎ𝑖𝑣 ∗ 𝑝𝑏
𝑡𝑒𝑠𝑡 ∗ (𝑠𝑝ℎ,𝑏

𝑡1 ∗ (1 − 𝜅) + 𝜅) ∗ 𝑠𝑝ℎ,𝑏
𝑡2  [6] 604 

In these equations, the following country-specific parameters were defined for individuals in the 605 

starting cohort, stratified by HIV stratum ℎ (1 = HIV positive, 2 = HIV-negative) and bacteriological 606 

test received 𝑏 (1 = smear, 2 = RDT): 𝑓ℎ,𝑏
𝑇𝑃−𝑏𝑎𝑐𝑡, the probability of receiving a bacteriologically-607 

confirmed true-positive TB diagnosis, 𝑓ℎ,𝑏
𝐹𝑃−𝑏𝑎𝑐𝑡, the probability of receiving a false-positive TB 608 

diagnosis; 𝑓ℎ,𝑏
𝑇𝑃−𝑐𝑙𝑖𝑛, the probability of receiving a clinically-diagnosed true-positive TB diagnosis; 609 

𝑓ℎ,𝑏
𝐹𝑃−𝑐𝑙𝑖𝑛, the probability of receiving a clinically-diagnosed false-positive TB diagnosis; 𝑓ℎ,𝑏

𝐹𝑁 , the 610 

probability of receiving a false-negative TB diagnosis; and 𝑓ℎ,𝑏
𝑇𝑁, the probability of receiving a true-611 

negative TB diagnosis. 𝑝𝑡𝑏 was defined as the probability of having TB for individuals in the 612 

starting cohort (varied from 0.05 to 0.50, with 0.25 used for the base-case analysis). 𝑝ℎ
ℎ𝑖𝑣 was 613 

defined as 1 − 𝑝ℎ𝑖𝑣 for ℎ = 1 and 𝑝ℎ𝑖𝑣 for ℎ = 2. 𝑝ℎ𝑖𝑣 (HIV prevalence in the starting cohort) was 614 

computed from country-reported data defined in Table S2 (newrel_hivpos / c_newinc). 𝑝𝑏
𝑡𝑒𝑠𝑡 was 615 

defined as the probability of receiving bacteriological test type 𝑏 (1 − 𝑝𝑟𝑑𝑡  for 𝑏 = 1, 𝑝𝑟𝑑𝑡  for 𝑏 = 616 

2). 𝑝𝑟𝑑𝑡  (fraction tested with an RDT) was computed from country-reported data defined in Table 617 

S2 (newinc_rdx / c_newinc, or (newinc_pulm_labconf_rdx + newinc_pulm_clindx_rdx + 618 

newinc_ep_rdx) / c_newinc for countries reporting disaggregated data). Sensitivity and 619 

specificity values for bacteriological test and clinical diagnosis were stratified by HIV stratum ℎ  620 

and bacteriological test received 𝑏: 𝑠𝑒ℎ,𝑏
𝑡1 , the sensitivity of the initial bacteriological test for 621 

culture-positive TB; 𝑠𝑝ℎ,𝑏
𝑡1 , the specificity of the initial bacteriological test; 𝑠𝑒ℎ,𝑏

𝑡2 , the sensitivity of 622 

clinical diagnosis; and 𝑠𝑝ℎ,𝑏
𝑡2 , the specificity of clinical diagnosis. 𝑝𝑐𝑢𝑙𝑡−𝑛𝑒𝑔  represents the 623 
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probability of culture-negative TB, for individuals with TB in the initial cohort. This parameter 624 

adjusts bacteriological test sensitivity downwards to reflect sensitivity for all pulmonary TB 625 

(culture-positive and culture-negative), under the assumption that culture-negative TB will also 626 

be negative on smear and RDT. 𝜅 represents the probability that an individual does not receive a 627 

bacteriological test as part of TB evaluation, and is only evaluated clinically. This parameter was 628 

set to zero in the main analysis, with values >0 examined in sensitivity analyses. 629 

