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Abstract

To improve the cost-effectiveness of modelling of wave interactions, a “numerical
wavetank” is presented whose distinctive novel feature is its ability to couple both
deep-water potential-flow and shallow-water models to controllable, prespecified
wavemaker motion and beach topography. The coupling is in part obtained via
a variational-principle approach that guarantees important conservation prop-
erties and numerical stability. The model presented is the first fully nonlinear
model to couple deep-water (discretised as finite elements) and shallow-water
equations (discretised as finite volumes). Resulting simulations of wave genera-
tion, propagation and absorption by shallow-water wave breaking are presented
and analysed. A discussion is given on the efficacy of the novel approach.

Keywords: Potential-flow water-wave dynamics, shallow-water surf zone, compatible
finite-element method, finite-volume shallow-water method, variationally coupled
dynamics
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1 Introduction

Rogue (also called freak) waves have been feared throughout history, ever since sci-
entists have begun to understand them. Despite having for centuries traumatised and
even killed mariners, suddenly-appearing huge waves at sea started to raise scientific
attention only as late as the end of the 20th century, during which several instances of
severe ship damage and losses of strong vessels offered evidence that increased both the
credibility of mariners and the curiosity of scientists. On January 1st 1995, a 25.6m-
high wave measured at the Draupner offshore platform was 2.25-times higher than all
previously recorded averaged wave heights in the North Sea area [1]: this “New Year
wave” not only proved beyond dispute the existence of such extreme and sudden waves
but also catalysed research into rogue waves, on which a thorough overview of current
knowledge is given in [2].

It is timely from an environmentalist perspective to focus on such threatening and
unpredictable rogue waves since they are expected to occur with increasing frequency
due to global warming [3, 4]. The clear motivation for such focus is to ameliorate the
safety of crews and passengers by using a combination of mathematical modelling,
numerical methods and experiments to inform the design of maritime structures that
are able to resist extreme events. Experimental scaled-down rigs in the form of wave
tanks are already used by the maritime industry, e.g. at the Maritime Research Insti-
tute of the Netherlands (MARIN), for research on rogue-wave impact on offshore
structures. These rigs often consist of basins with controllable-speed wavemakers on
one or two sides, and beaches to dampen the waves on the remaining sides. But such
wavetank tests are quite expensive so, to increase their efficacy, presented and exem-
plified herein is a “numerical wavetank” that is able to simulate water-wave dynamics
in a finite experimental basin. Creating such a numerical wavetank is challenging on
three fronts: first, the wavemaker motion must be captured; second, dispersive and
nonlinear intermediate-depth to deep-water wave dynamics must be modelled; and,
third, breaking-wave dynamics in the beach surf-zone must be captured.

To address the first two challenges, we have developed mathematical and numerical
strategies to model nonlinear intermediate-depth and deep-water waves, driven by
a wavemaker, using a compatible, variational discretisation of a nonlinear potential-
flow water-wave model ([5–7]). Our models are able to simulate cost-effectively the
propagation of freak waves ([6, 8]), which constitute a significant hazard to offshore
structures. Moreover, the numerical model may be used to simulate 2D and 3D waves
generated by a piston wavemaker, and can be used to optimise experimental set-ups in
wave tanks used by the maritime industry. To address the third aspect, an absorbing
boundary condition in the form of the shallow-water beach used in actual experimental
wavetanks — instead of rigid, vertical walls — is implemented here. The aim is to
reduce the length of the numerical domain to the target area without disturbing the
wave-structure-interaction tests with reflected waves that would be absent in a real
sea state.

Various absorbing-boundary methods already exist to dampen water waves: a
commonly used technique is the implementation of a relaxation zone, also called
“forcing/damping zone” or “absorbing layer”, in which an analytical solution of the
equations is used to compute reflection coefficients and to absorb the incoming waves.
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This method was implemented in, e.g., the open-source library Open-Foam [9] by
Jacobsen et al. [10], who define the relaxation zone depending on wavelength and
geometry of the computational domain. However, the methods provided to compute
reflection factors are efficient mainly in the shallow-water regime, whereas our numer-
ical wavetank also aims to generate intermediate-to-deep-water waves. Although Peric
and Maksoud [11, 12] introduced extended methods to estimate reflection coefficients
to prime simulations, thereby obtaining results efficiently for deep-water waves, their
relaxation method is, however, efficient only when an analytical solution may be esti-
mated, typically for regular waves; it is not yet applicable to irregular waves that
cannot be predicted a priori. Our numerical tank will be used to simulate irregular sea
states with unknown wave profiles at the boundary, for which configuration the relax-
ation method in [11, 12] cannot be applied. Duz et al. [13] provided a solution for the
absorption of both regular and irregular waves based on the boundary operator initially
introduced by Higdon [14, 15]. The extended boundary operator, computed from the
dispersion relation for the solution of the Laplace equation and based on the angle of
incidence of the generated waves, is applied on the boundary of the numerical domain
through ghost cells beyond the mesh periphery in the Volume-Of-Fluid numerical
method. While comparison with reference solutions showed relatively good agreement
in absorbing the waves, the second-order absorbing boundary condition introduced in
[16] showed much improved wave absorption. This extended-boundary, second-order
Higdon operator accounted for not only dispersive but also directional wave effects.
Such operators, obtained from linear wave theory and linearized Bernouilli equations
augmented by second-order weakly nonlinear corrections, are, however, not applicable
to steep nonlinear waves such as freak waves.

Alternatively, wave-breaking parametrization schemes have been successfully
applied to Boussinesq as well as potential flow models, such as the parameterisations
developed by Smit et al. [17] and Wang et al. [18], based on either shallow-water
celerity or wave steepness considerations. Instead, as a complementary approach, our
goal is to numerically couple a potential-flow model to a shallow-water model with
wave breaking in the surf-zone, given the wave-absorption characterics of the beach
in the laboratory wave-basin. While these wave-breaking parameterisations involve
phenomenological criteria signalling where local dissipation is applied in additional
dissipative terms, the classical shallow-water equations in hyperbolic conservative form
intrinsically trigger energy dissipation where shock or bore formation occurs as proxy
for wave breaking. The challenge herein is the coupling of two different mathematical
and numerical modeling approaches into a unified numerical model.

The first step in responding to demands placed upon the maritime industry is to
configure model tests of wave-structure interactions in experimental wave basins. In the
configuration used herein, water waves are dampened at a beach, thereby offering wave
absorption through shallow-water-wave breaking at the beach. This allows design of
a numerical tank that emulates the performance of in-house experimental rigs (e.g. at
the Maritime Research Institute Netherlands —MARIN). Close to the wave-breaking
swash zone, the potential-flow model is invalid, and it yields an unstable associated
finite-element method. Instead, we choose to model beach dynamics locally by the
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nonlinear shallow-water equations, and solve these numerically with a classical finite-
volume method. These equations describe non-dispersive waves with wave breaking
included as hydraulic bores, as in Kristina et al. [19], whilst ensuring non-negative
depth at the beach through Audusse et al.’s method [20].

While previous studies have led to stable coupling between deep- and shallow-
water equations (see [19] for linear Boussinesq equations coupled to nonlinear shallow-
water equations, and [21] for linear potential flow coupled to nonlinear shallow-water
equations), the model presented here is the first fully nonlinear model to couple deep-
and shallow-water equations.

The paper outline is the following. The variational continuum strategy is described
in §2. Nonlinear-coupling-implementation strategies are described in §3. Resulting sim-
ulations of wave generation, wave propagation and wave absorption are presented and
analysed in §4. Conclusions on the efficiency of the present nonlinear numerical tank
are discussed in §5, including a discussion of several recently discovered shortcomings
of the model developed.

2 Variational coupling of deep- and shallow-water
potential-flow models

2.1 Domain setup and coupling strategy

In this section, we present the mathematical model for the wavetank containing a surf
zone, as illustrated in Fig. 1. The model simulates wave propagation in the x-direction
within a two-dimensional (2D) vertical wave basin, with a time-dependent wavemaker
driving wave motion at one end and a beach at the opposite end to dampen wave
energy. The depth at rest is given by H(x) = H0 − b(x), where the beach topography
begins at xb. The rest depth is a constant H0 for x ≤ xb, and decreases along the
beach for x ≥ xB until reaching zero at the moving waterline, x = xw(t). For t > 0,
the piston wavemaker oscillates near the tank end at x = 0, and its motion is denoted
by x = R(t). The wavemaker motion induces a surface displacement η(x, t) from rest
depth H(x), resulting in a total water depth h(x, t) = H(x) + η(x, t).

Figure 1 depicts the two-dimensional vertical domain, divided into two subdomains.
In the first, the “deep-water domain”, wave dynamics are resolved using the nonlinear
potential-flow model developed in [5–7]. This time-dependent domain is defined as

ΩD = {R(t) ≤ x < xc; b(x) ≤ z ≤ b(x) + h(x, t)}, (1)

with the piston wavemaker prescribing the left-hand boundary at x = R(t), the seabed
topography forming the lower boundary z = b(x). As waves propagate along the beach
and enter the “shallow-water domain”, defined by

ΩS = {xc < x ≤ xw(t)}, (2)

the influence of the sloping seabed becomes dominant, modifying wave profiles and
ultimately causing wave breaking. Due to the steep gradients associated with wave
breaking in the surf zone, the phenomenon is treated as discontinuous, which presents
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Fig. 1 Schematic of the two-dimensional wavetank, with a piston wavemaker on the left-hand bound-
ary and a beach on the opposite boundary. Two subdomains divide the basin: a deep-water domain,
where nonlinear potential-flow equations are solved, and a shallow-water surf zone, where nonlinear
shallow-water equations are applied. Coupling conditions are derived and implemented at the inter-
face x = xc between these domains.

challenges for classical continuous finite element methods. These methods, while suit-
able for the deep-water regime, may produce numerical instabilities in regions with
sharp gradients or discontinuities. Instead, wave motions in the shallow-water domain
are described by the nonlinear shallow-water equations, which capture breaking as
hydraulic bores (see [19]). Numerically, a well-balanced scheme is used to ensure non-
negative water depth at the beach (see [20]). The two subdomains are linked via a
coupling interface at Γc : x = xc. Here, the deep- and shallow-water models—each
discretised using numerical methods suited to their respective regimes—are coupled
through carefully derived conditions. The coupling point xc is chosen such that the
local water depth h(xc) lies between the typical deep-water and shallow-water lim-
its, specifically h ≥ λ/2 and h ≤ λ/20, where λ is a representative wavelength of the
waves under consideration. The coupling conditions between the potential-flow and
shallow-water models are derived via a variational principle, as detailed in the next
section.

