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ABSTRACT

Tuberculosis (TB) is the greatest cause of infectious disease deaths worldwide. In highly-
affected countries, effective tuberculosis control requires prompt identification and treatment
of individuals with active disease. We examined the performance of tuberculosis case-finding in
low- and middle-income counties, based on a comprehensive analysis of tuberculosis diagnosis
data reported to WHO. Using these data we estimated the total number of individuals correctly
and incorrectly diagnosed with tuberculosis, for 111 countries with a collective 6.8 million
tuberculosis notifications in 2023. Here we estimate that in 2023, 2.05 (1.83-2.27) million
individuals were incorrectly diagnosed with tuberculosis (false-positive), and 1.00 (0.71-1.36)
million received a false-negative diagnosis, at an assumed 25% disease prevalence among
individuals evaluated for TB. As many as three out of every ten tuberculosis notifications may
not have tuberculosis, and many individuals with tuberculosis receive false-negative diagnoses.
As compared to current diagnostic performance, scaling-up new PCR-based diagnostics would
substantially reduce under-diagnosis but only produce a small reduction in false-positive
diagnoses. Major improvements in TB diagnosis will likely require higher-sensitivity

bacteriological tests combined with reduced reliance on clinical diagnosis.
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Introduction

Routine facility-based evaluation of individuals with signs and symptoms of tuberculosis (TB)
plays a central role in efforts to address TB (1). However, the test most commonly used to
diagnose TB in many countries—sputum smear microscopy—has limited sensitivity (2, 3).
Several cartridge-based polymerase chain reaction (PCR) tests have recently been developed,
and while these rapid diagnostic tests (RDTs) provide substantial improvements in sensitivity
compared to smear microscopy they are not yet universally available (4). Both smear
microscopy and RDTs are bacteriological tests, which provide the strongest evidence for a TB
diagnosis. However, reviews of cohort studies of individuals found to be bacteriologically
negative on initial TB evaluation have reported high rates of subsequent TB diagnosis (5). For
these reasons, a negative result in initial bacteriological testing does not conclusively exclude
TB, and many TB diagnoses are based on clinical evaluation, following a negative bacteriological
test result. For 2023, 38% of TB diagnoses were made clinically, without bacteriological
confirmation (6). Clinical evaluation can include chest radiography (if available), reported
symptoms, and the presence of health conditions or other patient characteristics suggestive of
TB (7). Although clinical evaluation will result in additional individuals being diagnosed with TB,
studies have not demonstrated high sensitivity and specificity (8). For these reasons, routine TB
diagnosis will incorrectly identify some individuals as having TB, and fail to diagnose some

individuals with the disease.

Both false-positive and false-negative diagnoses can harm patients. A false-positive diagnosis
exposes patients to the health risks and financial burden associated with TB treatment (9), as
well as the social and psychological consequences of a major disease diagnosis. False-positive
diagnosis also delays treatment of the health condition that led the patient to seek care (10-12).
A false-negative diagnosis will delay TB treatment, allowing ongoing lung damage, mortality

risks, and transmission (13).
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In this study we estimated the performance of TB diagnosis in 2023 for 111 low- and middle-
income countries (98% of global incidence). To do so, we synthesized national data on notified
TB diagnoses with published evidence on sensitivity and specificity at each step of TB diagnosis,
identifying the combination of diagnostic parameters and outcomes consistent with available
evidence. For the cohort of individuals evaluated for TB, we re-estimated results for values of
initial TB prevalence ranging from 5% to 50%, using 25% as a base-case), based on the
distribution of values reported by diagnostic accuracy studies (14, 15). From this analysis we
estimate the number of false-positive and false-negative TB diagnoses resulting from current
diagnostic approaches. Based on this analysis we explore the potential impact of alternative
approaches that could be taken to improve diagnostic outcomes, including further adoption of
current RDTs to replace smear microscopy, changes in clinical practices, and further

improvements in RDT performance.

Results

The WHO Global TB database includes data for 134 low- and middle-income countries. We
excluded 8 countries with missing data on laboratory-confirmed (i.e., bacteriologically positive)
or clinically diagnosed cases, and a further 15 countries with <100 pulmonary TB notifications
(Table S1). The final analysis included 111 countries, with 4,205,535 laboratory-confirmed cases
(62%) and 2,562,902 clinically diagnosed cases (38%). The fraction laboratory-confirmed ranged
from 13% to 97% (interquartile range (IQR): 64-84%), with this fraction lower on average for
countries with higher TB rates (Fig. 1). Across countries 5% of notifications were HIV-positive

(IQR: 1-12%), and 48% were tested using an RDT (IQR: 31-80%)).

[Fig. 1]
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Diagnostic algorithm performance

Assuming initial TB prevalence (true prevalence of TB amongst people evaluated for TB) of 25%,
we estimated an overall algorithm sensitivity (fraction of individuals with TB who receive a TB
diagnosis) of 82.6% (95% uncertainty interval: 78.1, 86.6) and specificity (fraction of individuals
without TB who receive a TB-negative diagnosis) of 88.0% (85.6, 90.2), when performance was
pooled across all countries included in the analysis. The positive predictive value (fraction
diagnosed TB-positive who truly have TB) was estimated as 69.7% (66.4, 73.0), and the negative
predictive value (fraction diagnosed TB-negative who do not have TB) was 93.8% (92.5, 95.1).
Overall, 86.7% (85.3, 87.8) of diagnoses were estimated to be correct. The estimated positive
predictive value increased with higher values of initial TB prevalence, from 39.7% (33.9, 45.8) at
5% prevalence to 79.6% (76.5, 82.7) at 50% prevalence. The negative predictive value decreased
with higher TB prevalence, from 98.7% (98.5, 99.0) at 5% prevalence to 85.6% (82.1, 88.8) at 50%
prevalence (Table 1). Estimates for algorithm sensitivity and specificity also changed with
different assumptions for initial TB prevalence, with the inferred performance of clinical
diagnosis adjusting to match reported data. Extended Data Table 1 shows global estimates for

performance at each step of TB diagnosis (bacteriological testing vs. clinical diagnosis).

[Table 1]

Estimated diagnostic performance varied across world regions, with the highest algorithm
sensitivity estimated for the European region (86.2% (81.8, 90.1)), and lowest for the Americas
region (74.7% (69.3, 79.7)). This variation arises from differences in the use of clinical diagnosis
across regions, as well as differences in RDT coverage. Extended Data Table 2 shows
performance estimates by world region, country income level, and for WHO-identified high-TB

burden countries.



