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Introduction 
The European energy crisis has intensified debate over how electricity markets should be redesigned to 

deliver investment while protecting consumers from extreme price volatility. Within these reform 

discussions, Contracts for Difference (CfDs) have emerged as a leading instrument and are increasingly 



presented as a core component of a future EU power-market framework. In its most general financial 

sense, a CfD is a two-way arrangement in which payments flow between counterparties depending on 

whether an observed market price lies above or below a pre-agreed strike price. While “CfDs” also 

appear in wider financial markets (e.g., foreign exchange and securities) as privately traded derivative 

contracts, the electricity-sector application has a more specific institutional role: it is typically a 

long-term agreement between a low-carbon generator and a public counterparty, designed to stabilise 

revenues around a strike price for eligible output. The UK’s offshore wind CfD model is a prominent 

example, where settlements are anchored to a reference market price and apply to electricity produced 

by a defined generating asset (UK Government, 2014). 

 

The central economic rationale for CfDs is to reduce exposure to wholesale price risk, thereby lowering 

financing costs and, ultimately, the levelised cost of energy for capital-intensive technologies (Gohdes et 

al., 2022). CfDs sit alongside other established low-carbon support instruments such as feed-in tariffs, 

feed-in premiums, and quota-based schemes and are often framed as an evolution of these approaches 

toward more market-integrated support (Newbery, 2023). Since the UK introduced CfDs in 2014, the 

mechanism has been adopted or adapted across multiple European jurisdictions, including Denmark, 

Greece, Hungary, Poland, and Ireland (Szabó et al., 2021; Government of Ireland, 2019). A further feature 

that has strengthened policy interest particularly after the recent crisis is the potential for CfDs to 

generate public receipts when market prices exceed the strike price, which distinguishes them from 

many conventional subsidy designs (European Commission, 2023). As market reform proposals mature, 

CfDs are increasingly discussed not only as a transitional support tool, but as a structural element of 

electricity-market design, with some proposals extending their scope to a wider range of technologies, 

including existing assets, and potentially applying them more broadly than on a purely voluntary basis 

(Fabra, 2023) 

Eventhough offshore wind is considered one of the UK's cheapest sources of electricity the UK fifth 

Allocation Round (AR5) CfD auction highlighted several critical issues. AR5 of the CfD auction in the UK 

failed to secure any funding for offshore wind farms. None of the UK’s biggest offshore wind developers 

participated, citing that the maximum administrative strike price (ASP) was set too low at £44/MWh to 

ensure economic profitability, while the reference price at the time was £87/MWh. The Floating Offshore 

Wind Technology (FOWT) pot in the AR5 allocation round suffered a similar fate, with the ASP set by the 

government at £116/MWh being considered too low given the rising supply chain costs, inflation rate, 

and other factors. To address the non-participation in the AR5 CfD auction, the UK government increased 

the ASP for offshore wind farms (OWF) by 66% to £73/MWh, and the ASP for FOWT by 52% to 

£176/MWh. Despite these increases being favorably received by the renewable energy sector, several 

important factors affecting energy production and the financial capabilities of OWF developers were 

overlooked. The allocated budget for each allocation round is being spent more rapidly, effectively 

buying less energy capacity with every pound. If developers bid at the ASP, the current budget would 

only allow for a maximum allocation of 3.1 GW, significantly below the necessary capacity to address the 

shortfall from AR5 and meet the 2030 targets (Mantell and Quinn, 2024). Any shortfall in energy capacity 

allocations during AR6 would put more pressure on future rounds to deliver the necessary energy 

capacity to meet the objectives set by the UK for 2030. This shortfall has a knock-on impact, such as 



increased reliance on gas-fired power stations to meet electricity demand, raising UK emissions, and 

missed opportunities for growing the UK renewable energy sector, economic gains, and job creation. 

