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Abstract

Selective logging is a major driver of tropical forest degradation and is estimated to span over 400
million hectares of tropical forest. Despite widely available forest monitoring tools that effectively
map deforestation, accurate and scalable remote sensing methods to detect selective logging are
less advanced. Previous efforts are largely unable to reliably detect the low-intensity selective log-
ging (<10 m®> ha™!) that dominates across much of the Amazon rainforest, the world’s largest
remaining stock of tropical timber. Utilising a unique training dataset of high-resolution unin-
habited aerial vehicle imagery from logged forests across the Peruvian Amazon, we build ran-
dom forest models trained to detect selective logging using freely available optical satellite images
from Sentinel-2 and Landsat. We find the Sentinel-2 model to be highly accurate (F1 score: 0.88,
kappa: 0.85, false detection rate: 6.3%), outperforming the Landsat model (F1 score: 0.77, kappa:
0.74, false detection rate: 21.7%). Both models accurately detected 3- to 20-fold more selective log-
ging activity in our validation data than widely available forest monitoring tools (TMF, GLAD-S2,
RADD). We demonstrate novel uses for these logging-detection models in the monitoring of legal
timber harvesting inside forest concessions and illegal harvesting of wood inside Protected Areas.
These results have the potential to transform our understanding of low-intensity, logging-induced
forest degradation at broad scales, demonstrating the clear potential of remote sensing methods to
effectively monitor both legal and illegal selective logging in tropical forests.

1. Introduction major drivers of tropical forest degradation is select-

ive logging [7]. Tropical forests are a key source of

Tropical forests cover ~15% of the world’s terrestrial
surface [1]. They play a crucial role in global carbon
cycling [2], sustain the majority of the world’s ter-
restrial biodiversity [3] and provide a host of vital
ecosystem services [4] that support the livelihoods of
up to 1.5 billion people [5]. Despite their ecological
importance, widespread deforestation and degrad-
ation of tropical forests is ongoing, with 219 mil-
lion hectares (Mha) converted and a further 106 Mha
degraded between 1990 and 2020 [6]. One of the

© 2026 The Author(s). Published by IOP Publishing Ltd

timber, with more than 400 Mha of tropical forest
having either been previously logged or set aside for
future timber harvest [8], notwithstanding the large
areas of tropical forest that have been illegally logged
[9, 10]. So pervasive is timber harvest across the trop-
ics that the area of logged forest likely exceeds that of
primary forest in all major forested tropical regions
except the Amazon [11].

Selective logging has substantial impacts on forest
carbon stocking, biodiversity and functioning. Loss of
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tree biomass through removal of trees, road construc-
tion, and residual damage during harvesting reduces
carbon stocks by 24% [12], with selective logging
accounting for 6% of all greenhouse gas emissions
from tropical regions [13]. Despite retaining high
species richness [14], significant species turnover
and loss of forest specialists occurs after logging
[15, 16]. Selectively logged forests also have sim-
pler forest structure and reduced ability to provide
additional ecosystem services [17], whilst road cre-
ation facilitates hunting [18] and gaps increase
temperatures and potentially susceptibility to
fire [19].

Understanding the extent of selective logging is
vital for predicting the spatial footprint of its impacts.
This is essential for monitoring and enforcement of
illegal forest harvesting, which can represent 50%-—
90% of timber harvests in tropical countries [20]. It
also underpins modelling of the global carbon budget
to account for logging impacts [21] and for assess-
ing the performance of REDD+ and other conser-
vation measures seeking to avoid forest degradation
[22]. Remote sensing techniques have the potential
to provide automated, large-scale forest monitoring
for signs of selective logging, allowing for remote
identification of specific areas requiring further on-
the-ground efforts, thus reducing the time and cost
of investigation. However, whilst remote sensing has
been effectively implemented to monitor deforesta-
tion at scale [6, 23, 24], detecting selective logging
has proven substantially more difficult because of
the far more subtle spectral signal, given that two or
fewer trees are often removed per hectare of forest
[25]. Improving detection capabilities to monitor and
track the spatial and temporal extent of selective log-
ging at the pan-tropical scale thus remains a critical
challenge.