Likelihood function for reported data 630 

The diagnostic outcomes defined in equations 1-6 were used to parameterize a binomial 631 

likelihood function for the number of TB notifications that were bacteriologically confirmed out 632 

of the total number of notifications in each country. 633 

𝑓𝑏𝑎𝑐𝑡 =634 

 (∑ ∑ (𝑓ℎ,𝑏
𝑇𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏

𝐹𝑃−𝑏𝑎𝑐𝑡)2
𝑏=1

2
ℎ=1 ) (∑ ∑ (𝑓ℎ,𝑏

𝑇𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏
𝐹𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏

𝑇𝑃−𝑐𝑙𝑖𝑛 + 𝑓ℎ,𝑏
𝐹𝑃−𝑐𝑙𝑖𝑛)2

𝑏=1
2
ℎ=1 )⁄635 

 [7] 636 

𝑁𝑏𝑎𝑐𝑡  ~ Binomial(𝑛 =  𝑁𝑛𝑜𝑡𝑖𝑓 , 𝑝 =  𝑓𝑏𝑎𝑐𝑡)  [8] 637 

In equations 7-8, 𝑓𝑏𝑎𝑐𝑡  represents the probability that diagnosis is bacteriologically-confirmed, 638 

among individuals diagnosed with TB. 𝑁𝑛𝑜𝑡𝑖𝑓  represents the total number of TB diagnoses for a 639 

given country, computed from country-reported data defined in Table S2 (sum of new_clindx, 640 

ret_rel_clindx, new_labconf, and ret_rel_labconf variables). 𝑁𝑏𝑎𝑐𝑡 represents the total number of 641 

bacteriologically-confirmed TB diagnoses for a given country, computed from country-reported 642 

data (sum of new_labconf and ret_rel_labconf variables). 643 

 Additional study outcomes 644 

Equations 9-17 were used to calculate additional study outcomes. 645 

𝑓𝑛𝑜𝑡𝑖𝑓 =  ∑ ∑ (𝑓ℎ,𝑏
𝑇𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏

𝐹𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏
𝑇𝑃−𝑐𝑙𝑖𝑛 + 𝑓ℎ,𝑏

𝐹𝑃−𝑐𝑙𝑖𝑛)2
𝑏=1

2
ℎ=1   [9] 646 

𝑁𝑒𝑣𝑎𝑙 = 𝑁𝑛𝑜𝑡𝑖𝑓 𝑓𝑛𝑜𝑡𝑖𝑓⁄   [10] 647 
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𝑁𝑇𝑃 = 𝑁𝑒𝑣𝑎𝑙 ∗ ∑ ∑ (𝑓ℎ,𝑏
𝑇𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏

𝑇𝑃−𝑐𝑙𝑖𝑛)2
𝑏=1

2
ℎ=1   [11] 648 

𝑁𝐹𝑃 = 𝑁𝑒𝑣𝑎𝑙 ∗ ∑ ∑ (𝑓ℎ,𝑏
𝐹𝑃−𝑏𝑎𝑐𝑡 + 𝑓ℎ,𝑏

𝐹𝑃−𝑐𝑙𝑖𝑛)2
𝑏=1

2
ℎ=1   [12] 649 

𝑁𝐹𝑁 = 𝑁𝑒𝑣𝑎𝑙 ∗ ∑ ∑ 𝑓ℎ,𝑏
𝐹𝑁2

𝑏=1
2
ℎ=1   [13] 650 

𝑁𝑇𝑁 = 𝑁𝑒𝑣𝑎𝑙 ∗ ∑ ∑ 𝑓ℎ,𝑏
𝑇𝑁2

𝑏=1
2
ℎ=1  [14] 651 

𝑃𝑃𝑉 = 𝑁𝑇𝑃 (𝑁𝑇𝑃 + 𝑁𝐹𝑃)⁄  [15] 652 

𝑁𝑃𝑉 = 𝑁𝑇𝑁 (𝑁𝑇𝑁 + 𝑁𝐹𝑁)⁄  [16] 653 

𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (𝑁𝑇𝑃 + 𝑁𝑇𝑁) 𝑁𝑒𝑣𝑎𝑙⁄  [17] 654 