Although floating wind is expected to play a crucial role in achieving the UK government's targets, it 

remains an emerging technology requiring substantial support for commercialization. The budget 

allocation for AR6 in FOWT is very low at £95 million, likely allowing only one or two eligible projects to 

secure a CfD, with a maximum capacity of 135 MW if bids are at the ASP. If the UK government aims to 

reach the 2030 targets, it must be willing to invest more in improving port infrastructure and innovative 

projects to drive cost reduction. 

In this paper, we identify five major problems with the current UK Contracts for Difference (CfDs) strike 

price setting mechanism that has led to the lack of participation from the FWOT developers in the last 

CfD auction AR5. First, the CfDs omit the macroeconomic impact, failing to consider broader economic 

consequences and neglect the impact of weather and location, crucial factors in renewable energy 

production. Second, the data used in CfDs is often inaccurate: the cost data is based on the year 2020, 

and the hurdle rate is based on the 2015 pretax rate. Third, material costs are inaccurately modeled 

using a uniform distribution, and there is an optimism bias, where costs are underestimated, and 

benefits are overestimated. Fourth, CfDs promote a "produce-and-forget" approach, where producers 

generate electricity without considering market demand or price fluctuations. This happens because 

CfDs stabilize income, removing the incentive to produce electricity when it is most needed (Meeus, 

2023). Fifth, CfDs disrupt the real-time markets that manage electricity supply and demand, such as the 

intraday and balancing markets. These disruptions occur because CfDs guarantee a fixed price to 

producers, making them less responsive to actual needs and prices (Guidehouse and Fraunhofer, 2023).   

 

The main contribution of this paper is to propose a novel CfD strike price setting methodology that 

considers various important macroeconomic variables, including inflation rate, interest rate on debt, 

electricity market price, corporate tax rate, capacity factor based on hourly wind speed, construction 

duration of the energy plant, debt-to-equity ratio, and expected operational years of the Floating 

Offshore Wind Turbine (FOWT). By setting a strike price that accounts for these economic variables and 

their expected fluctuations over the duration of the CfD contract, as well as the financial risks in the 

electricity market, the five identified problems will be addressed. The methodology incorporates crucial 

macroeconomic variables such as inflation rate, interest rate on debt, electricity market price, and 

corporate tax rate. By integrating these variables into the strike price calculation, the methodology 

ensures that the pricing accurately reflects the broader economic landscape. The methodology 

anticipates and adapts to expected fluctuations in these economic factors over the duration of the CfD 

contract. This forward-looking approach enables the strike price to remain relevant and effective 

throughout the contract period. The methodology accounts for financial risks inherent in the electricity 

market, including price volatility and uncertainty. By factoring in these risks, the strike price is adjusted to 

appropriately reflect the financial challenges faced by investors and producers. The methodology tailors 

its approach to the unique characteristics of the plant Floating Offshore Wind Turbines (FOWT), 

considering factors such as capacity factor based on wind speed per hour, construction duration, 

debt-to-equity ratio, and expected operational years. This specialized treatment ensures that the strike 

price accurately captures the complexities and challenges specific to FOWT projects. By addressing these 



elements comprehensively, the proposed methodology aims to offer a robust and adaptable solution to 

the limitations of the current CfD framework, ultimately enhancing the efficiency and sustainability of 

renewable energy investments. 

 

This paper will evaluate both the current UK government's CfD strike price setting method and the 

proposed macroeconomic and financial risk-adjusted CfD strike price through three case studies: the UK 

Floating Offshore Wind Turbine (FOWT) market as a whole and the Kincardine Floating Offshore Wind 

Farm. Through these case studies, we aim to demonstrate the superior relevance and applicability of our 

proposed approach compared to the current method adopted by the UK. This paper will show how 

accounting for macroeconomic variables and financial risks, leads to more accurate and sustainable 

strike price and  leads to increased investments from the private sector in the FOWT industry.  