2.2 Variational principle for the coupled domain

The aim is to understand and to simulate the dynamics occurring in ΩD and ΩS ,
including their dynamic coupling at x = xc. The evolution of the water depth h(x, t)
and velocity potential ϕ(x, z, t) in the numerical basin shown in Fig. 1 is described by
Luke’s variational principle [22] for nonlinear waves

0 = δ

∫ T

0

∫ xw(t)

R(t)

∫ b(x)+h(x,t)

b(x)

[
∂tϕ+

1

2
|∇ϕ|2 + g (z −H0)

]
dz dx dt. (3)
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Following the coupling strategy, the whole domain is partitioned into ΩD and ΩS ,
connected at the interface Γc located at x = xc. Accordingly, the variational principle
(3) is decomposed into contributions from each subdomain:

0 = δ

∫ T

0

{∫
ΩD

[
∂tϕ+

1

2
|∇ϕ|2 + g (z −H0)

]
dx dz

+

∫
ΩS

[
h∂tϕ̌+

1

2
h(∂xϕ̌)

2 + gh
(1
2
h−H

)]
dx

}
dt,

(4)

where the velocity potential has been depth-averaged in ΩS using the additional
simplification

ϕ̌(x, t) =
1

h

∫ b+h

b

ϕ(x, z, t) dz. (5)

Taking variations of the variational principle (4) with respect to h, ϕ, and ϕ̌, and
imposing temporal endpoint conditions δϕ(0) = δϕ(T ) = 0 and δϕ̌(0) = δϕ̌(T ) = 0,
we obtain:

0 =

∫ T

0

{∫ xc

R(t)

[ ∫ b+h

b

δϕ
(
−∂xxϕ− ∂zzϕ

)
dz − δϕ

(
∂xϕ bx − ∂zϕ

)
z=b

+ δh

(
g(h−H) + ∂tϕ+

1

2
|∇ϕ|2

)
z=b+h

+ δϕ
(
−∂th− ∂x(h+ b) ∂xϕ+ ∂zϕ

)
z=b+h

]
dx

+

∫ xw(t)

xc

[
δh
(
∂tϕ̌+

1

2
(∂xϕ̌)

2 + g(h−H)
)

+ δϕ̌
(
−∂th− ∂xϕ̌ ∂xh− h∂xxϕ̌

) ]
dx

+

[ ∫ b+h

b

δϕ
(
Ṙ− ∂xϕ

)
dz

]
x=R

+

[
δϕ̌
(
h∂xϕ̌− hẋw

) ]
x=xW

+

[ ∫ b+h

b

δϕ (∂xϕ) dz

]
x=xc

−
[
δϕ̌
(
h∂xϕ̌

) ]
x=xc

+

[
δxw

(
h∂tϕ̌+

1

2
h(∂xϕ̌)

2 + gh
(1
2
h−H

))]
x=xw

}
dt,

(6)

where a dot denotes temporal differentiation, e.g. Ṙ = dR/dt, and bx = db/dx.
By definition, the water depth at the waterline x = xw is h(xw, t) = 0. Therefore,

all terms in (6) evaluated at x = xw vanish. The arbitrariness of the variations δϕ, δh
and δϕ̌ in the resulting variational principle yields the governing equations for the fluid
domain. Specifically, in the deep-water subdomain, nonlinear potential-flow equations
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arises as:

δϕ : ∂xxϕ+ ∂zzϕ = 0, in ΩD, (7a)

δh : ∂tϕ+
1

2
|∇ϕ|2 + g(h−H) = 0, at z = b+ h, (7b)

δϕz=b+h : ∂th+ ∂x(b+ h) ∂xϕ− ∂zϕ = 0, at z = b+ h, (7c)

δϕz=b : ∂xϕ bx − ∂zϕ = 0, at z = b, (7d)

δϕx=R : ∂xϕ = Ṙ, at x = R, (7e)

while in the shallow-water domain, the depth-averaged nonlinear potential-flow
equations takes the form:

δϕ̌ : ∂th+ ∂xh ∂xϕ̌+ h ∂xxϕ̌ = 0, in ΩS , (8a)

δh : ∂tϕ̌+
1

2
(∂xϕ̌)

2 + g(h−H) = 0, in ΩS , (8b)

or, equivalently, the nonlinear shallow-water equations in conservative form, expressed
in terms of h and u ≡ ∂xϕ̌:

∂th+ ∂x(hu) = 0, in ΩS , (9a)

∂t(hu) + ∂x

(
hu2 +

1

2
gh2
)
= −ghbx, in ΩS . (9b)

Deep- and shallow-water subdomains are connected at the interface Γc = {x = xc, z ∈
[b, b+h]}, so the boundary terms arising from variations at x = xc, i.e. the penultimate
line in (6), must be analysed together to derive appropriate coupling conditions. This
analysis is presented in the next section.

2.3 Coupling conditions at the interface

In this section, coupling conditions for both the deep- and shallow-water subdomains
are derived from the two boundary terms evaluated at xc in the variational principle
(6).

On the one hand, given the depth-averaged relation (5), setting and substituting
(as in [21]) (

δϕ̌
)
x=xc

=

(
1

h

∫ b+h

b

δϕ dz

)
x=xc

(10)

leads to the coupling boundary condition for the deep-water equations:

h∂xϕ = h∂xϕ̌ = hu for b ≤ z ≤ b+ h at x = xc. (11)

On the other hand, by setting and substituting

(δϕ)x=xc
=
(
δϕ̌
)
x=xc

, (12)
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we obtain the coupling boundary condition for the shallow-water equations:

h∂xϕ̌ =

∫ b+h

b

∂xϕ dz at x = xc, (13)

which, in terms of h and hu, reads

hu =

∫ b+h

b

∂xϕ dz at x = xc. (14)

The rationale for these approximations is as follows: the variation δϕ̌ in the shallow-
water limit x → x+c is readily seen to be the depth-averaged δϕ in the deep-water
limit x→ x−c , while the second condition implies that the coupling point xc should be
chosen such that shoaling into shallow water leads to nearly depth-independent flow,
i.e. an approximately depth-uniform velocity profile.

Accordingly, the deep-water potential-flow equations (7) must be solved together
with the nonlinear shallow-water equations (9), subject to the coupling conditions (11)
and (14). NB These latter two conditions are in essence the same provided that the
potential-flow dynamics have become close to depth-independent in the shallow waters
of the surf zone. The point xc of coupling between the two models is chosen based on
the ratio between the typical wave length involved and the water depth, augmented
with a posteriori inspection of the depth-profile of the velocity potential ϕ(xc, z, t).
The next section outlines the numerical strategy used to solve and couple these two
systems.

3 Numerical coupling strategies of the coupled
wavetank

In this section, we develop numerical strategies for discretising and coupling the
nonlinear potential-flow and nonlinear shallow-water equations. The numerical cou-
pling addresses several challenges, including: handling time-dependent boundaries at
the wavemaker x = R(t), at the free-surface z = b(x) + h(x, t) and at the water-
line x = xw(t); capturing breaking waves at the beach; and ensuring consistent and
accurate information transfer across the interface Γc between the deep- and shallow-
water domains. The spatial and temporal discretisation methods, along with their
implementation in Firedrake, are now presented.

3.1 Spatial discretisation of the deep- and shallow-water
subdomains

3.1.1 Discretisation of the deep-water subdomain

For the deep-water subdomain, the numerical model developed in [5–7], based on
explicit weak formulations, is employed in its two-dimensional form. A σ-coordinate

8



transformation [23] is applied prior to spatial discretisation:

x → x̄ =
x− R̃(x, t)

Lw − R̃(x, t)
Lw and z → z̄ = (z − b(x))

H0

h(x, t)
, (15)

with Lw = O(λ) and

R̃(x, t) = R(t)Θ(Lw − x) =

{
R(t), if x ≤ Lw,

0, if x > Lw.
(16)

This transformation (15) maps the time-dependent physical deep-water subdomain
(1) onto a fixed rectangular computational domain

Ω̄D = {0 ≤ x̄ ≤ xc; 0 ≤ z̄ ≤ H0}, (17)

as illustrated in Fig. 2. This approach circumvents the need for mesh regeneration at
each time step due to the a priori unknown h(x, t).

The resulting variational principle in transformed coordinates for the deep-water
subdomain reads

0 = δ

∫ T

0

{∫ xc

0

∫ H0

0

[
1

2Υ
h
(
ϕx − 1

h

(
H0bx + zhx)ϕz

)2
+

Υ

2

1

h
(ϕz)

2

]
dz dx

+

∫ xc

0

1

Lw

[
gWh

(1
2
h−H

)
− ϕ

(
Wht +X R̃t hx

)]
z=H0

dx

+

∫ H0

0

( 1

H0
R̃t ϕh

)
x=0

dz

}
dt,

(18a)

where, for clarity, the over-bars have been and will henceforth be omitted, and

X(x) = x− Lw, W (x, t) = Lw − R̃(x, t), Υ(x, t) =
WH0

Lw
. (18b)

Note that the double-underlined topography gradient bx in the kinetic-energy expres-
sion in (18a) was accidentally ignored in earlier work [5, 24] due to the application
of the mild-slope approximation (MSA). We will later show and compare simulations
of the complete potential-flow equations (denoted by FWF) as well as ones with the
MSA. The MSA is commonly-used in Boussinesq-type approximations, in which the
vertical integration is performed explicitly. It then yields an equation set with only
horizontal spatial coordinates and the MSA then simplifies the expressions, e.g. see
[25]. That MSA-reduction is only minor in the full potential flow setting used here.

As shown in Fig. 2, the deep-water computational domain is divided into Ne rect-
angular elements of size ∆xD × H0. In the vertical direction, the velocity potential
ϕ(x, z, t) is expanded along the depth of each element using Lagrange polynomials
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z̄

x̄

H0

0

0 xc

∆xD
z1 = H0

z2

z3

znz+1 = 0

zi′

h, ψ1

ψ2

ψ3

ψi′

ψnz+1

0 xc
x

z

z2

znz ψnz

Fig. 2 Left: Fixed deep-water computational domain (blue), defined as ΩD after applying the coordi-
nate transformation. Right: Discretised deep-water domain, consisting of nz +1 vertical layers placed
at Gauss-Lobatto-Legendre (GLL) points to mitigate the Runge effect, with each layer containing Ne

horizontal elements of uniform width ∆xD.

