

1 **Modelling anisotropic spatial cross-correlations of multiple**
2 **ground-motion intensity measures**

3

4 **Ran Yuan^a**

5 ^a Key Laboratory of Transportation Tunnel Engineering, Ministry of Education,
6 Southwest Jiaotong University, Chengdu 610031, China
7 Email: yuanran@sjtu.edu.cn

8 **Yi Qiu^b**

9 ^b School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
10 Email: 2020200001@my.sjtu.edu.cn

11 **Tong-Tong Liu^c**

12 ^c Northwest China Electric Power Design Institute Construction Group Co., Ltd., Xian
13 710065, China
14 Email: liutongtong@my.sjtu.edu.cn

15 **Yin Cheng^{b*}**

16 ^b School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
17 Email: yin.cheng@sjtu.edu.cn

18 **Chaolie Ning^d**

19 ^d College of Civil Engineering (State Key Laboratory of Disaster Reduction in Civil
20 Engineering), Tongji University, 1239 Siping Road, Shanghai 200092, China,
21 Email: ningchaolie@126.com

22 **Dariusz Wanatowski^e**

23 ^e Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT,
24 UK.

25 Email: D.Wan@leeds.ac.uk

26 **Yi He^f**

27 ^f Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong
28 University, Chengdu 611756, China
29 Email: heyi@swjtu.edu.cn

30 **Abstract**

31 Although anisotropy in spatial correlations of intensity measures (IMs) has been
32 acknowledged, few models specifically address the anisotropy, and consider
33 cross-correlations of IMs. This study introduces anisotropic spatial cross-correlation models
34 for 16 IMs: PGA, PGV, I_a , CAV, D_{S5-75} , T_m , spectral V_{Elr} , and SA at periods of 0.05s, 0.2, 0.5s, 1s
35 and 2s. The models can predict for four anisotropy directions, which are angled (i.e., 0°, 45°,
36 90°, and 135°) relative to the fault direction. Finally, the proposed model was utilized for the
37 regional seismic landslide hazard assessment to show a practical application.

38 **Keywords:** anisotropy; spatial cross-correlations; linear model of coregionalization; intensity
39 measures

1 1 Introduction

2 Assessing ground-motion intensity measures (IMs) across a geographically
3 extensive area is crucial for evaluating the earthquake risk associated with
4 spatially distributed assets of both structures and geotechnics over a spatially
5 distributed region (Garakaninezhad and Bastami, 2017). Numerous
6 ground-motion prediction equations (GMPEs) have been formulated to predict
7 IMs based on factors like earthquake magnitude, source-to-site distance, and
8 site-specific geological conditions. These predictions encompass parameters
9 like peak ground acceleration (PGA), peak ground velocity (PGV), and spectral
10 acceleration (SA). However, these GMPEs often overlook the spatial
11 relationships of ground-motion IMs across different sites within the same
12 earthquake event. IMs at multiple locations during the same earthquake are
13 spatially correlated (Schiappapietra et al., 2022), this relationship is called the
14 spatial correlation of IMs, while the spatial cross-correlation delves into the
15 relationships between different IMs within a given spatial domain. Studies (e.g.,
16 Abbasnejadfar et al., 2021b; Garakaninezhad and Bastami, 2019) have
17 indicated that ignoring the spatial correlation of IMs can significantly skew
18 seismic loss estimates of spatially distributed systems or portfolios. Therefore,
19 it is essential to account for these spatial correlations to ensure a more
20 accurate and comprehensive risk assessment.

21 Modeling the spatial correlation between different sites is essential for a
22 precise evaluation of seismic risk on a regional scale. Over the past few years, a
23 variety of correlation models have been introduced to understand the variability
24 in IMs. These investigations have revealed that certain parameters, which are
25 not randomly distributed, influence the correlation of PGA residuals. Such
26 parameters include the size of the earthquake magnitude and the depth of
27 sediment layers (e.g., Boore et al., 2003; Goda and Hong, 2008; Jayaram and
28 Baker, 2009; Sokolov and Wenzel, 2013; Wang and Takada, 2005).

29 The configuration of the correlation model has a significant influence on
30 the generation of simulations for areas with the cross-correlation of
31 ground-motion IMs, such as the seismic activity within a particular region. It
32 should be noted that the majority of the spatial correlation models for IMs are
33 normally based on the assumption of isotropy (e.g., Esposito and Iervolino,
34 2011; Wang and Du, 2013). The assumptions of isotropy and stationarity are
35 considered as the basis for studying spatial correlation with respect to the
36 1994 Northridge and the 1999 Chi-Chi earthquakes (Jayaram and Baker,
37 2009). Using the directional semivariograms, it has been concluded that the
38 assumption of isotropy is reasonable for both earthquakes, i.e., Northridge and
39 Chi-Chi earthquakes (Jayaram and Baker, 2009). The spatial correlation of SAs,
40 cumulative absolute velocity (CAV), and Arias intensity (I_a) have been

41 investigated in Du and Wang (2013). However, Garakaninezhad and Bastami
42 (2017) used statistical tests introduced by Bowman and Crujeiras (2013) to
43 examine the isotropic assumptions of PGA and SA residuals within events and
44 concluded that the isotropic assumption is generally invalid. Furthermore, they
45 proposed spatial correlation models for the anisotropy of PGA and SA residuals
46 within events. In addition, Abbasnejadfar et al. (2021a) conducted statistical
47 tests to investigate the isotropic assumptions of PGV and peak ground
48 displacement (PGD) residuals within events and found that the residuals of
49 PGV and PGD should be considered as realizations of an anisotropic random
50 field, which is related to the local site-specific anisotropy.

51 Nevertheless, there are a few concerns that need to be addressed,
52 especially when considering the spatial cross-correlation of IMs under isotropic
53 and anisotropic conditions. Most current studies focus on the spatial
54 correlation of IMs while neglecting the spatial cross-correlation between IMs. A
55 few notable empirical models have confirmed the importance of considering
56 the anisotropic spatial cross-correlation of multiple earthquake IMs, e.g., the
57 model proposed by Abbasnejadfar et al. (2020); they only included a few IMs
58 that are suitable for structures, i.e., PGA, PGV, PGD and SAs, which are suitable
59 for seismic risk assessment of portfolios of buildings or structures; however,
60 these IMs are insufficient, especially for the hazard assessment of geotechnical

61 problems, e.g., earthquake-induced landslides from a wide range of slope
62 conditions in nature. Although the effects of anisotropic spatial correlations of
63 IMs have been analyzed for seismic hazard assessment of the portfolio of
64 buildings and infrastructure systems (Abbasnejadfar et al., 2021b), the effects
65 of anisotropic cross-correlations of IMs have not been fully addressed on the
66 hazard assessment in geotechnical problems. However, such effects are
67 crucial to evaluating the risk/loss of spatially distributed infrastructure systems
68 induced by seismic slope failures or landslides, since it is commonly
69 acknowledged that soils are non-homogeneous, demonstrating characteristics
70 of anisotropy and space variety. Hence, the seismic responses of soils
71 subjected to seismic loading are complicated and various (Cheng et al., 2020;
72 Du and Wang, 2013).

73 Hence, this study intends to propose anisotropic spatial
74 cross-correlation models for 16 vector-IMs, including the relative input energy
75 equivalent velocity ($V_{Elr}(T)$) and SA ordinates at periods (T) of 0.05s, 0.2, 0.5s,
76 1s and 2s, PGA, PGV, I_a , CAV, significant durations (D_{s5-75}), and the mean period
77 (T_m), which are suitable for further seismic risk assessment of spatially
78 distributed assets (both structural and geotechnical conditions), based on the
79 proper ground-motion records that are selected from NGA-West2. Furthermore,
80 as a case study, the influence of the anisotropic spatial cross-correlations of

81 the IMs on the fully probabilistic seismic landslide hazard assessment of
82 slopes is studied under different conditions, i.e., critical yield accelerations (a_c),
83 permanent displacement models, site conditions, and rupture distances. This
84 method provides a theoretical benchmark for regional seismic hazard and risk
85 assessment of the portfolio of buildings/slopes considering the anisotropic
86 cross-correlations of IMs.

