
Universally Composable
Password-Hardened Encryption

Behzad Abdolmaleki1 , Ruben Baecker2 , Paul Gerhart3 , Mike Graf4 , Mojtaba Khalili⋆5 , Daniel
Rausch4 , and Dominique Schröder2,3

1 University of Sheffield, Sheffield, England
2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

3 TU Wien, Vienna, Austria
4 University of Stuttgart, Stuttgart, Germany

5 Isfahan University of Technology, Isfahan, Iran

Abstract. Password-Hardened Encryption (PHE) protects against offline brute-force attacks by in-
volving an external ratelimiter that enforces rate-limited decryption without learning passwords or keys.
Threshold Password-Hardened Encryption (TPHE), introduced by Brost et al. (CCS’20), distributes
this trust among multiple ratelimiters. Despite its promise, the security foundations of TPHE remain
unclear. We make three contributions:
(1) We uncover a flaw in the proof of Brost et al.’s TPHE scheme, which invalidates its claimed security

and leaves the guarantees of existing constructions uncertain;
(2) We provide the first universal composability (UC) formalization of PHE and TPHE, unifying

previous fragmented models and supporting key rotation, an essential feature for long-term security
and related primitives such as updatable encryption;

(3) We present the first provably secure TPHE scheme, which is both round-optimal and UC-secure,
thus composable in real-world settings; and we implement and evaluate our protocol, demonstrating
practical efficiency that outperforms prior work in realistic WAN scenarios.

1 Introduction

In recent years, the amount of sensitive data collected and processed by online services has grown exponentially,
exposing user information to an increasing number of entities. At the same time, data breaches have become
more frequent and severe. In 2023, a collection of billions of records were compromised in high-profile incidents
involving companies such as T-Mobile, Facebook, and Marriott International.6 Attackers often exploit weak
authentication mechanisms and centralized encryption key management to gain unauthorized access to user
data. Once a database is breached, attackers can perform offline brute-force attacks on password hashes or,
worse, obtain master keys that provide access to all encrypted records.

Traditional encryption methods are designed to protect stored data from external adversaries, but they
often fall short in scenarios involving insider threats or advanced persistent attacks. In particular, once an
attacker gains access to a database, he or she can operate independently of authentication rate limits and
other online defenses. This fundamental weakness requires new cryptographic solutions that mitigate offline
attacks and enforce rate-limited access at the encryption layer.

Password-Hardened Encryption (PHE). To address these challenges, Lai et al. [43] (USENIX’18) introduced
password-hardened encryption (PHE), a cryptographic scheme that enhances password-based key derivation
by incorporating an external entity called a ratelimiter or crypto service. Unlike traditional password-based
encryption, where the server alone derives the data key, PHE distributes trust by involving the ratelimiter in
key derivation. The server computes the encryption key using a combination of the user’s password, its own
secret key, and the ratelimiter’s key. Importantly, the ratelimiter never learns the password or the data key,
and its primary function is to enforce rate-limited decryption attempts.
⋆ This work was done while at Friedrich-Alexander-Universität Erlangen-Nürnberg.
6 https://www.mcafee.com/blogs/internet-security/26-billion-records-released-the-mother-of-all-breaches/

https://orcid.org/0009-0008-8335-2787
https://orcid.org/0009-0008-9310-8964
https://orcid.org/0000-0002-0164-0187
https://orcid.org/0000-0003-3191-7711
https://orcid.org/0009-0006-9150-5005
https://orcid.org/0000-0002-1901-3659
https://orcid.org/0000-0001-6943-8914
https://www.mcafee.com/blogs/internet-security/26-billion-records-released-the-mother-of-all-breaches/

The security guarantees of PHE ensure that neither a malicious database attacker nor the ratelimiter
alone can recover user passwords or derived keys. Furthermore, PHE supports key rotation, allowing the
server and ratelimiter to update their keys without requiring user intervention. Key rotation is an essential
feature mandated by several security standards–including NIST SP 800-57, ISO/IEC-27002:2013, and PCI
DSS [47]–and best practices recommended by major industry players like Google and Amazon. Due to its
security benefits, PHE has seen real-world adoption, with commercial implementations such as VirgilSecurity’s
PureKit7.

Threshold Password-Hardened Encryption (TPHE). While PHE significantly enhances security, it introduces
a new availability risk: the ratelimiter becomes a single point of failure. If the ratelimiter is unavailable
due to outages or targeted denial-of-service attacks, users may be locked out of their data. Moreover, if an
attacker compromises the ratelimiter, they could potentially assist in key recovery, undermining the security
guarantees of PHE.

To address these concerns, Brost et al. [10] (CCS’20) proposed threshold password-hardened encryption
(TPHE), an extension of PHE that distributes the ratelimiter functionality among multiple independent
entities. In a (t,m)-TPHE scheme, the ratelimiter role is shared among m independent servers, with a
threshold value t specifying the minimum number of ratelimiters required for successful decryption. This
design improves the security by ensuring that as long as an adversary does not compromise both the main
server and at least t ratelimiters, the security guarantees of PHE remain intact. Furthermore, availability is
improved, as the system can tolerate up to m− t ratelimiters becoming unavailable while the remaining ones
continue to maintain the service.

Our work uncovers a fundamental gap in the security proof of the threshold password-hardened encryption
(TPHE) scheme of Brost et al., which is the so far only TPHE scheme with a formal security analysis. This
casts doubt on whether a provably secure construction is currently known. Even if the formal security of their
TPHE scheme could be reestablished, it would still only achieve standalone security, making it unsuitable
for use in larger cryptographic protocols. In addition, the existing scheme suffers from inefficiency, requiring
multiple rounds of communication for encryption and decryption. To address these issues, we propose the
first round-optimal TPHE scheme with provable universal composability (UC) guarantees, ensuring both
stronger security properties and improved efficiency. In addition, we introduce a unified security definition
within the UC framework, resolving inconsistencies and shortcomings in previous game-based models and
providing a robust foundation for future research.

1.1 Our Contributions

Our main contributions are the following:

– We identify a gap in the security proof of Brost et al. TPHE scheme, raising doubts about whether a
secure threshold PHE construction is currently known.

– PHE’s game-based security definitions date back to the early work by Everspaugh et al. on password
hardening [24]. Each subsequent paper has introduced a new game-based security model [48, 42, 43, 10],
leading to a fragmented and incomparable landscape of security definitions and constructions. Such game-
based definitions establish only standalone security that is insufficient for use within larger cryptographic
protocols. This, however, is the intended use case of PHE and TPHE. These definitions further require
passwords to be distributed in specific ways, independently of each other, and to remain fully confidential
to guarantee security. This is generally not the case in practice where users tend to re-use (parts of) their
passwords and include public information such as birth dates.
We solve these issues by proposing the first security definition within a universal composability (UC)
model to establish a unified notion for both PHE and TPHE with stronger and composable security
properties required in practice. Specifically, we propose an ideal functionality FPHE for (t,m)-threshold
password-hardened (authenticated) encryption.

7 https://developer.virgilsecurity.com/docs/purekit/fundamentals/password-hardened-encryption/

2

https://developer.virgilsecurity.com/docs/purekit/fundamentals/password-hardened-encryption/

– We introduce the first provably UC secure round-optimal (authenticated) (t,m)-threshold password-
hardened encryption scheme, addressing multiple open questions:
• We establish the feasibility of provably secure TPHE schemes.
• Our scheme is the first TPHE (and also PHE) scheme with provable universal composability guarantees.
• Our scheme improves upon the recent TPHE construction by Brost et al. [10], which requires three

rounds for encryption and five for decryption, by reducing both encryption and decryption to a single
round. Our benchmarks highlight the practical impact of this improvement, showing that our scheme
outperforms that of Brost et al. by more than 200% in realistic WAN settings. More broadly, this
result underscores the practical feasibility of round-optimal schemes.

Our construction can be seen as a reminiscence of Pythia [24], the pioneering password hardening scheme.
We adapt the scheme for thresholding and extend it to support both encryption and integrity functionalities.
The scheme’s security is proved under the Gap One-More Bilinear Computational Diffie-Hellman (Gap-
OM-BCDH) assumption in the random oracle model.

1.2 Related Work

PH, PHE, and TPHE. Everspaugh et al. [24] pioneered the concept of password-hardening (PH) following
its initial introduction by Facebook [46]. Their work identified key rotation as a fundamental property for
practical deployment, highlighting it as both an enabler and a core challenge in designing PH and password-
hardened encryption (PHE) schemes. Subsequent refinements to PH were made by Schneider et al. [48] and
Lai et al. [42], further solidifying its security guarantees and applicability. Later, Lai et al. [43] extended the
paradigm to password-hardened encryption (PHE), which not only secures password verification but also
enables encryption of associated data under a per-user key. This ensures that the data remains inaccessible
without the user’s password while maintaining strong security guarantees similar to those of PH. Lai et al.
further extended PHE to the threshold setting [43].

PPSS. Password-protected secret sharing (PPSS), introduced by Bagherzandi et al. [5], is a foundational
concept in password-based cryptography. Their work laid the groundwork for securing secrets using passwords,
inspiring a sequence of influential advancements [12, 14, 32, 53, 11, 34, 2, 35]. These works refined the
cryptographic techniques underlying PPSS, significantly improving its security guarantees and practical
applicability. Although PPSS and TPHE share similar core functionality, they operate in orthogonal settings.
TPHE is designed for stateless users, allowing them to securely store an encryption key using only a password
while offloading all cryptographic operations to a server and a set of ratelimiters. This setting can be thought
of as a service provider that employs a set of external ratelimiters without the user noticing. Another
requirement is that the ratelimiters can only have a minimal state (i.e., independent of the number of users).
In contrast, PPSS merges the roles of the server and the ratelimiters, requiring the client to interact directly
with the ratelimiters and perform cryptographic computations. Another key difference between TPHE and
PPSS is key rotation. While TPHE is designed with key rotation as an integral feature, PPSS does not
support it. Extending PPSS to include key rotation would require modifications to both its secret-sharing
structure and security model.

PAKE. Password-Authenticated Key-Exchange (PAKE) and its various extensions ((s)aPAKE, tPAKE,
t-saPAKE) [1, 21, 28, 29, 31, 33, 36, 50, 52] operates in a different setting compared to PHE. It is designed to
establish a fresh key between two stateless parties where the key exchange is only successful if both parties
enter the same password (or, in some cases, an augmented version of the password). In contrast, PHE focuses
on protecting a long-term secret key while allowing controlled password-based access. Furthermore, PHE
preserves the client-server interface and does not require clients to perform cryptographic computations,
making it accessible to all clients.

Distributed and Threshold Single Sign-On. Distributed and threshold-based SSO schemes [3, 6] operate in a
different setting than TPHE, as they focus on authentication rather than key management. Jiang et al. [38]
propose a post-quantum threshold SSO with key rotation but no per-user rate-limiting, relying on costly

3

cryptographic components. Frederiksen et al. [25] extend SSO for privacy-preserving attribute attestation
using MPC.

Additional. DPaSE [20] allows users to encrypt data with many object-specific keys derived from a single
password, enhancing security against offline and online attacks. While it shares the fundamental concept
of deriving symmetric keys from passwords, it is limited to the distributed setting (t = n) and does not
support key rotation. Password-Authenticated Public-Key Encryption (PAPKE)[9] enables the generation of
a password-dependent private key that can decrypt ciphertexts only if the same password was used during
encryption. Password-based server-aided signatures [16, 51] allow a user and a server to jointly sign a message
under the user’s password. The primitive’s functionality is distinct to the one of TPHE and does not support
key rotation. Password-based key derivation and encryption [39] allow direct encryption of messages using
keys derived from passwords but remain susceptible to brute-force attacks. A related concept for key rotation
that does not rely on passwords is updatable encryption (UE) [8, 23, 44]. UE focuses on enabling ciphertext
updates under evolving keys, but it operates in a different security model. While UE assumes a single party
managing the encryption keys, (t, n)-TPHE involves multiple parties–the server and the ratelimiters–each
playing a distinct role in access control and security enforcement.

2 Technical Outline

2.1 Gap in the Proof of Brost et al [10]

We begin by describing a gap in the proof of TPHE [10] and refer the reader to the proof of Theorem 3.1
of the full version of [10], in particular the security proof of hiding. Intuitively, hiding guarantees that the
TPHE encryptions of the two messages M∗0 and M∗1 under a random password are indistinguishable, except
when the correct password is known or successfully guessed. We emphasize that our findings reveal a gap in
the security proof, not necessarily a flaw in the construction itself. While we have not identified an attack
that exploits this gap, the absence of a valid security proof means that the security of the TPHE scheme
proposed by Brost et al. remains uncertain.

Protocol description For the sake of this overview, we abstract away details related to the encryption of
the message and focus solely on the parts relevant to authentication, which is central to the security gap.
We further simplify the setting by assuming a single ratelimiter, while emphasizing that the identified gap
persists even in configurations with multiple ratelimiters.

The ratelimiter holds a secret key s that it uses to compute a PRF H(·)s. Furthermore, the server and the
ratelimiter hold a shared secret key k = kS + kR and the corresponding public key K = gk used for ElGamal
Encryption. During user enrollment, the server and the ratelimiter jointly compute a record (C, n) that stores
the user’s password as

C = H(pw , n) · H(n)s,
which can be thought of as the salted password hash H(pw , n) blinded by the ratelimiter’s PRF evaluated on
the nonce H(n)s.

During authentication, the server and the ratelimiter jointly check the correctness of the password in an
interactive protocol that can be summarized in three steps:

1. Encryption of H(pw ′,n)
H(pw ,n) : The server computes C−1 ·H(pw ′, n) = H(pw ′,n)

H(pw ,n) ·H(n)−s and encrypts the result
under the joint public key K, resulting in

(US , VS) = (grS ,KrS · H(pw
′, n)

H(pw , n)
· H(n)−s).

The ratelimiter recomputes the PRF on the nonce H(n)s and encrypts the result under K, resulting in

(UR, VR) = (grR ,KrR · H(n)s).

4

Once combined, these result in

(U, V) = (US · UR, VS · VR) = (grS+rR ,KrS+rR · H(pw
′, n)

H(pw , n)
),

which is an encryption of the identity element if the entered password matches the enrolled password. For
simplicity, we denote the quotient of the two password hashes as ∆ and the combined randomness as
r = rS + rR.

2. Joint Re-randomization: To ensure that nothing is leaked about the passwords–except if they match–
the server and the ratelimiter jointly re-randomize the ciphertext. This re-randomization raises ∆ to
a random scalar r̃ = r̃S + r̃R, resulting in the encryption of a uniformly random group element. If the
passwords match, however, the re-randomized ciphertext still corresponds to an encryption of the identity
element. The resulting ciphertext looks as follows:

(Ũ , Ṽ) = (U r̃, V r̃) = (gr·r̃,Kr·r̃ ·∆r̃).

3. Joint Decryption: Finally, the server and the ratelimiter each partially decrypt the ciphertext by raising
Ũ to their share of the decryption key k, resulting in TS = ŨkS and TR = ŨkR . Now, the server can
decrypt the ciphertext to obtain

∆r̃ ← Ṽ /(TS · TR) = Kr·r̃ ·∆r̃/(ŨkS · ŨkR)

= Kr·r̃ ·∆r̃/Ũk

= Kr·r̃ ·∆r̃/(gr·r̃)k

= Kr·r̃ ·∆r̃/Kr·r̃ = ∆r̃.

The server now checks whether the entered password matches the registered one using a simple equality
check ∆r̃ ?

= 1.

At every step, both parties send Schnorr NIZKs along their computations to prove that they adhered to the
protocol. For the security proof, it is important that the NIZKs are both simulatable and witness-extractable.

Proof idea. The proof follows the standard procedure of game hopping [7]. In a series of games, they gradually
remove the information encrypted in the ciphertexts to show that no information about the passwords is
leaked during authentication. They prove that an adversary cannot notice the transitions by reducing the
distinguishability of every game from its predecessor to a hardness assumption. In the end, the adversary can
only win the experiment with non-negligible probability if it correctly guesses the password.

The gap occurs in the transition from Hybrid Hybb,3,q−1 to Hybrid Hyb′b,3,q. For the sake of this overview,
we assume that the server is honest and the ratelimiter is corrupt, which corresponds to case 0 /∈ I in their
proof. Nevertheless, the gap occurs in the same way when the server is corrupt (case 0 ∈ I). The only
difference between the two Hybrids is that in Hybrid Hyb′b,3,q, they remove the information encrypted in
(US , VS) of step 1 described above. In the reduction where they prove that the adversary cannot notice the
difference between the ciphertexts, they follow the standard approach for reducing the security of ElGamal to
DDH. They replace the server’s public key and the ciphertext components with values taken from the DDH
tuple (gα, gβ , gγ), resulting in

KS = gα US = gβ VS = gγ · (gβ)kR · C−1 · H(pw ′, n).

The rationale is that if the tuple is a valid DDH tuple (i.e., γ = α · β), this is equivalent to Hybb,3,q−1.
Otherwise, if γ ̸= α · β, this is equivalent to Hyb′b,3,q.

It is important to note that the server cannot compute the proof of well-formedness for step 1 as described
in the protocol, because it does not know the witness β that is used to compute US = gβ . Instead, the
reduction has to simulate the proof without knowing β by using the simulator that is guaranteed to exist by
the simulatability property of the NIZKs.

5

Gap in the proof. The problem occurs in the simulation of step 3 of the authentication protocol. The server
has to compute a partial decryption TS = ŨkS of (Ũ , Ṽ) without knowing the decryption key kS = α. To do
so, the authors exploit the witness-extractability of the proofs of well-formedness that both the server and the
ratelimiter provide with every message that they send. They extract the exponent ũ from the relation Ũ = gũ

to compute TS = ŨkS = Ũα as TS = (gα)ũ. The relation Ũ = gũ is actually composed of four relations:

1. US = grS computed by the server in step 1,
2. UR = grR computed by the ratelimiter in step 1,
3. ŨS = U r̃S computed by the server in step 2, and
4. ŨR = U r̃R computed by the ratelimiter in step 2.

While this strategy looks fairly standard when using the extractability of NIZKs, here lies a subtle issue: As
mentioned before, the server cannot compute the NIZK of relation 1 as it does not know the witness rS = β
and instead uses the simulator to compute the proof. Therefore, the witness extraction from this NIZK cannot
be done since extracting from a simulated proof is not possible. If it were possible, this would imply that
breaking DDH is easy. The server could extract the witness rS = β and check whether (gα)β = gγ , effectively
solving DDH. As a result, the indistinguishability between the Hybrids Hybb,3,q−1 and Hybb,3,q is not proven
to be non-negligible, and hence, the proof of security fails.

2.2 The Challenge of Formalizing Security

Formalizing the security of sophisticated cryptographic primitives and protocols is challenging in general;
password-hardening [24] and password-hardened encryption [43] are no exception here, but rather show that
game-based security definitions quickly reach their limits in complicated real-world settings. In the following,
we outline the (long) history of the search for adequate security formalizations. This demonstrates not just
that defining security is non-trivial but also that a UC definition is sorely needed.
Password-hardening (PH). Everspaugh et al. [24] proposed the first security formalization in terms of
cryptographic games. The security notions of Everspaugh et al. followed “one-more” game properties, which
were revised by Schneider et al. [48]. Shortly afterward, Lai et al. [42] realized that the scheme of Schneider et
al. [48] is vulnerable to offline dictionary attacks. This attack did not result from a flaw in the proof but from a
security model that was too weak. Lai et al. showed that a single verification query is sufficient to brute-force
the password afterward; queries to the verification oracle were denied in the simple indistinguishable definition
due to Schneider et al.
Password-hardened Encryption (PHE). Lai et al. [42] generalized PH to password-hardened encryption,
a cryptographic protocol that involves password-based key derivation and supports the important property of
key rotation, going beyond mere password verification. In their work, they enhanced the security properties.
At CCS’20, Brost et al. [10] generalized PHE to the threshold setting and proposed a novel security notion
that unified some previously defined properties. More recently, Chunfu et al. [37] extended the security
properties. The current situation is unsatisfactory in many different aspects:
Incomparable Models and Constructions. Each publication in PH, PHE, and TPHE proposed a
novel game-based security notion. Not having a unified security model is unsatisfactory, as the models and
constructions are partially incomparable. One reason might be the difficulty of covering the security properties
of such complex functionality in cryptographic games. The complexity stems from various factors, such as a
corruption model, low-entropy security notions, and key rotation.
Standalone Security. Another issue is the usage of game-based notions for a composable cryptographic
primitive in the first place. The purpose of PHE and its threshold variant is to compute cryptographic keys
used in different contexts. Game-based security notions guarantee stand-alone security and provide no security
guarantees in composability with other cryptographic primitives.
Assumptions on Passwords. Formalizing password-based security, also beyond the area of password-
hardening, is notoriously difficult for game-based security definitions: defining a complete game also entails
specifying how passwords are chosen and managed which easily introduces unintended assumptions. For

6

example, the TPHE notion of [10] specifies a game where plaintexts are proven to be secret if they are
encrypted under a uniformly random8 one-time password that is generated fresh and independent of other
passwords, remains entirely secret, and is never used for decryption of a different ciphertext. These assumptions
are typically not met by passwords in reality where users do not follow an a-priori fixed password distribution,
tend to re-use (parts of) passwords, might include publicly known or easy to guess information such as birth
dates, and might accidentically mix up passwords of different ciphertexts during decryption.

In contrast, UC security definitions can formalize statements of the form “as long as an attacker does
not obtain/guess the entire password, security holds true” without having to fix how passwords are chosen,
managed, used, or how likely an attacker is to guess a specific password. Because such security results apply to
all situations that can occur in practice, UC definitions are considered the gold standard for password-based
security such as password-authenticated key exchanges [19].

2.3 The Challenge of Round-Optimal TPHE

All prior work on PH and PHE suggested round optimal (two moves) constructions [48, 42]. Being round
optimal is crucial as PHE is used in practice to secure business data and processes; long latencies may
prohibitively slow down these processes. The goal of the threshold variant of Brost et al. [10] is to increase
security and availability as there is no single point of failure. However, the resulting encryption protocol
consists of three rounds, while the decryption protocol consists of six rounds. The authors claim that the
throughput of the ratelimiter scales linearly in the number of cores. Thus, the protocol is unsuitable for
practical use for at least two reasons. First, the large number of rounds introduces a significant overhead and
slows down any practical operation. Second, the protocol does not scale well with the number of ratelimiters,
because the message size and the computation per ratelimiter grow linearly with the number of ratelimiters.
However, if only a few ratelimiters can be used, the question arises of why the protocol should be used.

3 An Ideal Functionality for TPHE

In this section, we propose the first ideal TPHE functionality FPHE for Universal Composability (UC) [18,
17, 45, 41, 13, 30].

3.1 Expected TPHE security properties

Let us start by summarizing which properties a secure TPHE scheme is supposed to provide and which are
thus formalized by FPHE. A (t, n)-TPHE scheme is run among one server S and n rate limiters Ri such
that t rate limiters are necessary to perform a decryption. The server can perform three types of actions:
(i) Store(id , pw ,m) encrypts a message m under some password pw and stores the resulting ciphertext in a
local database at some position id , (ii) Retrieve(id , pw ′) decrypts a ciphertext stored at a database position
id using some password pw ′, and (iii) key rotation to (try to) restore security for those parties, i.e., both
server and rate limiters, that were under control of an adversary and which therefore must be considered
corrupted/malicious. When successful, we say that the affected parties are decorrupted and are treated as
honest again. All three actions require interaction with rate limiters. Rate limiters are expected to always
participate in encryption and key rotation. They are free to decide whether and how often they are willing
to help with a decryption operation for any given database position id , thus implementing a rate limiting
mechanism. This mechanism can be very fine grained and different for each id , which itself might encode
further information such as a username that this ciphertext “belongs” to.

A secure TPHE scheme is expected to provide at least the following five fundamental properties:
1. Secrecy of encryption: If Store(id , pw ,m) is performed while the server is honest, then both the plaintext

m and the password pw remain secret, even if all ratelimiters are malicious, the resulting ciphertext leaks,
8 The authors of [10] note that it is straightforward to generalize their notion for any arbitrary but fixed password

distribution.

7

and the server after finishing this operation gets corrupted by the adversary. The plaintext m might be
revealed only if the adversary obtains the correct password pw in some other way, e.g., because pw is
easy to guess (see below).

2. Secrecy of decryption: If Retrieve(id , pw ′) is performed while the server is honest, then pw ′ remains
secret, even if all ratelimiters are malicious.

3. Correctness: Given any database position id , if m is the most recent plaintext stored at this position
while the server was honest and the server has since then not yet been corrupted, then retrieving the
ciphertext at position id will either yield m or an error ⊥, even if all ratelimiters are malicious during
both encryption and decryption.9

4. Ratelimited decryption: Decrypting a ciphertext encrypted for id requires at least t ratelimiters that are
willing to help with the decryption. This implies that an attacker controlling the server cannot circumvent
rate-limiting by running the decryption protocol for id ′ with a ciphertext that was originally encrypted
for id . Note that encryption cannot be abused to perform decryption, because a fresh nonce is included
in every encryption.

5. Online password guessing: An attacker might try to guess the password used to encrypt a leaked ciphertext
c. Verifying a guess and, if correct, obtaining the plaintext m should be possible only via rate-limited
online decryption.This requirement is lifted if the attacker at some point controls both the server and at
least t ratelimiters since then he has all secret keys to simulate decryption locally and offline.
In practice, the choice of the threshold parameter t relative to the total number of ratelimiters n has
a direct impact on how effectively an attacker can distribute online guessing attempts. If t is chosen
significantly smaller than n, an adversary can simply exclude a ratelimiter for which the rate limit has
already been reached and instead involve another, thereby increasing its effective rate of attack. This
consideration must therefore be taken into account when configuring practical rate limits. Nevertheless,
since typical deployments are expected to use ratios n/t close to a small constant (often below two), the
potential impact of such amplification is not expected to be significant.

All of these properties should hold true for arbitrary rate limiting mechanisms and arbitrary password
distributions, including cases where (parts of) some passwords are easy to guess or are re-used to encrypt
different plaintexts.

3.2 Definition of FPHE

The ideal functionality FPHE is defined in Figure 1 and explained in what follows.
Internal state. The state of FPHE mainly consists of two variables. The variable storageHistory captures
the database of ciphertexts, including all of its history. That is, storageHistory(id) stores the chronologically
ordered sequence of plaintext-password pairs (pw ,m) that have been stored at position id . We note that a
real TPHE protocols that realizes FPHE would of course only keep the most recent ciphertext for each id .
However, to define the behavior in cases where previous ciphertexts were leaked the ideal functionality FPHE
has to keep the full history. The second variable retrieveRate(Ri, id) tracks how often rate limiter Ri is still
willing to help with a decryption of a ciphertext stored at position id .
Main operations available to higher-level protocols. FPHE accepts three types of inputs from
higher-level protocols/the environment: They can instruct the server S to run the Store(id , pw ,m) or
the Retrieve(id , pw ′) operations for arbitrary inputs of their choosing. For example, Store(id , pw ,m) might
be triggered because a client in a higher-level wants to store a message m under a password pw (and id
choosen to be an empty database position assigned to this client). Since the password pw is determined
externally, FPHE indeed formalizes security for arbitrary password distributions where passwords used for
different ciphertexts might also depend on each other. Higher-level protocols can further send the command
HelpRetrieve(id) to any rate limiter Ri to instruct them whether and how often they are supposed to help

9 PHE protocols cannot ensure correct decryption of a stored ciphertext once a server gets corrupted: an adversary
can modify the ciphertext database by replacing a ciphertext for m with a valid ciphertext for a different plaintext
m′.