φ̃i(z) of order nz (cf. [5, 6]), such that

ϕ(x, z, t) = ψi(x, t)φ̃i(z) = ψ1(x, t)φ̃1(z) + ψi′(x, t)φ̃i′(z)

=

{
ψ1(x, t)≡ ϕ(x,H0, t) at z = H0

ψi′(x, t)≡ ϕ(x, zi′ , t) at z = zi′ < H0

,
(19)

where the discrete vertical nodes zi ∈ [0, H0] correspond to the scaled Gauss-Lobatto-
Legendre (GLL) quadrature points. Note that the Einstein summation convention is
used; and, ψ1 as well as ψi′ are not streamfunctions. The subscripts i ∈ [1, nz + 1]
and i′ ∈ [2, nz + 1] distinguish the free-surface velocity potential ψ1 from the interior
values ψi′ .

By substituting the expansion (19) into the transformed variational principle, the
original two-dimensional formulation is reduced to a one-dimensional form:

0 =δ

∫ T

0

{∫ xc

0

[
1

2Υ

(
hψi,xM̃ijψj,x − 2hxψi,xD̃ijψj − 2H0bxψi,xB̃ijψj

+ 2H0
bxhx
h

ψiC̃ijψj +
h2x
h
ψiS̃ijψj

)
+
( 1

Υ
H2

0 b
2
x +Υ

)( 1

2h
ψiÃijψj

)
+

1

H0
Υgh

(1
2
h−H

)
− ψ1

(
1

H0
Υht +

1

Lw
XR̃t hx

)]
dx

+

(
1

H0
R̃tψiĨih

)
x=0

}
dt,

(20)

where i, j ∈ [1, nz + 1], and the matrices Ã, B̃, C̃, D̃, Ĩ, M̃ and S̃ are defined as

M̃ij =

∫ H0

0

φ̃i(z)φ̃j(z) z., Ãij =

∫ H0

0

.φi(z)

z.

.φj(z)

z.
z.,

B̃ij =

∫ H0

0

φ̃i(z)
.φj(z)

z.
z., C̃ij =

∫ H0

0

z.
φi(z)

z.

.φj(z)

z.
z.,
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D̃ij =

∫ H0

0

zφ̃i(z)
.φj(z)

z.
z., S̃ij =

∫ H0

0

z2.
φi(z)

z.

.φj(z)

z.
z.,

Ĩi =

∫ H0

0

φ̃i(z) z.. (21)

The transformed z-discretised nonlinear potential-flow equations can be derived
from the variational principle (20). Taking variations with respect to h and applying
integration by parts in space yields

0 =

∫ T

0

{∫ xc

0

δh

[
1

2Υ
ψi,xM̃ijψj,x +

∂

∂x

( 1

Υ
ψi,xD̃ijψj

)
− ∂

∂x

( 1

Υ

hx
h
ψiS̃ijψj

)
− 1

Υ

(hx)
2

2h2
ψiS̃ijψj −

1

2h2

(
H2

0

Υ
b2x +Υ

)
ψiÃijψj

− ∂

∂x

(H0

Υ

bx
h
ψiC̃ijψj

)
− H0bx

Υ

hx
h2
ψiC̃ijψj

+
Υ

H0
g(h−H) +

1

Lw
∂t(Wψ1) +

∂

∂x

(
ψ1

X

Lw
R̃t

)]
dx

+
{ 1

H0
R̃t ψiĨiδh

}∣∣∣∣
x=0

−
{ 1

Υ
δhψi,xD̃ijψj

}∣∣∣∣x=xc

x=0

+
{
ψ1

X

Lw
R̃tδh

}∣∣∣∣
x=0

+
{ 1

Υ

hxδh

h
ψiS̃ijψj

}∣∣∣∣x=xc

x=0

+
{H0bx

Υ

δh

h
ψiC̃ijψj

}∣∣∣∣x=xc

x=0

}
dt,

(22)

from which the transformed dynamic boundary condition (7b) can be recovered as

1

Lw
∂t(Wψ1) = − 1

2Υ
ψi,xM̃ijψj,x +

1

2Υ

(hx)
2

h2
ψiS̃ijψj +

H0

Υ

bxhx
h2

ψiC̃ijψj

+
∂

∂x

(
− 1

Υ
ψi,xD̃ijψj +

1

Υ

hx
h
ψiS̃ijψj +

H0

Υ

bx
h
ψiC̃ijψj − ψ1

X

Lw
R̃t

)
+

1

2h2

(H2
0

Υ
b2x +Υ

)
ψiÃijψj −

Υ

H0
g(h−H).

(23)

11



Similarly, taking variations with respect to ψj with j ∈ [1, nz + 1] and applying
integration by parts in space yields

0 =

∫ T

0

{∫ xc

0

δψj

[
∂

∂x

(
− 1

Υ
hψi,xM̃ij

)
+

1

Υ

h2x
h
ψiS̃ij

+
1

h

(H2
0

Υ
b2x +Υ

)
ψiÃij +

H0

Υ

2bxhx
h

ψiC̃ij

+
∂

∂x

(H0

Υ
bxB̃jiψi

)
− H0

Υ
bxψi,xB̃ij

+
∂

∂x

( 1

Υ
hxD̃jiψi

)
− 1

Υ
hxψi,xD̃ij − δ1j

( Υ

H0
ht +

X

Lw
R̃t hx

)]
dx

+
{ 1

H0
R̃tδψj Ĩjh

}∣∣∣∣
x=0

+
{ 1

Υ
hψi,xM̃ijδψj

}∣∣∣∣x=xc

x=0

−
{H0

Υ
bxδψjB̃jiψi

}∣∣∣∣x=xc

x=0

−
{ 1

Υ
hxδψjD̃jiψi

}∣∣∣∣x=xc

x=0

}
dt,

(24)

from which the transformed potential-flow equation emerges as:

δ1j
Υ

H0
ht =

∂

∂x

(
− 1

Υ
hψi,xM̃ij +

H0

Υ
bxB̃jiψi +

1

Υ
hxD̃jiψi

)
+

1

h

(H2
0

Υ
b2x +Υ

)
ψiÃij +

H0

Υ

2bxhx
h

ψiC̃ij +
1

Υ

h2x
h
ψiS̃ij

− H0

Υ
bxψi,xB̃ij −

1

Υ
hxψi,xD̃ij − δ1j

X

Lw
R̃t hx,

(25)

where δ1j is the Kronecker delta. Note that in (25), the case j = 1 corresponds to the
transformed kinematic boundary condition (7c), whereas for j = j′ ∈ [2, nz + 1], it
corresponds to the transformed Laplace’s equation (7a). The transformed potential-
flow equations (23) and (25) will be used in the derivation of the coupling condition
for the shallow-water subdomain in Section 3.2.

Finally, in the horizontal direction, the unknowns ψ1(x, t), ψi′(x, t) and h(x, t) are
expanded using first-order continuous Galerkin basis function as follows:

ψ1(x, t) = ψ1q(t)φq(x), ψi′(x, t) = ψi′q(t)φq(x), h(x, t) = hq(t)φq(x), (26a)

where φq(x) are the piece-wise linear basis functions defined over the horizontal extent
of the deep-water domain, x ∈ [0, xc]. The horizontal node index q runs from q = 0
at the wavemaker boundary x = 0 to q = Ne at the coupling point x = xc. In the
rightmost element [xc −∆xD, xc], adjacent to the coupling point, the superscript − is
used to indicate that only the left-hand side of the coupling point x = xc is included
in the deep-water discretisation; that is, the basis function φ−

Ne
, with shorter notation

φc− , is nonzero only within this final element.

12



xxc Lxxw

H(xc)
Ȟ(x)

b̌(x)

xc Lx

x

∆xS

UkUk−1 Uk+1

zoom-in

xk−1/2 xk+1/2

Fk−1/2 Fk+1/2

Fig. 3 Left: Fixed shallow-water computational domain (bold line segment) as defined by Ω̄S =
[xc, Lx]. The local rest depth Ȟ(x) and beach topography b̌(x) are also illustrated. Right: Discretised
shallow-water domain consists of Nv volumes of uniform size ∆xS .

3.1.2 Discretisation of the shallow-water subdomain

Energy dissipation through bore formation and wave breaking is expected to be mod-
elled in the shallow-water subdomain. The finite element approach adopted in the
deep-water subdomain, which is based on continuous expansions, would not remain
stable due to the steep gradients associated with breaking waves. Instead, a Godunov-
type finite-volume method is implemented to accommodate such breaking waves
[19].

In the physical shallow-water domain ΩS defined by (2), the coupling location at
x = xc is fixed, whereas the waterline at x = xw moves along the sloping beach. To
avoid mesh deformation caused by the moving boundary xw(t), a fixed right boundary
is imposed at x = Lx > maxt{xw(t)}, such that the equations are solved over a
time-independent one-dimensional numerical domain

Ω̄S = {xc ≤ x ≤ Lx}, (27)

as illustrated by the bold line segment in Fig. 3. In the computational model, local
variables are defined over the shallow-water domain Ω̄S . The local beach topography
is given by

b̌(x) = b(x)− b(xc), (28)

such that b̌(xc) = 0, while the local rest depth is taken to be Ȟ(x) = H(x). They are
related through Ȟ(x) = H(xc)− b̌(x), see also Fig. 3.

To apply the finite-volume discretisation, the conservative form of the nonlinear
shallow-water equations (9) is used and rewritten as

∂tU+ ∂xF(U) = S, (29a)

where the state vector U, the flux vector F(U) and the source term S are defined as

U =

(
h
hu

)
, F(U) =

(
hu

hu2 + 1
2gh

2

)
, and S =

(
0

−ghb̌x

)
. (29b)

As shown in Fig. 3, the domain Ω̄S is discretised into Nv control volumes of uni-
form size ∆xS . In the kth volume, defined by [xk−1/2, xk+1/2], the solution U is

13



approximated by its cell average:

Uk(t) =
1

∆xS

∫ xk+1/2

xk−1/2

U(x, t) dx, (30)

which may be viewed as a zeroth-order discontinuous Galerkin approximation.
Similarly, the local beach topography b̌(x) is also approximated by its cell average:

b̌k =
1

∆xS

∫ xk+1/2

xk−1/2

b̌(x) dx. (31)

The basis functions associated withUk are discontinuous and taken to be piecewise
constant within each control volume (i.e., C0 continuous). In contrast, the deep-water
variables are represented using piecewise linear basis functions that are C1 continuous
across nodes. To achieve a comparable order of accuracy between the shallow- and
deep-water subdomains, the spatial resolutions are related by

∆xS ∝ (∆xD)
2
, (32)

which ensures consistent matching between the leading-order finite-volume method
and the first-order finite-element method.

