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Abstract

Although anisotropy in spatial correlations of intensity measures (IMs) has been
acknowledged, few models specifically address the anisotropy, and consider
cross-correlations of IMs. This study introduces anisotropic spatial cross-correlation models
for 16 IMs: PGA, PGV, I,, CAV, Dgs.75, Tm, spectral Vg, and SA at periods of 0.05s, 0.2, 0.5s, 1s
and 2s. The models can predict for four anisotropy directions, which are angled (i.e., 0°, 45°,
90°, and 135°) relative to the fault direction. Finally, the proposed model was utilized for the
regional seismic landslide hazard assessment to show a practical application.

Keywords: anisotropy; spatial cross-correlations; linear model of coregionalization; intensity

measures
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1 Introduction

Assessing ground-motion intensity measures (IMs) across a geographically
extensive area is crucial for evaluating the earthquake risk associated with
spatially distributed assets of both structures and geotechnics over a spatially
distributed region (Garakaninezhad and Bastami, 2017). Numerous
ground-motion prediction equations (GMPEs) have been formulated to predict
IMs based on factors like earthquake magnitude, source-to-site distance, and
site-specific geological conditions. These predictions encompass parameters
like peak ground acceleration (PGA), peak ground velocity (PGV), and spectral
acceleration (SA). However, these GMPEs often overlook the spatial
relationships of ground-motion IMs across different sites within the same
earthquake event. IMs at multiple locations during the same earthquake are
spatially correlated (Schiappapietra et al., 2022), this relationship is called the
spatial correlation of IMs, while the spatial cross-correlation delves into the
relationships between different IMs within a given spatial domain. Studies (e.g.,
Abbasnejadfard et al., 2021b; Garakaninezhad and Bastami, 2019) have
indicated that ignoring the spatial correlation of IMs can significantly skew
seismic loss estimates of spatially distributed systems or portfolios. Therefore,
it is essential to account for these spatial correlations to ensure a more

accurate and comprehensive risk assessment.
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Modeling the spatial correlation between different sites is essential for a
precise evaluation of seismic risk on a regional scale. Over the past few years, a
variety of correlation models have been introduced to understand the variability
in IMs. These investigations have revealed that certain parameters, which are
not randomly distributed, influence the correlation of PGA residuals. Such
parameters include the size of the earthquake magnitude and the depth of
sediment layers (e.g., Boore et al., 2003; Goda and Hong, 2008; Jayaram and
Baker, 2009; Sokolov and Wenzel, 2013; Wang and Takada, 2005).

The configuration of the correlation model has a significant influence on
the generation of simulations for areas with the cross-correlation of
ground-motion IMs, such as the seismic activity within a particular region. It
should be noted that the majority of the spatial correlation models for IMs are
normally based on the assumption of isotropy (e.g., Esposito and lervolino,
2011; Wang and Du, 2013). The assumptions of isotropy and stationarity are
considered as the basis for studying spatial correlation with respect to the
1994 Northridge and the 1999 Chi—-Chi earthquakes (Jayaram and Baker,
2009). Using the directional semivariograms, it has been concluded that the
assumption of isotropy is reasonable for both earthquakes, i.e., Northridge and
Chi-Chi earthquakes (Jayaram and Baker, 2009). The spatial correlation of SAs,

cumulative absolute velocity (CAV), and Arias intensity (/;) have been
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investigated in Du and Wang (2013). However, Garakaninezhad and Bastami
(2017) used statistical tests introduced by Bowman and Crujeiras (2013) to
examine the isotropic assumptions of PGA and SA residuals within events and
concluded that the isotropic assumption is generally invalid. Furthermore, they
proposed spatial correlation models for the anisotropy of PGA and SA residuals
within events. In addition, Abbasnejadfard et al. (2021a) conducted statistical
tests to investigate the isotropic assumptions of PGV and peak ground
displacement (PGD) residuals within events and found that the residuals of
PGV and PGD should be considered as realizations of an anisotropic random
field, which is related to the local site-specific anisotropy.

Nevertheless, there are a few concerns that need to be addressed,
especially when considering the spatial cross-correlation of IMs under isotropic
and anisotropic conditions. Most current studies focus on the spatial
correlation of IMs while neglecting the spatial cross-correlation between IMs. A
few notable empirical models have confirmed the importance of considering
the anisotropic spatial cross-correlation of multiple earthquake IMs, e.g., the
model proposed by Abbasnejadfard et al. (2020); they only included a few IMs
that are suitable for structures, i.e., PGA, PGV, PGD and SAs, which are suitable
for seismic risk assessment of portfolios of buildings or structures; however,

these IMs are insufficient, especially for the hazard assessment of geotechnical
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problems, e.qg., earthquake-induced landslides from a wide range of slope
conditions in nature. Although the effects of anisotropic spatial correlations of
IMs have been analyzed for seismic hazard assessment of the portfolio of
buildings and infrastructure systems (Abbasnejadfard et al., 2021b), the effects
of anisotropic cross-correlations of IMs have not been fully addressed on the
hazard assessment in geotechnical problems. However, such effects are
crucial to evaluating the risk/loss of spatially distributed infrastructure systems
induced by seismic slope failures or landslides, since it is commonly
acknowledged that soils are non-homogeneous, demonstrating characteristics
of anisotropy and space variety. Hence, the seismic responses of soils
subjected to seismic loading are complicated and various (Cheng et al., 2020;
Du and Wang, 2013).