Literature review  

Offshore wind has moved from a niche option to a central pillar of decarbonisation strategies, 
driven by steady technological progress and learning-by-doing that have pushed costs down 
and improved performance. The literature documents both the scale of the offshore resource 
and the scope for efficiency gains as turbine sizes increase and deployment expands. In an 
early and influential contribution, Musial et al. (2013) synthesise evidence on offshore wind’s 
technical potential and the conditions under which scale, engineering innovation, and 
infrastructure investment can translate that potential into reliable, low-carbon generation. 
A parallel strand of research focuses on the policy instruments needed to mobilise capital for 
capital-intensive renewables. Contracts for Difference (CfDs), introduced in the UK in 2014, are 
designed to stabilise revenues by settling the difference between a strike price and a market 
reference price, thereby reducing exposure to wholesale-price volatility. Empirical and 
conceptual studies argue that this revenue stabilisation can strengthen investment incentives 
and lower financing costs, particularly for offshore wind (Newbery et al., 2018; Winskel et al., 
2014). Consistent with this view, Gohdes et al. (2022) emphasise that by mitigating price risk, 
CfDs can reduce the cost of capital and through that channel lower levelised energy costs. 
However, the UK-style design also ties support to realised output, which can introduce 
additional complexity in incentives and risk allocation, especially when projects face uncertain 
generation and evolving system conditions. 
Because many CfD schemes allocate support through competitive tenders, auction design 
becomes a decisive determinant of outcomes. The literature shows that auction format, 
qualification rules, and pricing mechanisms can shape bidding strategies, participation, and 
ultimately the cost of procurement. Kitzing et al. (2017) examine how alternative auction 
configurations affect competitive behaviour and clearing results, while del Río and Linares 
(2014) link auction design choices to entry dynamics and the longer-run sustainability of 
renewable investment. Even with expanding deployment, persistent constraints remain including 
permitting and regulatory frictions, grid integration challenges, financing risks, and technology 
uncertainty which can weaken participation or raise required returns if not addressed (Wiser et 
al., 2016; Söderholm and Klaassen, 2007). Finally, comparative studies note the diffusion of 
CfD-type mechanisms beyond early adopters, with variants implemented across multiple 



European jurisdictions and also in countries outside Europe, such as Australia and Canada 
(Kröger et al., 2022; Szabó et al., 2021). Taken together, this body of work suggests that 
effective offshore wind scale-up depends not only on technology and costs, but also on the 
credibility of revenue stabilisation and the robustness of auction and market-design choices 
under changing economic and system conditions. 
 

UK CfD auction mechanism 

This section explains the methodology used by the UK government for determining the CfD 
Administrative Strike Prices (ASPs) for Allocation Round 6 (AR6).  The ASP represents the maximum price 
per MWh for generating electricity, known as the strike price,  that a project of a particular technology 
type can receive. Should an auction be triggered, ASPs limit the maximum price that projects of a 
particular technology type can receive, even if the auction clears at a higher price. The UK adopted 
methodology for setting the ASP consists of 5 steps: 

 
Step 1: Gather data to estimate lifetime cash-flows:  

 
The data input considered by the UK government are the current year generic CAPEX ( Pre-development 
costs, Construction costs, and infrastructure costs), OPEX (Fixed OPEX, Variable OPEX, Insurance, 
Connection costs, Fue costs), decommissioning cost, and the energy generation data ( Capacity of the 
plant, load factor, and hurdle rate) obtained from the updated assumptions from the 2023 Electricity 
Generation Cost Reports. Without accounting for several important economic factors such as inflation 
rate, interest rate on debt, corporate tax rate, financial risk proxied by the volatility in electricity markets 
and the construction duration. Furthermore, these variables are considered constant over the years for 
the energy generation plant.  
 

