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Abstract 15 

In typing proficiency tests, like those used in job recruitment or research studies, individuals are 16 

evaluated based on their speed and accuracy. However, the difficulty of the typed text, its ‘typability’, 17 

can impact typing performance, introducing variability that is unrelated to skill. To ensure valid 18 

comparisons across individuals, time, and conditions, it is crucial to control for this variation in text 19 

difficulty. To address this issue, we develop the Typability Index, a model that predicts the relative typing 20 

speed of text. Building on earlier attempts to quantify typing difficulty from the 1940s, we create a more 21 

advanced typability model using the 136M Keystrokes dataset (Dhakal et al., 2018) where over 168,000 22 

participants each typed 15 sentences from a pool of 1,525 items. Through random forest regression, 23 

we identify 8 key predictors from 30 candidate variables, including the proportion of lowercase letters, 24 

word frequency, and syllables per word. Trained on 80% of the dataset and validated on the remaining 25 

20% and a novel dataset, the Typability Index explained 68-88% of the variance in typability, compared 26 

to the 34% explained by an earlier leading model (Bell, 1949). To promote higher control in typing 27 

research and assessments, we introduce a web-based tool to facilitate accurate measurement and fair 28 

comparisons of text typability. 29 

 30 

Keywords: typing, keyboarding, typing difficulty, typability, experimental control, text stimuli, Shiny app.  31 
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Why control for typing difficulty? 32 

Imagine that you are taking a typing test for a job as a transcriptionist. You have consistently practiced 33 

your skill under anticipated test conditions and are confident that you can pass. However, during the 34 

test, you find yourself typing much slower than expected. While nerves could play a part, there could 35 

also be another reason: the text you have been given is unusually difficult to type. The degree of 36 

‘typability’ of a given set of text can impact not only performance on typing tests but also outcomes of 37 

research studies that involve typing tasks. 38 

 39 

The current research focuses specifically on copy typing tasks, where participants transcribe visually 40 

presented text rather than generating text themselves. Typing performance in copy tasks may differ 41 

from that in composition tasks, due to the reduced linguistic and semantic processing demands (Bonin 42 

et al., 2015, in handwriting). Nonetheless, even within copy tasks, the typability of the presented text 43 

remains a critical yet often overlooked factor. 44 

 45 

Many experimental paradigms involve participants typing on a keyboard, often to compare performance 46 

across conditions. Some studies focus directly on the typing process, such as comparing typing training 47 

programmes (Donica et al., 2019), comparing typing on different input devices (Barrett & Krueger, 48 

1994), or examining how factors like treadmill walking speed affect typing (Funk et al., 2012). Typing 49 

behaviour is also frequently used as a proxy to investigate unrelated factors, such as the effects of 50 

emotional induction (e.g., typing happy vs. sad text; Maalej et al., 2022), or as a tool to assess recall of 51 

memorised words, for example in dual-task paradigms (Rossi, 2023). 52 

 53 

In these experiments, varying text may be presented depending on the condition, either as an 54 

independent variable or to reduce practice effects from repeated text (e.g. Ruan et al., 2018). However, 55 

it is well-established that certain features of the text itself can significantly impact typing behaviour 56 

(Salthouse, 1984, 1986). For example, the frequency of letter pairs (bigrams) in the language (e.g. “th” 57 

vs “tv”; Behmer & Crump, 2017; Dvorak et al., 1936; Shaffer & Hardwick, 1969) and whether bigrams 58 

are likely to be typed with single or separate fingers or hands (Dhakal et al., 2018; Gentner, 1983), can 59 

influence typing speed. Therefore, comparisons between conditions may not be valid unless the relative 60 

ease of typing, or typability, is appropriately accounted for. 61 

 62 

Failing to adequately control for typability has the potential to lead to at least three types of issues. First, 63 

researchers might find artificial differences between conditions if, for example, the ‘happy’ text set 64 

happens to be easier to type than the ‘sad’ text set. This could create a misleading impression that 65 

emotional content affects typing speed when the real cause was the text’s inherent typability. Second, 66 

not accounting for typability might mask true differences between conditions. For instance, if typing 67 

‘happy’ text actually decreases typing speed but the text itself happens to be more typable, the true 68 

impact of emotional content could be obscured. Third, even when typing behaviour is not compared 69 

between conditions, inadvertently selecting text with extremely low (or high) typability can introduce 70 

floor and ceiling effects. Extremely easy or hard text may compress typing speed scores, making it 71 

difficult to accurately capture and compare typing abilities. These issues could undermine the validity 72 

and reliability of conclusions drawn from research involving typing.  73 

 74 

How is typability currently controlled for? 75 

Several text stimuli banks are available for typing-related research (e.g., Graff, David & Cieri, 76 

Christopher, 2003; MacKenzie & Soukoreff, 2003; Vertanen & Kristensson, 2011), each positioned 77 

differently on the continuum between highly controlled and representative of real-world text. Some are 78 

specifically developed to investigate or compare text entry on various devices, a key focus in Human-79 

Computer Interaction. For example, MacKenzie and Soukoreff's (2003) phrase set includes text with 80 

minimal use of capitals and punctuation to standardise device comparisons, addressing variations in 81 

the steps required to insert these characters. Similarly, the InputLog multilingual typing test (Van Waes 82 

et al., 2019) requires no capitals or punctuation, though is a step forward in standardisation across 83 

languages. In contrast, other banks may contain naturally typed sentences that require adjustments for 84 
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standardisation. For example, Dhakal et al. (2018) selected items from two such corpora (Graff, David 85 

& Cieri, Christopher, 2003; Vertanen & Kristensson, 2011) and standardised sentence length as well 86 

as the number of capital letters and punctuation marks. While these adjustments aimed to manage text-87 

related variables for consistency within their study, particularly in relation to international keyboard 88 

layouts, they were not specifically intended for comparing typing across different experimental 89 

conditions. 90 

In studies that compare typing performance under different conditions, researchers may employ 91 

meticulous and labour-intensive strategies to address typability. For example, Pinet and Martin (2023) 92 

created two lists of 30 pseudowords and carefully matched them on features such as bigram frequency, 93 

hand/finger usage, and the number of letters. We employed a similar approach in upcoming 94 

publications, but while these methods yield precise control, the time and expertise required make them 95 

impractical for many research contexts. This complexity may explain why typability is not always 96 

adequately controlled for, highlighting the need for a Typability Index that consolidates the relevant 97 

text/key attributes that affect typing time into a single value.  98 

Practical research applications of a Typability Index 99 

A Typability Index would provide substantial benefit for research by offering enhanced control over the 100 

selection of text stimuli in research related to typing. It would enable researchers to fine-tune text 101 

selection for studies on typing behaviour or when typing serves as a proxy for other variables. For 102 

example, it could guide the selection of texts to ensure comparable typability across conditions, or 103 

differentiate texts by difficulty level. Additionally, typability scores could be integrated as a covariate in 104 

analyses where the text has already been selected or when other text features must be prioritised, 105 

similarly improving the signal to noise ratio around the true effects being studied. 106 