Hence, this study intends to propose anisotropic spatial
cross-correlation models for 16 vector-IMs, including the relative input energy
equivalent velocity (Vg,(T)) and SA ordinates at periods (T) of 0.05s, 0.2, 0.5s,
1s and 2s, PGA, PGV, I,, CAV, significant durations (Ds575), and the mean period
(Tm), which are suitable for further seismic risk assessment of spatially
distributed assets (both structural and geotechnical conditions), based on the
proper ground-motion records that are selected from NGA-West2. Furthermore,

as a case study, the influence of the anisotropic spatial cross-correlations of
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the IMs on the fully probabilistic seismic landslide hazard assessment of
slopes is studied under different conditions, i.e., critical yield accelerations (ac),
permanent displacement models, site conditions, and rupture distances. This
method provides a theoretical benchmark for regional seismic hazard and risk
assessment of the portfolio of buildings/slopes considering the anisotropic

cross-correlations of IMs.

2 Modelling anisotropic spatial cross-correlations based on

geostatistical tools

2.1 Isotropy in multivariate spatial cross-correlations (Cheng et al., 2020)

Evaluation of the univariate spatial correlation of within-event residuals of IMs
needs to consider the recorded residuals as the realization of a function that
takes random values in spatial locations u. The function of the random variable

is known as random fields in statistics, defined as:
{Z(u):u € R2}
(1)

Where Z(u) is the random variable at position u.

Geostatistical analysis suggested that the spatial correlation of a
random variable is usually quantified by semivariograms (Journel and

Huijbregts, 1976). The semivariogram y(h) is a plot of semivariance versus

7
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separation distance, measuring the average dissimilarity between data
separated by a vector h (Goovaerts, 1997). The semivariogram function can be
given as (Goovaerts, 1997):

yh) =

% Var[Z(u + h) — Z()] = % E[(Zu + h) — Z(w)?2]

(2)

Where V ar|.] denotes variance; h is lag distance; Z(u) and Z(u + h) are
variables of Z at locations with a lag distance of h.

For a multivariate random field, consisting of k random variables ({Z (u) =
[Z,(), ...,Z,)]:u € R2} ), which is assumed to be isotropic and
second-order stationary, the empirical estimator of the semivariogram can be
defined as (Goovaerts, 1997):

Y () =

% INl(h)I zzl’li(?)l [(Z (ui) - Z, (111- + h))(ZW(U_l-) — Zw(ui + h))]

(3)
Where Z_(u;) and Z_(u; +h) denote the it" data pair in the h-distance bin
for random variable Z,. [N (h)| is the dimension of the set of all distinct
points which fall in the bin of the distance h.

In addition, the cross-covariance function C_ (h), measuring the

similarity of data of the multivariate random field with a lag distance of h is
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defined as (Cressie, 1993):

C (1) =

|N1Ch)| le-]i(?)l [(Z,, ) -Z )z, ) -Z,)]

(4)
Where Z, = % zlezk(ui) is the sample mean value of the variable k;
i(=1, ...,n) isthe position in the lag distance bin.

By combining Equations 3 and 4,

limy (h)=Cov[Z, (u)Z (u)]=C, () (Goovaerts, 1997),in which

h—ow
Covl.] denotes covariance.

The relation between cross-covariance and cross-semivariogram can be

obtained as (Goovaerts, 1997):

c.,=c_ 00—y ()=
CryO(1 - 225 ) (5)

As indicated by Equation 5, limy_ (h) =0.
h—-0

The spatial correlation coefficient p_ (h) between Z and Zy, at lag

distance h can be defined as (Goovaerts, 1997):

cC.., M0
€ mxC (W
me 0 _ Ymw (h)
. _0xcC,, 0}/ €, (O xC,, O}2

(6)

It should be noted that if the cross-semivariogram and cross-covariance
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in Equation 6 are respectively substituted by Equation 4 and Equation 5, then
the spatial correlation coefficient is determined.

The first- and second-order moments (expectation and covariance) exist
and are invariant under spatial translation if the second-order stationary is
assumed. The semivariogram is independent of the position u, but it is only in
relation to the lag distance h. The isotropy is assumed if the semivariogram of
a second-order stationary random field is irrespective of directions. Under the
assumption of isotropy, the cross-semivariogram and the cross-covariance
depend solely on the relative separation distance between positions, i.e., h =

by

2.2 Parametric functions to fit semivariograms

The empirical semivariogram value is calculated based on the recorded
seismic data. By fitting a model to the empirical values, an effective
semivariogram function model can be obtained. It is worth noting that if the
model is a conditionally non-negative definite function, it is considered as an
effective semivariogram function (Cressie, 1993). Semivariogram analysis
provides a set of empirical values for discrete lag distances h, and requires a
continuous function that must satisfy positive definiteness to fit these
empirical data for practical use. Notable models for fitting the empirical

semivariogram can be classified as: Exponential model, Gauss model and
10
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Spherical model (Wang and Du, 2013), and the comparisons of their fitting
performance are shown in Fig.1. It is demonstrated in Fig.1 that the exponential
fitting model shows a good performance. Hence, the exponential fitting model|,
as shown in Equation 7, will be used in this study.
y(h) = all — ex p(— 3h/b)]
(7)
Where a is the sill of the semivariogram, representing the overall variance of the
empirical data Z; b is the practical range of semivariogram, representing the lag
distance at which 95% of the sill a is reached.

Following Abbasnejadfard et al. (2020), for the specific direction, we
used the isotropic variogram (Jackel., 2002) form to calculate the
semivariograms. Anisotropic characteristics are handled separately for each
direction (grouped into four directions in this study), utilizing an isotropic
variogram format that is based on data specific to that direction. This may have
limitations as the directional semivariograms may not be fully considered. A
possible solution can be to establish a holistic model encompassing all
directions using the latent dimensions method; however, this will complicate
the current study and will be considered in future work. Theoretically, the
semivariogram value should equal to 0 at zero separation distance, i.e., h=0.