87 **2 Modelling anisotropic spatial cross-correlations based on**
88 **geostatistical tools**

89 **2.1 Isotropy in multivariate spatial cross-correlations (Cheng et al., 2020)**

90 Evaluation of the univariate spatial correlation of within-event residuals of IMs
91 needs to consider the recorded residuals as the realization of a function that
92 takes random values in spatial locations \mathbf{u} . The function of the random variable
93 is known as random fields in statistics, defined as:

$$94 \quad \{Z(\mathbf{u}): \mathbf{u} \in \mathbb{R}^2\} \quad 95 \quad (1)$$

96 Where $Z(\mathbf{u})$ is the random variable at position \mathbf{u} .

97 Geostatistical analysis suggested that the spatial correlation of a
98 random variable is usually quantified by semivariograms (Journel and
99 Huijbregts, 1976). The semivariogram $\gamma(h)$ is a plot of semivariance versus

100 separation distance, measuring the average dissimilarity between data
 101 separated by a vector \mathbf{h} (Goovaerts, 1997). The semivariogram function can be
 102 given as (Goovaerts, 1997):

$$103 \quad \gamma(\mathbf{h}) = \\ 104 \quad \frac{1}{2} \operatorname{Var}[Z(\mathbf{u} + \mathbf{h}) - Z(\mathbf{u})] = \frac{1}{2} E[(Z(\mathbf{u} + \mathbf{h}) - Z(\mathbf{u}))^2] \\ 105 \quad (2)$$

106 Where $\operatorname{Var}[\cdot]$ denotes variance; \mathbf{h} is lag distance; $Z(\mathbf{u})$ and $Z(\mathbf{u} + \mathbf{h})$ are
 107 variables of Z at locations with a lag distance of \mathbf{h} .

108 For a multivariate random field, consisting of k random variables ($\{Z(\mathbf{u}) =$
 109 $[Z_1(\mathbf{u}), \dots, Z_k(\mathbf{u})]^T : \mathbf{u} \in R^2\}$), which is assumed to be isotropic and
 110 second-order stationary, the empirical estimator of the semivariogram can be
 111 defined as (Goovaerts, 1997):

$$112 \quad \gamma_{mw}(\mathbf{h}) = \\ 113 \quad \frac{1}{2} \frac{1}{|N(\mathbf{h})|} \sum_{i=1}^{|N(\mathbf{h})|} [(Z_m(\mathbf{u}_i) - Z_m(\mathbf{u}_i + \mathbf{h}))(Z_w(\mathbf{u}_i) - Z_w(\mathbf{u}_i + \mathbf{h}))] \\ 114 \quad (3)$$

115 Where $Z_m(\mathbf{u}_i)$ and $Z_m(\mathbf{u}_i + \mathbf{h})$ denote the i^{th} data pair in the \mathbf{h} -distance bin
 116 for random variable Z_m . $|N(\mathbf{h})|$ is the dimension of the set of all distinct
 117 points which fall in the bin of the distance \mathbf{h} .

118 In addition, the cross-covariance function $C_{mw}(\mathbf{h})$, measuring the
 119 similarity of data of the multivariate random field with a lag distance of \mathbf{h} is

120 defined as (Cressie, 1993):

121
$$C_{mw}(h) =$$

122
$$\frac{1}{|N(h)|} \sum_{i=1}^{|N(h)|} [(Z_m(u_i) - \bar{Z}_m)(Z_w(u_i) - \bar{Z}_w)]$$

123 (4)

124 Where $\bar{Z}_k = \frac{1}{n} \sum_{i=1}^n Z_k(u_i)$ is the sample mean value of the variable k ;

125 $i (= 1, \dots, n)$ is the position in the lag distance bin.

126 By combining Equations 3 and 4,

127 $\lim_{h \rightarrow \infty} \gamma_{mw}(h) = Cov[Z_m(u_i), Z_w(u_i)] = C_{mw}(0)$ (Goovaerts, 1997), in which
128 $Cov[.]$ denotes covariance.

129 The relation between cross-covariance and cross-semivariogram can be
130 obtained as (Goovaerts, 1997):

131
$$C_{mw}(h) = C_{mw}(0) - \gamma_{mw}(h) =$$

132
$$C_{mw}(0) \left(1 - \frac{\gamma_{mw}(h)}{C_{mw}(0)} \right)$$
 (5)

133 As indicated by Equation 5, $\lim_{h \rightarrow 0} \gamma_{mw}(h) = 0$.

134 The spatial correlation coefficient $\rho_{mw}(h)$ between Z_m and Z_w at lag
135 distance h can be defined as (Goovaerts, 1997):

136
$$\rho_{mw}(h) = \frac{C_{mw}(h)}{\{C_{mm}(h) \times C_{ww}(h)\}^{1/2}} =$$

137
$$\frac{C_{mw}(0)}{\{C_{mm}(0) \times C_{ww}(0)\}^{1/2}} - \frac{\gamma_{mw}(h)}{\{C_{mm}(0) \times C_{ww}(0)\}^{1/2}}$$

138 (6)

139 It should be noted that if the cross-semivariogram and cross-covariance

140 in Equation 6 are respectively substituted by Equation 4 and Equation 5, then
141 the spatial correlation coefficient is determined.

142 The first- and second-order moments (expectation and covariance) exist
143 and are invariant under spatial translation if the second-order stationary is
144 assumed. The semivariogram is independent of the position \mathbf{u} , but it is only in
145 relation to the lag distance \mathbf{h} . The isotropy is assumed if the semivariogram of
146 a second-order stationary random field is irrespective of directions. Under the
147 assumption of isotropy, the cross-semivariogram and the cross-covariance
148 depend solely on the relative separation distance between positions, i.e., $h =$
149 $\|\mathbf{h}\|$.

150 **2.2 Parametric functions to fit semivariograms**

151 The empirical semivariogram value is calculated based on the recorded
152 seismic data. By fitting a model to the empirical values, an effective
153 semivariogram function model can be obtained. It is worth noting that if the
154 model is a conditionally non-negative definite function, it is considered as an
155 effective semivariogram function (Cressie, 1993). Semivariogram analysis
156 provides a set of empirical values for discrete lag distances h , and requires a
157 continuous function that must satisfy positive definiteness to fit these
158 empirical data for practical use. Notable models for fitting the empirical
159 semivariogram can be classified as: Exponential model, Gauss model and
10

160 Spherical model (Wang and Du, 2013), and the comparisons of their fitting
161 performance are shown in Fig.1. It is demonstrated in Fig.1 that the exponential
162 fitting model shows a good performance. Hence, the exponential fitting model,
163 as shown in Equation 7, will be used in this study.

164

$$\hat{y}(h) = a[1 - e^{-p(-3h/b)}] \quad (7)$$

165

166 Where a is the sill of the semivariogram, representing the overall variance of the
167 empirical data Z ; b is the practical range of semivariogram, representing the lag
168 distance at which 95% of the sill a is reached.

169 Following Abbasnejadfar et al. (2020), for the specific direction, we
170 used the isotropic variogram (Jäckel., 2002) form to calculate the
171 semivariograms. Anisotropic characteristics are handled separately for each
172 direction (grouped into four directions in this study), utilizing an isotropic
173 variogram format that is based on data specific to that direction. This may have
174 limitations as the directional semivariograms may not be fully considered. A
175 possible solution can be to establish a holistic model encompassing all
176 directions using the latent dimensions method; however, this will complicate
177 the current study and will be considered in future work. Theoretically, the
178 semivariogram value should equal to 0 at zero separation distance, i.e., $h=0$.
179 However, the semivariogram often demonstrates a nugget effect in practice.

180 Hence, the exponential model for fitting semivariogram considering the nugget
181 effect can be given as (e.g., Cheng et al., 2020; Du and Pan, 2017):

182
$$\hat{y}(h) =$$

183
$$\begin{cases} 0 & h = 0 \\ C_0 + (a - C_0)[1 - e^{-p(-3h/b)}] & h > 0 \end{cases}$$

184 (8)

185 Where C_0 denotes the nugget effect.

186 **2.3 Linear model of coregionalization (LMC)**

187 Since the variance of any linear combination of $Z(u_i)$ at a random position u_i
188 must be non-negative, the covariance function associated with the
189 semi-variogram must be positive definite. The exponential permissible model is
190 usually adopted in the earthquake engineering community for fitting the
191 empirical covariance values at discrete distance lags. In practice, the positive
192 definiteness can be ensured through the positive definite linear combination. It
193 is worth noting that not all combinations of the permissible basic models
194 introduced earlier bring in a permissible (i.e., positive definite) covariance
195 function. The easiest way to develop a permissible model lies in building a
196 random function first. In recent years, an advanced LMC method, which was
197 first proposed by Goovaerts (1997), is a commonly suggested statistical tool
198 for modelling effective multivariate semivariogram matrix of IMs. The LMC

199 method employs a combination of short-range exponential function and
 200 long-range exponential function, together with a term of nugget effect. A
 201 nugget effect is incorporated into the LMC to improve the fitting performance
 202 at small separation distances. The expression for the LMC semivariogram
 203 model can be defined as:

$$204 \quad \Gamma(h) = B^0(1 - I_h) + B^1[1 - \\ 205 \quad \exp(-3h/r_1)] + B^2[1 - \exp(-3h/r_2)] \\ 206 \quad (9)$$

207 Where the h denotes lag distance with a unit of km; $\Gamma(h)$ is semivariogram
 208 matrix for h , r_1 and r_2 represent the short-range coefficient and long-range
 209 coefficient; and B^0 , B^1 , B^2 denote the average nugget effect, short-range,
 210 and long-range coregionalization matrices for ten earthquake events; I_h is a
 211 bivariate indicator (equal to 1 at $h=0$ or 0 otherwise).