113 Total numbers with each diagnostic outcome

114 Assuming 25% initial TB prevalence, an estimated 22.86 (20.98, 25.00) million individuals were
115 evaluated for TB in 2023, of whom 5.72 (5.25, 6.25) million had TB disease. Of those with TB, an
116 estimated 4.72 (4.49, 4.94) million were correctly diagnosed with TB, and 1.00 (0.71, 1.36)

117 million did not receive a TB diagnosis (false-negative). Of the 17.15 (15.74, 18.75) million without
118 TB, an estimated 2.05 (1.83, 2.27) million were incorrectly diagnosed with TB (false-positive).
119 Overallyield (number diagnosed with TB divided by number evaluated for TB) was estimated as
120 29.7% (27.1, 32.2). Fig. 2 shows global outcomes for each stage of diagnosis, with clinical

121 diagnosis estimated to be responsible for 22% of all true-positive diagnoses, and 75% of all

122  false-positives). These diagnostic outcomes were sensitive to assumptions about initial TB

123 prevalence (Extended Data Table 3). The estimated number of false-positive diagnoses declined
124  with higher values for initial TB prevalence, ranging from 4.08 (3.67, 4.47) million at 5% TB

125 prevalence to 1.38 (1.17, 1.59) million at 50% TB prevalence. The estimated number of false-
126 negative diagnoses exhibited a non-monotonic relationship with initial TB prevalence, varying
127  from 0.80 (0.57, 1.07) million at 5% TB prevalence, to 1.02 (0.74, 1.36) million at 15% TB

128 prevalence, to 0.82 (0.53, 1.20) million at 50% TB prevalence.

129

130 [Fig. 2]

131

132  Table 2 shows the number of true-positive, true-negative, false-positive, and false-negative
133 diagnoses by country group, with the number of false-positive and false-negative diagnoses
134 greatest in the South-East Asia region, consistent with the share of overall TB burden in this
135 region. The relative number of false-positive and false-negative diagnoses varied across world

136 regions, from a low of 0.60 (0.40, 0.88) false-positive diagnoses for every false-negative
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diagnosis estimated for the Americas region, up to 4.03 (2.52, 6.09) in the Western Pacific region

(global average: 2.12 (1.39, 3.09)).

[Table 2]

Approaches for improving diagnostic outcomes

We compared our main analysis with several hypothetical scenarios exploring approaches for
improving TB diagnostic outcomes. When we assumed RDT coverage would increase to fully
replace smear microscopy (Full RDT adoption scenario), overall algorithm sensitivity increased
by 5.2 (2.5, 8.1) percentage points, enabling an additional 0.30 (0.14, 0.48) million individuals to
be correctly diagnosed with TB. This change reduced the number of false-negative diagnoses by
one third, increased the number of individuals receiving a bacteriologically-confirmed TB
diagnosis by 0.89 (0.61, 1.19) million, and produced a small, non-significant reduction in the
number of false-positive diagnoses. When we allowed for reduced clinician willingness to
diagnose patients clinically (Reduced clinical diagnosis scenario), this increased overall
algorithm specificity to 92.5% (90.9, 93.9) and produced large reductions in the number of false-
positive diagnoses (0.77 (0.68, 0.86) million). However, this scenario also resulted in an
additional 0.23 (0.18, 0.29) million false negative diagnoses. When we allowed for improvements
in practices around clinical diagnosis (Improved clinical algorithms scenario), algorithm
specificity increased to 94.0% (92.4, 95.3) and false-positive diagnoses dropped by 1.02 (0.88,
1.17) million, with no loss of sensitivity. When we allowed for introduction of improved, more
sensitive RDTs, with concomitant reductions in clinical diagnosis (Improved RDTs, reduced
clinical diagnosis) this produced the greatest increases in algorithm sensitivity and accurate
diagnosis, with the number of false-negative and false-positive diagnoses reduced by 0.45 (0.28,

0.64) million (a 45% reduction) and 0.73 (0.45, 1.00) million (a 47% reduction), respectively.
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Table 3 reports the number of individuals receiving each diagnostic outcome under these
counterfactual scenarios, as compared to the main analysis. Extended Data Tables 4 and 5
report the implications for algorithm sensitivity, specificity, and other measures of diagnostic

performance.

[Table 3]

Sensitivity analyses

Fig. S1 shows partial rank correlation coefficients quantifying the sensitivity of results to
parameter changes. In these analyses, total false-positive diagnoses was most strongly
associated with specificity parameters, with higher specificity associated with lower numbers of
false-positive diagnoses. Total false-negative diagnoses had a strong negative association with
the sensitivity of clinical diagnosis, and a strong positive relationship with the fraction of culture-
negative TB. Extended Data Tables 6 and 7 reports estimated diagnostic outcomes under
alternative analytic specifications. When we used published reviews of Xpert MTB-RIF as the
source of RDT sensitivity and specificity (vs. Xpert Ultra in the main analysis) results were largely
similar, with a small increase in false-negative diagnoses (to 1.14 (0.82, 1.54) million) and a
small reduction in false-positive diagnosis (to 1.85 (1.64, 2.06) million). When we re-estimated
results assuming higher sensitivity and specificity for clinical diagnosis, the estimated number
of false-negative and false-positive diagnoses were both reduced, to 0.72 (0.47, 1.04) and 1.78
(1.52, 2.03) million respectively. When we assumed lower sensitivity and specificity for clinical
diagnosis both false-negative and false-positive diagnoses increased (1.30 (0.96, 1.70) and 2.35
(2.14, 2.55) million respectively). When we assumed 25% of individuals never receive an initial
bacteriological test, false-positive diagnoses declined slightly (1.90 (1.60, 2.19) million) and

false-negative diagnoses increased substantially (2.77 (1.63, 4.52) million). Extended Data Table
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7 reports algorithm sensitivity, specificity, positive predictive value, and negative predictive value
for these alternative specifications. Fig. 3 shows how the probabilities of false-positive diagnosis
and false-negative diagnosis change with different values for initial TB prevalence and the
fraction laboratory-confirmed. Extended Data Fig. 1 shows similar results for the three

alternative specifications.