Integration of the conservative form (29) over cell k yields the space-discretised
nonlinear shallow-water equations:

U̇k(t) +
1

∆xS

(
Fk+1/2(t)− Fk−1/2(t)

)
=

1

∆xS
Sk, (33)

where the dot denotes a time derivative. The discrete flux

Fk±1/2(t) = F(U(xk±1/2, t)), (34)

is evaluated at the cell interfaces x = xk±1/2 using the Harten-Lax-van Leer (HLL) flux
[26, 27]. The discretised source term Sk is evaluated using a hydrostatic reconstruction
described shortly. Figure 3 also the locations where fluxes and state variables are
evaluated.

To solve the system (29), the well-balanced finite-volume scheme developed by
Audusse et al. [20] is employed with its ability to handle the wet–dry interface that
arises due to the moving shoreline on a sloping beach. The scheme is designed to
preserve conservation of total water mass and non-negativity of h in the dry region
(xw(t) ≤ x ≤ Lx), thereby ensuring numerical stability, for reference see Appendix B.
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3.2 Discretised coupling conditions at the interface

Following the finite-volume discretisation, the cell-averaged shallow-water velocity uk
satisfies

uk =
1

∆xS

∫ xk+1/2

xk−1/2

u(x, t) dx =
1

∆xS

∫ xk+1/2

xk−1/2

∂xϕ̌(x, t) dx

=
1

∆xS

[
ϕ̌(xk+1/2, t)− ϕ̌(xk−1/2, t)

]
.

(35)

This discrete piecewise constant shallow-water velocity can thus be expressed in terms
of the shallow-water velocity potential ϕ̌(x, t), approximated at the cell interfaces via

ϕ̌(x, t) = ϕ̌l(t)φl(x), (36)

where φl(x) is the first-order piecewise linear basis function defined in Ω̄S (cf. (26)),
and the index l runs from l = Ne at x = xc to l = Ne +Nv at x = Lx. It should be
noted that only the right-hand side of the coupling location x = xc is included in the
shallow-water discretisation. Therefore, the basis function φc+ , shorthand for φ+

Ne
, is

nonzero only within the first cell to the right of the interface, i.e. [xc, xc +∆xS ].
Replacing the deep-water variational principle in (4) with its transformed z-

discretised version (20), we obtain the variational principle for the entire domain:

0 =δ

∫ T

0

{∫ xc

0

[
1

2Υ

(
hψi,xM̃ijψj,x − 2hxψi,xD̃ijψj − 2H0bxψi,xB̃ijψj

+ 2H0
bxhx
h

ψiC̃ijψj +
h2x
h
ψiS̃ijψj

)
+
( 1

Υ
H2

0 b
2
x +Υ

)( 1

2h
ψiÃijψj

)
+

1

H0
Υgh

(1
2
h−H

)
− ψ1

(
1

H0
Υht +

1

Lw
XR̃t hx

)]
dx+

(
1

H0
R̃tψiĨih

)
x=0

+

∫ Lx

xc

[
h∂tϕ̌+

1

2
h(∂xϕ̌)

2 + gh
(1
2
h−H

)]
dx

}
dt.

(37)
The space-discretised coupling conditions for both the deep- and shallow-water sub-
domains, which arise from the variational equations associated with φc+ and φc−

respectively, are now derived from (37). Briefly, the remainder of this section con-
sists of a technical and intricate derivation of the numerical coupling. In essence, the
derivation consists of systematically accounting for the exchange terms arising from
the variations in (37) by relating these φc+ and φc− variations using discretisations of
the continuum coupling conditions (11) and (14).

3.2.1 Coupling conditions for the deep-water subdomain

At the coupling node x = xc, the shallow-water potential ϕ̌c ≡ ϕ̌(x = xc, t) corre-
sponds to the depth-averaged deep-water velocity potential (cf. (5)), and it can be
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computed as follows:

ϕ̌c =
1

h

∫ b+h

b

ϕ(x = xc, z, t) dz =
1

h

∫ H0

0

ϕ̄(x̄ = xc, z̄, t̄)
h

H0
dz̄

=
1

H0
ψi(x̄ = xc, t̄)

∫ H0

0

φ̃i(z̄) dz̄ =
1

H0
ψicĨi.

(38)

Since ϕ̌c is evaluated at the interface Γc, its variation δϕ̌c should also follow the coor-
dinate transformation (15), which transforms the variation of the deep-water velocity
potential into:

δϕ→ − z̄
h
∂z̄ϕ̄ δh+ δϕ̄. (39)

As a result, the variation of ϕ̌c evaluated at x = x+c becomes

δϕ̌c =
1

h

∫ b+h

b

δϕ(x = xc, z, t) dz

=
1

h

∫ H0

0

(
δϕ̄(x̄ = xc, z̄, t̄)−

z̄

h
∂z̄ϕ̄(x̄ = xc, z̄, t̄) δh

) h

H0
dz̄

=
1

H0

(
δψi(xc, t)

∫ H0

0

φ̃i(z̄) dz̄ −
δh(xc, t)

h(xc, t)
ψi(xc, t)

∫ H0

0

z̄
dφ̃i

dz̄
dz̄

)

=
1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

)
,

(40)

with G̃i defined as

G̃i =

∫ H0

0

z
dφ̃i

dz
dz. (41)

To derive the deep-water coupling conditions, we use the complete deep-water
expansions (26), while the shallow-water expansion (36) is partitioned to distinguish
the coupling node from the remaining shallow-water nodes, as follows

ϕ̌(x, t) = ϕ̌l(t)φl(x) = ϕ̌c(t)φc+(x) + ϕ̌l′(t)φl′(x)

=
1

H0
ψic(t)Ĩi φc+(x) + ϕ̌l′(t)φl′(x)

(42)

with the shallow-water indices l ∈ [Ne, Ne+Nv] and l
′ ∈ [Ne+1, Ne+Nv]. Substituting

(40), the variation of ϕ̌ becomes

δϕ̌ =
1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

)
φc+ + δϕ̌l′φl′ . (43)

16



Taking variations with respect to deep-water variables ψiq and hq, and the shallow-
water variables ϕ̌l and h in the variational principle (37), we obtain

0 =

∫ T

0

∫ xc

0

δψiq

{
1

Υ

[
h
dφq

dx
∂xψjM̃ij +

1

h
(∂xh)

2ψjφqS̃ij

− ∂xh

(
dφq

dx
D̃ijψj + φq∂xψjD̃ji

)
−H0bx

(
dφq

dx
B̃ijψj + φq∂xψjB̃ji

)]
+
H0

Υ

2bx∂xh

h
φqψjC̃ij +

1

h

(
H2

0

Υ
b2x +Υ

)
φqψjÃij

+
δq0
H0

∂tR̃ h0Ĩi −Υ
δi1
H0

φq

(
∂th+

X

W
∂tR̃∂xh

)}

+ δhq

{
1

2Υ

[
φq∂xψiM̃ij∂xψj +

(
−φq

h2
(∂xh)

2 +
2

h
∂xh

dφq

dx

)
ψiS̃ijψj

− 2
dφq

dx
∂xψiD̃ijψj

]
+

Υ

H0

[
φqg (h−H)− ψ1

X

W
∂tR̃

dφq

dx

]
− φq

2h2

(
H2

0

Υ
b2x +Υ

)
ψiÃijψj +

H0bx
Υ

(
1

h

dφq

dx
− φq∂xh

h2

)
ψiC̃ijψj

+ δq0
1

H0
∂tR̃ ψi0Ĩi +

φq

Lw
∂t(Wψ1)

}
dx

+

∫ Lx

xc

{
1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

)[
−∂thφc+ + h∂xϕ̌

dφc+

dx

]

+ δϕ̌l′

[
−∂thφl′ + h∂xϕ̌

dφl′

dx

]
+ δh

[
∂tϕ̌+

1

2

(
∂xϕ̌

)2
+ g(h−H)

]}
dx dt.

(44)

Substituting the shallow-water equations (8) into (44), the last two lines vanish. The
remaining term in the integral over the shallow-water domain can be simplified by
referring to the definition of φc+ and equation (8a), as follows:∫ T

0

∫ Lx

xc

1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

)[
−∂thφc+ + h∂xϕ̌

dφc+

dx

]
dx dt

=

∫ T

0

∫ xc+∆xS

xc

1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

)[
∂x(h∂xϕ̌)φc+ + h∂xϕ̌

dφc+

dx

]
dx dt

=

∫ T

0

1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

) {
h∂xϕ̌ φc+

}∣∣xc+∆xS

xc
dt

=

∫ T

0

− 1

H0

(
δψicĨi −

δhc
hc

ψicG̃i

) {
h∂xϕ̌

}∣∣
x=xc

dt.

(45)
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Substituting (45) into (44) yields the boundary terms at x = xc for the deep-water
variations δψi and δh. The deep-water weak formulations with coupling boundary
terms are thus given by the variation for δψj

0 =

∫ xc

0

[
1

Υ
hψi,xM̃ij(δψj)x +

1

Υ

h2x
h
ψiS̃ijδψj

+
1

h

(H2
0

Υ
b2x +Υ

)
ψiÃijδψj +

H0

Υ

2bxhx
h

ψiC̃ijδψj

− H0

Υ
bx

(
(δψj)xB̃jiψi + ψi,xB̃ijδψj

)
− 1

Υ
hx

(
(δψj)xD̃jiψi + ψi,xD̃ijδψj

)
− δ1j

(
W

Lw
ht +

X

Lw
R̃t hx

)
δψj

]
dx+

1

H0
Ĩj

(
{Rthδψj}|x=0 − {huδψj}|x=xc

)
,

(46)
and the variation for δh

0 =

∫ xc

0

[
1

2Υ
δhψi,xM̃ijψj,x +

1

Υ

(
hx(δh)x

h
− δh(hx)

2

2h2

)
ψiS̃ijψj

− δh

2h2

(
H2

0

Υ
b2x +Υ

)
ψiÃijψj +

H0bx
Υ

(
(δh)x
h

− δh hx
h2

)
ψiC̃ijψj

− 1

Υ
(δh)x ψi,xD̃ijψj +

Υ

H0
gδh(h−H)

+
1

Lw
δh ∂t(Wψ1)− ψ1

X

Lw
R̃t(δh)x

]
dx

+
1

H0

({
R̃t ψiĨiδh

}∣∣∣
x=0

+

{
hu

h
ψiG̃iδh

}∣∣∣∣
x=xc

)
,

(47)

where the shallow-water velocity u ≡ ∂xϕ̌ has been substituted. The coupling terms
are imposed weakly at the boundary x = xc. Note that (46) represents a system of
nz + 1 equations, indexed by j ∈ [1, nz + 1]. In particular, the case j = 1 governs the
evolution of h, while the cases j > 1 determine the interior velocity potentials ψj′ in
terms of the free-surface variables ψ1 and h. The transformed z-discretised deep-water
coupling conditions, corresponding to the continuous formulation in (11), are derived
in Appendix A.