212 The coregionalization matrices are established by minimizing the weighted
 213 sum of squares (WSS) that represents the discrepancy between the predicted
 214 and empirical semivariograms (Goulard and Voltz, 1992). WSS is evaluated as
 215 in Equation 10.

$$216 \quad \text{WSS} = \\ 217 \quad \sum_{k=1}^K \sum_{m=1}^n \sum_{w=1}^n w(h_k) \frac{[\tilde{\gamma}_{mw}(h_k) - \gamma_{mw}(h_k)]^2}{\hat{\sigma}_m \hat{\sigma}_w} \\ 218 \quad (10)$$

219 In this context, $\tilde{\gamma}_{mw}(h_k)$ represents the empirical semivariogram, while
220 $\gamma_{mw}(h_k)$ indicates the semivariogram predicted by the LMC model. The term
221 $w(h_k)$ refers to the weight applied at the lag distance h_k , and $\widehat{\sigma}_m$ signifies
222 the standard deviation of the random variable Z_w . For further details on the
223 algorithm, please refer to the work of Loth and Baker (2013).

224 **2.4 Anisotropy in the multivariate spatial cross-correlations**

225 As mentioned in Section 2.3, the Linear Model of Coregionalization (LMC)
226 ensures positive-definite semivariogram and covariance matrix functions, a
227 prerequisite for stochastic simulation of ground-motion fields (Goovaerts,
228 1997). However, LMC is typically applied to isotropic spatial fields. Anisotropy
229 is accounted for when the semivariogram of a second-order stationary random
230 field depends on both the direction and magnitude of the lag vector \mathbf{h} . For a
231 multivariate random field with anisotropy, the lag vector incorporates both
232 magnitude and direction.

233 This study addresses anisotropic spatial correlations separately for each
234 direction using an isotropic semivariogram LMC model specific to that
235 direction. To ensure the resulting semivariogram, covariance, and correlation
236 matrices are positive-definite, a detailed approach is proposed in this section.
237 These positive-definite matrices make the method suitable for engineering
238 applications.

239 2.4.1 *Definition of anisotropy directions*

240 A directional semivariogram is derived by calculating the semivariogram for

241 data pairs that lie within specific directional bands and at a set bin distance.

242 The study area is divided into different directional zones, where the azimuth of

243 the direction vector, angular tolerance, and bandwidth are illustrated in Fig.2.

244 These parameters can be employed to compute the directional semivariance,

245 subsequently enabling the calculation of directional covariance functions

246 (Cressie, 1993). For example, with respect to the target region as shown in

247 Fig.3, the semivariogram values corresponding to an anisotropy direction of θ

248 and an angle tolerance of $\Delta/2$ can be computed following the two steps: first,

249 chose a reference site A, and identify all sites that fall within the anisotropy

250 direction range of $[\theta - \frac{\Delta}{2}, \theta + \frac{\Delta}{2}]$. These sites are then organized based on

251 the bin distances relevant to the analysis. This process must be conducted for

252 every site in the dataset. By following the method described in Section 2.1, the

253 empirical semivariograms for the specified anisotropy direction can be

254 computed.

255 2.4.2 *Procedures to consider the anisotropy in semivariograms*

256 To ensure the covariance matrix for sampling spatially correlated IM residuals

257 with anisotropic characteristics is positive-definite, the following procedure is

258 used to construct the final matrix.

259 1)Examine the empirical semivariogram figures for each anisotropic
260 direction; pre-select the short-range coefficient r_1 and long-range
261 coefficient r_2 for each anisotropy direction θ for Equation 11 according
262 to the guidelines of this study:

263 • r_1 : controls the rapid spatial variation over small distances; it is
264 selected such that the semivariogram reflects 10%–30% of the sill (a)
265 in the exponential fitting model (Equation 8) when $r_1 = b = h$.
266 • r_2 : controls the gradual spatial variation over larger distances; it is
267 chosen such that the semivariogram reflects 70%–95% of sill (a) in the
268 exponential fitting model (Equation 8) when with $r_2 = b = h$.

269 2)Using the dataset for each anisotropic direction θ , which includes records
270 from the examined earthquake events, the pre-defined values of r_1 and r_2
271 are employed in a regression analysis to derive the coregionalization
272 matrices \mathbf{B}^0 , \mathbf{B}^1 , and \mathbf{B}^2 for each anisotropy direction θ for each
273 earthquake event. This is accomplished by minimizing the weighted sum
274 of squares (WSS) of the difference between the predicted and the
275 empirical semivariograms, as outlined in Equation 10. The average
276 coregionalization matrices \mathbf{B}^0 , \mathbf{B}^1 , and \mathbf{B}^2 for all earthquakes are
277 calculated and used as those for that specific anisotropy direction.

278 3)The general WSS for all empirical semivariograms from all earthquakes is

279 documented, and various combinations of r_1 and r_2 are tested until a
280 relatively low WSS is achieved while adhering to the established criteria
281 for r_1 and r_2 , as stated in Step 1). Ultimately, the values of \mathbf{B}^0 , \mathbf{B}^1 , \mathbf{B}^2 , r_1 and
282 r_2 for each anisotropy direction θ are determined.

283 4) The average values of \mathbf{B}^0 , \mathbf{B}^1 , and \mathbf{B}^2 across four isotropy directions are
284 obtained, respectively, while r_1 and r_2 values for the four directions remain.

285 5) The resulting covariance matrix for each anisotropic direction is obtained
286 through Equation 14 based on average \mathbf{B}^0 , \mathbf{B}^1 and \mathbf{B}^2 obtained from Step
287 4), along with the r_1 and r_2 obtained from Step 3) for each anisotropic
288 direction.

289 6) If the elements in the resulting covariance matrix involve more than one
290 anisotropic direction, the element from the covariance matrix of that
291 direction is abstracted to construct the final covariance matrix.

292 In the end, the semivariogram matrix function for the anisotropy direction θ
293 at the lag distance h is expressed as:

$$294 \quad \Gamma^\theta(h) = \mathbf{B}^0(1 - I_h) + \mathbf{B}^1[1 - \\ 295 \quad \text{ex p}(-3h/r_1^\theta)] + \mathbf{B}^2[1 - \text{ex p}(-3h/r_2^\theta)] \\ 296 \quad (11)$$

297 Where r_1^θ and r_2^θ represent the determined short-range coefficient and
298 long-range coefficient for the anisotropy direction θ ; and \mathbf{B}^0 , \mathbf{B}^1 , \mathbf{B}^2 denote

299 the average nugget effect, short-range, and long-range coregionalization
300 matrices regressed across the different directions; I_h is a bivariate indicator
301 (equal to 1 at $h=0$ or 0 otherwise).

302 It is important to note that if the coregionalization matrices B^l (for $l=0, 1,$
303 and 2) and are positive semidefinite, then the covariance matrix will also be
304 positive semidefinite throughout the entire random field (Goovaerts, 1997).

305 Although various anisotropic directions share the same B^l but have distinct
306 short- and long-range coefficients, the linear combination of the
307 positive-semidefinite B^l , as indicated in Equation 14, ensures that the resulting
308 combined covariance matrix from the different anisotropic directions remains
309 positive-semidefinite.

310 2.4.3 *The covariance and correlation matrices with a single anisotropy*
311 *direction*

312 Once the semivariogram matrix function $\Gamma^\theta(h)$ is determined as described in
313 the above procedure, the covariance matrix $C^\theta(h)$ for the direction (θ) can be
314 calculated as follows:

315
$$C^\theta(h) = C^\theta(0) - \Gamma^\theta(h) \quad (12)$$

316)

317 Where $C^\theta(0)$ can be expressed as:

318
$$C^\theta(0) = \lim_{h \rightarrow \infty} \Gamma(h) = B^0 + B^1 + B^2 \quad (13)$$

319)

320 The covariance matrix function $C^\theta(h)$

321 can be obtained through Equations 11 and 12, expressed as

322
$$C^\theta(h) = B^0 I_h +$$

323
$$B^1 \exp(-3h/r_1^\theta) + B^2 \exp(-3h/r_2^\theta)$$

324 (14)

325 Then combining the covariance matrix and the spatial correlation

326 coefficient as shown in Equation 6, the spatial cross-correlation matrix $R^\theta(h)$ for

327 the anisotropy direction θ can be determined as:

328
$$R^\theta(h) = [\rho_{ij}^\theta(h)] = P^0 I_h +$$

329
$$P^1 \exp(-3h/r_1^\theta) + P^2 \exp(-3h/r_2^\theta)$$

330 (15)

331 Where h is the separation distance and $P^l = [\rho_{ij}^l]$ ($l = 0, 1$, and 2) is the

332 standardized coregionalization matrix:

