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Abstract

Although anisotropy in spatial correlations of intensity measures (IMs) has been

acknowledged, few models specifically address the anisotropy, and consider

cross-correlations of IMs. This study introduces anisotropic spatial cross-correlation models

for 16 IMs: PGA, PGV, a, CAV, s5-75, m, spectral , and SA at periods of 0.05s, 0.2, 0.5s, 1s

and 2s. The models can predict for four anisotropy directions, which are angled (i.e., 0°, 45°,

90°, and 135°) relative to the fault direction. Finally, the proposed model was utilized for the

regional seismic landslide hazard assessment to show a practical application.

Keywords: anisotropy; spatial cross-correlations; linear model of coregionalization; intensity

measures
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1 Introduction

Assessing ground-motion intensity measures (IMs) across a geographically

extensive area is crucial for evaluating the earthquake risk associated with

spatially distributed assets of both structures and geotechnics over a spatially

distributed region (Garakaninezhad and Bastami, 2017). Numerous

ground-motion prediction equations (GMPEs) have been formulated to predict

IMs based on factors like earthquake magnitude, source-to-site distance, and

site-specific geological conditions. These predictions encompass parameters

like peak ground acceleration (PGA), peak ground velocity (PGV), and spectral

acceleration (SA). However, these GMPEs often overlook the spatial

relationships of ground-motion IMs across different sites within the same

earthquake event. IMs at multiple locations during the same earthquake are

spatially correlated (Schiappapietra et al., 2022), this relationship is called the

spatial correlation of IMs, while the spatial cross-correlation delves into the

relationships between different IMs within a given spatial domain. Studies (e.g.,

Abbasnejadfard et al., 2021b; Garakaninezhad and Bastami, 2019) have

indicated that ignoring the spatial correlation of IMs can significantly skew

seismic loss estimates of spatially distributed systems or portfolios. Therefore,

it is essential to account for these spatial correlations to ensure a more

accurate and comprehensive risk assessment.
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Modeling the spatial correlation between different sites is essential for a

precise evaluation of seismic risk on a regional scale. Over the past few years, a

variety of correlation models have been introduced to understand the variability

in IMs. These investigations have revealed that certain parameters, which are

not randomly distributed, influence the correlation of PGA residuals. Such

parameters include the size of the earthquake magnitude and the depth of

sediment layers (e.g., Boore et al., 2003; Goda and Hong, 2008; Jayaram and

Baker, 2009; Sokolov and Wenzel, 2013; Wang and Takada, 2005).

The configuration of the correlation model has a significant influence on

the generation of simulations for areas with the cross-correlation of

ground-motion IMs, such as the seismic activity within a particular region. It

should be noted that the majority of the spatial correlation models for IMs are

normally based on the assumption of isotropy (e.g., Esposito and Iervolino,

2011; Wang and Du, 2013). The assumptions of isotropy and stationarity are

considered as the basis for studying spatial correlation with respect to the

1994 Northridge and the 1999 Chi–Chi earthquakes (Jayaram and Baker,

2009). Using the directional semivariograms, it has been concluded that the

assumption of isotropy is reasonable for both earthquakes, i.e., Northridge and

Chi-Chi earthquakes (Jayaram and Baker, 2009). The spatial correlation of SAs,

cumulative absolute velocity (CAV), and Arias intensity ( a) have been
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investigated in Du and Wang (2013). However, Garakaninezhad and Bastami

(2017) used statistical tests introduced by Bowman and Crujeiras (2013) to

examine the isotropic assumptions of PGA and SA residuals within events and

concluded that the isotropic assumption is generally invalid. Furthermore, they

proposed spatial correlation models for the anisotropy of PGA and SA residuals

within events. In addition, Abbasnejadfard et al. (2021a) conducted statistical

tests to investigate the isotropic assumptions of PGV and peak ground

displacement (PGD) residuals within events and found that the residuals of

PGV and PGD should be considered as realizations of an anisotropic random

field, which is related to the local site-specific anisotropy.

Nevertheless, there are a few concerns that need to be addressed,

especially when considering the spatial cross-correlation of IMs under isotropic

and anisotropic conditions. Most current studies focus on the spatial

correlation of IMs while neglecting the spatial cross-correlation between IMs. A

few notable empirical models have confirmed the importance of considering

the anisotropic spatial cross-correlation of multiple earthquake IMs, e.g., the

model proposed by Abbasnejadfard et al. (2020); they only included a few IMs

that are suitable for structures, i.e., PGA, PGV, PGD and SAs, which are suitable

for seismic risk assessment of portfolios of buildings or structures; however,

these IMs are insufficient, especially for the hazard assessment of geotechnical
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problems, e.g., earthquake-induced landslides from a wide range of slope

conditions in nature. Although the effects of anisotropic spatial correlations of

IMs have been analyzed for seismic hazard assessment of the portfolio of

buildings and infrastructure systems (Abbasnejadfard et al., 2021b), the effects

of anisotropic cross-correlations of IMs have not been fully addressed on the

hazard assessment in geotechnical problems. However, such effects are

crucial to evaluating the risk/loss of spatially distributed infrastructure systems

induced by seismic slope failures or landslides, since it is commonly

acknowledged that soils are non-homogeneous, demonstrating characteristics

of anisotropy and space variety. Hence, the seismic responses of soils

subjected to seismic loading are complicated and various (Cheng et al., 2020;

Du and Wang, 2013).

Hence, this study intends to propose anisotropic spatial

cross-correlation models for 16 vector-IMs, including the relative input energy

equivalent velocity ( ( )) and SA ordinates at periods ( ) of 0.05s, 0.2, 0.5s,

1s and 2s, PGA, PGV, a, CAV, significant durations ( s5-75), and the mean period

( ), which are suitable for further seismic risk assessment of spatially

distributed assets (both structural and geotechnical conditions), based on the

proper ground-motion records that are selected from NGA-West2. Furthermore,

as a case study, the influence of the anisotropic spatial cross-correlations of
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the IMs on the fully probabilistic seismic landslide hazard assessment of

slopes is studied under different conditions, i.e., critical yield accelerations ( c),

permanent displacement models, site conditions, and rupture distances. This

method provides a theoretical benchmark for regional seismic hazard and risk

assessment of the portfolio of buildings/slopes considering the anisotropic

cross-correlations of IMs.

2 Modelling anisotropic spatial cross-correlations based on

geostatistical tools

Evaluation of the univariate spatial correlation of within-event residuals of IMs

needs to consider the recorded residuals as the realization of a function that

takes random values in spatial locations u. The function of the random variable

is known as random fields in statistics, defined as:

𝑍𝑍(u):u ∈ R2

(1)

Where (u) is the random variable at position u.

Geostatistical analysis suggested that the spatial correlation of a

random variable is usually quantified by semivariograms (Journel and

Huijbregts, 1976). The semivariogram 𝛾𝛾( )h is a plot of semivariance versus
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separation distance, measuring the average dissimilarity between data

separated by a vector h (Goovaerts, 1997). The semivariogram function can be

given as (Goovaerts, 1997):

𝛾𝛾( )h =

1
2 𝑉𝑉𝑎𝑎𝑟𝑟 𝑍𝑍( )u + h − 𝑍𝑍( )u = 1

2 𝐸𝐸[(𝑍𝑍( )u + h − 𝑍𝑍( )u )2]

(2)

Where 𝑉𝑉𝑎𝑎𝑟𝑟 [.] denotes variance; h is lag distance; 𝑍𝑍(u) and 𝑍𝑍(u + h) are

variables of at locations with a lag distance of h.