3.2.2 Coupling condition for the shallow-water subdomain

To derive the shallow-water coupling condition, the variations of the deep-water vari-
ables h and ψj need to be partitioned to isolate the coupling node from the remaining
ones (cf. (26)), as follows

δh(x, t) = δhq(t)φq(x) = δhq′(t)φq′(x) + δhc(t)φc−(x), (48a)

δψj(x, t) = δψjq(t)φq(x) = δψjq′(t)φq′(x) + δψjc(t)φc−(x), (48b)
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with the deep-water indices q ∈ [0, Ne] and q′ ∈ [0, Ne − 1]. Applying the partition
(48a) to δh, the variation at the coupling node takes the form (cf. (44))

∫ T

0

{
δhc

∫ xc

0

[
1

2Υ
φc− ψi,xM̃ijψj,x − 1

Υ

dφc−

dx
ψi,xD̃ijψj

+
1

Υ

(
hx
h

dφc−

dx
− φc−(hx)

2

2h2

)
ψiS̃ijψj −

φc−

2h2

(
H2

0

Υ
b2x +Υ

)
ψiÃijψj

+
H0bx
Υ

(
1

h

dφc−

dx
− φc−hx

h2

)
ψiC̃ijψj

+
Υ

H0
gφc−(h−H) +

φc−

Lw
∂t(Wψ1)− ψ1

X

Lw
R̃t

dφc−

dx

]
dx

}
dt.

(49)

Using the transformed potential-flow equation (23), expression (49) can be simplified
as ∫ T

0

{
δhc

[∫ xc

0

dφc−

dx

[
1

Υ

(
hx
h
ψiS̃ijψj +

H0bx
h

ψiC̃ijψj − ψi,xD̃ijψj

)
− ψ1

X

Lw
R̃t

]

+ φc−
∂

∂x

[
1

Υ

(
hx
h
ψiS̃ijψj +

H0bx
h

ψiC̃ijψj − ψi,xD̃ijψj

)
− ψ1

X

Lw
R̃t

]
dx

]}
dt

=

∫ T

0

δhc

{
φc−

[
1

Υ

(
hx
h
ψiS̃ijψj +

H0bx
h

ψiC̃ijψj − ψi,xD̃ijψj

)
− ψ1

X

Lw
R̃t

]}∣∣∣∣x=xc

x=0

dt

=

∫ T

0

δhc
1

H0

{
hx
h
ψiS̃ijψj +

H0bx
h

ψiC̃ijψj − ψi,xD̃ijψj

}∣∣∣∣
x=xc

dt.

Applying partition (48b) to δψj , the variation at the coupling node reads (cf. (44))

∫ T

0

{
δψjc

∫ xc

0

[
1

Υ
hψi,xM̃ij

dφc−

dx
+

1

Υ

h2x
h
ψiS̃ijφc−

+
1

h

(H2
0

Υ
b2x +Υ

)
ψiÃijφc− +

H0

Υ

2bxhx
h

ψiC̃ijφc−

− H0

Υ
bx

(
dφc−

dx
B̃jiψi + ψi,xB̃ijφc−

)
− 1

Υ
hx

(
dφc−

dx
D̃jiψi + ψi,xD̃ijφc−

)
− δ1j

(
Υ

H0
ht +

X

Lw
R̃t hx

)
φc−

]
dx

}
dt.

(50)

19



Using transformed potential-flow equation (25), expression (50) is simplified to

∫ T

0

{
δψjc

[∫ xc

0

dφc−

dx

[
1

Υ

(
hψi,xM̃ij −H0bxB̃jiψi − hxD̃jiψi

)]

+ φc−
∂

∂x

[
1

Υ

(
hψi,xM̃ij − hxD̃jiψi −H0bxB̃jiψi

)]
dx

]}
dt

=

∫ T

0

δψjc

{
φc−

1

Υ

(
hψi,xM̃ij − hxD̃jiψi −H0bxB̃jiψi

)}∣∣∣∣x=xc

x=0

dt

=

∫ T

0

δψjc
1

H0

{
hψi,xM̃ij − hxD̃jiψi −H0bxB̃jiψi

}∣∣∣
x=xc

dt.

Collecting results from the deep-water variations containing φc− , i.e. simplified forms
of (49) and (50), matters combine to∫ T

0

δψic

H0

{
hψj,xM̃ij − hxD̃ijψj −H0bxB̃ijψj

}∣∣∣
x=xc

+
δhc
H0

{
hx
h
ψiS̃ijψj +

H0bx
h

ψiC̃ijψj − ψi,xD̃ijψj

}∣∣∣∣
x=xc

dt

=

∫ T

0

δψic

H0

{∫ H0

0

φ̃i

(
hψj,xφ̃j − hxψjz

dφ̃j

dz
−H0bxψj

dφ̃j

dz

)
dz

}∣∣∣∣∣
x=xc

− δhc
H0

{∫ H0

0

zψi
dφ̃i

dz

1

h

(
−hxψjz

dφ̃j

dz
−H0bxψj

dφ̃j

dz
+ hψj,xφ̃j

)
dz

}∣∣∣∣∣
x=xc

dt

=

∫ T

0

∫ H0

0

δψic

H0
φ̃i

{
hψj,xφ̃j − hxψjz

dφ̃j

dz
−H0bxψj

dφ̃j

dz

}∣∣∣∣
x=xc

dz

−
∫ H0

0

δhc
H0

zψic
dφ̃i

dz

1

hc

{
−hxψjz

dφ̃j

dz
−H0bxψj

dφ̃j

dz
+ hψj,xφ̃j

}∣∣∣∣
x=xc

dz dt

=

∫ T

0

∫ H0

0

1

H0

(
δψicφ̃i − zψic

dφ̃i

dz

δhc
hc

) {
hψj,xφ̃j − hxψjz

dφ̃j

dz
−H0bxψj

dφ̃j

dz

}∣∣∣∣
x=xc

dz dt

=

∫ T

0

∫ H0

0

1

H0
δϕc

{
hψj,xφ̃j − hxψjz

dφ̃j

dz
−H0bxψj

dφ̃j

dz

}∣∣∣∣
x=xc

dz dt,

wherein relation (12) transformed by (15) is used:

δψicφ̃i −
δhc
hc

z ψic
dφ̃i

dz
= δϕc. (51)
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In terms of the shallow-water variations, after performing integration by parts in
space on the δϕ̌l equation (cf. (44)), i.e.∫ T

0

∫ Lx

xc

δϕ̌l

[
−∂thφl + h∂xϕ̌

dφl

dx

]
dx dt, (52)

a boundary term emerges at x = xc, namely

δϕ̌|x=xc : −h∂xϕ̌. (53)

Collecting the boundary terms on both sides of x = xc leads to the coupling condition
for the shallow-water region:

{hu}|x=xc =
1

H0

∫ H0

0

{
hψi,xφ̃i − hxψiz

dφ̃i

dz
−H0bxψi

dφ̃i

dz

}∣∣∣∣
x=xc

dz

=
1

H0

{
hψi,xĨi − hxψiG̃i −H0bx(ψ1 − ψnz+1)

}∣∣∣
x=xc

.

(54)

Alternatively, this coupling condition may also be obtained directly by transforming
its continuous formulation (14), as shown in Appendix A. The boundary condition
(54) is imposed on the shallow-water subdomain at x = xc via

(
h
hu

)
x=xc

=

 h
1

H0

[
h∂xψiĨi − ψiG̃i∂xh−H0bx(ψ1 − ψnz+1)

]
x=xc

. (55)

3.3 Temporal coupling strategy and its Firedrake
implementation

In this section, we introduce the first-order symplectic-Euler (SE) scheme developed
for advancing the deep-water variables (h and ψi) and shallow-water variables (h and
hu) from time step tn to tn+1 = tn + ∆t. We also present its implementation in
Firedrake. We end with a discussion on the time-step restriction. In the SE scheme, the
coupling boundary conditions and the shallow-water HLL flux are evaluated explicitly.
This allows for a fully explicit coupling between the deep- and shallow-water systems,
with their respective solutions updated separately.

Specifically, at each time step, the deep-water solution is updated first in Fire-
drake, based on the weak formulations (46) and (47), using the symplectic-Euler time
integration scheme, which consists of two steps.

In the first SE step, with δψ1 and δψ̂ serving as test functions respectively,

the total water depth hn+1 and the sub-surface velocity potentials ψ̂
∗
are updated
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simultaneously by implicitly solving the following weak formulations∫ xc

0

H0W
nh

n+1 − hn

∆t
δψ1dx

=

∫ xc

0

[
L2
w

Wn
hn+1(δψ1)x

(
M̃11ψ

n
1,x + M̃T

1N ψ̂
∗
x

)
+
L2
w

Wn

(hn+1
x )2

hn+1
δψ1

(
S̃11ψ

n
1 + S̃T

1N ψ̂
∗)

+
H2

0

hn+1

( L2
w

Wn
b2x +Wn

)
δψ1

(
Ã11ψ

n
1 + ÃT

1N ψ̂
∗)

+
L2
w

Wn

2H0bxh
n+1
x

hn+1
δψ1

(
C̃11ψ

n
1 + C̃T

1N ψ̂
∗)

− L2
w

Wn
H0bx

[(
B̃11ψ

n
1,x + (ψ̂

∗
x)

T B̃N1

)
δψ1 + (δψ1)x

(
B̃11ψ

n
1 + B̃T

1N ψ̂
∗)]

− L2
w

Wn
hn+1
x

[(
D̃11ψ

n
1,x + (ψ̂

∗
x)

T D̃N1

)
δψ1 + (δψ1)x

(
D̃11ψ

n
1 + D̃T

1N ψ̂
∗)]

−H0X R̃n
t h

n+1
x δψ1

]
dx+

{
LwR̃

n
t h

n+1δψ1Ĩ1

}∣∣∣
x=0

−
{
Lw(hu)

nδψ1Ĩ1

}∣∣∣
x=xc

,

(56a)
and

0 =

∫ xc

0

[
L2
w

Wn
hn+1

(
ψn
1,xM̃

T
1N + (ψ̂

∗
x)

T M̃NN

)
(δψ̂)x

+
L2
w

Wn

(hn+1
x )2

hn+1

(
ψn
1 S̃

T
1N + (ψ̂

∗
)T S̃NN

)
δψ̂

+
H2

0

hn+1

( L2
w

Wn
b2x +Wn

)(
ψn
1 Ã

T
1N + (ψ̂

∗
)T ÃNN

)
δψ̂

+
L2
w

Wn

2H0bxh
n+1
x

hn+1

(
ψn
1 C̃

T
1N + (ψ̂

∗
)T C̃NN

)
δψ̂

− L2
w

Wn
H0bx

[
(δψ̂)Tx

(
B̃N1ψ

n
1 + B̃NN ψ̂

∗)
+
(
ψn
1,xB̃

T
1N + (ψ̂

∗
x)

T B̃NN

)
δψ̂
]

− L2
w

Wn
hn+1
x

[
(δψ̂)Tx

(
D̃N1ψ

n
1 + D̃NN ψ̂

∗)
+
(
ψn
1,xD̃

T
1N + (ψ̂

∗
x)

T D̃NN

)
δψ̂
]]

dx

+
{
LwR̃

n
t h

n+1(δψ̂)T ĨN

}∣∣∣
x=0

−
{
Lw(hu)

n(δψ̂)T ĨN

}∣∣∣
x=xc

.