333
$$\rho_{ij}^l =$$

334
$$\frac{b_{ij}^l}{(\sqrt{b_{ii}^0 + b_{ii}^1 + b_{ii}^2}) \times (\sqrt{b_{jj}^0 + b_{jj}^1 + b_{jj}^2})} \quad l = 0, 1, \text{ and } 2$$

335 (16)

336 Where b_{ij}^l denotes the element in B^l .

337 *2.4.4 Construction of the covariance and correlation matrices with multiple*

338 *anisotropy directions*

339 For a given earthquake event e , the total covariance matrix C_e for a set of
 340 variables $Z = \{Z_1, \dots, Z_k\}^T$ is located at n spatially distributed positions
 341 denoted as $E = \{Z(u_1)^T, \dots, Z(u_n)^T\}^T$. Hence, based on Equation 14, the total
 342 covariance matrix C_e can be given as shown in Equation 17 (Genton and
 343 Kleiber, 2015; Wang and Du, 2013):

344
$$C_e =$$

 345
$$\begin{bmatrix} C^{\theta_{11}}(u_1, u_1) & \dots & C^{\theta_{1n}}(u_1, u_n) \\ \vdots & \ddots & \vdots \\ C^{\theta_{n1}}(u_n, u_1) & \dots & C^{\theta_{nn}}(u_n, u_n) \end{bmatrix} \quad (17)$$

346 The covariance matrix C_e has the dimensions of $(k \times n, k \times n)$, making
 347 the simulation of the k correlated multivariate random variables at n spatial
 348 locations possible. θ_{ij} ($i = 1 \dots n; j = 1 \dots n$) is the anisotropy direction for the path
 349 from the location u_i to u_j . The element of $C^{\theta_{ij}}(u_i, u_j)$, involving the k variables,
 350 is defined by $C^{\theta_{ij}}(h)$ in Equation 14, where h represents the separation
 351 distance between the locations u_i and u_j . Similarly, the total correlation
 352 matrix R_e , which has a dimension of $(k \times n, k \times n)$ is expressed as:

353
$$R_e =$$

 354
$$\begin{bmatrix} R^{\theta_{11}}(u_1, u_1) & \dots & R^{\theta_{1n}}(u_1, u_n) \\ \vdots & \ddots & \vdots \\ R^{\theta_{n1}}(u_n, u_1) & \dots & R^{\theta_{nn}}(u_n, u_n) \end{bmatrix} \quad (18)$$

355 As noted by Genton and Kleiber (2015), the covariance matrix should be
 356 non-negative definite matrix given arbitrary spatial positions u_1, \dots, u_i and
 357 arbitrary vector a , i.e., $a^T C_e a \geq 0$. This section presents the proposed

358 methodology, which uses LMC for each anisotropy direction while maintaining
359 **B^l**. By linearly combining semivariograms and covariances for multiple
360 anisotropy directions, it ensures that C_e and R_e remain non-negative
361 definite under various conditions (Goovaerts, 1997).

362 **3 Anisotropic spatial cross-correlation models for the investigated IMs**

363 **3.1 Data preparation**

364 Following Wang and Du (2013), three selection criteria are adopted to select
365 appropriate ground-motion records: 1) The seismic record data were dense, with
366 a sufficient number of records (more than 30) in each separate distance bin to
367 obtain statistically reliable sample sizes; 2) Necessary seismic and geological
368 information were provided for the selected earthquake events, including source
369 parameters, distance from the site-to-source, and site conditions (Vs_{30} value),
370 so that the median IM and its residuals could be estimated from GMPEs, which
371 stand for Ground-Motion Prediction Equations, also known as ground-motion
372 models (GMMs); 3) The moment magnitude of the earthquake events was
373 greater than 5 and had an adequate number of recorded stations in terms of
374 quantity and distance, making them suitable for spatial correlation analysis.
375 Then a total of 10 earthquake events comprising 2942 high-quality and reliable
376 seismic records were extracted, excluding those with low quality, unreliability,

377 incompleteness, and even aftershock records, from the NGA-West2 database
378 (Pacific Earthquake Engineering Research Center, PEER). List of the earthquake
379 events can be found in Table 1. The distribution of moment magnitude (M_w)
380 and rupture distance (R_{rup}) of the data, as well as the distribution of recorded
381 PGA values and the recorded station's R_{rup} and V_{s30} values, are shown in Fig.4.

382 The spatial cross-correlation models for 16 vector-IMs, including $V_{Elr}(T)$
383 (the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), $SA(T)$ (the
384 spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), PGA, PGV, I_a ,
385 CAV, D_{s5-75} , and T_m , are developed based on the aforementioned selected
386 seismic ground-motion data from various regions (i.e., California, Japan and
387 Taiwan). It should be noted that since the seismic data used are based on
388 reverse faults and strike-slip faults, the present anisotropic model is applicable
389 to earthquakes generated by reverse faults and strike-slip faults. More attention
390 is needed if the present model is to be applied to normal faults. In future work,
391 the impact of faulting mechanism will be further analyzed and studied.
392 Additionally, since only seismic data with a moment magnitude greater than 5
393 and a rupture distance less than 200 km were selected, when applying the
394 newly proposed model, it is important to consider whether the fault type,
395 moment magnitude, and fault distance fall within the applicability range of the
396 model.

397 As suggested by Abrahamson and Youngs (1992), IMs can be modelled by
 398 a lognormal distribution when developing the GMPEs. Hence, for a given
 399 earthquake event i , the IMs at seismic site j can be given as:

$$400 \quad \ln IM_{ij} = \overline{\ln IM_{ij}(M, R_{rup}, \theta)} + \\ 401 \quad \varepsilon_T \sigma_T = \overline{\ln IM_{ij}(M, R_{rup}, \theta)} + \eta_i + \varepsilon_{ij} \\ 402 \quad (19)$$

403 Where \ln denotes the natural logarithm of recorded IM given an earthquake
 404 event i at seismic site j ; $\ln IM_{ij}(M, R_{rup}, \theta)$ denotes the logarithm of the
 405 predicted median from GMPEs based on magnitude (M), R_{rup} and other relative
 406 parameters (e.g., location), given an earthquake event i at seismic site j ; σ_T
 407 denotes the total residual standard deviation and $\sigma_T = \sqrt{\sigma_{ij}^2 + \tau_i^2}$; ε_T
 408 denotes the normalized residual standard deviation; η_i and ε_{ij} represent the
 409 between-event and within-event residuals, respectively.

410 The adopted GMPEs assume that the term of residual standard follows a
 411 normal distribution, whilst τ_i and σ_{ij} respectively denote zero mean values
 412 and standard derivations (Abrahamson et al., 1991; Jayaram and Baker, 2008;
 413 Joyner and Boore, 1993). Assuming that the effects of between-event residuals
 414 on the within-event spatial correlation are negligible (Du and Wang, 2013;
 415 Jayaram and Baker, 2009), the within-event residual can be calculated as:

$$416 \quad \varepsilon_{ij} = \ln IM_{ij} - \overline{\ln IM_{ij}(M, R_{rup}, \theta)}$$

417 (20)

418 A series of GMPEs developed based on the NGA-West2 database were
419 chosen to calculate the within-event residuals by using Equation 19. The
420 definitions of IMs, together with calculations of GMPEs are illustrated in Table
421 2.

422 The calculated within-event residuals can exhibit discrepancies with
423 respect to R_{rup} and V_{s30} , since the GMPEs are not corrected by using the
424 seismic ground-motion data selected in this study. The discrepancies may
425 inevitably result in inaccuracies in estimating spatial correlations
426 (Foulser-Piggott and Stafford, 2012; Sokolov et al., 2010). Therefore, Du and
427 Wang (2013) proposed a correction of the calculated residuals to eliminate the
428 bias, which has been applied in this study:

429
$$\varepsilon_{ij}^{corr} = \varepsilon_{ij} -$$

430
$$[\varphi_1 + \varphi_2 \ln(R_{rup}) + \varphi_3 \ln(V_{s30})] \quad (21)$$

431 Where φ_1 , φ_2 and φ_3 are coefficients for each earthquake event which are
432 obtained through linear regression. The deviations of the corrected V_{Elr} (0.05s)
433 within-event residuals with respect to R_{rup} and V_{s30} for ten earthquake events
434 are illustrated in Fig.5.