 107 

Another key benefit of a Typability Index is the potential to reduce or remove the need for stringent, 108 

possibly artificial restrictions on text characteristics during stimuli selection, such as sentence length 109 

and the number of punctuation marks. Instead, researchers could compile a diverse text set varying in 110 

length, punctuation, capital letters and other characteristics, and apply the Typability Index to match or 111 

contrast the typability between text set groups. This approach would enable the inclusion of more 112 

natural text in studies, rather than limiting choices to a predefined subset. 113 

 114 

Previous attempts: ‘Typewritability’ 115 

In the 1940s and ‘50s, there was interest in enhancing the reliability of typewriting assessments to 116 

accurately reflect changes in skill level. These efforts sought to quantify the so-called (at the time) 117 

‘typewritability’ and were primarily composed of unpublished theses and dissertations, with some 118 

attempts to construct a typing difficulty index based on one or more predictors (West, 1957). Bell (1949) 119 

constructed a Difficulty Index using 38 100-word excerpts typed by 89 typewriting students. The index, 120 

based on syllables per word, keystrokes per word, and percentages of frequently used words, was: 121 

 122 

𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 7.81 + 3.49 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑 123 

+ 0.08 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑢𝑠𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 − 2.44 𝑘𝑒𝑦𝑠𝑡𝑟𝑜𝑘𝑒𝑠 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑 124 

 125 

There are some stark differences between this typing difficulty index from the ‘40s and modern methods 126 

of controlling for typability. Factors like syllable count and word frequency, once integral to controlling 127 

for typability, are often overlooked in contemporary studies. Conversely, modern research tends to 128 

control for elements like bigram frequency and hand-finger usage, which were not yet considered in 129 

earlier indices. This contrast raises the concern that modern methods may sacrifice important predictors 130 

of typability for simplicity, potentially underestimating or ignoring key factors that affect typing 131 

performance. 132 

 133 
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Requirements for a successful Typability Index 134 

For a modern Typability Index to be effective and enduring, there are arguably three important criteria 135 

it should meet. 136 

1. Consider a broad range of predictor variables 137 

With advancements in research and computational power, we can now consider a broader range of 138 

predictors for typing difficulty than those identified by Bell (1949) and colleagues. The revival of typing 139 

research in the 1980s, driven by the advent of word processors and personal computers, explored 140 

various factors affecting typing at the inter-key interval level (i.e., the time between two key presses), 141 

as reviewed by (Salthouse, 1984, 1986). We will provide an overview of the known text/key attributes 142 

influencing typing speed across different eras of research and offer a thematic classification to ensure 143 

a broad range of predictor variables are considered when constructing the modern Typability Index.  144 

2. Utilise suitable datasets for model training, testing and generalisation 145 

It is preferable that high quality datasets are used when training, testing, and assessing the 146 

generalisation of a Typability Index model. For example, training data should make use of a wide range 147 

of text items, each typed by a large number of participants at various typing speeds. Unfortunately, 148 

many existing typing datasets lack accessibility, text variety, or clarity in what text was actually 149 

presented. However, the 136 Million Keystrokes Dataset (Dhakal et al., 2018) provides a 150 

comprehensive resource that does not suffer from these shortcomings. This dataset includes data from 151 

over 168,000 participants who each typed 15 sentences from a pool of 1,525 items, ensuring text 152 

variety, robust sample sizes and a range of skill levels per item. We will use this dataset to train and 153 

test the Typability Index. Additionally, we will validate generalisability with a separate and novel dataset. 154 

The present authors previously collected data from around 100 volunteers, who each typed 15 movie 155 

quotes from the 1980s. This dataset will be described in more detail later and is openly available 156 

alongside this paper. 157 

3. Provide a user-friendly tool  158 

Finally, for a modern Typability Index to be successful, it should be user-friendly and accessible. In the 159 

latter part of this paper, we will introduce the Typability Index web app. This Shiny app allows users to 160 

upload novel text and receive the predicted typability scores. This data is also be available for over 161 

1,000 sentences from the 136 Million Keystrokes Dataset (Dhakal et al., 2018), listing calculated rather 162 

than predicted typability scores. In addition, users can create text sets that are selected to have the 163 

same (or different) mean typability. 164 

 165 

Research Aim 166 

In this paper, we introduce the Typability Index, designed to address the challenge of controlling for 167 

typing difficulty in research by predicting the relative typing speed, or typability, of input text. By 168 

employing advanced regression techniques and leveraging a broad range of candidate predictors and 169 

diverse datasets, we aim to offer a reliable and practical measure of typability. Our goal is to enable 170 

researchers to enhance their experimental control, either by ensuring the preferred typability levels 171 

across conditions or by incorporating typability as a covariate in statistical analyses. 172 

Specifically, we develop the Typability Index model using random forest regression for feature selection 173 

and multiple linear regression for model building. We evaluate its predictive accuracy using both a 174 

subset of the Dhakal dataset and an entirely independent dataset, with the model explaining a 175 

substantial amount of variance in both cases. We also compare the Typability Index to Bell's (1949) 176 

Difficulty Index to demonstrate its improved predictive performance. Finally, we introduce the Typability 177 

Index web app, providing an accessible interface for researchers to apply the tool easily and effectively. 178 

 179 
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Developing and Testing the Typability Index 180 

Identifying the main text/key attributes influencing typability 181 

In developing the Typability Index, we conducted a wide-ranging review of the text/key attributes that 182 

influence typing behaviour. This was based on prior empirical evidence of relevance to typing speed or 183 

effort, theoretical links to motor, cognitive, or linguistic processes involved in typing, and practical 184 

feasibility of measurement, i.e. ability to automate calculation. Table 1 presents a summary of the most 185 

influential attributes identified across the literature, providing rationale and supporting references. The 186 

table also includes potential influences that have not been, to our knowledge, previously investigated. 187 

 188 

While it is not feasible to include every text/key attribute ever explored in relation to typing speed, we 189 

have made a deliberate effort to cover a broad spectrum of influences on typability that capture motor, 190 

cognitive, and linguistic dimensions. To this end, we have categorised the influences into five 191 

interrelated themes that represent different aspects of typing behaviour, each of which is known or 192 

hypothesised to impact typability: 193 

 194 

• Text Processing (TP): How easily text can be understood, remembered, and re-read during typing, 195 
e.g. text with fewer syllables is generally typed faster than those with more syllables. 196 