8

FPHE keeps a list storageHistory which tracks, for each id ∈ N denoting a database position, all password-
message-pairs (pw ,m) that have been stored under that ID at some point.
Initialize retrieveRate(Ri, id)← 0, i ∈ {1, . . . , n}, id ∈ N.
On (Store, id , pw ,m) from the server S, do:
– append (pw ,m) to storageHistory(id). Send (Store, id , |m|) to the adversary A.

On (Retrieve, id , pw ′) from the server S, do:
– store this request with a unique request id rqid . Send (Retrieve, id , rqid) to the adversary A.

On (HelpRetrieve, id) from any ratelimiter Ri, do:
– increment retrieveRate(Ri, id) and notify A.

On (FinishRetrieve, rqid) from the adversary A, do:
– A may decide that this request failed and resulted in an error; if so, return (FinishRetrieve,⊥) to the

server S. Otherwise, do the following.
– retrieve the request (Retrieve, id , pw ′) corresponding to rqid .
– let A decide on a set RLset of honest ratelimiters. Ensure that retrieveRate(Ri, id) ≥ 1 ∀Ri ∈ RLset and
|RLset | + nc ≥ t where nc is the number of corrupted ratelimiters. Decrement retrieveRate(Ri, id) ∀Ri ∈
RLset .

– let (pw ,m) be the most recent entry in storageHistory(id); if this list is still empty, set (pw ,m)← (⊥,⊥).
– if the server S has been corrupted at any point since that entry was stored or no entry was stored yet, let
A decide whether decryption should instead use an older entry (pw i,mi) stored at some attacker-chosen
position i of storageHistory(id) or an attacker provided message mA and password pwA. If so and depending
on the choice, set (pw ,m)← (pw i,mi) or (pw ,m)← (pwA,mA).

– If pw ′ == pw , return (FinishRetrieve,m) to the server S. Otherwise, return (FinishRetrieve,⊥).
On (ChangeCorruption,P) from the adversary A, do:
– Toggle the corruption status of the party P .
– If this decorrupts a ratelimiter Ri, reset retrieveRate(Ri, id)← 0, id ∈ N.

On (PwGuessStart, id , i) from the adversary A, do:
– Check that storageHistory(id) is non-empty at position i.
– If the server S and at least t ratelimiters were corrupted simultaneously at some point in time, then proceed.

Otherwise, check that the server S is currently corrupted and then perform the same ratelimiting checks as
for FinishRetrieve, including decrementing retrieveRate.

– If these checks pass, store a new password guess token for the i-th ciphertext stored under ID id .
On (PwGuessFinish, id , i , pwA) from the adversary A, do:
– Check that there is at least one remaining password guess token for the i-th ciphertext stored under ID id .

Delete one such token.
– Let (pw ,m) be the i-th entry of storageHistory(id).
– If pw == pwA, return (PwGuessFinish,m) to the adversary A. Otherwise, return (PwGuessFinish,⊥).

Fig. 1: The ideal TPHE Functionality FPHE. It models an encryption server S running with n ratelimiters Ri

using threshold t ≤ n.

9

with a decryption of a ciphertext at position id . This modeling not only ensures that any realization of
FPHE will be secure irrespective of which rate limiting algorithm is used (since this decision is left to the
environment in the security proof). It also allows protocols composed with FPHE to, if desired, fix a specific
rate limiting algorithm. The key rotation operation is not expected to be triggered explicitly by a higher-level
protocol and hence not part of the inputs that FPHE accepts; it is instead captured by the ChangeCorruption
command discussed below.

The logic behind HelpRetrieve(id) and Store(id , pw ,m) is straightforward: Each call to HelpRetrieve

simply increases the state variable retrieveRate by 1, thus permitting one additional decryption. Store stores
the inputs and then notifies the ideal adversary/simulator A that a storage operation has been started while
only revealing the length of the message m and the position id , modeling part of encryption secrecy. In
contrast, Retrieve(id , pw ′) has to be more complex. It starts by notifying the adversary A that a retrieve
operation has started but without revealing the password, modeling decryption secrecy. A can decide whether
and when this operation finishes by sending a message FinishRetrieve to FPHE. FPHE then performs several
checks to ensure that decryption is rate limited and outputs are correct in those cases where these properties
are expected. The adversary gets to choose which honest rate limiters take part in decryption, if any, as
long as their counters retrieveRate are larger than 0; their counters are then decremented by 1 accordingly.
FPHE verifies whether the password pw ′ matches the one previously used to store the current ciphertext.
This captures decryption secrecy since the check is internal such that no one learns pw ′. This is also another
part of encryption secrecy, i.e., it is impossible to learn a stored plaintext without the correct password, not
even when server and rate limiters willingly perform a decryption. Depending on the result of all checks, the
server S then returns an error or the plaintext m that was previously stored.

A seemingly small but non-trivial and surprisingly crucial detail is to define the functional behavior of
Retrieve in FPHE for cases where correctness cannot be guaranteed. Specifically, if the server in a real TPHE
protocol was corrupted at some point, then the adversary might have modified the ciphertext database.
Among others, he might replace ciphertexts with older ones that were leaked but had since then been deleted
by the server. He might also insert new adversarially-generated ciphertexts that decrypt to a message that
was never stored (and is hence unknown to FPHE in the ideal world). Both cases cannot be prevented yet
might result in a successful decryption, namely, when ciphertexts were generated for the id where they are
currently stored and the password used for decryption matches the one used for encryption. If the server was
corrupted, we hence cannot define FPHE to only check against the most recent ciphertext, to return an error,
or use a definition that generates any form of output without consulting A; all of these would be impossible to
realize. Instead, whenever correctness cannot be guaranteed FPHE lets the adversary A optionally determine
either an arbitrary position in storageHistory(id) or a password and plaintext of A’s choosing that is used
to check success of decryption against. While this circumvents impossibility of realizations, it also implies
that a simulator for a realization must be able to extract plaintexts corresponding to ciphertexts that were
maliciously crafted and inserted by the real adversary. Full composability of secure (t)PHE schemes hence
requires plaintext extractability in addition to the intuitively expected PHE security properties. With our
scheme UCPY we show for the first time that this can be achieved.

Finally, the adversary A is always allowed to return an error for Retrieve operations. This covers two
cases that can occur in real TPHE protocols. Firstly, Store(id , pw ,m) might fail, i.e., a ciphertext potentially
already stored at id gets deleted but no new ciphertext gets stored, say, because some network messages were
lost. The only visible result of such a failure is that following Retrieve operations for id will result in an error.
Secondly, when A corrupts a server, he might modify the ciphertext database by inserting invalid ciphertexts
or moving ciphertexts to different IDs that they were not generated for, say, to try to circumvent rate limiting
which is based on the ID. In a secure TPHE protocol, this will not result in a successful decryption but will
yield an error.

Modeling (de-)corruption and key rotation. The adversary A can, at any point in time, issue a
ChangeCorruption command to switch the current corruption status (honest vs. malicious/corrupted) of
the server or a ratelimiter. This abstracts from the particular mechanism used in a realization to change
the corruption status. It hence covers static, epoch-based, and fully adaptive corruption of parties as well

10

as de-corruption due to a successful key rotation. It also does not impose any conditions on when or how
decorruptions are triggered. As a result, FPHE supports realizations that use arbitrary key rotation schedules.

After corrupting a server in FPHE, as usual the adversary gains full control over the server. That is,
incoming Store and Retrieve requests are forwarded to the adversary, including any passwords and plaintexts,
and the adversary can freely output arbitrary responses to Retrieve requests without any checks. In addition,
the adversary is now allowed to perform password guesses (see below). By corrupting a ratelimiter, the
adversary can use that ratelimiter to meet the threshold requirement for decryption and password guessing
(see below). De-corruption of servers and/or ratelimiters mainly re-establishes security guarantees, such as
privacy and correctness, for plaintexts that are stored following the decorruption. We note that FPHE resets
the counters retrieveRate for rate limiters upon decorruption. This formalizes that an attacker controlling
a rate limiter Ri must not be able to influence future rate limiting after losing control over Ri due to a
successful key rotation.

It is standard in UC to implicitly assume for modeling purposes that the environment can learn the
current corruption status of parties. This is needed for a faithful simulation; otherwise a simulator could
corrupt all parties in an ideal protocol, even when they were supposed to be honest, to trivially simulate
any real protocol (cf., e.g., [17]). For FPHE, which allows for de-corruption, we need to slightly strengthen
this modeling technique: we implicitly let the environment learn the chronological sequence of corruption
and de-corruption events from FPHE, including the affected party. This is necessary to rule out situations
where, e.g., the simulator briefly corrupts a party that should be honest, performs some actions using the
additional power he gained (say, corrupting all ratelimiters and the server in FPHE to perform unlimited
password guesses), and then de-corrupts the party again before an environment with access to only the
current corruption status has a chance to notice this change.

Password guessing. Secrecy of plaintexts m in real TPHE protocols is protected by three factors: secret
key(s) of the server, secret key(s) of the rate limiters, and the password pw used during encryption. Since pw
is chosen and managed outside of the TPHE protocol by some other higher-level protocol, it might have bad
entropy or might have been leaked at some point, essentially voiding this factor. We reflect this inherent issue
in FPHE by offering a password guessing interface to the adversary A: whenever pw is the only remaining
protection for a ciphertext, A can issue a password guess pw ′ for that ciphertext. If pw ′ matches the password
pw used to store that ciphertext, i.e., if A somehow manages to obtain or guess pw , then FPHE reveals the
original plaintext m to the adversary (this completes modeling encryption secrecy). Password guessing is
available for all ciphertexts, not just the most recent one stored at any given position id , since ciphertexts
might have been leaked and stored by the attacker at some point in the past to try to decrypt them later on.
This modeling is similar in spirit to ideal functionalities for password-authenticated key exchange, e.g., [19].

More technically, password guessing consists of two steps: PwGuessStart first checks whether a password
guess is possible for a given ciphertext, i.e., pw is the only remaining protection mechanism, which captures
online password guessing. In a secure real TPHE protocol, this should be the case only in two situations:
(i) the attacker controls the server and enough rate limiters are willing to help with a decryption. Then the
attacker can run the interactive online decryption algorithm on a password pw ′ of his choosing but only as
often as rate limiters permit. Or (ii) the attacker managed to obtain all keys from servers and rate limiters.
Since key rotation is supposed to break links between keys belonging to different epochs, this information
must have been obtained from the same epoch. If this happens, then the attacker has all information to run
decryption locally and arbitrarily often for passwords pw ′ of his choosing. If PwGuessStart determines that a
guess is possible, it stores a token that can be used for a single password guess query on that ciphertext by
calling the second operation PwGuessFinish. Notably, PwGuessFinish might be called at a much later point
in time and the adversary A only has to commit on the password pw ′ of his choice during that second step.

The split into two commands PwGuessStart and PwGuessFinish, rather than a single operation PwGuess

that does both, allows for a wider range of realizations of FPHE. Specifically, in a real TPHE protocol
including UCPY an attacker might corrupt the server, start running the decryption procedure with the help
of some honest rate limiters, and collect their responses (represented by PwGuessStart). Instead of finishing
decryption, the attacker might store the responses and wait until after all parties have performed a successful
key rotation. Only then might the attacker finish decryption which typically involves, e.g., some random

11

oracle calls that allow a simulator to extract the password guess pw ′ (represented by PwGuessFinish). If
FPHE were to merge both operations into a single query PwGuess(pw ′), then there is no simulator for such a
protocol even though the protocol can still provide all intuitively expected security properties: The simulator
cannot use PwGuess before the key rotation because he cannot yet extract pw ′. But rate limiters reset their
counters retrieveRate during key rotation, so the simulator also cannot use PwGuess when he learns pw ′ since
there might no longer be enough rate limiters willing to help with decryption.

4 UCPY – A Round-Optimal UC-secure TPHE Scheme

In this section, we provide the construction of UCPY, the first round-optimal UC-secure (t,m)−PHE scheme.
To do so, we first introduce the used notation, cryptographic primitives, and requirements to build this
scheme and afterward provide the construction in Section 4.1.
Notation. Let λ ∈ N be the security parameter. We denote the set {1, . . . ,m} by [m]. Let G be an additive
cyclic group of prime order p with generator P . We use the implicit representation of group elements as
introduced in [22]. For a ∈ Zq, we define [a] = aP ∈ G as the implicit representation of a in G, which
we always use for group elements. Let BG = (G1,G2,Gt, q, [1]1, [1]2, e) be an asymmetric bilinear group,
where G1,G2,Gt are cyclic groups of order p. [1]1 and [1]2 are generators of G1 and G2 respectively, and
e : G1 ×G2 → Gt is an efficiently computable (non-degenerate) bilinear map. For s ∈ {1, 2, T} and a ∈ Zp,
we define [a]s = aPs ∈ Gs as the implicit representation of a in Gs. We denote e([a]1, [b]2) as [a]1 · [b]2. So
[a]1 · [b]2 = [ab]t. Let r

$← S denote a uniformly random sample of an element r from a set S, and let ϵ be
any negligible function of λ. Note that from [a] ∈ G it is generally hard to compute the value a (discrete
logarithm problem in G).
Ingredients. We use the following cryptographic primitives to construct UCPY: (i) five hash functions
modeled as random oracles with appropriate range. (ii) a bilinear group BG = (G1,G2,Gt, q, [1]1, [1]2, e) of
prime order q equipped with a pairing e. The algorithm BGGEN(η) outputs such a group and additionally
generators of G1 and G2. (iii) Zero-knowledge proofs ZK.Π ← (ZK.KGen,ZK.P,ZK.V) [26, 27] for two different
languages which we discuss in a later paragraph.
Setup. UCPY relies on a trusted party to run the setup algorithm, which is a reasonable assumption for
any (t,m)-PHE since the trusted server can perform this task. After running the setup algorithm, the server
sends key shares to ratelimiters and securely deletes them. This setup is sufficient because ratelimiters only
contribute secret key shares in UCPY protocols. If there is mistrust in the server’s setup capabilities, we can
emulate the setup protocol using a secure multiparty computation (MPC) protocol.

4.1 Construction

Before presenting the formal construction of UCPY, we give a brief overview of how our approach meets the
diverse requirements of (t,m)-PHE. Detailed descriptions can be found in Figure 2 for encryption, Figure 3
for decryption, and Figure 4 for key rotation.

A PHE scheme can be considered a distributed key derivation function (KDF) operating on inputs of a
password pw , a user identity id , and secret values held by the server and the ratelimiter. These secret values
should be updatable with efficient communication between the server and ratelimiter, all achieved without
the need for user interaction to satisfy PCI DSS [47] (c.f. Section 1).

In the context of UCPY, we implement this distributed KDF as follows: Upon receiving a user identity and
password, the server computes a randomized commitment on the password, denoted as [p]2 := r ·H2(pw , n),
where r is a random number and n is a random nonce generated jointly by the server and t ratelimiters which
is freshly drawn for each enrollment. The server then sends this randomized commitment [p]2 and the user
identity id to the ratelimiter. Upon receiving these values, the ratelimiter proceeds to compute a commitment
to the user identity by evaluating H1(id , n). The ratelimiter then combines this commitment with the received
randomized password commitment by performing a pairing operation on both the password commitment and
the user identity commitment. We denote the resulting value as [o]t := H1(id , n)·[p]2 = r ·H1(id , n)·H2(pw , n).

12

To further include its key share ki, the ith ratelimiter calculates [ui]t := ki · [o]t and sends [ui]t value back to
the server. By combining all shares from a threshold of t ratelimiters, the server can construct the output of
the distributed KDF, where kR is the shared ratelimiter key via

[f]t =
[u]t
r

+ kS · [o]t = (kS + kR) ·H1(id , n) ·H2(pw , n).

Since ratelimiters might be malicious, we introduce Schnorr-style well-formedness proofs for the share
[ui]t. The proofs πi are defined with respect to the language

Lπi := {([o]t, [ui]t, [ski]t) | ∃ ki s.t [ui]t = ki · [o]t ∧ [ski]t = ki · [1]t}.

Since the server can locally compute the value [o]t and knows the public key share pki, this language guarantees
the well-formedness of [ui]t.
Setup Phase. The setup algorithm executes BGGEN(η) and ZK.KGen(η) to generate both the group description
and the public parameter pp for the Schnorr proof. It samples a random key kR ← Z∗q and uses Shamir’s
Secret Sharing to secretly share kR among the m ratelimiters using coefficients δi∈[1,m] and a reconstruction
threshold t. When the key is shared, each ratelimiter Ri has ki as its secret key. The corresponding public
key on the server is pki ← ki · [1]t = [ki]t for i ∈ [1,m]. The setup algorithm also samples initial nonces ni for
each ratelimiter Ri that the server also knows. It also stores all possible subsets of [1 . . .m] of size t in Tset.
Intuitively, the set Tset contains all possible sets of ratelimiters, which can help to reconstruct kR. Finally,
the setup algorithm samples a random key kS , which will be the server’s part of protecting the password.
Encryption and Decryption. The intuitive explanations above already include several major ideas for
both processes. To encrypt a message M , the server first constructs the token [f]t by interacting with the
ratelimiters using the distributed KDF (as described above) and computes the ciphertext

c1 ← HOTP ([f]t, pw , id , n)⊕M

and the MAC
c2 ← HMAC ([f]t,M, pw , id , n) .

To decrypt the ciphertext (c1, c2), the server and the ratelimiters proceed analogously. We provide formal
descriptions of the interactive encryption and decryption protocols in Figure 2 and Figure 3, respectively.
Key Rotation. For key rotation in the ratelimiters, the server initiates the process by sampling a random
value α and sending Shamir secret shares si of α to each ratelimiter. Each ratelimiter updates its partial
key k′i ← ki − si and responds with the updated public key along with a freshly sampled nonce. The server
updates its private key by computing k′S ← kS + α. The idea of this update process is, that the added α
on the server side is subtracted by all ratelimiters, such that the combined key k′S + k′R = kS + kR remains
constant. Upon completion of the key rotation, the server evaluates which subsets of the public key shares are
suitable for reconstructing the public key pk using the Findset(.) method and stores the identified ratelimiter
sets capable of reconstructing kR in Tset. For a detailed protocol description of key rotation and ciphertext
update, we refer to Figure 4.

4.2 Security Model for the TPHE Scheme

We model and analyze UCPY as a hybrid protocol in a model for Universal Composability. From a high-level
perspective, we (i) model the operations of UCPY during encryption and decryption between server and
ratelimiters in the random oracle model. (ii) Server and ratelimiters communicate during de- and encryption
via authenticated channels which are asynchronous, i.e., do not ensure message order nor eventual message
delivery. Key rotations are performed via secure channels to protect key update shares. (iii) We consider an
epoch-based corruption model where parties can be corrupted at the start of each new epoch but not during
one. We classify key rotations into two cases to define epochs: We call a key rotation honest if parties were
able to restore security, which is the case if the key rotation was successful and the attacker did not actively

13

Server(kS , id, pw ,M, {pki}i∈[1,m],Tset, {ni}i∈[1,m], pp)

1 : choose T ←$ Tset ratelimiters for current round.

2 : nS ←$ {0, 1}λ; r ←$ Z∗
q

3 : n← HN({j, nj}j∈T , nS)

4 : [p]2 ← r ·H2(pw , n)

5 : send (id, [p]2, {j, nj}j∈T , nS) to Ri

6 : upon receiving (id, πi, [ui]t, ni) from Ri

7 : save ni for next round.
8 : [o]t ← H1(id, n) · [p]2
9 : if !ZK.V([1]t, [o]t, pki, [ui]t, πi, pp) then abort

10 : [u]t ←
∑
j∈T

δj · [uj]t // [u]t = kR · r ·H1(id, n) ·H2(pw , n)

11 : [f]t ←
[u]t

r
+ kS · [o]t // [f]t = (kS + kR) ·H1(id, n) ·H2(pw , n)

12 : c1 ← HOTP ([f]t, pw , id, n)⊕M

13 : c2 ← HMAC ([f]t,M, pw , id, n)

14 : return (id, n, (c1, c2))

i-th Ratelimter(ki, ni, pp)

1 : upon receiving (id, [p]2, {j, nj}j∈T , nS) from S
2 : if (ni ̸= nj for j = i and j ∈ T)

3 : then sample a fresh ni ←$ {0, 1}λ

4 : send (id, ni) to S, and abort

5 : n← HN({j, nj}j∈T , nS)

6 : [o]t ← H1(id, n) · [p]2
7 : [ui]t ← ki · [o]t
8 : pki ← ki · [1]t
9 : πi ← ZK.P([1]t, [o]t, pki, [u]t, ki, pp)

10 : ni ←$ {0, 1}λ

11 : send (id, πi, [ui]t, ni) to S

Fig. 2: TPHE Encryption

control any parties during the key rotation. All other key rotations are called dishonest. Each honest key
rotation defines the start of a new epoch. The adversary A can freely decide whether and when which type of
key rotation is performed, which captures all cases of key rotations including different rotation schedules that
can occur in practice. (iv) During an honest key rotation, all parties are modeled to honestly execute the
protocol via secure and reliable channels. At the end, A decides which parties are corrupted in the following
epoch. A can corrupt the server and up to t− 1 ratelimiters or as many ratelimiters as it likes but not the
server. As usual, A obtains full control over corrupted parties including their internal state after the key
rotation. (v) During a dishonest key rotation, we do not make any assumptions or restrictions besides using
the aforementioned secure (but possibly unreliable) channel. A thus fully orchestrates the dishonest key
rotation process including the behavior of those parties that are currently corrupted and hence under his
control.

More formally, we model UCPY as the hybrid protocol PPHE = (S,R | F1
ro,F2

ro,FOTP
ro ,FMAC

ro ,FN
ro,Fnizk,

Finit&rotateKey,Fauth). We illustrate the static structure in Figure 5. The environment E can send inputs to
and receives outputs from the server S and ratelimiters R. In one session of PPHE, there is at most one
server S active and at most n ratelimiters R. S and R run the protocol as defined in Figure 2 to 4 using the
following ideal subroutines:

Random oracles F i
ro modelling hash functions Hi for i ∈ {1, 2,OTP,MAC,N}.

14

Server(kS , pw , {pki}i∈[1,m],Tset, n, id, (c1, c2), pp)

1 : choose T ←$ Tset ratelimiters for current round.

2 : r ←$ Z∗
q

3 : [p]2 ← r ·H2(pw , n)

4 : send (id, n, [p]2) to Ri

5 : upon receiving (id, [u]t) from Ri

6 : [u]t ←
∑
j∈T

δj · [uj]t // [u]t = kR · r ·H1(id, n) ·H2(pw , n)

7 : [f]t ←
[u]t

r
+ kS · [o]t // [f]t = (kS + kR) ·H1(id, n) ·H2(pw , n)

8 : M ← HOTP ([f]t, pw , id, n)⊕ c1

9 : if !Check
(
c2

?
= HMAC ([f]t,M, pw , id, n)

)
then abort

10 : return M

i-th Ratelimiter(ki, pp)

1 : upon receiving (id, n, [p]2) from S
2 : if !CheckRl(id) then abort

3 : [o]t ← H1(id, n) · [p]2
4 : [u]t ← ki · [o]t
5 : send (id, [u]t) to S

Fig. 3: TPHE Decryption

Server(kS , pk)

1 : α←$ Z∗
q , kS,new ← kS + α

2 : (s1, · · · , sm)←$ Share(α)

3 : send si to Ri

4 : upon receiving (pki,new, ni) from Ri

5 : Tset ← Findset(pk, {pki,new}i∈[1,m], kS,new · [1]t)

6 : return ({pki,new}i∈[1,m],Tset, {ni}i∈[1,m])

i-th Ratelimter(ki)

1 : upon receiving si from S
2 : ki,new = ki − si

3 : pki ← ki,new · [1]t
4 : send pki,new, ni to S

Fig. 4: TPHE Key Rotation

The ideal NIZK functionality Fnizk [26, 27] allows for generating non-interactive ZKPs and verifying them.
This is used for NIZKPs generated by ratelimiters in their responses.

An authenticated channel Fauth [40] provides (unreliable) authenticated channels between S and R used
for encryption and decryption.

The initialization and key rotation functionality Finit&rotateKey serves three different purposes: (i) it models
a trusted execution of UCPY’s setup phase. It initially runs BGGEN(1η) and distributes these public parameters
to S, R, and F i

ro for i ∈ {1, 2,OTP,MAC,N}. Finit&rotateKey further generates the secret master key sk which
is necessary for decryption. It samples a server key skS , computes the overall ratelimiter key skR ← sk− skS ,
and Shamir-secret shares skR among the ratelimiters. It also generates the corresponding initial public keys
of the ratelimiters and distributes them to S. (ii) Honest key rotation (changing epochs): models a correct
and successful execution of UCPY’s key rotation subprotocol. During this process, all participating parties -
including those that were previously corrupted but are no longer under the control of the adversary - execute
the protocol honestly. In particular, Finit&rotateKey computes and distributes the Shamir-secret sharing of
α to the ratelimiters and updates the server key by adding α. It collects the public keys computed by the
now-honest ratelimiters and provides them to S. The server S then finalizes the key rotation. We note that
this captures reliable communication via secure channels between S and R. At the start of an honest key

15

S

R

F i
ro, i = 1, 2,OTP,MAC,N

Fnizk Finit&rotateKey Fauth

PPHE

≤ FPHE

interface
to E

interface
to E

interface
to E

Fig. 5: Schematic representation of Theorem 1. PPHE is defined as (S,R | F1
ro,F2

ro,FOTP
ro ,FMAC

ro ,FN
ro,Fnizk,

Finit&rotateKey,Fauth). (i) F i
ro for i ∈ {1, 2,OTP,MAC,N} denote random oracles, (ii) Fnizk is an ideal ZKP

functionality, (iii) Finit&rotateKey is the initialization and key rotation functionality, and (iv) Fauth, an ideal
authenticated channel functionality. All machines are additionally connected to the adversary A.

rotation, A can freely determine the internal state of those parties that were corrupted in the previous epoch.
However, A does not have active control over corrupted parties during honest key rotation and does not
learn any of the values that are exchanged among parties, capturing that the adversary has lost direct access
to the corrupted party, e.g., because that party has re-installed its machine using a fresh software image.
At the end of the honest key rotation A determines a set of parties that are considered to be corrupted
in the following epoch (subject to the aforementioned restrictions) and learns their current internal state.
All other parties are considered to be honest in the new epoch, even if they were corrupted in the previous
epoch. (iii) Dishonest key rotation with potentially malicious parties: This models all remaining cases of key
rotation where the server or some ratelimiters might be corrupted such that A might try to, e.g., extract
some information from key rotations. A can freely orchestrate the execution of these key rotations, including
the behavior of corrupted parties, but communication between two honest parties is protected via secure
(unreliable) channels. The corruption status of parties does not change.