435 As shown in Fig.5, the corrected residuals do not bias towards R_{rup} and
436 V_{s30} . The corrected residuals will be adopted in the analysis of

437 semi-variogram. The normalized corrected intra-event residuals can be
438 calculated as follows:

439

$$\varepsilon'_{ij} = \frac{\varepsilon_{ij}^{corr}}{\sigma_{ij}} \approx$$

440

$$\frac{\ln IM_{ij} - \overline{\ln IM_{ij}(M, R_{rup}, \theta)} - [\varphi_1 + \varphi_2 \ln(R_{rup}) + \varphi_3 \ln(V_{S30})]}{\sigma_{ij}}$$

441 (22)

442 Where ε'_{ij} is the normalized within-event residuals; σ_{ij} represents the
443 within-event standard deviation that can be obtained through the sample data
444 or a specific GMPE. In this study, σ_{ij} adopts the variance of within-event
445 residuals of IMs for each earthquake, since the values provided by GMPEs may
446 not be applicable to all considered earthquake events. Equation 22 neglects the
447 interevent residual term because it is constant for each site during an
448 earthquake and therefore does not contribute to the within-event spatial
449 correlation (Wang and Du, 2013). The inconsistencies in GMPEs are expected
450 to have minimal impact on the estimated spatial correlation Du and Wang
451 (2013).

452 It is worth mentioning that the multi-stage method used by Jayaram and
453 Baker (2009), as well as by Wang and Du (2013), is applied to adjust the
454 residuals in order to remove bias arising from the inconsistency between the
455 GMPE and the empirical data utilized in their analysis. The multi-stage method
456 is widely applied. However, it is important to highlight that Ming et al. (2019)

457 have recently introduced a one-stage method that has been shown to more
458 accurately estimate all parameters in GMPEs with spatial correlation
459 simultaneously. Utilizing this method may enhance the unbiased residuals for
460 correlation modeling in future work.

461 **3.2 Anisotropic spatial cross-correlation models for IMs**

462 In this section, the anisotropic spatial cross-correlation empirical models for
463 within-event residuals of the investigated IMs are developed, following the
464 theoretical experience described in Section 2.1-2.3 and procedures detailed in
465 Section 2.4.

466 *3.2.1 Anisotropy considering four anisotropy directions*

467 In this section, four anisotropy directions (i.e., $\theta = 0^\circ$, 45° , 90° and 135°), an
468 angle tolerance (Δ) of 45° , and bandwidth of 10 km to identify all eligible
469 station locations within the specified range, the empirical semi-variogram
470 values are calculated with Equation 3. For each earthquake event, different lag
471 distances are adopted to ensure a sufficient number of station-point pairs
472 within each lag distance (15 data points within the varying lags). Categorizing
473 based on the considered lag distance and repeating this process for all stations
474 can result in the empirical data of the semi-variogram fitting maps for 10
475 earthquakes selected in Table 1.

476 3.2.2 LMC Fitting to empirical for different anisotropy directions

477 The empirical semivariogram maps are first plotted and observed for 16 IMs

478 ($V_{Elr}(T)$ (the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s),

479 $SA(T)$ (the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), I_a ,

480 PGV, PGA, CAV, D_{s5-75} and T_m) of 10 investigated earthquakes for four

481 anisotropy directions (θ) of 0° , 45° , 90° and 135° . Fig. 6 presents an example

482 of the LMC model fitted to empirical semivariogram data at an anisotropy

483 direction of 0° (the rest figures are given in the Supplemental Material, Figs.

484 A1-A3). While the LMC curve approximates most of the empirical

485 semivariogram values, certain values are not captured by the fitted model, likely

486 reflecting the complexity introduced by the ten distinct seismic events

487 considered in the analysis. It is worth noting that the empirical semi-variograms

488 for D_{s5-75} and T_m in relation to some spectral IMs exhibit negative values.

489 Likewise, other research (e.g., Bradley, 2011; Huang et al., 2020; Baker and

490 Bradley, 2017) has also observed negative correlations between these IMs.

491 Given the constraints of space but the significance of these matters regarding

492 negative correlations and semi-variograms, a detailed discussion is provided in

493 Appendix A.

494 Following the procedure described in Section 2.4.3: the initial r_1^θ and r_2^θ

495 within the LMC model for each anisotropy direction θ , are established; then, the

496 empirical semivirogram data for each anisotropy direction are fitted by LMC
497 model as given in Equation 14; the seimirogram, variance, and correlation
498 matrix functions are determined for each anisotropy direction by testing
499 different r_1^θ and r_2^θ ; in the end, the average of the matrix functions are
500 determined.

501 Following the procedure described in Section 2.4.3, the short-range
502 coefficient r_1^θ is determined to be 5 km, 15 km, 10 km, and 10 km for the 0°,
503 45°, 90°, and 135° directions, respectively. The long-range coefficient r_2^θ is
504 determined to be 70 km, 60 km, 65 km, and 80 km, respectively. The
505 coregionalization matrices \mathbf{B}^l within the LMC for the anisotropy directions are
506 regressed, and their average matrices are obtained. As the result, the nugget
507 coregionalization matrix \mathbf{P}^0 , the short-range coregionalization matrix \mathbf{P}^1 , the
508 long-range coregionalization matrix \mathbf{P}^2 are provided in Tables 3-5,
509 respectively. These coregionalization matrices can then be used to construct
510 the resulting cross-covariance matrix for sampling intra-event residuals that
511 exhibit anisotropic spatial correlation.

512 *3.2.3 Applicability of the proposed anisotropic spatial cross-correlation
513 models*

514 The proposed spatial cross-correlation models are user-friendly for engineering
515 applications. Below are the steps for estimating the cross-correlation of IMs
28

516 across multiple locations: 1) calculate the separation distance h and determine
517 the anisotropy direction θ (0° , 45° , 90° , or 135°) between every pair of two sites;
518 2) obtain the corresponding coregionalization matrix coefficients from Tables
519 3-5 for IMs; 3) compute the correlation coefficient through Equation 14 for each
520 pair of two sites for all the IMs; 4) construct the final correlation matrix through
521 Equation 16 using the elements obtained from Step 3).

522 A simple case has been given in this section to demonstrate the
523 applicability and validity of the proposed anisotropic spatial cross-correlation
524 models. A regional area of $30 \text{ km} \times 30 \text{ km}$ is assumed and is divided into 900
525 units of 1 km^2 . Assuming an earthquake with $M_w=6.5$ occurs along a strike-slip
526 fault, and its epicenter is located at coordinates $(0, 0)$. The direction of the fault
527 follows the north-south orientation, whilst homogeneous ground conditions are
528 assumed with a specified V_{s30} value of 500 m/s.

529 First, the earthquake catalog obtained through the Monte Carlo method
530 includes seismic information. Based on the parameters in the simulated
531 earthquake catalog, the mean and variance of three IMs, including the PGA,
532 PGV, and I_a , are calculated using the GMPEs proposed by Campbell and
533 Bozorgnia (2014) (CB14). Then, considering the variance of IMs and the
534 correlation coefficients with spatial cross-correlation computed by those
535 empirical models considering isotropy and anisotropy of the IMs, the residuals

536 of IMs with spatial correlation features are simulated according to the
537 multivariate normal distribution. These residuals, along with the mean values of
538 IMs calculated by using GMPEs, are used to derive simulated values of IMs with
539 spatial correlations. The prediction results are shown in Figs. 7-8.

540 As shown in Figs. 7-8, compared to the isotropic model, the anisotropic
541 model demonstrates a stronger spatial correlation of the simulated IMs at zero
542 distance. And the anisotropic model exhibits a notably higher spatial
543 correlation intensity at 45 degrees than in other directions.

544 **4 Case study: regional seismic landslide hazard analysis considering the
545 anisotropic spatial cross-correlations of IMs**

546 Seismic hazard analysis has always been a hot topic in geotechnical
547 engineering research (Cheng et al., 2023; Yuan et al., 2024). This section will
548 conduct seismic landslide hazard analysis based on the consideration of
549 spatial cross-correlation of IMs. Taking the seismic area, Wenchuan city,
550 located in Sichuan Province, Southwest of China, as an example, the maximum
551 seismic magnitude is assumed as $M_s=8.0$, which is acceptable since the
552 notable most heavy earthquake in history is Wenchuan Earthquake happened in
553 2008 with M_s equal to 8.0. Guo et al. (2013) proposed a relation between the
554 earthquake magnitude and rupture distance to calculate the rupture distance:

555
$$M_s = 3.3 + 2.1 \lg L$$

556 (23)

557 Where M_s is the surface wave magnitude; L denotes the rupture distance.
558 Based on Equation 23, the rupture distance is calculated as 173 km given
559 that $M_s=8.0$. This study then references to this value and assumes the rupture
560 distance to be 170km. With respect to the fault site, it is assumed that there
561 exists a strike-slip fault with a fault angle of 90° , located in Southwest China.
562 Following Wang (2022), three different locations of slope sites are taken as
563 case study to perform the regional seismic hazard assessment of slopes
564 considering the anisotropic cross-correlations of IMs. Fig.9 illustrates the fault
565 site and three slope sites, where the vertical distances between the fault site
566 and slope sites are 10km (Site 1), 30km (Site 2) and 60km (Site 3), evaluating
567 effects of different rupture distance to the seismic slope hazard analysis.