However, the semivariogram often demonstrates a nugget effect in practice.

11
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Hence, the exponential model for fitting semivariogram considering the nugget

effect can be given as (e.g., Cheng et al., 2020; Du and Pan, 2017):

y(h) =
0 h=20
{ C,+ (@-CyMl -ex p(-=3h/b)] h>0

(8)

Where Cy denotes the nugget effect.

2.3 Linear model of coregionalization (LMC)

Since the variance of any linear combination of Z(u;) ata random position .
l

must be non-negative, the covariance function associated with the
semi-variogram must be positive definite. The exponential permissible model is
usually adopted in the earthquake engineering community for fitting the
empirical covariance values at discrete distance lags. In practice, the positive
definiteness can be ensured through the positive definite linear combination. It
is worth noting that not all combinations of the permissible basic models
introduced earlier bring in a permissible (i.e., positive definite) covariance
function. The easiest way to develop a permissible model lies in building a
random function first. In recent years, an advanced LMC method, which was
first proposed by Goovaerts (1997), is a commonly suggested statistical tool

for modelling effective multivariate semivariogram matrix of IMs. The LMC

12
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method employs a combination of short-range exponential function and

long-range exponential function, together with a term of nugget effect. A

nugget effect is incorporated into the LMC to improve the fitting performance

at small separation distances. The expression for the LMC semivariogram

model can be defined as:

r'(h)=Bo(1 -1,)+B!1 -

ex p(—3h/r,)]+ B2[1 —ex p(—3h/r,)]

(9)

Where the h denotes lag distance with a unit of km; I"(h) is semivariogram

matrix for h, ry and ro represent the short-range coefficient and long-range

coefficient; and BY, B!, B? denote the average nugget effect, short-range,

and long-range coregionalization matrices for ten earthquake events; I, is a
bivariate indicator (equal to 1 at h= 0 or 0 otherwise).

The coregionalization matrices are established by minimizing the weighted
sum of squares (WSS) that represents the discrepancy between the predicted
and empirical semivariograms (Goulard and Voltz, 1992). WSS is evaluated as
in Equation 10.

WSS

[Pw () =y ()T

sz=12nm=1znw=1W(hk)

Q)
3
Q)
g

(10)
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In this context, Ymw(h,) represents the empirical semivariogram, while
y,.., () indicates the semivariogram predicted by the LMC model. The term
w(h,) refers to the weight applied at the lag distance h, and om signifies
the standard deviation of the random variable Z,. For further details on the

algorithm, please refer to the work of Loth and Baker (2013).

2.4 Anisotropy in the multivariate spatial cross-correlations

As mentioned in Section 2.3, the Linear Model of Coregionalization (LMC)
ensures positive-definite semivariogram and covariance matrix functions, a
prerequisite for stochastic simulation of ground-motion fields (Goovaerts,
1997). However, LMC is typically applied to isotropic spatial fields. Anisotropy
Is accounted for when the semivariogram of a second-order stationary random
field depends on both the direction and magnitude of the lag vector h. For a
multivariate random field with anisotropy, the lag vector incorporates both
magnitude and direction.

This study addresses anisotropic spatial correlations separately for each
direction using an isotropic semivariogram LMC model specific to that
direction. To ensure the resulting semivariogram, covariance, and correlation
matrices are positive-definite, a detailed approach is proposed in this section.
These positive-definite matrices make the method suitable for engineering

applications.

14



239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

2.4.1 Definition of anisotropy directions

A directional semivariogram is derived by calculating the semivariogram for
data pairs that lie within specific directional bands and at a set bin distance.
The study area is divided into different directional zones, where the azimuth of
the direction vector, angular tolerance, and bandwidth are illustrated in Fig.2.
These parameters can be employed to compute the directional semivariance,
subsequently enabling the calculation of directional covariance functions
(Cressie, 1993). For example, with respect to the target region as shown in
Fig.3, the semivariogram values corresponding to an anisotropy direction of 6
and an angle tolerance of A/2 can be computed following the two steps: first,
chose a reference site A, and identify all sites that fall within the anisotropy

A A . .
B ,0 + 5 ]. These sites are then organized based on

direction range of [0 —
the bin distances relevant to the analysis. This process must be conducted for
every site in the dataset. By following the method described in Section 2.1, the

empirical semivariograms for the specified anisotropy direction can be

computed.

2.4.2 Procedures to consider the anisotropy in semivariograms

To ensure the covariance matrix for sampling spatially correlated IM residuals
with anisotropic characteristics is positive-definite, the following procedure is

used to construct the final matrix.
15
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1)Examine the empirical semivariogram figures for each anisotropic
direction; pre-select the short-range coefficient 1 and long-range
coefficient r, for each anisotropy direction 6 for Equation 11 according
to the guidelines of this study:

* . controls the rapid spatial variation over small distances; it is
selected such that the semivariogram reflects 10%—30% of the sill (a)
in the exponential fitting model (Equation 8) when ri = b= h.

* . controls the gradual spatial variation over larger distances; it is
chosen such that the semivariogram reflects 70%-95% of sill (a) in the
exponential fitting model (Equation 8) when with r, = b= h.

2)Using the dataset for each anisotropic direction 6, which includes records

from the examined earthquake events, the pre-defined values of r; and r
are employed in a regression analysis to derive the coregionalization
matrices BY B!, and B? for each anisotropy direction 6 for each
earthquake event. This is accomplished by minimizing the weighted sum
of squares (WSS) of the difference between the predicted and the
empirical semivariograms, as outlined in Equation 10. The average
coregionalization matrices B9 B', and B2 for all earthquakes are
calculated and used as those for that specific anisotropy direction.