In these equations, 𝑓𝑛𝑜𝑡𝑖𝑓 is the estimated probability of being diagnosed with TB (equivalent to 655 

‘yield’ of TB diagnosis) among individuals in the starting cohort, 𝑁𝑒𝑣𝑎𝑙  is the estimated number 656 

of individuals evaluated for TB, 𝑁𝑇𝑃  is the estimated number of true-positive diagnoses, 𝑁𝐹𝑃 is 657 

the estimated number of false-positive diagnoses, 𝑁𝐹𝑁  is the estimated number of false-658 

negative diagnoses, and  𝑁𝑇𝑁  is the estimated number of true-negative diagnoses. 𝑃𝑃𝑉 is the 659 

estimated positive predictive value of TB diagnosis (probability that individuals diagnosed with 660 

TB truly have TB), 𝑁𝑃𝑉 is the estimated negative predictive value of TB diagnosis (probability that 661 

individuals not receiving a TB diagnosis truly do not have TB), and 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the estimated 662 

probability of receiving a correct diagnosis, among individuals evaluated for TB. 663 

Model parameters 664 

Estimates of test sensitivity and specificity (𝑠𝑒ℎ,𝑏
𝑡1  and 𝑠𝑝ℎ,𝑏

𝑡1 , respectively) were drawn from 665 

diagnostic accuracy studies of smear microscopy and Xpert Ultra (2-4). We stratified test 666 

sensitivity by HIV status, accounting for lower sensitivity among individuals with HIV. As reported 667 

sensitivity estimates are based on comparison to culture, they may overestimate true sensitivity 668 

due to the presence of culture-negative pulmonary TB. In our analysis we adjusted test 669 

sensitivity downwards to account for this possibility (via 𝑝𝑐𝑢𝑙𝑡−𝑛𝑒𝑔  in equations 1, 3, and 5). For 670 

each country, we calculated HIV prevalence among individuals tested for TB and the fraction of 671 
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initial bacteriological tests performed with an RDT from country-reported notifications data (𝑝ℎ𝑖𝑣 672 

and 𝑝𝑟𝑑𝑡, respectively). We assumed the fraction receiving an RDT did not vary by HIV status. 673 

Extended Data Table 8 summarizes input values and sources.  674 

A wide range of estimates for the sensitivity and specificity of clinical diagnosis have been 675 

reported (5). We used a parametric binormal model (6) to synthesis the data from these studies 676 

(Table S3, (7-16)) and define the combinations of sensitivity and specificity consistent with 677 

published evidence (Fig. S2). This approach assumes that, while countries could achieve high 678 

sensitivity or specificity of clinical diagnosis (depending on local practices), available evidence 679 

doesn’t support the assumption that clinical diagnosis can be simultaneously highly sensitive 680 

and specific. We allowed clinical diagnosis sensitivity and specificity (𝑠𝑒ℎ,𝑏
𝑡2  and 𝑠𝑝ℎ,𝑏

𝑡2 , 681 

repectively) to vary between countries within the plausible values defined by the binormal 682 

model. We also allowed the sensitivity and specificity of clinical diagnosis to vary within 683 

countries by HIV status and by whether initial diagnostic testing was via RDT, based on a 684 

systematic review finding higher rates of clinical diagnosis for HIV-positive individuals (vs. HIV-685 

negative) and for individuals initially tested with smear microscopy (vs. RDT) (17). Estimates for 686 

overall sensitivity and specificity (for the diagnostic algorithm overall as well as individual steps 687 

of the algorithm) are reported in the Results section.  688 

There is limited evidence on true TB prevalence among individuals evaluated for TB in routine 689 

settings (𝑝𝑡𝑏). We extracted data on TB prevalence among samples of individuals with 690 

presumptive TB included in recent diagnostic accuracy studies (4, 18). These data demonstrate 691 

a wide range of study-level TB prevalence values, with a median value of 26% and an 692 

interquartile range 14-37%. In our analysis we estimated results for values from 5% to 50%, and 693 

used 25% for our main analysis.  694 

Statistical analysis 695 
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We implemented the analysis using a Bayesian approach. Under this approach, we created prior 696 

distributions representing published evidence on each model parameter (Extended Data Table 697 