For a multivariate random field, consisting of random variables ( 𝑍𝑍( )u =

[𝑍𝑍1( )u , … ,𝑍𝑍𝑘𝑘( )u ]':u ∈ 𝑅𝑅2 ), which is assumed to be isotropic and

second-order stationary, the empirical estimator of the semivariogram can be

defined as (Goovaerts, 1997):

𝛾𝛾𝑚𝑚𝑤𝑤( )h =

1
2

1
𝑁𝑁( )ℎ 𝑖𝑖 = 1

𝑁𝑁( )ℎ 𝑍𝑍𝑚𝑚 u𝑖𝑖 − 𝑍𝑍𝑚𝑚 u𝑖𝑖 + h 𝑍𝑍𝑤𝑤 u𝑖𝑖 − 𝑍𝑍𝑤𝑤 u𝑖𝑖 + h

(3)

Where 𝑍𝑍𝑚𝑚 u𝑖𝑖 and 𝑍𝑍𝑚𝑚 u𝑖𝑖 + h denote the th data pair in the h-distance bin

for random variable m. 𝑁𝑁( )h is the dimension of the set of all distinct

points which fall in the bin of the distance h.

In addition, the cross-covariance function 𝐶𝐶𝑚𝑚𝑤𝑤( )h , measuring the

similarity of data of the multivariate random field with a lag distance of h is
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defined as (Cressie, 1993):

𝐶𝐶𝑚𝑚𝑤𝑤( )h =

1
𝑁𝑁( )h 𝑖𝑖 = 1

𝑁𝑁( )h 𝑍𝑍𝑚𝑚 u𝑖𝑖 − 𝑍𝑍𝑚𝑚 𝑍𝑍𝑤𝑤 u𝑖𝑖 − 𝑍𝑍𝑤𝑤

(4)

Where 𝑍𝑍𝑘𝑘 =
1
𝑛𝑛 𝑖𝑖 = 1

𝑛𝑛 𝑍𝑍𝑘𝑘 u𝑖𝑖 is the sample mean value of the variable ;

𝑖𝑖( )= 1, … ,𝑛𝑛 is the position in the lag distance bin.

By combining Equations 3 and 4,

lim
h→∞

𝛾𝛾𝑚𝑚𝑤𝑤( )h = 𝐶𝐶𝑜𝑜𝑣𝑣[𝑍𝑍𝑚𝑚 u𝑖𝑖 ,𝑍𝑍𝑤𝑤 u𝑖𝑖 ] = 𝐶𝐶𝑚𝑚𝑤𝑤( )0 (Goovaerts, 1997), in which

[.] denotes covariance.

The relation between cross-covariance and cross-semivariogram can be

obtained as (Goovaerts, 1997):

𝐶𝐶𝑚𝑚𝑤𝑤( )h = 𝐶𝐶𝑚𝑚𝑤𝑤( )0 − 𝛾𝛾𝑚𝑚𝑤𝑤( )h =

𝐶𝐶𝑚𝑚𝑤𝑤( )0 1 −
𝛾𝛾𝑚𝑚𝑤𝑤( )h

𝐶𝐶𝑚𝑚𝑤𝑤( )0
(5)

As indicated by Equation 5， lim
ℎ→0

𝛾𝛾𝑚𝑚𝑤𝑤( )h = 0.

The spatial correlation coefficient ρ𝑚𝑚𝑤𝑤( )h between m and w at lag

distance can be defined as (Goovaerts, 1997):

𝜌𝜌𝑚𝑚𝑤𝑤( )h =
𝐶𝐶𝑚𝑚𝑤𝑤( )h

𝐶𝐶𝑚𝑚𝑚𝑚( )ℎ ×𝐶𝐶𝑤𝑤𝑤𝑤( )ℎ 1/2 =

𝐶𝐶𝑚𝑚𝑤𝑤( )0

𝐶𝐶𝑚𝑚𝑚𝑚( )0 × 𝐶𝐶𝑤𝑤𝑤𝑤( )0 1/2 −
𝛾𝛾𝑚𝑚𝑤𝑤( )h

𝐶𝐶𝑚𝑚𝑚𝑚( )0 ×𝐶𝐶𝑤𝑤𝑤𝑤( )0 1/2

(6)

It should be noted that if the cross-semivariogram and cross-covariance
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in Equation 6 are respectively substituted by Equation 4 and Equation 5, then

the spatial correlation coefficient is determined.

The first- and second-order moments (expectation and covariance) exist

and are invariant under spatial translation if the second-order stationary is

assumed. The semivariogram is independent of the position u, but it is only in

relation to the lag distance h The isotropy is assumed if the semivariogram of

a second-order stationary random field is irrespective of directions. Under the

assumption of isotropy, the cross-semivariogram and the cross-covariance

depend solely on the relative separation distance between positions, i.e., ℎ =

h .

The empirical semivariogram value is calculated based on the recorded

seismic data. By fitting a model to the empirical values, an effective

semivariogram function model can be obtained. It is worth noting that if the

model is a conditionally non-negative definite function, it is considered as an

effective semivariogram function (Cressie, 1993). Semivariogram analysis

provides a set of empirical values for discrete lag distances ℎ, and requires a

continuous function that must satisfy positive definiteness to fit these

empirical data for practical use. Notable models for fitting the empirical

semivariogram can be classified as: Exponential model, Gauss model and
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Spherical model (Wang and Du, 2013), and the comparisons of their fitting

performance are shown in Fig.1. It is demonstrated in Fig.1 that the exponential

fitting model shows a good performance. Hence, the exponential fitting model,

as shown in Equation 7, will be used in this study.

𝛾𝛾( )ℎ = 𝑎𝑎 1 − 𝑒𝑒𝑥𝑥 𝑝𝑝( )− 3ℎ/𝑏𝑏

(7)

Where is the sill of the semivariogram, representing the overall variance of the

empirical data ; is the practical range of semivariogram, representing the lag

distance at which 95% of the sill is reached.

Following Abbasnejadfard et al. (2020), for the specific direction, we

used the isotropic variogram (Jäckel., 2002) form to calculate the

semivariograms. Anisotropic characteristics are handled separately for each

direction (grouped into four directions in this study), utilizing an isotropic

variogram format that is based on data specific to that direction. This may have

limitations as the directional semivariograms may not be fully considered. A

possible solution can be to establish a holistic model encompassing all

directions using the latent dimensions method; however, this will complicate

the current study and will be considered in future work. Theoretically, the

semivariogram value should equal to 0 at zero separation distance, i.e., =0.

However, the semivariogram often demonstrates a nugget effect in practice.
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Hence, the exponential model for fitting semivariogram considering the nugget

effect can be given as (e.g., Cheng et al., 2020; Du and Pan, 2017):

𝛾𝛾( )ℎ =

0 ℎ = 0
𝐶𝐶0 + 𝑎𝑎 − 𝐶𝐶0 1 − 𝑒𝑒𝑥𝑥 𝑝𝑝( )− 3ℎ/𝑏𝑏 ℎ > 0

(8)

Where 0 denotes the nugget effect.