 
 
 

Step 2: Sum the NPV of total expected costs and revenues in each year:  
 
Costs and revenues are summed in each year over the lifetime of the project, and discounted by the 
hurdle rate1 for the technology to give the net present value (NPV) of lifetime cash-flows 

 

1 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/910814/Cost_
of_Capital_Update_for_Electricity_Generation_Storage_and_Demand_Side_Response_Technologies.pdf and 
https://europe-economics.com/publications-news  

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/910814/Cost_of_Capital_Update_for_Electricity_Generation_Storage_and_Demand_Side_Response_Technologies.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/910814/Cost_of_Capital_Update_for_Electricity_Generation_Storage_and_Demand_Side_Response_Technologies.pdf
https://europe-economics.com/publications-news


 𝑁𝑃𝑉
𝐹𝑂𝑊𝑇

=
𝑛
∑

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 − (𝐶𝐴𝑃𝐸𝑋 +𝑂𝑃𝐸𝑋 +𝐷𝑒𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 )

1+ 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒( )𝑛

Where the revenues are proxied by the real value of electricity price (not accounting for the impact of 
inflation), and the total costs are considered constant over the years. 

 
Step 3: Set the strike price to make the NPV equal to zero: 

  
The strike price is set at the level at which the NPV of the project’s lifetime costs and revenues is equal to 
zero. The strike price represents the level of total revenue under the CfD required for the relevant 
project to achieve a rate of return equal to the hurdle rates (That is NPV =0). The strike price is set at the 
level at which the NPV of the project’s lifetime costs and revenues is equal to zero. The strike price 
therefore represents the level of total revenue under the CfD required for the relevant project to achieve 
a rate of return equal to the BEIS latest view on central hurdle rates2. 

 

 𝑁𝑃𝑉 = 0 =
𝑛
∑

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 −( 𝐶𝐴𝑃𝐸𝑋 +𝑂𝑃𝐸𝑋 +𝐷𝑒𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 )

1+ℎ𝑢𝑟𝑑𝑙𝑒 𝑟𝑎𝑡𝑒( )𝑛

 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 =  𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 + 𝐷𝑒𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠

where: 
 𝐶𝐴𝑃𝐸𝑋 = 𝑝𝑟𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 +  𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 +  𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑐𝑜𝑠𝑡  

 𝑂𝑃𝐸𝑋 = 𝐹𝑖𝑥𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 +  𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡   
 ℎ𝑢𝑟𝑑𝑙𝑒 𝑟𝑎𝑡𝑒 = 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 + 2% 

 
Step 4: Repeat for a range of project costs to create the supply curve 
 
In the AR6 allocation round the UK department has set the strike price using a generic approach which 
makes the strike price less influenced by the specific project costs and therefore the ASP is less to 
fluctuate between allocation rounds.  
 
To create the supply curve by technology, the range of viable strike prices has been estimated by 
assuming that pre-development, construction, and infrastructure costs increase linearly from the first 
project to the last project in the supply curve, where the low point on the supply curve assumes that low 
pre-development, construction, and infrastructure cost apply to this particular project. Operating costs 
and all other cost and non-strike price revenue assumptions (for example load factors(capacity factor), 
hurdle rates and fuel costs where applicable) are assumed to be constant across the length of the supply 
curve.  
 
Step 5: Identify the percentage of pipeline capacity that would enable a high level of participation and set 
ASPs at the corresponding strike price 
 
For this allocation round, the targeted proportion of the supply curve for technologies key to the 
decarbonisation pathways (Offshore Wind, Onshore Wind, Remote Island Wind, Floating Offshore Wind 

2 https://assets.publishing.service.gov.uk/media/613b59bdd3bf7f05b7bcb5d7/cfd-ar4-asp.pdf 

https://assets.publishing.service.gov.uk/media/613b59bdd3bf7f05b7bcb5d7/cfd-ar4-asp.pdf


and Solar PV), is set at 75%, i.e. the ASP for each technology corresponds to the strike price that is 
estimated to make 75% of pipeline projects economically viable, as illustrated in the figure below. 
 
 

 
Step 6: Payment structure of the CfD auction  
 

Strike price (K) = set by the UK government and reflects the cost of investing in a particular low-carbon 

technology, it is the price at which the Low Carbon Contracts Company agrees to pay a developer for 

each unit of electricity produced by a low-carbon technology. 

