N

© 00 N oo o b~ W

10
11
12
13
14

The Typability Index: A tool for measuring and controlling for typing difficulty
in text stimuli

Emily A. Williams*, Matthew Warburton!2, Martin Krzywinski®, & Faisal Mushtaq#°

1School of Psychology, University of Leeds, Leeds, UK.

2Bradford Institute for Health Research, Bradford, UK.

3Canada's Michael Smith Genome Sciences Center, Vancouver, Canada.
4Leeds Institute for Data Analytics, University of Leeds, Leeds, UK.

5NIHR Leeds Biomedical Research Centre, Leeds, UK.

* Correspondence can be addressed to Dr Emily A. Williams at emily.e.a.williams@gmail.com



15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

THE TYPABILITY INDEX

Abstract

In typing proficiency tests, like those used in job recruitment or research studies, individuals are
evaluated based on their speed and accuracy. However, the difficulty of the typed text, its ‘typability’,
can impact typing performance, introducing variability that is unrelated to skill. To ensure valid
comparisons across individuals, time, and conditions, it is crucial to control for this variation in text
difficulty. To address this issue, we develop the Typability Index, a model that predicts the relative typing
speed of text. Building on earlier attempts to quantify typing difficulty from the 1940s, we create a more
advanced typability model using the 136M Keystrokes dataset (Dhakal et al., 2018) where over 168,000
participants each typed 15 sentences from a pool of 1,525 items. Through random forest regression,
we identify 8 key predictors from 30 candidate variables, including the proportion of lowercase letters,
word frequency, and syllables per word. Trained on 80% of the dataset and validated on the remaining
20% and a novel dataset, the Typability Index explained 68-88% of the variance in typability, compared
to the 34% explained by an earlier leading model (Bell, 1949). To promote higher control in typing
research and assessments, we introduce a web-based tool to facilitate accurate measurement and fair
comparisons of text typability.

Keywords: typing, keyboarding, typing difficulty, typability, experimental control, text stimuli, Shiny app.
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THE TYPABILITY INDEX

Why control for typing difficulty?

Imagine that you are taking a typing test for a job as a transcriptionist. You have consistently practiced
your skill under anticipated test conditions and are confident that you can pass. However, during the
test, you find yourself typing much slower than expected. While nerves could play a part, there could
also be another reason: the text you have been given is unusually difficult to type. The degree of
‘typability’ of a given set of text can impact not only performance on typing tests but also outcomes of
research studies that involve typing tasks.

The current research focuses specifically on copy typing tasks, where participants transcribe visually
presented text rather than generating text themselves. Typing performance in copy tasks may differ
from that in composition tasks, due to the reduced linguistic and semantic processing demands (Bonin
et al., 2015, in handwriting). Nonetheless, even within copy tasks, the typability of the presented text
remains a critical yet often overlooked factor.

Many experimental paradigms involve participants typing on a keyboard, often to compare performance
across conditions. Some studies focus directly on the typing process, such as comparing typing training
programmes (Donica et al., 2019), comparing typing on different input devices (Barrett & Krueger,
1994), or examining how factors like treadmill walking speed affect typing (Funk et al., 2012). Typing
behaviour is also frequently used as a proxy to investigate unrelated factors, such as the effects of
emotional induction (e.g., typing happy vs. sad text; Maalej et al., 2022), or as a tool to assess recall of
memorised words, for example in dual-task paradigms (Rossi, 2023).

In these experiments, varying text may be presented depending on the condition, either as an
independent variable or to reduce practice effects from repeated text (e.g. Ruan et al., 2018). However,
it is well-established that certain features of the text itself can significantly impact typing behaviour
(Salthouse, 1984, 1986). For example, the frequency of letter pairs (bigrams) in the language (e.g. “th”
vs “tv”; Behmer & Crump, 2017; Dvorak et al., 1936; Shaffer & Hardwick, 1969) and whether bigrams
are likely to be typed with single or separate fingers or hands (Dhakal et al., 2018; Gentner, 1983), can
influence typing speed. Therefore, comparisons between conditions may not be valid unless the relative
ease of typing, or typability, is appropriately accounted for.

Failing to adequately control for typability has the potential to lead to at least three types of issues. First,
researchers might find artificial differences between conditions if, for example, the ‘happy’ text set
happens to be easier to type than the ‘sad’ text set. This could create a misleading impression that
emotional content affects typing speed when the real cause was the text’s inherent typability. Second,
not accounting for typability might mask true differences between conditions. For instance, if typing
‘happy’ text actually decreases typing speed but the text itself happens to be more typable, the true
impact of emotional content could be obscured. Third, even when typing behaviour is not compared
between conditions, inadvertently selecting text with extremely low (or high) typability can introduce
floor and ceiling effects. Extremely easy or hard text may compress typing speed scores, making it
difficult to accurately capture and compare typing abilities. These issues could undermine the validity
and reliability of conclusions drawn from research involving typing.

How is typability currently controlled for?

Several text stimuli banks are available for typing-related research (e.g., Graff, David & Cieri,
Christopher, 2003; MacKenzie & Soukoreff, 2003; Vertanen & Kristensson, 2011), each positioned
differently on the continuum between highly controlled and representative of real-world text. Some are
specifically developed to investigate or compare text entry on various devices, a key focus in Human-
Computer Interaction. For example, MacKenzie and Soukoreff's (2003) phrase set includes text with
minimal use of capitals and punctuation to standardise device comparisons, addressing variations in
the steps required to insert these characters. Similarly, the InputLog multilingual typing test (Van Waes
et al.,, 2019) requires no capitals or punctuation, though is a step forward in standardisation across
languages. In contrast, other banks may contain naturally typed sentences that require adjustments for
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THE TYPABILITY INDEX

standardisation. For example, Dhakal et al. (2018) selected items from two such corpora (Graff, David
& Cieri, Christopher, 2003; Vertanen & Kristensson, 2011) and standardised sentence length as well
as the number of capital letters and punctuation marks. While these adjustments aimed to manage text-
related variables for consistency within their study, particularly in relation to international keyboard
layouts, they were not specifically intended for comparing typing across different experimental
conditions.