Previous attempts to map selective logging in
tropical forests using remote sensing have taken sev-
eral approaches. In the Brazilian Amazon, Hethcoat
et al [26] used forest inventory data and Landsat
images to detect selective logging, but the 30 m res-
olution Landsat-based model was too coarse to cap-
ture small-scale disturbances associated with lower-
intensity selective logging (e.g. <10 m™~> ha™!),
whilst efforts using radar-based methods proved less
effective [27]. In the Congo Basin, change-detection
models using Sentinel-1 radar data have detected
logging roads [28] and larger logging gaps with
high accuracy [29, 30], but have struggled to main-
tain accuracy when detecting small gaps typical of
selective logging (i.e.<300 m~2). In the Amazon,
where logging intensities are some of the lowest
in the tropics [16], recent efforts have demon-
strated correlation between optical satellite metrics
and logging biomass removal [31], but only over
a very small test area (4 one-hectare plots). There
currently remains no scalable tool directly trained
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to detect selective logging using supervised meth-
ods across large expanses of tropical forest at high
resolution.

Here we address this critical gap by combin-
ing machine learning techniques with freely available
high-resolution satellite imagery (10 m) to build a
model that accurately detects low-intensity selective
logging (~6 m?® ha™!). We use the Peruvian Amazon
as a test area, which covers 71 Mha and has >7 Mha
of legal logging concessions and considerable rates
of illegal harvesting [32]. The models were trained
using a database of logged and unlogged forest loca-
tions obtained from high-resolution uninhabited aer-
ial vehicle (UAV) imagery taken from ~3600 hec-
tares across seven different logging concessions loc-
ated throughout the Peruvian Amazon. We have four
key objectives: (1) build and validate Sentinel-2 and
Landsat based models for detecting selective logging
in the Peruvian Amazon; (2) compare model per-
formance against widely available forest monitoring
tools; (3) test the model’s ability to track logging activ-
ity through time in timber concessions; and (4) test
the model’s ability to monitor selective logging within
Protected Areas.

2. Methodology

The methodology overview for this study is presen-
ted in figure 1. First, we used UAV imagery from
logged concessions across the Peruvian Amazon to
create a training dataset of logged and unlogged
point locations. For these locations we then collec-
ted satellite data from two sources (Sentinel-2 and
Landsat) and used these data to train and validate
random forest models to detect selective logging in
Amazonian forests. The models were compared to
other available forest monitoring tools and applied to
use cases in the form of monitoring legal forest con-
cessions and illegal harvesting in Protected Areas.

2.1. Study area

We used data from seven different sites across six
logging concessions that span 234 000 hectares of
tropical forest in Peru, spread across the three key
Amazonian Departments of Loreto, Ucayali, and
Madre de Dios (figure 2). We focused specifically on
detecting low-intensity selective logging. Harvesting
activities in the logging concessions were conduc-
ted between 2022 and 2023, at an average harvest
intensity of ~6 m~? ha™! (range: 1.4-13.4m > ha™!;
Table S1).

2.2. Fieldwork—UAV data collection

To create an accurate and time-referenced point loca-
tion dataset that reflects the disturbance to the forest
observed after selective logging, we collected a large
number of RGB orthomosaics taken from UAV flights
within logging concessions across Peru. In total, we
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Figure 1. Methodology overview of this study that used machine learning and satellite data to remotely monitor selective logging
in the Peruvian Amazon.
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Figure 2. Study sites and UAV imagery. This study used seven different sample sites (red diamonds) in logging concessions loc-
ated throughout the Peruvian Amazon (a). For each site, UAV imagery was collected after selective logging had taken place (b),
and training data locations (c) were generated based on logged forest patches (red) and unlogged forest patches (blue) as visible
in the UAV imagery. Zoomed images demonstrate clear logging gaps from felled trees (d) as well as logging gaps and accompany-
ing skid trails (e). The grey in (a) represents the Amazon Biome.
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utilised 72 UAV orthomosaics from across our seven
study sites, spanning the major Amazonian depart-
ments of Loreto, Ucayali and Madre de Dios, and
covering ~3600 hectares of logged tropical forest
(table S1). All UAV flights were undertaken using DJII
Mavic 02 pro UAVs, within 3 months of logging hav-
ing occurred. Orthomosaics were generated using the
Pix4Dmapper software.