(56b)
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In the second SE substep, using δh as the test function, the free-surface potential ψn+1

is updated by explicitly solving the weak formulation:∫ xc

0

H0(W
n+1ψn+1

1 ) δh dx =

∫ xc

0

H0(W
nψn

1 ) δh dx

−∆t

∫ xc

0

[
1

2

L2
w

Wn
δh
[
ψn
1,xM̃11ψ

n
1,x +

(
2ψn

1,xM̃
T
1N + (ψ̂

∗
x)

T M̃NN

)
ψ̂

∗
x

]
+
L2
w

Wn

(
hn+1
x (δh)x
hn+1

− δh(hn+1
x )2

2(hn+1)2
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ψn
1 S̃11ψ

n
1 +

(
2ψn

1 S̃
T
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∗
)T S̃NN

)
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∗]
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0
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( L2

w

Wn
b2x +Wn

) [
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1 Ã11ψ

n
1 +

(
2ψn

1 Ã
T
1N + (ψ̂

∗
)T ÃNN

)
ψ̂

∗]
+
L2
w

Wn

H0bx
hn+1

(
(δh)x − δh hn+1

x

hn+1

) [
ψn
1 C̃11ψ

n
1 +

(
2ψn

1 C̃
T
1N + (ψ̂

∗
)T C̃NN

)
ψ̂

∗]
− L2

w

Wn
(δh)x

[(
D̃11ψ

n
1,x + (ψ̂

∗
x)

T D̃N1

)
ψn
1 +

(
ψn
1,xD̃

T
1N + (ψ̂

∗
x)

T D̃NN

)
ψ̂

∗]
+H0

(
gWnδh(hn+1 −H)− ψn

1X R̃n
t (δh)x

)]
dx

−∆t
{
LwR̃

n
t

(
ψn
1 Ĩ1 + (ψ̂

∗
)T ĨN

)
δh
}∣∣∣

x=0

−∆t
{
Lw

(hu)n

hn+1

(
ψn
1 G̃1 + (ψ̂

∗
)T G̃N

)
δh
}∣∣∣∣

x=xc

.

(57)
After the deep-water update, the shallow-water solution is advanced using the

updated values from the deep-water side at the coupling boundary x = xc. Specifically,
the shallow-water coupling boundary condition (55) at x = xc = x−1/2 is imposed as
follows

hn+1
−1/2 =

{
hn+1

}∣∣
x=xc

, (58a)

(hu)∗−1/2 =
1

H0

{
hn+1

(
ψn
1,xĨ1 + (ψ̂

∗
)T ĨN

)
− hn+1

x

(
ψn
1 G̃1 + (ψ̂

∗
)T G̃N

)
−H0bx

(
ψn
1 J̃1 + (ψ̂

∗
)T J̃N

)}∣∣∣
x=xc

, (58b)

where the column vector J̃ is defined as J̃i =
∫H0

0
dφ̃i

dz dz.
The shallow-water variables h and hu are then updated according to

hn+1
k = hnk − ∆t

∆xS

(
Fh
k+1/2 − Fh

k−1/2

)
, (59a)

(hu)n+1
k = (hu)nk − ∆t

∆xS

[(
Fhu
k+1/2 − Fhu

k−1/2

)
− 1

2
g
(
(hn+1

k+1/2)
2 − (hn+1

k−1/2)
2
)]
,

(59b)
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where the Harten-Lax-van Leer (HLL) flux is used to compute the numerical fluxes
Fh and Fhu, defined by

F(U) =

(
hu

hu2 + 1
2gh

2

)
≡
(
Fh

Fhu

)
. (60)

For the shallow-water depth h, the numerical flux is computed explicitly as

Fh
k+1/2 =



0 if SL = SR = 0,

Fh
− if SL > 0,

Fh
+ if SR < 0,

Sh
RF

h
− − Sh

LF
h
+ + Sh

LS
h
R

(
hn(k+1/2)+ − hn(k+1/2)−

)
Sh
R − Sh

L

otherwise,

where the left and right fluxes Fh
± at the cell interface x = xk+1/2 are evaluated as

Fh
− ≡ (hu)n(k+1/2)− = hn(k+1/2)−u

n
k , (61a)

Fh
+ ≡ (hu)n(k+1/2)+ = hn(k+1/2)+u

n
k+1, (61b)

with unk = (hu)nk/h
n
k . The locally-constructed shallow-water depths hn(k+1/2)± are given

by (B7). The left and right wave speeds are explicitly computed as

Sh
L = min

{[
(hu)n

hn
−
√
ghn

]
(k+1/2)−

,

[
(hu)n

hn
−
√
ghn

]
(k+1/2)+

}
, (62a)

Sh
R = max

{[
(hu)n

hn
+
√
ghn

]
(k+1/2)−

,

[
(hu)n

hn
+
√
ghn

]
(k+1/2)+

}
. (62b)

Given the updated hn+1
k , the other shallow-water variable hu is updated in a

semi-explicit manner. The flux for hu is evaluated using the HLL scheme, where the
flux function depends on the newly updated hn+1 and the old velocity-like variable
(hu)n/hn. The numerical flux reads

Fhu
k+1/2 =



0 if SL = SR = 0,

Fhu
− if SL > 0,

Fhu
+ if SR < 0,

Shu
R Fhu

− − Shu
L Fhu

+ + Shu
L Shu

R

(
(hu)n(k+1/2)+ − (hu)n(k+1/2)−

)
Shu
R − Shu

L

else,
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where the left and right fluxes Fhu
± evaluated at cell interface x = xk+1/2 are computed

as

Fhu
± ≡

[
((hu)n)2

hn+1
+

1

2
g(hn+1)2

]
(k+1/2)±

. (63)

Here, the updated depth hn+1 enters the pressure term and denominator to improve
numerical stability and consistency with the mass update. The corresponding wave
speeds are estimated using the velocity at time level n and the updated depth:

Shu
L = min

{[
(hu)n

hn
−
√
ghn+1

]
(k+1/2)−

,

[
(hu)n

hn
−
√
ghn+1

]
(k+1/2)+

}
, (64a)

Shu
R = max

{[
(hu)n

hn
+
√
ghn+1

]
(k+1/2)−

,

[
(hu)n

hn
+
√
ghn+1

]
(k+1/2)+

}
. (64b)

This update is referred to as semi-explicit because the nonlinear flux function for hu
depends on both the solution at the previous time level, (hu)n, and the updated water
depth hn+1, which is already available from the preceding update step. By mixing
time levels in this way—using hn+1 for stability while retaining (hu)n to avoid solving
a fully nonlinear system—the scheme maintains an explicit time-stepping structure
while benefiting from improved numerical robustness.

Finally, the updated (hu)n+1 provides the coupling boundary condition in the
deep-water weak formulations to be used for the next time step:{

(hu)n+1
}∣∣

x=xc
= (hu)n+1

−1/2. (65)

In summary, this symplectic-Euler scheme for the whole system has four steps:

1. First, update the deep-water solutions using the symplectic-Euler scheme by solving
the weak formulations (56) and (57).

2. Then, set the shallow-water boundary condition at x = xc with (58).
3. Next, update the shallow-water solutions using a forward-Euler scheme as per (59).
4. Finally, save the deep-water boundary condition (65) to be used for the next time

step.

The scheme is faster than a strict symplectic-Euler scheme, since it avoids iterations
required to implicitly solve the coupling terms by explicitly evaluating the HLL-fluxes.

The time-step restriction for the symplectic-Euler scheme used for solving the
deep-water subdomain is given by ∆tD ≤ 2/ωmax, where ωmax is estimated based on
the linear dispersion relation [28]. For the finite-volume shallow-water solver, the time
step ∆tS is restricted by the Courant-Friedrichs-Lewy (CFL) condition to maintain
numerical stability. Given the uniform mesh size ∆xS , the CFL condition can be
written as (cf. [20])

∆tS ≤ CFL∆xS/max
k

{
|uk|+

√
ghk

}
, (66)
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where uk = (hu)k/hk is the horizontal velocity in cell k, and CFL < 1 the Courant
number. Here, |uk| +

√
ghk represents the characteristic wave speed at each cell,

accounting for both advection by the flow and gravity wave propagation. It ensures
that information does not travel more than one cell during a single time step, thus
maintaining numerical stability. Hence, the overall time-step criterion for the coupled
model becomes ∆t ≤ min{∆tD,∆tS}.

4 Results

The effectiveness of the sloping beach in absorbing wave energy is investigated in
the following test case. The seabed is flat when x < xb, beyond which a sloping
beach begins, defined by b(x) = sb(x − xb) for x ∈ [xb, Lx]. The wavemaker motion
is prescribed as R(t) = γ cos(ωt), where γ denotes the maximum displacement from
x = 0 with oscillation period Tw = 2π/ω. The simulation is run for t ∈ [0, 110]Tw =
[0, 124.73]s, with the wavemaker motion arrested after t = 60Tw = 68.04s. The param-
eters used are found in Table 1. Short or deep water waves roughly satisfy the relation
λ < 2H(x) with wave length λ and (rest) water depth H(x) at position x in the
beach region. Long shallow-water waves roughly satisfy λ > 10H(x) to 20H(x). These
rough estimates justify our choice of λ/H(xc) = 10 such that for λ = 2m we find that
H(xc) = 0.2 and xc = xb + sb (H0 −H(xc)) = 11m for a beach slope of sb = 0 and
the beach starting at xb = 3m. During or after the simulations, we also visually check
whether the velocity potential ϕ(x, z, t) displays sufficient depth-independence, i.e. as
can be discerned from Fig. 5. Further discussion is found in [5], wherein two simulations
with the MSA are compared for different values of xc, ones with λ/H(xc) = 5, 12.5; a
difference seen to lead to only minor changes in the results.