In studies that compare typing performance under different conditions, researchers may employ
meticulous and labour-intensive strategies to address typability. For example, Pinet and Martin (2023)
created two lists of 30 pseudowords and carefully matched them on features such as bigram frequency,
hand/finger usage, and the number of letters. We employed a similar approach in upcoming
publications, but while these methods yield precise control, the time and expertise required make them
impractical for many research contexts. This complexity may explain why typability is not always
adequately controlled for, highlighting the need for a Typability Index that consolidates the relevant
text/key attributes that affect typing time into a single value.

Practical research applications of a Typability Index

A Typability Index would provide substantial benefit for research by offering enhanced control over the
selection of text stimuli in research related to typing. It would enable researchers to fine-tune text
selection for studies on typing behaviour or when typing serves as a proxy for other variables. For
example, it could guide the selection of texts to ensure comparable typability across conditions, or
differentiate texts by difficulty level. Additionally, typability scores could be integrated as a covariate in
analyses where the text has already been selected or when other text features must be prioritised,
similarly improving the signal to noise ratio around the true effects being studied.

Another key benefit of a Typability Index is the potential to reduce or remove the need for stringent,
possibly artificial restrictions on text characteristics during stimuli selection, such as sentence length
and the number of punctuation marks. Instead, researchers could compile a diverse text set varying in
length, punctuation, capital letters and other characteristics, and apply the Typability Index to match or
contrast the typability between text set groups. This approach would enable the inclusion of more
natural text in studies, rather than limiting choices to a predefined subset.

Previous attempts: ‘Typewritability’

In the 1940s and ‘50s, there was interest in enhancing the reliability of typewriting assessments to
accurately reflect changes in skill level. These efforts sought to quantify the so-called (at the time)
‘typewritability’ and were primarily composed of unpublished theses and dissertations, with some
attempts to construct a typing difficulty index based on one or more predictors (West, 1957). Bell (1949)
constructed a Difficulty Index using 38 100-word excerpts typed by 89 typewriting students. The index,
based on syllables per word, keystrokes per word, and percentages of frequently used words, was:

Difficulty Index = 7.81 + 3.49 syllables per word
+ 0.08 percentage of frequently used words — 2.44 keystrokes per word

There are some stark differences between this typing difficulty index from the ‘40s and modern methods
of controlling for typability. Factors like syllable count and word frequency, once integral to controlling
for typability, are often overlooked in contemporary studies. Conversely, modern research tends to
control for elements like bigram frequency and hand-finger usage, which were not yet considered in
earlier indices. This contrast raises the concern that modern methods may sacrifice important predictors
of typability for simplicity, potentially underestimating or ignoring key factors that affect typing
performance.
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Requirements for a successful Typability Index

For a modern Typability Index to be effective and enduring, there are arguably three important criteria
it should meet.

1. Consider a broad range of predictor variables

With advancements in research and computational power, we can now consider a broader range of
predictors for typing difficulty than those identified by Bell (1949) and colleagues. The revival of typing
research in the 1980s, driven by the advent of word processors and personal computers, explored
various factors affecting typing at the inter-key interval level (i.e., the time between two key presses),
as reviewed by (Salthouse, 1984, 1986). We will provide an overview of the known text/key attributes
influencing typing speed across different eras of research and offer a thematic classification to ensure
a broad range of predictor variables are considered when constructing the modern Typability Index.

2. Utilise suitable datasets for model training, testing and generalisation

It is preferable that high quality datasets are used when training, testing, and assessing the
generalisation of a Typability Index model. For example, training data should make use of a wide range
of text items, each typed by a large number of participants at various typing speeds. Unfortunately,
many existing typing datasets lack accessibility, text variety, or clarity in what text was actually
presented. However, the 136 Million Keystrokes Dataset (Dhakal et al., 2018) provides a
comprehensive resource that does not suffer from these shortcomings. This dataset includes data from
over 168,000 participants who each typed 15 sentences from a pool of 1,525 items, ensuring text
variety, robust sample sizes and a range of skill levels per item. We will use this dataset to train and
test the Typability Index. Additionally, we will validate generalisability with a separate and novel dataset.
The present authors previously collected data from around 100 volunteers, who each typed 15 movie
quotes from the 1980s. This dataset will be described in more detail later and is openly available
alongside this paper.

3. Provide a user-friendly tool

Finally, for a modern Typability Index to be successful, it should be user-friendly and accessible. In the
latter part of this paper, we will introduce the Typability Index web app. This Shiny app allows users to
upload novel text and receive the predicted typability scores. This data is also be available for over
1,000 sentences from the 136 Million Keystrokes Dataset (Dhakal et al., 2018), listing calculated rather
than predicted typability scores. In addition, users can create text sets that are selected to have the
same (or different) mean typability.

Research Aim

In this paper, we introduce the Typability Index, designed to address the challenge of controlling for
typing difficulty in research by predicting the relative typing speed, or typability, of input text. By
employing advanced regression techniques and leveraging a broad range of candidate predictors and
diverse datasets, we aim to offer a reliable and practical measure of typability. Our goal is to enable
researchers to enhance their experimental control, either by ensuring the preferred typability levels
across conditions or by incorporating typability as a covariate in statistical analyses.

Specifically, we develop the Typability Index model using random forest regression for feature selection
and multiple linear regression for model building. We evaluate its predictive accuracy using both a
subset of the Dhakal dataset and an entirely independent dataset, with the model explaining a
substantial amount of variance in both cases. We also compare the Typability Index to Bell's (1949)
Difficulty Index to demonstrate its improved predictive performance. Finally, we introduce the Typability
Index web app, providing an accessible interface for researchers to apply the tool easily and effectively.
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Developing and Testing the Typability Index
Identifying the main text/key attributes influencing typability

In developing the Typability Index, we conducted a wide-ranging review of the text/key attributes that
influence typing behaviour. This was based on prior empirical evidence of relevance to typing speed or
effort, theoretical links to motor, cognitive, or linguistic processes involved in typing, and practical
feasibility of measurement, i.e. ability to automate calculation. Table 1 presents a summary of the most
influential attributes identified across the literature, providing rationale and supporting references. The
table also includes potential influences that have not been, to our knowledge, previously investigated.