Discussion

This study examined the performance of routine TB diagnosis in low- and middle-income
countries. Assuming 25% TB prevalence among individuals evaluated for TB, we estimated
average algorithm sensitivity to be approximately 80% and specificity approximately 90%, such
that individuals evaluated for TB had a one-in-eight chance of receiving an incorrect diagnosis.
For those with TB, these results imply that one million could have received a false-negative
diagnosis in 2023. For those without TB we estimated that as many as two million could have
received an incorrect diagnosis of TB. If correct, these results imply that as many as three out of
every ten individuals diagnosed with TB may not have TB. While numbers of false-positive and
false-negative diagnoses varied across settings, most settings were estimated to have at least as
many false-positive diagnoses as false-negative, and particularly so in the high-incidence

settings representing the majority of global TB cases.

False-negative diagnoses stem from inadequate algorithm sensitivity. While novel RDTs have
better sensitivity than smear microscopy (14), they will still give false-negative results for some
patients, and coverage is not universal (6). For these reasons clinical diagnosis still plays a major
role, and in our analysis was responsible for one-fifth of all true-positive diagnoses. The average
algorithm sensitivity estimated in this analysis is generally consistent with studies of TB care
cascades in high-burden settings, which have identified diagnosis as a key point at which

individuals with TB are lost from the cascade (16-18). This large number of missed diagnoses,
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and their negative consequences (ongoing morbidity, mortality, and transmission) have

motivated major investments in TB diagnostics over the last 20 years.

False-positive TB diagnosis has received substantially less attention. Most studies that have
examined the potential numbers incorrectly diagnosed with TB have focused on active case-
finding interventions, for which starting TB prevalence is typically low (19-21), or the risks posed
by low-specificity serological tests (22, 23). However, one study has estimated the positive
predictive value of TB diagnosis in India could be as low as 62% (24), consistent with the results

of our analysis.

The comparatively low attention paid to false-positive diagnosis could stem from more minor
health consequences being attributed to these diagnostic errors, compared to false-negative
diagnoses. However, while the harms associated with false-negative diagnosis are well
understood, little is known about the health consequences of false-positive diagnosis (7).
Studies that have examined the relative weight placed on false-positive and false-negative
diagnoses have found clinicians to consider false-negative diagnosis approximately twice as
harmful as false-positive diagnosis, and have argued this ratio should be substantially higher
(25, 26). These studies considered only the treatment costs of false-positive diagnosis, and the
risk of treatment side effects. Many economic evaluations of TB diagnostics have taken the
same approach (27, 28), or have just considered the economic implications. However, false-
positive diagnosis can also lead to harms associated with delayed treatment of the health
condition causing the individual’s symptoms, patient-incurred costs of unnecessary TB
treatment (29), and the emotional toll and stigma attached to a TB diagnosis. Moreover, the side-
effects of current TB treatment regimens are neither trivial nor rare, even for first-line regimens
(30). A false-positive diagnosis may also trigger unnecessary services to identify and treat TB
infection among household members. While some false-positive diagnoses will result from

transient respiratory infections, others will reflect more serious infections (e.g., pneumonia), or
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progressive, high-morbidity conditions such as lung cancer, heart failure, and COPD (31). In an
analysis of individuals incorrectly diagnosed with TB in Brazil, estimated mortality was 2-3 times
higher than for individuals with true-positive TB over the 2 years following diagnosis, with lung
cancer and non-TB respiratory disorders being the most common causes (32). While lung cancer
likely represents a minority of false-positive diagnoses, it is clear that at least some individuals

incorrectly diagnosed with TB will face major health consequences.

As part of our study we explored the potential impact of approaches that could be taken to
improve TB diagnosis. Full adoption of currently-available RDTs is likely the most immediately
actionable of the counterfactual scenarios, with many countries making concerted efforts to
increase RDT coverage. We found that full adoption of RDTs could reduce the number of false-
negative diagnoses by one-third. The absolute increase in algorithm sensitivity in this scenario
(5.2%) is smaller than the increase in sensitivity estimated for RDTs when compared to smear
microscopy in diagnostic trials (14), illustrating the important role currently played by clinical
diagnosis in identifying TB cases previously missed by smear microscopy (33). There are many
challenges to achieving high RDT coverage, but these results highlight the benefits that would be
realized with higher coverage, which could both reduce TB mortality and shorten the duration of
infectiousness for individuals who would otherwise receive a false-negative diagnosis. While full
RDT adoption was also projected to produce improvements in algorithm specificity, the absolute
number of false-positive diagnoses only dropped by a small amount. This decrease was driven
by reductions in clinical diagnosis following a negative RDT result (as compared to smear
microscopy) (34), and had substantial uncertainty. As the majority of false-positive diagnoses
result from clinical diagnosis, a more direct approach to addressing this issue would be to
increase the level of clinical suspicion required to diagnose TB. However, while we found that
this approach could potentially produce substantial reductions in false-positive diagnosis (0.8
million), it would do so at the cost of additional false-negative TB diagnoses (0.2 million). These

additional missed TB diagnoses would likely represent substantial increases in TB morbidity and
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death, suggesting that efforts to discourage clinical diagnosis could have harmful
consequences that do not outweigh the benefits. In contrast, efforts to identify improved clinical
diagnostic algorithms (potentially including greater access to non-bacteriological diagnostics
such as chest radiography) could improve algorithm specificity while protecting sensitivity. In a
final scenario, we estimated the potential impact of improved RDTs (to achieve the same
sensitivity as culture) with concomitant changes in clinical diagnosis. Under this scenario, both
false-negatives and false-positives were substantially reduced. Beyond full adoption of current
RDTs, this scenario may represent the best target for future innovation in TB diagnostics, as the
development of high-sensitivity diagnostics reduces the need for clinical diagnosis to catch
those missed by the initial test. Such behavior change in response to higher sensitivity
diagnostics has already been observed for currently-available RDTs (34). While not examined in
this analysis, improvements in diagnostics for other conditions with a similar clinical
presentation could also play a role in reducing false-positive TB diagnosis, by reducing the pool

of individuals with unexplained TB-like symptoms.