We manually processed the UAV orthomosaics
and converted them into grids of non-overlapping
point locations showing: (1) clear signs of logging
disturbance, which we defined as canopy gaps from
tree felling, skid trails, and small logging roads; and
(2) points showing no signs of logging disturbance,
i.e. unbroken forest canopy (figure 2). Since we were
interested in detecting the subtle signs of selective log-
ging that current tree cover disturbance products miss
(e.g. canopy gaps, skid trails), we opted not to include
the main logging roads in our training data, which
are already detected with current techniques [6, 23,
28] and might bias the model towards more intense
disturbances making it less able to detect smaller
logging-related disturbances.

2.3. Satellite data
Our goal was to build models that could detect even
low-intensity selective logging using freely available
satellite data. We therefore focused on two satellite
datasets: Sentinel-2 Harmonised Level 2 A Surface
Reflectance imagery (at 10 m resolution); and Landsat
8 and 9 Surface Reflectance products (at 30 m resolu-
tion). Using Google Earth Engine [33], for each satel-
lite dataset we created a cloud-free composite for each
test site using images taken in the 2-3 month period
after the initial UAV images were taken. For Sentinel-
2, we used the Cloud-Score+ algorithm [34] to retain
only pixels with a cloud free score of >0.6 (whereby
a score of 0 indicates full cloud, and 1 indicates com-
pletely clear), before then creating a cloud-free com-
posite by selecting each pixel with the highest cloud-
free score across the time period. For Landsat, we
constructed cloud-free mosaics from the latest cloud-
free pixel within the same time period, with clouds
masked using the QA band and a 300 m buffer to
remove cloud shadows missed by the QA mask. We
also created cloud-free composites in the years pre-
ceding harvest to expand the size of our training data
and provide more ‘unlogged forest’ points. For each
concession, we went back 2, 3, and 4 years prior to the
logging taking place (ignoring one year prior to avoid
capturing pre-harvest exploration and road building)
and built another cloud-free composite representing
images of the unlogged forest prior to logging activity.
To generate our dataset for training and testing
the model, we then extracted and calculated for every
pixel in the cloud-free composites the following val-
ues: RED, GREEN, BLUE, NIR, Shortwave Infrared
1 (SWIR1), and Shortwave Infrared 2 (SWIR2). For
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each of these values, we also calculated a suite of tex-
ture metrics using 3 different window sizes (3 x 3,
5 x 5,7 x 7). In addition, we calculated the nor-
malised difference vegetation index (NDVI) and the
normalised burn ratio (NBR), as well as two addi-
tional measures of ‘texture’ for each of these metrics:
(1) standard deviation of the values; and (2) a ‘nor-
malised difference’ for each value (calculated as the
pixel value minus the standard deviation of the 50 m
focal median). Again, these texture metrics were cal-
culated for three different window sizes (3 x 3,5 x 5,
7 X 7). In sum, this left us with 338 satellite-derived
metrics for every pixel in the cloud-free composite
(figure 3), with these metrics then assigned to logged
and unlogged pixels. Points were spatially separated to
ensure no overlap at the native resolution of the satel-
lite being used (i.e. no points within the same 10 m
cell for Sentinel-2, and none within the same 30 m cell
for Landsat, see figure S1). The final dataset consisted
of 6765 logged pixels and 35 061 unlogged pixels for
the Sentinel-2 dataset, and 2716 logged pixels and
18 845 unlogged pixels for the Landsat dataset.

2.4. Random forest modelling for detection of
selective logging

We created Random Forest [35] classifiers to detect
selective logging in areas of tropical forest. To train
and then independently validate the models, we fol-
lowed previous methods [26, 29] by splitting the
dataset into separate training and test datasets that
were spatially independent from one another. To gen-
erate the test dataset, we randomly selected several
individual UAV orthomosaics from each concession,
which ensured spatial independence between training
and test data (since each orthomosaic covers a non-
overlapping ~50 hectare area of forest), meaning the
model would be tested on parts of the forest it had
no prior knowledge of. This resulted in a training to
testing data split of roughly 85%:15%.