4.3 Security Proof

In this section, we give a high-level idea of our proof and defer to Appendix C for the formal proof of
security. Even though we took Pythia [24] as a starting point for our construction, the security proof in [24] is
insufficient for our purposes. Pythia was proposed by Everspaugh et al. as a partially oblivious pseudo-random
function (pOPRF) service. A pOPRF is a two-party protocol that allows a user and a server to compute a
PRF. The user holds the input consisting of a private and a public part, and the server holds the key. The user
learns the result of the computation, while the server learns the public but not the private part of the input.
Pythia has been proven secure for a game-based definition of one-more unpredictability under the one-more
bilinear computational Diffie-Hellman (OM-BCDH) assumption. No further security properties were formally
proven in [24]. We prove our UCPY construction to be UC-secure and show that the UCPY protocol PPHE
(see Appendix B) realizes the ideal TPHE functionality FTPHE (see Appendix A). As part of the security
proof, we construct a simulator such that – as common – an environment can not distinguish whether it
interacts with the real protocol PPHE or the ideal functionality FTPHE (connected to the simulator). In other
words, we show that an adversary learns at most as much from the real protocol as it learns from the ideal
protocol. We prove the indistinguishability of PPHE and FTPHE under the Gap-OM-BCDH assumption.

Theorem 1. Let η ∈ N be the security parameter. Let PPHE be the UCPY protocol as introduced in Section B
and FTPHE be the ideal TPHE functionality as defined in Section A. Let RR be a relation for a language
LR := {([1]t, [o]t, pk, [u]t) | ∃sk : pk = sk · [1]t ∧ [u]t = sk · [o]t}. Let n, t ∈ N be the number of ratelimiters,

16

resp. the number of ratelimiters necessary to enc- and decrypt in PPHE. Let ng ∈ N be the number of nonces
generated during a batch request. Suppose the Gap-OM-BCDH assumption holds true, then

PPHE ≤ FTPHE

in the (Fauth,Fnizk,F i∈{1,2,OTP,MAC,N}
ro)-hybrid world.

The simulator Sim operates as a single machine connected to the ideal functionality FTPHE and the environ-
ment E through their network interfaces. During execution, Sim accepts and processes all incoming messages.
Internally, it mostly emulates the real-world protocol PTPHE and uses the information leaked by FTPHE to
construct messages for the environment indistinguishable from those originating from real parties. In the event
of server compromise, Sim outputs a dummy database, adequately responds to adversarial messages, and
consistently answers queries to the random oracle. We only consider the behavior of honest parties, forwarding
messages addressed to corrupt parties to the environment. The complete simulator strategy of Sim is de-
picted in Figures 24 to 26. We focus on the main challenges and how the simulator solves them in the following.

(1) Failure events. There are some special edge cases where the simulation is distinguishable from the real
protocol execution. Those include hash collisions, the reuse of nonces, a random oracle outputting the neutral
element of a group, and the environment correctly guessing uniformly random values. We ignore those edge
cases and show in the formal proof that they happen with negligible probability.

(2) Key generation. The simulator samples a public key pair (pk, sk) and shares it between the server and
the ratelimiters. Consequently, Sim always knows all keys and can give key shares to corrupted parties.

(3) Generating dummy records. In the ideal world, when a user with ID id wants to encrypt a message
m under a password pw , it calls the store function of the ideal functionality FTPHE. FTPHE stores the
data in its storage and leaks id and |m| to the simulator Sim. Sim must mimic the real protocol’s behavior
without knowing the password and the message by following the steps independent of the unknown data
and faking steps dependent on the unknown data. Instead of sending a blinded password hash r · H2(pw , nS)
to the ratelimiters, it samples a uniformly random a ←$ Z∗q and sends the element [p]2 ← a · [1]2 which is
indistinguishable for the environment. The ratelimiters are either honest and simulated by Sim or corrupt and
controlled by the environment. Simulated ratelimiters simply follow the protocol, as no information known
to them in the real world is hidden in the ideal world. Once receiving all ratelimiter responses, the server
would de-blind and use the resulting value as a key to (i) compute a keystream used to encrypt the message
and to (ii) compute a message authentication code (MAC). Because Sim cannot de-blind the value and both
computations rely on unknown data, it samples both values uniformly at random. The resulting record is, at
this point, indistinguishable from a real record.

E

FtPHES (2) id pw msg(6) id c1 c2 ns nr

(1) id, pw,msg

(3) id, |msg|

(4) [p]2, id, nr(5) [u]t

Fig. 6: Store operaton in the ideal world (dashed arrows represent leakage via Fauth)

17

(4) Ratelimiter quota. The environment can allow a ratelimiter to participate in a retrieval request by
incrementing the ratelimiters quota for a specific id . The quota of a ratelimiter is decremented every time it
answers a retrieval request. This prevents a corrupt server from brute forcing a user’s password, as it must
interact with ratelimiters to test a password. Note that the quota of a ratelimiter in both FTPHE and Sim is
incremented when instructed by the environment.

(5) Correct decryption of dummy records. When a user wants to decrypt the message, it calls the
retrieve function of FTPHE with a candidate password pw ′. FTPHE leaks id to Sim, which must mimic the
real protocol’s behavior. In this case, the simulator’s task is to simulate the network traffic expected from the
real protocol, while FTPHE takes care of the actual functionality, including a password check and the delivery
of the stored message. The messages to the ratelimiters are generated as before, and the ratelimiters respond
as before but also decrement their quota for that specific user. Once receiving all ratelimiter responses,
Sim instructs FTPHE to continue with the retrieval. Furthermore, it has to provide ratelimiters to FTPHE
with quota left, which are exactly the ones it interacted with in the simulation. FTPHE checks whether the
entered password matches the recorded one and outputs the stored message if they do. This behavior is
indistinguishable from the real protocol.

E

FtPHES
(6) pw

?
= pw′

id pw msgid c1 c2 ns nr

(1) id, pw′

(2) id

(3) [p]2, id, nr(4) [u]t

(5) ok

(7) msg

Fig. 7: Retrieval operation in the ideal world (dashed arrows represent leakage via Fauth).

(6) Programming the Random Oracles. As we have seen, the decryption of dummy records is possible
with an honest server. To ensure the correct decryption of dummy records with a corrupt server, Sim monitors
all queries to the random oracles FOTP

ro and FMAC
ro , which are used to compute the keystream and MAC,

respectively. Once it detects a query that might be consistent with a dummy record, it checks that the key
[u]t is computed according to the protocol ([u]t ← sk · H1(id , n) · H2(pw , n)). This is possible because id , pw ,
and n are part of the query and Sim knows sk. Sim sends the extracted pw in a password guess to FTPHE.
This function enables Sim to test a password if it can provide t− nc honest ratelimiters with enough quota
(nc is the number of currently corrupted ratelimiters). We assume now that the environment computed the
key with honest ratelimiters and show later that this is the case with overwhelming probability. Sim finds the
ratelimiters involved in the computation of the key because ratelimiters track retrieval requests they helped
to answer. These ratelimiters have quota left in FTPHE as they were only used in the simulation to compute
the key but not in cooperation with FTPHE so far. If the password is the one recorded in FTPHE, Sim gets
the correct message m back and programs the random oracles accordingly. This is possible now as it was
able to extract the information that was hidden before during the generation of the dummy record. Once the
random oracles are programmed correctly, the dummy records are indistinguishable from real ones.

18

(7) Correct decryption of injected records. When the environment corrupts the server, it has full control
over it. This includes full read and write access to the server’s storage. Therefore, it can inject records that it
can interact with once the server is honest again. There are two cases we have to consider:

– Injection of old dummy records: The environment can extract dummy records from the storage and
re-inject them in a later epoch. It is also possible that in between, new messages are stored for the same
id as described in (3), overwriting the current storage of Sim. To ensure that the programming of the
random oracles for those dummy records works as described in (6), Sim keeps a history of all dummy
records. Furthermore, correct decryption of those re-injected dummy records with an honest server has to
be guaranteed. Therefore, FTPHE also keeps a history of previously stored messages such that Sim can
instruct FTPHE to use a previous record for decryption. Otherwise, the retrieval works as described in (5).

– Injection of honestly generated records: The environment can corrupt the server and generate records
according to the protocol. Of course, these records must be decrypted correctly with an honest server. The
challenge in this case is that these records are not generated as described in (3); consequently, FTPHE has
no corresponding entry in its storage. Furthermore, the environment only leaks the id to Sim for a retrieval
query, not the entered password. To model this scenario, FTPHE provides a function that allows Sim to
give a password message pair such that FTPHE outputs the message to the user if the entered password
matches the one given by Sim. Still, Sim has to come up with the message encrypted in the injected
record and the password under which it was encrypted. Because the record was generated according to
the protocol, the random oracles FOTP

ro and FMAC
ro must have been queried to generate the key stream,

respectively, the MAC. The input to these random oracles includes the password and, for FMAC
ro , also

the message. This allows Sim to extract the information needed from the random oracles. Therefore, the
correct decryption of the injected records is assured.

(8) Injecting the Gap-OM-BCDH challenge (single ratelimiter). We have seen in (6) that correctly
programming the random oracles is possible if the environment computed the used key in cooperation with
at least t− nc honest ratelimiters. We prove that it is hard for the environment to come up with the correct
key without these interactions by showing that, in this case, we can break the Gap-OM-BCDH assumption.
For simplicity, we assume from now on that we only have one ratelimiter and show in the next step how we
transfer this setting to the multi-ratelimiter setting. We give a high-level introduction to the Gap-OM-BCDH
assumption and then show how we embed the challenges into Sim.

The Gap-OM-BCDH game is parameterized by three groups G1,G2,Gt and a bilinear pairing that maps an
element from G1 and an element from G2 to an element from Gt. The game internally samples a secret scalar
sk and gives two oracles Targ1,Targ2 for sampling challenge group elements from G1 and G2. Furthermore, a
Help oracle is provided that multiplies a given target group element [o]t with the secret scalar [u]t ← sk · [o]t.
To win the game, one has to provide Q + 1 distinct tuples (i, j, σ) such that σ = sk · [xi]1 · [yj]2 while
querying Help only Q times, where [xi]1 is the i-th query to Targ1 and [yj]2 the j-th query to Targ2. Note
that the Gap-OM-BCDH game also provides a DDH oracle that outputs 1 if, for given target group elements
[x]t, [y]t, [z]t, [v]t, it holds xy = zv.

Instead of sampling a key pair in (2), Sim implicitly uses the random scalar of the Gap-OM-BCDH game
as the overall secret key. If the server is honest, Sim samples a random ratelimiter secret key. If the ratelimiter
is honest, Sim samples a random server secret key and sets the ratelimiter public key as pkR ← pk− pkS .

We follow the proof technique introduced by [4] and guess for which tuple (id∗, n∗) the environment will
provide an additional solution [u]t. Our guess is correct with probability 1

qro1
with qro1 being the number of

queries to F1
ro. Because the environment runs in polynomial time, the probability is non-negligible. To embed

the challenges into Sim, we replace random sampling of group elements with queries to Targ1 and Targ2.
This includes outputs of F1

ro for (id , n) = (id∗, n∗) and F2
ro for all queries. For queries (id , n) ̸= (id∗, n∗) to

F1
ro, we continue injecting trapdoors. Note that programming F1

ro and F2
ro in that way leads to a one-to-one

correspondence between: (i) i and id , n, (ii) j and pw , n, and (iii) σ and sk ·H1(id , n) ·H2(pw , n). The simulator
computes [ui]t ← ski · [o]t in (3) and (5) for unknown keys with a query to Help. In (6), Sim checks the
correctness of the key by recomputing it. This is no longer possible as the secret key is no longer known to
Sim. Therefore, it uses the DDH oracle on inputs pk,H1(id , n) ·H2(pw , n), [u]t, [1]t to check the correctness of
the key.

19

(9) From single-ratelimiter to multi-ratelimiter. We use polynomial interpolation in the exponent
to replicate Shamir’s secret sharing [49]. As a reminder, t points determine a unique polynomial of degree
t− 1, and all remaining points of this polynomial can be obtained with Lagrange polynomial interpolation.
This technique also works in the exponent as it only requires the addition of points and multiplication with
scalars. Sim uses the random scalar of the Gap-OM-BCDH game as the underlying overall key sk that gets
split into a server key skS and an overall ratelimiter key skR. The overall ratelimiter key is shared amongst all
ratelimiters with Shamir’s secret sharing. At the beginning of an epoch, Sim distinguishes between two cases:

– Honest Server If the server is honest, Sim can sample the overall ratelimiter key at random and share it
between the ratelimiters. This case is straightforward as Sim knows all ratelimiter keys such that scalar
multiplications with a ratelimiter key can be done as before.

– Corrupt Server If the server is corrupt, Sim samples a random server key skS and chooses t− 1 random
shares ski of the overall ratelimiter key such that together with skR ← sk− skS , they determine the whole
polynomial used for the sharing. The known key shares are chosen such that they belong to corrupted
ratelimiters, enabling Sim to give ski to the environment for all corrupted ratelimiters. The public keys
[ski]t for parties with unknown key shares are computed using polynomial interpolation in the exponent.
To answer queries [o]t in the en-/decryption protocol for ratelimiters with unknown keys, Sim distinguishes
two cases:
• (id , n) = (id∗, n∗): The simulator (i) queries Help to obtain sk·[o]t and computes skR·[o]t ← sk·[o]t−skS ·[o]t,

(ii) computes skj · [o]t for all t− 1 known key shares, and (iii) uses polynomial interpolation to compute
ski · [o]t.

• (id , n) ̸= (id∗, n∗): The simulator uses the trapdoor a injected in F1
ro and computes ski · [h1]1 · [p]2 ←

a · [pki]1 · [p]2 which is correct as a · [1]1 = [h1]1.

The only issue left is to ensure that Sim gathered Q+ 1 solution tuples once the environment was able to
compute a key [u]t for (id , pw , n) without the interaction of t− nc honest ratelimiters in (6). This is the case
if Sim has not queried Help for [xi]1 · [yj]2 with (i, j) corresponding to (id , pw , n). Note that even for these
(id , pw , n), the environment can query up to t− nc − 1 honest ratelimiters. Sim can only answer those queries
without a Help query if the corresponding ratelimiters are exactly the ones Sim knows the key shares for.
Therefore, at the beginning of each epoch, Sim has to guess the ratelimiter set the environment will query
for these inputs. The probability of guessing right is non-negligible as long as

(
t−nc−1
n−nc

)
is polynomial in the

security parameter, which is the case for parameters relevant in practice.

4.4 Prototype and Evaluation

We implemented a prototype10 to assess the performance of UCPY and to compare it with the scheme of
Brost et al. [10]. In the following, we describe our setup and present the evaluation results.
Setup. Our prototype is implemented in Rust (rustc 1.66.1) using the pairing-friendly curve bls12_381 for
bilinear groups and sha512 as the hash function. The server is based on Rocket 0.5.0 and the client on reqwest,
with data exchanged via POST requests and JSON serialization through Serde 1.0. For benchmarking, we
deployed the prototype on AWS c5.2xlarge instances (8 vCPUs, Intel Xeon Platinum 8000 series, 16 GiB
RAM, up to 10 Gbps bandwidth) running Ubuntu 20.04. The main server was located in Oregon, while the
ratelimiter was hosted in Northern California.
Evaluation. We evaluated UCPY for the case t = m = 1, which allows for a direct comparison with the
evaluation of Brost et al. [10]. We consider both a high-latency (WAN) and a low-latency (LAN) setup. In
the WAN setting, our instances were placed in Northern California and Oregon with an average ping of
21.2 ms, closely matching the setup of Brost et al.. The results demonstrate the round-optimal advantage of
UCPY: in this configuration, our scheme achieves more than 200% faster encryption and over 300% faster
decryption (Table 1). By contrast, our LAN results are somewhat slower, which we attribute to our use of
pairing-friendly groups, whereas Brost et al. rely on standard elliptic curves.
10 https://github.com/uctphe/uc-tphe-src

20

https://github.com/uctphe/uc-tphe-src

Setup Brost et al. [10] UCPY
LAN - Encrypt 8.431 ms 21.255 ms
LAN - Decrypt 18.763 ms 21.488 ms
WAN - Encrypt 94.911 ms 44.022 ms
WAN - Decrypt 147.970 ms 44.207 ms

Table 1: The latency of UCPY and [10] in a t = m = 1 setting.

Acknowledgments

This work was partially supported by Deutsche Forschungsgemeinschaft as part of the Research and Training
Group 2475 “Cybercrime and Forensic Computing” (grant number 393541319/GRK2475/1-2019) and through
grant 442893093, and by the Smart Networks and Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation program in the scope of the CONFIDENTIAL6G project
under Grant Agreement 101096435. The contents of this publication are the sole responsibility of the authors
and do not in any way reflect the views of the EU. This work is also partially supported by SBA Research
(SBA-K1 NGC), which is a COMET Center within the COMET – Competence Centers for Excellent
Technologies Programme and funded by BMIMI, BMWET, and the federal state of Vienna. The COMET
Programme is managed by FFG. We thank Fritz Schmid for implementing the prototype of our scheme.

References

[1] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. “Security of the J-PAKE Password-
Authenticated Key Exchange Protocol”. In: 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2015, pp. 571–587. doi: 10.1109/SP.2015.41.

[2] Michel Abdalla et al. “Robust Password-Protected Secret Sharing”. In: ESORICS 2016, Part II.
Ed. by Ioannis G. Askoxylakis et al. Vol. 9879. LNCS. Springer, Cham, Sept. 2016, pp. 61–79. doi:
10.1007/978-3-319-45741-3_4.

[3] Shashank Agrawal et al. “PASTA: PASsword-based Threshold Authentication”. In: ACM CCS 2018.
Ed. by David Lie et al. ACM Press, Oct. 2018, pp. 2042–2059. doi: 10.1145/3243734.3243839.

[4] Ruben Baecker et al. “A Fully-Adaptive Threshold Partially-Oblivious PRF”. In: CRYPTO 2025. LNCS.
Springer, 2025.

[5] Ali Bagherzandi et al. “Password-protected secret sharing”. In: ACM CCS 2011. Ed. by Yan Chen, George
Danezis, and Vitaly Shmatikov. ACM Press, Oct. 2011, pp. 433–444. doi: 10.1145/2046707.2046758.

[6] C. Baum et al. “PESTO: Proactively Secure Distributed Single Sign-On, or How to Trust a Hacked
Server”. In: 2020 IEEE European Symposium on Security and Privacy (EuroS&P). Los Alamitos, CA,
USA: IEEE Computer Society, 2020, pp. 587–606. doi: 10.1109/EuroSP48549.2020.00044. url:
https://doi.ieeecomputersociety.org/10.1109/EuroSP48549.2020.00044.

[7] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Framework for Code-Based
Game-Playing Proofs”. In: EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS. Springer,
Berlin, Heidelberg, 2006, pp. 409–426. doi: 10.1007/11761679_25.

[8] Dan Boneh et al. “Key Homomorphic PRFs and Their Applications”. In: CRYPTO 2013, Part I. Ed. by
Ran Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer, Berlin, Heidelberg, Aug. 2013, pp. 410–428.
doi: 10.1007/978-3-642-40041-4_23.

[9] Tatiana Bradley et al. “Password-Authenticated Public-Key Encryption”. In: ACNS 19International
Conference on Applied Cryptography and Network Security. Ed. by Robert H. Deng et al. Vol. 11464.
LNCS. Springer, Cham, June 2019, pp. 442–462. doi: 10.1007/978-3-030-21568-2_22.

[10] Julian Brost et al. “Threshold Password-Hardened Encryption Services”. In: ACM CCS 2020. Ed. by
Jay Ligatti et al. ACM Press, Nov. 2020, pp. 409–424. doi: 10.1145/3372297.3417266.

21

https://doi.org/10.1109/SP.2015.41
https://doi.org/10.1007/978-3-319-45741-3_4
https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1145/2046707.2046758
https://doi.org/10.1109/EuroSP48549.2020.00044
https://doi.ieeecomputersociety.org/10.1109/EuroSP48549.2020.00044
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-21568-2_22
https://doi.org/10.1145/3372297.3417266

[11] Jan Camenisch, Robert R. Enderlein, and Gregory Neven. “Two-Server Password-Authenticated Secret
Sharing UC-Secure Against Transient Corruptions”. In: PKC 2015. Ed. by Jonathan Katz. Vol. 9020.
LNCS. Springer, Berlin, Heidelberg, 2015, pp. 283–307. doi: 10.1007/978-3-662-46447-2_13.

[12] Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. “Practical yet universally composable two-
server password-authenticated secret sharing”. In: ACM CCS 2012. Ed. by Ting Yu, George Danezis,
and Virgil D. Gligor. ACM Press, Oct. 2012, pp. 525–536. doi: 10.1145/2382196.2382252.

[13] Jan Camenisch et al. “iUC: Flexible Universal Composability Made Simple”. In: ASIACRYPT 2019,
Part III. Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11923. LNCS. Springer, Cham, Dec. 2019,
pp. 191–221. doi: 10.1007/978-3-030-34618-8_7.

[14] Jan Camenisch et al. “Memento: How to Reconstruct Your Secrets from a Single Password in a Hostile
Environment”. In: CRYPTO 2014, Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617.
LNCS. Springer, Berlin, Heidelberg, Aug. 2014, pp. 256–275. doi: 10.1007/978-3-662-44381-1_15.

[15] Jan Camenisch et al. “Universal Composition with Responsive Environments”. In: ASIACRYPT 2016,
Part II. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. LNCS. Springer, Berlin, Heidelberg,
Dec. 2016, pp. 807–840. doi: 10.1007/978-3-662-53890-6_27.

[16] Jan Camenisch et al. “Virtual Smart Cards: How to Sign with a Password and a Server”. In: SCN 16.
Ed. by Vassilis Zikas and Roberto De Prisco. Vol. 9841. LNCS. Springer, Cham, 2016, pp. 353–371.
doi: 10.1007/978-3-319-44618-9_19.

[17] Ran Canetti. “Universally Composable Security”. In: J. ACM 67.5 (2020), 28:1–28:94. doi: 10.1145/
3402457. url: https://doi.org/10.1145/3402457.

[18] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Protocols”. In:
42nd FOCS. IEEE Computer Society Press, Oct. 2001, pp. 136–145. doi: 10.1109/SFCS.2001.959888.

[19] Ran Canetti et al. “Efficient Password Authenticated Key Exchange via Oblivious Transfer”. In:
PKC 2012. Ed. by Marc Fischlin, Johannes Buchmann, and Mark Manulis. Vol. 7293. LNCS. Springer,
Berlin, Heidelberg, May 2012, pp. 449–466. doi: 10.1007/978-3-642-30057-8_27.

[20] Poulami Das, Julia Hesse, and Anja Lehmann. “DPaSE: Distributed Password-Authenticated Symmetric-
Key Encryption, or How to Get Many Keys from One Password”. In: ASIACCS 22. Ed. by Yuji Suga
et al. ACM Press, 2022, pp. 682–696. doi: 10.1145/3488932.3517389.

[21] Edward Eaton and Douglas Stebila. “The “Quantum Annoying” Property of Password-Authenticated
Key Exchange Protocols”. In: Post-Quantum Cryptography - 12th International Workshop, PQCrypto
2021. Ed. by Jung Hee Cheon and Jean-Pierre Tillich. Springer, Cham, 2021, pp. 154–173. doi:
10.1007/978-3-030-81293-5_9.

[22] Alex Escala et al. “An Algebraic Framework for Diffie-Hellman Assumptions”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer, Berlin, Heidelberg, Aug.
2013, pp. 129–147. doi: 10.1007/978-3-642-40084-1_8.

[23] Adam Everspaugh et al. “Key Rotation for Authenticated Encryption”. In: CRYPTO 2017, Part III.
Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. LNCS. Springer, Cham, Aug. 2017, pp. 98–129.
doi: 10.1007/978-3-319-63697-9_4.

[24] Adam Everspaugh et al. “The Pythia PRF Service”. In: USENIX Security 2015. Ed. by Jaeyeon Jung
and Thorsten Holz. USENIX Association, Aug. 2015, pp. 547–562. url: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/everspaugh.

[25] Tore Kasper Frederiksen et al. “Attribute-based Single Sign-On: Secure, Private, and Efficient”. In:
PoPETs 2023.4 (Jan. 2023), pp. 35–65. doi: 10.56553/popets-2023-0097.

[26] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group
Signatures”. In: ASIACRYPT 2006. Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. LNCS. Springer,
Berlin, Heidelberg, Dec. 2006, pp. 444–459. doi: 10.1007/11935230_29.

[27] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect Non-interactive Zero Knowledge for NP”. In:
EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS. Springer, Berlin, Heidelberg, 2006,
pp. 339–358. doi: 10.1007/11761679_21.

22

https://doi.org/10.1007/978-3-662-46447-2_13
https://doi.org/10.1145/2382196.2382252
https://doi.org/10.1007/978-3-030-34618-8_7
https://doi.org/10.1007/978-3-662-44381-1_15
https://doi.org/10.1007/978-3-662-53890-6_27
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1007/978-3-030-81293-5_9
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-63697-9_4
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://doi.org/10.56553/popets-2023-0097
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11761679_21

[28] Yanqi Gu et al. “Threshold PAKE with Security Against Compromise of All Servers”. In: ASI-
ACRYPT 2024, Part V. Ed. by Kai-Min Chung and Yu Sasaki. Vol. 15488. LNCS. Springer, Singapore,
Dec. 2024, pp. 66–100. doi: 10.1007/978-981-96-0935-2_3.

[29] Julia Hesse. “Separating Symmetric and Asymmetric Password-Authenticated Key Exchange”. In: SCN
20. Ed. by Clemente Galdi and Vladimir Kolesnikov. Vol. 12238. LNCS. Springer, Cham, Sept. 2020,
pp. 579–599. doi: 10.1007/978-3-030-57990-6_29.

[30] Dennis Hofheinz and Victor Shoup. “GNUC: A New Universal Composability Framework”. In: Journal
of Cryptology 28.3 (July 2015), pp. 423–508. doi: 10.1007/s00145-013-9160-y.

[31] Jung Yeon Hwang et al. “Round-Reduced Modular Construction of Asymmetric Password-Authenticated
Key Exchange”. In: SCN 18. Ed. by Dario Catalano and Roberto De Prisco. Vol. 11035. LNCS. Springer,
Cham, Sept. 2018, pp. 485–504. doi: 10.1007/978-3-319-98113-0_26.

[32] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. “Round-Optimal Password-Protected Secret
Sharing and T-PAKE in the Password-Only Model”. In: ASIACRYPT 2014, Part II. Ed. by Palash
Sarkar and Tetsu Iwata. Vol. 8874. LNCS. Springer, Berlin, Heidelberg, Dec. 2014, pp. 233–253. doi:
10.1007/978-3-662-45608-8_13.

[33] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: An Asymmetric PAKE Protocol Secure
Against Pre-computation Attacks”. In: EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and
Vincent Rijmen. Vol. 10822. LNCS. Springer, Cham, 2018, pp. 456–486. doi: 10.1007/978-3-319-
78372-7_15.

[34] Stanislaw Jarecki et al. Highly-Efficient and Composable Password-Protected Secret Sharing (Or: How
to Protect Your Bitcoin Wallet Online). Cryptology ePrint Archive, Report 2016/144. 2016. url:
https://eprint.iacr.org/2016/144.