Since the variance of any linear combination of 𝑍𝑍 u𝑖𝑖 at a random position u𝑖𝑖

must be non-negative, the covariance function associated with the

semi-variogram must be positive definite. The exponential permissible model is

usually adopted in the earthquake engineering community for fitting the

empirical covariance values at discrete distance lags. In practice, the positive

definiteness can be ensured through the positive definite linear combination. It

is worth noting that not all combinations of the permissible basic models

introduced earlier bring in a permissible (i.e., positive definite) covariance

function. The easiest way to develop a permissible model lies in building a

random function first. In recent years, an advanced LMC method, which was

first proposed by Goovaerts (1997), is a commonly suggested statistical tool

for modelling effective multivariate semivariogram matrix of IMs. The LMC
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method employs a combination of short-range exponential function and

long-range exponential function, together with a term of nugget effect. A

nugget effect is incorporated into the LMC to improve the fitting performance

at small separation distances. The expression for the LMC semivariogram

model can be defined as:

Γ( )ℎ = B0 1 − 𝐼𝐼ℎ + B1 1 −

ex p − 3ℎ/𝑟𝑟1 + B2 1 − ex p − 3ℎ/𝑟𝑟2

(9)

Where the denotes lag distance with a unit of km; Γ( )ℎ is semivariogram

matrix for , 1 and 2 represent the short-range coefficient and long-range

coefficient; and B0 , B1 , B2 denote the average nugget effect, short-range,

and long-range coregionalization matrices for ten earthquake events; 𝐼𝐼ℎ is a

bivariate indicator (equal to 1 at = 0 or 0 otherwise).

The coregionalization matrices are established by minimizing the weighted

sum of squares (WSS) that represents the discrepancy between the predicted

and empirical semivariograms (Goulard and Voltz, 1992). WSS is evaluated as

in Equation 10.

WSS =

𝑘𝑘= 1
𝐾𝐾   𝑚𝑚 = 1

𝑛𝑛   𝑤𝑤=1
𝑛𝑛  𝑤𝑤 ℎ𝑘𝑘

𝛾𝛾𝑚𝑚𝑤𝑤 ℎ𝑘𝑘 − 𝛾𝛾𝑚𝑚𝑤𝑤 ℎ𝑘𝑘
2

𝜎𝜎𝑚𝑚𝜎𝜎𝑤𝑤

(10)
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In this context, 𝛾𝛾𝑚𝑚𝑤𝑤 ℎ𝑘𝑘 represents the empirical semivariogram, while

𝛾𝛾𝑚𝑚𝑤𝑤 ℎ𝑘𝑘 indicates the semivariogram predicted by the LMC model. The term

𝑤𝑤 ℎ𝑘𝑘 refers to the weight applied at the lag distance ℎ𝑘𝑘 , and 𝜎𝜎𝑚𝑚 signifies

the standard deviation of the random variable . For further details on the

algorithm, please refer to the work of Loth and Baker (2013).

As mentioned in Section 2.3, the Linear Model of Coregionalization (LMC)

ensures positive-definite semivariogram and covariance matrix functions, a

prerequisite for stochastic simulation of ground-motion fields (Goovaerts,

1997). However, LMC is typically applied to isotropic spatial fields. Anisotropy

is accounted for when the semivariogram of a second-order stationary random

field depends on both the direction and magnitude of the lag vector h. For a

multivariate random field with anisotropy, the lag vector incorporates both

magnitude and direction.

This study addresses anisotropic spatial correlations separately for each

direction using an isotropic semivariogram LMC model specific to that

direction. To ensure the resulting semivariogram, covariance, and correlation

matrices are positive-definite, a detailed approach is proposed in this section.

These positive-definite matrices make the method suitable for engineering

applications.
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A directional semivariogram is derived by calculating the semivariogram for

data pairs that lie within specific directional bands and at a set bin distance.

The study area is divided into different directional zones, where the azimuth of

the direction vector, angular tolerance, and bandwidth are illustrated in Fig.2.

These parameters can be employed to compute the directional semivariance,

subsequently enabling the calculation of directional covariance functions

(Cressie, 1993). For example, with respect to the target region as shown in

Fig.3, the semivariogram values corresponding to an anisotropy direction of 𝜃𝜃

and an angle tolerance of ∆/2 can be computed following the two steps: first,

chose a reference site A, and identify all sites that fall within the anisotropy

direction range of [𝜃𝜃 − ∆
2 ,𝜃𝜃 +

∆
2 ]. These sites are then organized based on

the bin distances relevant to the analysis. This process must be conducted for

every site in the dataset. By following the method described in Section 2.1, the

empirical semivariograms for the specified anisotropy direction can be

computed.

To ensure the covariance matrix for sampling spatially correlated IM residuals

with anisotropic characteristics is positive-definite, the following procedure is

used to construct the final matrix.
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1)Examine the empirical semivariogram figures for each anisotropic

direction; pre-select the short-range coefficient 1 and long-range

coefficient 2 for each anisotropy direction 𝜃𝜃 for Equation 11 according

to the guidelines of this study:

• 1: controls the rapid spatial variation over small distances; it is

selected such that the semivariogram reflects 10%–30% of the sill ( )

in the exponential fitting model (Equation 8) when 1 = = .

• 2: controls the gradual spatial variation over larger distances; it is

chosen such that the semivariogram reflects 70%–95% of sill ( ) in the

exponential fitting model (Equation 8) when with 2 = .

2)Using the dataset for each anisotropic direction 𝜃𝜃, which includes records

from the examined earthquake events, the pre-defined values of 1 and 2

are employed in a regression analysis to derive the coregionalization

matrices B0, B1, and B2 for each anisotropy direction 𝜃𝜃 for each

earthquake event. This is accomplished by minimizing the weighted sum

of squares (WSS) of the difference between the predicted and the

empirical semivariograms, as outlined in Equation 10. The average

coregionalization matrices B0, B1, and B2 for all earthquakes are

calculated and used as those for that specific anisotropy direction.

3)The general WSS for all empirical semivariograms from all earthquakes is
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documented, and various combinations of 1 and 2 are tested until a

relatively low WSS is achieved while adhering to the established criteria

for 1 and 2, as stated in Step 1). Ultimately, the values of B0, B1, B2, 1 and

2 for each anisotropy direction 𝜃𝜃 are determined.

4)The average values of B0, B1, and B2 across four isotropy directions are

obtained, respectively, while 1 and 2 values for the four directions remain.

5)The resulting covariance matrix for each anisotropic direction is obtained

through Equation 14 based on average B0, B1 and B2 obtained from Step

4), along with the 1 and 2 obtained from Step 3) for each anisotropic

direction.

6)If the elements in the resulting covariance matrix involve more than one

anisotropic direction, the element from the covariance matrix of that

direction is abstracted to construct the final covariance matrix.