While it is not feasible to include every text/key attribute ever explored in relation to typing speed, we
have made a deliberate effort to cover a broad spectrum of influences on typability that capture motor,
cognitive, and linguistic dimensions. To this end, we have categorised the influences into five
interrelated themes that represent different aspects of typing behaviour, each of which is known or
hypothesised to impact typability:

e Text Processing (TP): How easily text can be understood, remembered, and re-read during typing,
e.g. text with fewer syllables is generally typed faster than those with more syllables.

e Frequency of Use (FoU): Relating to familiarity or practice, due to high occurrence levels, e.g.
common letter pairs are typed faster than less frequent ones.

e Layout (L): Relating to the physical arrangement of keys on the keyboard, e.g. numbers, being
further from the central area, are typically typed more slowly than other characters.

e Biomechanical (B): Relating to the physical mechanics of typing, e.g. letter pairs typically typed
with the same finger, such as ‘ee’ or ‘de’, may be typed slower than those typically typed with
different hands, such as ‘ei’.

Table 1 Text/key attributes affecting typability, including classification and rationale

Xft);%}fﬁg Description of metric Rationale Theme(s)

Attributes present in early typewritability indices (e.g., 1940s, 1950s)
Keystrokes per Total keystrokes required, divided by total Shorter words are typically typed at a TP

Word words*. faster rate than longer words (Bell, 1949).
Syllables per Total syllables, divided by total words*. More syllables may slow text processing TP

Word and typing (Bell, 1949).
Word Frequency Percentage of top-1000 English words, High-frequency words may be processed TP, FoU

following Bell (1949). and typed faster due to familiarity/ practice
(Bell, 1949).

Total Keystrokes Total keystrokes required, including shift. Longer text may be typed slower due to TP

pausing to reread (West, 1957).

Text with more words may be typed slower TP
due to increased processing time (West,

1957).

Total Words Number of words in the text, identified as
sequences of characters separated by

spaces.

Punctuation Marks  Count of punctuation marks, e.g. , . ?! Less frequent, typically further away, and FoU, L
may require additional keystrokes (e.g.
shift; West, 1957).
Uppercase letters Count of uppercase/capital letters. Requires shift or caps lock, which is used FoU, L
less frequently (West, 1957).
Attributes since found to affect typing behaviour (e.g., 1980s)
Hand Number of bigrams (character pairs) that Different categorisations are typically B, L
Categorisation are: character repetitions; finger repetitions; typed at different rates (Salthouse, 1984,
hand repetitions; different hands 1986).
Bigram Frequency  Average frequency of letter pairs in English. High-frequency bigrams may be typed FoU
faster due to familiarity/ practice
(Salthouse, 1984, 1986).
Right-Side Keys Proportion of characters’ keys on the right Right hand is typically faster for most L,B
side of the keyboard. users (Dhakal et al., 2018).
Spaces Count of spaces. Spaces are generally typed faster, often by L, FoU, B

a thumb (Ostry, 1983).
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Non-Dictionary Number of words not recognised by Likely typed slower due to unfamiliarity TP, FoU
Words standard dictionaries, including non-words, and text processing difficulty (Salthouse,
highly technical terms and typographical 1984).

errors.

Additional proposed attributes, not investigated previously to our knowledge

Numbers Count of numerical digits. Less frequent and positioned away from L, FoU
the vertical centre.
Distance from Average key distance from middle row of Greater distance may slow typing speed. L
Home Row letter keys.

Notes: Themes are Text Processing (TP), Frequency of Use (FoU), Layout (L), and Biomechanical (B). *The number of words is
customarily calculated as the number of characters, including spaces, divided by 5, which is used here unless stated otherwise.
More specific derivations of the predictors considered for the model are presented in Appendix 1.

Method
Training and Testing Dataset

Here, we provide a summary of the pertinent features of Dhakal et al.’s (2018) 136 Million Keystrokes
dataset, but refer readers to the original paper for more details. As described in more detail later, the
model was trained on 80% of this dataset and tested on the remaining 20%.

Participants. Dhakal et al.’s (2018) participants comprised 168,960 volunteers (52.7% female),
with a mean age of 24.5 years (SD = 11.2) and 75% were between 11 and 30 years old (full age range
not stated). Participants came from 218 countries, with 68% from the US and 85% native English
speakers. Participants’ mean typing speeds ranged between 4-158 words per minute (wpm), with a
mean of 51.56 wpm (SD = 20.20 wpm).

Materials. Dhakal et al.’s (2018) set of 1,525 English sentences (of which we used 1,493, see
Appendix 2) were sourced from the Enron Mobile Email corpus (Vertanen & Kristensson, 2011) and
English Gigaword Newswire corpus (Graff, David & Cieri, Christopher, 2003), with certain selection
criteria applied by the authors. This criteria was a minimum of three words, a maximum of 70 characters,
a maximum of four numbers, and only simple punctuation marks (, . ! ? ’). These sentences included,
for example, “1.5 million visitors will flood Atlanta each day of the Olympics.”, “Kim, here's the PSCO
website address.”, and “What happened to the guy with the paper to sign?”. Regarding devices, 98%
of participants typed on either a laptop-integrated keyboard or standalone keyboard, with the remainder
using an on-screen/touch keyboard or small physical keyboard.

Procedure. Each participant typed 15 sentences, which were randomly selected from the bank
of 1,525 sentences described above. Each presented sentence remained visible while typing, with
produced text entered into a standard text field immediately below. Participants were instructed to read
and remember the sentence, then type it as quickly and as accurately as possible. No restrictions were
placed on the text field, meaning participants were able to use backspace and their typing was not
constrained to only correct characters (i.e. they could continue entering text if they made a mistake).
Participants pressed enter to submit their response.

Preprocessing. To arrive at the sample described above, Dhakal et al. (2018) excluded
participants who had not completed all 15 sentences, their demographic information, and a
guestionnaire about their typing experience/strategy. Participants must have also achieved an error rate
of less than 25%. Participants were excluded if there were likely distractions or technical problems,
identified as any inter-key intervals (duration between consecutive keypresses) above 50 seconds. Of
the 168,960 remaining participants, each of the 1,525 sentences (of which we will use 1,418; Appendix
2) were typed by 1,488-1,809 participants in the final dataset.

Generalisation Dataset
To extend our out-of-sample testing, we assessed generalisability using a previously unpublished

dataset collected by the lead author during unrelated pilot testing. This dataset was gathered through a
7
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gamified typing task that was promoted for the ESRC Festival of Social Science 2020 (UK), which
provided participants with personalised statistics on their typing performance and insights into the
benefits of efficient typing.