8) and used a Hamiltonian Monte Carlo algorithm to generate 5000 fitted values for each 698 

outcome of interest. Outcomes included algorithm sensitivity, specificity, positive predictive 699 

value, and negative predictive value, as well as the number of true-positive, true-negative, false-700 

positive, and false-negative diagnoses generated by TB diagnosis. Point estimates were 701 

calculated as the mean of the distribution of results. We used a non-parametric approach to 702 

calculate measures of uncertainty around study outcomes, with 95% uncertainty intervals 703 

calculated as the 2.5th and 97.5th percentiles of the Monte Carlo simulation results for each 704 

outcome. We estimated outcomes for each country independently, and pooled results across 705 

countries to report regional and global results. Uncertainty in pooled results assumed a rank 706 

correlation of 0.5 across country-specific values. Analyses were conducted using R (v4.4.2) (19), 707 

and the RStan package (v2.32.6) (20).  708 

Counterfactual scenarios 709 

Using the fitted models for each country, we explored counterfactual scenarios representing 710 

hypothetical alternatives for improving diagnostic performance. Under the first counterfactual 711 

scenario (Full RDT adoption) we recalculated diagnostic outcomes assuming 100% adoption of 712 

Xpert Ultra to replace smear microscopy in each modelled country. The second counterfactual 713 

scenario (Reduced clinical diagnosis) assumed there would be efforts to reduce clinician 714 

willingness to diagnose patients clinically, such that the false-positive rate (1-specificity) of 715 

clinical diagnosis is reduced by 50%. We assumed that this would not change the ROC curve for 716 

clinical diagnosis, such that improvements in specificity would come at the cost of reduced 717 

sensitivity, consistent with the main analysis ROC curve shown in Fig. S2. The third 718 

counterfactual scenario (Improved clinical algorithms) assumed there could improvements in 719 

practices around clinical diagnosis (such as greater use of chest radiography, or improved 720 

diagnostic criteria for bacteriologically-negative TB), allowing the specificity of this diagnostic 721 
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step to increase to reach the optimistic ROC curve shown on Fig. S2, with no loss of sensitivity. 722 

The fourth counterfactual scenario (Improved RDTs, reduced clinical diagnosis) assumed the 723 

development and full adoption of improved RDTs with sensitivity equivalent to culture, and 724 

contemporaneous change in clinical diagnosis matching the assumptions of the second 725 

counterfactual scenario (i.e., increased specificity and reduced sensitivity). For each 726 

counterfactual scenario we recalculated diagnostic outcomes and compared these results with 727 

the main analysis, to estimate the improvements in diagnostic outcomes that could be 728 

achieved.  729 

Sensitivity analyses 730 

We calculated partial rank correlation coefficients quantifying the relationship between 731 

individual parameters and study outcomes. In addition, we re-estimated results under several 732 

alternative analytic specifications. These included [1] using published evidence on Xpert 733 

MTB/RIF (instead of Ultra) as the basis for RDT sensitivity and specificity (18),  adopting [2] more 734 

optimistic and [3] pessimistic assumptions for the sensitivity and specificity of clinical diagnosis 735 

(ROC curves shown in Fig. S2), and [4] assuming 25% of individuals don’t receive a 736 

bacteriological test and are only evaluated clinically.  737 

Finally, we created plots showing how the probability of false-positive diagnosis (the false 738 

discovery rate (𝐹𝐷𝑅), equal to 1- 𝑃𝑃𝑉) and false-negative diagnosis (the false omission rate 739 