Reference price ( ) = agreed market reference price 𝑆
𝑡

Market Reference Prices are used to calculate CfD Generator payments.  

For intermittent Technologies (such as solar or wind), the Intermittent Market Reference Price is 

calculated using day-ahead data. 

An IMRP is calculated for every hour of the day pursuant to condition 21 of the Contract for Difference 

Standard Terms and Conditions. 

 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑖𝑐𝑒 =  𝑡=1

𝑇

∑ 𝑝
𝑡
 * 𝑔

𝑡
𝐹𝑂𝑊𝑇

𝑡=1

𝑇

∑ 𝑔
𝑡

●​  is the market electricity price 𝑝
𝑡

●​   is the actual electricity generation of the FOWT  𝑔
𝑡



●​ If  the strike price is above the reference market price, the state pays the difference 𝐾 > 𝑆
𝑡

between the strike price and reference price to the renewable producer.  

●​ If  the strike price is below the reference market price, the renewable producer pays the 𝐾 < 𝑆
𝑡

difference between the two prices to the state. 

Developers 

 which can be both positive and negative  𝐾 − 𝑆
𝑡

●​   > 0    if  𝐾 − 𝑆
𝑡

𝐾 > 𝑆
𝑡

●​ < 0 if  𝐾 − 𝑆
𝑡

𝐾 < 𝑆
𝑡

Government 

 which can be both positive and negative 𝑆
𝑡

− 𝐾

●​  if  𝑆
𝑡

− 𝐾 > 0 𝐾 < 𝑆
𝑡

●​  if  𝑆
𝑡

− 𝐾 < 0 𝐾 > 𝑆
𝑡

Macroeconomic and financial risk adjusted Strike price 

The proposed methodology identifies the optimal strike price by considering the following factors that 

are ignored by the UK government such as impact of macroeconomic factors such as inflation rate, 

interest rate on debt, tax rate, electricity market price fluctuations, fluctuations in capacity factor (load 

factor)), impact of different construction durations, impact of weather information such as wind speed 

(used to simulate future values for the capacity factor), accurate modeling of material costs, by 

considering the impact of macroeconomic and weather variables not for the current year but for the 

next 25 years, and our applied datasets are obtained from reliable data sources not surveys, and we 

consider 1000 scenarios per year for the next 25 years to make sure that our dataset considers all 

possible scenarios (to ensure non biasness of the data). 

This approach considers setting the optimal strike price as a function of a time varying LCOE measured 

annually for the next 25 years instead of the constant CAPEX and OPEX adopted by the UK government.  

EVALUATION METHODOLOGY OF LEVELIZED COST OF ENERGY 

The probabilistic cash-flow model developed in this paper returns five key indicators for every 

floating-offshore-wind pilot: General Levelised Cost of Energy (LCOE), the National Renewable Energy 

Laboratory (NREL) simplified LCOE, Weighted-Average Cost of Capital (WACC), Return on Equity (ROE) 

and Capacity Factor (CF). Producing these metrics requires a carefully organised set of input variables. 



Data collection 

The data required is grouped into two datasets i) primary data about the specific Floating Offshore Wind 

Farm (FOWF) such as Farm capacity, Equity ratio, CAPEX components, OPEX and expected life time of the 

plant; and ii) secondary data about the macroeconomic variables (Interest rate on debt, inflation rate, 

corporate tax rate and Feed in tariff) and Capacity factor (Weibul distribution parameters Scale and 

Shape, wind speed, turbine power curve, and wind turbine losses due to degradation). 

Macroeconomic variables: 

●​ Inflation rate. Monthly consumer-price indices are downloaded from the London Stock Exchange 

Group (LSEG) Data & Analytics platform, which republishes Eurostat series in a harmonised 

format. After alignment to a common base year the index is converted to annual growth rates.  

●​ Nominal interest rate. Policy and interbank reference rates are taken from the same LSEG 

database. Used to measure the cost of debt, and weighted average cost of capital. 