3)The general WSS for all empirical semivariograms from all earthquakes is

16



279 documented, and various combinations of r; and r, are tested until a

280 relatively low WSS is achieved while adhering to the established criteria
281 for ri and ry, as stated in Step 1). Ultimately, the values of BY, B, B, r; and
282 rp for each anisotropy direction 6 are determined.

283  4)The average values of BY, B', and B2 across four isotropy directions are
284 obtained, respectively, while r; and r, values for the four directions remain.

285 5)The resulting covariance matrix for each anisotropic direction is obtained

286 through Equation 14 based on average B?, B! and B2 obtained from Step
287 4), along with the ri and r, obtained from Step 3) for each anisotropic
288 direction.

289 6)If the elements in the resulting covariance matrix involve more than one

290 anisotropic direction, the element from the covariance matrix of that
291 direction is abstracted to construct the final covariance matrix.
292 In the end, the semivariogram matrix function for the anisotropy direction 6

293 atthelag distance his expressed as:

294 re(h)=Bo(1 —I,) + BI[1 —
295 ex p(—3h/r?)]+ B2[1 —ex p(-3h/rf)]
296 (11)
297 Where r¢ and r$ represent the determined short-range coefficient and

298 long-range coefficient for the anisotropy direction 6; and B?, Bl, B2 denote

17
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the average nugget effect, short-range, and long-range coregionalization
matrices regressed across the different directions; I, is a bivariate indicator
(equal to 1 at h= 0 or 0 otherwise).

It is important to note that if the coregionalization matrices B! (for/=0, 1,
and 2) and are positive semidefinite, then the covariance matrix will also be
positive semidefinite throughout the entire random field (Goovaerts, 1997).
Although various anisotropic directions share the same B! but have distinct
short- and long-range coefficients, the linear combination of the
positive-semidefinite B!, as indicated in Equation 14, ensures that the resulting
combined covariance matrix from the different anisotropic directions remains

positive-semidefinite.

2.4.3 The covariance and correlation matrices with a single anisotropy

direction

Once the semivariogram matrix function I'®(h) is determined as described in
the above procedure, the covariance matrix C9(h) for the direction () can be
calculated as follows:

Co(h) = C%(0) — T"®(h) (12
)
Where C9(0) can be expressed as:

CO(0) = lim I'(h) = B + B! + B2 (13
h— o

18



319 )
320 The covariance matrix function Co(h)

321  can be obtained through Equations 11 and 12, expressed as

322 Co(h) = B°I, +
323 Bl exp(—3h/r?)+B2 exp(—Bh/rg)
324 (14)
325 Then combining the covariance matrix and the spatial correlation

326 coefficient as shown in Equation 6, the spatial cross-correlation matrix R®(h) for

327 the anisotropy direction 6 can be determined as:

328 RO(h) = [p;;(W] =POI, +
329 Pl exp(— 3h/rf) + P2 exp(— 3h/rg)
330 (15)

331 Where h is the separation distance and P! =[p;.] (I =0,1, and 2) is the

332 standardized coregionalization matrix:

333 pi; =

b!.
- J [ =0,1, and 2
0 1 2 0 1 2
(Jb}} + bf; + b%) x (\/bjj +bj; +bj;)

335 (16)

336 Where bfj denotes the element in B!.

337 2.4.4 Construction of the covariance and correlation matrices with multiple

338 anisotropy directions
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For a given earthquake event e, the total covariance matrix C_, for a set of
variables Z = {Zl, ,Zk}T is located at n spatially distributed positions
denoted as E = {Z(u,)7, ...,Z(u_)T}T. Hence, based on Equation 14, the total
covariance matrix C, can be given as shown in Equation 17 (Genton and
Kleiber, 2015; Wang and Du, 2013):

C =

e
Cou(u,,u;) - COmlu;,u,)

[ ; g : ] (17)
Cou(u ,u,) -+ COm(u ,u)

The covariance matrix C. has the dimensions of (k x n,k x n), making
the simulation of the k correlated multivariate random variables at n spatial
locations possible. 6 (i =1..n; j = 1..n) is the anisotropy direction for the path
from the location u; to u;. The element of CY (ul.,uj), involving the k variables,
is defined by C¥%;(h) in Equation 14, where h represents the separation
distance between the locations u; and u; . Similarly, the total correlation

matrix g , which has a dimension of (k x n,k x n) is expressed as:
e

R =

e

R%11 (111,111) ... R (ul,un)

B
ROni(u ,u;) -+ ROm(u ,u)

As noted by Genton and Kleiber (2015), the covariance matrix should be
non-negative definite matrix given arbitrary spatial positions u,, ...u; and

arbitrary vector a, i.e, al’C,a=0 . This section presents the proposed

20
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methodology, which uses LMC for each anisotropy direction while maintaining

B'. By linearly combining semivariograms and covariances for multiple

anisotropy directions, it ensures that C, and g remain non-negative
e

definite under various conditions (Goovaerts, 1997).
3 Anisotropic spatial cross-correlation models for the investigated IMs

3.1 Data preparation

Following Wang and Du (2013), three selection criteria are adopted to select
appropriate ground-motion records:1) The seismic record data were dense, with
a sufficient number of records (more than 30) in each separate distance bin to
obtain statistically reliable sample sizes; 2) Necessary seismic and geological
information were provided for the selected earthquake events, including source
parameters, distance from the site-to-source, and site conditions (Vs3p value),
so that the median IM and its residuals could be estimated from GMPEs, which
stand for Ground-Motion Prediction Equations, also known as ground-motion
models (GMMs); 3) The moment magnitude of the earthquake events was
greater than 5 and had an adequate number of recorded stations in terms of
quantity and distance, making them suitable for spatial correlation analysis.
Then a total of 10 earthquake events comprising 2942 high-quality and reliable

seismic records were extracted, excluding those with low quality, unreliability,
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incompleteness, and even aftershock records, from the NGA-West2 database
(Pacific Earthquake Engineering Research Center, PEER). List of the earthquake
events can be found in Table 1. The distribution of moment magnitude (M)
and rupture distance (Rwp) of the data, as well as the distribution of recorded

PGA values and the recorded station's Ry, and Vs3q values, are shown in Fig.4.