• Frequency of Use (FoU): Relating to familiarity or practice, due to high occurrence levels, e.g. 197 
common letter pairs are typed faster than less frequent ones. 198 

• Layout (L): Relating to the physical arrangement of keys on the keyboard, e.g. numbers, being 199 
further from the central area, are typically typed more slowly than other characters. 200 

• Biomechanical (B):  Relating to the physical mechanics of typing, e.g. letter pairs typically typed 201 
with the same finger, such as ‘ee’ or ‘de’, may be typed slower than those typically typed with 202 
different hands, such as ‘ei’. 203 

 204 

Table 1 Text/key attributes affecting typability, including classification and rationale 205 

 206 
Text/Key 
Attribute 

Description of metric Rationale Theme(s) 

Attributes present in early typewritability indices (e.g., 1940s, 1950s) 

Keystrokes per 
Word 

Total keystrokes required, divided by total 
words*. 

Shorter words are typically typed at a  
faster rate than longer words (Bell, 1949).  

TP 

Syllables per 
Word 

Total syllables, divided by total words*. More syllables may slow text processing 
and typing (Bell, 1949). 

TP 

Word Frequency Percentage of top-1000 English words, 
following Bell (1949). 

High-frequency words may be processed 
and typed faster due to familiarity/ practice 
(Bell, 1949). 

TP, FoU 

Total Keystrokes Total keystrokes required, including shift. Longer text may be typed slower due to 
pausing to reread (West, 1957). 

TP 

Total Words Number of words in the text, identified as 
sequences of characters separated by 
spaces. 

Text with more words may be typed slower 
due to increased processing time (West, 
1957). 

TP 

Punctuation Marks Count of punctuation marks, e.g. , . ? ! Less frequent, typically further away, and 
may require additional keystrokes (e.g. 
shift; West, 1957). 

FoU, L 

Uppercase letters Count of uppercase/capital letters. Requires shift or caps lock, which is used 
less frequently (West, 1957). 

FoU, L 

Attributes since found to affect typing behaviour (e.g., 1980s) 

Hand 
Categorisation 

Number of bigrams (character pairs) that 
are: character repetitions; finger repetitions; 
hand repetitions; different hands 

Different categorisations are typically 
typed at different rates (Salthouse, 1984, 
1986). 

B, L 

Bigram Frequency Average frequency of letter pairs in English. High-frequency bigrams may be typed 
faster due to familiarity/ practice 
(Salthouse, 1984, 1986). 

FoU 

    

Right-Side Keys Proportion of characters’ keys on the right 
side of the keyboard.   

Right hand is typically faster for most 
users (Dhakal et al., 2018). 

L, B 

    

Spaces Count of spaces. Spaces are generally typed faster, often by 
a thumb (Ostry, 1983). 

L, FoU, B 
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Non-Dictionary 
Words 

Number of words not recognised by 
standard dictionaries, including non-words, 
highly technical terms and typographical 
errors. 

Likely typed slower due to unfamiliarity 
and text processing difficulty (Salthouse, 
1984). 

TP, FoU 

Additional proposed attributes, not investigated previously to our knowledge 

Numbers Count of numerical digits. Less frequent and positioned away from 
the vertical centre. 

L, FoU 

Distance from 
Home Row 

Average key distance from middle row of 
letter keys. 

Greater distance may slow typing speed. L 

 207 
Notes: Themes are Text Processing (TP), Frequency of Use (FoU), Layout (L), and Biomechanical (B). *The number of words is 208 
customarily calculated as the number of characters, including spaces, divided by 5, which is used here unless stated otherwise. 209 
More specific derivations of the predictors considered for the model are presented in Appendix 1. 210 

 211 

Method 212 

Training and Testing Dataset 213 

Here, we provide a summary of the pertinent features of Dhakal et al.’s (2018) 136 Million Keystrokes 214 

dataset, but refer readers to the original paper for more details. As described in more detail later, the 215 

model was trained on 80% of this dataset and tested on the remaining 20%. 216 

 217 

Participants. Dhakal et al.’s (2018) participants comprised 168,960 volunteers (52.7% female), 218 

with a mean age of 24.5 years (SD = 11.2) and 75% were between 11 and 30 years old (full age range 219 

not stated). Participants came from 218 countries, with 68% from the US and 85% native English 220 

speakers. Participants’ mean typing speeds ranged between 4–158 words per minute (wpm), with a 221 

mean of 51.56 wpm (SD = 20.20 wpm). 222 

 223 

Materials. Dhakal et al.’s (2018) set of 1,525 English sentences (of which we used 1,493, see 224 

Appendix 2) were sourced from the Enron Mobile Email corpus (Vertanen & Kristensson, 2011) and 225 

English Gigaword Newswire corpus (Graff, David & Cieri, Christopher, 2003), with certain selection 226 

criteria applied by the authors. This criteria was a minimum of three words, a maximum of 70 characters, 227 

a maximum of four numbers, and only simple punctuation marks (, . ! ? ’). These sentences included, 228 

for example, “1.5 million visitors will flood Atlanta each day of the Olympics.”, “Kim, here's the PSCO 229 

website address.”, and “What happened to the guy with the paper to sign?”. Regarding devices, 98% 230 

of participants typed on either a laptop-integrated keyboard or standalone keyboard, with the remainder 231 

using an on-screen/touch keyboard or small physical keyboard.  232 

 233 

Procedure. Each participant typed 15 sentences, which were randomly selected from the bank 234 

of 1,525 sentences described above. Each presented sentence remained visible while typing, with 235 

produced text entered into a standard text field immediately below. Participants were instructed to read 236 

and remember the sentence, then type it as quickly and as accurately as possible. No restrictions were 237 

placed on the text field, meaning participants were able to use backspace and their typing was not 238 

constrained to only correct characters (i.e. they could continue entering text if they made a mistake). 239 

Participants pressed enter to submit their response. 240 

 241 

Preprocessing. To arrive at the sample described above, Dhakal et al. (2018) excluded 242 

participants who had not completed all 15 sentences, their demographic information, and a 243 

questionnaire about their typing experience/strategy. Participants must have also achieved an error rate 244 

of less than 25%. Participants were excluded if there were likely distractions or technical problems, 245 

identified as any inter-key intervals (duration between consecutive keypresses) above 50 seconds. Of 246 

the 168,960 remaining participants, each of the 1,525 sentences (of which we will use 1,418; Appendix 247 