In the end, the semivariogram matrix function for the anisotropy direction

at the lag distance is expressed as:

Γθ( )ℎ = B0 1 − 𝐼𝐼ℎ + B1 1 −

ex p − 3ℎ/𝑟𝑟1
𝜃𝜃 + B2 1 − ex p − 3ℎ/𝑟𝑟2

𝜃𝜃

(11)

Where 𝑟𝑟1
𝜃𝜃 and 𝑟𝑟2

𝜃𝜃 represent the determined short-range coefficient and

long-range coefficient for the anisotropy direction ; and B0 , B1 , B2 denote
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the average nugget effect, short-range, and long-range coregionalization

matrices regressed across the different directions; 𝐼𝐼ℎ is a bivariate indicator

(equal to 1 at = 0 or 0 otherwise).

It is important to note that if the coregionalization matrices B𝑙𝑙 (for =0, 1,

and 2) and are positive semidefinite, then the covariance matrix will also be

positive semidefinite throughout the entire random field (Goovaerts, 1997).

Although various anisotropic directions share the same B𝑙𝑙 but have distinct

short- and long-range coefficients, the linear combination of the

positive-semidefinite B𝑙𝑙, as indicated in Equation 14, ensures that the resulting

combined covariance matrix from the different anisotropic directions remains

positive-semidefinite.

Once the semivariogram matrix function Γθ( )ℎ is determined as described in

the above procedure, the covariance matrix Cθ( )ℎ for the direction ( ) can be

calculated as follows:

Cθ( )ℎ = Cθ( )0 − Γθ( )ℎ (12

)

Where Cθ( )0 can be expressed as:

Cθ( )0 = lim
ℎ→∞

Γ( )h = B0 + B1 + B2 (13
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)

The covariance matrix function Cθ( )ℎ

can be obtained through Equations 11 and 12, expressed as

Cθ( )ℎ = B0𝐼𝐼ℎ +

B1 𝑒𝑒𝑥𝑥p − 3ℎ/𝑟𝑟1
𝜃𝜃 + B2 𝑒𝑒𝑥𝑥p − 3ℎ/𝑟𝑟2

𝜃𝜃

(14)

Then combining the covariance matrix and the spatial correlation

coefficient as shown in Equation 6, the spatial cross-correlation matrix R ( ) for

the anisotropy direction can be determined as:

Rθ( )ℎ = 𝜌𝜌𝑖𝑖𝑗𝑗( )ℎ = P0𝐼𝐼ℎ +

P1 𝑒𝑒𝑥𝑥𝑝𝑝 − 3ℎ/𝑟𝑟1
𝜃𝜃 + P2 𝑒𝑒𝑥𝑥𝑝𝑝 − 3ℎ/𝑟𝑟2

𝜃𝜃

(15)

Where is the separation distance and P𝑙𝑙 = 𝜌𝜌𝑖𝑖𝑗𝑗
𝑙𝑙 ( )𝑙𝑙 = 0,1, and 2 is the

standardized coregionalization matrix:

𝜌𝜌𝑖𝑖𝑗𝑗
𝑙𝑙 =

𝑏𝑏𝑖𝑖𝑗𝑗𝑙𝑙

𝑏𝑏𝑖𝑖𝑖𝑖0 +𝑏𝑏𝑖𝑖𝑖𝑖1 +𝑏𝑏𝑖𝑖𝑖𝑖2 × 𝑏𝑏𝑗𝑗𝑗𝑗0 +𝑏𝑏𝑗𝑗𝑗𝑗1 +𝑏𝑏𝑗𝑗𝑗𝑗2
𝑙𝑙 = 0,1, 𝑎𝑎𝑛𝑛𝑑𝑑 2

(16)

Where 𝑏𝑏𝑖𝑖𝑗𝑗
𝑙𝑙 denotes the element in B𝑙𝑙.
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For a given earthquake event , the total covariance matrix C𝑒𝑒 for a set of

variables Z = 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 𝑇𝑇 is located at spatially distributed positions

denoted as E = Z u1 𝑇𝑇, … ,Z u𝑛𝑛 𝑇𝑇 𝑇𝑇. Hence, based on Equation 14, the total

covariance matrix C𝑒𝑒 can be given as shown in Equation 17 (Genton and

Kleiber, 2015; Wang and Du, 2013):

C𝑒𝑒 =

C𝜃𝜃11 u1,u1 ⋯ C𝜃𝜃1n u1,un
⋮ ⋱ ⋮

C𝜃𝜃n1 u𝑛𝑛,u1 ⋯ C𝜃𝜃nn u𝑛𝑛,u𝑛𝑛
(17)

The covariance matrix Ce has the dimensions of (𝑘𝑘 × 𝑛𝑛,𝑘𝑘 × 𝑛𝑛), making

the simulation of the correlated multivariate random variables at spatial

locations possible. ( 1 ; 1 ) is the anisotropy direction for the path

from the location u to u . The element of C𝜃𝜃ij(u𝑖𝑖,u𝑗𝑗), involving the variables,

is defined by C𝜃𝜃𝑖𝑖𝑗𝑗( )ℎ in Equation 14, where represents the separation

distance between the locations u𝑖𝑖 and u𝑗𝑗 . Similarly, the total correlation

matrix Re
, which has a dimension of (𝑘𝑘 × 𝑛𝑛,𝑘𝑘 × 𝑛𝑛) is expressed as:

R𝑒𝑒 =

R𝜃𝜃11 u1,u1 ⋯ R𝜃𝜃1n u1,u𝑛𝑛
⋮ ⋱ ⋮

R𝜃𝜃n1 u𝑛𝑛,u1 ⋯ R𝜃𝜃nn u𝑛𝑛,u𝑛𝑛
(18)

As noted by Genton and Kleiber (2015), the covariance matrix should be

non-negative definite matrix given arbitrary spatial positions u1, … u𝑖𝑖 and

arbitrary vector , i.e., a𝑇𝑇C𝑒𝑒a ≥ 0 . This section presents the proposed
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methodology, which uses LMC for each anisotropy direction while maintaining

B . By linearly combining semivariograms and covariances for multiple

anisotropy directions, it ensures that C𝑒𝑒 and R𝑒𝑒 remain non-negative

definite under various conditions (Goovaerts, 1997).

3 Anisotropic spatial cross-correlation models for the investigated IMs

Following Wang and Du (2013), three selection criteria are adopted to select

appropriate ground-motion records:1) The seismic record data were dense, with

a sufficient number of records (more than 30) in each separate distance bin to

obtain statistically reliable sample sizes; 2) Necessary seismic and geological

information were provided for the selected earthquake events, including source

parameters, distance from the site-to-source, and site conditions ( 30 value),

so that the median IM and its residuals could be estimated from GMPEs, which

stand for Ground-Motion Prediction Equations, also known as ground-motion

models (GMMs); 3) The moment magnitude of the earthquake events was

greater than 5 and had an adequate number of recorded stations in terms of

quantity and distance, making them suitable for spatial correlation analysis.

Then a total of 10 earthquake events comprising 2942 high-quality and reliable

seismic records were extracted, excluding those with low quality, unreliability,
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incompleteness, and even aftershock records, from the NGA-West2 database

(Pacific Earthquake Engineering Research Center, PEER). List of the earthquake

events can be found in Table 1. The distribution of moment magnitude ( w)

and rupture distance ( rup) of the data, as well as the distribution of recorded

PGA values and the recorded station's and 30 values, are shown in Fig.4.