The spatial cross-correlation models for 16 vector-IMs, including Vg, (T)
(the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), SA(T) (the
spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), PGA, PGV, I,
CAV, Dgs75 and T, are developed based on the aforementioned selected
seismic ground-motion data from various regions (i.e., California, Japan and
Taiwan). It should be noted that since the seismic data used are based on
reverse faults and strike-slip faults, the present anisotropic model is applicable
to earthquakes generated by reverse faults and strike-slip faults. More attention
is needed if the present model is to be applied to normal faults. In future work,
the impact of faulting mechanism will be further analyzed and studied.
Additionally, since only seismic data with a moment magnitude greater than 5
and a rupture distance less than 200 km were selected, when applying the
newly proposed model, it is important to consider whether the fault type,
moment magnitude, and fault distance fall within the applicability range of the

model.
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As suggested by Abrahamson and Youngs (1992), IMs can be modelled by
a lognormal distribution when developing the GMPEs. Hence, for a given

earthquake event i/, the IMs at seismic site j can be given as:

InIM,; = TnIM_(M.R,,,0) +
er0p = INIM (M, R,,,0) + n; + &
(19)

Where In denotes the natural logarithm of recorded IM given an earthquake
event i at seismic site j lnIMl.j (M,Rmp,Q) denotes the logarithm of the
predicted median from GMPEs based on magnitude (M), Rryp and other relative

parameters (e.g., location), given an earthquake event i at seismic site j; o

denotes the total residual standard deviation and o0, = JUI.ZJ. + Tl.z e
denotes the normalized residual standard deviation; n; and &;; represent the
between-event and within-event residuals, respectively.

The adopted GMPEs assume that the term of residual standard follows a
normal distribution, whilst T. and oy respectively denote zero mean values
and standard derivations (Abrahamson et al., 1991; Jayaram and Baker, 2008;
Joyner and Boore, 1993). Assuming that the effects of between-event residuals

on the within-event spatial correlation are negligible (Du and Wang, 2013;

Jayaram and Baker, 2009), the within-event residual can be calculated as:

a

0)

£, =1InIM,;; — lnIMij(M,R

rup’
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(20)

A series of GMPEs developed based on the NGA-West2 database were
chosen to calculate the within-event residuals by using Equation 19. The
definitions of IMs, together with calculations of GMPEs are illustrated in Table
2.

The calculated within-event residuals can exhibit discrepancies with
respect to Ry and Vs3g, since the GMPEs are not corrected by using the
seismic ground-motion data selected in this study. The discrepancies may
inevitably result in inaccuracies in estimating spatial correlations
(Foulser-Piggott and Stafford, 2012; Sokolov et al., 2010). Therefore, Du and
Wang (2013) proposed a correction of the calculated residuals to eliminate the

bias, which has been applied in this study:

corr __ _
ij = €ij

€

[0, + @, ln(Rmp) + @, In(V,,)](27)
Where @,, @, and ¢, are coefficients for each earthquake event which are
obtained through linear regression. The deviations of the corrected Vg, (0.05s)
within-event residuals with respect to Ry and Vs3g for ten earthquake events
are illustrated in Fig. 5.

As shown in Fig.5, the corrected residuals do not bias towards R, and

V., - The corrected residuals will be adopted in the analysis of
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semi-variogram. The normalized corrected intra-event residuals can be

calculated as follows:

™
|
U

InIM;; — InIM;(M,R ., .0) - [¢, + @, ln(Rrup) + @5 In(Vgq))]

(22)

Where 31 is the normalized within-event residuals;

; represents the

within-event standard deviation that can be obtained through the sample data

or a specific GMPE. In this study, o,

;; adopts the variance of within-event

residuals of IMs for each earthquake, since the values provided by GMPEs may
not be applicable to all considered earthquake events. Equation 22 neglects the
interevent residual term because it is constant for each site during an
earthquake and therefore does not contribute to the within-event spatial
correlation (Wang and Du, 2013). The inconsistencies in GMPEs are expected
to have minimal impact on the estimated spatial correlation Du and Wang
(2013).

It is worth mentioning that the multi-stage method used by Jayaram and
Baker (2009), as well as by Wang and Du (2013), is applied to adjust the
residuals in order to remove bias arising from the inconsistency between the
GMPE and the empirical data utilized in their analysis. The multi-stage method

is widely applied. However, it is important to highlight that Ming et al. (2019)

25



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

have recently introduced a one-stage method that has been shown to more
accurately estimate all parameters in GMPEs with spatial correlation
simultaneously. Utilizing this method may enhance the unbiased residuals for

correlation modeling in future work.

3.2 Anisotropic spatial cross-correlation models for IMs

In this section, the anisotropic spatial cross-correlation empirical models for
within-event residuals of the investigated IMs are developed, following the
theoretical experience described in Section 2.1-2.3 and procedures detailed in

Section 2.4.