[35] Stanislaw Jarecki et al. “TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based on Threshold
OPRF”. In: ACNS 17International Conference on Applied Cryptography and Network Security. Ed. by
Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi. Vol. 10355. LNCS. Springer, Cham, July 2017,
pp. 39–58. doi: 10.1007/978-3-319-61204-1_3.

[36] Stanislaw Jarecki et al. Two-Factor Password-Authenticated Key Exchange with End-to-End Password
Security. Cryptology ePrint Archive, Paper 2018/033. 2018. url: https://eprint.iacr.org/2018/033.

[37] Chunfu Jia, Shaoqiang Wu, and Ding Wang. “Reliable Password Hardening Service with Opt-Out”. In:
2022 41st International Symposium on Reliable Distributed Systems (SRDS). 2022, pp. 250–261. doi:
10.1109/SRDS55811.2022.00031.

[38] Jingwei Jiang et al. “Quantum-Resistant Password-Based Threshold Single-Sign-On Authentication
with Updatable Server Private Key”. In: ESORICS 2022, Part II. Ed. by Vijayalakshmi Atluri et al.
Vol. 13555. LNCS. Springer, Cham, Sept. 2022, pp. 295–316. doi: 10.1007/978-3-031-17146-8_15.

[39] John Kelsey et al. “Secure Applications of Low-Entropy Keys”. In: ISW’97. Ed. by Eiji Okamoto,
George I. Davida, and Masahiro Mambo. Vol. 1396. LNCS. Springer, Berlin, Heidelberg, Sept. 1998,
pp. 121–134. doi: 10.1007/bfb0030415.

[40] Ralf Küsters and Max Tuengerthal. “Composition theorems without pre-established session identifiers”.
In: ACM CCS 2011. Ed. by Yan Chen, George Danezis, and Vitaly Shmatikov. ACM Press, Oct. 2011,
pp. 41–50. doi: 10.1145/2046707.2046715.

[41] Ralf Küsters, Max Tuengerthal, and Daniel Rausch. “The IITM Model: A Simple and Expressive
Model for Universal Composability”. In: Journal of Cryptology 33.4 (Oct. 2020), pp. 1461–1584. doi:
10.1007/s00145-020-09352-1.

[42] Russell W. F. Lai et al. “Phoenix: Rebirth of a Cryptographic Password-Hardening Service”. In:
USENIX Security 2017. Ed. by Engin Kirda and Thomas Ristenpart. USENIX Association, Aug.
2017, pp. 899–916. url: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/lai.

[43] Russell W. F. Lai et al. “Simple Password-Hardened Encryption Services”. In: USENIX Security 2018.
Ed. by William Enck and Adrienne Porter Felt. USENIX Association, Aug. 2018, pp. 1405–1421. url:
https://www.usenix.org/conference/usenixsecurity18/presentation/lai.

23

https://doi.org/10.1007/978-981-96-0935-2_3
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://eprint.iacr.org/2016/144
https://doi.org/10.1007/978-3-319-61204-1_3
https://eprint.iacr.org/2018/033
https://doi.org/10.1109/SRDS55811.2022.00031
https://doi.org/10.1007/978-3-031-17146-8_15
https://doi.org/10.1007/bfb0030415
https://doi.org/10.1145/2046707.2046715
https://doi.org/10.1007/s00145-020-09352-1
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lai
https://www.usenix.org/conference/usenixsecurity18/presentation/lai

[44] Anja Lehmann and Björn Tackmann. “Updatable Encryption with Post-Compromise Security”. In:
EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS.
Springer, Cham, 2018, pp. 685–716. doi: 10.1007/978-3-319-78372-7_22.

[45] Ueli Maurer. “Constructive Cryptography - A Primer (Invited Paper)”. In: FC 2010. Ed. by Radu Sion.
Vol. 6052. LNCS. Springer, Berlin, Heidelberg, Jan. 2010, p. 1. doi: 10.1007/978-3-642-14577-3_1.

[46] Alec Muffett. Facebook Password Hashing & Authentication. [Online; accessed 21-February-2023]. url:
https://www.youtube.com/watch?v=7dPRFoKteIU.

[47] PCI. Requirements and security assessment procedures. http://pcicompliance.stanford.edu/sites/
default/files/pci_dss_v3-2.pdf. [Online, accessed 09/12/17]. 2016.

[48] Jonas Schneider et al. “Efficient Cryptographic Password Hardening Services from Partially Oblivious
Commitments”. In: ACM CCS 2016. Ed. by Edgar R. Weippl et al. ACM Press, Oct. 2016, pp. 1192–1203.
doi: 10.1145/2976749.2978375.

[49] Adi Shamir. “How to Share a Secret”. In: Communications of the Association for Computing Machinery
22.11 (Nov. 1979), pp. 612–613. doi: 10.1145/359168.359176.

[50] SeongHan Shin, Kazukuni Kobara, and Hideki Imai. “A Secure Threshold Anonymous Password-
Authenticated Key Exchange Protocol”. In: IWSEC 07. Ed. by Atsuko Miyaji, Hiroaki Kikuchi,
and Kai Rannenberg. Vol. 4752. LNCS. Springer, Berlin, Heidelberg, Oct. 2007, pp. 444–458. doi:
10.1007/978-3-540-75651-4_30.

[51] Shouhuai Xu and Ravi S. Sandhu. “Two Efficient and Provably Secure Schemes for Server-Assisted
Threshold Signatures”. In: CT-RSA 2003. Ed. by Marc Joye. Vol. 2612. LNCS. Springer, Berlin,
Heidelberg, Apr. 2003, pp. 355–372. doi: 10.1007/3-540-36563-X_25.

[52] Xun Yi, Raylin Tso, and Eiji Okamoto. “ID-Based Group Password-Authenticated Key Exchange”.
In: IWSEC 09. Ed. by Tsuyoshi Takagi and Masahiro Mambo. Vol. 5824. LNCS. Springer, Berlin,
Heidelberg, Oct. 2009, pp. 192–211. doi: 10.1007/978-3-642-04846-3_13.

[53] Xun Yi et al. “Practical Threshold Password-Authenticated Secret Sharing Protocol”. In: ESORICS 2015,
Part I. Ed. by Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl. Vol. 9326. LNCS. Springer,
Cham, Sept. 2015, pp. 347–365. doi: 10.1007/978-3-319-24174-6_18.

24

https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-642-14577-3_1
https://www.youtube.com/watch?v=7dPRFoKteIU
http://pcicompliance.stanford.edu/sites/default/files/pci_dss_v3-2.pdf
http://pcicompliance.stanford.edu/sites/default/files/pci_dss_v3-2.pdf
https://doi.org/10.1145/2976749.2978375
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-540-75651-4_30
https://doi.org/10.1007/3-540-36563-X_25
https://doi.org/10.1007/978-3-642-04846-3_13
https://doi.org/10.1007/978-3-319-24174-6_18

Supplementary Material
A Full Details: An Ideal Functionality for TPHE

For completeness and reference purposes, we additionally provide full formal specifications of the ideal TPHE functionality
FPHE (Figures 8 to 10 in this appendix) and of the protocol model used in our security proof (Appendix B) cast into a concrete
model for universal composability. These full specifications spell out all technical details, including minor ones such as the exact
implementation of the corruption model, that are typically left implicit as they are not required to understand the overarching
ideas of definitions and constructions.

Our specifications are given in the iUC model [13], a highly general model for universal composability by Camenisch et al.
The notation used in these full specifications is mostly self explanatory. For interested readers we also provide an overview of iUC
and its notation in Appendices D and E. While the choice of a model is to some degree a matter of preference, we chose iUC for
our formal specifications over Canetti’s UC model [18, 17] as it provides several useful features including a much simpler runtime
notion that reduces clutter in such full specifications; we refer to [13] for a detailed comparison.

We note that these full formal specification are entirely optional supplementary material only intended for reference purposes
and are not required to understand our paper. Importantly, the main body and our results, including the definition of our ideal
TPHE functionality FPHE in Figure 1, are independent of a specific model for universal composability.

25

Description of the protocol FPHE = (S,R):
Participating roles: {S,R}
Corruption model: custom
Protocol parameters:

– n ∈ N. {Number of ratelimiters.
– 1 ≤ t ≤ n. {Threshold of ratelimiters needed for decryption.

Description of MS,R:
Implemented role(s): {S,R}
Internal state:

– corrLog = ∅.


Chronologically ordered sequence of corruption updates. Each entry is of the form (entity , b)
denoting an entity = (pid , sid , role) whose corruption status has been changed to b ∈
{true, false}.

– storageHistory : {0, 1}∗× N→ ({0, 1}∗)2 ∪ {⊥}.
{
For each id contains the chronological list of all pairs (pw ,m) encrypted at
some point (referenced by a counter ∈ N). Initially all entries are ⊥.

– correctMessageIDs ⊂ {0, 1}∗ = ∅. {Message IDs that are guaranteed to decrypt to the correct plaintext.
– retrieveCounter ∈ N = 0. {Counter to reference different Dec requests.

– reqQueueDec : N→ ({0, 1}∗)3 ∪ {⊥}.
{
Storage for Dec requests, referenced by a unique
number. Initially ⊥.

– retrieveRate : ({0, 1}∗)2 → N


Maps a pid of a ratelimiter and an id to the number of times the
ratelimiter can still be used to decrypt the message belonging to id .
Initially 0.

– registeredGuesses ⊂ {0, 1}∗ × N

{Multiset. Stores pairs (id , i) to indicate that the adversary may guess
(once per pair) a password for the i-th ciphertext with ID id . Initially
∅.

CheckID(pid , sid , role):
Check that pid = 0 ∧ role = S ∨ pid ∈ {1, . . . , n} ∧ role = R.
If this check fails, output reject.
Otherwise, accept all entities with the same SID.a

EntityInitialization:
send responsively InitialCorruption? to NET;


Allow adversary to choose initial corruption status.
Response must be immediate, i.e., no other interac-
tions with the functionality may be performed in the
meantime.

wait for (InitialCorruption?, b) s.t. b ∈ {true, false}.
if b = true:

Add (pidcur, sidcur, rolecur) to the set CorruptionSet.b

Main:
// Meta request: Allow environment to check correct simulation of corruption and decorruption//

recv CorruptionLog? from I/O: {Provide full chronological history of all corruption changes.
reply (CorruptionLog, corrLog).

// Storing and Retrieving //

recv (Store, id , pw ,m) from I/O to (_,_,S):
if (pidcur, sidcur, rolecur) ̸∈ CorruptionSet:

For i ∈ N minimal such that storageHistory[id][i] = ⊥ set storageHistory[id][i]← (pw ,m).

Add id to the set correctMessageIDs.


Ciphertexts encrypted at an honest server are guar-
anteed to decrypt to the correct plaintext (as long as
the server remains honest).

send (Store, id , |m|) to NET.
{
Reveal only ID and length of the message to the adversary if server is honest. Can be
relaxed by also leaking |pw |.

else:
send (Store, id , pw,m) to NET. {Reveal all information to the adversary if server is corrupted

recv (Retrieve, id , pw ′) from I/O to (0,_,S):
{
Try to retrieve the message stored under ID id using
password pw′.

retrieveCounter = retrieveCounter + 1
reqQueueDec[retrieveCounter]← (id , pw ′, entitycall).
if (pidcur, sidcur, rolecur) ̸∈ CorruptionSet:

send (Retrieve, retrieveCounter, id) to NET.


If server is honest, give reference to Dec re-
quest and ID to adversary. Can be relaxed by
also leaking |pw |.else:

send (Retrieve, retrieveCounter, id , pw′, entitycall) to NET.
{
If server is corrupted, give full input to
adversary.

Continue with Figure 10.

a That is, one instance of this ideal functionality models one protocol session with n+ 1 participants, namely, the server with PID 0
and ratelimiters with PIDs 1, . . . , n.

b CorruptionSet is the set of all corrupted entities. This variable is already defined by the iUC framework and thus not explicitly
listed in Internal state.

Fig. 8: The ideal password hardened encryption protocol FTPHE (Part 1).

26

Description of MS,R (continued):
Main:

recv (FinishRetrieve, reqid ,RLset , b, (origPlaintext , i , pwadv ,madv)) from NET to (_,_,S)
s.t. (0, sidcur,S) ̸∈ CorruptionSet ∧ reqQueueDec[reqid] ̸= ⊥ ∧ RLset ⊆ {1, . . . , n}
∧ b ∈ {success, failed} ∧ origPlaintext ∈ {true, false} ∧ i ∈ N:

{Finish the Dec request stored under
ID reqid using (honest) ratelimiters
RLset .

(id , pw ′, caller)← reqQueueDec[reqid] and reqQueueDec[reqid]← ⊥.
if b = failed: send (Retrieve, id ,⊥) to caller

{
Adversary can always let decryption
fail.else:

For each rl ∈ RLset check that (rl , sidcur,R) ̸∈ CorruptionSet and
retrieveRate[rl , id] ≥ 1. Furthermore, check that |RLset | + nc ≥ t, where
nc is the number of currently corrupted ratelimiters. If origPlaintext = true,
then additionally verify that storageHistory[id , i] ̸= ⊥.


Verify that enough ratelimiters are willing
to help with decryption. If attacker wants
to decrypt a previous plaintext, verify that
this actually exists.

if any of the above checks fail: reply (FinishRetrieve, Error). {Return error to adversary.
else:

For each rl ∈ RLset : retrieveRate[rl , id]← retrieveRate[rl , id]− 1.
if id ∈ correctMessageIDs:


Decryption of IDs with correctness
guarantees must be for the most recent
ciphertext and can only yield a correct
plaintext.(pw ,m)← storageHistory[id , j], where j ∈ N is the position of the most

recent ciphertext encrypted for ID id , i.e., j is maximal such that
storageHistory[id , j] ̸= ⊥
if pw = pw ′: send (Retrieve, id ,m) to caller .
else: send (Retrieve, id ,⊥) to caller .

else if origPlaintext = true:


For ids without correctness guarantees,
adversary can choose to decrypt to a
previously stored (and unknown to him)
plaintext.(pw ,m)← storageHistory[id , i]

if pw = pw ′: send (Retrieve, id ,m) to caller .
else: send (Retrieve, id ,⊥) to caller .

else:


For ids without correctness guarantees,
adversary can also choose to decrypt to
a message and under a password of his
choice (but without learning pw ′).if pwadv = pw ′: send (Retrieve, id ,madv) to caller .

else: send (Retrieve, id ,⊥) to caller .

recv (CorruptedRetrieve, id , out , caller) from NET to (_,_,S) s.t. (0, sidcur,S) ∈ CorruptionSet and caller is a higher-level
protocol:

send (Retrieve, id , out) to caller . {If server is corrupted, adversary can send a Dec output out for message ID id to caller .

// Ratelimiters //

recv (HelpRetrieve, id) from I/O to (_,_,R):
retrieveRate[pidcur, id]← retrieveRate[pidcur, id] + 1.
send responsively (GetRetrieveRate, retrieveRate[pidcur, id]) to NET; wait for _ {Leak retrieve rate
reply (HelpRetrieve, OK)

// Corruption and decorruption (due to key rotation) //

recv (ChangeCorruption, corrupt) from NET s.t. corrupt ∈ {true, false}:
Append (entitycur, corrupt) at the end of corrLog.
if rolecur = S: Set all entries in reqQueueDec to ⊥.
if corrupt = true: Add (pidcur, sidcur, rolecur) to the set CorruptionSet.
else: Remove (pidcur, sidcur, rolecur) from the set CorruptionSet (if it was in this set).

If rolecur = S and (pidcur, sidcur, rolecur) was previously in CorruptionSet, then
set correctMessageIDs← ∅.

{No correctness guarantees for cipher-
texts that were under adversarial con-
trol

If rolecur = R, then set retrieveRate[pidcur, id]← 0 for all IDs id .
reply (ChangeCorruption, OK)

Fig. 9: The ideal password hardened encryption protocol FTPHE (Part 2).

27

Description of MS,R (continued):

// Password guessing //

recv (PwGuessStart, id , i ,RLset) from NET to (_,_,S)
s.t. i ∈ N ∧ RLset ⊆ {1, . . . , n} ∧ storageHistory[id][i] ̸= ⊥:



Allow adversary to perform a password guess for
the i-th message that was encrypted under ID id
with the help of honest ratelimiters specified in
RLset . In this first step, the adversary indicates his
intention to guess a password and the functionality
verifies that he is indeed able to do so at this
moment.

Verify that for each j ∈ RLset it holds (j, sidcur,R) ̸∈ CorruptionSet and
retrieveRate[j, id] ≥ 1. Further verify that at least one of the following
two cases applies:
– At some point in time the server as well as at least t ratelimiters

were corrupted simultaneously.

{
No protection against offline password guessing
can be given in this case.

– We currently have (0, sidcur,S) ∈ CorruptionSet and it holds that
|RLset | + nc ≥ t where nc is the number of currently corrupted
ratelimiters.


Password guessing is otherwise restricted to be
online, i.e., only possible if the attacker currently
has access to the server and at least t ratelimiters
are helping.

if verification fails:
reply (PwGuessStart, Error) {Notify adversary that the current request did not succeed.

else: {One password guess is possible. Store this permission for the next step.
For each rl ∈ RLset : retrieveRate[rl , id]← retrieveRate[rl , id]− 1.
Add (id , i) to registeredGuesses. {Note that now there might be several occurrences of (id , i) in this multiset.
reply (PwGuessStart, OK)

recv (PwGuessFinish, id , i , pw ′) from NET to (_,_,S) s.t. i ∈ N ∧ (id , i) ∈ registeredGuesses:{Second step: After permission has been checked, the adversary can
provide a password guess pw ′. If the guess is correct, he learns
the plaintext that was encrypted in the i-th ciphertext with ID id .Remove one occurrence of (id , i) from registeredGuesses.

(pw ,m)← storageHistory[id][i].
if pw = pw ′:

reply (PwGuessFinish, Correct,m)
else:

reply (PwGuessFinish, Incorrect)

Fig. 10: The ideal password hardened encryption protocol FTPHE (Part 3).

28

B Full Details: Security Model for the TPHE Scheme

In this section, we provide a low-level explanation of the UCPY model PPHE. As depicted in Figure 5, PPHE is defined as the
protocol PPHE = (PSPHE,PRPHE | F1

ro,F2
ro,FOTP

ro ,FMAC
ro ,FN

ro,Fnizk,Finit&rotateKey,Fauth). We provide a full formal specification of
the different ITMs in Figure 11 to Figure 23.

In what follows, we start with a high-level explanation of the different ITMs and their role in PPHE and modeling aspects of
PPHE. Then, we explain the various ITMs in detail.

B.1 Model Overview

Here, we explain several high-level aspects of the UCPY model PPHE.

Model Components In PPHE, the main components of UCPY are PSPHE and PRPHE, modeling the server of (a) UCPY (instance)
and the connected ratelimiters. Both ITMs closely follow the specifications of the server, resp. ratelimiters, of UCPY during de-
and encryption requests. However, key rotation is orchestrated by Finit&rotateKey, which models three different variants of a key
rotation:

1. Honest key rotation where all parties honestly execute the code of the key rotation in a synchronous network without message
dropping and no network latency. A may solely change the corruption status of parties during honest key rotation. However,
honest key rotation ensures that all parties, server, and ratelimiters, honestly execute the key rotation protocol.

2. Dishonest key rotation with an honest server, where the server honestly runs a key rotation, but ratelimiters can be malicious.
During this type of key rotation, the honest server declines de- and encryption requests until the key rotation has finished. A
controls the fully asynchronous network (which additionally provides message secrecy for honest parties). A decided whether
corrupted ratelimiters participate in the key rotation and which public key share they provide to S. Honest ratelimiters
execute key rotation according to the protocol. However, A may decide whether honest ratelimiters get informed about the
ongoing key rotation. A also decides whether the network delivers the honest ratelimiter’s public key shares to the server.

3. During dishonest key rotation with a malicious server, solely honest ratelimiters follow the key rotation protocol. A decides
whether/which honest ratelimiters are involved in the key rotation.

We emphasize that our corruption model is round-based (see below). Corruption and decorruption are only possible during honest
key rotation.
Finit&rotateKey initializes one session of the UCPY scheme. It honestly generates the necessary cryptographic material, resp.

parameters, according to the UCPY specification. That is, Finit&rotateKey generates the secret server key kS , computes the
shares for the ratelimiters (including the public key shares), handles initial corruption of server and ratelimiters, and distributes
parameters and corruption state among server and ratelimiters. Additionally, Finit&rotateKey sets the codomain for the random
oracles.

In PPHE, we further use five different random oracles F1
ro, F2

ro, FOTP
ro , FMAC

ro , and FN
ro to model hash generation during the

five different purposes for hashing in UCPY. The random oracles slightly deviate from common definitions of random oracles
in two ways: (i) The random oracles do not randomly choose values from {0, 1}η, they randomly select values from a defined
codomain (which is {0, 1}η, G1, or G2 in UCPY). (ii) FOTP

ro allows to requests hashes to be bit strings of a desired length.
The other ideal subroutines in the hybrid PPHE model are standard. (i) The ratelimiters use the (ideal) non-interactive

zero-knowledge functionality Fnizk [26, 27] to generate ZKPs and the server uses Fnizk to verify the ratelimiter’s proofs, and
(ii) Fauth [40] provides an authenticated channel among the protocol parties. Fauth does neither provide message secrecy nor
eventual message delivery.

We note that Finit&rotateKey, as well as the other subroutines, are private and thus not directly accessible by E .

Corruption in PPHE PPHE, similarly to FPHE, does not implement a standard corruption model. As already skimmed above,
PPHE allows a round-wise de-/corruption. During each honest key rotation, A determines for each “round” or “epoch” which
parties are corrupted (and which honestly follow the protocol). In particular, A may corrupt the server and up to t− 1 ratelimiters
or not the server and any amount of ratelimiters. As common, A has full control over corrupted parties. On decorruption, we
require A to provide values for the relevant state in the protocol, i.e., the public key for validating the ratelimiters public key
shares, and the complete stored (encrypted) database for the server. For a decorrupted ratelimiter, A determines its secret key
(share), the public key (share), the nonce counter, and a set of nonces. This models that A may manipulate the physical data of
servers and ratelimiters during corruption.

The different key rotation variants, as introduced above, essentially cover the possible key rotation scenarios. An honest key
rotation models that all parties restore to the original code of UCPY and run the protocol honestly but maybe on manipulated
data. After the key rotation, A may corrupt entities for the current round. In PPHE, we use the number of honest key rotations
as a time notion. During honest key rotation, Finit&rotateKey ensures that all messages are delivered to their recipients without
any network latency.

29

The two dishonest key rotations model the cases without additional security guarantees (no message delivery guarantee and
no guarantee of correct execution of the key rotation protocol). If the server is honest, Finit&rotateKey ensures that the server
honestly executes the protocol (and stops other processing).

In what follows, we now provide a detailed description of the different ITMs in PPHE.

B.2 The Server ITM PS
PHE

As already mentioned, the server ITM PSPHE (cf. Figure 11 to 14) closely follows the protocol description of a server according to
the UCPY specification. Per UCPY instance, there is at most one instance of PSPHE (identified by (0, sidcur,S)). In more detail,
PSPHE works as follows:
Initialization. When an entity invokes an instance of PSPHE for the first time, PSPHE registers at the adequate Fauth session for
communicating via authenticated channels with the ratelimiters. It then queries Finit&rotateKey for initialization. Finit&rotateKey

provides the necessary UCPY parameters to PSPHE, i.e., q,G1,G2,Gt, and gt including PSPHE’s corruption state. Finit&rotateKey

also executes the “intentional” server part for initialization on behalf of PSPHE and provides the server’s secret key share sk, pk,
and the ratelimiter share pk1, . . . , pkn to PSPHE. Thereupon, PSPHE computes the possible reconstruction vectors (for Shamir’s
secret sharing) and verifies which subsets of ratelimiters allow reconstructing the public key pk. If A instructed Finit&rotateKey

that PSPHE is corrupted, PSPHE forwards its full internal state to A (and acts as message forwarder for A until decorruption.)
Message Processing. We use message processing to ensure that PSPHE processes some received messages before entering the
common main part of the ITM definition.

corrLog is part of the definition of PPHE’s custom corruption modeling. In this case, PSPHE queries Finit&rotateKey, which stores
the corruption history of all parties and forwards the output to the requestor.

Stop processing during key rotation: During a dishonest key rotation with honest server, PSPHE declines all enc- and
decryption requests.
RotateKey finalizes the honest key rotation process which started at Finit&rotateKey. With this call, Finit&rotateKey provides

whether PSPHE is corrupted after the key rotation or not, the new server secret key skS and the correct public key pk including the
new pk shares pk1, . . . , pkn. It also provides (new) nonces for each ratelimiter, PSPHE should use during the execution of UCPY.
When PSPHE was corrupted before the ongoing key rotation, it requires A to provide the (possibly manipulated) public key pk
and PSPHE (potentially manipulated) database storage.
Based on the (potentially manipulated) data, PSPHE continues the key rotation. It computes the reconstruction vectors for Shamir’s
secret sharing and stores them. Afterward, it checks which subsets of ratelimiters can support PSPHE during enc- and decryption.
If PSPHE is corrupted after key rotation, PSPHE records itself to be corrupted and forwards its internal state (including sk, pk, the
public key shares, nonces, and storage) to Asys. Otherwise, it solely leaks pk, the public key shares, and the ratelimiter sets PSPHE
will use for enc- and decryption until the next key rotation.

Message Forwarding: If PSPHE is corrupted, it acts (mainly) as a message forwarder to A. The code in this section specifies
this behavior. Please note that message preprocessing code blocks before this one are not forwarded to A, and instead, PSPHE
executes its “honest” code if, e.g., a party calls via I/O corrLog, RotateKey,

Main.

Store models an encryption request from a higher-level entity. The code closely follows the definition of the first call of the
server in Figure 2. Additionally, we allow A to decide which subset of ratelimiters PSPHE will ask for support during encryption.
PSPHE marks used nonces as consumed and stores the encryption request (including all necessary details) for asynchronous
processing. To send the necessary messages to the involved ratelimiters, PSPHE uses the authenticated channel Fauth.

Receiving FinalizeEnc from a ratelimiter via Fauth: When receiving (Received, (rl , sidcur,R), (FinalizeEnc, . . .)) from
Fauth send by the ratelimiter rl , PSPHE mainly executes the second part of the UCPY protocol as depicted in Figure 2. In more
detail, it verifies that the ratelimiters are involved in the particular encryption request id request. PSPHE stores the response if the
response is valid, i.e., when ZKP proofs are valid.
PSPHE keeps collecting responses until all ratelimiters involved in the encryption request have validly answered the request. In this
case, PSPHE finishes the encryption request (cf. Figure 2) and locally stores the encrypted data in its database storage.
Retrieve models a decryption request from a higher-level entity. Again, the code closely follows the specification of the UCPY

protocol (cf. Figure 3). PSPHE processes the request if there exists a matching entry in the database. Similarly to encryption
requests, A determines the set of ratelimiters that will support the decryption. PSPHE stores the necessary data for asynchronous
processing and sends the appropriate message for each involved ratelimiter via Fauth to the ratelimiter.