Domain Beach

Lx [m] H0 [m] H(xc) [m] xb [m] sb

14.0 1.0 0.2 3.0 0.1

Wavemaker

λ [m] ω [rad/s] Tw [s] γ [m] Lw [m]

2.0 5.54 1.13 0.02 1.0

Resolution

∆xD [m] ∆xS [m] nz ∆t [s]

0.05 0.0025 8 0.001

Table 1 Parameters used with units given in square
brackets. The simulation runs from t0 = 0 s to 124.72 s
with wavemaker turned off at 68.04 s.

To assess the efficacy of the sloping beach in dissipating wave energy, we compute
and display energy variations in both deep- and shallow-water subdomains, in Fig. 4.
These energies are offset by their initial rest values at t0 = 0 s, cf. Fig. 5(a).
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Fig. 4 Energy variations in the coupled wavetank with energies of deep-water and shallow-water
subdomains, and the total energy in the full domain, shown in blue, red, and yellow, respectively.
The wavemaker is switched off at t = tstop = 68.04 s as marked by a vertical dotted green line.

Immediately after the wavemaker is activated, energy is on average put into the
system. It results in a steady increase in the total energy, most of which accumulates
in the deep-water region. The onset of energy growth in the shallow-water region is
delayed, beginning around t ≈ 4.4 s—the time required for waves to propagate across
the deep-water subdomain and reach the shallow-water region (cf. Fig. 5(b)). At this
point, the shallow-water energy begins to rise, while a slight reduction in the gradient
of the deep-water energy curve indicates energy transfer across the coupling interface.
From this point onward, the total energy continues to increase, implying that the rate
of energy put in by the wavemaker exceeds the rate of dissipation on the beach. The
consistent slope of the total energy curve during this phase suggests a smooth and
effective transmission of energy from the deep-water to the shallow-water region via
the coupling interface.

Around t ≈ 36 s, the system appears to reach a dynamic equilibrium, where the
total energy oscillates around a nearly constant value. This plateau indicates that the
energy input from the wavemaker is now approximately balanced by the dissipation
mechanisms in the shallow-water region. During this equilibrium phase, the wave field
is fully developed (cf. Fig. 5(c)), characterised by regular wave propagation in the
deep-water region and wave shoaling, cresting, and wave breaking on the beach slope.

The energy dissipation on the sloping beach is achieved through bore formation
and shoaling in the surf zone, as illustrated in a series of snapshots taken over one
wavemaker period, t ∈ [59, 60]Tw, in Fig. 6. At t = 59Tw, a bore begins to form near the
coupling interface. It then propagates towards the dry beach, with its front becoming
steeper while its amplitude gradually decreases, until it eventually breaks and is fully
absorbed by the beach at t = 60Tw. At this point, the situation closely resembles the
beginning of the period at t = 59Tw, with a new bore once again starting to form near
the coupling interface.
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(a)

(b)

(c)

(d)

Fig. 5 Wave motions in the coupled wavetank at different times. (a) Water at rest at initial time
t = t0 = 0 s. (b) Waves propagate through the deep-water region and begin to enter the shallow-water
region at t ≈ 4.4 s, marked by a rise in shallow-water energy. (c) Fully-developed water waves in the
wavetank at t = tstop = 68.04 s. Energy input from the wavemaker balances dissipation at the beach,
reaching dynamic equilibrium. (d) Remaining waves in the wavetank at t = tend = 124.72 s due to
wave reflections between the solid boundaries. Note that Horizontal velocities (u = ϕx in deep water
and u = hu/h in shallow water) are shown in the same legend range across the whole domain. A video
covering the full simulation is available at https://youtu.be/HFw2ayh2oXk?si=7OxCHZ u1LEku eN.
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Fig. 6 Wave shoaling and bore formation in the shallow-water subdomain. Temporal snapshots are
captured for one period t ∈ [59, 60]Tw = [66.90, 68.04] s while the coupled wavetank remains in the
dynamic equilibrium state. The colour legend indicates the horizontal velocity u in the shallow-water
domain.

29



To verify that most of the input energy is absorbed by the beach, the wavemaker
is switched off at t = tstop = 68.04 s, as marked by the green dotted vertical line in
Fig. 4. Immediately after this shutdown, the total energy decreases rapidly at an on
average (negative) rate similar to its initial (positive) rate. Due to the time required for
the final group of waves to traverse the deep-water region, a delay is observed before
the shallow-water energy begins to decrease. The energy curves show that the total
energy does not return to zero by the end of the simulation at t = 110Tw, because
small long-wave residual waves remain, reflecting between the solid boundaries, and
the water has not yet come to complete rest—as seen in the non-zero velocities in
Fig. 5(d). The oscillations in Fig. 4 are on the timescale of the wavemaker with a
period Tw = 1.13s. Note that they are also present in the first circa 12s of net gross
energy input when the waves do not yet dissipate at the beach due to wave breaking
and that they gradually disappear after the wavemaker is switched off.

The remaining total energy, averaged over t ∈ [105, 110]Tw, is Ē2 = 0.0024 J, which
accounts for 2.4% of the total energy at the dynamic equilibrium state, Ē1 = 0.0987 J,
averaged over t ∈ [55, 60]Tw. This demonstrates that the numerical wavetank, coupled
with an absorbing beach, successfully fulfils its intended purpose in the present model.

Next, to quantitatively examine the effect of the mild-slope approximation (MSA),
two simulations were performed—one using the full weak formulations (FWF) and
coupling conditions, while the other MSA formulation ignores all kinetic-energy terms
containing bx in the model formulation. The configurations for the two simulations
are otherwise identical, and they are summarised in Table. 2. In this case, the beach
slope is set to sb = 0.2 and the amplitude of the wavemaker motion is γ = 0.03, which
are larger than those in the previous test, with the expectation that these conditions
will better highlight the differences between the two setups. Both FWF and MSA
simulations run from t0 = 0 s to tend = 20Tw = 22.68 s, with the wavemaker turned
off at tstop = 10Tw = 11.34 s. Note that the differences in runtime are negligible.

Whole domain Beach

Lx [m] H0 [m] H(xc) [m] xb [m] sb

10.0 1.0 0.2 4.0 0.2

Wavemaker

λ [m] ω [rad/s] Tw [s] γ [m] Lw [m]

2.0 5.54 1.13 0.03 1.0

Resolutions

∆xD [m] ∆xS [m] nz ∆t [s]

0.05 0.0025 8 0.001

Table 2 Parameters used for the simulations examining
the effect of the mild-slope approximation. Units are
given in square brackets.
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(a)

(b)
Fig. 7 Effect of the mild-slope approximation (MSA) on the selected solutions. Numerical results
obtained using full weak formulations (FWF) and coupling conditions are represented by solid lines,
while those from MSA are shown as dashed lines. (a) Evolution of water depth h(xc, t) and horizontal
velocity u(xc, t) evaluated at the coupling point. (b) Evolution of “h = 0-waterline position” xw(t).

In the deep-water subdomain, the horizontal velocity u = ϕx varies in the range
[−0.452, 0.793] for the case where MSA is not applied, whereas for the case using
MSA, it falls within the range [−0.437, 0.746], which is smaller than the former. The
sloping beach in FWF causes the wave motion to intensify slightly, as observed in the
evolution of water depth and velocity evaluated at the coupling point, denoted by hc
and uc respectively, shown in Fig. 7(a). The wave amplitude and velocity tend to be
higher in the FWF case. These differences become more noticeable after the wavemaker
stops, with the maximum relative difference for hc and uc reaching 3.21% and 12.0%,
respectively. A comparison of the artificial h = 0-waterline position xw(t) is carried
out in Fig. 7(b). The maximum relative difference is seen to occur at t = 9.98 s. Hence,
the effect of the mild-slope approximation is not negligible. This underscores the need
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to revisit the validations against experimental test cases [5], where the MSA was used.
Better agreement is expected to be achieved with the present improved model.

Fig. 8 Analysis and determination of a waterline. Top: Energies in MSA and FWF are largely similar
with total MSA energy slightly smaller. Bottom: approximate determination of waterline position.

Due to the numerical wetting-and-drying algorithm of [20] employed, the deter-
mination of a waterline position xw(t) is ambiguous. In Fig. 8, we therefore analyse
the dynamics by defining various “waterline” points defined by (the right-most) water
depths h = 0, 0.01, 10−3, 10−4, 10−5 for both MSA and FWF. The mathematical water-
line should oscillate back and forth on the sloping beach, which appears to be captured
by a cut-off level h ≈ 10−4, 10−5.

Code performance, both in terms of computation speed and memory usage, has
improved following an upgrade of wavemaker-related functions in the time loop. Specif-
ically, a Firedrake Constant object is used to hold the time value in the expressions
for these wavemaker-related functions, instead of directly using the time variable t

[7]. By updating the Constant at each time step, the symbolic expressions do not
need to be regenerated, thereby avoiding the request for new memory and saving
a significant amount of time [7]. After this improvement, the long-time simulation
(t ∈ [0, 110]Tw = [0, 124.73] s, nearly 1.24 × 105 time steps with ∆t = 10−3 s, and
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DoFs = (Ne +1)(nz +1)+Nv = 3189) took 1 : 27hr to complete in a serial computa-
tion on a 2020 MacBook Pro, with memory usage 300-400MB. It makes this numerical
wavetank a cost-effective tool for practical problems in the maritime industry.

5 Conclusion and discussion

We have presented the first numerical wavetank with fully nonlinear coupling between
deep-water (potential-flow) and shallow-water equations using a variational approach.
The variational approach ensured stable simulations of waves travelling through the
coupling interface Γc in a smooth way, resulting in (nearly) uni-directional waves,
thereby simulating a credible (scaled-down) realistic sea state. The energy variations
show that the coupling interface behaves as a transparent boundary for the deep-
water waves, while the beach absorbs more than 97% of the energy. The model may
therefore be used as a cost-improved alternative of a deep-water model, such as the
ones presented in [5, 7] and [29], since it reduces the size of the numerical domain
and thereby saves substantial computational resources. The choice of absorbing waves
with a topographical beach makes the numerical tank similar to experimental wave
tanks, e.g., the one at MARIN, wherein waves are generated by a (piston) wavemaker
and absorbed through wave breaking on the beach. Wave generation can thus first be
tested in our numerical wave tank before being used in experimental set-ups, thereby
ensuring that the wavemaker motion will by design generate the waves in the target
area, which is of practical value.