Participants. The group comprised 98 adult volunteers, with a mean age of 32.81 years (SD
10.43) and an age range of 19-62 years. Participant gender was not recorded. Participants’ mean
typing speeds ranged between 16-102 wpm, with a mean of 64.26 wpm (SD = 17.03 wpm). A total of
330 participants began the task, but the current sample is limited to those who consented to have their
data collected (which was not recorded otherwise) and those who completed the 15 sentences.

Materials. There were 15 sentences, which were quotations from popular movies from the
1980s. These sentences included, for example, “Where we’re going, we don’t need roads!” (Back to the
Future, 1985) and “Back off man, I’'m a scientist.” (Ghostbusters, 1984). The full set of sentences is
presented in Supplementary Material B.

Procedure. Participants typed the 15 sentences in a random order. The presented sentence
was displayed in the centre of the screen in the font OCR A Extended, wrapping to multiple lines as
necessary. Prior to typing, the first character was displayed in white, with upcoming characters in pink.
As participants typed a correct character, the typed character became blue, and the next character to
be typed became white. If an incorrect character was entered (case sensitive), there was no visual
feedback, and the participant could not progress until the correct character was entered (no
backspacing was required). Entering the final character correctly led to post-trial feedback in wpm,
meaning pressing ‘Enter’ was not required to submit responses. Thus, the procedure differed slightly
between the tasks used for the main test/train dataset and the generalisation dataset.

Variables
Outcome Variable: Typability

We first calculated the typing speeds for each participant's sentences in words per minute (wpm).
Following standard practice, the number of words was determined by dividing the total number of
characters in the string, including spaces, by five (Wobbrock, 2007). The typing time was defined as
the interval between the first key press and last key release of the sentence, including the final
punctuation mark. Therefore, we divided the number of ‘words’ by the total time in seconds and
multiplied this value by 60, yielding the gross wpm, which was not adjusted for errors.

Typability, or relative typing speed, was first calculated within each participant as the z-scored typing
speed of each sentence they typed. Specifically, the z-score was computed as z = (x — u)/o, where x
represents the typing speed for a given sentence, u is the participant's mean typing speed across the
15 sentences they typed, and ¢ is the standard deviation of their typing speed across these sentences.
The z-score of the typing speed is a useful measure because it is independent of participant’s baseline
typing speeds and is appropriate due to the relatively normal nature of the underlying distributions. The
z-score indicates how much faster or slower the participant typed each sentence compared to their
average, expressed in standard deviation units. Subsequently, the mean z-score for each sentence
was calculated across the 1,488 to 1,809 participants who typed it.

Candidate Predictor Variables

The 14 text/key attributes identified in Table 1 were operationalised into a set of candidate predictor
variables. For some attributes, multiple calculation methods were possible, resulting in more than one
variable derived from a single attribute. For example, character type proportions could be calculated
either as the proportion of total characters (e.g., proportion of characters that are lowercase) or as the
proportion of non-space characters (e.g., proportion of non-space characters that are lowercase), to
account for the distinct role that spaces play in typing (Salthouse, 1984). In other cases, a single
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candidate predictor variable was deemed sufficient for an attribute, such as syllables per word. This
process produced a total of 30 candidate predictor variables, detailed in Appendix 1.

Analysis

We removed 32 presented sentences that contained grammatical or typographical errors (see Appendix
2). To assess the potential influence of typing errors, sentence-level accuracy was calculated as 1 —
(Levenshtein edit distance / presented sentence length), where the Levenshtein edit distance
represents the number of insertions, deletions, or substitutions required to transform the typed sentence
into the presented sentence (Levenshtein, 1966). The mean accuracy rate was then computed for each
sentence. Accuracy was uniformly high: the sentence with the lowest mean accuracy was typed with
97.53% accuracy, and the median sentence had 99.08% accuracy. The mean accuracy across
sentences was 99.04% (SD = 0.23%). As all sentences were typed with minimal deviation from the
presented sentence, no sentences were excluded based on error rate. The remaining 1,493 sentences
were randomly assigned to a training set (80%, n = 1,194) or a test set (20%, n = 299).

Model Training

With the typability outcome variable and the candidate predictors calculated for the 1,194 training
sentences, a three-stage feature selection process using the {randomForest} R package was
undertaken to determine the final predictors for the model. Details of the random forest specifications
can be found in Appendix 3.

Stage 1: Identifying the most explanatory calculation methods. A random forest regression
was first conducted to determine which calculation method best captured each text/key attribute (e.g.,
proportion of lowercase characters vs. proportion of lowercase non-space characters). All 30 candidate
predictor variables were entered, but attention was limited to those with more than one calculation
method. Importance was determined by the increase in mean squared error (% Inc MSE) when a
variable was excluded during the random forest process. The calculation method with the highest % Inc
MSE, indicating the greatest impact on prediction accuracy, was selected as the preferred method.
Other calculations for the same attribute were excluded from further stages.

Stage 2. Addressing multicollinearity and singularity. A second random forest regression
was run with the 17 remaining candidate predictors. The % Inc MSE plot was used to determine the
optimal number of predictors based on the inflection point, selecting 10 for the multiple regression
model. Variables with a Variance Inflation Factor (VIF) exceeding 10 indicated multicollinearity, while
singularity occurred when candidate predictors had linear relationships (e.qg., total keystrokes = number
of characters / number of words), making it impossible to estimate unique coefficients. To resolve these
issues, the least important candidate predictor(s) (in terms of % Inc MSE) in each problematic group
was removed.

Stage 3. Selecting the final predictors. A third random forest regression was performed to
determine the ideal number of predictors based on the % Inc MSE plot. From the remaining 15
predictors identified in Stage 2, nine were selected as optimal at the inflection point and entered into a
multiple regression model. Multicollinearity was reassessed, and any non-significant predictors were
excluded, leading to a final model with eight significant predictors. Given the large sample size, the p-
value threshold was deemed appropriate to detect meaningful contributions to typability.