This study has several limitations. First, there is little evidence on true TB prevalence among
individuals evaluated for TB. This is an important input to our analysis, and likely varies across
country settings. For this reason, we estimated results for a range of prevalence values, and
even with high initial prevalence the number of false-positive diagnoses was still substantial.
Moreover, initial TB prevalence in many settings could be lower than the 25% used on our main
analysis, and previous studies have assumed values between 10-20% (22, 35). In South Africa,
RDT-positivity has averaged 9% since 2011, and has fallen progressively over this period (36). If
true TB prevalence were 10%, the number of false-positive diagnoses would be higher than
estimated in our main analysis. Additionally, as we calculate our results for fixed values of TB
prevalence, the reported uncertainty intervals do not include this source of uncertainty. Second,
while we estimated the performance of clinical diagnosis from a range of studies, most were

from high HIV-prevalence settings, and we had limited ability to consider the variation in
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performance that likely exists across settings. While we adjusted the results of these studies to
account for potential misclassification of culture-negative TB, the limitations of culture as a
reference standard adds uncertainty to our estimates. Third, there is limited empirical evidence
to validate one of our main findings—the potentially large number of false-positive diagnoses
produced by current diagnostic approaches. In part this should be expected - if most false-
positive individuals have self-resolving conditions, they would improve on TB treatment similar
to individuals with TB, with initially incorrect diagnoses unlikely to be revisited. In addition,
several studies have reported on diagnostic practices in routine settings that increase the risks
of false-positive diagnosis, with sensitivity prioritized over specificity (37, 38). Perhaps the best
supporting evidence is the multiple studies showing a substantial fraction of clinically-
diagnosed individuals to be negative when tested with culture, both from the pre-Xpert era (8)
and during Xpert roll-out (27, 39). For example, of 139 individuals treated clinically following a
negative Xpert result in the TB-NEAT trial, only 31 (22%) were culture-positive (39). While culture
has limitations for routine TB diagnosis it should identify the large majority of adults with
pulmonary TB, so the high fraction of clinically-diagnosed culture-negative TB cases in these
empirical studies supports our findings. Under an alternative model specification that reduced
the sensitivity of initial diagnostic tests (assuming a greater fraction of symptomatic TB is
bacteriologically-negative) and made optimistic assumptions about the ability of clinical
diagnosis to identify these bacteriologically-negative cases, the number of false-positive
diagnoses was substantially reduced, but still greater than the number of false-negative
diagnoses. Fourth, we conceptualized TB diagnosis as a single event, yet many individuals with
TB make repeated diagnostic attempts before being diagnosed correctly (40). In our analysis,
these multiple attempts serve to increase initial TB prevalence, by inflating the number of times
an individual with TB gets assessed. As noted above, our results are robust to alternative
assumptions about initial TB prevalence, and may be conservative on this point. Fifth, we used

the sensitivity and specificity reported for Xpert Ultra to represent all RDTs, even though several
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RDTs are now available (41). Country-reported notifications data do not record the mix of RDTs
used, and we chose Xpert Ultra to represent this class of diagnostic given the substantial
evidence available on its performance and its increasing use across high-burden countries.
Similarly, we did not include sputum culture in the algorithms assessed in our study, given its
limited use in many settings. Sixth, we did not consider age in our analysis, as several of the
required variables were not stratified by age. Diagnosis of TB in children (<10% of all
notifications) shares many of the challenges of adult TB diagnosis, though these challenges are
maghnified, with poorer sensitivity of available bacteriological tests and difficult sample
collection. Seventh, our assumptions about bacteriological test sensitivity and specificity were
based on data collected under research conditions. While we adjusted test sensitivity
downwards to allow for culture-negative pulmonary TB, there is evidence of lower sensitivity and
specificity in routine healthcare, and reporting gaps could affect the communication of
laboratory results (42-45). Finally, our estimates don’t consider TB diagnoses not captured by
routine reporting data. While there have been major efforts over the past decade to address
under-reporting, there will still be some individuals diagnosed with TB that are not included in
available data. As under-reporting of TB is most common with informal and private providers,
there is little reason to believe that the performance of TB diagnosis for these individuals would

be better than estimated in this analysis.

The results of this analysis have several implications. Given the potentially large number of
individuals receiving false-positive diagnoses, collection of empirical evidence to corroborate
this finding is urgently needed, in addition to research examining the health consequences for
these individuals, which are poorly understood. While potentially less surprising, the 1 million
individuals estimated to receive a false-negative diagnosis is also notable, and together with the
number of false-positive diagnoses provides a strong reminder of the deficiencies of current
diagnostic approaches. While much progress has been made over the past 15 years, better ways

to diagnose TB are urgently needed. This includes the development of more accurate RDTs that
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can be used across a wider range of samples and clinical settings, and concomitant scale up of
RDTs to replace lower sensitivity smear microscopy. These changes would reduce the need for
clinical diagnosis, which was responsible for most false-positive diagnoses in our analysis.
Beyond patient care, these findings raise questions about how to track trends in TB incidence
and mortality. For many countries, epidemiological estimates depend on country-reported
notifications data, assuming these notifications represents true TB disease cases (4). In settings
with more false-positive diagnoses, failing to account for this could distort epidemiological
estimates (7). Moreover, programmatic initiatives to improve TB case detection will also need to
avoid creating incentives for overly inclusive diagnostic approaches, which could increase false-

positive diagnosis.

Diagnosis is one of several steps in the TB care cascade, and major challenges have been
documented at other parts of this cascade (40, 46, 47). However, our results reinforce the
critical challenges faced to diagnose TB, and highlight the importance of achieving good
diagnostic outcomes for all individuals evaluated for TB, including both individuals with and

without TB.
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TABLES

Fraction of Algorithm Algorithm Positive Negative Received
cohortwith TB | sensitivity (%) specificity (%) | predictive value | predictive value correct

(%)* (%)* diagnosis (%)

5% 77.2(72.5,81.4) | 93.8(92.0,95.2) | 39.7(33.9,45.8) | 98.7(98.5,99.0) | 92.9(91.3,94.3)
10% 79.0(74.5, 83.1) 92.4(90.6, 93.9) 53.8 (48.7,58.7) 97.5(97.0, 98.0) 91.1(89.6, 92.3)
15% 80.4(75.8,84.4) | 91.0(89.1,92.7) | 61.3(57.1,65.4) | 96.3(95.6,97.0) | 89.4(88.0,90.6)
20% 81.6(77.0, 85.6) 89.6 (87.5,91.5) 66.2 (62.5, 69.8) 95.1(94.0, 96.1) 88.0(86.6, 89.1)
25% 82.6(78.1, 86.6) 88.0(85.6,90.2) 69.7 (66.4, 73.0) 93.8(92.5,95.1) 86.7(85.3, 87.8)
30% 83.6 (79.0, 87.5) 86.3(83.6, 88.9) 72.4(69.3, 75.6) 92.5(90.7,94.0) 85.5(84.1, 86.7)
35% 84.5(79.8, 88.4) 84.5(81.3, 87.5) 74.6 (71.6,77.8) 91.0(88.9, 92.9) 84.5(83.1, 85.8)
40% 85.3(80.6, 89.2) 82.5(78.8, 86.0) 76.5(73.5,79.6) 89.4(86.9,91.7) 83.6(82.1, 85.0)
45% 86.1(81.4,90.0) 80.2(75.8,84.4) 78.1(75.1, 81.2) 87.6 (84.6,90.4) 82.9(81.2,84.4)
50% 86.9(82.2,90.7) 77.6(72.4,82.6) 79.6 (76.5, 82.7) 85.6(82.1, 88.8) 82.3(80.4, 83.9)

Table 1: Global average estimates for the sensitivity, specificity, positive predictive value,

and negative predictive value for different values of TB prevalence among individuals

evaluated for TB, based on data reported through routine notifications systems.