568 According to National Earthquake Hazards Reduction Program (NEHRP)
569 and actual Vs_{30} (average shear wave velocity of soil layers within 30m below
570 the ground) recorded in NGA-West2, Seyhan and Stewart (2014) suggested 5
571 types of sites, which is shown in Table 6. This study adopted three
572 representative sites to investigate the effects of sites, i.e., $Vs_{30}=913$ m/s (Site
573 Class B), $Vs_{30}=489$ m/s (Site Class C) and $Vs_{30}=266$ m/s (Site Class D).

574 Seismic catalog is essential data for analyzing regional seismic hazards

575 (Shao, 2018). In this study, the Monte Carlo method is chosen to simulate and
576 generate a stochastic earthquake catalog. In order to study the impact of major
577 earthquakes on seismic slopes, the truncated Rutenberg-Richter model is
578 employed as the seismic recurrence model, as shown in the following equation:

579

$$lg N(M_w) = 3.86 - 0.83M_w \quad (4.0 \leq M_w \leq 8.0) \quad (24)$$

580

581 A total of 1,732,809 earthquakes with a magnitude $M_w \geq 4.0$ were
582 generated through simulations of earthquake records with a recurrence period
583 of 100 years and 50000 occurrences by using the Monte Carlo method by
584 introducing either isotropy or anisotropic models of IMs proposed in this study.

585 **4.1 XGB-permanent slope displacement prediction model**

586 Following the selection criteria of critical acceleration employed by Liu et al.
587 (2017) and Li et al. (2019), two critical yield accelerations (a_c), i.e., 0.02g and
588 0.1g, are adopted in the present study. These values reflect the decreasing
589 susceptibility of seismic slopes.

590 The machine learning framework based on multiple ground motion
591 parameters for predicting permanent landslide displacement (referred to as the
592 XGB model), which was proposed by Wang et al. (2020) is adopted in this
593 study. This model demonstrates strong generalization abilities in displacement

594 prediction and, by optimizing hyperparameters, mitigates the risk of overfitting.
595 The data-driven Newmark displacement prediction model developed in this
596 approach better adheres to sufficiency and efficiency standards. In comparison
597 to traditional empirical models, the generated standard deviation is significantly
598 smaller. Additionally, the application of the model in probabilistic seismic slope
599 displacement hazard analysis is also demonstrated. In order to better apply the
600 XGB model to practical use, the fitting of the residuals is shown as:

601

$$\sigma_{lnD} = \begin{cases} 0.798 & D_{pred} \leq 0.003cm \\ -0.147 \log_{10}(D_{pred}) + 0.427 & 0.003 \leq D_{pred} \leq 20cm \\ 0.235 & D_{pred} > 20cm \end{cases}$$

603 (25)

604 Where σ_{lnD} is the standard deviation; D_{pred} is the predicted displacement.
605 In order to evaluate the effects of anisotropic spatial cross-correlations of
606 vector-IMs on the regional hazard assessment of seismic slopes, four
607 conditions have been analyzed, and those are the isotropic spatial
608 cross-correlation model (Cheng et al., 2020), the anisotropic spatial
609 cross-correlation model with four anisotropy directions, and without
610 considering spatial cross-correlations of IMs (Not relevant).

611 **4.2 Full probabilistic seismic landslide hazard analysis**

612 The XGB permanent displacement prediction model, which is a vector model,

613 require input parameters consist of PGA, PGV and I_a . It is necessary to consider
 614 the joint density function of scalar IMs, and the probability of exceedance can
 615 be given as:

$$616 \quad \lambda_D = \\ 617 \quad \int P(D \geq x | IM_1 = y, IM_2 = z, IM_3 = m) f_{IM_1, IM_2, IM_3}(y, z, m) dm dz dy \\ 618 \quad (26)$$

619 Where λ_D represents a mean annual rate of sliding displacement D exceeding
 620 that specified value; using a series of specified value (x), e.g., from 0 to 100cm
 621 at interval of 1cm, seismic hazard curves of permanent sliding displacements
 622 can be obtained. $P(D \geq x | IM_1 = y, IM_2 = z, IM_3 = m)$ indicates the
 623 probability of sliding displacement larger than a given value x when $IM_1=y$,
 624 $IM_2 = z$ and $IM_3 = m$; $f_{IM_1, IM_2, IM_3}(y, z, m)$ is the probabilistic density
 625 function of $IM_1=y$, $IM_2=z$ and $IM_3=m$.

626 In addition, the annual exceedance rate calculation for the joint seismic
 627 slope-site permanent displacement is (Akkar and Cheng, 2016):

$$628 \quad \lambda_D = \\ 629 \quad \frac{\text{all sites } D > x \text{ events}}{\text{total number of events that simulate all sites} \times \text{statistical period}} \\ 630 \quad (27)$$

631 Different annual exceedance rates correspond to different values of slope
 632 permanent displacement, representing various levels of hazard. Therefore, it is

633 possible to assess the hazard based on the calculated permanent
634 displacement values according to the specific slope.

635 The Monte Carlo simulation for the Equation 26 is employed to study the
636 regional seismic hazard assessment of slopes that subjected to different
637 critical yield acceleration (a_c), site classification, and rupture distance.

638 **4.3 Results and discussions**

639 Assessing seismic risk and hazard at a regional scale differs from evaluating
640 an individual site (e.g., Jeon and O'Rourke, 2005; Wang and Takada, 2005). The
641 joint hazard is of importance to be addressed, whilst the single hazard for an
642 individual site is negligible (Du and Ning, 2020). Hence, the joint seismic hazard
643 curves for Site 1, Site 2 and Site 3 are evaluated through the annual exceedance
644 rate calculation given in Equation 27 for different site classes. The results are
645 plotted in Fig.10, illustrating the mean annual exceedance rate of the slope
646 permanent displacements for two critical accelerations ($a_c=0.02g$ and $0.1g$),
647 considering the isotropy and anisotropy of the cross-correlations of IMs. The
648 hazard curves for isotropy are computed using spatial cross-correlation model
649 proposed by Cheng et al. (2020), and those for anisotropy are computed based
650 on the model proposed in this study.

651 As shown in Fig. 10, the solid line indicates the results of isotropy, the
652 dashed line represents the results of anisotropy, and the dot-dashed line

653 represents the condition without considering spatial cross-correlations of IMs
654 (Not relevant). It is evident that ignoring the spatial cross-correlations of IMs
655 would underestimate the hazard of the slope permanent displacement. As soil
656 conditions soften, as seen in Site Class D, the divergence between hazard
657 displacement estimates from isotropic and anisotropic spatial correlations
658 becomes more pronounced, especially at lower mean annual exceedance rates
659 and $a_c=0.1$. These results highlight the importance of accounting for the
660 anisotropic characteristics of intensity measures when analyzing soft soils.

661 **5 Conclusion**

662 Although anisotropy of spatial cross-correlations of IMs has long been
663 identified, only a few IMs correlation models considering anisotropy have been
664 developed. This study proposed the anisotropic spatial cross-correlation
665 models for 16 common IMs, including $V_{Elr}(T)$ (the spectral ordinates at 0.05s,
666 0.2, 0.5s, 1s and 2s), $SA(T)$ (the spectral ordinates at 0.05s, 0.2, 0.5s, 1s and
667 2s), PGA, PGV, I_a , CAV, D_{s5-75} , and T_m . The model for four anisotropy directions
668 (0° , 45° , 90° and 135°) inclined to the fault was developed. In total, 2942
669 ground-motion records selected from 10 earthquake events were used to
670 compute the empirical semivariograms for the within-event residuals of the
671 selected 16 IMs. The commonly used LMC function was employed to construct
672 permissible spatial correlation models. It was observed that for 16 IMs, the

673 developed anisotropic spatial cross-correlation models would fit the empirical
674 semivariograms and cross-semivariograms reasonably well.

675 The proposed anisotropic spatial cross-correlation model of IMs was
676 applied to regional seismic landslide hazard assessment. Results show that at
677 lower hazard levels, the annual exceedance rate curves for isotropic and
678 anisotropic models align closely. However, anisotropic effects become more
679 significant for soft soils as the annual exceedance rate decreases, while they
680 are negligible for slopes with harder site classes and higher critical
681 accelerations. Therefore, the anisotropy of IMs cannot be ignored in regional
682 seismic landslide hazard analysis, particularly for soft soils and lower critical
683 accelerations.

684

685 **Declaration of competing interest**

686 No potential conflict of interest was reported by the authors.

687 **Data availability**

688 The data that support the findings of this study are available from the
689 corresponding author upon reasonable request.

690 **Acknowledgements**

691 The authors sincerely thank the anonymous reviewers and the editor for their

692 valuable comments and suggestions, which have greatly improved the quality
693 of this work. We acknowledge the financial support from the National Natural
694 Science Foundation of China Grant (Nos. 52278413, 42011530170, 52278522;
695 52361135804), China Postdoctoral Science Foundation (Grant No.
696 2021M702718).