●​ Corporate income-tax rate. Statutory rates are collected from official government websites. The 

tax parameter adjusts both after-tax cash flows and the debt-interest tax shield that appears in 

the WACC calculation. 

●​ Feed in Tariff (FiT). Is the guaranteed purchase price per megawatt-hour (Mwh) for the 

electricity to be generated by the FOWT plant. The FiT feeds into the measurement of the Return 

On Equity (ROE). 

●​ Capital-structure share. The share of CAPEX raised through debt to equity. Within the 

simulations it is allowed to vary slightly, reflecting the bandwidth observed in recent European 

offshore-wind financings. This share feeds directly into WACC and ROE. 

Capacity-factor variables 

The annual Capacity Factor (CF) expresses how efficiently a floating-offshore wind farm converts its 

installed capacity into electrical energy. To compute CF, the simulation engine draws on a concise but 

interconnected set of input variables. These variables originate either from public environmental 

databases for meteorology  or from the engineering documentation for FOWT. The list below describes 

each variable, explains where it is obtained and clarifies the specific stage of the CF calculation, 

probability distribution, turbine power curve, or park-level adjustment in which it is used. 

●​ The shape factor (k) defines how sharply wind speeds are clustered about the mean at a given 

site. Lower values denote a broad spread of calm and gusty hours, whereas higher values imply 

steadier winds. k enters the probability distribution that governs hourly wind speeds; by doing 

so, it influences every subsequent step that converts wind to energy. Ten-year series of k are 

derived from hourly hub-height data downloaded from the New European Wind Atlas (NEWA); 

if a pilot lacks the full record, an interim default is taken from the long-term mean of the closest 

offshore grid cell in the same national zone. 

●​ The scale factor (λ) provides the second Weibull parameter required to anchor the distribution 

to the absolute wind-speed range observed at the site. While k controls the distribution’s shape, 



λ fixes its horizontal stretch and therefore determines the expected frequency with which winds 

exceed the turbine’s cut-in speed. Like k, λ is calculated from the same ten-year NEWA record 

and is stored solely for driving the statistical representation of the wind climate. 

●​ The average hub-height wind speed (v̅) offers a concise measure of the wind resource and acts 

as an independent check on the plausibility of the fitted Weibull parameters. The model reads v̅ 

directly from the interactive layers of the NEWA web map and stores it alongside k for each pilot 

site. Although v̅ is not itself used in the probability draws, it helps validate that the chosen k and 

scale values reflect the observed wind climate. 

●​ The aging factor represents the gradual reduction in aerodynamic and electrical efficiency that 

offshore turbines experience in service. Within the model this factor scales the manufacturer’s 

power curve downward year after year, thereby lowering projected energy output and, by 

extension, capacity factor. The default rate is taken from multi-year performance studies that 

reported an annual decline of roughly two-thirds of one percent. 

●​ Wind-farm losses aggregate the effects of wake interactions between turbines, electrical 

conversion losses and scheduled maintenance down-time. After single-turbine production is 

summed across the array, the loss percentage converts gross megawatt-hours to net export at 

the grid connection. Each pilot team supplies its own loss allowance through the common 

engineering template; an illustrative figure of ten percent is shown in the capacity-factor 

calculation document. 

●​ The number of turbines fixes the physical scale of the plant. It multiplies single-turbine 

generation to yield farm-wide output before that total is normalised by installed capacity to 

produce the capacity-factor series. Turbine counts come from the approved site layout included 

in the same engineering template that lists park losses; for example, the reference case in the 

documentation assumes sixty-seven machines. 

FOWT specific input data 

The data specific to the FOWT is grouped into two parts, CAPEX components and OPEX. The CAPEX 

consists of the following cost inputs: 

●​ Development and consenting cost: This entry covers site studies, environmental impact 

assessments, legal fees and all regulatory application charges required before construction may 

begin. The cash‐outflow appears early in the schedule and therefore strongly influences the 

model’s financing drawdown. Values are taken from partner project‐management budgets and 

verified against third-party permitting consultants’ quotations. 