2) were typed by 1,488–1,809 participants in the final dataset.  248 

Generalisation Dataset 249 

To extend our out-of-sample testing, we assessed generalisability using a previously unpublished 250 

dataset collected by the lead author during unrelated pilot testing. This dataset was gathered through a 251 
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gamified typing task that was promoted for the ESRC Festival of Social Science 2020 (UK), which 252 

provided participants with personalised statistics on their typing performance and insights into the 253 

benefits of efficient typing.  254 

 255 

Participants. The group comprised 98 adult volunteers, with a mean age of 32.81 years (SD 256 

10.43) and an age range of 19–62 years. Participant gender was not recorded. Participants’ mean 257 

typing speeds ranged between 16–102 wpm, with a mean of 64.26 wpm (SD = 17.03 wpm). A total of 258 

330 participants began the task, but the current sample is limited to those who consented to have their 259 

data collected (which was not recorded otherwise) and those who completed the 15 sentences. 260 

 261 

Materials. There were 15 sentences, which were quotations from popular movies from the 262 

1980s. These sentences included, for example, “Where we’re going, we don’t need roads!” (Back to the 263 

Future, 1985) and “Back off man, I’m a scientist.” (Ghostbusters, 1984). The full set of sentences is 264 

presented in Supplementary Material B.  265 

 266 

Procedure. Participants typed the 15 sentences in a random order. The presented sentence 267 

was displayed in the centre of the screen in the font OCR A Extended, wrapping to multiple lines as 268 

necessary. Prior to typing, the first character was displayed in white, with upcoming characters in pink. 269 

As participants typed a correct character, the typed character became blue, and the next character to 270 

be typed became white. If an incorrect character was entered (case sensitive), there was no visual 271 

feedback, and the participant could not progress until the correct character was entered (no 272 

backspacing was required). Entering the final character correctly led to post-trial feedback in wpm, 273 

meaning pressing ‘Enter’ was not required to submit responses. Thus, the procedure differed slightly 274 

between the tasks used for the main test/train dataset and the generalisation dataset. 275 

 276 

Variables 277 

Outcome Variable: Typability 278 

We first calculated the typing speeds for each participant's sentences in words per minute (wpm). 279 

Following standard practice, the number of words was determined by dividing the total number of 280 

characters in the string, including spaces, by five (Wobbrock, 2007). The typing time was defined as 281 

the interval between the first key press and last key release of the sentence, including the final 282 

punctuation mark. Therefore, we divided the number of ‘words’ by the total time in seconds and 283 

multiplied this value by 60, yielding the gross wpm, which was not adjusted for errors. 284 

 285 

Typability, or relative typing speed, was first calculated within each participant as the z-scored typing 286 

speed of each sentence they typed. Specifically, the z-score was computed as 𝑧 = (𝑥 −  𝜇)/𝜎, where 𝑥 287 

represents the typing speed for a given sentence, 𝜇 is the participant's mean typing speed across the 288 

15 sentences they typed, and 𝜎 is the standard deviation of their typing speed across these sentences. 289 

The z-score of the typing speed is a useful measure because it is independent of participant’s baseline 290 

typing speeds and is appropriate due to the relatively normal nature of the underlying distributions. The 291 

z-score indicates how much faster or slower the participant typed each sentence compared to their 292 

average, expressed in standard deviation units. Subsequently, the mean z-score for each sentence 293 

was calculated across the 1,488 to 1,809 participants who typed it.  294 

Candidate Predictor Variables  295 

The 14 text/key attributes identified in Table 1 were operationalised into a set of candidate predictor 296 

variables. For some attributes, multiple calculation methods were possible, resulting in more than one 297 

variable derived from a single attribute. For example, character type proportions could be calculated 298 

either as the proportion of total characters (e.g., proportion of characters that are lowercase) or as the 299 

proportion of non-space characters (e.g., proportion of non-space characters that are lowercase), to 300 

account for the distinct role that spaces play in typing (Salthouse, 1984). In other cases, a single 301 
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candidate predictor variable was deemed sufficient for an attribute, such as syllables per word. This 302 

process produced a total of 30 candidate predictor variables, detailed in Appendix 1. 303 

 304 

Analysis 305 

We removed 32 presented sentences that contained grammatical or typographical errors (see Appendix 306 

2). To assess the potential influence of typing errors, sentence-level accuracy was calculated as 1 – 307 

(Levenshtein edit distance / presented sentence length), where the Levenshtein edit distance 308 

represents the number of insertions, deletions, or substitutions required to transform the typed sentence 309 

into the presented sentence (Levenshtein, 1966). The mean accuracy rate was then computed for each 310 

sentence. Accuracy was uniformly high: the sentence with the lowest mean accuracy was typed with 311 

97.53% accuracy, and the median sentence had 99.08% accuracy. The mean accuracy across 312 

sentences was 99.04% (SD = 0.23%). As all sentences were typed with minimal deviation from the 313 

presented sentence, no sentences were excluded based on error rate. The remaining 1,493 sentences 314 

were randomly assigned to a training set (80%, n = 1,194) or a test set (20%, n = 299). 315 

Model Training 316 

With the typability outcome variable and the candidate predictors calculated for the 1,194 training 317 

sentences, a three-stage feature selection process using the {randomForest} R package was 318 

undertaken to determine the final predictors for the model. Details of the random forest specifications 319 

can be found in Appendix 3. 320 

 321 

Stage 1: Identifying the most explanatory calculation methods. A random forest regression 322 

was first conducted to determine which calculation method best captured each text/key attribute (e.g., 323 

proportion of lowercase characters vs. proportion of lowercase non-space characters). All 30 candidate 324 

predictor variables were entered, but attention was limited to those with more than one calculation 325 

method. Importance was determined by the increase in mean squared error (% Inc MSE) when a 326 

variable was excluded during the random forest process. The calculation method with the highest % Inc 327 

MSE, indicating the greatest impact on prediction accuracy, was selected as the preferred method. 328 

Other calculations for the same attribute were excluded from further stages.   329 