697 **Reference**

698 Abrahamson N., J. F. Schneider and J. C. Stepp. 1991. "Spatial coherency of shear waves from
699 the Lotung, taiwan large-scale seismic test" *Structural Safety* 10 (1): 145-162.
700 [https://doi.org/10.1016/0167-4730\(91\)90011-W](https://doi.org/10.1016/0167-4730(91)90011-W).

701 Abrahamson N. A. and R. R. Youngs. 1992. "A stable algorithm for regression analyses using
702 the random effects model" *Bulletin of the seismological society of America* 82 (1): 505-510.
703 <https://doi.org/10.1785/BSSA0820010505>.

704 Akkar S. and Y. Cheng. 2016. "Application of a Monte-Carlo simulation approach for the
705 probabilistic assessment of seismic hazard for geographically distributed portfolio"
706 *Earthquake Engineering&Structural Dynamics* 45 (4): 525-541.
707 <https://doi.org/10.1002/eqe.2667>.

708 Abbasnejadfar M., M. Bastami and A. Fallah. 2020. "Investigation of anisotropic spatial
709 correlations of intra-event residuals of multiple earthquake intensity measures using
710 latent dimensions method" *Geophysical Journal International* 222 (1): 1449-1469.
711 <https://doi.org/10.1093/gji/ggaa255>.

712 Abbasnejadfar M., M. Bastami and A. Fallah. 2021a. "Investigating the spatial correlations in
713 univariate random fields of peak ground velocity and peak ground displacement
714 considering anisotropy" *Geoenvironmental Disasters* 8 (1): 24.
715 <https://doi.org/10.1186/s40677-021-00196-w>.

716 Abbasnejadfar M., M. Bastami, A. Fallah and A. Garakaninezhad. 2021b. "Analyzing the effect
717 of anisotropic spatial correlations of earthquake intensity measures on the result of
718 seismic risk and resilience assessment of the portfolio of buildings and infrastructure
719 systems" *Bulletin of Earthquake Engineering* 19 (14): 5791-5817.
720 <https://doi.org/10.1007/s10518-021-01203-z>.

721 Boore D. M., J. F. Gibbs, W. B. Joyner, J. C. Tinsley and D. J. Ponti. 2003. "Estimated Ground
722 Motion From the 1994 Northridge, California, Earthquake at the Site of the Interstate 10
723 and La Cienega Boulevard Bridge Collapse, West Los Angeles, California" *Bulletin of the*
724 *seismological society of America* 93 (6): 2737-2751. <https://doi.org/10.1785/0120020197>.

725 Bradley, B. A. 2011. Correlation of significant duration with amplitude and cumulative intensity

726 measures and its use in ground motion selection. *Journal of Earthquake Engineering* 15(6):
727 809-832. <https://doi.org/10.1080/13632469.2011.557140>.

728 Bowman A. W. and R. M. Crujeiras. 2013. "Inference for variograms" *Computational
729 Statistics&Data Analysis* 66 19-31. <https://doi.org/10.1016/j.csda.2013.02.027>.

730 Cressie N. 1993. "Statistics for spatial data: Wiley series in probability and statistics.". .

731 Campbell K. W. and Y. Bozorgnia. 2014. "NGA-West2 Ground Motion Model for the Average
732 Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response
733 Spectra" *Earthquake Spectra* 30 (3): 1087-1115. <https://doi.org/10.1193/062913EQS175M>.

734 Cheng Y., C. L. Ning and W. Du. 2020. "Spatial Cross-Correlation Models for Absolute and
735 Relative Spectral Input Energy Parameters Based on Geostatistical Tools" *Bulletin of the
736 seismological society of America* 110 (6): 2728-2742.
737 <https://doi.org/10.1785/0120200142>.

738 Cheng Y., J. Wang and Y. He. 2023. "Prediction Models of Newmark Sliding Displacement of
739 Slopes Using Deep Neural Network and Mixed-effect Regression" *Computers and
740 geotechnics* 156 105264.
741 <https://doi.org/https://doi.org/10.1016/j.compgeo.2023.105264>.

742 Du W. and G. Wang. 2013. "Intra-Event Spatial Correlations for Cumulative Absolute Velocity,
743 Arias Intensity, and Spectral Accelerations Based on Regional Site Conditions" *Bulletin of
744 the seismological society of America* 103 (2A): 1117-1129.
745 <https://doi.org/10.1785/0120120185>.

746 Du W. and C.-L. Ning. 2020. "Modeling spatial cross-correlation of multiple ground motion
747 intensity measures (SAs, PGA, PGV, Ia, CAV, and significant durations) based on principal
748 component and geostatistical analyses" *Earthquake Spectra* 37 (1): 486-504.
749 <https://doi.org/10.1177/8755293020952442>.

750 Esposito S. and I. Iervolino. 2011. "PGA and PGV Spatial Correlation Models Based on European
751 Multievent Datasets" *Bulletin of the seismological society of America* 101 (5): 2532-2541.
752 <https://doi.org/10.1785/0120110117>.

753 Foulser-Piggott R. and P. J. Stafford. 2012. "A predictive model for Arias intensity at multiple
754 sites and consideration of spatial correlations" *Earthquake Engineering&Structural Dynamics*
755 41 (3): 431-451. <https://doi.org/10.1002/eqe.1137>.

756 Goulard, M. and M. Voltz. 1992. Linear coregionalization model: tools for estimation and choice
757 of cross-variogram matrix. *Mathematical Geology*, 24: 269-286.
758 <https://doi.org/10.1007/BF00893750>.

759 Goovaerts P. 1997. *Geostatistics for Natural Resources Evaluation*: Oxford University Press .
760 10.1093/oso/9780195115383.001.0001.

761 Goda K. and H. P. Hong. 2008. "Spatial Correlation of Peak Ground Motions and Response
762 Spectra" *Bulletin of the seismological society of America* 98 (1): 354-365.
763 <https://doi.org/10.1785/0120070078>.

764 Guo A.-N., Z.-J. Guo, J. Z, C.-C. Z and Y.-C. Z. 2013. "Research on the effect of seismogenic
765 structure with complex spatial relationship on earthquake mechanism with the Wenchuan
766 earthquake as an example" *China Earthquake Engineering Journal* 35 (01): 196-202.

767 <https://doi.org/10.3969/j.issn.1000-0844.2013.01.0196>. (In Chinese).

768 Genton M. G. and W. Kleiber. 2015. "Cross-Covariance Functions for Multivariate Geostatistics"
769 *Statistical Science* 30 (2): 147-163. <https://doi.org/10.1214/14-STS487>.

770 Garakaninezhad A. and M. Bastami. 2017. "A Novel Spatial Correlation Model Based on
771 Anisotropy of Earthquake Ground-Motion Intensity" *Bulletin of the seismological society of*
772 *America* 107 (6): 2809-2820. <https://doi.org/10.1785/0120160367>.

773 Garakaninezhad A. and M. Bastami. 2019. "Intra-event spatial correlation model for the vertical
774 component of response spectral accelerations" *Journal of Seismology* 23 (4): 853-867.
775 <https://doi.org/10.1007/s10950-019-09838-x>.

776 Journel A. G. and C. J. Huijbregts. 1976. *Mining geostatistics*. United Kingdom.

777 Joyner W. B. and D. M. Boore. 1993. "Methods for regression analysis of strong-motion data"
778 *Bulletin of the seismological society of America* 83 (2): 469-487.
779 <https://doi.org/10.1785/BSSA0830020469>.

780 Jeon S.-S. and T. D. O'Rourke. 2005. "Northridge Earthquake Effects on Pipelines and
781 Residential Buildings" *Bulletin of the seismological society of America* 95 (1): 294-318.
782 <https://doi.org/10.1785/0120040020>.

783 Jayaram N. and J. W. Baker. 2008. "Statistical Tests of the Joint Distribution of Spectral
784 Acceleration Values" *Bulletin of the seismological society of America* 98 (5): 2231-2243.
785 <https://doi.org/10.1785/0120070208>.

786 Jayaram N. and J. W. Baker. 2009. "Correlation model for spatially distributed ground-motion
787 intensities" *Earthquake Engineering&Structural Dynamics* 38 (15): 1687-1708.
788 <https://doi.org/10.1002/eqe.922>.

789 Liu J.-m., T. Wang, J.-s. Shi and Z.-t. Li. 2017. "Emergency rapid assessment of landslides
790 induced by the JIUZHAIGOU MS 7.0 earthquake, Sichuan, China" *Journal of Geomechanics*
791 23 (5): 639-645. (In Chinese).

792 Li X., M. Gao and W. Xu. 2019. "Probabilistic seismic slope displacement hazard analysis based
793 on Newmark displacement model: Take the area of Tianshui, Gansu Province, China as
794 an example" *Acta Seismologica Sinica* 41 (6): 795-807.
795 <https://doi.org/10.11939/jass.20180075>. (In Chinese).