The spatial cross-correlation models for 16 vector-IMs, including ( )

(the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), ( ) (the

spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), PGA, PGV, a,

CAV, s5-75, and m, are developed based on the aforementioned selected

seismic ground-motion data from various regions (i.e., California, Japan and

Taiwan). It should be noted that since the seismic data used are based on

reverse faults and strike-slip faults, the present anisotropic model is applicable

to earthquakes generated by reverse faults and strike-slip faults. More attention

is needed if the present model is to be applied to normal faults. In future work,

the impact of faulting mechanism will be further analyzed and studied.

Additionally, since only seismic data with a moment magnitude greater than 5

and a rupture distance less than 200 km were selected, when applying the

newly proposed model, it is important to consider whether the fault type,

moment magnitude, and fault distance fall within the applicability range of the

model.
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As suggested by Abrahamson and Youngs (1992), IMs can be modelled by

a lognormal distribution when developing the GMPEs. Hence, for a given

earthquake event , the IMs at seismic site can be given as:

𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 = 𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 𝑀𝑀,𝑅𝑅𝑟𝑟𝑢𝑢𝑝𝑝,𝜃𝜃 +

𝜀𝜀𝑇𝑇𝜎𝜎𝑇𝑇 = 𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 𝑀𝑀,𝑅𝑅𝑟𝑟𝑢𝑢𝑝𝑝,𝜃𝜃 + 𝜂𝜂𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑗𝑗

(19)

Where ln denotes the natural logarithm of recorded IM given an earthquake

event at seismic site ; ln𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 𝑀𝑀,Rrup,𝜃𝜃 denotes the logarithm of the

predicted median from GMPEs based on magnitude ( ), rup and other relative

parameters (e.g., location), given an earthquake event at seismic site ; 𝜎𝜎𝑇𝑇

denotes the total residual standard deviation and 𝜎𝜎𝑇𝑇 = 𝜎𝜎𝑖𝑖𝑗𝑗
2 + 𝜏𝜏𝑖𝑖

2 ; 𝜀𝜀𝑇𝑇

denotes the normalized residual standard deviation; 𝜂𝜂𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑗𝑗 represent the

between-event and within-event residuals, respectively.

The adopted GMPEs assume that the term of residual standard follows a

normal distribution, whilst τ𝑖𝑖 and σ𝑖𝑖𝑗𝑗 respectively denote zero mean values

and standard derivations (Abrahamson et al., 1991; Jayaram and Baker, 2008;

Joyner and Boore, 1993). Assuming that the effects of between-event residuals

on the within-event spatial correlation are negligible (Du and Wang, 2013;

Jayaram and Baker, 2009), the within-event residual can be calculated as:

𝜀𝜀𝑖𝑖𝑗𝑗 = 𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 − 𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 𝑀𝑀,𝑅𝑅𝑟𝑟𝑢𝑢𝑝𝑝,𝜃𝜃

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416



24

(20)

A series of GMPEs developed based on the NGA-West2 database were

chosen to calculate the within-event residuals by using Equation 19. The

definitions of IMs, together with calculations of GMPEs are illustrated in Table

2.

The calculated within-event residuals can exhibit discrepancies with

respect to and 30, since the GMPEs are not corrected by using the

seismic ground-motion data selected in this study. The discrepancies may

inevitably result in inaccuracies in estimating spatial correlations

(Foulser-Piggott and Stafford, 2012; Sokolov et al., 2010). Therefore, Du and

Wang (2013) proposed a correction of the calculated residuals to eliminate the

bias, which has been applied in this study:

𝜀𝜀𝑖𝑖𝑗𝑗
𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 = 𝜀𝜀𝑖𝑖𝑗𝑗 −

𝜑𝜑1 + 𝜑𝜑2 𝑙𝑙𝑛𝑛 𝑅𝑅𝑟𝑟𝑢𝑢𝑝𝑝 + 𝜑𝜑3 𝑙𝑙𝑛𝑛 𝑉𝑉𝑆𝑆30 (21)

Where 𝜑𝜑1 , 𝜑𝜑2 and 𝜑𝜑3 are coefficients for each earthquake event which are

obtained through linear regression. The deviations of the corrected EIr (0.05s)

within-event residuals with respect to rup and 30 for ten earthquake events

are illustrated in Fig.5.

As shown in Fig.5, the corrected residuals do not bias towards 𝑅𝑅rup and

𝑉𝑉s30 . The corrected residuals will be adopted in the analysis of
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semi-variogram. The normalized corrected intra-event residuals can be

calculated as follows:

𝜀𝜀𝑖𝑖𝑗𝑗 =
𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟

𝜎𝜎𝑖𝑖𝑗𝑗
≈

𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗 − 𝑙𝑙𝑛𝑛𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗𝑀𝑀,𝑅𝑅𝑟𝑟𝑢𝑢𝑝𝑝,𝜃𝜃 − 𝜑𝜑1 +𝜑𝜑2 𝑙𝑙𝑛𝑛 𝑅𝑅𝑟𝑟𝑢𝑢𝑝𝑝 + 𝜑𝜑3 𝑙𝑙𝑛𝑛 𝑉𝑉𝑆𝑆30
𝜎𝜎𝑖𝑖𝑗𝑗

(22)

Where 𝜀𝜀𝑖𝑖𝑗𝑗 is the normalized within-event residuals; σ𝑖𝑖𝑗𝑗
represents the

within-event standard deviation that can be obtained through the sample data

or a specific GMPE. In this study, σ𝑖𝑖𝑗𝑗 adopts the variance of within-event

residuals of IMs for each earthquake, since the values provided by GMPEs may

not be applicable to all considered earthquake events. Equation 22 neglects the

interevent residual term because it is constant for each site during an

earthquake and therefore does not contribute to the within-event spatial

correlation (Wang and Du, 2013). The inconsistencies in GMPEs are expected

to have minimal impact on the estimated spatial correlation Du and Wang

(2013).

It is worth mentioning that the multi-stage method used by Jayaram and

Baker (2009), as well as by Wang and Du (2013), is applied to adjust the

residuals in order to remove bias arising from the inconsistency between the

GMPE and the empirical data utilized in their analysis. The multi-stage method

is widely applied. However, it is important to highlight that Ming et al. (2019)
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have recently introduced a one-stage method that has been shown to more

accurately estimate all parameters in GMPEs with spatial correlation

simultaneously. Utilizing this method may enhance the unbiased residuals for

correlation modeling in future work.

In this section, the anisotropic spatial cross-correlation empirical models for

within-event residuals of the investigated IMs are developed, following the

theoretical experience described in Section 2.1-2.3 and procedures detailed in

Section 2.4.