 330 

Stage 2. Addressing multicollinearity and singularity. A second random forest regression 331 

was run with the 17 remaining candidate predictors. The % Inc MSE plot was used to determine the 332 

optimal number of predictors based on the inflection point, selecting 10 for the multiple regression 333 

model. Variables with a Variance Inflation Factor (VIF) exceeding 10 indicated multicollinearity, while 334 

singularity occurred when candidate predictors had linear relationships (e.g., total keystrokes = number 335 

of characters / number of words), making it impossible to estimate unique coefficients. To resolve these 336 

issues, the least important candidate predictor(s) (in terms of % Inc MSE) in each problematic group 337 

was removed. 338 

 339 

Stage 3. Selecting the final predictors. A third random forest regression was performed to 340 

determine the ideal number of predictors based on the % Inc MSE plot. From the remaining 15 341 

predictors identified in Stage 2, nine were selected as optimal at the inflection point and entered into a 342 

multiple regression model. Multicollinearity was reassessed, and any non-significant predictors were 343 

excluded, leading to a final model with eight significant predictors. Given the large sample size, the p-344 

value threshold was deemed appropriate to detect meaningful contributions to typability. 345 

Model Validation: Testing and Generalisation 346 

Actual typability scores and predictor variables were computed for the remaining 20% of sentences (n 347 

= 299) in the Dhakal dataset, representing the testing dataset. Predicted typability scores were then 348 

generated by applying the equation from the trained model to the sentences in this testing set, and 349 

these predictions were compared to the actual typability scores. The same procedure was followed for 350 

the generalisation dataset. 351 
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 352 

Results 353 

Typability Scores 354 

The distribution of typability scores in the training dataset is shown in Figure 1. Table 2 provides 355 

illustrative examples of sentences for typability scores of 0, ±0.5, and ±1, along with a guide for typability 356 

score interpretations.  357 

 358 
Fig. 1 Distribution of typability scores in the training dataset. 359 

 360 

Table 2 Interpretations and example text for different typability scores 361 

Typability Interpretation Example Text 

–1 
1 SD slower 
than average 

• The Senate should approve a 14-year-old treaty. 

• Suite 2750 in Downtown Denver. 

–0.5 
0.5 SD slower 
than average 

• He started Sunday's game and had two catches for 70 yards. 

• I'll ask, he just came by. 

0 
Typed at one’s 
average speed 

• I don't have the distraction of taking care of Mimi. 

• Do you want to fax it to my hotel? 

0.5 
0.5 SD faster 
than average 

• Let me know if this is possible or where else I might find these. 

• The wind was strong and gusting. 

1 
1 SD faster 
than average 

• I might have something at the office. 

• Thanks for sending this. 

 362 

The Typability Index 363 

Following the three-stage feature selection process using the training dataset, 8 predictor variables 364 

were selected and entered into the multiple linear regression model. This model (F(8, 1125) = 416.50, p < 365 

.001), with performance summarised in Figure 2A and detailed in Table 3, accounted for approximately 366 

74% of the variance in typability (Adjusted R² = 0.736), with prediction accuracy given by a Root Mean 367 

Squared Error (RMSE) of 0.222.  368 

 369 

 370 
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 371 
Fig. 2 Predicted vs actual typability scores across datasets. The model was trained on the training 372 

dataset (A) and then evaluated on the testing (B) and generalisation (C) datasets to assess its predictive 373 

performance and generalisability. Light grey diagonal lines represent identity lines, indicating a perfect 374 

relationship between predicted and actual scores. Black lines denote linear regression lines between 375 

the predicted and actual scores, with dark grey bands representing 95% confidence intervals. 376 

 377 

Table 3 The 8 predictor variables selected for the Typability Index 378 

Predictor  Theme(s) β B SE B t p 

Proportion of lowercase non-space 
characters 

L, FoU 0.533 4.694 0.207 22.68 < .001 

Total keystrokes TP –0.433 –0.012 <0.001 –22.34 < .001 

Syllables per word TP –0.300 –0.431 0.028 –15.22 < .001 

Proportion of words within high-
frequency words 

TP, FoU 0.266 0.693 0.052 13.35 < .001 

Proportion of symbol non-space 
characters 

L, FoU –0.220 –4.037 0.433 –9.32 < .001 

Bigram frequency FoU 0.192 <0.001 <0.001 12.49 < .001 

Proportion of characters within 
non-words 

TP, FoU –0.157 –1.665 0.163 –10.23 < .001 

Proportion of right-side keys L, B 0.100 0.462 0.076 6.08 < .001 

(Intercept) 
  

–4.022 0.193 –20.89 < .001 

Notes. Themes, as described above Table 1, are Text Processing (TP), Frequency of Use (FoU), Layout 379 

(L), and Biomechanical (B). β represents the standardised beta coefficient, while B denotes the 380 

unstandardised beta coefficient and SE is standard error. Positive β and B values represent typing ease 381 

(faster than one’s own average) while negative values suggest difficulty (slower than average). 382 

 383 

Validation: Testing and Generalisation 384 

The trained model was evaluated on the testing dataset, constituting the remaining 20% of the Dhakal 385 

et al. (2018) dataset. The model explained approximately 68% of the variance in this separate dataset 386 

(Adjusted R² = 0.682), maintaining a similar predictive error rate (RMSE = 0.222). To assess external 387 

generalisability, the model was then applied to a novel generalisation dataset collected by the current 388 

authors, resulting in an Adjusted R² of 0.884 and RMSE of 0.399. This higher RMSE is due to a 389 

consistent underestimation of typability in this generalisation dataset. Figure 2 illustrates the relationship 390 

between the predicted and actual typability scores across the training, testing and generalisation 391 

datasets. 392 

Comparison to Bell’s (1949) Model 393 
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The newly developed Typability Index was compared to Bell’s (1949) model, which, as described in the 394 

introduction, includes three of the ten predictors ultimately selected for the Typability Index. To ensure 395 

a fair comparison, the predictor estimates from Bell’s model were refit to the present training dataset. 396 

The refitted Bell model (F(3, 1190) = 238.10, p < .001), with performance summarised in  Figure 3 and 397 

detailed in Table 4, explained approximately 37% of the variance in typability (Adjusted R² = 0.374; 398 

RMSE = 0.343). 399 

 400 

 401 
Fig. 3 Predicted vs. actual typability scores for the Bell (1949) model, based on the training dataset. For 402 

additional details and context, refer to Figure 2. 403 

 404 

Table 4 A model of typing difficulty limited to Bell’s (1949) predictors 405 

Predictor β B SE B t p 

Proportion of words within high-
frequency words 

0.479 1.249 0.075 16.55 < .001 

Keystrokes per word -0.236 -0.114 0.021 -5.53 < .001 

Syllables per word 0.051 0.073 0.059 1.24 .215 

(Intercept)  -0.462 0.123 -3.76 < .001 

 406 

Although these two models are not nested, making an ANOVA comparison invalid, a comparison of 407 

Akaike Information Criterion (AIC) shows a clear advantage for the Typability Index. The Typability 408 