& Positive predictive value represents the fraction of individuals identified as having TB (either bacteriologically-
confirmed or clinically diagnosed) who truly have TB. # Negative predictive value represents the fraction of individuals
identified as not having TB who truly do not have TB. Values in parentheses indicate 95% uncertainty intervals.
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386

387
388

389
390
391
392
393

Cohort evaluated for TB (mil.)

Numbers of individuals with each diagnostic outcome (mil.)

Number evaluated

True-positive

False-negative

False-positive

True-negative

for TB Number with TB diagnoses diagnoses diagnoses diagnoses

Global 22.86(20.98, 25.00)| 5.72(5.25, 6.25) | 4.72 (4.49,4.94) | 1.00(0.71, 1.36) | 2.05(1.83,2.27) |15.09 (13.48, 16.90)
WHO region

Eastern mediterranean | 6.02(5.52,6.58) | 1.50(1.38,1.65) | 1.21(1.15,1.27) | 0.29(0.21, 0.40) | 0.42(0.37,0.48) | 4.09(3.67, 4.56)

Europe 0.96 (0.88,1.05) |0.24(0.22,0.26) | 0.18(0.17,0.19) | 0.06 (0.05, 0.08) | 0.04 (0.03,0.04) | 0.68(0.62, 0.76)

Africa 1.48(1.35,1.64) |0.37(0.34,0.41) | 0.31(0.30, 0.33) | 0.06 (0.04,0.08) | 0.17 (0.16,0.19) | 0.94(0.82,1.07)

Americas 0.35(0.32,0.39) |0.09(0.08,0.10) | 0.08 (0.07,0.08) | 0.01(0.01,0.02) | 0.03(0.03,0.04) | 0.23(0.21, 0.26)

South-East Asia 10.36(9.38, 11.50) | 2.59 (2.34, 2.87) | 2.13(2.02, 2.25) | 0.45(0.30, 0.65) | 0.92(0.81,1.03) | 6.85(6.01,7.80)

Western Pacific 3.69(3.39,4.04) |0.92(0.85,1.01) | 0.80(0.76,0.85) | 0.12(0.08,0.17) | 0.46 (0.42,0.51) | 2.31(2.04,2.61)
Income level®

Low-income 2.94(2.67,3.26) |0.74(0.67,0.82) | 0.58(0.55,0.61) | 0.16(0.11,0.22) | 0.22(0.19,0.24) | 1.99(1.76, 2.25)

Lower middle income |14.03(12.82, 15.45)| 3.51(3.20, 3.86) | 2.88(2.74,3.02) | 0.63(0.43, 0.87) | 1.25(1.11, 1.40) | 9.27(8.23, 10.45)

Upper middle income 5.89(5.42,6.44) |1.47(1.36,1.61) | 1.26(1.19,1.32) | 0.21(0.15,0.30) | 0.58 (0.52,0.64) | 3.84(3.43,4.31)
High-TB burden* 20.04(18.38,21.92)| 5.01 (4.60, 5.48) | 4.18 (3.98, 4.38) | 0.83(0.58, 1.15) | 1.91(1.70, 2.11) |13.12 (11.69, 14.72)

Table 2: Estimated number of individuals receiving true-positive, true-negative, false-

positive, and false-negative diagnhoses in 2023, by world region, country income level, and
high-TB burden classification.

mil. = million. ® Income level groups based on World Bank country income classification. * High-TB burden countries
represent 30 countries identified as high TB burden by WHO. Values in parentheses indicate 95% uncertainty

intervals.
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394

395

396
397
398
399
400
401
402
403
404
405
406
407

Numbers of individuals with each diagnostic outcome (millions)

False- Bact.-
True-positive negative False-positive | True-negative confirmed Incorrect
Scenario diagnoses diagnoses diagnoses diagnoses diagnosis diagnosis
4.72 1.00 2.05 15.09 4.21 3.05
Main analysis (4.49, 4.94) (0.71,1.36) (1.83,2.27) | (13.48,16.90) | (4.19,4.22) (2.81, 3.34)
Counterfactual Scenario 1: Full RDT 5.02 0.70 1.95 15.19 5.09 2.65
adoption (4.71,5.35) (0.44,1.03) (1.50,2.44) | (13.565,17.01) | (4.81,5.39) (2.22,3.12)
Counterfactual Scenario 2: Reduced 4.49 1.22 1.28 15.87 4.21 2.50
clinical diagnosis (4.28, 4.69) (0.89, 1.64) (1.11,1.46) | (14.33,17.58) | (4.19,4.22) (2.20, 2.88)
Counterfactual Scenario 3: Improved 4.72 1.00 1.03 16.12 4.21 2.03
clinical algorithms (4.49, 4.94) (0.71,1.36) (0.85,1.23) | (14.60,17.82) | (4.19,4.22) (1.71, 2.40)
Counterfactual Scenario 4: Improved 5.16 0.55 1.32 15.83 5.54 1.87
RDTs, reduced clinical diagnosis (4.84,5.50) (0.32,0.87) (1.02,1.65) | (14.28,17.54) | (5.23,5.88) (1.51,2.28)

Table 3: Diagnostic outcomes under hypothetical scenarios forimproving TB

diagnosis, compared to the main analysis.
RDT = WHO-approved rapid diagnostic test. Bact. = bacteriological. Values in parentheses indicate 95% uncertainty
intervals. Scenario 1 (Full RDT adoption) represents 100% adoption of Xpert Ultra to replace smear microscopy in
each modelled country. Scenario 2 (Reduced clinical diagnosis) assumes an increase in the specificity of clinical
diagnosis to reduce the false-positive rate (1-specificity) of this diagnostic step by 50%, with a matching reduction in
sensitivity consistent with the main analysis ROC curve shown in Fig. S2. Scenario 3 (Improved clinical algorithms)
assumes improvements in practices around clinical diagnosis that allow the specificity of this diagnostic step to
improve to reach the optimistic ROC curve shown on Fig. S2, with no loss of sensitivity. Scenario 4 (Improved RDTs,
reduced clinical diagnosis) assumes the development and full adoption of improved RDTs with sensitivity equivalent
to culture, and a change in clinical diagnosis practices matching the assumptions of Scenario 2 (increases specificity,

reduced sensitivity).
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FIGURE LEGENDS/CAPTIONS

Fig. 1: Number of laboratory-confirmed and clinically-diagnosed TB notifications per

100,000 for each low- and middle-income country.