Given our dataset contained a large number of
potential predictor variables (338), many of which
could prove to be redundant in predicting logging
activity, we first implemented the VSURF workflow
[36] to remove redundant variables and retain only
those variables that are most effective in predicting
the outcome. This variable selection process was car-
ried out on the training dataset, using the final set of
‘prediction’ variables, reducing the total number of
input variables into our models from 338 to 18 for
Sentinel-2 and 14 Landsat. After variable selection,
we then trained a random forest classifier using the
caret [37] package and the ranger [38] implement-
ation of the random forest algorithm. We tuned the
random forest model to optimise the number of trees
(ntree) and the number of randomly selected vari-
ables used in each decision tree (mtry), under five-
fold cross validation. We then used the held back test
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Figure 3. Example imagery and inputs for Sentinel-2 (a)-(c) and Landsat (d)—(f) models Shown is an example of the satellite
imagery from Sentinel-2 (a) and Landsat (d) used for obtaining input variables for model construction. Two example input
variables, NBR (b,e) and an NDVI texture metric (Standard Deviation across a 3 X 3 pixel kernel) (c),(f) are also shown. Black
squares in (d) represent areas where no cloud free Landsat images were available. Data source credit = Sentinel-2 data courtesy
of Copernicus/ESA (European Space Agency), data credit = Copernicus Sentinel-2 data, 2025, Sentinel-2 Harmonised Level 2A
surface reflectance imagery acquired from the European Space Agency (ESA) via the Google Earth Engine repository. Landsat-8
image courtesy of the U.S. Geological Survey. Data credit: USGS Landsat 8 Level 2, Collection 2, Tier 1, acquired from the USGS

NDVI Texture

dataset to independently validate the models and gen-
erate a confusion matrix to calculate the F1-Score,
Cohen’s Kappa, and errors of omission and commis-
sion associated with each model, and compared these
results between models.

2.5. Comparison with other forest monitoring
tools

We compared the performance of the final Sentinel-2
and Landsat models with three widely available tools
for pan-tropical forest monitoring that include select-
ive logging within their detections. (1) Joint Research
Centre’s Tropical Moist Forest (TMF) dataset, which
monitors annual changes in the TMF extent using
Landsat (30 m resolution) imagery [6]. The product
monitors deforestation and degradation (which are
short term disturbances and include selective log-
ging). We combined the deforestation and degrada-
tion layers into one set of predictions and included
observations in both the year of logging and the fol-
lowing year to account for lag effects in the dataset.
(2) Global Analysis and Discovery (GLAD)-Sentinel-
2 alerts (GLAD-S2), which detects canopy gaps indic-
ative of selective logging at 10 m resolution and is

available from the global forest watch website [39]. (3)
RAdar for detecting deforestation (RADD) alert [24],
a 10 m resolution Sentinel-1 radar-based alert system
that maps forest disturbances including selective log-
ging. For both alert systems, we obtained for compar-
ison all disturbance alerts in the year of harvesting and
the following six months.

We compared the performance (F1-Score, logged
detection rate—defined as 1 minus the omission
error, and false detection rate—the commission
error) of each monitoring tool and the models
developed in this study in correctly predicting the
outcome (logging disturbance or no disturbance) of
points in the test dataset against which we valid-
ated our models. Restricting the assessment to just
the test dataset means that we were not biasing res-
ults towards our models, since these models had no
prior knowledge or training on the points in the test
dataset.

2.6. Use cases: tracking logging activity in legal
concessions and protected areas

We tested two different use cases for the logging-
detection algorithms. The first was its ability to track
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harvesting activity through time in a legally desig-
nated logging concession. Such concessions occur
across >7 Mha of the Peruvian Amazon, typically
on 40 year leases [32] and in some cases have pre-
viously been accused of enabling illegal timber har-
vesting and laundering [40]. The second use case was
to monitor the levels of logging disturbance across an
entire protected area (IUCN Category VI ‘Comunal
Alto Tamaya—Abujao’ Regional Conservation Area
in Ucayali, Peru). In each test case, we gathered one
cloud-free composite per year during the dry season
(July—September), and used the Sentinel-2 model to
make predictions of logging activity for this compos-
ite. Prior to applying the model, we masked out areas
that had <90% tree cover in 2000 or had undergone
tree cover loss events during the period [23] and areas
that were within 100 m of a river [41]. Our logging
predictions were therefore restricted only to areas of
previously undisturbed forest with high canopy cover
and no history of tree cover loss.