Index achieved a substantially lower AIC (–186.34), compared to the Bell model (839.92) and an 409 

intercept-only model (1395.37), indicating a markedly better fit despite the increased model complexity. 410 

This supports the conclusion that the Typability Index provides a substantial improvement over prior 411 

approaches to estimating typing difficulty. 412 

 413 

The Typability Index Web App 414 

The Typability Index is available as a user-friendly Shiny App (https://emily-a-williams.shinyapps.io/the-415 

typability-index-web-app/), offering an interactive interface for calculating typability scores and 416 

generating suggested groupings of text stimuli. Users can upload novel text as a .txt file (as shown in 417 

Figure 4) or access pre-calculated typability scores for the Dhakal et al. (2018) sentence set. 418 

 419 

https://emily-a-williams.shinyapps.io/the-typability-index-web-app/
https://emily-a-williams.shinyapps.io/the-typability-index-web-app/
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420 
Fig. 4 An example of novel sentences uploaded along with their predicted typability scores. The panel 421 

displays options for suggesting groupings based on grouping type, number of groups, and group size. 422 

 423 

The app provides options for grouping text stimuli based on typability scores, allowing users to select 424 

from two types of groupings: 425 

 426 

• Matched Groups: This option aims to create groups with comparable mean typability scores. This 427 

is done by ordering items by typability and then assigning them sequentially to groups in a round-428 

robin fashion. When group size is specified, this selection is centred around the median, where item 429 

density is typically highest (assuming a normal distribution). 430 

• Divergent Groups – Simple: This option aims to create groups with distinct typability levels. For 431 

example, to form an "easy" set and a "hard" set, items are ordered by typability, then the specific 432 

number of items from the top and the bottom are assigned to different groups. For more than two 433 

sets, the middle groups are centred around the relevant quantiles, i.e., the 50th quantile (median) 434 

for three groups, and the 25th and 75th quantiles for four groups, etc. 435 

• Divergent Groups – Clusters: This option also creates groups with distinct typability levels, but 436 

prioritises balancing the variance across groups. A specified number of clusters is first generated, 437 

based on the desired number of groups. Items are then allocated to groups by selecting those 438 

closest to each cluster centre, helping to ensure that each group is both distinct in typability and 439 

reasonably consistent in spread across groups. 440 

 441 

These algorithms for group suggestions are designed to be simple for intuitiveness, but users are 442 

welcome to create custom groupings after exporting typability scores if they prefer. When using the 443 

suggested groupings, we encourage users to reflect on the underlying typability distributions of the text 444 

items and the output groupings, particularly with small samples of user-input text. The app provides a 445 

plot to help users visualise the distribution and composition of each group for this purpose. Fig. 5 shows 446 

a use case of assigning 20 four-letter words to two different groups based on matched typability. In this 447 

case, users should input each word on a separate line in the input .txt file, without a header line. Finally, 448 

typability scores and optional group assignments can be downloaded as a .csv file. 449 

 450 
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 451 
Fig. 5 Suggested grouping for 2 groups of 10 four-letter words. Note that the user can scroll down to 452 

see the remaining group assignments, and download as a .csv file. 453 

 454 

General Discussion 455 

Controlling for typability is essential in experimental research involving typing, as several text/key 456 

attributes are known to significantly influence typing behaviour (see Table 1). Many studies require 457 

participants to type under different conditions, but without adequately accounting for typability, 458 

comparisons between these conditions may not be fair. This could result in false positives, false 459 

negatives, and even when not comparing between conditions, floor and ceiling effects. The Typability 460 

Index was developed to simplify and enhance experimental control in typing-related research by 461 

accounting for the most important text/key attributes influencing typing difficulty within a single metric. 462 

 463 

Creation and Validation of the Typability Index 464 

We developed the Typability Index as a multiple regression model, which was trained on a randomly 465 

selected 80% of the sentences from the 136 Million Keystrokes Dataset (Dhakal et al., 2018). Our 466 

rigorous three-stage feature selection process identified eight key predictor variables (see Table 3), 467 

which collectively explain approximately 74% of the variance in typability with high prediction accuracy 468 

(R² = 0.736, RMSE = 0.222). The top three most influential predictors were the proportion of non-space 469 

characters that were lowercase letters, total keystrokes, and syllables per word. 470 

 471 

The Typability Index showed substantial improvement when compared to Bell’s (1949) model (R² = 472 

0.374, RMSE = 0.343), which contained three predictors and was fitted using the same training dataset. 473 

The AIC values further confirmed the superior fit of our model, demonstrating its enhanced predictive 474 

power and practical utility, even when penalising for additional predictors.  475 

 476 

Validation of the Typability Index using the testing dataset maintained strong predictive power (R² = 477 

0.682, RMSE = 0.222). Furthermore, the model generalised well to a novel dataset, collected under 478 

different conditions by different authors, explaining approximately 88% of the variance (R² = 0.884). 479 

While the predictive error increased in this separate and significantly smaller dataset (RMSE = 0.343), 480 

where typability was consistently underestimated, this reflected a shift in the intercept while the slope 481 

remained close to that of the unity line. This suggests a difference in the mean typability of the training 482 

and generalisation datasets (Figure 2), perhaps due to the familiarity of the movie quotes in the latter. 483 

However, the relative typability of sentences within each set remained well-predicted, which 484 

demonstrates consistent relative performance. Therefore, we recommend that researchers avoid 485 

mixing actual typability scores (of sentences in the training dataset) with predicted typability scores 486 

(from any novel text input). Instead, if researchers wish to select text stimuli on the basis of typability 487 
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scores, they should depend only upon predicted or actual typability scores, not a mix of both. Overall, 488 

this validation shows that the Typability Index is robust and generalisable beyond the training data. 489 

 490 

Selected Predictors of Typability 491 

Each of the eight predictors in the Typability Index contribute uniquely to typing difficulty. In order of 492 

importance, the predictors that increased typability (making typing easier) are the proportion of non-493 

space characters that are lowercase letters, the proportion of words within high-frequency words, the 494 

average frequency of each bigram in the language, and the proportion of right-side keys. Conversely, 495 

the predictors that lowered typability (making typing more difficult) are the total number of keystrokes, 496 

the average syllables per word, the proportion of non-space characters that are symbols, and the 497 

proportion of characters that inhabit words without entries in English dictionaries (US, UK, CA, or AU). 498 

These predictors encompass a wide range of cognitive, linguistic, biomechanical, and motor processes, 499 

providing a comprehensive assessment of the text/key attributes that influence typing performance. 500 