Model Validation: Testing and Generalisation

Actual typability scores and predictor variables were computed for the remaining 20% of sentences (n
= 299) in the Dhakal dataset, representing the testing dataset. Predicted typability scores were then
generated by applying the equation from the trained model to the sentences in this testing set, and
these predictions were compared to the actual typability scores. The same procedure was followed for
the generalisation dataset.
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Results
Typability Scores
The distribution of typability scores in the training dataset is shown in Figure 1. Table 2 provides

illustrative examples of sentences for typability scores of 0, +0.5, and +1, along with a guide for typability
score interpretations.

0.754

Density

0.25 1

0.004

40 05 00 0.5 1.0
Typability

Fig. 1 Distribution of typability scores in the training dataset.

Table 2 Interpretations and example text for different typability scores
Typability Interpretation Example Text

1 SD slower e The Senate should approve a 14-year-old treaty.
than average e Suite 2750 in Downtown Denver.

0.5 SD slower e He started Sunday's game and had two catches for 70 yards.
than average o ['ll ask, he just came by.

Typed at one’'s e | don't have the distraction of taking care of Mimi.

0 average speed e Do you want to fax it to my hotel?

05 0.5 SD faster e Let me know if this is possible or where else | might find these.
"~ than average e The wind was strong and gusting.
1 1 SD faster ¢ | might have something at the office.

than average e Thanks for sending this.

The Typability Index

Following the three-stage feature selection process using the training dataset, 8 predictor variables
were selected and entered into the multiple linear regression model. This model (Fs, 1125y = 416.50, p <
.001), with performance summarised in Figure 2A and detailed in Table 3, accounted for approximately
74% of the variance in typability (Adjusted R2 = 0.736), with prediction accuracy given by a Root Mean
Squared Error (RMSE) of 0.222.

10
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Training Dataset Testing Dataset Generalisation Dataset

-
L

Predicted Typability
o

'
-
L

B ’ 1 : Actual Toypability 1 B ’ 1

Fig. 2 Predicted vs actual typability scores across datasets. The model was trained on the training
dataset (A) and then evaluated on the testing (B) and generalisation (C) datasets to assess its predictive
performance and generalisability. Light grey diagonal lines represent identity lines, indicating a perfect
relationship between predicted and actual scores. Black lines denote linear regression lines between

the predicted and actual scores, with dark grey bands representing 95% confidence intervals.

Table 3 The 8 predictor variables selected for the Typability Index

Predictor Theme(s) B B SE B t p
Proportion of lowercase non-space L, FoU 0.533 4.694 0.207 22.68 <.001
characters

Total keystrokes TP -0.433 -0.012 <0.001 -22.34 <.001
Syllables per word TP -0.300 -0.431 0.028 -15.22 <.001
Proportion of words within high- TP, FoU 0.266 0.693 0.052 13.35 <.001
frequency words

Proportion of symbol non-space L, Fou -0.220 -4.037 0.433 -9.32 <.001
characters

Bigram frequency FoU 0.192 <0.001 <0.001 12.49 <.001
Proportion of characters within TP, FoU -0.157 —1.665 0.163 -10.23 <.001
non-words

Proportion of right-side keys L, B 0.100 0.462 0.076 6.08 <.001
(Intercept) —4.022 0.193 —-20.89 <.001

Notes. Themes, as described above Table 1, are Text Processing (TP), Frequency of Use (FoU), Layout
(L), and Biomechanical (B). B represents the standardised beta coefficient, while B denotes the
unstandardised beta coefficient and SE is standard error. Positive 8 and B values represent typing ease
(faster than one’s own average) while negative values suggest difficulty (slower than average).

Validation: Testing and Generalisation

The trained model was evaluated on the testing dataset, constituting the remaining 20% of the Dhakal
et al. (2018) dataset. The model explained approximately 68% of the variance in this separate dataset
(Adjusted R2 = 0.682), maintaining a similar predictive error rate (RMSE = 0.222). To assess external
generalisability, the model was then applied to a novel generalisation dataset collected by the current
authors, resulting in an Adjusted R2 of 0.884 and RMSE of 0.399. This higher RMSE is due to a
consistent underestimation of typability in this generalisation dataset. Figure 2 illustrates the relationship
between the predicted and actual typability scores across the training, testing and generalisation
datasets.

Comparison to Bell’s (1949) Model
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The newly developed Typability Index was compared to Bell's (1949) model, which, as described in the
introduction, includes three of the ten predictors ultimately selected for the Typability Index. To ensure
a fair comparison, the predictor estimates from Bell's model were refit to the present training dataset.
The refitted Bell model (F, 1100) = 238.10, p < .001), with performance summarised in Figure 3 and
detailed in Table 4, explained approximately 37% of the variance in typability (Adjusted R2 = 0.374;
RMSE = 0.343).

Predicted Typability
o

Actual Typability
Fig. 3 Predicted vs. actual typability scores for the Bell (1949) model, based on the training dataset. For
additional details and context, refer to Figure 2.

Table 4 A model of typing difficulty limited to Bell's (1949) predictors
Predictor B B SEB t p

Proportion of words within high-

0.479 1.249 0.075 16.55 <.001
frequency words
Keystrokes per word -0.236 -0.114 0.021 -5.53 <.001
Syllables per word 0.051 0.073 0.059 1.24 .215
(Intercept) -0.462 0.123 -3.76 <.001

Although these two models are not nested, making an ANOVA comparison invalid, a comparison of
Akaike Information Criterion (AIC) shows a clear advantage for the Typability Index. The Typability
Index achieved a substantially lower AIC (—186.34), compared to the Bell model (839.92) and an
intercept-only model (1395.37), indicating a markedly better fit despite the increased model complexity.
This supports the conclusion that the Typability Index provides a substantial improvement over prior
approaches to estimating typing difficulty.