Some improvements can increase the efficiency of the present numerical tank, as
follows. First, the semi-symplectic Euler scheme used for optimal computational cost
may be extended to the symplectic-Euler scheme or a higher-order scheme by dealing
with the implicit evaluation of the HLL flux in shallow water. For instance, the second-
order Störmer-Verlet scheme implemented in [5, 7] in deep water may be applied to
the coupled model or the modified mid-point method (as implemented variationally in
[29]). Second, the implementation of the shallow-water solver is not yet optimised and
could be improved by parallel computing; on which note, the deep-water solver may
be compiled in parallel without any additional modification, cf. the automatic paral-
lelisation features in Firedrake [30, 31]. Third, the coupling location is chosen a priori
based on the characteristic wavelengths and in-situ water depth involved; though this
has the advantage of being fixed and prescribed, note that it is not optimal for irregu-
lar waves. Indeed, to make sure that the vertical variations of the velocity potential are
negligible at the coupling point for irregular waves dynamic determination of xc can
be made depending on the vertical structure of the velocity potential in the potential-
flow domain, thus ensuring that the shallow-water assumption holds at the coupling
point. Another solution was developed by Cotter and Bokhove [32] and extended by
Gagarina et al. [25], who proposed a new model that encompasses both the three-
dimensional potential-flow water-water model and the depth-averaged shallow-water
model as limiting systems. Consequently, the coupling point sets itself dynamically;
both Cotter and Bokhove [32] and Gagarina et al. [25] also derive hydraulic-jump con-
ditions for this new model, which conditions equal the usual shallow-water ones in the
shallow-water limit. An extension of the present model to a 3D tank is also possible.
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Since (i) the 3D deep-water model has been implemented in [5–7] and [29], and (ii)
the surface shallow-water model is part of Flooddrake in Firedrake [33], the extension
of the coupling to a two-dimensional interface in 3D comprises future work.

Finally, we aim to validate the coupled model against wave-beach experiments
with regular and irregular wave trains, e.g., those made at the Delft University of
Technology, as described in [5], including preliminary validations using the model with
the MSA.
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Appendix A Discrete coupling conditions

The coupling conditions at x = xc for the deep- and shallow-water subdomains
originate from the following terms in the continuous variational principle (4):{∫ b+h

b

δϕϕx dz

}∣∣∣∣∣
x=xc

−
{
δϕ̌
(
h ϕ̌x

)}∣∣
x=xc

. (A1)

To derive the explicit, discrete coupling condition for the deep-water region, we use
the relation (10), so that (A1) becomes{∫ b+h

b

δϕϕx dz

}∣∣∣∣∣
x=xc

−

{
hu

h

∫ b+h

b

δϕ dz

}∣∣∣∣∣
x=xc

, (A2)
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where u ≡ ϕ̌x has been substituted. Applying the coordinate transformation (15), this
expression becomes:{∫ b+h

b

δϕ
(
ϕx − hu

h

)
dz

}∣∣∣∣∣
x=xc

→

{∫ H0

0

(
− z
h
ϕzδh+ δϕ

)(Lw

W
ϕx − Lw(zhx +H0bx)

Wh
ϕz −

hu

h

)
h

H0
dz

}∣∣∣∣∣
x=xc

.

(A3)
Substituting the vertical expansion ϕ(x, z, t) = ψi(x, t) φ̃i(z) into the transformed
expression, the transformed coupling term can be computed as{∫ H0

0

(
− z
h
ψj φ̃j,zδh+ δψj φ̃j

)(Lw

W
ψi,xφ̃i −

Lw(zhx +H0bx)

Wh
ψi φ̃i,z −

hu

h

)
h

H0
dz

}∣∣∣∣∣
x=xc

=

{
−
∫ H0

0

δh
z

H0
ψj φ̃j,z

(
Lw

W
ψi,xφ̃i −

Lw(zhx +H0bx)

Wh
ψi φ̃i,z −

hu

h

)
dz

}∣∣∣∣∣
x=xc

+

{∫ H0

0

δψj
h

H0
φ̃j

(
Lw

W
ψi,xφ̃i −

Lw(zhx +H0bx)

Wh
ψi φ̃i,z −

hu

h

)
dz

}∣∣∣∣∣
x=xc

=

{
δh

1

H0

hu

h
ψj

∫ H0

0

z φ̃j,z dz

}∣∣∣∣∣
x=xc

−

{
δh

Lw

H0W
ψi,x

∫ H0

0

zφ̃iφ̃j,z dz ψj

}∣∣∣∣∣
x=xc

+

{
δh

Lw

WH0

hx
h
ψi

∫ H0

0

z2φ̃i,z φ̃j,z dz ψj

}∣∣∣∣∣
x=xc

+

{
δh
Lw

W

bx
h
ψi

∫ H0

0

zφ̃i,z φ̃j,z dz ψj

}∣∣∣∣∣
x=xc

−

{
δψj

hu

H0

∫ H0

0

φ̃j dz

}∣∣∣∣∣
x=xc

+

{
δψj

hLw

WH0
ψi,x

∫ H0

0

φ̃iφ̃j dz

}∣∣∣∣∣
x=xc

−

{
δψj

Lwhx
WH0

ψi

∫ H0

0

zφ̃i,z φ̃j dz

}∣∣∣∣∣
x=xc

−

{
δψj

Lwbx
W

ψi

∫ H0

0

φ̃i,z φ̃j dz

}∣∣∣∣∣
x=xc

=

{
δh

1

H0

hu

h
ψjG̃j

}∣∣∣∣
x=xc

−
{
δh

1

Υ
ψi,xD̃ijψj

}∣∣∣∣
x=xc

+

{
δh

1

Υ

hx
h
ψiS̃ijψj

}∣∣∣∣
x=xc

+

{
δh
Lw

W

bx
h
ψiC̃ijψj

}∣∣∣∣
x=xc

−
{
δψj

hu

H0
Ĩj

}∣∣∣∣
x=xc

+

{
δψj

h

Υ
ψi,xM̃ij

}∣∣∣∣
x=xc

−
{
δψj

hx
Υ
ψiD̃ji

}∣∣∣∣
x=xc

−
{
δψj

Lwbx
W

ψiB̃ji

}∣∣∣∣
x=xc

.

The results are consistent with the boundary terms at x = xc collected from (22) and
(24). Using the relations Υ|x=xc = H0 and W |x=xc = Lw and with i, j ∈ [1, nz + 1],
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the transformed z-discretised coupling conditions for the deep-water domain (cf. the
continuous formulation (11)) emerge as:

δh|x=xc :
1

H0

(
ψi,xD̃ijψj −

hx
h
ψiS̃ijψj

)
− bx
h
ψiC̃ijψj =

1

H0

hu

h
ψjG̃j , (A4a)

δψj |x=xc :
1

H0

(
hψi,xM̃ij − hxψiD̃ji

)
− bxψiB̃ji =

1

H0
huĨj . (A4b)

A.1 Direct derivation of the shallow-water coupling condition

The shallow-water coupling condition (54) can also be obtained directly from the
continuous variational formulation (A1). Substituting the relation (12) into (A1), and
applying the coordinate transformation (15), the expression becomes:{

δϕ̌

∫ b+h

b

ϕx dz

}∣∣∣∣∣
x=xc

−
{
δϕ̌
(
h ϕ̌x

)}∣∣
x=xc

→ δϕ̌c

{∫ H0

0

(
Lw

W
ϕx − Lw(zhx +H0bx)

Wh
ϕz

)
h

H0
dz − hu

}∣∣∣∣∣
x=xc

.

(A5)

Since the variation δϕ̌c is arbitrary, we obtain

0 =

{∫ H0

0

(
Lw

W
ψi,xφ̃i −

Lw(zhx +H0bx)

Wh
ψi φ̃i,z

)
h

H0
dz − hu

}∣∣∣∣∣
x=xc

=

{
1

Υ
hψi,x

∫ H0

0

φ̃i dz −
1

Υ
hxψi

∫ H0

0

z
dφ̃i

dz
dz − 1

Υ
H0bxψi

∫ H0

0

dφ̃i

dz
dz − hu

}∣∣∣∣∣
x=xc

=
1

H0

{
hψi,xĨi − hxψiG̃i −H0bx(ψ1 − ψnz+1)

}∣∣∣
x=xc

− {hu}|x=xc
,

which is consistent with the coupling condition (54) derived in the main text.

Appendix B Wetting and drying method

In this method, the momentum source term is constructed to preserve hydrostatic
balance numerically:

S =

(
0

−ghb̌x

)
= ∂x

(
0

1
2gh

2

)
,

so that the hydrostatic state corresponding to a basin at rest is maintained. Integration
of S over cell k leads to the following representation of the discretised source term

Sk =

 0

−
∫ xk+1/2

xk−1/2

gh(x, t)b̌x dx

 =

 0

1

2
gh2(k+1/2)− − 1

2
gh2(k−1/2)+

 , (B6)
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where h(k+1/2)− and h(k−1/2)+ are locally constructed values that ensure non-negative
depth throughout ΩS , defined as

h(k+1/2)− = max{hk + b̌k − b̌k+1/2, 0}, h(k−1/2)+ = max{hk + b̌k − b̌k−1/2, 0}, (B7a)

with the local beach topography evaluated at the cell interface as

b̌k+1/2 = max{b̌k, b̌k+1}, b̌k−1/2 = max{b̌k−1, b̌k}, (B7b)

and b̌k the discrete beach topography in (31). Finally, the discretised form of the
system, suitable for implementation, is obtained by separating the components of (33),
yielding the following equations for the evolution of cell-averaged variables:

ḣk(t) = − 1

∆xS

(
Fh
k+1/2(t)− Fh

k−1/2(t)
)
, (B8a)

˙(hu)k(t) = − 1

∆xS

(
Fhu
k+1/2(t)− Fhu

k−1/2(t)
)
+

1

∆xS
Shu
k , (B8b)

where Fh
k±1/2 and Fhu

k±1/2 are the components of the numerical flux Fk±1/2 in (34),

and Shu
k is the second component of the source term Sk in (B6).
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[13] Düz, B., Huijsmans, R.H.M., Veldman, A.E.P., Borsboom, M.J.A., Wellens, P.R.:
An absorbing boundary condition for regular and irregular wave simulations.
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