3. Results

3.1. Detection of selective logging: model accuracy
We found that both models performed well, but
overall, the Sentinel-2 model exceeded the Landsat
model in its detection capabilities (table 1). The
F1 score for the Sentinel-2 model was 0.88 com-
pared to 0.77 for Landsat, whilst the detection rate
of logged points using Sentinel-2 was 82% (95% CI:
79.8%—-84.4%) compared to 75% (69.5%-80.1%) for
Landsat. Significantly, the Sentinel-2 model achieved
a false detection rate (commission error) of only
6.3% (4.8%-8.0%) compared to the much higher
false detection rate of 21.7% (16.8%—27.2%) using
Landsat (see figure S2 for the impact of altering classi-
fication thresholds). For the logged class, the Sentinel-
2 model tended towards omission rather than com-
mission. These results demonstrate the superior cap-
abilities of Sentinel-2 at mapping fine-scale logging
disturbance (figure 4, see figures S3 and 54 for results
from each test concession).

3.2. Comparison with other forest monitoring
tools

Overall, the Sentinel-2 and Landsat models presen-
ted in this study, which detected 82% (79.8%-—
84.4%) and 75% (69.5%—80.1%) of all logging activ-
ity, respectively, were considerably more accurate at
detecting logging disturbance than currently available
forest monitoring tools. The TMF data (deforestation
and degradation combined) detected 23.8% (21.4%—
26.4%) of logging disturbances and the GLAD-S2
and RADD alerts detected only 8.9% (7.3%—-10.7%)
and 4.2% (3.1%-5.6%), respectively (figure 5(a)).
In addition, our Sentinel-2 based model had similar
false detection rates (6.3%, 4.8%-8.0%) compared
to the TMF data (7.3%, 4.6%—-11.0%) and GLAD-S2
alerts (3.8%, 1.1%-9.6%), and lower false detection
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rates than the RADD alerts (25.4%, 15.2%-37.9%),
despite successfully detecting >3 times greater log-
ging disturbance than TMF and >20 times com-
pared to RADD. In the example logged concession
(figures 5(b)—(g), see figure S5 for alternative col-
our scheme), all other monitoring tools were largely
restricted to mapping the sizeable roads created to
facilitate logging operations, and a small number of
the largest canopy gaps associated with logging (see
figures S6 and S7 for areas of agreement between the
detections).

3.3. Tracking harvest activity through time in
selective logging concessions

As the best-performing logging detection model,
we applied the Sentinel-2 model to two potential
use cases. The first was to monitor and track the
development of logging activities over time across a
legally designated timber concession. Applying the
algorithm to an unseen logging concession (one the
model was not trained on) ~8000 hectares in size over
a period of six years (figure 6, see figure S8 for satellite
images), we find that logging activity demonstrates a
distinctive spatio-temporal pattern. Harvesting activ-
ity remains relatively constant throughout (mean
annual area of detection of 378 hectares) but is con-
centrated on certain areas of forest each year before
changing location and is typically preceded by road
construction to facilitate access, all of which is detec-
ted using the Sentinel-2 model.

3.4. Monitoring illegal logging at the protected area
scale

Given the widespread extent of illegal logging across
the Amazon [9, 10], the model can also be used
to monitor illegal harvesting within protected areas.
Here we used the IUCN Category VI ‘Comunal
Alto Tamaya—Abujao’ Regional Conservation Area
in Ucayali as a case study. We found little evidence
of logging within the boundary of the Protected Area
(figure 7), with a low-intensity of disturbance detec-
tions likely caused by natural processes (e.g. wind-
throw). The only notable examples of logging were
small incursions along the eastern border of the PA
in 2019 (figure 7(a)) and 2022 (figure 7(d)). By con-
trast, disturbance levels were higher in the 5 km buf-
fer zone surrounding the park (table S2), with clear
timber harvesting occurring on the southern edge of
the park throughout the period. These results demon-
strate the ability of the model to be scaled and used
as a monitoring tool to prevent illegal harvesting of
timber within protected areas or indigenous lands, for
example.

4. Discussion

Unsustainable and illegal harvesting of timber in
tropical forests is one of the most powerful forces
of tropical forest degradation [7], and there is an
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Table 1. Confusion matrix for each model (Sentinel-2 and Landsat) detailing the errors of omission and commission, overall accuracy
(OA), balanced accuracy (BA), F1-score and Cohen’s Kappa associated with each model in predicting areas of logged forest based on

unseen test data.