The Typability Index Web App

The Typability Index is available as a user-friendly Shiny App (https://emily-a-williams.shinyapps.io/the-
typability-index-web-app/), offering an interactive interface for calculating typability scores and
generating suggested groupings of text stimuli. Users can upload novel text as a .txt file (as shown in
Figure 4) or access pre-calculated typability scores for the Dhakal et al. (2018) sentence set.
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The Typability Index Web App

text typability
Choose Input Source
. o o
@ Upload my own taxt Is this the real life? Is this just fantasy? 0.16
(O Use Dhakal's (2018) sentences (n = 1418) ‘When | was a young boy, my father took me into the city. 0.20
Choose TXT File Workin' 9 to 5, what a way to make a livin'! -1.33
Browse... exampleText.txt Here we are now, entertain us. 0.07
What have | become, my sweetes rind? 014
—_— If everything could ever feel this real forever. 0.24
| Calculate Typability ‘
A Jolene, Jolene, Jolene, Jolene, I'm begging of you, please don't take my man. -1.41
Suggest Groupings | hurt myseif today, to see if | still feel. -0.07
Grouping Type I walk a lonely road, the only one that | have ever known. 0.07
@ Matched (2+ groups)
~ I'm gonna fight 'em off, a seven nation army couldn't hold me back. -0.52
(O Divergent - simple (2+ groups)
O Divergent - clusters (2+ groups) Black hole sun, won't you come and wash away the rain? -0.08
() One group around median I push my fingers into my eyes, it's the only thing that slowly stops the ache. -0.07

Number of Groups Because maybe, you're gonna be the one that saves me. -0.09

2 I shot a man in Reno just to watch him die. 0.28

Group Size

5
[] Assign all* items to groups

Suggest Groupings

& Download Results

Fig. 4 An example of novel sentences uploaded along with their predicted typability scores. The panel
displays options for suggesting groupings based on grouping type, number of groups, and group size.

The app provides options for grouping text stimuli based on typability scores, allowing users to select
from two types of groupings:

e Matched Groups: This option aims to create groups with comparable mean typability scores. This
is done by ordering items by typability and then assigning them sequentially to groups in a round-
robin fashion. When group size is specified, this selection is centred around the median, where item
density is typically highest (assuming a normal distribution).

e Divergent Groups — Simple: This option aims to create groups with distinct typability levels. For
example, to form an "easy" set and a "hard" set, items are ordered by typability, then the specific
number of items from the top and the bottom are assigned to different groups. For more than two
sets, the middle groups are centred around the relevant quantiles, i.e., the 50th quantile (median)
for three groups, and the 25th and 75th quantiles for four groups, etc.

e Divergent Groups — Clusters: This option also creates groups with distinct typability levels, but
prioritises balancing the variance across groups. A specified number of clusters is first generated,
based on the desired number of groups. Items are then allocated to groups by selecting those
closest to each cluster centre, helping to ensure that each group is both distinct in typability and
reasonably consistent in spread across groups.

These algorithms for group suggestions are designed to be simple for intuitiveness, but users are
welcome to create custom groupings after exporting typability scores if they prefer. When using the
suggested groupings, we encourage users to reflect on the underlying typability distributions of the text
items and the output groupings, particularly with small samples of user-input text. The app provides a
plot to help users visualise the distribution and composition of each group for this purpose. Fig. 5 shows
a use case of assigning 20 four-letter words to two different groups based on matched typability. In this
case, users should input each word on a separate line in the input .txt file, without a header line. Finally,
typability scores and optional group assignments can be downloaded as a .csv file.
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The Typability Index Web App

Densiy Plot of Typability by Group
Choose Input Source
© Upload my own text

Use Dhakal's (2018) sentences (n = 1418)

Choose TXT File

Browse... 4 letter words.tt

Caloulate Typability

Suggest Groupings
Grouping Type
© Matched [2+ groups)
Divergent - simple (2+ groups)
Divargent - clustors 2+ groups)
One group around median
Mumber of Groups toxt typability group

P cake 047

duck 052

Group Size
wolf 0.56

10
wood 058
Assign alf* items to groups ion 063
fish ar2
Suggest Groupings
soul .87
Hide items not assigned to groups
rain 09
& Downioad Results fire: 096

ring 1.08

F e O

back 114

Fig. 5 Suggested grouping for 2 gr(;ups of 10 four-letter words. Note that the user can scroll down to
see the remaining group assignments, and download as a .csv file.

General Discussion

Controlling for typability is essential in experimental research involving typing, as several text/key
attributes are known to significantly influence typing behaviour (see Table 1). Many studies require
participants to type under different conditions, but without adequately accounting for typability,
comparisons between these conditions may not be fair. This could result in false positives, false
negatives, and even when not comparing between conditions, floor and ceiling effects. The Typability
Index was developed to simplify and enhance experimental control in typing-related research by
accounting for the most important text/key attributes influencing typing difficulty within a single metric.

Creation and Validation of the Typability Index

We developed the Typability Index as a multiple regression model, which was trained on a randomly
selected 80% of the sentences from the 136 Million Keystrokes Dataset (Dhakal et al., 2018). Our
rigorous three-stage feature selection process identified eight key predictor variables (see Table 3),
which collectively explain approximately 74% of the variance in typability with high prediction accuracy
(R2=0.736, RMSE = 0.222). The top three most influential predictors were the proportion of hon-space
characters that were lowercase letters, total keystrokes, and syllables per word.

The Typability Index showed substantial improvement when compared to Bell's (1949) model (R? =
0.374, RMSE = 0.343), which contained three predictors and was fitted using the same training dataset.
The AIC values further confirmed the superior fit of our model, demonstrating its enhanced predictive
power and practical utility, even when penalising for additional predictors.

Validation of the Typability Index using the testing dataset maintained strong predictive power (R? =
0.682, RMSE = 0.222). Furthermore, the model generalised well to a novel dataset, collected under
different conditions by different authors, explaining approximately 88% of the variance (R? = 0.884).
While the predictive error increased in this separate and significantly smaller dataset (RMSE = 0.343),
where typability was consistently underestimated, this reflected a shift in the intercept while the slope
remained close to that of the unity line. This suggests a difference in the mean typability of the training
and generalisation datasets (Figure 2), perhaps due to the familiarity of the movie quotes in the latter.
However, the relative typability of sentences within each set remained well-predicted, which
demonstrates consistent relative performance. Therefore, we recommend that researchers avoid
mixing actual typability scores (of sentences in the training dataset) with predicted typability scores
(from any novel text input). Instead, if researchers wish to select text stimuli on the basis of typability
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scores, they should depend only upon predicted or actual typability scores, not a mix of both. Overall,
this validation shows that the Typability Index is robust and generalisable beyond the training data.