(𝐹𝑂𝑅), equal to 1- 𝑁𝑃𝑉) change as a function of initial TB prevalence and the fraction lab-740 

confirmed, holding other inputs at their global average. To do so we considered a simplified 741 

version of equations 1-6. These simplified equations do not differentiate bacteriological test 742 

type or HIV-infection status (subscripts ‘h’ and ‘b’ removed), and restate initial test sensitivity for 743 

all pulmonary TB (given by 𝑠𝑒ℎ,𝑏
𝑡1 ∗ (1 − 𝑝𝑐𝑢𝑙𝑡−𝑛𝑒𝑔) in equations 1-6) as 𝑠𝑒𝑡1. With these 744 

simplifications, the probabilities of being true-positive on bacteriological testing (𝑓𝑇𝑃−𝑏𝑎𝑐𝑡), 745 

false-positive on bacteriological testing (𝑓𝐹𝑃−𝑏𝑎𝑐𝑡), true-positive after clinical evaluation 746 
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(𝑓𝑇𝑃−𝑐𝑙𝑖𝑛), false-positive after clinical evaluation (𝑓𝐹𝑃−𝑐𝑙𝑖𝑛), false-negative after clinical 747 

evaluation (𝑓𝐹𝑁−𝑐𝑙𝑖𝑛), and true-negative after clinical evaluation (𝑓𝑇𝑁−𝑐𝑙𝑖𝑛) are given by equations 748 

18-23. 749 

𝑓𝐹𝑃−𝑏𝑎𝑐𝑡 =  (1 − 𝑝𝑡𝑏) ∗ [(1 − κ) ∗ (1 − 𝑠𝑝𝑡1)] [18] 750 

𝑓𝑇𝑃−𝑏𝑎𝑐𝑡 = 𝑝𝑡𝑏 ∗ [(1 − κ) ∗ 𝑠𝑒𝑡1] [19] 751 

𝑓𝐹𝑃−𝑐𝑙𝑖𝑛 = (1 − 𝑝𝑡𝑏) ∗ [(1 − κ) ∗ 𝑠𝑝𝑡1 + κ] ∗ (1 − 𝑠𝑝𝑡2) [20] 752 

𝑓𝑇𝑃−𝑐𝑙𝑖𝑛 = 𝑝𝑡𝑏 ∗ [(1 − κ) ∗ (1 − 𝑠𝑒𝑡1) + κ] ∗ 𝑠𝑒𝑡2 [21] 753 

𝑓𝐹𝑁−𝑐𝑙𝑖𝑛 = 𝑝𝑡𝑏 ∗ [(1 − κ) ∗ (1 − 𝑠𝑒𝑡1) + κ] ∗ (1 − 𝑠𝑒𝑡2) [22] 754 

𝑓𝑇𝑁−𝑐𝑙𝑖𝑛 = (1 − 𝑝𝑡𝑏) ∗ [(1 − κ) ∗ 𝑠𝑝𝑡1 + κ] ∗ 𝑠𝑝𝑡2 [23] 755 

In these equations,  𝑠𝑒𝑡1 and 𝑠𝑝𝑡1 are the sensitivity and specificity of the initial bacteriological 756 

test, respectively, and 𝑠𝑒𝑡2 and 𝑠𝑝𝑡2 are the sensitivity and specificity of clinical diagnosis 757 

among individuals testing negative on the initial bacteriological test, respectively. The 𝐹𝐷𝑅 758 

(equal to [𝑓𝐹𝑃−𝑏𝑎𝑐𝑡 + 𝑓𝐹𝑃−𝑐𝑙𝑖𝑛]/[𝑓𝐹𝑃−𝑏𝑎𝑐𝑡 + 𝑓𝐹𝑃−𝑐𝑙𝑖𝑛 + 𝑓𝑇𝑃−𝑏𝑎𝑐𝑡 + 𝑓𝑇𝑃−𝑐𝑙𝑖𝑛]) and 𝐹𝑂𝑅 (equal to 759 