Sentinel-2
OA =0.96 BA =0.90
F1-Score = 0.88 Kappa = 0.85
Reference class
Predicted Class Unlogged Logged Commission error (%)
Unlogged 4904 198 3.9 (3.4-4.5%)
Logged 61 914 6.3 (4.8-8.0%)
Omission error (%) 1.2 (0.9-1.6%) 17.8 (15.6-20.2%)
Landsat
OA =0.95 BA =0.86
F1-Score = 0.77 Kappa = 0.74
Reference class
Predicted class Unlogged Logged Commission error (%)
Unlogged 2200 67 3.0 (2.3-3.7%)
Logged 56 202 21.7 (16.8-27.2%)

Omission error (%)

2.5 (1.9-3.2%)

24.9 (19.9-30.5%)

urgent need for effective monitoring of selective log-
ging across vast areas of tropical forest. Here we
present a new model that combines UAV imagery,
freely available high-resolution Sentinel-2 imagery,
and machine learning techniques to effectively detect
selective logging throughout the Peruvian Amazon.
The model is highly accurate (F1-Score = 0.88), cap-
able of detecting selective logging at intensities as
low as 2-3 m® ha™!, and represents a significant
advancement on previous detection methods for low-
intensity selective logging [26, 29, 30, 42].

Previous efforts to detect selective logging using
remote sensing in the Amazon have relied on Landsat
imagery, which we found to be less accurate than
using Sentinel-2 data, likely because the improved
resolution allows detection of subtle canopy changes
that occur during low-intensity selective logging 26,
43]. This remained the case even when controlling
for the smaller training dataset in the Landsat model
(a Sentinel-2 model trained on the same number of
points achieved an F1-Score of 0.87). Our Sentinel-
2 model was also more effective at detecting select-
ive logging than previous efforts using Landsat in
the Brazilian Amazon [26], achieving a higher accur-
acy (Cohen’s Kappa of 0.85 compared to 0.77) and
lower false detection rates (6.3% vs 20%) despite sig-
nificantly less available training data. In addition,
our Landsat-based model achieved similar accur-
acy scores to the Hethcoat et al [26] model, des-
pite our model being trained on ~5 times less data.
This suggests that UAV-based training data genera-
tion offers significant advances for developing accur-
ate detection models compared to tree inventory data.

Radar-based change-detection methods can
effectively detect selective logging in the Congo,
but have higher false detection rates (>20% for
gaps <300 m~? in size) despite the higher intensity
harvests (16 m~> ha~!) compared to this study (~
6 m> ha=!) [29, 30, 44]. In addition, change detec-
tion methods require large volumes of data before
a disturbance can be accurately mapped (e.g. 3—
10 months) [27, 30, 44]. An advantage of our optical-
based method is that the model is trained specific-
ally to detect logging gaps and does so with a single
cloud-free image, making near real-time monitor-
ing of selective logging possible. Like Hethcoat et al
[26], we used cloud free composites from the same
dry season as logging activities where canopy gaps
were still clearly visible. Whilst evidence of logging
roads and skid trails can remain for >5 years, can-
opy gaps from tree felling can close rapidly [45].
How long after logging has occurred before dis-
turbances can no longer be detected from space is
therefore a key future question for forest monitoring
purposes.