Selected Predictors of Typability

Each of the eight predictors in the Typability Index contribute uniquely to typing difficulty. In order of
importance, the predictors that increased typability (making typing easier) are the proportion of non-
space characters that are lowercase letters, the proportion of words within high-frequency words, the
average frequency of each bigram in the language, and the proportion of right-side keys. Conversely,
the predictors that lowered typability (making typing more difficult) are the total number of keystrokes,
the average syllables per word, the proportion of non-space characters that are symbols, and the
proportion of characters that inhabit words without entries in English dictionaries (US, UK, CA, or AU).
These predictors encompass a wide range of cognitive, linguistic, biomechanical, and motor processes,
providing a comprehensive assessment of the text/key attributes that influence typing performance.

It is worth noting that some attributes that we expected to be predictive of typing difficulty were not
selected for the final model during the feature selection process. The omission of the bigram finger/hand
relations is particularly surprising, given the well-established differences in inter-key intervals for these
bigram types (Dhakal et al., 2018; Gentner, 1983; Salthouse, 1984, 1986). This omission may be due
to the fact that the relationship between the bigram types is not stable across skill level. That is, slower
typists are typically faster at bigrams that constitute character repetitions than hand alternations,
whereas this pattern is reversed in faster typists (Dhakal et al., 2018). Since the Typability Index was
designed to be applicable across a wide range of typing speeds, with training data encompassing
participants who typed between 4 and 158 words per minute, other predictors may have been more
descriptive, generalisable and relevant for representing the diverse typing population.

The Interactive Typability Web App

In addition to developing the Typability Index, we developed an accessible tool to allow researchers to
easily apply it to their research. We created a web app (https://emily-a-williams.shinyapps.io/the-
typability-index-web-app/) that enables users to upload novel text or use Dhakal et al.’s (2018)
sentences, calculate typability scores, visualise results, and download the typability scores and optional
suggested groupings. Users can also create custom groupings after exporting typability scores if
preferred.

Practical Applications of the Typability Index

The Typability Index and the associated web app provide several practical advantages for researchers
of typing behaviour. The app enables more controlled sentence selection, allowing researchers to
create text sets that (a) exhibit similar typability levels (matched groups) or (b) represent varying
degrees of difficulty (divergent groups). In addition to these functionalities, typability scores can assist
researchers in (c) avoiding floor or ceiling effects in typing performance, (d) potentially reducing the
number of trials required for precise and reliable average typing speed measurements, and (e)
alleviating traditional restrictions related to text length and punctuation, as overall typability can be
effectively matched.

Typability scores can also serve as a valuable covariate in various research contexts. For example, in
studies involving self-generated or 'free' text, it could help to distinguish between the cognitive and
linguistic processes of text planning and the inherent difficulty of typing the text. In this case, users could
record the typing time of the self-generated material, then compare it between conditions, using
typability as a covariate. Additionally, in memory tests where participants type back lists of items, using
typability as a covariate could mitigate potential confounds from differences in typing difficulty between
lists, which might otherwise impact cognitive load and memory performance. This may ensure more
accurate measures of recall.
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Beyond research, the Typability Index has valuable applications for typing training and performance
testing. For typing course developers, it allows for a progressive difficulty approach, presenting easier
sentences initially and more challenging ones as learners advance. In the realm of typing tests for hiring
or competitive typing, it ensures fairness by controlling for text difficulty, which is crucial for maintaining
equitable test conditions and accurately assessing typing speed.

Limitations

The Typability Index's generalisability is influenced by three main constraints inherent to the training
dataset. Firstly, the model is based on Dhakal et al.'s (2018) dataset, comprising 1,525 English
sentences sourced from the Enron Mobile Email corpus (Vertanen & Kristensson, 2011) and the English
Gigaword Newswire corpus (Graff, David & Cieri, Christopher, 2003), with certain selection criteria
applied (e.g. no non-punctuation symbols). This somewhat limits the model’s applicability to other styles
of text or other languages, as several predictors were calculated based on the (American) English
language and keyboard layout. Secondly, the text unit of the dataset is sentences rather than
paragraphs or single words. While this may affect the model's direct relevance to words or paragraphs,
it is likely that the rank order of typability scores can still provide useful insights if calculated for a set of
words or a set of paragraphs. This assumption is based on the fact that many linguistic and motor
influences of typability at the sentence level also apply to smaller or larger text units. Finally, the dataset
predominantly reflects typing on laptops and standalone keyboards, potentially limiting the model’s
applicability to mobile devices.

A further limitation relates to the intended scope of the Typability Index. As noted, the tool is designed
to calculate typability across a wide range of typing speeds, from 4-158 words per minute, based on the
training dataset. Consequently, it has not been tailored for any specific typing skill level.

Despite these limitations, the Typability Index provides a robust framework for controlling typing difficulty
with confidence, aligning with its intended applications and the available data.

Future Work

Future developments could involve expanding the Typability Index to other languages, text lengths, and
devices, where available training data allows. This would improve the Index’s applicability and accuracy
across diverse linguistic and device contexts, further enhancing its utility in academic research and
beyond. Additionally, researchers could explore the application of the current model in new settings,
such as word list memorisation tasks where participants type back recalled items, or in studies involving
self-generated text, to distinguish the cognitive processes of text generation from the typing difficulty
influences covered by the model.

Conclusion

The present work provides a practical solution to the enduring challenge of controlling text difficulty in
research involving typing. The Typability Index enables researchers to select text stimuli based on
specific typability criteria or account for typing difficulty by incorporating typability scores as a covariate.
This advancement enhances experimental control, reducing the risk that variations in typing
performance are confounded by text difficulty. By offering a refined method for managing text difficulty,
the Typability Index can help deliver more meaningful and accurate evaluations of typing behaviour in
research and beyond.
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714  Appendix 1: Calculations of the 30 candidate predictor variables

Candidate predictor variable

Calculation

10

11

12

13

Total characters

Total keystrokes

Total words

Keystrokes per word
Characters per word
Mean word proportion

Proportion of words within high-
frequency words

Proportion of characters within

high-frequency words

Mean word frequency

Proportion of non-words

Proportion of characters within
non-words

Syllables per word

Bigram frequency

Total number of characters including spaces.

The minimum number of keystrokes needed to type the
text accurately, assuming shift is used rather than caps
lock.

The number of words in the text, defined as groups of
characters separated by spaces, rather than the typical
definition of words as five characters (when calculating
speed).

Total keystrokes divided by total words.
Total characters divided by total words.
1 divided by characters per word.

Number of words from the text that appear in the top
1000 words list* divided by total words.