In this section, four anisotropy directions (i.e., = 0° , 45° ,90°and 135°), an

angle tolerance (∆ ) of 45° , and bandwidth of 10 km to identify all eligible

station locations within the specified range, the empirical semi-variogram

values are calculated with Equation 3. For each earthquake event, different lag

distances are adopted to ensure a sufficient number of station-point pairs

within each lag distance (15 data points within the varying lags). Categorizing

based on the considered lag distance and repeating this process for all stations

can result in the empirical data of the semi-variogram fitting maps for 10

earthquakes selected in Table 1.
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The empirical semivariogram maps are first plotted and observed for 16 IMs

( (the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s),

(the spectral ordinates at 5 periods, i.e., 0.05s, 0.2, 0.5s, 1s and 2s), a,

PGV, PGA, CAV, s5-75 and m) of 10 investigated earthquakes for four

anisotropy directions ( ) of 0°, 45° ,90°and 135°. Fig. 6 presents an example

of the LMC model fitted to empirical semivariogram data at an anisotropy

direction of 0° (the rest figures are given in the Supplemental Material, Figs.

A1-A3). While the LMC curve approximates most of the empirical

semivariogram values, certain values are not captured by the fitted model, likely

reflecting the complexity introduced by the ten distinct seismic events

considered in the analysis. It is worth noting that the empirical semi-variograms

for s5-75 and m in relation to some spectral IMs exhibit negative values.

Likewise, other research (e.g., Bradley, 2011; Huang et al., 2020; Baker and

Bradley, 2017) has also observed negative correlations between these IMs.

Given the constraints of space but the significance of these matters regarding

negative correlations and semi-variograms, a detailed discussion is provided in

Appendix A.

Following the procedure described in Section 2.4.3: the initial 𝑟𝑟1
𝜃𝜃 and 𝑟𝑟2

𝜃𝜃

within the LMC model for each anisotropy direction , are established; then, the
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empirical semivirogram data for each anisotropy direction are fitted by LMC

model as given in Equation 14; the seimirogram, variance, and correlation

matrix functions are determined for each anisotropy direction by testing

different 𝑟𝑟1
𝜃𝜃 and 𝑟𝑟2

𝜃𝜃 ; in the end, the average of the matrix functions are

determined.

Following the procedure described in Section 2.4.3, the short-range

coefficient 𝑟𝑟1
𝜃𝜃 is determined to be 5 km, 15 km, 10 km, and 10 km for the 0°,

45°, 90°, and 135° directions, respectively. The long-range coefficient 𝑟𝑟2
𝜃𝜃 is

determined to be 70 km, 60 km, 65 km, and 80 km, respectively. The

coregionalization matrices B within the LMC for the anisotropy directions are

regressed, and their average matrices are obtained. As the result, the nugget

coregionalization matrix P0 , the short-range coregionalization matrix P1, the

long-range coregionalization matrix P2 are provided in Tables 3-5,

respectively. These coregionalization matrices can then be used to construct

the resulting cross-covariance matrix for sampling intra-event residuals that

exhibit anisotropic spatial correlation.

The proposed spatial cross-correlation models are user-friendly for engineering

applications. Below are the steps for estimating the cross-correlation of IMs
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across multiple locations: 1) calculate the separation distance and determine

the anisotropy direction (0°, 45°, 90°, or 135°) between every pair of two sites;

2) obtain the corresponding coregionalization matrix coefficients from Tables

3-5 for IMs; 3) compute the correlation coefficient through Equation 14 for each

pair of two sites for all the IMs; 4) construct the final correlation matrix through

Equation 16 using the elements obtained from Step 3).

A simple case has been given in this section to demonstrate the

applicability and validity of the proposed anisotropic spatial cross-correlation

models. A regional area of 30 km×30 km is assumed and is divided into 900

units of 1 km2. Assuming an earthquake with w=6.5 occurs along a strike-slip

fault, and its epicenter is located at coordinates (0, 0). The direction of the fault

follows the north-south orientation, whilst homogeneous ground conditions are

assumed with a specified 30 value of 500 m/s.

First, the earthquake catalog obtained through the Monte Carlo method

includes seismic information. Based on the parameters in the simulated

earthquake catalog, the mean and variance of three IMs, including the PGA,

PGV, and a, are calculated using the GMPEs proposed by Campbell and

Bozorgnia (2014) (CB14). Then, considering the variance of IMs and the

correlation coefficients with spatial cross-correlation computed by those

empirical models considering isotropy and anisotropy of the IMs, the residuals
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of IMs with spatial correlation features are simulated according to the

multivariate normal distribution. These residuals, along with the mean values of

IMs calculated by using GMPEs, are used to derive simulated values of IMs with

spatial correlations. The prediction results are shown in Figs. 7-8.

As shown in Figs. 7-8, compared to the isotropic model, the anisotropic

model demonstrates a stronger spatial correlation of the simulated IMs at zero

distance. And the anisotropic model exhibits a notably higher spatial

correlation intensity at 45 degrees than in other directions.

4 Case study: regional seismic landslide hazard analysis considering the

anisotropic spatial cross-correlations of IMs

Seismic hazard analysis has always been a hot topic in geotechnical

engineering research (Cheng et al., 2023; Yuan et al., 2024). This section will

conduct seismic landslide hazard analysis based on the consideration of

spatial cross-correlation of IMs. Taking the seismic area, Wenchuan city,

located in Sichuan Province, Southwest of China, as an example, the maximum

seismic magnitude is assumed as s=8.0, which is acceptable since the

notable most heavy earthquake in history is Wenchuan Earthquake happened in

2008 with s equal to 8.0. Guo et al. (2013) proposed a relation between the

earthquake magnitude and rupture distance to calculate the rupture distance:
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𝑀𝑀𝑠𝑠 = 3.3 + 2.1 𝑙𝑙𝑔𝑔𝐿𝐿

(23)

Where s is the surface wave magnitude; denotes the rupture distance.

Based on Equation 23, the rupture distance is calculated as 173 km given

that s=8.0. This study then references to this value and assumes the rupture

distance to be 170km. With respect to the fault site, it is assumed that there

exists a strike-slip fault with a fault angle of 90° , located in Southwest China.

Following Wang (2022), three different locations of slope sites are taken as

case study to perform the regional seismic hazard assessment of slopes

considering the anisotropic cross-correlations of IMs. Fig.9 illustrates the fault

site and three slope sites, where the vertical distances between the fault site

and slope sites are 10km (Site 1), 30km (Site 2) and 60km (Site 3), evaluating

effects of different rupture distance to the seismic slope hazard analysis.

According to National Earthquake Hazards Reduction Program (NEHRP)

and actual 30 (average shear wave velocity of soil layers within 30m below

the ground) recorded in NGA-West2, Seyhan and Stewart (2014) suggested 5

types of sites, which is shown in Table 6. This study adopted three

representative sites to investigate the effects of sites, i.e., 30=913 m/s (Site

Class B), 30=489 m/s (Site Class C) and 30=266 m/s (Site Class D).

Seismic catalog is essential data for analyzing regional seismic hazards
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(Shao, 2018). In this study, the Monte Carlo method is chosen to simulate and

generate a stochastic earthquake catalog. In order to study the impact of major

earthquakes on seismic slopes, the truncated Rutenberg-Richter model is

employed as the seismic recurrence model, as shown in the following equation:

𝑙𝑙𝑔𝑔𝑁𝑁 𝑀𝑀𝑤𝑤 = 3.86 −

0.83𝑀𝑀𝑤𝑤 4.0 ≤𝑀𝑀𝑤𝑤 ≤ 8.0 (24)

A total of 1,732,809 earthquakes with a magnitude 𝑀𝑀𝑤𝑤 ≥ 4.0 were

generated through simulations of earthquake records with a recurrence period

of 100 years and 50000 occurrences by using the Monte Carlo method by

introducing either isotropy or anisotropic models of IMs proposed in this study.