Receiving FinalizeDec from a ratelimiter via Fauth: This
case models the second part of the server specification of UCPY’s decryption protocol. The processing in FinalizeDec works
similarly to the one in FinalizeEnc.
GetNonces allows A to trigger that PSPHE queries a dedicated ratelimiter pid to provide new nonces to PSPHE. The message is

sent via Fauth.

30

Receiving GetNonces from a ratelimiter via Fauth: This models the ratelimiter response to the aforementioned request.
PSPHE stores the nonces.
stealDB allows A to get a copy of PSPHE’s entire database storage.
RotationOngoing is used in the case of a dishonest key rotation with the honest server. With this message, Finit&rotateKey

indicates to PSPHE to stop the execution of de- and encryption requests until key rotation finishes.

B.3 The Ratelimter ITM PR
PHE

The ratelimiter ITM PRPHE (cf. Figure 15 to 16) closely follows the protocol description of a ratelimiter according to the UCPY
specification. In a UCPY session, there is (at most) one instance of PSPHE per ratelimiter. That means., there are typically n
instances of PRPHE identified by (i, sidcur,R), i ∈ [1..n]. In more detail, PRPHE works as follows:
Initialization. Initialization in PRPHE works conceptually similar to the PSPHE initialization. Firstly, PRPHE registers at the adequate
Fauth session for communicating with the server via an authenticated channel. It then queries Finit&rotateKey for initialization.
Finit&rotateKey provides the necessary UCPY parameters to PRPHE, i.e., q,G1,G2,Gt, and gt including PSPHE’s corruption state.
Finit&rotateKey also provides the ratelimiter’s secret key share sk and the connected public key (share) pk to PRPHE. If A instructed
Finit&rotateKey that PRPHE is corrupted, PRPHE forwards its full internal state to A (and acts as message forwarder for A until
decorruption.)
Message Processing. Analogously to the server case, we use message processing to ensure that PRPHE processes some received
messages before it enters the main part of the ITM definition.

corrLog works analogously to the server case (cf. Item “corrLog” above).
RotateKey: Finit&rotateKey invokes this interface to allow the ratelimiter to participate in a key rotation. With this call, the

functionality Finit&rotateKey provides whether PRPHE is corrupted after the key rotation or not and the secret sharing of sk′S − skS
as generated by Finit&rotateKey. If PRPHE was corrupted before the activation, A determines the current state of PRPHE, more
specifically, A provides a secret key share sk , a public key (share) pk , the current nonce counter, and a set of nonces to PRPHE –
all data may be manipulated by A. PRPHE uses the input from A as its local state.
PRPHE then computes its new secret key share and the connected public key (share) pk. If PRPHE is corrupted in the next time
epoch, PRPHE leaks its full internal state, in particular sk and pk to A. Otherwise, it generates a new nonce, stores it for later
usage, and sends the public key (share) pk together with the nonce back to Finit&rotateKey.

Message Forwarding: Analogously to Item “Message Forwarding”: if PRPHE is corrupted, it acts (mainly) as a message
forwarder to A.

Main.

Receiving EncRequest from the server via Fauth:
When PRPHE receives an encryption request, it executes the UCPY protocol as specified in Figure 2. It sends the reply to the
server via Fauth.

Receiving DecRequest from the server via Fauth:
Analogously, PRPHE handles decryption requests from the server (cf. Figure 3).

Receiving GetNonces from the server via Fauth:
Upon receiving the request to generate new nonces from the server, PRPHE generates ng new nonces, stores them, and sends them
back to the server (via Fauth).
HelpRetrieve allows the environment to add “support tokens” for a message ID. PRPHE only supports a decryption, if there are

sufficient “support tokens” for the particular message ID.
GetRetrieveRate allows A to query for the retrieveRate for a specific ID.

B.4 The Initialization and Key Rotation Functionality Finit&rotateKey

The initialization and key rotation ITM Finit&rotateKey (cf. Figure 17 to 19) takes care of the initialization of the UCPY scheme,
models several assumptions for analyzing the UCPY protocol, and is used to orchestrate key rotations. There is one instance of
Finit&rotateKey per UCPY session.
Finit&rotateKey is incorruptible by definition.

Initialization. During initialization, Finit&rotateKey honestly generates the parameters for the UCPY scheme and generates an
overall secret key sk, the server secret key skS , and computes the overall ratelimiter secret key skR ← sk− skS . Furthermore, it
generates a sharing of skR (one share per ratelimiter). The ITM also queries A for the initial corruption state of the involved
server and ratelimiters and also leaks UCPY’s public parameters to A. It stores the corruption state in a log to match the
interfaces of FPHE.
Main.

31

InitMe Messages: When an PSPHE or PRPHE ITM initializes, it calls Finit&rotateKey via InitMeS , resp. InitMeR. Finit&rotateKey

provides the necessary initial parameters to the ITM including its initial corruption status.
getCodomain: When a random oracle F i

ro, i ∈ {1, 2,MAC,N} initializes it queries Finit&rotateKey for the codomain of the hash
function, i.e., the set of values from which F i

ro randomly samples its outputs.
RotateKey models a honest key rotation triggered by A. In this case, A provides the corruption state of the server and

ratelimiters for the next epoch. Finit&rotateKey records the corruption status in its log. It then executes the (honest) key rotation
code of the server (cf. Figure 4) and samples an α to compute the new server secret key skS ← skS + α. It generates a secret
sharing of α (one share si, i ∈ [1..n] per ratelimiter) such that every ratelimiter obtains its new secret key by subtracting its share
of α from its secret key. It calls all ratelimiters (modeling a secret channel without latency) and provides them with their si
and their upcoming corruption state. Each ratelimiter returns a public key (share) pk i and a noncei. After Finit&rotateKey has
collected this data, it forwards the data to PSPHE including its upcoming corruption status.
RotateKeySA: models that in an epoch with a corrupted server, A triggers (for some ratelimiters) a key rotation. Finit&rotateKey

acts in this case as message forwarder and allows A to send a (manipulated) share s to an (honest) ratelimiter of his choice.
Finit&rotateKey returns the answer of the ratelimiter to A.
RotateKeyA: models that in an epoch with honest server. A triggers a key rotation but without changing the corruption status

of parties. Also, in this variant of the key rotation, A fully controls the network and also corrupted ratelimiters (which is different
from the honest key rotation RotateKey). Firstly, Finit&rotateKey informs PSPHE that a key rotation is ongoing, and he should stop
executing enc- and decryption requests. Similar to RotateKey, Finit&rotateKey generates a secret sharing si, i ∈ [1..n] of α (one
share per ratelimiter). Finit&rotateKey leaks si for all corrupted ratelimiter to A. Thereupon, A may instruct whether/which shares
are delivered to honest ratelimiter. After an honest ratelimiter returns a public key share and a nonce, A may decide whether
this message is dropped. When A indicates that the key rotation has finished (via finishRotation), Finit&rotateKey sends the
available public key shares and nonces to PSPHE.
corrLog provides the corruption log to PSPHE and PRPHE.

B.5 Further Subroutines in PPHE

We omit a detailed specification of F1
ro,F2

ro,FOTP
ro ,FMAC

ro ,FN
ro (cf. Figures 21 and 22), Fnizk (Figure 23), and Fauth (Figure 20) as

they mainly match there definitions from literature or already sufficiently detailed explained above.

32

Description of the protocol PS
PHE = (S):

Participating roles: {S}
Corruption model: custom
Protocol parameters:

– n ∈ N. {Number of ratelimiters.
– 1 ≤ t ≤ n. {Threshold of ratelimiters needed for decryption.

Description of MS :
Implemented role(s): {S}
Subroutines:
F i

ro : randomOracle(i ∈ {1, 2,OTP,MAC,N}),Fnizk : nizk,Finit&rotateKey : init,Fauth : auth

Internal state:
– storage : {0, 1}∗ → ({0, 1}∗)3 ∪ {⊥}. {Maps id to (ct , ns, nr). Initially ⊥.

– reqQueueEnc : N→ ({0, 1}∗)2×{0, 1}2η×N

{Currently active encryption requests, id is mapped to (pw ,m, r, ns, nr, T) where r
is randomness, ns a nonce, nr ratelimiters’ joint randomness, and T ⊂ N the set of
involved ratelimiters– q ∈ N {q: the group size of used groups G1,G2, and Gt

– nonces : [1, n]→ {0, 1}η. {Buffered nonces from each ratelimiter in a totally ordered set, initially all entries ⊥
– sk ∈ {0, 1}η. {S’s secret key, initially set by Finit&rotateKey

– G1,G2,Gt ⊂ {0, 1}∗, initially ∅. {Used groups, initially set by Finit&rotateKey

– gt ∈ {0, 1}∗, resp. Gt, initially ε. {Generator of Gt, initially set by Finit&rotateKey

– Tset ⊂ 2[1,n] {Ratelimter sets to be accepts to help enc/dec, initially set by Finit&rotateKey

– pk, pk1, . . . , pk all in Gt ∪ {⊥} {Public keys of ratelimiters per round, initially set by Finit&rotateKey

– limiterResponsesEnc : N×[1, n]→ {0, 1}∗, initially all⊥.
{
Buffer for ratelimiter responses during encryption. (id , rl) (rl means
ratelimiter) map to u– retrieveCounter ∈ N = 0. {Counter to reference different Dec requests.

– reqQueueDec : N→ ({0, 1}∗)10 ∪ {⊥}.
{
Storage for Dec requests (id , pw , r, ns, nr, T, p, caller), caller =
(pid , sid , role). Initially ⊥.

– limiterResponsesDec : N× [1, n]→ {0, 1}∗, initially all ⊥. {Buffer for ratelimiter responses during decryption. (id , rl) map to u

– reconVectors : {A | A ∈ 2[1,n] ∧ |A| = t} → ({0, 1})n, initially all entries ⊥ {The set of initial reconstruction vectors
– rotationOngoing ∈ {true, false}, initially false {Flag whether S is currently in a (malicious) key rotation

CheckID(pid , sid , role):
Check that pid = 0 ∧ role = S and that we always have the same/one sid .
If this check fails, output reject.

Initialization:
send (Establish, ε) to (pidcur, sidcur,Fauth : auth) {Establish authenticated channel
wait for ack
send InitMeS to (pidcur, sidcur,Finit&rotateKey : init)
wait for (InitMeS , q, G1, G2, Gt, gt, sk , pk , pk1, . . . , pkn, c)
q← q;G1 ← G1;G2 ← G2;Gt ← Gt; gt ← gt; sk← sk ; pk← pk ; pk1 ← pk1, . . . pkn ← pkn;
for all T ∈ {A | A ∈ 2[1,n] ∧ |A| = t} do: Let δ be an array/sequence of length n (each entry accessible via δ[i], i ∈ [1, n]).

for all rl ∈ T do: δ[rl]←
∏

j∈T,j ̸=rl

−j
rl−j

{Compute part of the reconstruction vector for T

reconVectors[T]← δ

for all T ∈ {A | A ∈ 2[1,n] ∧ |A| = t} do: Load δ as array of length n from reconVectors[T]. {Generate updated Tset

pk ′ =
∑
i∈T

δ[i] · pki
if pk ′ + sk · [1] = pk:

Tset.add(T) {Record that S can use T to reconstruct pk, resp. sk
if c: Add (pidcur, sidcur, rolecur) to CorruptionSet.

Leak storage, reqQueueEnc, reqQueueDec, nonces, sk, pk, pk1, . . . , pkn, retrieveCounter, limiterResponses, reconVectors, and Tset re-
sponsively to NET.a

MessagePreprocessing:
// Allow environment to check correct simulation of corruption and decorruption//

recv CorruptionLog? from I/O: {Provide full chronological history of all corruption changes.
send CorruptionLog? to (pidcur, sidcur,Finit&rotateKey : init)
wait for (CorruptionLog, corrLog)
reply (CorruptionLog, corrLog)

recv msg from NET or I/O s.t. rotationOngoing = true ∧m ̸= (RotateKey, corrS , sk , pk , pk1, . . . , pkn,nonces):
break {S declines further requests during key rotation

Continue with Figure 12.

a The notation “send this responsively to NET” means that the ITM sends a restricting message via send responsively to A leaking
the data here and waits for its reactivation, e.g., by wait for ack.

Fig. 11: The real server protocol PSPHE of the TPHE scheme (Part 1).
33

Description of MS (continued):
MessagePreprocessing (cont.):

// (Honest) key rotation //

recv (RotateKey, corrS , sk , pk , pk1, . . . , pkn,nonces) from (_, sidcur,Finit&rotateKey):
sk← sk , pk← pk , pk1 ← pk1, . . . pkn ← pkn; nonces← nonces.
if (pidcur, sidcur, rolecur) in CorruptionSet:

send responsively getState to NET {Get manipulated storage from A
wait for (getState, storage) s.t. data formats match the specification of PS

PHE
storage← storage.

Remove (pidcur, sidcur, rolecur) from CorruptionSet.
Set all entries in limiterResponsesEnc, reqQueueEnc, reqQueueDec, limiterResponsesDec, and Tset to
⊥, resp. back to their initial state.


Clear all caches as se-
cret key sk changed
and cannot be used af-
ter this activation.for all T ∈ {A | A ∈ 2[1,n] ∧ |A| = t} do:

Let δ be an array/sequence of length n (each entry accessible via δ[i], i ∈ [1, n]).
for all rl ∈ T do:

δ[rl]←
∏

j∈T,j ̸=rl

−j
rl−j

{Compute part of the reconstruction vector for T

reconVectors[T]← δ

Tset = ∅
for all T ∈ {A | A ∈ 2[1,n] ∧ |A| = t ∧ ∀i ∈ A : pki ̸= ⊥} do: {Update Tset

Load δ as array of length n from reconVectors[T].
pk ′ =

∑
i∈T

δ[i] · pki
if pk ′ + sk · [1] = pk: Tset.add(T) {Record that S can use T to reconstruct pk, resp. sk

rotationOngoing← false {Record that key rotation finished
if corrS : {Server is honest in current round

Add (pidcur, sidcur, rolecur) to CorruptionSet.
Leak storage, sk, pk, pk1, . . . , pkn, nonces,Tset, limiterResponsesEnc, reqQueueEnc, reqQueueDec, and limiterResponsesDec to
NET.

else:
Leak pk, pk1, . . . , pkn, Tset to NET.

// Forwarding during corruption //

recv m ′ from NET: {Forwarding of messages received via NET

if (pidcur, sidcur, rolecur) ∈ CorruptionSet: {Forward non-modeling related calls to NET

if m ′ = (Fwd, (pid , sid , role),m)∧ role is a subroutine of PS
PHE:

send m to (pid , sid , role) {Forward messages to subroutines
if m ′ = (Fwd, (pid , sid , role),m)∧ role is not a subroutine of PS

PHE ∧m can be parsed as (Retrieve,_,_).:
send m to (pid , sid , role) {Forward messages to I/O

recv m ′ from I/O:
if (pidcur, sidcur, rolecur) ∈ CorruptionSet: {Forward non-modeling related calls to NET

if m ′ ∈ {(Store,_,_,_), (Retrieve,_,_)} or Received:
Forward message to NET.

Fig. 12: The real server protocol PSPHE of the TPHE scheme (Part 2).

34

Description of MS (continued):
Main:

// Storing //

recv (Store, id , pw ,m) from I/O to (0,_,S):
{
Store a message protected by a password. The ID serves as a
(public) reference to that message.

storage[id]← ⊥ {Clear storage.

r
$← Z∗

q ;ns
$← {0, 1}η {Generate randomness and nonce

if Tset = ∅: break {Stop execution
send responsively (GetInvolvedRatelimiters, Store, id) to NET {Query A for involved ratelimiters
wait for (GetInvolvedRatelimiters, T) s.t. T ∈ Tset

if nonces[rl] for an rl ∈ T : break {We do not have sufficient nonces to process the request
Let nrl be the first nonce in nonces[rl]∀rl ∈ T .
for all rl ∈ T do: {Prepare necessary set of nonces for encryption

nonces.add((rl , nrl))
a; nonces[rl].remove(nrl). {Remove used nonce from chache

nonces.add(ns)
send nonces to (pidcur, sidcur,FN

ro : randomOracle) {Generate n

wait for n
send (pw , n) to (pidcur, sidcur,F2

ro : randomOracle) {Generate H2(pw , n)

wait for h
[p]2 ← r · [h]2; bmsg ← ε;nonces ← ε
for all rl ∈ T do: limiterResponsesEnc[(id , rl)]← ⊥ {Clear ratelimiter respsonses

reqQueueEnc[id]← (pw ,m, r, n, T, p)

{Store current state and
start to contact ratelim-
iters

for all rl ∈ T do: {Prepare message to ratelimiters
msg .add[(rl , sidcur,R), (EncRequest, id , [p]2,nonces)]

send (Send,msg) to (pidcur, sidcur,Fauth : auth)

recv (Received, (rl , sidcur,R), (FinalizeEnc, id , π, u, n)) from (_,_,Fauth : auth),
s.t. rl ∈ T , where T from reqQueueEnc[id]:

{
Receive answer for encryption
request from limiter rlLoad values (pw ,m, r, n, T) from reqQueueEnc[id]

send (id , n) to (pidcur, sidcur,F1
ro : randomOracle)

wait for h; [o]t ← [h]1 · [p]2
send (Verify, (gt, [o]t, pkrl , u), π) to (pidcur, sidcur,Fnizk : verifier) {Check NIZK
wait for (Verify, b)
if b: {Continue with processing when NIZK was valid

nonces[rl].add(n); limiterResponsesEnc[(id , rl)]← u {Store new noce and u for later processing
c← true, uf ← [0]t
Load δ as array of length n from reconVectors[T].
for all rl ′ ∈ T do: {Check whether all ratelimiters responded

if limiterResponsesEnc[(id , rl
′)] ̸= ⊥:

[uf]t ← [uf]t + δ[rl ′] · [limiterResponsesEnc[(id , rl
′)]]t

else:
c← false

if c: {All ratelimiters from T responded
send ((

[uf]t
r

+ sk · [o]t, pw , id , n), |m|) to (pidcur, sidcur,FOTP
ro : randomOracle)

wait for h1; c1 ← h1⊕
send (

[uf]t
r

+ sk · [o]t,m, pw , id , n) to (pidcur, sidcur,FMAC
ro : randomOracle)

wait for c2;
reqQueueEnc[id]← ⊥ {Clean up storage
for all rl ∈ T do: limiterResponsesEnc[(id , rl)]← ⊥
storage[id].add[((c1, c2), n)]

a We expect that {(rl ,nonce)}rl∈[1,n] to be an ordered set, ordered by increasing ratelimiter pid .
b We write [·]i, i ∈ {1, 2, t} to highlight the group Gi we are currently considering.

Fig. 13: The real server protocol PSPHE of the TPHE scheme (Part 3).

35

Description of MS (continued):
// Retrieving //

recv (Retrieve, id , pw ′) from I/O to (0,_,S):
{
Try to retrieve the message stored under ID id using password pw′.

If exits, load ((c1, c2), n) from storage[id]. Otherwise, abort execution.
send responsively (GetInvolvedRatelimiters, Retrieve, id) to NET {Query A for involved ratelimiters
wait for (GetInvolvedRatelimiters, T) s.t. T ∈ Tset

retrieveCounter← retrieveCounter + 1; r
$← Z∗

q {Generate randomness
send (pw ′, n) to (pidcur, sidcur,F2

ro : randomOracle)
{
Generate H2(pw

′, n)
wait for h; [p]2 ← [h]2 · r;msg ← ε
reqQueueDec[retrieveCounter]← (id , pw ′, r, n, T, p, (pidcall, sidcall, rolecall))

{Store current state for decryption and
start to contact ratelimiters

for all rl ∈ T do: msg .add[(rl , sidcur,R), (DecRequest, retrieveCounter, id , [p]2, n)] {Prepare message to ratelimiters
send (Send,msg) to (pidcur, sidcur,Fauth : auth)

Main:

recv (Received, (rl , sidcur,R), (FinalizeDec, ctr , id , πR, u)) from (_,_,Fauth : auth),
s.t. rl ∈ T , where T from reqQueueDec[ctr]: {Receive answer for decryption request from limiter rl

Load values (id , pw , r, n, T, p, caller) from reqQueueDec[ctr] and ((c1, c2), n) from storage[id].
send (pidcur, (id , n)) to (pidcur, sidcur,F1

ro : randomOracle)
wait for (pidcur, h)
[o]t ← [h]1 · [p]2
send (Verify, (gt, [o]t, pkrl , u), πR) to (pidcur, sidcur,Fnizk : verifier) {Check NIZK
wait for (Verify, b)
if b: {Exit 1: Continue with processing when NIZK was valid

limiterResponsesDec[(ctr , rl)]← (u) {Store u for later processing
c← true, uf ← [0]t
for all rl ′ ∈ T do: {Check whether all ratelimiters responded

if limiterResponsesDec[(ctr , rl
′)] ̸= ⊥:

[uf]t ← [uf]t + δrl′ · [limiterResponsesDec[(id , rl
′)]]t

else:
c← false

if c: {Exit 2: All ratelimiters from T responded
send ((

[uf]t
r

+ sk · [o]t, pw , id , n), |c1|) to (pidcur, sidcur,FOTP
ro : randomOracle)

wait for h1; m ← h1 ⊕ c1 {Decrypt requested ciphertext
send (

[uf]t
r

+ sk · [o]t,m, pw , id , n) to (pidcur, sidcur,FMAC
ro : randomOracle)

wait for c′ {Check that m was not manipulated in storage
for all rl ∈ T do: limiterResponsesDec[(ctr , rl)]← ⊥
reqQueueDec[ctr]← ⊥ {Clean up storage
if c2 = c′: {“MAC” check

send (Retrieve, id ,m) to caller .
else:

send (Retrieve, id ,⊥) to caller .
send (Retrieve, id ,⊥) to caller .

// Nonce generation//

recv (GetNonces, pid) from NET: {A triggers request for ne nonces
send (Send, (pid , sidcur,R), (GetNonces)) to (pidcur, sidcur,Fauth : auth)

recv (Received, (pid , sidcur,R), (GetNonces,nonces)) from NET

s.t. pid ∈ [1, n] ∧ nonces is an ordered set with elements from {0, 1}η: {Delivery of newly generate nonces from pid .
for all e ∈ nonces do:

nonces[pid].add(e) {In order of the ordered set
// Model database leak//

recv stealDB from NET: {A may “steal” S’s database
reply (stealDB, storage)

// Dishonest key rotation with honest server //

recv RotationOngoing from (_, sidcur,Finit&rotateKey : init): {Key rotation ongoing, stop other processes
rotationOngoing← true

reply ack

Fig. 14: The real server protocol PSPHE of the TPHE scheme (Part 4).

36

Description of the protocol PR
PHE = (R):

Participating roles: {R}
Corruption model: custom
Protocol parameters:

– n ∈ N. {Number of ratelimiters.
– 1 ≤ t ≤ n. {Threshold of ratelimiters needed for decryption.
– ng ∈ N {The number of nonces generated in batch upon a server request

Description of MR:
Implemented role(s): {R}
Subroutines: F i

ro : randomOracle(i ∈ {1, 2,OTP,MAC,N}),Fnizk : nizk,Finit&rotateKey : init,Fauth : auth
Internal state:

– retrieveRate : N→ N
{
Maps an ID to the number of times the ratelimiter will support
decryption of ID, initially 0 for all entities

– q ∈ N {q: the group size of used groups G1,G2, and Gt, initially set by Finit&rotateKey

– nonces ⊂ {0, 1}η. {A set of nonces to be used during the protocol run
– sk, pk ∈ {0, 1}∗. {R’s public and secret key, initially set by Finit&rotateKey

– G1,G2,Gt ⊂ {0, 1}∗, initially ∅. {Used groups, initially set by Finit&rotateKey

– gt ∈ {0, 1}∗, resp. Gt, initially ε. {Generator of Gt, initially set by Finit&rotateKey

CheckID(pid , sid , role):
Check that pid ∈ [1, n] ∧ role = R and that we always have the same/one pid and sid .
If this check fails, output reject.

Initialization:
send (Establish, ε) to (pidcur, sidcur,Fauth : auth) {Establish authenticated channel
wait for ack
send InitMe to (pidcur, sidcur,Finit&rotateKey : init)
wait for (InitMe, q, G1, G2, Gt, gt, sk , pk , c)
q← q;G1 ← G1,G2 ← G2;Gt ← Gt; sk← sk , pk← pk
if c:

Add (pidcur, sidcur, rolecur) to CorruptionSet.
Leak sk, pk to NET.

MessagePreprocessing:
// Allow environment to check correct simulation of corruption and decorruption//

recv CorruptionLog? from I/O: {Provide full chronological history of all corruption changes.
send CorruptionLog? to (pidcur, sidcur,Finit&rotateKey : init)
wait for (CorruptionLog, corrLog)
reply (CorruptionLog, corrLog)

// Key rotation //

recv (RotateKey, corr , s) from (_, sidcur,Finit&rotateKey : init):
if (pidcur, sidcur, rolecur) ∈ CorruptionSet:

send responsively getState to NET {Get manipulated storage from A
wait for (getState, sk , pk ,nonceCtr ,nonces) s.t. data formats match the specification of PR

PHE
sk← sk ; pk← pk ;maxNonceCtr← nonceCtr + 1; nonces← nonces.

sk← sk− s {Update secret key
pk← sk · [gt]t {Update public key
if corr = true:

Add (pidcur, sidcur, rolecur) to the set CorruptionSet.
Leak (retrieveRate, nonces, sk, pk,maxNonceCtr) responsively to NET.

else:
Remove (pidcur, sidcur, rolecur) from the set CorruptionSet.
Set retrieveRate and nonces to their initial (empty) state.
n

$← {0, 1}η
nonces.add(n) {Generate new nonce and store it

reply (RotateKey, pk, n)

// Forwarding during corruption //

recv m from NET:
if (pidcur, sidcur, rolecur) ∈ CorruptionSet: {Forward non-modeling related calls to NET

if m = (Fwd, (pid , sid , role),m ′) ∧ role is a subroutine:
send m ′ to (pid , sid , role) {Forward message

if the message was received via NET/subroutine:
Forward message to NET.