Number of characters that are contained in words from
the text that appear in the top 1000 words list* divided
by total characters.

Sum of the language frequencies of each word in the
text, divided by number of words. Frequencies from
SubtLEXus (Brysbaert & New, 2009, ‘FREQcount’
variable).

Number of words in the text that are not recognised in
UK, US, AU or CA Hunspell English dictionaries
(according to the {hunspell} package; Ooms, 2022)
divided by total words.

Number of characters that are contained in words that
are not recognised in UK, US, AU or CA dictionaries
divided by total characters.

Total number of syllables (according to the
{quanteda.textstats} package; Benoit et al., 2018),
divided by total words. This package uses the CMU
Pronunciation Dictionary (Carnegie Mellon University,
n.d.), and counts vowel clusters for words not in this
dictionary.

Sum of the language frequencies of each letter pair in
the text, divided by number of letter pairs. Frequencies
based on Behmer and Crump (2017; 'Frequency"
variable). This includes letter pairs only, with no
spaces, and is based on approximately 3000 English
language eBooks from Project Gutenberg.
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Proportion of high frequency
bigrams

Proportion of character repetitions

Proportion of finger repetitions

Proportion of hand repetitions

Proportion of hand alternations

Proportion of lowercase letter
characters

Proportion of uppercase letter
characters

Proportion of numbers

Proportion of symbols

Proportion of spaces

Proportion of lowercase letter
non-space characters

Proportion of uppercase letter
non-space characters

Proportion of number non-space
characters

Proportion of symbol non-space
characters

Keystrokes per character

Proportion of right-side keys

Mean distance from home row

Number of letter pairs from the text that are appear in
the top 15 bigrams, divided by number of letter pairs.
(An alternative approach akin to proportion of high
frequency words). Frequencies from Behmer and
Crump (2017).

Number of character pairs relating to character

repetitions (e.g. ‘rr’, ‘..’), divided by number of character
pairs.

Number of character pairs relating to finger repetitions
(e.g. ‘ed’, ‘k,’), assuming standard touch typing, divided
by number of character pairs.

Number of character pairs relating to hand repetitions
(e.g. ‘se’, ‘hi’), assuming standard touch typing, divided
by number of character pairs.

Number of character pairs relating to character
repetitions (e.g. ‘qu’, ‘ty’), assuming standard touch
typing, divided by number of character pairs.

Number of lowercase letters divided by total
characters.

Number of uppercase letters divided by total
characters.

Number of numbers divided by total characters.

Number of symbols (including both punctuation and
non-punctuation symbols) divided by total characters.

Number of spaces divided by total characters.

Number of lowercase letters divided by total non-space
characters.

Number of uppercase letters divided by total non-
space characters.

Number of numbers divided by total non-space
characters.

Number of symbols divided by total non-space
characters.

Total keystrokes divided by total characters.

Number of characters relating to keys on the right-hand
side of the keyboard, assuming standard touch typing,
divided by total characters.

Sum of each character’s key distance from the eight
finger resting keys on the home row, divided by total
characters. Distances are based on Krzywinski (n.d.).

22



715
716
717
718
719
720
721
722

723

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

748
749
750
751
752
753
754

755
756

757

THE TYPABILITY INDEX

Note: Predictors were calculated according to American English spellings and keyboard layout (ANSI)
unless stated otherwise. *We used the 1,000 most frequent English words list from the Corpus of
Contemporary American English (Davies, 2008-), including lemmatisations. For example, “do” is on the
core list, so variations such as “doing,” “did,” and “done” were also considered. Including lemmatisations
allows the Typability Index to capture familiarity with core concepts, not just the specific forms of words.
This helps reflect both the cognitive familiarity and the ease of typing frequent or commonly recognised
words.

Appendix 2: Present alteration of the 136 Million Keystrokes Dataset (Dhakal et al., 2018)

Upon close inspection, some presented sentences contained grammatical or typographical errors (e.g.
“If your reasonable, I'll bereasonable.”; “That s all | have to say.”; “I think we are dong OK.”). This is
understandable as part of the source was real emails (Enron). To remove the potential effect of these
errors on typing behaviour, 32 sentences were excluded, identified by ‘Spelling and Grammar’ checks
in Microsoft Word in addition to manual reading. See Supplementary Material A for the exact sentences

removed and rationale for each.

In addition, minor manual alterations were made to 67 raw datafiles to fix parsing issues, mainly caused
by participants typing Ctrl + M (shortcut for indent / new line) instead of Shift + M (see Supplementary
Material A for details). Further, calculating participants’ mean typing speeds initially led to some
negative values due to a relatively small number of two identified timestamp errors: (1) the recorded
release time for some keystrokes preceded the recorded press time of the same keystroke; (2) for some
trials, the first keystroke of the trial was apparently made before the end of the previous trial. To deal
with these issues, any trials affected by the first timestamp error were excluded from the calculation of
participants’ mean typing speeds because this timing error occurred mid-trial, suggesting the
timestamps may not be reliable. Any erroneously-recorded keystrokes affected by the second time
stamp error were removed, but the rest of the keystrokes for that trial were retained for analysis. This
is because this second type of timestamp error related to only the first ‘keystroke’, which visual
inspection suggested did not relate to the typing of the presented sentence that trial. In total, these
alterations to account for timestamp errors affected 10,097 (<6%) of participant files. The adjusted
datafiles accounting for parsing and timestamp errors are available on our Github repo
(https://github.com/EA-Williams/The-Typability-Index/), with rights retained by Dhakal et al. (2018).

Appendix 3: Specification of Random Forest Regression

We used the {randomForest} package, version 4.7-1.1, to run the random forest regressions.
Deviations from the default settings included running 10,000 trees (ntree) instead of the default 500.
Additionally, the number of variables randomly sampled as candidates at each split (mtry) was
increased to 75% of the predictor count (i.e., 23.25) rather than the default 33% (10.33). Default
values, including sampling with replacement (replace = TRUE), are detailed at https://cran.r-
project.org/package=randomForest. Our full analysis code is available at https://github.com/EA-
Williams/The-Typability-Index/.

23


https://github.com/EA-Williams/The-Typability-Index/
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=randomForest
https://github.com/EA-Williams/The-Typability-Index/
https://github.com/EA-Williams/The-Typability-Index/