●​ Turbine cost:  The procurement price of nacelles, blades, towers and spares is recorded under 

this line. It drives the largest single slice of upfront investment and sets the baseline for 

depreciation in the cost ledger. Prices are imported from turbine-supply agreements or, where 

contracts are not yet signed, from vendor term sheets collated by the engineering leads. 

●​ Platform cost: Platform cost refers to the fabrication of steel or concrete floating substructures 

sized for the reference 15 MW turbine class. The figure feeds into construction-phase cash flows 



and is needed to calculate interest during construction. Estimates come from competitive 

tenders received by the marine-structures work package. 

●​ Anchoring and mooring cost: This variable covers drag-embedment anchors, chain or synthetic 

lines, load shackles and associated installation consumables. Because mooring layout varies by 

bathymetry, the cost serves as a key sensitivity input for deep-water pilots. Data is supplied in 

the mooring-engineering template completed by each site partner. 

●​ Installation cost: All vessel spreads, port fees, heavy-lift day rates and offshore commissioning 

services are aggregated here. Installation expenditure establishes the final milestone for 

capitalisation of interest and thus affects total financing cost. The numbers originate from 

logistics schedules prepared by the balance-of-plant contractor. 

●​ Intra-array cables cost: Procurement and lay of inter-turbine medium-voltage cables appear 

under this heading. The cost influences both CAPEX and subsequent electrical-loss assumptions. 

Lengths and unit rates are provided by the electrical-systems package based on cable-routing 

studies. 

●​ Export cable cost: This item records high-voltage export cable supply, seabed trenching and 

landfall works up to the grid substation. It is required to capture grid-connection CAPEX and any 

associated contingency funds. Figures come from grid-connection budgets and are cross-checked 

against transmission-system-operator benchmarks. 

While the OPEX is  the summation of the following variables3: 

●​ Fixed operations cost: Fixed operations cover control-room staffing, marine coordination, 

insurance premiums and other costs that do not scale with output. They establish a baseline 

annual charge applied from the first full year of service. Data are pulled from operator 

business-plan spreadsheets submitted during the partner survey. 

●​ Fixed maintenance costs: These are scheduled preventive tasks—annual inspections, gearbox oil 

exchange campaigns and statutory certification fees—that occur regardless of turbine 

availability. The costs influence long-term cash-flow stability and are gathered from 

original-equipment-manufacturer maintenance manuals and service-contract drafts. 

●​ Variable operations and maintenance costs: Unplanned corrective works—component 

replacements, vessel call-outs and unscheduled crane hire—are entered here. The item 

introduces stochastic spread to lifetime OPEX, as failure rates vary with turbine ageing. Baselines 

are taken from historical failure statistics provided by the operations partner and checked 

against offshore-wind reliability databases. 

Levelised Cost of Energy (LCOE) - General model 

The Levelized Cost of Energy (LCOE) is a metric that measures the average cost per unit of electricity 

generated over a project’s lifetime. In essence, it is defined as the ratio of the total discounted costs of a 

power plant to the total discounted energy output over its lifetime. All relevant life-cycle costs are 

included from upfront capital expenditures (CAPEX) (e.g. development and construction) to ongoing 

3 https://guidetoanoffshorewindfarm.com/wind-farm-costs/ 



operating expenditures (OPEX) (operations and maintenance). Both the costs and the electricity 

generation are expressed in net present value (NPV) terms by discounting future cash flows and outputs 

to today’s value. This ensures that later-year costs or generation (which are less valuable due to the time 

value of money) are appropriately weighted in the calculation. The result is typically given in currency 

per energy unit (e.g. £/MWh or EUR/MWh), allowing a comparison of different generation technologies 

on a “cradle-to-grave” cost basis. The LCOE formula is given by: 
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Where CAPEX is the capital expenditure, OPEX is the annual operating and maintenance costs of the 

plant during its operational years, E is the energy production of the FOWT and WACC is the weighted 

average cost of capital, a proxy for the discount rate.  