𝑓𝐹𝑁−𝑐𝑙𝑖𝑛/[𝑓𝐹𝑁−𝑐𝑙𝑖𝑛 + 𝑓𝑇𝑁−𝑐𝑙𝑖𝑛]) can then be written as 760 

𝐹𝐷𝑅 =
𝑓𝑏𝑎𝑐𝑡

1+ω∗σ𝑡1(0)
+

1−𝑓𝑏𝑎𝑐𝑡

1+ω∗σ𝑡1(0)∗σ𝑡2(λ+1)
  [24] 761 

𝐹𝑂𝑅 =
ω∗σ𝑡1(λ+1)∗σ𝑡2(1)

1+ω∗σ𝑡1(λ+1)∗σ𝑡2(1)
  [25] 762 

where ω = 𝑜𝑑𝑑𝑠(𝑝𝑡𝑏), λ = 𝑜𝑑𝑑𝑠(κ), we introduce the function σ𝑖(𝑥) =
𝑠𝑒𝑖−𝑥

1−𝑠𝑝𝑖−𝑥
, and 𝑓𝑏𝑎𝑐𝑡  is the 763 

fraction of diagnoses that are bacteriologically confirmed ([𝑓𝑇𝑃−𝑏𝑎𝑐𝑡 + 𝑓𝐹𝑃−𝑏𝑎𝑐𝑡]/[𝑓𝑇𝑃−𝑏𝑎𝑐𝑡 +764 

𝑓𝐹𝑃−𝑏𝑎𝑐𝑡 + 𝑓𝑇𝑃−𝑐𝑙𝑖𝑛 + 𝑓𝐹𝑃−𝑐𝑙𝑖𝑛]). The expression for 𝑓𝑏𝑎𝑐𝑡  can be rearranged as 765 

1

𝑜𝑑𝑑𝑠(𝑓𝑏𝑎𝑐𝑡)
=

(1−𝑠𝑝𝑡2)∗(
𝑠𝑝𝑡1+𝜆

1−𝑠𝑝𝑡1) + 𝑠𝑒𝑡2∗𝜔∗(
1−𝑠𝑒𝑡1+𝜆

1−𝑠𝑝𝑡1 )

1+𝜔∗σ𝑡1(0)
  [26] 766 
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which represents a negatively sloped straight line in the terms (𝟏 − 𝒔𝒑𝒕𝟐) and 𝒔𝒆𝒕𝟐. The ROC 767 

curve Φ(𝑠𝑒𝑡2) = 𝑎 + 𝑏 ∗ Φ(1 − 𝑠𝑝𝑡2) (where Φ is the standard normal cumulative distribution, 768 

and 𝑎, 𝑏 > 0) intersects this line at a unique point, implying that giving 𝑓𝑏𝑎𝑐𝑡, 𝜔, 𝜆, 𝑠𝑒𝑡1, and 𝑠𝑝𝑡1, 769 

together with a ROC curve, uniquely determines the accuracy of clinical evaluation, 𝑠𝑒𝑡2 and 770 

𝑠𝑝𝑡2. We use these relationships to explore how the FDR and FOR change as we vary TB 771 

prevalence (𝑝𝑡𝑏) and the fraction of TB diagnoses that is bacteriologically confirmed (𝑓𝑏𝑎𝑐𝑡). 772 

Here we have used the base case ROC curve, taken κ = 0, and used 𝑠𝑒𝑡1 = 0.62 and 𝑠𝑝𝑡1 = 0.98 773 

from the global average model results. We repeated this analysis for the three alternative 774 

analytic specifications (using optimistic and pessimistic ROC curves, and assuming κ = 0.25). 775 

Ethics and inclusion 776 

This study exclusively utilized publicly available aggregate data, and collected no primary data 777 

on humans or animals. Data on TB case notifications were obtained from the WHO TB Database, 778 

reflecting the work of a large number of national TB programs to collect, confirm, and report 779 

data. We gratefully acknowledge the efforts made to make these data available. Data on the 780 

performance of clinical diagnosis were extracted from the published literature. Local and 781 

regional researchers responsible for collecting and publishing these data were appropriately 782 

cited and acknowledged throughout. All co-authors actively participated from the early stages of 783 

project design through to data interpretation and manuscript preparation.  784 
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787 
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Code availability statement 792 
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