‘Lab-confirmed’ notifications represent the sum of pulmonary TB cases bacteriologically-confirmed via smear
microscopy, culture, or WHO-approved rapid diagnostic test. ‘Clinically-diagnosed’ notifications represent the sum of
pulmonary TB cases that were not bacteriologically confirmed but diagnosed with TB by a clinician or other medical
practitioner who has decided to give the patient a full course of TB treatment. Size of plotting symbols indicates total
number of TB notifications for each country in 2023. Plot excludes one country that reported zero clinically-diagnosed
notifications for 2023.

Fig. 2: Estimated global number of individuals receiving true-positive, true-negative, false-
positive, and false-negative diagnoses, among individuals evaluated for TB disease in 2023.

Analysis assumes 25% TB prevalence among individuals evaluated for TB. Values in parentheses indicate 95%
uncertainty intervals. * Values represent reported notifications data for 2023.

Fig. 3: Estimates of the probability of false-positive diagnosis (Panel A) and false-negative
diagnosis (Panel B) for different values of initial TB prevalence and the percentage of
notifications that are laboratory confirmed.

Probability of false-positive diagnosis defined as the probability that someone diagnosed with TB does not have TB (1
- PPV). Probability of false-negative diagnosis defined as the probability that someone diagnosed as not having TB
does have TB (1 - NPV). Colors indicate different probability levels, indicated by values shown in each panel. of All
inputs apart from the sensitivity and specificity of clinical diagnosis held at their global average values. Sensitivity and
specificity of clinical diagnosis calculated as a function of other values, based on the ROC curve shown in Fig. S2. '+
symbol in center of each plot represents mean values from the main analysis.
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Methods

Population and data

The target population included individuals evaluated for pulmonary TB disease through routine
healthcare in low- and middle-income countries. We extracted data from the WHO’s Global TB
Database (1) on TB notifications for 2023 (Table S2). Using these data we categorized total
pulmonary notifications into the number bacteriologically-confirmed and the number clinically-
diagnosed. We also extracted data on the number HIV-positive and the number evaluated with
an RDT. We excluded countries with <100 pulmonary TB notifications and countries with missing
data on laboratory-confirmed or clinically diagnosed cases. If ho values were reported for the
number HIV-positive or receiving an RDT, we assumed these values were zero. This study used

publicly-accessible aggregate data, and did not represent human subjects research.

TB diagnosis model

We analyzed notifications data using a mathematical model of TB diagnosis (schematic shown
in Extended Data Fig. 2). This model assumed patients would receive an initial bacteriological
test, by smear microscopy or WHO-approved RDT. Positive results would be recorded as
bacteriologically-confirmed TB cases. Bacteriologically-negative patients would be evaluated
clinically, and if diagnosed positive would be recorded as clinically-diagnosed TB cases. Patients
not determined to have TB would not receive a TB diagnosis. We did not consider under-
reporting (TB diagnoses missing from national notifications data). Model equations are shown

below.

Calculation of diagnostic outcomes
Equations 1-6 were used to calculate the probability of the starting cohort (total individuals
evaluated for TB) experiencing each diagnostic outcome by country, stratified by HIV status and

whether initial testing was with smear or RDT.

f”llji’—bact — p p test % se (1 cult—neg) % (1 _ KZ) [1]
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Ifg —bact _ (1 ptb) % p;luv % plt;est (1 _ Spitl,lb) % (1 _ K) [2]

fup € =P ™« ppt ((1 = sefd, * (1= pme9) )« (1~ k) + K) * Sepdy [3]
fap ™ = (1=pt) xpi™ * o * (5Pl * (1= 1) + 1) * (1= 5Py [4]
wp =D PR ppe « ((1 — sefly * (1= peemeo) ) (1 - 1) + K) (1 - sef, [5]

test

wh = (1= p™) =i ppet » (spfl * (1= 1) + k) * spf3 [6]
In these equations, the following country-specific parameters were defined for individuals in the
starting cohort, stratified by HIV stratum h (1 = HIV positive, 2 = HIV-negative) and bacteriological
test received b (1 = smear, 2 = RDT): fiT§ ~P%<t, the probability of receiving a bacteriologically-
confirmed true-positive TB diagnosis, f,i’;_ba“, the probability of receiving a false-positive TB
diagnosis; th_;j—C”n, the probability of receiving a clinically-diagnosed true-positive TB diagnosis;
fFP —clin the probability of receiving a clinically-diagnosed false-positive TB diagnosis; fh b the
probability of receiving a false-negative TB diagnosis; and fh b » the probability of receiving a true-
negative TB diagnosis. ptb was defined as the probability of having TB for individuals in the
starting cohort (varied from 0.05 to 0.50, with 0.25 used for the base-case analysis). pﬁ”’ was
defined as 1 — py;;, for h =1 and py;,, for h = 2. py;,, (HIV prevalence in the starting cohort) was
computed from country-reported data defined in Table S2 (newrel_hivpos / c_newinc). pf,e“ was
defined as the probability of receiving bacteriological test type b (1 — pyq: for b =1, p,-q; for b =
2). praz (fraction tested with an RDT) was computed from country-reported data defined in Table
S2 (newinc_rdx/ c_newinc, or (newinc_pulm_labconf_rdx + newinc_pulm_clindx_rdx +
newinc_ep_rdx) / c_newinc for countries reporting disaggregated data). Sensitivity and
specificity values for bacteriological test and clinical diagnosis were stratified by HIV stratum h
and bacteriological test received b: se,tl,lb, the sensitivity of the initial bacteriological test for

culture-positive TB; sp,tl'lb, the specificity of the initial bacteriological test; se,tllzb, the sensitivity of

clinical diagnosis; and sp,ﬂ'zb, the specificity of clinical diagnosis. p°*t~"¢9 represents the
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probability of culture-negative TB, for individuals with TB in the initial cohort. This parameter
adjusts bacteriological test sensitivity downwards to reflect sensitivity for all pulmonary TB
(culture-positive and culture-negative), under the assumption that culture-negative TB will also
be negative on smear and RDT. k represents the probability that an individual does not receive a
bacteriological test as part of TB evaluation, and is only evaluated clinically. This parameter was

set to zero in the main analysis, with values >0 examined in sensitivity analyses.