The model also proved to be far more effect-
ive than widely available tools that monitor forest
degradation, such as the TMF data [6], GLAD-S2 [39]
and RADD alerts [24]. Whilst we might expect alert
systems that are used to inform on-the-ground efforts
to prioritise lower false detections at the expense of
missing true disturbances, they detected <25% of the
logging activity in our test area and often had a similar
or higher false detection rate than the Sentinel-2
model. This suggests that current monitoring tools
for selective logging in the Amazon and wider tropics
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Figure 4. Logging detections from the Sentinel-2 and Landsat models in an active forest concession. Shown are the raw satellite
images from Sentinel-2 (a), (c) and model logging predictions (b), (d) both before (a), (b) and after (c), (d) the logging oper-
ations, and the same for the Landsat imagery (e), (g) and predictions (f), (h). Increasingly green-yellow colours in (b), (d), (f),
(h) represent increased likelihood the pixel was logged according to the model. Data source credit = Sentinel-2 data courtesy of
Copernicus/ESA (European Space Agency), data credit = Copernicus Sentinel-2 data, 2025, Sentinel-2 Harmonised Level 2A
surface reflectance imagery acquired from the European Space Agency (ESA) via the Google Earth Engine repository. Landsat-
8 image courtesy of the U.S. Geological Survey. Data Credit: USGS Landsat 8 Level 2, Collection 2, Tier 1, acquired from the
USGS via the Google Earth Engine repository. Data Source Credit = Sentinel-2 data courtesy of Copernicus/ESA (European
Space Agency), Data Credit = Copernicus Sentinel-2 data, 2025, Sentinel-2 Harmonised Level 2A Surface Reflectance imagery
acquired from the European Space Agency (ESA) via the Google Earth Engine repository. Landsat-8 image courtesy of the U.S.
Geological Survey. Data Credit: USGS Landsat 8 Level 2, Collection 2, Tier 1, acquired from the USGS via the Google Earth

Engine repository.

are inadequate, particularly where logging intensity
is low, and satellite-based estimates of total forest
degradation across the tropical forest biome (and its
impact on carbon stocks) are likely to be signific-
antly underestimating logging-related disturbances
[6, 46, 47].

We tested the ability of the model for two use
cases that demonstrate its potential to transform
forest monitoring for illegal logging across the tropics
(3.3, 3.4). The first is for monitoring logging activ-
ities within legally designated logging concessions,
where areas and volumes of timber to be harves-
ted are agreed in official forest management plans.
In Peru, concessions are subject to inspections by
the Supervisory Body of Forest Resources & Wildlife

(OSINFOR) in the form of field visits, and levels
of illegality are extremely high—around 60% of the
timber inspected is thought to be illegal [32]. Given
limited resources available to visit individual con-
cessions in the field, our selective logging detection
model demonstrates the potential to monitor con-
cessions remotely (figure 6). This type of agile and
efficient remote monitoring enables verification that
forest operations are being conducted in accordance
with approved management plans. Furthermore, it
allows for the early detection of potentially unau-
thorized activities within forest concessions without
the immediate need for field visits, thereby providing
timely alerts to environmental prosecutors for appro-
priate enforcement actions. Remote monitoring thus
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Figure 5. Accuracy metrics and visual comparison of the logging detections from this study with other widely available forest
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monitoring tools. Accuracy metrics based on the unseen test data are shown in (a). Detection visualisations in (b—f) are shown
for an example concession that was logged between June and August 2023 at an intensity of 13.4 m~> ha™!. Sentinel-2 cloud
free composite of the study area in 2023 is shown in (b), whilst comparisons are made between logging predictions in this study
using Sentinel-2 (c), logging predictions in this study using Landsat (d), the combined deforestation and degradation detections
from the TMF dataset (e), and GLAD-S2 (f) and RADD alerts (g). Black outline in (b)—(g) represents the bounds of the analysis,
coloured areas in each plots represent disturbance detections. Data source credit = Sentinel-2 data courtesy of Copernicus/ESA
(European Space Agency), data credit = Copernicus Sentinel-2 data, 2025, Sentinel-2 harmonised Level 2A Surface Reflectance
imagery acquired from the European Space Agency (ESA) via the Google Earth Engine repository. Data source credit = Sentinel-

repository.

2 data courtesy of Copernicus/ESA (European Space Agency), Data credit = Copernicus Sentinel-2 data, 2025, Sentinel-2 har-
monised Level 2A surface reflectance imagery acquired from the European Space Agency (ESA) via the Google Earth Engine

provides significant opportunities to improve tropical
forest management and reduce illegality, but fulfilling
such opportunities requires engagement with the
relevant stakeholders, ensuring they are adequately
trained to use remote monitoring tools in the most
effective way.