796 Sokolov V., F. Wenzel, W.-Y. Jean and K.-L. Wen. 2010. "Uncertainty and Spatial Correlation of
797 Earthquake Ground Motion in Taiwan" *Terrestrial, Atmospheric and Oceanic Sciences* 21
798 905. [https://doi.org/10.3319/TAO.2010.05.03.01\(T\)](https://doi.org/10.3319/TAO.2010.05.03.01(T)).

799 Sokolov V. and F. Wenzel. 2013. "Further analysis of the influence of site conditions and
800 earthquake magnitude on ground-motion within-earthquake correlation: analysis of PGA
801 and PGV data from the K-NET and the KiK-net (Japan) networks" *Bulletin of Earthquake*
802 *Engineering* 11 (6): 1909-1926. <https://doi.org/10.1007/s10518-013-9493-9>.

803 Seyhan E. and J. P. Stewart. 2014. "Semi-Empirical Nonlinear Site Amplification from
804 NGA-West2 Data and Simulations" *Earthquake Spectra* 30 (3): 1241-1256.
805 <https://doi.org/10.1193/063013EQS181M>.

806 Shao X.-Y. 2018 "Study on Monte Carlo Simulation Based Probabilistic Seismic Hazard
807 Analysis" Master's thesis, Institute of Earthquake Science China Earthquake

808 Administration.
809 https://kns.cnki.net/kcms2/article/abstract?v=IILC1c-FiAFqudLeCTL9xL5cdv-G9N6wxRLe4gUsuGP253yG0I5uHMfOTD2ro4fzhYGqj4OEihUa_acEqPuElSS6bDIZVbiPTNpgvFgAJDE3G0nh3UKwjwAA2eDjMMW2XFejbL2SyllbyNuwTEY0w==&uniplatform=NZKPT&language=CHS.

813 Schiappapietra E., S. Stripajová, P. Pažák, J. Douglas and G. Trendafiloski. 2022. "Exploring the
814 impact of spatial correlations of earthquake ground motions in the catastrophe modelling
815 process: a case study for Italy" *Bulletin of Earthquake Engineering* 20 (11): 5747-5773.

816 Wang M. and T. Takada. 2005. "Macrospatial Correlation Model of Seismic Ground Motions"
817 *Earthquake Spectra* 21 (4): 1137-1156. <https://doi.org/10.1193/1.2083887>.

818 Wang G. and W. Du. 2013. "Spatial Cross-Correlation Models for Vector Intensity Measures
819 (PGA, Ia, PGV, and SAs) Considering Regional Site Conditions" *Bulletin of the seismological
820 society of America* 103 (6): 3189-3204. <https://doi.org/10.1785/0120130061>.

821 Wang J.-F. 2022 "Probabilistic seismic landslide hazard analysis based on deep neural
822 network and mixed-effects prediction model" Master's thesis, Southwest Jiaotong
823 University. <https://link.cnki.net/doi/10.27414/d.cnki.gxnju.2022.001799>.

824 Wang M.-X., D. Huang, G. Wang and D.-Q. Li. 2020. "SS-XGBoost: A Machine Learning
825 Framework for Predicting Newmark Sliding Displacements of Slopes" *Journal of
826 Geotechnical and Geoenvironmental Engineering* 146 (9): 04020074.
827 [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002297](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002297).

828 Yuan R., Y. Qiu and Y. Cheng. 2024. "A Framework of Probabilistic Seismic Risk Analysis of
829 Urban Shallow-Buried Tunnels Subjected to Active Fault Dislocations" *Journal of
830 Earthquake Engineering* 28 (5): 1312-1330.
831 <https://doi.org/10.1080/13632469.2023.2240431>.

832 Baker J. W. and B. A. Bradley. 2017. "Intensity measure correlations observed in the
833 NGA-West2 database, and dependence of correlations on rupture and site parameters."
834 *Earthquake Spectra*, 33(1): 145-156. <https://doi.org/10.1193/060716eqs095m>.

835 Huang C., K. Tarbali and C. Galasso. 2020. "Correlation properties of integral ground-motion
836 intensity measures from Italian strong-motion records" *Earthquake Engineering&Structural
837 Dynamics* 49(15): 1581-1598. <https://doi.org/10.1002/eqe.3318>.

838

839

840 Appendix A

841 In the study, the negative empirical values were observed for semi-variograms
842 and correlations between non-spectral Intensity Measures (IMs), such as D_{s5-75}

843 and T_m , and some spectral IMs, such as spectral acceleration (SA) and spectral
844 input energy (V_{Elr}). These issues are examined and analyzed in this appendix.

845 For a single variable m , the empirical semivariogram γ_{mm} is calculated as
846 follows:

847
$$\gamma_{mm}(h) = \frac{1}{2} \frac{1}{|N(h)|} \sum_{i=1}^{|N(h)|} [(Z_m(u_i) - Z_m(u_i + h))^2] \quad (A1)$$

848 As shown in the Equation (A1), the γ_{mm} cannot be negative. However, for
849 the multiple variables, the empirical cross-semivariogram is calculated as
850 follows:

851
$$\gamma_{mw}(h) =$$

852
$$\frac{1}{2} \frac{1}{|N(h)|} \sum_{i=1}^{|N(h)|} [(Z_m(u_i) - Z_m(u_i + h))(Z_w(u_i) - Z_w(u_i + h))] \quad (A2)$$

853 As shown in the Equation (A2), the γ_{mw} could be negative. If the
854 differences between the two variables exhibit opposite trends in space (i.e.,
855 when one variable increases, the other decreases), the product can be negative,
856 leading to a negative $\gamma_{mw}(h)$. In this study, this situation is likely to occur when
857 a negative empirical cross-semivariogram was observed between some IMs,
858 such as D_{s5-75} and SA (0.2s). It is different from the ordinary semivariogram,
859 which is based on the squared differences of a single variable and is always
860 non-negative.

861 This study employs a spatial cross-correlation model. The spatial
862 cross-correlation coefficient is calculated through the following general

863 equations:

864
$$C_{mw}(h) = C_{mw}(0) - \gamma_{mw}(h) \quad (A3)$$

865
$$\lim_{h \rightarrow \infty} \gamma_{mw}(h) = C_{mw}(0) \quad (A4)$$

866
$$\rho_{mw}(h) = \frac{C_{mw}(0)}{\{C_{mm}(0) \times C_{ww}(0)\}^{1/2}} - \frac{\gamma_{mw}(h)}{\{C_{mm}(0) \times C_{ww}(0)\}^{1/2}} \quad (A5)$$

867 Equations (A3) and (A4) indicate that if $\gamma_{mw}(h)$ is positive, $C_{mw}(0)$ must
868 also be positive, with $C_{mw}(0) \geq \gamma_{mw}(h)$. Under these conditions, a negative
869 correlation coefficient $\rho_{mw}(h)$, as calculated using Equation (A5), would be
870 impossible. However, if $\gamma_{mw}(h)$ is negative, $C_{mw}(0)$ would also be negative.

871 In this case, both terms in the right side of Equation (A5) are negative, and the
872 absolute value of $C_{mw}(0)$ exceeds that of $\gamma_{mw}(h)$, resulting in a negative
873 value for $\rho_{mw}(h)$.

874 Additionally, to examine the above argument, we take the Chi-Chi
875 earthquake as an example where the parameters D_{s575} and PGA are selected at
876 a 90° anisotropic direction.

877
$$C_{mw}(0) = -0.43, C_{mm}(0) = 0.72, C_{ww}(0) = 0.72$$

878
$$h=5\text{km}: \gamma_{mw}(5) = -0.06$$

879
$$C_{mw}(5) = C_{mw}(0) - \gamma_{mw}(5) = -0.37$$

880
$$\rho_{mw}(5) = \frac{C_{mw}(0)}{\{C_{mm}(0) \times C_{ww}(0)\}^{1/2}} - \frac{\gamma_{mw}(5)}{\{C_{mm}(0) \times C_{ww}(0)\}^{1/2}} = -0.51$$

881 As stated above, the signs (positive or negative) of the semivariograms
882 and correlations are interconnected. The negative semivariograms can lead to

883 negative correlations between IMs. However, there are distinctions between
884 theoretical and empirical semivariogram data. Theoretically, negative
885 semivariograms are not acceptable. However, the empirical semivariograms
886 may yield negative values, possibly due to data randomness and other physical
887 processes that are not fully captured.

888 The negative correlation between non-spectral IMs and spectral IMs was
889 also observed in previous studies (Bradley 2011; Baker and Bradley, 2017;
890 Huang et al., 2020). However, the exact physical and engineering mechanisms
891 behind the negative correlation are still not fully understood. Certain
892 explanations are available. For instance, Huang et al. (2020) attribute the
893 negative correlation between D_{5-95} and the short-period spectral accelerations
894 to the fact that ground motions with longer-than-expected durations often
895 result in seismic energy being distributed over an extended timeframe. As a
896 result, the likelihood of generating significant peak responses reduces in a
897 damped oscillator.