Likelihood function for reported data

The diagnostic outcomes defined in equations 1-6 were used to parameterize a binomial
likelihood function for the number of TB notifications that were bacteriologically confirmed out

of the total number of notifications in each country.

fbact —

(2%1=1 Zi:l(fiz:g_ba“ + fiig_baCt))/(Z}Zl=1Z§=1(fi’£§_baa +f’5§—bact +f}’£g—clin + f}fg—clin))
[7]

Nbact ~ Binomial(n = N™!/, p = fhact) [8]
In equations 7-8, fba“ represents the probability that diagnosis is bacteriologically-confirmed,
among individuals diagnosed with TB. Nt/ represents the total number of TB diagnoses for a
given country, computed from country-reported data defined in Table S2 (sum of new_clindx,
ret_rel_clindx, new_labconf, and ret_rel_labconf variables). Nbact represents the total number of

bacteriologically-confirmed TB diagnoses for a given country, computed from country-reported

data (sum of new_labconf and ret_rel_labconf variables).

Additional study outcomes

Equations 9-17 were used to calculate additional study outcomes.

fnotif — 2’2121212):1(f’315—bact +f’5§—bact +f;£§_din +f’5llj—clin) [9]

Neval — Nnotif/fnotif [10]
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NTP — Neval % Zﬁ:12§:1(fglg—bact + fg"g—clin) [11]

NFP = yeval 4 Zﬁ:12§:1(ﬂ55_ba“ + fﬂ;—clin) [12]
NN = N s 35y Xhe fiy [13]
NN = Nevet w32 351 fab [14]
PPV = N /(N™? + N*F) [15]
NPV = N™N/(N™ + NFV) [16]
feorrect — (NTP 4+ NTN)/Neval [17]

In these equations, f”"”f is the estimated probability of being diagnosed with TB (equivalent to
‘yield’ of TB diagnosis) among individuals in the starting cohort, N¢"% is the estimated number
of individuals evaluated for TB, N'” is the estimated number of true-positive diagnoses, N7F is
the estimated number of false-positive diagnoses, N7V is the estimated number of false-
negative diagnoses, and NV is the estimated number of true-negative diagnoses. PPV is the
estimated positive predictive value of TB diagnosis (probability that individuals diagnosed with
TB truly have TB), NPV is the estimated negative predictive value of TB diagnosis (probability that
individuals not receiving a TB diagnosis truly do not have TB), and f°""¢¢tjs the estimated

probability of receiving a correct diagnosis, among individuals evaluated for TB.

Model parameters

Estimates of test sensitivity and specificity (sef}, and sp}},, respectively) were drawn from
diagnostic accuracy studies of smear microscopy and Xpert Ultra (2-4). We stratified test
sensitivity by HIV status, accounting for lower sensitivity among individuals with HIV. As reported
sensitivity estimates are based on comparison to culture, they may overestimate true sensitivity
due to the presence of culture-negative pulmonary TB. In our analysis we adjusted test
sensitivity downwards to account for this possibility (via pc“¢~"¢9 in equations 1, 3, and 5). For

each country, we calculated HIV prevalence among individuals tested for TB and the fraction of
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initial bacteriological tests performed with an RDT from country-reported notifications data (ppiy
and p,q4¢, respectively). We assumed the fraction receiving an RDT did not vary by HIV status.

Extended Data Table 8 summarizes input values and sources.

A wide range of estimates for the sensitivity and specificity of clinical diagnosis have been
reported (5). We used a parametric binormal model (6) to synthesis the data from these studies
(Table S3, (7-16)) and define the combinations of sensitivity and specificity consistent with
published evidence (Fig. S2). This approach assumes that, while countries could achieve high
sensitivity or specificity of clinical diagnosis (depending on local practices), available evidence
doesn’t support the assumption that clinical diagnosis can be simultaneously highly sensitive
and specific. We allowed clinical diagnosis sensitivity and specificity (sef%, and sp}3,,
repectively) to vary between countries within the plausible values defined by the binormal
model. We also allowed the sensitivity and specificity of clinical diagnosis to vary within
countries by HIV status and by whether initial diagnostic testing was via RDT, based on a
systematic review finding higher rates of clinical diagnosis for HIV-positive individuals (vs. HIV-
negative) and for individuals initially tested with smear microscopy (vs. RDT) (17). Estimates for
overall sensitivity and specificity (for the diagnostic algorithm overall as well as individual steps

of the algorithm) are reported in the Results section.

There is limited evidence on true TB prevalence among individuals evaluated for TB in routine
settings (p*?). We extracted data on TB prevalence among samples of individuals with
presumptive TB included in recent diagnostic accuracy studies (4, 18). These data demonstrate
a wide range of study-level TB prevalence values, with a median value of 26% and an
interquartile range 14-37%. In our analysis we estimated results for values from 5% to 50%, and

used 25% for our main analysis.

Statistical analysis
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We implemented the analysis using a Bayesian approach. Under this approach, we created prior
distributions representing published evidence on each model parameter (Extended Data Table
8) and used a Hamiltonian Monte Carlo algorithm to generate 5000 fitted values for each
outcome of interest. Outcomes included algorithm sensitivity, specificity, positive predictive
value, and negative predictive value, as well as the number of true-positive, true-negative, false-
positive, and false-negative diagnoses generated by TB diagnosis. Point estimates were
calculated as the mean of the distribution of results. We used a non-parametric approach to
calculate measures of uncertainty around study outcomes, with 95% uncertainty intervals
calculated as the 2.5 and 97.5" percentiles of the Monte Carlo simulation results for each
outcome. We estimated outcomes for each country independently, and pooled results across
countries to report regional and global results. Uncertainty in pooled results assumed a rank
correlation of 0.5 across country-specific values. Analyses were conducted using R (v4.4.2) (19),

and the RStan package (v2.32.6) (20).