Following the selection criteria of critical acceleration employed by Liu et al.

(2017) and Li et al. (2019), two critical yield accelerations ( c), i.e., 0.02g and

0.1g, are adopted in the present study. These values reflect the decreasing

susceptibility of seismic slopes.

The machine learning framework based on multiple ground motion

parameters for predicting permanent landslide displacement (referred to as the

XGB model), which was proposed by Wang et al. (2020) is adopted in this

study. This model demonstrates strong generalization abilities in displacement
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prediction and, by optimizing hyperparameters, mitigates the risk of overfitting.

The data-driven Newmark displacement prediction model developed in this

approach better adheres to sufficiency and efficiency standards. In comparison

to traditional empirical models, the generated standard deviation is significantly

smaller. Additionally, the application of the model in probabilistic seismic slope

displacement hazard analysis is also demonstrated. In order to better apply the

XGB model to practical use, the fitting of the residuals is shown as:

𝜎𝜎𝑙𝑙𝑛𝑛𝐷𝐷 =

0.798 𝐷𝐷𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 ≤ 0.003𝑐𝑐𝑚𝑚
− 0.147𝑙𝑙𝑜𝑜𝑔𝑔10 𝐷𝐷𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 + 0.427 0.003 ≤ 𝐷𝐷𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 ≤ 20𝑐𝑐𝑚𝑚

0.235 𝐷𝐷𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 > 20𝑐𝑐𝑚𝑚

(25)

Where 𝜎𝜎𝑙𝑙𝑛𝑛𝐷𝐷 is the standard deviation; 𝐷𝐷𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 is the predicted displacement.

In order to evaluate the effects of anisotropic spatial cross-correlations of

vector-IMs on the regional hazard assessment of seismic slopes, four

conditions have been analyzed, and those are the isotropic spatial

cross-correlation model (Cheng et al., 2020), the anisotropic spatial

cross-correlation model with four anisotropy directions, and without

considering spatial cross-correlations of IMs (Not relevant).

The XGB permanent displacement prediction model, which is a vector model,
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require input parameters consist of PGA, PGV and a. It is necessary to consider

the joint density function of scalar IMs, and the probability of exceedance can

be given as:

𝜆𝜆𝐷𝐷 =

𝑃𝑃 𝐷𝐷 ≥ 𝑥𝑥 𝐼𝐼𝑀𝑀1 = 𝑦𝑦, 𝐼𝐼𝑀𝑀2 = 𝑧𝑧, 𝐼𝐼𝑀𝑀3 =𝑚𝑚 𝑓𝑓𝐼𝐼𝑀𝑀1,𝐼𝐼𝑀𝑀2,𝐼𝐼𝑀𝑀3
( )𝑦𝑦,𝑧𝑧,𝑚𝑚 𝑑𝑑𝑚𝑚𝑑𝑑𝑧𝑧𝑑𝑑𝑦𝑦

(26)

Where 𝜆𝜆𝐷𝐷 represents a mean annual rate of sliding displacement exceeding

that specified value; using a series of specified value ( ), e.g., from 0 to 100cm

at interval of 1cm, seismic hazard curves of permanent sliding displacements

can be obtained. 𝑃𝑃(𝐷𝐷 ≥ 𝑥𝑥 𝐼𝐼𝑀𝑀1 = 𝑦𝑦, 𝐼𝐼𝑀𝑀2 = 𝑧𝑧, 𝐼𝐼𝑀𝑀3 = 𝑚𝑚) indicates the

probability of sliding displacement larger than a given value when 1= ,

𝐼𝐼𝑀𝑀2
=𝑧𝑧 and 𝐼𝐼𝑀𝑀3

= ; 𝑓𝑓𝐼𝐼𝑀𝑀1,𝐼𝐼𝑀𝑀2,𝐼𝐼𝑀𝑀3
( )𝑦𝑦,𝑧𝑧,𝑚𝑚 is the probabilistic density

function of 𝐼𝐼𝑀𝑀1
= , 𝐼𝐼𝑀𝑀2

=𝑧𝑧 and 𝐼𝐼𝑀𝑀3
= .

In addition, the annual exceedance rate calculation for the joint seismic

slope-site permanent displacement is (Akkar and Cheng, 2016):

𝜆𝜆𝐷𝐷 =

𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠 𝐷𝐷>𝑥𝑥 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠
𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 𝑜𝑜𝑓𝑓𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑠𝑠𝑖𝑖𝑚𝑚𝑢𝑢𝑙𝑙𝑎𝑎𝑡𝑡𝑒𝑒 𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠 × 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙 𝑝𝑝𝑒𝑒𝑟𝑟𝑖𝑖𝑜𝑜𝑑𝑑

(27)

Different annual exceedance rates correspond to different values of slope

permanent displacement, representing various levels of hazard. Therefore, it is
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possible to assess the hazard based on the calculated permanent

displacement values according to the specific slope.

The Monte Carlo simulation for the Equation 26 is employed to study the

regional seismic hazard assessment of slopes that subjected to different

critical yield acceleration ( c), site classification, and rupture distance.

Assessing seismic risk and hazard at a regional scale differs from evaluating

an individual site (e.g., Jeon and O’Rourke, 2005; Wang and Takada, 2005). The

joint hazard is of importance to be addressed, whilst the single hazard for an

individual site is negligible (Du and Ning, 2020). Hence, the joint seismic hazard

curves for Site 1, Site 2 and Site 3 are evaluated through the annual exceedance

rate calculation given in Equation 27 for different site classes. The results are

plotted in Fig.10, illustrating the mean annual exceedance rate of the slope

permanent displacements for two critical accelerations ( c=0.02g and 0.1g),

considering the isotropy and anisotropy of the cross-correlations of IMs. The

hazard curves for isotropy are computed using spatial cross-correlation model

proposed by Cheng et al. (2020), and those for anisotropy are computed based

on the model proposed in this study.

As shown in Fig. 10, the solid line indicates the results of isotropy, the

dashed line represents the results of anisotropy, and the dot-dashed line
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represents the condition without considering spatial cross-correlations of IMs

(Not relevant). It is evident that ignoring the spatial cross-correlations of IMs

would underestimate the hazard of the slope permanent displacement. As soil

conditions soften, as seen in Site Class D, the divergence between hazard

displacement estimates from isotropic and anisotropic spatial correlations

becomes more pronounced, especially at lower mean annual exceedance rates

and c=0.1. These results highlight the importance of accounting for the

anisotropic characteristics of intensity measures when analyzing soft soils.