The second use case is to monitor areas where
selective logging is not permitted (e.g. Protected
Areas, Indigenous Lands), and take preventative
actions where illegal logging is detected. Such remote
technologies are already being used to monitor and
prevent illegal deforestation within PAs [48], but no
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Figure 6. Tracking logging activity in a concession over time. The Sentinel-2 model was applied to a timber harvesting concession
on an annual basis between the years 2019-2024. The total annual area of logging detections (hectares) is displayed in panel (a),
and logging likelihood predictions per 10 m pixel are displayed for 2019 (b), 2021(c), 2023 (d) and 2024 (e), where increasing
green-yellow colour demonstrates increased probability of logging.

system to prevent and detect selective logging (which
is missed by widely available forest monitoring tools,
3.2) is currently in place. Furthermore, the model
could also be used to monitor areas for forest degrad-
ation that are protected under carbon payments (e.g.
through REDD+ projects) [49], and aid in estimat-
ing avoided emissions through prevention of illegal
timber harvest. Beyond the scale of individual pro-
jects or PAs, an accurate understanding of the spa-
tial footprint of timber harvesting at the pan-tropical
scale across both space and time is severely lacking.
Upscaling the models developed here by incorporat-
ing additional training data from areas undergoing
significant timber harvesting (e.g. Brazilian Amazon,
Congo Basin, Borneo) to develop a pan-tropical log-
ging detection model is a vital future application.
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4.1. Limitations

This study has three core limitations. First, the models
developed focus entirely on optical imagery, and we
do not incorporate radar-based approaches. Frequent
cloud cover in the tropics can be problematic [28]
and was a clear issue when using the Landsat mod-
els, though we found the shorter return interval for
Sentinel-2 and advances in cloud screening [34] neg-
ated cloud cover issues. Whilst radar-based meth-
ods avoid the problem of cloud cover [24, 30],
radar data can suffer from higher signal-to-noise
ratios which can hamper classification efforts [50].
Second, whilst we relied on Sentinel-2 imagery with
10 m spatial resolution, higher-resolution commer-
cial satellites (e.g. PlanetScope) [51] might prove
more accurate in detecting selective logging [31].
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Figure 7. Aggregated annual logging detections across a protected area. Shown are the aggregated annual logging detections per

cell (500 m resolution) for the ‘Comunal Alto Tamaya—Abujao” Regional Conservation Area in Ucayali, Peru. PA boundaries are
represented as a solid black line whilst the dashed black line represents a 5 km buffer zone. Model predictions are based on cloud
free composites for the period July—September each year between 2019 and 2024. Predictions are restricted to areas of >90% tree

cover with no detected deforestation [23].

However, given critical applications for these models
in monitoring tropical forests and preventing illegal
logging, algorithms that are effective whilst relying
on freely available satellite imagery (e.g. Sentinel-2)
are likely preferable to monitoring and enforcement
agencies in tropical countries with limited resources.
Recent advances in Al-driven multi-source datasets
are promising (e.g. Google Satellite Embedding) [52]
but the annual data availability limits the capacity to
detect short-term disturbances such as canopy gaps
that can regrow within the space of a few months.
Third, our model represents a binary classification of
logged and unlogged forest which, whilst useful in
monitoring areas of forest for logging activities, can-
not provide insight into how intensively forests are
logged [53]. Such information would be of high value
for estimating carbon losses and biodiversity impacts

11

associated with logging, or monitoring concessions to
ensure legal harvest limits (e.g. 30 m—> ha~! limit in
Brazil) [9] are not being exceeded. Utilising detailed
harvest records to quantify the relationship between
the detection intensity of the model (i.e. logged cells
per hectare) and the volume of timber removed would
represent an important first step towards a remote
sensing-based approach to mapping timber harvest
intensity.

5. Conclusion

Given the range of negative impacts selective log-
ging has on forest carbon [12], biodiversity [16]
and functioning [17], understanding its spatial foot-
print is vital for effective forest management that
balances economic production with environmental
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sustainability, whilst preventing widespread illeg-
ality. We demonstrate the potential of combining
UAV imagery, freely available satellite data, and
machine learning to map and monitor selective log-
ging of tropical forests with high accuracy. We have
developed a highly accurate Sentinel-2 based model
that significantly outperforms current forest mon-
itoring tools and can be used to track timber har-
vests across concessions through time and monitor
Protected Areas for illegal logging. Such methods
demonstrate the largely untapped potential of remote
sensing in effectively monitoring tropical forests for
selective logging, providing the basis for the monitor-
ing and prevention of illegal harvesting, and improv-
ing our understanding of the spatial extent of logging-
induced forest degradation at the pan-tropical scale.
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