Counterfactual scenarios

Using the fitted models for each country, we explored counterfactual scenarios representing
hypothetical alternatives for improving diagnostic performance. Under the first counterfactual
scenario (Full RDT adoption) we recalculated diagnostic outcomes assuming 100% adoption of
Xpert Ultra to replace smear microscopy in each modelled country. The second counterfactual
scenario (Reduced clinical diagnosis) assumed there would be efforts to reduce clinician
willingness to diagnose patients clinically, such that the false-positive rate (1-specificity) of
clinical diagnosis is reduced by 50%. We assumed that this would not change the ROC curve for
clinical diagnosis, such that improvements in specificity would come at the cost of reduced
sensitivity, consistent with the main analysis ROC curve shown in Fig. S2. The third
counterfactual scenario (Improved clinical algorithms) assumed there could improvementsin
practices around clinical diagnosis (such as greater use of chest radiography, or improved

diagnostic criteria for bacteriologically-negative TB), allowing the specificity of this diagnostic
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step to increase to reach the optimistic ROC curve shown on Fig. S2, with no loss of sensitivity.
The fourth counterfactual scenario (Improved RDTs, reduced clinical diagnosis) assumed the
development and full adoption of improved RDTs with sensitivity equivalent to culture, and
contemporaneous change in clinical diagnosis matching the assumptions of the second
counterfactual scenario (i.e., increased specificity and reduced sensitivity). For each
counterfactual scenario we recalculated diagnostic outcomes and compared these results with
the main analysis, to estimate the improvements in diagnostic outcomes that could be

achieved.

Sensitivity analyses

We calculated partial rank correlation coefficients quantifying the relationship between
individual parameters and study outcomes. In addition, we re-estimated results under several
alternative analytic specifications. These included [1] using published evidence on Xpert
MTB/RIF (instead of Ultra) as the basis for RDT sensitivity and specificity (18), adopting [2] more
optimistic and [3] pessimistic assumptions for the sensitivity and specificity of clinical diagnosis
(ROC curves shown in Fig. S2), and [4] assuming 25% of individuals don’t receive a

bacteriological test and are only evaluated clinically.

Finally, we created plots showing how the probability of false-positive diagnosis (the false
discovery rate (FDR), equal to 1- PPV) and false-negative diagnosis (the false omission rate
(FOR), equal to 1- NPV) change as a function of initial TB prevalence and the fraction lab-
confirmed, holding other inputs at their global average. To do so we considered a simplified
version of equations 1-6. These simplified equations do not differentiate bacteriological test
type or HIV-infection status (subscripts ‘h’ and ‘b’ removed), and restate initial test sensitivity for
all pulmonary TB (given by sef}, (1 — p€¥t=1€9) in equations 1-6) as se®. With these
simplifications, the probabilities of being true-positive on bacteriological testing (fTP‘ba“),

false-positive on bacteriological testing (fFF~24<t), true-positive after clinical evaluation
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(fTP-cliny false-positive after clinical evaluation (fFP~¢!"), false-negative after clinical

evaluation (fF¥=¢iim) and true-negative after clinical evaluation (f7V=¢!") are given by equations

18-23.

frP=bact — (1 — pth) % [(1 —x) * (1 — sp™)] [18]
fre-bact =p® (1 — 1) x set] [19]
fEP=Clin = (1= pt) « [(1 — k) * spt* + x| * (1 — sp*?) [20]
fTP=clin — pth 4 [(1 — k) * (1 — setl) + k] * set? [21]
FEN=clin = ptb 4 [(1 — k) * (1 — se?) +«] * (1 — set?) [22]
fr=etin = (1 —p®) « [(1 = ) * sp'* + «] * sp*? [23]

In these equations, set! and sp'! are the sensitivity and specificity of the initial bacteriological
test, respectively, and set? and sp®? are the sensitivity and specificity of clinical diagnosis
among individuals testing negative on the initial bacteriological test, respectively. The FDR
(equal to [fFP-bact 4 pFP—clin]/[¢FP-bact j fFPclin | ¢TP=bact 4 (TP=clin]) and FOR (equal to

fEN=clin j[fFN=clin ;. fTN=clin]) can then be written as

FDR _ fbact 1_fbact

T 1+w+otl(0)  1+w*ctl(0)*ct2(A+1) [24]
_ oxctr(A+1)*0t?(1)

FOR = 1+w*ct1(A+1)*ct2(1) [25]

set—x

where o = odds(p*?), A = odds(x), we introduce the function ¢! (x) = ,and fPact isthe

1-spi—x
fraction of diagnoses that are bacteriologically confirmed ([fTP~bact 4 fFP=bact] [fTP=bact 4

fFP-bact 4 fTP=clin 4 gFPclin]) The expression for f?°¢ can be rearranged as

t1 t1
sp“t+A 1-se"“+A
1 (1—Spt2)*(m> +Set2*w*( )

1-sptl
odds(fbact) 1+w+*ot1(0)

[26]
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which represents a negatively sloped straight line in the terms (1 — sptz) and se'?. The ROC
curve ®(set?) = a + b * (1 — sp'?) (where @ is the standard normal cumulative distribution,
and a, b > 0) intersects this line at a unique point, implying that giving f2%°t, w, A, set!, and sp’?,
together with a ROC curve, uniquely determines the accuracy of clinical evaluation, se*? and
sp'?. We use these relationships to explore how the FDR and FOR change as we vary TB
prevalence (p;p) and the fraction of TB diagnoses that is bacteriologically confirmed (fb““).
Here we have used the base case ROC curve, taken k = 0, and used se‘! = 0.62 and sp'! = 0.98
from the global average model results. We repeated this analysis for the three alternative

analytic specifications (using optimistic and pessimistic ROC curves, and assuming k = 0.25).

Ethics and inclusion

This study exclusively utilized publicly available aggregate data, and collected no primary data
on humans or animals. Data on TB case notifications were obtained from the WHO TB Database,
reflecting the work of a large number of national TB programs to collect, confirm, and report
data. We gratefully acknowledge the efforts made to make these data available. Data on the
performance of clinical diagnosis were extracted from the published literature. Local and
regional researchers responsible for collecting and publishing these data were appropriately
cited and acknowledged throughout. All co-authors actively participated from the early stages of

project design through to data interpretation and manuscript preparation.
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