3.2.1 Anisotropy considering four anisotropy directions

In this section, four anisotropy directions (i.e., 8 = 0°, 45° ,90°and 135°), an
angle tolerance (A) of 45°, and bandwidth of 10 km to identify all eligible
station locations within the specified range, the empirical semi-variogram
values are calculated with Equation 3. For each earthquake event, different lag
distances are adopted to ensure a sufficient number of station-point pairs
within each lag distance (15 data points within the varying lags). Categorizing
based on the considered lag distance and repeating this process for all stations
can result in the empirical data of the semi-variogram fitting maps for 10

earthquakes selected in Table 1.
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3.2.2 LMC Fitting to empirical for different anisotropy directions

The empirical semivariogram maps are first plotted and observed for 16 IMs
(Ver(T) (the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s),
SA(T) (the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), /,,
PGV, PGA, CAV, Dss75 and T,,) of 10 investigated earthquakes for four
anisotropy directions (8) of 0°, 45° ,90°and 135°. Fig. 6 presents an example
of the LMC model fitted to empirical semivariogram data at an anisotropy
direction of 0° (the rest figures are given in the Supplemental Material, Figs.
A1-A3). While the LMC curve approximates most of the empirical
semivariogram values, certain values are not captured by the fitted model, likely
reflecting the complexity introduced by the ten distinct seismic events
considered in the analysis. It is worth noting that the empirical semi-variograms
for Dss75 and Tn, in relation to some spectral IMs exhibit negative values.
Likewise, other research (e.g., Bradley, 2011; Huang et al., 2020; Baker and
Bradley, 2017) has also observed negative correlations between these IMs.
Given the constraints of space but the significance of these matters regarding
negative correlations and semi-variograms, a detailed discussion is provided in

Appendix A.

Following the procedure described in Section 2.4.3: the initial r{ and r}

within the LMC model for each anisotropy direction 6, are established; then, the
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empirical semivirogram data for each anisotropy direction are fitted by LMC
model as given in Equation 14; the seimirogram, variance, and correlation
matrix functions are determined for each anisotropy direction by testing
different r{ and rJ; in the end, the average of the matrix functions are
determined.

Following the procedure described in Section 2.4.3, the short-range
coefficient r‘f is determined to be 5 km, 15 km, 10 km, and 10 km for the 0°,
45°, 90°, and 135° directions, respectively. The long-range coefficient rg S
determined to be 70 km, 60 km, 65 km, and 80 km, respectively. The
coregionalization matrices B! within the LMC for the anisotropy directions are
regressed, and their average matrices are obtained. As the result, the nugget
coregionalization matrix PO, the short-range coregionalization matrix P', the
long-range coregionalization matrix P2  are provided in Tables 3-5,
respectively. These coregionalization matrices can then be used to construct

the resulting cross-covariance matrix for sampling intra-event residuals that

exhibit anisotropic spatial correlation.

3.2.3 Applicability of the proposed anisotropic spatial cross-correlation

models

The proposed spatial cross-correlation models are user-friendly for engineering

applications. Below are the steps for estimating the cross-correlation of IMs
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across multiple locations: 1) calculate the separation distance h and determine
the anisotropy direction 6 (0°, 45°,90°, or 135°) between every pair of two sites;
2) obtain the corresponding coregionalization matrix coefficients from Tables
3-5 for IMs; 3) compute the correlation coefficient through Equation 14 for each
pair of two sites for all the IMs; 4) construct the final correlation matrix through
Equation 16 using the elements obtained from Step 3).

A simple case has been given in this section to demonstrate the
applicability and validity of the proposed anisotropic spatial cross-correlation
models. A regional area of 30 kmx30 km is assumed and is divided into 900
units of 1 km2. Assuming an earthquake with M,,=6.5 occurs along a strike-slip
fault, and its epicenter is located at coordinates (0, 0). The direction of the fault
follows the north-south orientation, whilst homogeneous ground conditions are
assumed with a specified Vs3g value of 500 m/s.

First, the earthquake catalog obtained through the Monte Carlo method
includes seismic information. Based on the parameters in the simulated
earthquake catalog, the mean and variance of three IMs, including the PGA,
PGV, and [, are calculated using the GMPEs proposed by Campbell and
Bozorgnia (2014) (CB14). Then, considering the variance of IMs and the
correlation coefficients with spatial cross-correlation computed by those

empirical models considering isotropy and anisotropy of the IMs, the residuals
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of IMs with spatial correlation features are simulated according to the
multivariate normal distribution. These residuals, along with the mean values of
IMs calculated by using GMPEs, are used to derive simulated values of IMs with
spatial correlations. The prediction results are shown in Figs. 7-8.

As shown in Figs. 7-8, compared to the isotropic model, the anisotropic
model demonstrates a stronger spatial correlation of the simulated IMs at zero
distance. And the anisotropic model exhibits a notably higher spatial

correlation intensity at 45 degrees than in other directions.

4 Case study: regional seismic landslide hazard analysis considering the

anisotropic spatial cross-correlations of IMs

Seismic hazard analysis has always been a hot topic in geotechnical
engineering research (Cheng et al., 2023; Yuan et al., 2024). This section will
conduct seismic landslide hazard analysis based on the consideration of
spatial cross-correlation of IMs. Taking the seismic area, Wenchuan city,
located in Sichuan Province, Southwest of China, as an example, the maximum
seismic magnitude is assumed as Ms=8.0, which is acceptable since the
notable most heavy earthquake in history is Wenchuan Earthquake happened in
2008 with Ms equal to 8.0. Guo et al. (2013) proposed a relation between the

earthquake magnitude and rupture distance to calculate the rupture distance:
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M, =33+21 IgL
(23)
Where My is the surface wave magnitude; L denotes the rupture distance.