Fig. 15: The real ratelimiter protocol PRPHE of the TPHE scheme (Part 1).
37

Description of MR (continued):
Main:

// Encryption request //

recv (Received, (0, sidcur,S), (EncRequest, id , [p]2, {(rl ,noncerl)}rl∈[1,n]
a))

from (_, sidcur,Fauth : auth) s.t. (pidcur,_) ∈ {(rl ,noncerl)}rl∈[1,n]∧noncepidcur ∈ nonces: {Receive encryption request

nonces.remove(noncepidcur)
send ({(rl ,nonce)}rl∈[1,n]) to (pidcur, sidcur,FN

ro : randomOracle) {Generate n

wait for n
send (id , n) to (pidcur, sidcur,F1

ro : randomOracle)
wait for h
[o]t ← [h]1 · [p]2
u← sk · [o]t
send (Prove, (gt, [o]t, pk, u), sk) to (pidcur, sidcur,Fnizk : prover) {Generate NIZK
wait for (Prove, πR)
if πR = ⊥: break {Abort execution
n

$← {0, 1}η
nonces.add(n) {Generate new nonce and store it
send (Send, (0, sidcur,S), (FinalizeEnc, id , πR, u, n)) to (pidcur, sidcur,Fauth : auth)

// Decryption request //

recv (Received, (0, sidcur,S), (DecRequest, ctr , id , [p]2, n))
from (_, sidcur,Fauth : auth) s.t. id ∈ storage ∧ retrieveRate[id] > 0: {Server request support for decryption of id
retrieveRate[id]← retrieveRate[id]− 1 {Record decryption request
send (id , n) to (pidcur, sidcur,F1

ro : randomOracle)
wait for h
[o]t ← [h]1 · [p]2
u← sk · [o]t
send (Prove, (gt, [o]t, pk, u), sk) to (pidcur, sidcur,Fnizk : prover) {Generate NIZK
wait for (Prove, πR)
if πR = ⊥:

break {Abort execution
send (Send, (0, sidcur,S), (FinalizeDec, ctr , id , πR, u)) to (pidcur, sidcur,Fauth : auth)

// Nonce generation//

recv (Received, (0, sidcur,S), (GetNonces)) from NET: {Server request a new batch of nonces
nonces ← ∅
for i = 0 to ng do:

n
$← {0, 1}η

nonces.add(n), nonces.add(n)
send (Send, (0, sidcur,S), (GetNonces,nonces)) to (pidcur, sidcur,Fauth : auth)

recv (HelpRetrieve, id) from I/O to (pidcur, sidcur,R): {Decryption support for id added by E
retrieveRate[id]← retrieveRate[id] + 1.
reply (HelpRetrieve, OK)

recv (GetRetrieveRate, id) from NET to (pidcur, sidcur,R):
reply (GetRetrieveRate, retrieveRate[id])

a We expect that {(rl ,noncerl)}rl∈[1,n] to be an ordered set, orderd by increasing ratelimiter pid .

Fig. 16: The real server protocol PRPHE of the TPHE scheme (Part 2).

38

Description of the protocol Finit&rotateKey = (init):
Participating roles: {init}
Corruption model: incorruptible
Protocol parameters:

– η ∈ N. {The security parameter.
– n ∈ N. {Number of ratelimiters.
– 1 ≤ t ≤ n. {Threshold of ratelimiters needed for decryption.

Description of Minit:
Implemented role(s): {init}
Internal state:

– corrLog = ∅.


Chronologically ordered sequence of corruption updates. Each entry is of the form
(entity , b) denoting an entity = (pid , sid , role) whose corruption status has been
changed to b ∈ {true, false}.

– sk, skS , sk1 : N→ {0, 1}∗, . . . , skn : N→ {0, 1}∗ {The key, the server and ratelimiter shares of the key (per round)
– pk, pk1, . . . , pkn ∈ Gt {Public keys of ratelimiters
– q ∈ N {q: the group size of used groups G1,G2, and Gt

– G1,G2,Gt, gt ∈ Gt {Used groups, gt is a generator of Gt

– currentlyCorrupted ⊂ [1, n]× {0, 1}2, initially currentlyCorrupted = ∅ {Set of currently corrupted participants

– nonces : [1, n]→ {0, 1}η.
{
Buffered nonces from each ratelimiter (totally or-
dered), initially all entries ⊥

CheckID(pid , sid , role):
Check that we always have the same/one sid .
If this check fails, output reject.

Initialization:
(G1,G2,Gt, q, g1, g2, e)

$← BGGEN(1η)

{
Generate parameters for TPHE scheme. The usage of e is always written
as [a]1 · [b]2 = [ab]t and not mentioned explicitly

gt ← [g1]1 · [g2]2 {Determine generator of Gt

sk
$← Zq; skS

$← Zq; skR ← sk− skS
pk← sk · [gt]t
f

$← {g | g ∈ Zq[x],deg(g) < t ∧ g(0) = skR} {Choose polynomial for (n, t)-Shamir secret sharing
for i = 1 to n do:

ski ← f(i) {Generate ratelimiter shares
pki ← ski · [gt]t {Generate public keys for ratelimiters

send responsively (InitialCorruption?,G1,G2,Gt, q, gt, pk, pk1, . . . , pkn) to NET

{Allow adversary to choose initial cor-
ruption status of parties and leak
TPHE parameters, etc.

wait for (InitialCorruption?, s, corrR, pkc
1, . . . , pk

c
n) s.t. corrR ⊂ {1, . . . , n} ∧ (|corrR| ≤ t− 1 ∨ s = false).

if s = true:
Add (0, sidcur,S) to the set currentlyCorrupted.
Add ((0, sidcur,S), true) to corrLog.

else:
Add ((0, sidcur,S), false) to corrLog.

for all i ∈ corrR do:
pki ← pkc

i {Record manipulated public key
Add (0, sidcur,R) to the set currentlyCorrupted.
Add ((0, sidcur,S), true) to corrLog.

for all i ∈ [1..n] \ corrR do:
Add ((0, sidcur,S), false) to corrLog.

Fig. 17: The initialization and key rotation functionality Finit&rotateKey of the TPHE scheme (Part 1).

39

Description of the protocol Finit&rotateKey = (init):
Main:

recv InitMeS from I/O s.t. (pidcall, sidcall, rolecall) = (0, sidcur,S):
if (0, sidcur,S) in currentlyCorrupted:

c = true

else:
c = false

reply (InitMeS , q,G1,G2,Gt, gt, skS , pk, pk1, . . . , pkn, c)

recv InitMeR from I/O s.t. (pidcall, sidcall, rolecall) = (i, sidcur,R), i ∈ {1, . . . , n} :
if (i, sidcur,R) in currentlyCorrupted:

c = true

else:
c = false

reply (InitMeR, q,G1,G2,Gt, gt, ski, pki, c)

recv getCodomain from (_, sidcur,F i
ro : randomOracle)(i ∈ {1, 2,OTP,MAC,N}): {Set hashfunctions correct codomain

if i = 1:
reply (getCodomain,G1)

else if i = 2:
reply (getCodomain,G2)

else:
reply (getCodomain, {0, 1}η)

Fig. 18: The initialization and key rotation functionality Finit&rotateKey of the TPHE scheme (Part 2).

40

Description of Minit (continued):
Main:

// Honest key rotation //

recv (ChangeCorruption, corrS , corrIDsR) from NET s.t. corrIDsR ⊂ [1..n] ∧ (|corrIDsR| ≤ t − 1 ∨ s = false):
{Advance round/rotate key

currentlyCorrupted← ∅ {Update currentlyCorrupted
if corrS : {Record S to be corrupted

currentlyCorrupted.add[(0, sidcur,S)]
Add ((0, sidcur,S), corrS) to corrLog.
for all i ∈ corrIDsR do: {Record R i to be corrupted

currentlyCorrupted.add[(i, sidcur,R)]
Add ((0, sidcur,R), true) to corrLog.

for all i ∈ [1..n] \ corrIDsR do: {Record R i to be honest
Add ((0, sidcur,R), false) to corrLog.

α
$← Zq; skS ← skS + α; f

$← {g | g ∈ Zq[x], deg(g) < t ∧ g(0) = α} {Choose polynomial for (n, t)-Shamir secret sharing
for i = 1 to n do:

si ← f(i) {Generate ratelimiter shares
for all i ∈ [1, n] do:

Let c be true, if i ∈ corrR, otherwise false.
send (RotateKey, c, si) to (i, sidcur,R) {Provide R data to run a key rotation
wait for (RotateKey, pk ′,nonce) s.t. pk ′ ∈ Gt ∧ nonce ∈ {0, 1}η {Resulting public key and nonce from key rotation
pki ← pk ′; nonces[i]← nonce

send (RotateKey, corrS , skS , pk, pk1, . . . , pkn, nonces) to (0, sidcur,S)
// Dishonest key rotation with malicious server //

recv (RotateKeySA, rl , s) from NET s.t. rl ∈ [1, n] ∧ (0, sidcur,S) ∈ currentlyCorrupted ∧ (rl , sidcur,R) /∈ currentlyCorrupted:
send (RotateKey, false, s) to (rl , sidcur,R)
wait for (RotateKey, pk ′,nonce) {Resulting public key and nonce from key rotation
reply (RotateKeyA, pk ′,nonce) {Forward result to A

// Dishonest key rotation with honest server //

recv (RotateKeyA) from NET s.t. (0, sidcur,S) /∈ currentlyCorrupted:
send (RotationOngoing) to (0, pidcur,S) {Server stopps processing requests until further rotation finished
wait for ack
α

$← Zq; skS ← skS + α; f
$← {g | g ∈ Zq[x], deg(g) < t ∧ g(0) = α} {Choose polynomial for (n, t)-Shamir secret sharing

for i = 1 to n do:
si ← f(i) {Generate ratelimiter shares

for all i ∈ [1..n] do: {Clear pki’s and nonces from last rotation
pki ← ε
nonces[i]← ⊥

for all i ∈ {(i, sidcur,R) | (i, sidcur,R) ∈ currentlyCorrupted} do:
Let c be true, if i ∈ corrR, otherwise false.
if c: {Leak share to A

send responsively (RotateKey, i, si) to NET

wait for ack
send nextCmd? to NET (⋆) {A may instruct further processing of Finit&rotateKey

wait for m s.t. Case I): m = (deliverHonestRL, i), i ∈ [1..n], i not in currentlyCorrupted∨ Case II:m = (finishRotation,_)
if Case I: {Trigger key rotation for an honest R

send (RotateKey, false, si) to (i, sidcur,R) {Provide R data to run a key rotation
wait for (RotateKey, pk ′,nonce) s.t. pk ′ ∈ Gt ∧ nonce ∈ {0, 1}η {Resulting public key and nonce from key rotation
pki ← pk ′; nonces[i]← nonce
send responsively (Leak, RotateKey, |pk ′|, |nonce|) to NET {Leak length of messages to A
wait for ack
Go to (⋆)

else if Case II ∧m = (finishRotation, rlcorrset , pk ,nonces)
s.t. rlcorrset in currentlyCorrupted ∧ pk is a map from rlcorrset → Gt∧
nonces is a map from rlcorrset → {0, 1}η:

for all ratelimiter i in rlcorrset do:
pki ← pk [i]; nonces[i]← nonces[i]

send (RotateKey, false, skS , pk, pk1, . . . , pkn, nonces) to (0, sidcur,S)

// Allow environment to check correct simulation of corruption and decorruption//

recv CorruptionLog? from I/O: {Provide full chronological history of all corruption changes.
reply (CorruptionLog, corrLog).

Fig. 19: The initialization and key rotation functionality Finit&rotateKey of the TPHE scheme (Part 3).
41

Description of the ideal authenticated channel functionality Fauth = (auth):

Participating roles: {auth}
Corruption model: custom

Description of Mauth:

Implemented role(s): {auth}
Internal state:

– queue : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ {Queue of messages from entity e1 to entity e2, initially ⊥ for all entries

– RegStatus : ({0, 1}∗)3 → {inactive, active, established}
{
The status of (pid , sid , role), initially
inactive for all entries

– corrStatus ∈ {0, 1} {The corruption status of the Fauth

CheckID(pid , sid , role):
Accept all messages for the same sid .

Main:

recv Corrupt from NET: {A (tries to) corrupts current instance of Fauth

if ∀ entries in RegStatus are not equal to established: {This models static corruption
corrStatus← true

reply (Corrupt, ack)
else:

reply (Corrupt, nack)

recv CorruptionStatus? from I/O:
{
Allows environment to check correct simula-
tion of corrupted parties.if corrStatus = true:

reply (CorruptionStatus?, true)
else:

reply (CorruptionStatus?, false)

recv (Establish,m) from I/O s.t. sidcall = sidcur,RegStatus [(pidcall, sidcall, rolecall)] = inactive: {Establish session
RegStatus[(pidcall, sidcall, rolecall)]← active

send responsively (Establish,m, (pidcall, sidcall, rolecall)) to NET

wait for ack
reply ack

recv (Establish, (pid , sidcur, role)) from NET s.t. RegStatus [(pid , sidcur, role)] = active: {Establish session
RegStatus[(pid , sidcur, role)]← established

send (Establish,m, (pid , sidcur, role)) to (pid , sidcur, role)

recv (Send, ([(pid1, sidcur, role1),m1], . . . , [(pidn, sidcur, rolen),mn])) from I/O
s.t. s.t. RegStatus[(pidcall, sidcall, rolecall)] = established ∧ pid ̸= pidcall :

{Send message via authen-
ticated channelif corrStatus = false:

for i = 1 to n do:
queue[(pidcall, sidcall, rolecall), (pid i, sidcur, rolei)].add(mi) {Add mi to the queue of pid i

send (Send, (pidcall, sidcall, rolecall), ([(pid1, sidcur, role1),m1], . . . , [(pidn, sidcur, rolen),mn]) to NET
{Leak com-
munication

recv (Deliver, (pid1, sidcur, role1), (pid2, sidcur, role2),m) from NET

s.t. RegStatus [(pid2, sidcur, role2)] = established ∧ pid1 ̸= pid2 :

{A triggers message de-
livery via authenticated
channelif corrStatus = false:

if queue[(pid1, sidcur, role1), (pid2, sidcur, role2)] = ⊥: {There are no queqed messages
reply (Deliver,⊥) {Return error

else:
remove the first message from queue[(pid1, sidcur, role1), (pid2, sidcur, role2), let m ′ be this message

send (Received, (pid1, sidcur, role1),m
′) to (pid2, sidcur, role2) {Deliver first message from queue

else:
send (Received, (pid1, sidcur, role1),m) to (pid2, sidcur, role2)

{
Deliver message from adversary if cor-
rupted

recv (Drop, (pid1, sidcur, role1), (pid2, sidcur, role2)) from NET:
if queue[(pid1, sidcur, role1), (pid2, sidcur, role2)] ̸= ⊥:

remove the first message from queue[(pid1, sidcur, role1), (pid2, sidcur, role2)]. {Drop message
reply (Drop, ack)

Fig. 20: The ideal authenticated channel functionality Fauth (cf. [40]).

42

Description of the protocol F i
ro = (randomOracle):

Participating roles: {randomOracle}
Corruption model: incorruptible

Description of MrandomOracle:

Implemented role(s): {randomOracle}
Subroutines:
Finit&rotateKey : init

Internal state:
– codomain ⊂ {0, 1}∗, initially hashHistory = ∅ {The codomain of the random oracle
– hashHistory ⊆ {0, 1}∗ × codomain, initially hashHistory = ∅ {The set of recorded value/hash pairs

CheckID(pid , sid , role):
Accept all messages with the same sid .

Initialization:
send getCodomain to (pidcur, sidcur,Finit&rotateKey : init) {Get codomain of the random oracle
wait for (getCodomain, C)
codomain← C

Main:

recv x from I/O or NET:
{
Requesting the F i

ro for “hashes”
if ∃h ∈ codomain s.t. (x, h) ∈ hashHistory: {Extract existing value from hashHistory

reply h
else:

h
$← codomain {Generate “hash value” uniformly at random

hashHistory← hashHistory.add((x , h)) {Store generated key value pair in hashHistory
reply h

Fig. 21: The random oracle F i
ro with variable codomain

Description of the protocol FOTP
ro = (randomOracle):

Participating roles: {randomOracle}
Corruption model: incorruptible

Description of MrandomOracle:

Implemented role(s): {randomOracle}
Internal state:

– hashHistory ⊆ {0, 1}∗ × N× {0, 1}η, initially hashHistory = ∅
{
The set of recorded value/hash pairs including the
desired hash length

CheckID(pid , sid , role):
Accept all messages with the same sid .

Main:

recv (x, l) from I/O or NET:
{
Requesting the FOTP

ro for “hashes”
if ∃h ∈ {0, 1}l s.t. (x, l, h) ∈ hashHistory: {Extract existing value from hashHistory

reply h
else:

h
$← {0, 1}l {Generate “hash value” uniformly at random

hashHistory← hashHistory.add((x, l, h)) {Store generated values in hashHistory
reply h

Fig. 22: The random oracle FOTP
ro that produces hashes of desired length.

43

Description of the protocol Fnizk = (prover, verifier):

Participating roles: {prover, verifier}
Corruption model: incorruptible
Protocol parameters:

– R ⊂ {0, 1}∗ × {0, 1}∗ {A relation for a language L

Description of Mnizk:

Implemented role(s): {prover, verifier}
Internal state:

– nizkHistory ⊆ R× {0, 1}∗, initially nizkHistory = ∅ {The set of recorded NIZK proofs
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (Prove, x ,w) from I/O to (_,_, prover): {Provide prove for x

if (x ,w) ∈ R: {Witness w matches statement x
send responsively (Prove, x) to NET {Query A for NIZK proof
wait for (Prove, π)
nizkHistory← nizkHistory ∪ (x ,w , π) {Store NIZK proof
reply (Prove, π) {Return π to prover

else:
reply (Prove,⊥) {Return proof was not accepted

recv (Verify, x , π) from I/O or NET: {Check NIZK proof π for x

if (x,_, π) ∈ nizkHistory: {If π is recorded as proof for x verification succeeds
reply (Verify, true)

else:
send responsively (Verify, x , π) to NET {Ask A to verify the proof
wait for (Verify,w) {A provides witness for x

if (x ,w) ∈ R: {If A provides a valid witness w for x ...
nizkHistory← nizkHistory ∪ (x ,w , π) {Store NIZK proof
reply (Verify, true) {Inform requestor that verification succeeds

else:
reply (Verify, false) {Inform requestor that verification fails

Fig. 23: The NIZK proof functionality Fnizk (cf. [26, 27])

44

C Security Analysis of UCPY

In this section, we provide the formal security analysis of UCPY. As part of the proof of Theorem 1 (see Section 4.3), we first
define a responsive simulator Sim such that the real world running the protocol PPHE is indistinguishable from the ideal world
running {Sim,FPHE} for every ppt environment E .

The simulator Sim is a single machine that is connected to FPHE and the environment E via their network interfaces. In a
run, there is only a single instance of the machine Sim that accepts and processes all incoming messages. The simulator Sim
internally simulates the realization PPHE, including its behavior on the network interface connected to the environment, and uses
this simulation to compute responses to incoming messages.

Intuitively, Sim internally simulates the real-world protocol PTPHE and relays messages between the environment E and
the ideal functionality FTPHE. The simulator receives messages from the ideal functionality and, with the information given,
constructs messages for the environment that appear to come from the real parties. It outputs a dummy database when the
server is compromised, responds appropriately to adversarial messages, and consistently answers queries to the random oracle.
Nevertheless, we only consider the behavior of honest parties as messages addressed to corrupt parties are forwarded to the
environment. For brevity, we write y ← Hi(x), i ∈ {1, 2,OTP,MAC,N} instead of explicitly calling F i

ro with input x and receiving
response y. We depict the simulator strategy Sim in Figures 24 to 26.

In general, Sim simulates the real protocol, where it is possible with the data leaked by the ideal protocol. In particular, the
computations of an honest ratelimiter are identical to a real ratelimiter because all messages to the ratelimiter containing a
password are blinded by the server with a random factor and are, therefore, independent of any secret data. On the other hand,
Sim hast to mimic the honest server’s behavior without knowing the password or the message.

We briefly describe the main challenges we faced when constructing the simulator and explain our tactics for solving them:

– (4) and (10) Storing/Retrieving Initialization: The simulator only learns the length of an encrypted message |m|
(from the ideal functionality/its message storage) in contrast to the password pw and the message m itself. Hence, it cannot
compute the hash of the password [h]2 ← F2

ro(pw , n) as in the real protocol and blind it with a random factor r $← Z∗q to form

[p]2 ← r · [h]2. Instead, it samples a
$← Z∗q and sets [p]2 ← a · [1]2, which is identical in the view of a ratelimiter.

If, during storing, the freshly generated nonce n already appears in any hashHistoryi, i ∈ {1, 2,OTP,MAC}, the simulator
aborts to ensure that the environment does not already know responses of the random oracles to inputs containing the nonce.

– (6) Storing Finalization: The simulator cannot compute c1, c2 according to the UCPY protocol, as they depend on the
password and the message (which are hidden from Sim when the server is honest). Therefore, it samples c1 from {0, 1}|m| and
c2 from {0, 1}η.

– (8) Honest Key Rotations: The main challenge here is to verify database entries received from the environment when the
server was corrupted before the key rotation. This can be done for entry (c1, c2, n) by checking if there was a query to FMAC

ro

consistent with c2, n. Hereby, the simulator learns message m and can check if there was also a query to FOTP
ro consistent

with c1, n,m. Finally, it checks the correctness of sk · H1(id , n) · H2(pw , n) = [u]t. If all checks passed, it marks the entry
by storing the tuple (id , n, [u]t,m, pw) in injectedMessages. Furthermore, it informs the ideal functionality of queries to the
ratelimiters not used in (12). That enables the simulator to use the unused quota of the ratelimiters in future epochs for
guessing passwords in (13).

– (12) Retrieving Finalization: For this phase, we distinguish between three cases:
1. If the simulator can find an entry for id in injectedMessages, it takes the password and the message from that entry and

sends (FinishRetrieve, ctr , T, success, (false, 0, pw ,m)) to the ideal functionality. The ideal functionality will send m
to the party that initiated the retrieval if the password matches the entered password.

2. If Sim cannot find such an entry in injectedMessages, it looks for a matching entry in its storageHistory. If it finds one, it
sends (FinishRetrieve, ctr , T, success, (true, i, ϵ, ϵ)) to the ideal functionality. The ideal functionality will check whether
it has an entry (pw ,m) for id in its storage. If the password from the entry matches the entered password, it sends m to
the party that initiated the retrieval.

3. If the simulator cannot find an entry for either injectedMessages or storageHistory, it indicates failure by sending
(FinishRetrieve, ctr , T, failed, (true, 0, ϵ, ϵ)) to the ideal functionality.

– (13) Special Queries to the Random Oracles OTP and MAC: To ensure that the retrieval from dummy records generated
in (6) is successful for correct passwords, the simulator must answer queries to FOTP

ro and FMAC
ro in a way that allows this.

Upon receiving a query (([u]t, pw , id , n), l) to FOTP
ro that is potentially consistent with a dummy record storageHistory[id , i] =

(c1, c2, n), it has to check whether the password matches the one entered to the ideal functionality on creating the corre-
sponding dummy record. This can be done by sending (PwGuessStart, id , i ,RLset) and (PwGuessFinish, id , i , pw) to the
ideal functionality. If the password is the same, the ideal functionality responds with the corresponding message m ′′, and the
simulator stores h← c1 ⊕m ′′ in hashHistoryOTP for ([u]t, pw , id , n), |c1|) and c2 in hashHistoryMAC for ([u]t,m

′′, pw , id , n). If
the length of the returned message |m′′| is not equivalent to the entered length l, it samples a fresh value as described in (3).
Note that for using the PwGuessFinish functionality, we must provide a set of t− nc honest ratelimiters with nc being the
number of currently corrupted ratelimiters. Furthermore, for every ratelimiter in the set, it must hold that retrieveRate[rl] > 0.
We find such ratelimiters with the help of retrieveRequests that keeps track of queries to the ratelimiters not used in (12).

45

(1) Parameter Generation
Upon the first activation of the simulator, it runs the initialization defined by the real protocol in Finit&rotateKey to obtain group
descriptions of G1,G2,Gt and the key pair (sk, pk) that is shared among the server and the ratelimiters. Furthermore, it initializes the
ideal authenticated channel functionality Fauth. In addition to the internal states of the real protocol, the following data structures
are initialized:

– storageHistory : {0, 1}∗ × N→ ({0, 1}∗)4 ∪ {⊥}
– injectedMessages ⊆ ({0, 1}∗)6
– retrieveRequests ⊆ ({0, 1}∗)4 ×Gt

– registeredGuesses ⊂ {0, 1}∗ × N
– hashHistory1 ⊆ {0, 1}∗ × Z∗

q ×G1

– hashHistory2 ⊆ {0, 1}∗ × Z∗
q ×G2

– hashHistoryOTP ⊆ {0, 1}∗ × N× {0, 1}η
– hashHistoryMAC ⊆ {0, 1}∗ × {0, 1}η
– hashHistoryN ⊆ {0, 1}∗ × {0, 1}η

(2) Forwarding during Corruption
Upon receiving a message from I/O addressed to the corrupted server, the simulator forwards the message to the environment if it is
of the form (Store,_,_,_), (Retrieve,_,_), or Received. Upon receiving a message m = (Fwd, (pid , sid , role), (Retrieve, id ,m))
from the environment addressed to the corrupted server, the simulator sends (CorruptedRetrieve, id ,m, (pid , sid , role)) to the
ideal functionality. Upon receiving a message m = (Fwd, (pid , sid , role),m′) from the environment addressed to the corrupted server,
the simulator checks whether role is a subroutine of PS

PHE. If the checks pass, it forwards the message to (pid , sid , role). Upon
receiving a message m = (Fwd, (pid , sid , role),m′) from the environment to a corrupted ratelimiter, the simulator forwards m′ to
(pid , sid , role). All other messages addressed to a corrupted ratelimiter are forwarded to the environment. This is a perfect simulation
of the real protocol PS

PHE.

(3) Answering Queries to the Random Oracles
Upon receiving a query to one of the random oracles, the simulator checks whether an entry for the specific input exists in the
corresponding hashHistory. If not, and the query was for F1

ro or F2
ro, it samples a

$← Z∗
q and stores a and [a]{1,2} with the input in

hashHistory{1,2}. Otherwise, it samples a fresh value from the codomain and stores it with the input in hashHistory. It answers the
query with the value stored in hashHistory. Some exceptions to the above sampling are specified in (13).

(4) Storing Initialization (server)
Upon receiving (store, id , |m|) from FTPHE : S, the simulator follows the protocol as described in PS

PHE except for steps that
depend on the password or the message as they are unknown to the simulator. Consequently, it samples a

$← Z∗
q and sets

[p]2 ← a · [1]2 (instead of computing [h]2 with F2
ro and blinding it with a random factor r

$← Z∗
q). This is equivalent to the

behavior of PS
PHE, as there exists a blinding factor r such that H2(pw , n)r = [p]2 for every password unless F2

ro outputs the
identity element [1]2. We show later on that this happens with negligible probability. It stores (ϵ, ϵ, ϵ, ϵ) in storageHistory[id , i]
with i ∈ N minimal such that storageHistory[id , i] = ⊥ and adds (i, |m|, a, n, T, p) instead of (pw ,m, r, n, T, p) in reqQueueEnc[id].
If the freshly generated nonce n already appears in any hashHistoryi, i ∈ [OTP,MAC], the simulator aborts, and we call this event FAIL1.

(5) Storing Response (ratelimiter)
Upon receiving (Received, (0, sidcur,S), (EncRequest, id , [p]2, {(rl ,noncerl)}rl∈[1,n])) from the simulated authenticated channel
(_, sidcur,Fauth : auth), the simulator strictly follows the behaviour defined in PR

PHE.

(6) Storing Finalization (server)
Upon receiving (Received, (rl , sidcur,R), (FinalizeEnc, id , π, u, n)) from the simulated authenticated channel (_,_,Fauth : auth),
the simulator follows the behaviour defined in PS

PHE, until all ratelimiters rl ∈ T responded with a valid proof. Instead of computing
c1, c2 according to the protocol with the random oracles FOTP

ro and FMAC
ro , it samples c1, c2 uniformly at random from {0, 1}|m|

and {0, 1}η respectively. The simulator continues with the protocol and stores the resulting values (c1, c2, n) in storage and
storageHistory[id , i] with i coming from reqQueueEnc[id].