5 Conclusion

Although anisotropy of spatial cross-correlations of IMs has long been

identified, only a few IMs correlation models considering anisotropy have been

developed. This study proposed the anisotropic spatial cross-correlation

models for 16 common IMs, including EIr( ) (the spectral ordinates at 0.05s,

0.2, 0.5s, 1s and 2s), SA( ) (the spectral ordinates at 0.05s, 0.2, 0.5s, 1s and

2s), PGA, PGV, a, CAV, s5-75, and m. The model for four anisotropy directions

(0°, 45°,90°and 135°) inclined to the fault was developed. In total, 2942

ground-motion records selected from 10 earthquake events were used to

compute the empirical semivariograms for the within-event residuals of the

selected 16 IMs. The commonly used LMC function was employed to construct

permissible spatial correlation models. It was observed that for 16 IMs, the
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developed anisotropic spatial cross-correlation models would fit the empirical

semivariograms and cross-semivariograms reasonably well.

The proposed anisotropic spatial cross-correlation model of IMs was

applied to regional seismic landslide hazard assessment. Results show that at

lower hazard levels, the annual exceedance rate curves for isotropic and

anisotropic models align closely. However, anisotropic effects become more

significant for soft soils as the annual exceedance rate decreases, while they

are negligible for slopes with harder site classes and higher critical

accelerations. Therefore, the anisotropy of IMs cannot be ignored in regional

seismic landslide hazard analysis, particularly for soft soils and lower critical

accelerations.
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Appendix A

In the study, the negative empirical values were observed for semi-variograms

and correlations between non-spectral Intensity Measures (IMs), such as Ds5-75
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and Tm, and some spectral IMs, such as spectral acceleration (SA) and spectral

input energy (VEIr). These issues are examined and analyzed in this appendix.

For a single variable , the empirical semivariogram 𝛾𝛾𝑚𝑚𝑚𝑚 is calculated as

follows:

𝛾𝛾𝑚𝑚𝑚𝑚( )h = 1
2

1
𝑁𝑁( )h 𝑖𝑖 = 1

𝑁𝑁( )h 𝑍𝑍𝑚𝑚 u𝑖𝑖 − 𝑍𝑍𝑚𝑚 u𝑖𝑖 + h 2 (A1)

As shown in the Equation (A1), the 𝛾𝛾𝑚𝑚𝑚𝑚 cannot be negative. However, for

the multiple variables, the empirical cross-seimivariogram is calculated as

follows:

𝛾𝛾𝑚𝑚𝑤𝑤( )h =

1
2

1
𝑁𝑁( )h 𝑖𝑖 = 1

𝑁𝑁( )h 𝑍𝑍𝑚𝑚 u𝑖𝑖 − 𝑍𝑍𝑚𝑚 u𝑖𝑖 + h 𝑍𝑍𝑤𝑤 u𝑖𝑖 − 𝑍𝑍𝑤𝑤 u𝑖𝑖 + h (A2)

As shown in the Equation (A2), the 𝛾𝛾𝑚𝑚𝑤𝑤 could be negative. If the

differences between the two variables exhibit opposite trends in space (i.e.,

when one variable increases, the other decreases), the product can be negative,

leading to a negative 𝛾𝛾𝑚𝑚𝑤𝑤(h). In this study, this situation is likely to occur when

a negative empirical cross-semivariogram was observed between some IMs,

such as Ds5-75 and SA (0.2s). It is different from the ordinary semivariogram,

which is based on the squared differences of a single variable and is always

non-negative.

This study employs a spatial cross-correlation model. The spatial

cross-correlation coefficient is calculated through the following general
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equations:

𝐶𝐶𝑚𝑚𝑤𝑤( )h = 𝐶𝐶𝑚𝑚𝑤𝑤( )0 − 𝛾𝛾𝑚𝑚𝑤𝑤( )h (A3)

lim
ℎ→∞

𝛾𝛾𝑚𝑚𝑤𝑤( )h = 𝐶𝐶𝑚𝑚𝑤𝑤( )0 (A4)

𝜌𝜌𝑚𝑚𝑤𝑤( )h =
𝐶𝐶𝑚𝑚𝑤𝑤( )0

𝐶𝐶𝑚𝑚𝑚𝑚( )0 × 𝐶𝐶𝑤𝑤𝑤𝑤( )0 1/2 −
𝛾𝛾𝑚𝑚𝑤𝑤( )h

C𝑚𝑚𝑚𝑚( )0 × C𝑤𝑤𝑤𝑤( )0 1/2 (A5)

Equations (A3) and (A4) indicate that if γ𝑚𝑚𝑤𝑤( )h is positive, 𝐶𝐶𝑚𝑚𝑤𝑤( )0 must

also be positive, with 𝐶𝐶𝑚𝑚𝑤𝑤( )0 ≥ γ𝑚𝑚𝑤𝑤( )h . Under these conditions, a negative

correlation coefficient ρ𝑚𝑚𝑤𝑤( )h , as calculated using Equation (A5), would be

impossible. However, if γ𝑚𝑚𝑤𝑤( )h is negative, 𝐶𝐶𝑚𝑚𝑤𝑤( )0 would also be negative.

In this case, both terms in the right side of Equation (A5) are negative, and the

absolute value of 𝐶𝐶𝑚𝑚𝑤𝑤( )0 exceeds that of γ𝑚𝑚𝑤𝑤( )h , resulting in a negative

value for ρ𝑚𝑚𝑤𝑤( )h .

Additionally, to examine the above argument, we take the Chi-Chi

earthquake as an example where the parameters Ds575 and PGA are selected at

a 90o anisotropic direction.

𝐶𝐶𝑚𝑚𝑤𝑤( )0 = − 0.43，𝐶𝐶𝑚𝑚𝑚𝑚( )0 = 0.72, 𝐶𝐶𝑤𝑤𝑤𝑤( )0 = 0.72

=5km: 𝛾𝛾𝑚𝑚𝑤𝑤( )5 = − 0.06

𝐶𝐶𝑚𝑚𝑤𝑤( )5 = 𝐶𝐶𝑚𝑚𝑤𝑤( )0 − 𝛾𝛾𝑚𝑚𝑤𝑤( )5 = − 0.37

𝜌𝜌𝑚𝑚𝑤𝑤( )5 =
𝐶𝐶𝑚𝑚𝑤𝑤( )0

𝐶𝐶𝑚𝑚𝑚𝑚( )0 × 𝐶𝐶𝑤𝑤𝑤𝑤( )0 1/2 −
𝛾𝛾𝑚𝑚𝑤𝑤( )5

C𝑚𝑚𝑚𝑚( )0 × C𝑤𝑤𝑤𝑤( )0 1/2 = − 0.51

As stated above, the signs (positive or negative) of the semivariograms

and correlations are interconnected. The negative semivariograms can lead to
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negative correlations between IMs. However, there are distinctions between

theoretical and empirical semivariogram data. Theoretically, negative

semivariograms are not acceptable. However, the empirical semivariograms

may yield negative values, possibly due to data randomness and other physical

processes that are not fully captured.

The negative correlation between non-spectral IMs and spectral IMs was

also observed in previous studies (Bradley 2011; Baker and Bradley, 2017;

Huang et al., 2020). However, the exact physical and engineering mechanisms

behind the negative correlation are still not fully understood. Certain

explanations are available. For instance, Huang et al. (2020) attribute the

negative correlation between DS5−95 and the short-period spectral accelerations

to the fact that ground motions with longer-than-expected durations often

result in seismic energy being distributed over an extended timeframe. As a

result, the likelihood of generating significant peak responses reduces in a

damped oscillator.
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