Based on Equation 23, the rupture distance is calculated as 173 km given
that M=8.0. This study then references to this value and assumes the rupture
distance to be 170km. With respect to the fault site, it is assumed that there
exists a strike-slip fault with a fault angle of 90°, located in Southwest China.
Following Wang (2022), three different locations of slope sites are taken as
case study to perform the regional seismic hazard assessment of slopes
considering the anisotropic cross-correlations of IMs. Fig.9 illustrates the fault
site and three slope sites, where the vertical distances between the fault site
and slope sites are 10km (Site 1), 30km (Site 2) and 60km (Site 3), evaluating
effects of different rupture distance to the seismic slope hazard analysis.

According to National Earthquake Hazards Reduction Program (NEHRP)
and actual Vs3g (average shear wave velocity of soil layers within 30m below
the ground) recorded in NGA-West2, Seyhan and Stewart (2014) suggested 5
types of sites, which is shown in Table 6. This study adopted three
representative sites to investigate the effects of sites, i.e., Vs30=913 m/s (Site
Class B), Vs30=489 m/s (Site Class C) and Vs37=266 m/s (Site Class D).

Seismic catalog is essential data for analyzing regional seismic hazards
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(Shao, 2018). In this study, the Monte Carlo method is chosen to simulate and
generate a stochastic earthquake catalog. In order to study the impact of major
earthquakes on seismic slopes, the truncated Rutenberg-Richter model is
employed as the seismic recurrence model, as shown in the following equation:
IgN(M ) = 3.86 —

0.83M (4.0=<M =38.0) (24)

A total of 1,732,809 earthquakes with a magnitude M = 4.0 were

generated through simulations of earthquake records with a recurrence period
of 100 years and 50000 occurrences by using the Monte Carlo method by

introducing either isotropy or anisotropic models of IMs proposed in this study.

4.1 XGB-permanent slope displacement prediction model

Following the selection criteria of critical acceleration employed by Liu et al.
(2017) and Li et al. (2019), two critical yield accelerations (ac), i.e., 0.02g and
0.1g, are adopted in the present study. These values reflect the decreasing
susceptibility of seismic slopes.

The machine learning framework based on multiple ground motion
parameters for predicting permanent landslide displacement (referred to as the
XGB model), which was proposed by Wang et al. (2020) is adopted in this

study. This model demonstrates strong generalization abilities in displacement
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prediction and, by optimizing hyperparameters, mitigates the risk of overfitting.
The data-driven Newmark displacement prediction model developed in this
approach better adheres to sufficiency and efficiency standards. In comparison
to traditional empirical models, the generated standard deviation is significantly
smaller. Additionally, the application of the model in probabilistic seismic slope
displacement hazard analysis is also demonstrated. In order to better apply the

XGB model to practical use, the fitting of the residuals is shown as:

Oinp =
0.798 D,.cq < 0.003cm
{— 0.14710g,((D ..4) + 0.427 0.003< D, <20cm
0.235 D, .oq >20cm
(25)

Where o, . isthe standard deviation; D___, is the predicted displacement.

pre

In order to evaluate the effects of anisotropic spatial cross-correlations of
vector-IMs on the regional hazard assessment of seismic slopes, four
conditions have been analyzed, and those are the isotropic spatial
cross-correlation model (Cheng et al, 2020), the anisotropic spatial

cross-correlation model with four anisotropy directions, and without

considering spatial cross-correlations of IMs (Not relevant).

4.2 Full probabilistic seismic landslide hazard analysis

The XGB permanent displacement prediction model, which is a vector model,
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require input parameters consist of PGA, PGV and /,. It is necessary to consider
the joint density function of scalar IMs, and the probability of exceedance can
be given as:
Ap =
fP(D =zx|IM, =y, IM,=2, IM;= m) ]”Mwllﬂwzﬂw3 (y,z,m)dmdzdy
(26)
Where A, represents a mean annual rate of sliding displacement D exceeding
that specified value; using a series of specified value (x), e.g., from 0 to 100cm
at interval of 1cm, seismic hazard curves of permanent sliding displacements
can be obtained. P(D = x|IM, =y, IM, =2z, IM,=m) indicates the
probability of sliding displacement larger than a given value x when IM =y,
IM,=% and ppp =m0 fong iy i, (y,z,m) is the probabilistic density
function of IM1=y, IM2=Z and IM3=m°
In addition, the annual exceedance rate calculation for the joint seismic

slope-site permanent displacement is (Akkar and Cheng, 2016):

Ap =

all sites D > x events

total number of events that simulate all sites x statistical period

(27)
Different annual exceedance rates correspond to different values of slope

permanent displacement, representing various levels of hazard. Therefore, it is
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possible to assess the hazard based on the calculated permanent
displacement values according to the specific slope.

The Monte Carlo simulation for the Equation 26 is employed to study the
regional seismic hazard assessment of slopes that subjected to different

critical yield acceleration (a.), site classification, and rupture distance.

4.3 Results and discussions

Assessing seismic risk and hazard at a regional scale differs from evaluating
an individual site (e.g., Jeon and O’'Rourke, 2005; Wang and Takada, 2005). The
joint hazard is of importance to be addressed, whilst the single hazard for an
individual site is negligible (Du and Ning, 2020). Hence, the joint seismic hazard
curves for Site 1, Site 2 and Site 3 are evaluated through the annual exceedance
rate calculation given in Equation 27 for different site classes. The results are
plotted in Fig.10, illustrating the mean annual exceedance rate of the slope
permanent displacements for two critical accelerations (ac=0.02g and 0.1g),
considering the isotropy and anisotropy of the cross-correlations of IMs. The
hazard curves for isotropy are computed using spatial cross-correlation model
proposed by Cheng et al. (2020), and those for anisotropy are computed based
on the model proposed in this study.