 501 

It is worth noting that some attributes that we expected to be predictive of typing difficulty were not 502 

selected for the final model during the feature selection process. The omission of the bigram finger/hand 503 

relations is particularly surprising, given the well-established differences in inter-key intervals for these 504 

bigram types (Dhakal et al., 2018; Gentner, 1983; Salthouse, 1984, 1986). This omission may be due 505 

to the fact that the relationship between the bigram types is not stable across skill level. That is, slower 506 

typists are typically faster at bigrams that constitute character repetitions than hand alternations, 507 

whereas this pattern is reversed in faster typists (Dhakal et al., 2018). Since the Typability Index was 508 

designed to be applicable across a wide range of typing speeds, with training data encompassing 509 

participants who typed between 4 and 158 words per minute, other predictors may have been more 510 

descriptive, generalisable and relevant for representing the diverse typing population. 511 

 512 

The Interactive Typability Web App 513 

In addition to developing the Typability Index, we developed an accessible tool to allow researchers to 514 

easily apply it to their research. We created a web app (https://emily-a-williams.shinyapps.io/the-515 

typability-index-web-app/) that enables users to upload novel text or use Dhakal et al.’s (2018) 516 

sentences, calculate typability scores, visualise results, and download the typability scores and optional 517 

suggested groupings. Users can also create custom groupings after exporting typability scores if 518 

preferred. 519 

 520 

Practical Applications of the Typability Index 521 

The Typability Index and the associated web app provide several practical advantages for researchers 522 

of typing behaviour. The app enables more controlled sentence selection, allowing researchers to 523 

create text sets that (a) exhibit similar typability levels (matched groups) or (b) represent varying 524 

degrees of difficulty (divergent groups). In addition to these functionalities, typability scores can assist 525 

researchers in (c) avoiding floor or ceiling effects in typing performance, (d) potentially reducing the 526 

number of trials required for precise and reliable average typing speed measurements, and (e) 527 

alleviating traditional restrictions related to text length and punctuation, as overall typability can be 528 

effectively matched. 529 

 530 

Typability scores can also serve as a valuable covariate in various research contexts. For example, in 531 

studies involving self-generated or 'free' text, it could help to distinguish between the cognitive and 532 

linguistic processes of text planning and the inherent difficulty of typing the text. In this case, users could 533 

record the typing time of the self-generated material, then compare it between conditions, using 534 

typability as a covariate. Additionally, in memory tests where participants type back lists of items, using 535 

typability as a covariate could mitigate potential confounds from differences in typing difficulty between 536 

lists, which might otherwise impact cognitive load and memory performance. This may ensure more 537 

accurate measures of recall. 538 

 539 

https://emily-a-williams.shinyapps.io/the-typability-index-web-app/
https://emily-a-williams.shinyapps.io/the-typability-index-web-app/
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Beyond research, the Typability Index has valuable applications for typing training and performance 540 

testing. For typing course developers, it allows for a progressive difficulty approach, presenting easier 541 

sentences initially and more challenging ones as learners advance. In the realm of typing tests for hiring 542 

or competitive typing, it ensures fairness by controlling for text difficulty, which is crucial for maintaining 543 

equitable test conditions and accurately assessing typing speed.  544 

 545 

Limitations 546 

The Typability Index's generalisability is influenced by three main constraints inherent to the training 547 

dataset. Firstly, the model is based on Dhakal et al.'s (2018) dataset, comprising 1,525 English 548 

sentences sourced from the Enron Mobile Email corpus (Vertanen & Kristensson, 2011) and the English 549 

Gigaword Newswire corpus (Graff, David & Cieri, Christopher, 2003), with certain selection criteria 550 

applied (e.g. no non-punctuation symbols). This somewhat limits the model’s applicability to other styles 551 

of text or other languages, as several predictors were calculated based on the (American) English 552 

language and keyboard layout. Secondly, the text unit of the dataset is sentences rather than 553 

paragraphs or single words. While this may affect the model's direct relevance to words or paragraphs, 554 

it is likely that the rank order of typability scores can still provide useful insights if calculated for a set of 555 

words or a set of paragraphs. This assumption is based on the fact that many linguistic and motor 556 

influences of typability at the sentence level also apply to smaller or larger text units. Finally, the dataset 557 

predominantly reflects typing on laptops and standalone keyboards, potentially limiting the model’s 558 

applicability to mobile devices.  559 

 560 

A further limitation relates to the intended scope of the Typability Index. As noted, the tool is designed 561 

to calculate typability across a wide range of typing speeds, from 4-158 words per minute, based on the 562 

training dataset. Consequently, it has not been tailored for any specific typing skill level. 563 

Despite these limitations, the Typability Index provides a robust framework for controlling typing difficulty 564 

with confidence, aligning with its intended applications and the available data. 565 

 566 

Future Work 567 

Future developments could involve expanding the Typability Index to other languages, text lengths, and 568 

devices, where available training data allows. This would improve the Index’s applicability and accuracy 569 

across diverse linguistic and device contexts, further enhancing its utility in academic research and 570 

beyond. Additionally, researchers could explore the application of the current model in new settings, 571 

such as word list memorisation tasks where participants type back recalled items, or in studies involving 572 

self-generated text, to distinguish the cognitive processes of text generation from the typing difficulty 573 

influences covered by the model. 574 

 575 

Conclusion 576 

The present work provides a practical solution to the enduring challenge of controlling text difficulty in 577 

research involving typing. The Typability Index enables researchers to select text stimuli based on 578 

specific typability criteria or account for typing difficulty by incorporating typability scores as a covariate. 579 

This advancement enhances experimental control, reducing the risk that variations in typing 580 

performance are confounded by text difficulty. By offering a refined method for managing text difficulty, 581 

the Typability Index can help deliver more meaningful and accurate evaluations of typing behaviour in 582 

research and beyond.  583 
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Appendices 713 

Appendix 1: Calculations of the 30 candidate predictor variables 714 

# Candidate predictor variable Calculation 

1 Total characters Total number of characters including spaces. 

2 Total keystrokes The minimum number of keystrokes needed to type the 
text accurately, assuming shift is used rather than caps 
lock. 

3 Total words The number of words in the text, defined as groups of 
characters separated by spaces, rather than the typical 
definition of words as five characters (when calculating 
speed). 

4 Keystrokes per word Total keystrokes divided by total words. 

5 Characters per word Total characters divided by total words. 

6 Mean word proportion 1 divided by characters per word. 

7 Proportion of words within high-
frequency words 

Number of words from the text that appear in the top 
1000 words list* divided by total words.  

8 Proportion of characters within 
high-frequency words 

Number of characters that are contained in words from 
the text that appear in the top 1000 words list* divided 
by total characters. 