(7) Steal Database
Upon receiving stealDB from the environment, the simulator responds with storage. Note that the leaking of the storage leads to the
environment learning simulated records. To ensure that future protocol interactions with the simulated records work correctly, we
implement additional steps in (13).

Fig. 24: Description of the UC simulator Sim for TPHE (Part 1).

46

(8) Honest Key Rotation
Upon receiving (ChangeCorruption, corrS , corrIDsR) from the environment, the simulator checks whether the server has been
corrupted in the previous epoch. If it was, the simulator checks whether t − nc entries for any (id , n) exist in retrieveRequests
with matching [o]t values and distinct ratelimiters which form RLset (nc is the number of corrupted ratelimiters). If so, it checks
whether an i ∈ N exists such that storageHistory[id , i] = (_,_, n). If so, it removes the entries from retrieveRequests and sends
(PwGuessStart, id , i ,RLset) to the ideal functionality to ensure that the valid set of ratelimiters can be used in future epochs for
password guesses. Once it cannot find such entries anymore, it removes all remaining entries from retrieveRequests.
Now that potential password guesses are registered, the simulator follows the protocol defined in Finit&rotateKey and informs the
ideal functionality with (ChangeCorruption, (corr)) about the new corruption status of each party. The following invocation of each
simulated ratelimiter with (RotateKey, corr , s) leads to the simulator executing the protocol as specified in PR

PHE. The following
invocation of the simulated server with (RotateKey, corrS , sk , pk , pk1, . . . , pkn,nonces) also leads to the simulator executing the
protocol as specified in PS

PHE. Note that in case the server gets corrupted, the leaking of the storage leads to the environment learning
simulated records. To ensure that future protocol interactions with the simulated records work correctly, we implement additional
steps in (13).
Furthermore, if the server has been corrupted in the last epoch, the environment provides the simulator with the server’s state,
consisting of the storage. To ensure correct retrieval in future protocol runs, the simulation checks the validity of the given records. It
checks the entry (c1, c2, n) by checking whether some [u]t,m, pw exists such that (([u]t,m, pw , id , n), c2) ∈ hashHistoryMAC. If more
than one entry exists, the simulator aborts, and we denote this event as FAIL3. If it finds an entry, it computes h← c1 ⊕m and also
checks whether (([u]t, pw , id , n), |m|, h) ∈ hashHistoryOTP. Finally, it checks whether [u]t matches sk · H1(id , n) · H2(pw , n). If all the
above checks pass, it adds (id , n, [u]t,m, pw) to injectedMessages. We denote the event that the environment guessed c2 correctly
without querying FMAC

ro as FAIL4.

(9) Dishonest Key Rotation
Upon receiving (RotateKeySA, rl , s) or (RotateKeyA) addressed to Finit&rotateKey, the simulator follows the protocol exactly as
described in Finit&rotateKey. Note that because the rotation is dishonest, no corruption status is changed; thus, the ideal functionality
is not informed about the rotation.

(10) Retrieving Initialization (server)
Upon receiving (Retrieve, retrieveCounter, id) from the ideal functionality, the simulator follows the protocol specification as
described in PS

PHE, except that instead of computing [p]2 as the product of a random scalar and [h]2 received upon sending pw′, n to
F2

ro, it samples a
$← Z∗

q and sets [p]2 ← a · [1]2.

(11) Retrieving Response (ratelimiter)
Upon receiving (Received, (0, sidcur,S), (DecRequest, ctr , id , [p]2, n)) from the simulated authenticated channel (_, sidcur,Fauth : auth),
the simulator strictly follows the behaviour defined in PR

PHE. Finally, it adds (rl , ctr , id , n, [o]t) to retrieveRequests.

(12) Retrieving Finalization (server)
Upon receiving (Received, (rl , sidcur,R), (FinalizeDec, ctr , id , π, [u]t)) from the simulated authenticated channel (_,_,Fauth : auth),
the simulator follows the behaviour defined in PS

PHE, until all ratelimiters rl ∈ T responded with a valid proof. We now differentiate
between three cases, where n is taken from storage[id]:

– ∃ ([u]t,m, pw) s.t . (id , n, [u]t,m, pw) ∈ injectedMessages: The simulator responds to the ideal functionality with
(FinishRetrieve, ctr , T, success, (false, 0, pw ,m)).

– ̸ ∃ ([u]t,m, pw) s.t . (id , n, [u]t,m, pw) ∈ injectedMessages ∧ ∃i ∈ N s.t . storageHistory[id , i] = (c1, c2, n): The simulator responds
to the ideal functionality with (FinishRetrieve, ctr , T, success, (true, i, ϵ, ϵ)).

– ̸ ∃ ([u]t,m, pw) s.t . (id , n, [u]t,m, pw) ∈ injectedMessages∧ ̸ ∃i ∈ N s.t . storageHistory[id , i] = (c1, c2, n): The simulator responds
to the ideal functionality with (FinishRetrieve, ctr , T, failed, (true, 0, ϵ, ϵ)).

Finally, the simulator removes (rl , ctr , id , n, [o]t) from retrieveRequests for all rl ∈ T with [o]t ← H1(id , n) · [p]2 and [p]2 taken from
reqQueueDec.

Fig. 25: Description of the UC simulator Sim for TPHE (Part 2).

47

(13) Special Queries to the Random Oracles OTP and MAC
As described in (3), the simulator samples fresh values from the corresponding codomain if the query has not been seen yet. For the
following cases, the simulator does not simply sample a fresh value but works as described in the following:

– Upon receiving (([u]t, pw , id , n), l) to FOTP
ro , the simulator checks whether sk · H1(id , n) · H2(pw , n) = [u]t. If so, it checks whether

∃i ∈ N, c1, c2 s.t . storageHistory[id , i] = (c1, c2, n) ∧ |c1| = l and sends (PwGuessStart, id , i ,RLset) to the ideal functionality. The
set of ratelimiters RLset is obtained by looking for t−nc ratelimiters rl such that (rl ,, id , n, [o]t) ∈ retrieveRequests with nc being
the number of currently corrupted ratelimiters and [o]t ← H(id , n) · H(pw , n). The entries are then removed from retrieveRequests.
If no such set of ratelimiters exists, it checks whether (id , i) exists in registeredGuesses and removes it. We call the event that no
such entry exists FAIL2, and the simulator aborts. The simulator sends (PwGuessFinish, id , i , pw) to the ideal functionality and
checks, upon receiving (PwGuessFinish,m′) from the ideal functionality, whether m′ = (Correct,m ′′) and stores h← c1 ⊕m ′′ in
hashHistoryOTP for ([u]t, pw , id , n), |c1| and c2 in hashHistoryMAC for ([u]t,m

′′, pw , id , n). If l ̸= |m′′|, it continues as described in
(3). If one of the checks above fails, it continues as described in (3).

– Upon receiving ([u]t,m, pw , id , n) to FMAC
ro , the simulator checks whether sk · H1(id , n) · H2(pw , n) = [u]t. If so, it checks

whether ∃i ∈ N, c1, c2 s.t . storageHistory[id , i] = (c1, c2, n) ∧ |c1| = |m| and sends (PwGuessStart, id , i ,RLset) to the ideal
functionality as described above. The simulator sends (PwGuessFinish, id , i , pw) to the ideal functionality and checks, upon
receiving (PwGuessFinish,m′) from the ideal functionality, whether m′ = (Correct,m ′′) and stores h← c1⊕m ′′ in hashHistoryOTP

for ([u]t, pw , id , n), |c1| and c2 in hashHistoryMAC for ([u]t,m
′′, pw , id , n). If m ̸= m ′′, it continues as described in (3). If one of the

checks above fails, it continues as described in (3).

Fig. 26: Description of the UC simulator Sim for TPHE (Part 3).

If we cannot find a set of t− nc ratelimiters, we check whether we already registered a password guess for id , i in (8). The
simulation aborts if no guess has been registered.
Upon receiving a query ([u]t,m, pw , id , n) to FMAC

ro that is potentially consistent with a dummy record storageHistory[id , i] =
(c1, c2, n), it sends a password guess as described for FOTP

ro to the ideal functionality. If it gets a message m ′′ back, it stores
h ← c1 ⊕ m ′′ in hashHistoryOTP for ([u]t, pw , id , n), |c1|) and c2 in hashHistoryMAC for ([u]t,m

′′, pw , id , n). If the returned
message m ′′ is not the entered m, it samples a fresh value as described in (3).

We note that it is easy to see that (i) {Sim,FPHE} is environmentally bounded 11 and (ii) Sim is a responsive simulator for FPHE,
i.e., restricting messages from FPHE are answered immediately as long as {Sim,FPHE} runs with a responsive environment. We
now argue that R and {Sim,FPHE} are indeed indistinguishable for any (responsive) environment E ∈ Env(R).

Now, let E ∈ Env(PPHE)
12 be an arbitrary but fixed environment. In the following, we will argue by induction that all

interactions with PPHE and {Sim,FPHE} result in identical behavior towards E , i.e., both systems are indistinguishable. At the
start of a run, there were no interactions on the network, resp. I/O, interface yet. Thus, the induction base case holds true. In
the following, assume that all network, resp. I/O, interactions so far have resulted in the same behavior visible towards the
environment in both the real and ideal world.

To show the indistinguishability between the real and the ideal world, we will prove by induction that if the real and the
ideal world are in sync, they respond to a message received on either the I/O or the NET interface indistinguishably and are
still in sync afterward. We begin by introducing the notion of synchronized states. The real and the ideal world are in sync or
synchronized if the invariants defined in Figure 27 hold and the internal variables not covered in the invariants are identically
distributed. Note that the invariants must only hold if the server is honest. We use ∼ to denote an identical distribution and
Hi(x), i ∈ {1, 2,OTP,MAC,N} to denote the entry in hashHistoryi for input x.

Now, we show for each message received from the environment that the real and the ideal world respond indistinguishably and
are in sync afterward if they were in sync before. We do so by depicting the actions of the real protocol next to the actions of the
simulator and the ideal functionality in the ideal world. To improve readability, we only list commands relevant to synchronization
and output and completely omit procedures where the simulator follows exactly the protocol description. In this part of the
proof, we assume that no FAIL1 event occurs and prove later that this is the case with overwhelming probability. An addi-
tional event that we assume not to happen is that the random oracle F2

ro outputs the neutral element. We denote this even by FAIL5.

11 As all algorithms are in polynomial time and parameters ensure that the execution of non-a-priori fixed code finishes in polynomial time.
12 For some system Q, we denote by Env(Q) the set of all environments E that can be connected to Q.

48

1. ∀id ∈ storageReal : (cReal1 , cReal2 , nReal) ∼ (cSim1 , cSim2 , nSim) ∧ [
[∃i ∈ N s.t . (id ∈ correctMessageIDsIdeal =⇒ storageHistoryIdeal[id , i+ 1] = ⊥)
∧ HReal

OTP(sk
Real · HReal

1 (pw Ideal, nReal) · HReal
2 (id , nReal), pw Ideal, id , nReal) = cReal1 ⊕m Ideal

∧ HReal
MAC(sk

Real · HReal
1 (pw Ideal, nReal) · HReal

2 (id , nReal),m Ideal, pw Ideal, id , nReal) = cReal2

∧ HSim
OTP(sk

Sim · HSim
1 (pw Ideal, nSim) · HSim

2 (id , nSim), pw Ideal, id , nSim) ∈ {cSim1 ⊕m Ideal,⊥}
∧ HSim

MAC(sk
Sim · HSim

1 (pw Ideal, nSim) · HSim
2 (id , nSim),m Ideal, pw Ideal, id , nSim) ∈ {cSim2 ,⊥}]

∨[∃(idSim, nSim, u,mSim, pwSim) ∈ injectedMessagesSim] s.t . id = idSim

∧ cReal1 = HReal
OTP(sk

Real · HReal
1 (pwSim, nReal) · HReal

2 (id , nReal), pwSim, id , nReal)⊕mSim

∧ cReal2 = HReal
MAC(sk

Real · HReal
1 (pwSim, nReal) · HReal

2 (id , nReal),mSim, pwSim, id , nReal)
∧ cSim1 = HSim

OTP(sk
Sim · HSim

1 (pwSim, nSim) · HSim
2 (id , nSim), pwSim, id , nSim)⊕mSim

∧ cSim2 = HSim
MAC(sk

Sim · HSim
1 (pwSim, nSim) · HSim

2 (id , nSim),mSim, pwSim, id , nSim)]
∨[̸ ∃(pw ,m) s.t .
cReal1 = HReal

OTP(sk
Real · HReal

1 (pw , nReal) · HReal
2 (id , nReal), pw , id , nReal)⊕m

∧ cReal2 = HReal
MAC(sk

Real · HReal
1 (pw , nReal) · HReal

2 (id , nReal),m, pw , id , nReal)
∧ cSim1 = HSim

OTP(sk
Sim · HSim

1 (pw , nSim) · HSim
2 (id , nSim), pw , id , nSim)⊕m

∧ cSim2 = HSim
MAC(sk

Sim · HSim
1 (pw , nSim) · HSim

2 (id , nSim),m, pw , id , nSim)]]
with storageReal[id] = (cReal1 , cReal2 , nReal),

storageSim[id] = (cSim1 , cSim2 , nSim),
storageHistoryIdeal[id , i] = (pw Ideal,m Ideal)

2. ∀id ∈ reqQueueRealEnc : (pwReal,mReal, T Real) = (pw Ideal,m Ideal, T Sim) ∧ |mReal| = |m|Sim = |m Ideal|
∧iSim = iIdeal ∧ nReal ∼ nSim

with reqQueueRealEnc [id] = (pwReal,mReal, r, nReal, T Real),
reqQueueSimEnc[id] = (iSim, |m|Sim, nReal, T Real, p)
storageHistoryIdeal[id , iIdeal] = (pw Ideal,m Ideal) with iIdeal max

3. ∀retrieveCounter ∈ reqQueueRealDec : ∃ retrieveCounter′ ∈ reqQueueIdealDec s.t . (pw ′Real, T Real) = (pw ′Ideal, T Sim)
∧(idReal, callerReal) = (idSim, callerSim) = (id Ideal, caller Ideal) ∧ (nReal, pReal) ∼ (nSim, pSim)
with reqQueueRealDec [retrieveCounter] = (idReal, pwReal, r, nReal, T Real, pReal, callerReal),

reqQueueSimDec[retrieveCounter] = (idSim, nSim, T Sim, pSim, callerSim)
reqQueueIdealDec [retrieveCounter

′] = (id Ideal, storageHistory[id , i]Ideal, pw ′Ideal, caller Ideal)
4. ∀id ∈ retrieveRateReal, rl /∈ currentlyCorrupted : retrieveRateRealrl [id] = retrieveRateSimrl [id] ≤
≤ retrieveRateIdealrl [id]− |{(rl ,_, id ,_,_)} ⊆ retrieveRequestsSim|

5. ∀id , i ∈ storageHistorySim : HSim
OTP(sk

Sim · HSim
1 (pw Ideal, nSim) · HSim

2 (id , nSim), pw Ideal, id , nSim) ∈ {cSim1 ⊕m Ideal,⊥}
∧HSim

MAC(sk
Sim · HSim

1 (pw Ideal, nSim) · HSim
2 (id , nSim),m Ideal, pw Ideal, id , nSim) ∈ {cSim2 ,⊥}]

with storageHistorySim[id , i] = (cSim1 , cSim2 , nSim),
storageHistoryIdeal[id , i] = (pw Ideal,m Ideal)

Fig. 27: Invariants for the notion of synchronization between the ideal and real world

49

Server

– (Store, id , pw ,m)
Real
reqQueueRealEnc [id]← (pw ,m, r, n, T, p)

Ideal
storageHistoryIdeal[id , i]← (pw ,m)

with i max s.t . storageHistoryIdeal[id , i] = ⊥
reqQueueSimEnc[id]← (i, |m|, n, T, p)

These actions preserve the synchronization of the reqQueueEnc as described in invariant 2.
– (FinalizeEnc, id , π, u, n)

Real
(pw ,m, r, n, T)← reqQueueRealEnc [id]
if verify (([1]t, [o]t, pk, [u]t), π) = 0 : return ⊥
c1 ← HOTP(u, pw , id , n)⊕m
c2 ← HMAC(u,m, pw , id , n)
storage[id]← (c1, c2, n)

Ideal
(i, |m|, n, T, p)← reqQueueSimEnc[id]
if verify (([1]t, [o]t, pk, [u]t), π) = 0 : return ⊥
c1

$← {0, 1}|m|

c2
$← {0, 1}η

storage[id]← (c1, c2, n)
storageHistorySim[id , i]← (c1, c2, n)

We know from invariant 2 that there is already an entry storageHistoryIdeal[id , i] = (pw ,m) and because of the NIZK, we know that [u]t
is well formed. Therefore, case 1 of invariant 1 is fulfilled, and hence the synchronization of the storage is preserved. Furthermore, the
persistence of the storageHistory as described in invariant 5 is also fulfilled. Note that if, for some reason, encryption was started but did not
end with a valid entry in storageReal and storageSim, there will still be a valid entry in storageHistoryIdeal. However, there is also an entry in
storageHistorySim (guaranteed by invariant 2) that consists only of empty strings, which leads to a failed decryption, just like in the real
world.

– (Retrieve, id , pw ′)
Real
reqQueueRealDec [retrieveCounter]← (id , pw ′, r, n, T, p, caller)

Ideal
reqQueueIdealDec [retrieveCounter]← (id , pw ′, caller)
reqQueueSimDec[retrieveCounter]← (id , n, T, p, caller)

These actions preserve the synchronization of the reqQueueEnc as described in invariant 3.
– (FinalizeDec, ctr , id , π, u)

Real
(id , pw ′, r, n, T, p, caller)← reqQueueRealDec [ctr]
Exit 1: b = false

limiterResponsesRealDec [(ctr , rl)]← u
Exit 2: c = false

send (Ret, id ,⊥) to caller
[uf]t ← comb(limiterResponsesRealDec [(id , rl

′)])

mReal ← HOTP((
skS ·[uf]t

r
, pw ′, id , n), |c1|)⊕ c1

c′ ← HMAC(
skS ·[uf]t

r
,mReal, pw ′, id , n)

if c2 = c′ : send (Ret, id ,mReal) to caller
else : send (Ret, id ,⊥) to caller

Ideal
(id , n, T, p, caller)← reqQueueSimDec[ctr]
Exit 1: b = false

limiterResponsesSimDec[(ctr , rl)]← u
Exit 2: c = false

send (FinishRetrieve, ctr , T, failed, (true, 0, ϵ, ϵ)) to FTPHE

send (Ret, id ,⊥) to caller
if ∃ ([u]t,m

Sim, pwSim) s.t . (id , nSim, [u]t,m
Sim, pwSim)

∈ injectedMessagesSim :
send (FinishRetrieve, ctr , T, success,
(false, 0, pwSim,mSim)) to FTPHE

if pwSim = pw ′ : send (Ret, id ,mSim) to caller
else : send (Ret, id ,⊥) to caller

elseif ∃i ∈ N s.t . storageHistorySim[id , i] = (c1, c2, n) :
send (FinishRetrieve, ctr , T, success, (true, i, ϵ, ϵ)) to FTPHE

(pw Idealm Ideal)← storageHistoryIdeal[id , i]
if pw Ideal = pw ′ : send (Ret, id ,m Ideal) to caller
else : send (Ret, id ,⊥) to caller

else :
send (FinishRetrieve, ctr , T, failed, (true, 0, ϵ, ϵ)) to FTPHE

send (Ret, id ,⊥) to caller

remove (rl , ctr , id , n, [o]t) from retrieveRequestsSim

i ∈ T : retrieveRateIdeal[i, id]−−

50

Server (continued)

– (FinalizeDec, ctr , id , π, u) (continued)
Up to exit 2, it is clear that the states remain in sync as the computations are essentially identical. Note that we know because of the
NIZKs that [u]t is well-formed. For the remaining, we differentiate between five cases:

1. ∃ ([u]t,m
Sim, pwSim) s.t . (id , nSim, [u]t,m

Sim, pwSim) ∈ injectedMessagesSim ∧ pwSim = pw ′

Case 2 of invariant 1 shows that the real protocol has a well-formed entry for mSim, pwSim at index id . Hence, c2 = c′ because pwSim = pw ′

and, therefore, both send (Ret, id ,mSim) with mSim = mReal.
2. ∃ ([u]t,m

Sim, pwSim) s.t . (id , nSim, [u]t,m
Sim, pwSim) ∈ injectedMessagesSim ∧ pwSim ̸= pw ′

Case 2 of invariant 1 shows that the real protocol has a well-formed entry for mSim, pwSim at index id . Hence, c2 ̸= c′ because pwSim ̸= pw ′

and, therefore, both send (Ret, id ,⊥), except a collision occurs in a hash function which happens with the same probability in both
worlds as they are computed in the same way.

3. ̸ ∃ ([u]t,mSim, pwSim) s.t . (id , nSim, [u]t,m
Sim, pwSim) ∈ injectedMessagesSim∧∃i ∈ N s.t . storageHistorySim[id , i] = (cSim1 , cSim2 , nSim)∧pw Ideal =

pw ′

Case 1 of invariant 1 shows that the real protocol has a well-formed entry for m Ideal, pw Ideal at index id . Hence, c2 = c′ because
pw Ideal = pw ′ and, therefore, both send (Ret, id ,m Ideal) with m Ideal = mReal.

4. ̸ ∃ ([u]t,mSim, pwSim) s.t . (id , nSim, [u]t,m
Sim, pwSim) ∈ injectedMessagesSim∧∃i ∈ N s.t . storageHistorySim[id , i] = (cSim1 , cSim2 , nSim)∧pw Ideal ̸=

pw ′

Case 1 of invariant 1 shows that the real protocol has a well-formed entry for m Ideal, pw Ideal at index id . Hence, c2 ̸= c′ because
pw Ideal ̸= pw ′ and, therefore, both send (Ret, id ,⊥), except a collision occurs in a hash function which happens with the same probability
in both worlds as they are computed in the same way.

5. ̸ ∃ ([u]t,m
Sim, pwSim) s.t . (id , nSim, [u]t,m

Sim, pwSim) ∈ injectedMessagesSim∧ ̸ ∃i ∈ N s.t . storageHistorySim[id , i] = (cSim1 , cSim2 , nSim)
Case 3 of invariant 1 shows that the real protocol has no well-formed entry at index id . Hence, c2 ̸= c′ and, therefore, both send
(Ret, id ,⊥).

Because of invariant 3, we know that the recipients caller of the messages sent in the real and ideal world are identical. The simulator
finishes by removing all entries from retrieveRequests used during the protocol run, and the ideal functionality decrements retrieveRate for
all ratelimiters involved in the protocol run, which maintains the synchronization of the retrieveRate as described in invariant 4.

Ratelimiter

– (DecRequest, ctr , id , [p]2, n)
Real
retrieveRateReal[id]−−

Ideal
retrieveRateSim[id]−−
retrieveRequests.add(rl , ctr , id , n, [o]t)

These actions preserve the synchronization of the retrieveRate (invariant 4).

Init & Rotate

– (ChangeCorruption, corrS , corrIDsR)
Real

forall rl : send (RotateKey, c, si) to (i, sidcur,R)
if c : send (retrieveRate, nonces, sk, pk,maxNonceCtr) to NET

else : retrieveRate← 0
send (RotateKey, corrS , skS , pk, pk1, . . . , pkn, nonces) to (0, sidcur,S)
limiterResponsesEnc[id , rl]← ⊥ ∀(id , rl)
reqQueueEnc[c]← ⊥ ∀c
reqQueueDec[c]← ⊥ ∀c
limiterResponsesDec[id , rl]← ⊥ ∀(id , rl)

Ideal
if S ∈ currentlyCorrupted : forall id , n, i :
if storageHistory[id , i] = (_,_,_, n) :
while

∣∣{(rl ,_, id ,_,_)} ⊆ retrieveRequestsSim
∣∣ ≥ t− nc :

remove t−nc elements (rl ,_, id ,_,_) from retrieveRequestsSim

send (PwGuessStart, id , i ,RLset) to FTPHE

retrieveRequests← ∅
forall rl :
if c : send (retrieveRate, nonces, sk, pk,maxNonceCtr) to NET

else : retrieveRate← 0

limiterResponsesEnc[id , rl]← ⊥ ∀(id , rl)
reqQueueEnc[c]← ⊥ ∀c
reqQueueDec[c]← ⊥ ∀c
limiterResponsesDec[id , rl]← ⊥ ∀(id , rl)

51

Init & Rotate (continued)

– (ChangeCorruption, corrS , corrIDsR) (continued)
Real
if S /∈ currentlyCorrupted :
send pk, pk1, . . . , pkn,Tset to NET

else :
send getState to NET

receive (getState, storage) from NET

storage← storage
send (storage, sk, pk, pk1, . . . , pkn, nonces,Tset,
limiterResponsesEnc, reqQueueEnc, reqQueueDec,
limiterResponsesDec) to NET

Ideal
if S /∈ currentlyCorrupted :
send pk, pk1, . . . , pkn,Tset to NET

else :
send getState to NET

receive (getState, storage) from NET

storage← storage
send (storage, sk, pk, pk1, . . . , pkn, nonces,Tset,
limiterResponsesEnc, reqQueueEnc, reqQueueDec,
limiterResponsesDec) to NET

forall (c1, c2, n) ∈ storageSim :
if [u]t,m, pw exist s.t .

(([u]t,m, pw , id , n), c2) ∈ hashHistoryMAC :
h← c1 ⊕m
if (([u]t, pw , id , n), |m|, h) ∈ hashHistoryOTP∧

[u]t = sk · F1
ro(id , n) · F2

ro(pw , n) :
add (id , n, [u]t,m, pw) to injectedMessages

Invariants 2 and 3 are preserved because both reqQueue are reset to their initial state. Invariant 4 is also preserved as all retrieveRate of
honest ratelimiters are reset to 0, and retrieveRequests is emptied. Invariant 1 is clearly preserved if the server was honest in the forgoing
epoch, as the records are left unchanged. If the server was corrupted in the forgoing epoch, we distinguish between three cases for each
record c1, c2, n of the storage given by the environment:

1. The record was generated by an honest server. Consequently, there exists an entry (cSim1 , cSim2 , nSim) in storageHistorySim. Invariant 5
shows that there also exists a corresponding entry in storageHistoryIdeal, and hence, option 1 of invariant 1 holds.

2. The record was generated by a corrupted server according to the protocol. Consequently, entries exist in hashHistoryOTP and hashHistoryMAC

for the corresponding inputs. The simulator finds those entries and adds (id , n, [u]t,m, pw) to injectedMessages. This fulfills option 2 of
invariant 1.

3. The record was generated by a corrupted server not according to the protocol. Consequently, at least one entry in hashHistoryOTP and
hashHistoryMAC for the corresponding inputs is missing or inconsistent with the tuple (c1, c2). Hence, option 3 of invariant 1 holds.