As shown in Fig. 10, the solid line indicates the results of isotropy, the

dashed line represents the results of anisotropy, and the dot-dashed line
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represents the condition without considering spatial cross-correlations of IMs
(Not relevant). It is evident that ignoring the spatial cross-correlations of IMs
would underestimate the hazard of the slope permanent displacement. As saoil
conditions soften, as seen in Site Class D, the divergence between hazard
displacement estimates from isotropic and anisotropic spatial correlations
becomes more pronounced, especially at lower mean annual exceedance rates
and ac=0.1. These results highlight the importance of accounting for the

anisotropic characteristics of intensity measures when analyzing soft soils.

5 Conclusion

Although anisotropy of spatial cross-correlations of IMs has long been
identified, only a few IMs correlation models considering anisotropy have been
developed. This study proposed the anisotropic spatial cross-correlation
models for 16 common IMs, including Ve (T) (the spectral ordinates at 0.05s,
0.2, 0.5s, 1s and 2s), SA(T) (the spectral ordinates at 0.05s, 0.2, 0.5s, 1s and
2s), PGA, PGV, I,, CAV, Dg575, and T,,. The model for four anisotropy directions
(0°, 45°90°and 135°) inclined to the fault was developed. In total, 2942
ground-motion records selected from 10 earthquake events were used to
compute the empirical semivariograms for the within-event residuals of the
selected 16 IMs. The commonly used LMC function was employed to construct

permissible spatial correlation models. It was observed that for 16 IMs, the
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developed anisotropic spatial cross-correlation models would fit the empirical
semivariograms and cross-semivariograms reasonably well.

The proposed anisotropic spatial cross-correlation model of IMs was
applied to regional seismic landslide hazard assessment. Results show that at
lower hazard levels, the annual exceedance rate curves for isotropic and
anisotropic models align closely. However, anisotropic effects become more
significant for soft soils as the annual exceedance rate decreases, while they
are negligible for slopes with harder site classes and higher critical
accelerations. Therefore, the anisotropy of IMs cannot be ignored in regional
seismic landslide hazard analysis, particularly for soft soils and lower critical

accelerations.
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Appendix A

In the study, the negative empirical values were observed for semi-variograms

and correlations between non-spectral Intensity Measures (IMs), such as Dss.75
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and T, and some spectral IMs, such as spectral acceleration (SA) and spectral
input energy (Verr). These issues are examined and analyzed in this appendix.
For a single variable m, the empirical semivariogram y_ _ is calculated as

follows:

ymm

1 1 N (h)
=3 o V@, 0) - Z, @, + h))?] (AT)

As shown in the Equation (A1),the y _ cannot be negative. However, for
the multiple variables, the empirical cross-seimivariogram is calculated as

follows:

Y ) =

% |N1Ch)| zzl'z(?)l [(Zn () = Z,, (u; + ) (Z, () - Z,,(u; + h))]  (A2)
As shown in the Equation (A2), the y_ could be negative. If the
differences between the two variables exhibit opposite trends in space (i.e.,
when one variable increases, the other decreases), the product can be negative,
leading to a negative y . (h). In this study, this situation is likely to occur when
a negative empirical cross-semivariogram was observed between some IMs,
such as Dss75 and SA (0.2s). It is different from the ordinary semivariogram,
which is based on the squared differences of a single variable and is always

non-negative.

This study employs a spatial cross-correlation model. The spatial

cross-correlation coefficient is calculated through the following general
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equations:

(h) =

Pmw

c,.m=cC,_ 0 -y (b (A3)
limy () =C_ () (A4)
h—
Cmw O p. )
€, ©OxC, OF? (€ _ 0xC,, O}~ (AS)

Equations (A3) and (A4) indicate that if y . (h) is positive, C, (0) must

also be positive, with C__(0) =y (h). Under these conditions, a negative

correlation coefficient p_ . (h), as calculated using Equation (A5), would be

impossible. However, if y_ (h) is negative, C_ (0) would also be negative.

In this case, both terms in the right side of Equation (A5) are negative, and the

absolute value of C_ (0) exceeds that of y _(h), resulting in a negative

value for p_ (h).

Additionally, to examine the above argument, we take the Chi-Chi

earthquake as an example where the parameters Dgs575 and PGA are selected at

a 90° anisotropic direction.

c, (0= —-043, C__(0)=0.72, C, (0)=0.72

h=5km: y_ (5) =

— 0.00

C_ (B)=C., 0 -y (5= —0.37

C i (0) Y mw ()
= —0.51

Pmw(®) =

{Cmm (0) x C (O)}I/Z B {Cmm (0) x C,., (O)}I/Z

As stated above, the signs (positive or negative) of the semivariograms

and correlations are interconnected. The negative semivariograms can lead to
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negative correlations between IMs. However, there are distinctions between
theoretical and empirical semivariogram data. Theoretically, negative
semivariograms are not acceptable. However, the empirical semivariograms
may yield negative values, possibly due to data randomness and other physical
processes that are not fully captured.

The negative correlation between non-spectral IMs and spectral IMs was
also observed in previous studies (Bradley 2011; Baker and Bradley, 2017;
Huang et al., 2020). However, the exact physical and engineering mechanisms
behind the negative correlation are still not fully understood. Certain
explanations are available. For instance, Huang et al. (2020) attribute the
negative correlation between Dgs5-95 and the short-period spectral accelerations
to the fact that ground motions with longer-than-expected durations often
result in seismic energy being distributed over an extended timeframe. As a
result, the likelihood of generating significant peak responses reduces in a

damped oscillator.
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