9 Mean word frequency Sum of the language frequencies of each word in the 
text, divided by number of words. Frequencies from 
SubtLEXUS (Brysbaert & New, 2009, ‘FREQcount’ 
variable). 

10 Proportion of non-words Number of words in the text that are not recognised in 
UK, US, AU or CA Hunspell English dictionaries 
(according to the {hunspell} package; Ooms, 2022) 
divided by total words. 

11 Proportion of characters within 
non-words 

Number of characters that are contained in words that 
are not recognised in UK, US, AU or CA dictionaries 
divided by total characters. 

12 Syllables per word Total number of syllables (according to the 
{quanteda.textstats} package; Benoit et al., 2018), 
divided by total words. This package uses the CMU 
Pronunciation Dictionary (Carnegie Mellon University, 
n.d.), and counts vowel clusters for words not in this 
dictionary. 

13 Bigram frequency Sum of the language frequencies of each letter pair in 
the text, divided by number of letter pairs. Frequencies 
based on Behmer and Crump (2017; 'Frequency' 
variable). This includes letter pairs only, with no 
spaces, and is based on approximately 3000 English 
language eBooks from Project Gutenberg. 
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14 Proportion of high frequency 
bigrams 

Number of letter pairs from the text that are appear in 
the top 15 bigrams, divided by number of letter pairs. 
(An alternative approach akin to proportion of high 
frequency words). Frequencies from Behmer and 
Crump (2017). 

15 Proportion of character repetitions Number of character pairs relating to character 
repetitions (e.g. ‘rr’, ‘..’), divided by number of character 
pairs. 

16 Proportion of finger repetitions Number of character pairs relating to finger repetitions 
(e.g. ‘ed’, ‘k,’), assuming standard touch typing, divided 
by number of character pairs. 

17 Proportion of hand repetitions Number of character pairs relating to hand repetitions 
(e.g. ‘se’, ‘hi’), assuming standard touch typing, divided 
by number of character pairs. 

18 Proportion of hand alternations Number of character pairs relating to character 
repetitions (e.g. ‘qu’, ‘ty’), assuming standard touch 
typing, divided by number of character pairs. 

19 Proportion of lowercase letter 
characters 

Number of lowercase letters divided by total 
characters. 

20 Proportion of uppercase letter 
characters 

Number of uppercase letters divided by total 
characters. 

21 Proportion of numbers Number of numbers divided by total characters. 

22 Proportion of symbols Number of symbols (including both punctuation and 
non-punctuation symbols) divided by total characters. 

23 Proportion of spaces Number of spaces divided by total characters. 

24 Proportion of lowercase letter 
non-space characters 

Number of lowercase letters divided by total non-space 
characters. 

25 Proportion of uppercase letter 
non-space characters 

Number of uppercase letters divided by total non-
space characters. 

26 Proportion of number non-space 
characters 

Number of numbers divided by total non-space 
characters. 

27 Proportion of symbol non-space 
characters 

Number of symbols divided by total non-space 
characters. 

28 Keystrokes per character Total keystrokes divided by total characters. 

29 Proportion of right-side keys Number of characters relating to keys on the right-hand 
side of the keyboard, assuming standard touch typing, 
divided by total characters. 

30 Mean distance from home row Sum of each character’s key distance from the eight 
finger resting keys on the home row, divided by total 
characters. Distances are based on Krzywinski (n.d.). 
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Note: Predictors were calculated according to American English spellings and keyboard layout (ANSI) 715 

unless stated otherwise. *We used the 1,000 most frequent English words list from the Corpus of 716 

Contemporary American English (Davies, 2008-), including lemmatisations. For example, “do” is on the 717 

core list, so variations such as “doing,” “did,” and “done” were also considered. Including lemmatisations 718 

allows the Typability Index to capture familiarity with core concepts, not just the specific forms of words. 719 

This helps reflect both the cognitive familiarity and the ease of typing frequent or commonly recognised 720 

words.  721 

 722 

Appendix 2: Present alteration of the 136 Million Keystrokes Dataset (Dhakal et al., 2018) 723 

Upon close inspection, some presented sentences contained grammatical or typographical errors (e.g. 724 

“If your reasonable, I'll bereasonable.”; “That s all I have to say.”; “I think we are dong OK.”). This is 725 

understandable as part of the source was real emails (Enron). To remove the potential effect of these 726 

errors on typing behaviour, 32 sentences were excluded, identified by ‘Spelling and Grammar’ checks 727 

in Microsoft Word in addition to manual reading. See Supplementary Material A for the exact sentences 728 

removed and rationale for each. 729 

 730 

In addition, minor manual alterations were made to 67 raw datafiles to fix parsing issues, mainly caused 731 

by participants typing Ctrl + M (shortcut for indent / new line) instead of Shift + M (see Supplementary 732 

Material A for details). Further, calculating participants’ mean typing speeds initially led to some 733 

negative values due to a relatively small number of two identified timestamp errors: (1) the recorded 734 

release time for some keystrokes preceded the recorded press time of the same keystroke; (2) for some 735 

trials, the first keystroke of the trial was apparently made before the end of the previous trial. To deal 736 

with these issues, any trials affected by the first timestamp error were excluded from the calculation of 737 

participants’ mean typing speeds because this timing error occurred mid-trial, suggesting the 738 

timestamps may not be reliable. Any erroneously-recorded keystrokes affected by the second time 739 

stamp error were removed, but the rest of the keystrokes for that trial were retained for analysis. This 740 

is because this second type of timestamp error related to only the first ‘keystroke’, which visual 741 

inspection suggested did not relate to the typing of the presented sentence that trial. In total, these 742 

alterations to account for timestamp errors affected 10,097 (<6%) of participant files. The adjusted 743 

datafiles accounting for parsing and timestamp errors are available on our Github repo 744 

(https://github.com/EA-Williams/The-Typability-Index/), with rights retained by Dhakal et al. (2018). 745 

 746 

Appendix 3: Specification of Random Forest Regression 747 

We used the {randomForest} package, version 4.7-1.1, to run the random forest regressions. 748 

Deviations from the default settings included running 10,000 trees (ntree) instead of the default 500. 749 

Additionally, the number of variables randomly sampled as candidates at each split (mtry) was 750 

increased to 75% of the predictor count (i.e., 23.25) rather than the default 33% (10.33). Default 751 

values, including sampling with replacement (replace = TRUE), are detailed at https://cran.r-752 

project.org/package=randomForest. Our full analysis code is available at https://github.com/EA-753 

Williams/The-Typability-Index/. 754 

 755 
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