– (RotateKeyA)
Real
send RotationOngoing to (0, sidcur,S)
rotationOngoing← true

As often as E wants and with given inputs (asynchronous) :
send (RotateKey, false, si) to (i, sidcur,R)
retrieveRate← 0

send (RotateKey, false, skS , pk, pk1, . . . , pkn, nonces) to (0, sidcur,S)
limiterResponsesEnc[id , rl]← ⊥ ∀(id , rl)
reqQueueEnc[c]← ⊥ ∀c
reqQueueDec[c]← ⊥ ∀c
limiterResponsesDec[id , rl]← ⊥ ∀(id , rl)
send pk, pk1, . . . , pkn,Tset to NET

rotationOngoing← false

Ideal

rotationOngoing← true

As often as E wants and with given inputs (asynchronous) :

retrieveRate← 0

limiterResponsesEnc[id , rl]← ⊥ ∀(id , rl)
reqQueueEnc[c]← ⊥ ∀c
reqQueueDec[c]← ⊥ ∀c
limiterResponsesDec[id , rl]← ⊥ ∀(id , rl)
send pk, pk1, . . . , pkn,Tset to NET

rotationOngoing← false

forall id , n, i :
if storageHistory[id , i] = (_,_,_, n) :
while

∣∣{(rl ,_, id ,_,_)} ⊆ retrieveRequestsSim
∣∣ ≥ t− nc :

remove t−nc elements (rl ,_, id ,_,_) from retrieveRequestsSim

send (PwGuessStart, id , i ,RLset) to FTPHE

retrieveRequests← ∅

Note that the environment can send RotateKey as often as it wants to honest ratelimiters asynchronous. That means that in between
those messages, it can send other messages to any other machine. Nevertheless, the server ignores all incoming messages, from receiving
RotationOngoing until receiving RotateKey. Therefore, the only relevant message that is actually processed is HelpRetrieve sent to a
ratelimiter that leads to an incrementation of retrieveRate[id] which maintains all invariants. Invariants 2 and 3 are preserved because
both reqQueue are reset to their initial state. Invariant 4 is also preserved as retrieveRateReal and retrieveRateSim are reset to 0 for the same
ratelimiters, and retrieveRequests is emptied. Invariant 1 is clearly preserved as the records are left unchanged.

52

Init & Rotate (continued)

– (RotateKeySA, rl , s)
Real
send (RotateKey, false, s) to (rl , sidcur,R)
retrieveRate← 0

Ideal
send (RotateKey, false, s) to (rl , sidcur,R)
retrieveRate← 0

Invariant 4 shows that retrieveRateReal[id] = retrieveRateSim[id] ≤ retrieveRateIdeal[id]−
∣∣{(rl ,_, id ,_,_)} ⊆ retrieveRequestsSim

∣∣ which is
preserved as both retrieveRateReal and retrieveRateSim are reset to 0.

RO-OTP

– FOTP
ro (x, l)

Real
if (x, l,_) /∈ hashHistoryOTP :

h
$← {0, 1}l

add (x, l, h) to hashHistoryOTP

return h s.t . (x, l, h) ∈ hashHistoryOTP

Ideal
if (x, l,_) /∈ hashHistoryOTP :
if x can be parsed as ([u]t, pw , id , n) ∧ sk · [h1]1 · [h2]2 = [u]t
∧ ∃i s.t . storageHistory[id , i] = (c1, c2, n) ∧ |c1| = l :

send (PwGuessFinish, id , i , pw) to FTPHE

receive (PwGuessFinish,m′) from FTPHE

if m′ = (Correct,m′′) :
add (([u]t, pw , id , n), |m′′|, c1 ⊕m′′) to hashHistoryOTP

add (([u]t,m
′′, pw , id , n), c2) to hashHistoryMAC

if |m′′| = l
return c1 ⊕m′′

h
$← {0, 1}l

add (x, l, h) to hashHistoryOTP

return h s.t . (x, l, h) ∈ hashHistoryOTP

The behavior of the real and the ideal world is identical except if the input is consistent with a dummy record. In that case, entries for
hashHistoryOTP and hashHistoryMAC that are consistent with the dummy record and, hence, preserve option 1 of invariant 1 are generated
and stored.

RO-MAC

– FMAC
ro (x)

Real
if (x,_) /∈ hashHistoryMAC :

h
$← {0, 1}η

add (x, h) to hashHistoryMAC

return h s.t . (x, h) ∈ hashHistoryMAC

Ideal
if (x,_) /∈ hashHistoryMAC :
if x can be parsed as ([u]t,m, pw , id , n)
∧ sk · [h1]1 · [h2]2 = [u]t
∧ ∃i s.t . storageHistory[id , i] = (c1, c2, n) ∧ |c1| = |m| :

send (PwGuessFinish, id , i , pw) to FTPHE

receive (PwGuessFinish,m′) from FTPHE

if m′ = (Correct,m′′) :
add (([u]t, pw , id , n), |m′′|, c1 ⊕m′′) to hashHistoryOTP

add (([u]t,m
′′, pw , id , n), c2) to hashHistoryMAC

if m′′ = m
return c2

h
$← {0, 1}η

add (x, h) to hashHistoryMAC

return h s.t . (x, h) ∈ hashHistoryMAC

The analysis of FMAC
ro works in accordance with that of FOTP

ro .

Authenticated Channel, NIZK, RO1, RO2, and RO-N
These functionalities are perfectly simulated by the simulator and, therefore, are indistinguishable in their outputs and preserve all invariants.

53

According to the argumentation above, the simulation can only be distinguished from the real protocol execution if it aborts
(in (4), (8), or (13)) or if event FAIL4 happens. We introduce a hybrid simulator Sim′, functionally equivalent to simulator Sim,
that injects a Gap-OM-BCDH challenge to show that if Sim aborts in (13), we can break the Gap-OM-BCDH assumption. This step
of the reduction follows the proof technique for proving Partially Oblivious Pseudo-Random Functions secure introduced by [4].

Before we show how Sim′ injects the challenge, we introduce a function Interpolate(i, T, {(j, skj · [x]t)}j∈T) that takes an
index i, an index set T of size t, and a set of tuples {(j, skj · [x]t)}j∈T . Each tuple consists of an index from T and a group element
[x]t multiplied by the j-th share of the secret key. The function uses polynomial interpolation with Lagrange factors to compute
ski · [x]t. This function can compute every ski · [x]t as long as t distinct tuples (j, skj · [x]t) are available. Note that sk0 = sk.

The hybrid simulator Sim′ is equivalent to Sim except for the following changes:

– Guessing (id∗, n∗) The simulator guesses for which (id, n) tuple the break happens. If this guess is not correct, the simulator
aborts. We call this event FAIL6.

– (1) Parameter Generation Instead of sampling a key pair (sk, pk) and sharing it between the server and the ratelimiters, it
uses the public key given by the Gap-OM-BCDH game. If the server is honest, it samples a random combined ratelimiter key
skR and shares it for the ratelimiters. If the server is dishonest, it samples random key shares ski for each corrupted party
i ∈ CorruptionSet and computes the public key as pki ← [ski]t. If less than t − 1 ratelimiters are corrupt, it samples more
random key shares until it has t− 1 ratelimit keys in total and computes the corresponding public keys. The remaining secret
keys are unknown to the simulator, but it can compute the public keys with the Interpolate function. It inputs the t− 1
ratelimiter public keys of the known key shares and the overall public key pkR = pk0 · [skS]t−1. Furthermore, it has additional
data structures:
• challenges1 ⊆ N×G1 to keep track of the challenges [xi]1 and their indices i returned by Targ1.
• challenges2 ⊆ N×G2 to keep track of the challenges [yj]2 and their indices j returned by Targ2.
• solutions ⊆ N2×Gt to keep track of valid solutions consisting of the indices i, j of two challenges [xi]1, [yj]2 and the solution

σ = sk · [xi]1 · [yj]2.
– (3) Answering Queries to the Random Oracles For F1

ro, the simulator checks whether the input is (id∗, n∗). If it is, it
uses the oracle Targ1 to obtain a random group element and stores it in challenges1. For inputs that are not (id∗, n∗), the
simulator programms F1

ro as before. Instead of injecting trapdoors into F2
ro, it uses the oracle Targ2 to obtain random group

elements and stores them in challenges2.
– (5) and (11) Storing/Retrieving Responses To compute [u]t, it differentiates between two cases if the server is corrupt

(otherwise it knows all ratelimiter keys anyway):
• If the corresponding key share is known, it computes [u]t ← ski · [h1]1 · [p]2 and the NIZK as before.
• If the corresponding key share is unknown, it computes σ = sk · [h1]1 · [p]2 and uses the Interpolate function with
(0, σ − skS · [h1]1 · [p]2) and (i, ski · [h1]1 · [p]2) for every known key share to compute [u]t. The simulator differentiates
between three cases to compute σ = sk · [h1]1 · [p]2:
∗ If the query comes from an honest client, it takes a from reqQueue{Enc/Dec}[id] to compute ski · [h1]1 · [p]2 ← a · [pki]1 · [p]2.
∗ If (id , n) = (id∗, n∗), it uses the Help oracle to compute the value.
∗ If (id , n) ̸= (id∗, n∗), it takes a from hashHistory1 to compute ski · [h1]1 · [p]2 ← a · [pki]1 · [p]2.

Because the simulator does not know ski, it simulates the Prove function of Fnizk without a witness w . Since [u]t computed
with the Help oracle is surely well-formed, it skips the check of whether (x ,w) ∈ R and directly adds (x , ϵ, π) to nizkHistory.

– (8) Honest Key Rotation Instead of sampling a polynomial, it reruns the procedure as described for the initial key
generation.
Instead of checking the correctness of [u]t with the computation sk · [h1]1 · [h2]2 = [u]t, it queries the DDH oracle on the inputs
([sk]t, [h1]1 · [h2]2, [1]t, [u]t) which returns 1 if the equation above holds.

– (9) Dishonest Key Rotation Upon receiving (RotateKeySA, rl , s), the ratelimiter stores s and computes [u]t ← ski · [o]t in
(5) and (11) as described but adds s · [o]t.

– (13) Special Queries to the Random Oracles OTP and MAC Instead of checking the correctness of [u]t with the
computation sk · [h1]1 · [h2]2 = [u]t, it queries the DDH oracle on the inputs ([sk]t, [h1]1 · [h2]2, [1]t, [u]t) which returns 1 if
the equation above holds. If it finds a new solution, it adds (i, j, [u]t) to solutions with i, j taken from the two challenges sets
corresponding to the outputs of F1

ro and F2
ro such that [u]t = sk · [xi]1 · [yj]2.

The simulator only aborts in (13) if the environment can compute a valid [u]t with at most t− nc − 1 interactions with honest
ratelimiters, with nc being the number of currently corrupted ratelimiters. If the simulator can answer these t− nc − 1 queries
to honest ratelimiters without a query to the Help oracle, it obtains “one-more” solution (i, j, σ) then it queried the Help oracle.
In that case, it can give the Q tuples from solutions in addition to the newly obtained Q+ 1-st solution to the Gap-OM-BCDH
game, thus winning the Gap-OM-BCDH game. To answer the queries without a Help oracle query, the simulator has to guess the
ratelimiters those queries will be addressed to at the beginning of an epoch to assign the known key shares to those ratelimiters.
The probability of guessing right is

1(
t−nc−1
n−nc

) .
54

It is important to see that this probability is non-negligible as long as
(
t−nc−1
n−nc

)
is polynomial in the security parameter.

Furthermore, n and t are usually small in practice, resulting in a reasonably small loss. Note that guessing right for an epoch is
only relevant in the single epoch that the simulator aborts in.

The additional valid [u]t obtained from the oracle query is only a valid solution to Gap-OM-BCDH if [o]t can be expressed as
the pairing of two challenge elements obtained from [x1]1

$← Targ1 and [yj]2
$← Targ2 such that [o]t = [xi]1 · [yj]2. This is only the

case if the simulator guessed correctly for which tuple (id , n) the break happens, resulting in H1(id
∗, n∗) = [xi]1 (in other words,

the event FAIL6 did not occur). The probability of guessing right is

1

qro1

with qro1 being the number of queries to F2
ro. Therefore, it holds that

Pr[FAIL2] ≤
(
t− nc − 1

n− nc

)
· qro1 · AdvGap-OM-BCDH

η,BG ,

with nc being the number of corrupted ratelimiters in the epoch where the simulator aborts in (13). The probability that the
simulation aborts in (4) is bounded by the probability of a collision. A collision for the nonce occurs when the same nonce is
sampled twice by the random oracle FN

ro for different inputs or when the same individual nonces are input to FN
ro. Hence we get

Pr[FAIL1] ≤ Pr[collro-N] + Pr[collinputs]

The probability of a collision in the random oracle FN
ro is bound by

Pr[collro-N] ≤
q2ro-N
2η

based on the birthday paradox with qro-N being the number of queries to FN
ro. Because at least one ratelimiter or the server is

honest and samples its nonce honestly and uniformly at random, the probability that the honest party samples a nonce that was
input to FN

ro before is bound by

Pr[collinputs] ≤
qstore · qro-N

2η

with qstore being the number of invocations of the store protocol and qro-N being the number of queries to FN
ro. This is because

the probability that a randomly chosen nonce was part of the input of a previous query to FN
ro is bound by qro-N

2η , and there are
qstore samplings where this can happen. Combining both equations above yields

Pr[FAIL1] ≤ qstore · qro-N + q2ro-N
2η

.

The probability that the simulator aborts in (8) is equivalent to the probability that a collision in the random oracle FMAC
ro

occurs. This probability is bound by

Pr[FAIL3] = Pr[collro-MAC] ≤
q2ro-MAC

2η
.

The probability that the event FAIL4 happens is the probability that the environment guessed a c2 correct without querying
FMAC

ro . This probability is bound by

Pr[FAIL4] = Pr[guessc2] ≤
qrec
2η

,

with qrec being the number of injected records by a corrupted server. The event FAIL5 only occurs when the random oracle
F2

ro outputs the neutral element [1]2 ∈ G2. The probability of FAIL5 happening is

Pr[FAIL5] =
qro2
2η

.

The event FAIL6 only occurs when the simulator guessed (id∗, n∗) wrong
As stated above, the advantage of the environment in distinguishing the real world from the ideal world is equivalent to the

probability of FAIL1 events happening. Hence we get

AdvIdealReal ≤ Pr[FAIL1] + Pr[FAIL2]

+Pr[FAIL3] + Pr[FAIL4] + Pr[FAIL5]

≤
(
t− nc − 1

n− nc

)
· qro1 · AdvGap-OM-BCDH

η,BG

55

+
qstore · qro-N + qrec + qro2 + q2ro-MAC + q2ro-N

2η
.

The store function is only invoked by the environment; hence, qstore is bound by the runtime of the environment. Records are
only injected by the environment; hence, qrec is bound by the runtime of the environment. The random oracles are only directly
invoked or indirectly through another function by the environment; hence, qro1, qro2, qro-MAC, and qro-N are bound by the runtime
of the environment. Because the runtime of the environment is bound by a polynomial, qstore, qrec, qro1, qro2, qro-MAC, and qro-N
are also bound by that polynomial.

The first part of the sum consists of three factors: the first one is independent of the security parameter, the second is
polynomial in the security parameter, and the third one is assumed to be negligible in the security parameter, which makes the
whole product negligible. The second part of the sum is negligible because the numerator is a sum of polynomially bounded
values, and the denominator is exponential in the security parameter, and we, therefore, conclude our proof.

D A Brief Introduction to the iUC Framework

This section provides a brief introduction to the iUC framework, which underlies all results in this paper. The iUC framework [13]
is a highly expressive and user friendly model for universal composability. It allows for the modular analysis of different types of
protocols in various security settings.

The iUC framework uses interactive Turing machines as its underlying computational model. Such interactive Turing machines
can be connected to each other to be able to exchange messages. A set of machines Q = {M1, . . .,Mk} is called a system. In a run
of Q, there can be one or more instances (copies) of each machine in Q. One instance can send messages to another instance. At
any point in a run, only a single instance is active, namely, the one to receive the last message; all other instances wait for input.
The active instance becomes inactive once it has sent a message; then the instance that receives the message becomes active
instead and can perform arbitrary computations. The first machine to run is the so-called master. The master is also triggered if
the last active machine did not output a message. In iUC, the environment (see next) takes the role of the master. In the iUC
framework a special user-specified CheckID algorithm is used to determine which instance of a protocol machine receives a
message and whether a new instance is to be created (see below).

To define the universal composability security experiment (cf. [13]), one distinguishes between three types of systems: protocols,
environments, and adversaries. As is standard in universal composability models, all of these types of systems have to meet a
polynomial runtime notion. Intuitively, the security experiment in any universal composability model compares a protocol P
with another protocol F , where F is typically an ideal specification of some task, called ideal protocol or ideal functionality. The
idea is that if one cannot distinguish P from F , then P must be “as good as” F . More specifically, the protocol P is considered
secure (written P ≤ F) if for all adversaries A controlling the network of P there exists an (ideal) adversary S, called simulator,
controlling the network of F such that {A,P} and {S,F} are indistinguishable for all environments E . Indistinguishability means
that the probability of the environment outputting 1 in runs of the system {E ,A,P} is negligibly close to the probability of
outputting 1 in runs of the system {E ,S,F} (written {E ,A,P} ≡ {E ,S,F}). The environment can also subsume the role of the
network attacker A, which yields an equivalent definition in the iUC framework. We usually show this equivalent but simpler
statement in our proofs, i.e., that there exists a simulator S such that {E ,P} ≡ {E ,S,F} for all environments.

A protocol P in the iUC framework is specified via a system of machines {M1, . . .,Ml}; the framework offers a convenient
template for the specification of such systems. Each machine Mi implements one or more roles of the protocol, where a role
describes a piece of code that performs a specific task. For example, a (real) protocol PSig for digital signatures might contain a S
role for signing messages and a V role for verifying signatures. In a run of a protocol, there can be several instances of every
machine, interacting with each other (and the environment) via I/O interfaces and interacting with the adversary (and possibly
the environment subsuming a network attacker) via network interfaces. An instance of a machine Mi manages one or more
so-called entities. An entity is identified by a tuple (pid , sid , role) and describes a specific party with party ID (PID) pid running
in a session with session ID (SID) sid and executing some code defined by the role role where this role has to be (one of) the
role(s) of Mi according to the specification of Mi. Entities can send messages to and receive messages from other entities and the
adversary using the I/O and network interfaces of their respective machine instances. More specifically, the I/O interfaces of both
machines need to be connected to each other (because one machine specifies the other as a subroutine) to enable communication
between entities of those machines.

Roles of a protocol can be either public or private. The I/O interfaces of private roles are only accessible by other (entities
belonging to) roles of the same protocol, whereas I/O interfaces of public roles can also be accessed by other (potentially unknown)
protocols/the environment. Hence, a private role models some internal subroutine that is protected from access outside of the
protocol, whereas a public role models some publicly accessible operation that can be used by other protocols. One uses the
syntax “(pubrole1, . . . , pubrolen | privrole1, . . . , privrolen)” to uniquely determine public and private roles of a protocol. Two
protocols P and Q can be combined to form a new more complex protocol as long as their I/O interfaces connect only via their
public roles. In the context of the new combined protocol, previously private roles remain private while previously public roles
may either remain public or be considered private, as determined by the protocol designer. The set of all possible combinations of
P and Q, which differ only in the set of public roles, is denoted by Comb(Q,P).

56

An entity in a protocol might become corrupted by the adversary, in which case it acts as a pure message forwarder between
the adversary and any connected higher-level protocols as well as subroutines. In addition, an entity might also consider itself
(implicitly) corrupted while still following its own protocol because, e.g., a subroutine has been corrupted. Corruption of entities
in the iUC framework is highly customizable; one can, for example, prevent corruption of certain entities during a protected setup
phase.

As explained, the iUC framework offers a convenient template for specifying protocols (which can then also be combined with
each other). This template includes many optional parts with sensible defaults such that protocol designers can customize exactly
those parts that they need. The specifications using the iUC template that we give in this paper are mostly self explanatory,
except for a few aspects:

– The CheckID algorithm is used to determine which machine instance is responsible for and hence manages which entities.
Whenever a new message is sent to some entity e whose role is implemented by a machine M , the CheckID algorithm is run
with input e by each instance of M (in order of their creation) to determine whether e is managed by the current instance. The
first instance that accepts e then gets to process the incoming message. By default, CheckID accepts entities of a single party
in a single session, which captures a traditional formulation of a real protocol. Other common definitions include accepting all
entities from the same session, which captures a traditional formulation of an ideal functionality.

– The special variable (pidcur, sidcur, rolecur) refers to the currently active entity of the current machine instance (that was previously
accepted by CheckID). If the current activation is due to a message received from another entity, then (pidcall, sidcall, rolecall)
refers to that entity.

– The special macro corr(pidsub, sidsub, rolesub) can be used to obtain the current corruption status (i.e., whether this entity is
still honest or considers itself to be implicitly/explicitly corrupted) of an entity belonging to a subroutine.

– The iUC framework supports so-called responsive environments and responsive adversaries [15]. Such environments and
adversaries can be forced to respond to certain messages on the network, called restricting messages, immediately and without
first activating the protocol in any other way. This is a useful mechanism for modeling purposes, e.g., to leak some information
to the attacker or to let the attacker decide upon the corruption status of a new entity but without disrupting the intended
execution of the protocol. Such network messages are marked by writing “send responsively” instead of just “send”.

The iUC framework supports the modular analysis of protocols via a so-called composition theorem:

Corollary 1 (Concurrent composition in iUC; informal). Let P and F be two protocols such that P ≤ F . Let Q be
another protocol such that Q and F can be connected. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F) such that R and I agree on
their public roles. Then R ≤ I.

By this theorem, one can first analyze and prove the security of a subroutine P independently of how it is used later on in the
context of a more complex protocol. Once we have shown that P ≤ F (for some other, typically ideal protocol F), we can then
analyze the security of a higher-level protocol Q based on F . Note that this is simpler than analyzing Q based on P directly as
ideal protocols provide absolute security guarantees while typically also being less complex, reducing the potential for errors
in proofs. Once we have shown that the combined protocol, say, (Q | F) realizes some other protocol, say, F ′, the composition
theorem and transitivity of the ≤ relation then directly implies that this also holds true if we run Q with an implementation P of
F . That is, (Q | P) is also a secure realization of F ′. Please note that the composition theorem does not impose any restrictions
on how the protocols P, F , and Q look like internally. For example, they might have disjoint sessions, but they could also freely
share some state between sessions, or they might be a mixture of both. They can also freely share some of their subroutines with
the environment, modeling so-called globally available state. This is unlike most other models for universal composability, such as
the UC model, which impose several conditions on the structure of protocols for their composition theorem.

E iUC Notation for Pseudo Code Specifications

Formal ITMs in our paper are specified using pseudo code notation that mostly follows the notation introduced by Ca-
menischet al. [13]. To ease readability of our figures, we provide a brief overview over the used notation here.

The description in the main part of the ITMs consists of blocks of the form recv ⟨msg⟩ from ⟨sender⟩ to ⟨receiver⟩ s.t.
⟨condition⟩:⟨code⟩ where ⟨msg⟩ is an input pattern, ⟨sender⟩ is either the receiving interface (I/O for higher-level protocols, NET
for the network, SUB for subroutines) or a dedicated sender connected via I/O or SUB, ⟨receiver⟩ is the dedicated receiver of the
message in this ITM and ⟨condition⟩ is a condition on the input. ⟨code⟩ is the (pseudo) code of this block. The block is executed
if an incoming message matches the pattern, the message sender and intended receiver match those specified by the block, and
the condition is satisfied. More specifically, ⟨msg⟩ defines the format of the message m that invokes this code block. Messages
contain local variables, state variables, strings, and maybe special characters. To compare a message m to a message pattern msg,
the values of all global and local variables (if defined) are inserted into the pattern. The resulting pattern p is then compared to
m, where uninitialized local variables match with arbitrary parts of the message. If the message matches the pattern p, the actual
sender/receiver match those in the block, and ⟨condition⟩ of that block is met, then uninitialized local variables are initialized

57

with the part of the message that they matched to and ⟨code⟩ is executed in the context of ⟨receiver⟩; no other blocks are executed
in this case. If m does not match p, the sender is incorrect, or ⟨condition⟩ is not met, then m is compared with the next block.

Usually the ⟨code⟩ in a recv from block ends with a send from to clause of form send ⟨msg⟩ from ⟨sender⟩ to ⟨receiver⟩
where msg is a message that is sent out in the name of ⟨sender⟩, denoting a dedicated sender in this ITM, to ⟨receiver⟩, either
denoting a dedicated receiver in a higher-level protocol/subroutine or being NET denoting the adversary connected to the network
interface. In cases where sender/receiver do not matter, one can omit those parts of recv from to and send from to . For the
special case of send from to where a message is returned in the name of the currently active party to the sender who activated
it, one can instead write reply ⟨msg⟩.

If an ITM invokes another ITM, e.g., as a subroutine, ITMs may expect an immediate response. In this case, in a recv from
block, a send to statement is directly followed by a wait for statement. We write wait for ⟨msg⟩ from ⟨sender⟩ s.t. ⟨condition⟩
to denote that the ITM stays in its current state and discards all incoming messages until it receives a message m matching the
pattern msg from the specified sender and fulfilling the wait for condition. Then the ITM continues the run where it left of,
including all values of local variables.

The iUC framework supports a feature called responsive adversaries [15], where protocols can choose to send a network
message to the attacker in such a way that the attacker is forced to return an immediate response to the sender, i.e., without
interacting with other parts of the protocol and without altering the state of any other party. This is typically used to leak
information or let the adversary decide on parameters without giving up the control flow of the protocol, which in turn simplies
the reasoning in the security proof. If we want to make use of this feature, we write send responsively ⟨msg⟩ to NET followed by a
wait for statement.

To clarify the presentation and distinguish different types of variables, constants, strings, etc., we follow the naming conventions
of Camenischet al. [13]:

1. (Internal) state variables are denoted by sans-serif fonts.
2. Local (i.e., ephemeral) variables are denoted in italic font.
3. Keywords are written in bold font (e.g., for operations such as sending or receiving).
4. Commands, procedure, function names, strings and constants are written in teletype.

We use the following additional nomenclature from [13]:

– entitycur := (pidcur, sidcur, rolecur) denotes the currently active entity, i.e., the one that received a message. entitycall :=
(pidcall, sidcall, rolecall) denotes the entity which called the currently active ITM by sending a message if the caller/sender was
a higher-level protocol or a subroutine. In cases where the sender is not necessarily a protocol party but might also be the
network adversary who does not have, e.g., a sender party ID pidcall, we still write entitycall (but not, e.g., pidcall) to denote
whoever the sender is.

– The macro corr(pid , sid , role) queries the ITM of the entity (pid , sid , role) to obtain the current corruption status of that
entity. Internally, it sends a special CorruptionStatus? message and waits for the response.

– The macro init(pid , sid , role) triggers the initialization of (pid , sid , role) and then returns the activation to the calling ITM.
– Each machine implicitly keeps and updates two state variables CorruptionSet and transcript. CorruptionSet stores all entities

(of that machine) that are currently considered corrupted. transcript is a transcript of all messages received and sent so far.

58

	Universally Composable Password-Hardened Encryption