However, note that when LCOE is used without taking into account future uncertainties such as changes 

in OPEX, Inflation rate, interest rates and wind turbine energy production degradation it becomes 

misleading (H. Amlashi and C. Baniotopoulos (2024)). For floating offshore wind farms, many key inputs 

(from capital cost to energy yield) are uncertain and can vary significantly over a project’s lifecycle. To 

address this, we have developed probabilistic or stochastic LCOE methodologies that treat input 

parameters as random variables rather than fixed values. The general approach is to perform a Monte 

Carlo simulation: 

●​ Instead of a single OPEX value, a probability distribution is assigned to reflect its uncertainty. For 

example, we might assume a ± 20% variability in OPEX around a mean estimate. Each simulation 

run draws a random value from these distributions. 

●​ Likewise, annual energy production can be treated probabilistically. Wind speed variation is 

commonly modelled with a Weibull distribution, and combined with turbine power curves to 

derive a distribution for the capacity factor or annual output. This accounts for inter-annual 

variability in wind resource, turbine performance, and array losses. 

●​ The model then calculates an LCOE for each simulation run (using the same formula as above but 

with that run’s sampled inputs). After a thousand runs, we obtain 1000 paths for LCOE outcomes 

rather than a single value. This distribution is then summarized with statistics (median, 95% 

confidence interval bounds) to indicate the range of possible LCOE values and their likelihood. 

Moreover, treating inputs as random variables allows analysts to identify which uncertainties drive the 

LCOE the most (via sensitivity analysis). Some key uncertain parameters in floating offshore wind LCOE 

analyses include: 

●​ Operational Expenditure (OPEX): Yearly O&M and operational costs can fluctuate (e.g. 

unexpected maintenance, vessel costs, insurance). Because OPEX recurs every year, its 

uncertainty can compound. Studies have found that variation in OPEX can significantly 

influence LCOE in fact, one probabilistic analysis showed the LCOE distribution was more 

sensitive to OPEX assumptions than to CAPEX or decommissioning costs. This is intuitive, as 

higher-than-expected ongoing costs each year will directly increase the average cost per MWh. 



●​ Capacity Factor: This is often the single largest driver of LCOE uncertainty for wind. The capacity 

factor depends on wind resource quality, turbine performance, and array effects. If actual winds 

are lower than predicted (or turbine downtime higher), the energy output drops, driving LCOE 

up (since costs are then spread over fewer MWh). Probabilistic LCOE models treat capacity 

factor or annual energy as a distribution – e.g. using wind speed probability distributions or a 

range of possible loss factors. A small absolute change in capacity factor (say 5% lower) has a 

direct proportional increase in LCOE, making this a critical uncertainty to capture. 

●​ Discount Rate: The discount rate (often related to the project’s financing or Weighted Average 

Cost of Capital) has a strong effect on LCOE because it alters the present value of future costs 

and generation. Higher discount rates give less weight to long-term outputs, effectively raising 

LCOE for capital-intensive projects. Different organizations use different discount rates for 

offshore wind, reflecting varying risk and financing assumptions. In a sensitivity analysis, 

applying a higher discount rate will increase LCOE, while a lower (or subsidized) rate lowers it, all 

else equal. Therefore, scenarios examining variation in the discount rate are important. Some 

researchers have even proposed alternative risk-adjusted discounting or certainty-equivalent 

methods to better account for project risk in LCOE calculations (Soojin et al. (2021), underscoring 

that how we handle the discount rate can noticeably change the outcome. In our analysis we 

proxy the discount rate using an annual WACC. 

In practice, a probabilistic LCOE evaluation for a floating wind farm would proceed by assigning each of 

the above factors a reasonable range or distribution (based on empirical data or expert judgment), then 

running simulations. The outcome is often presented as a probability density or cumulative probability 

curve of LCOE. This provides valuable information to decision-makers: for example, the probability that 

LCOE will fall below a certain target, or the confidence interval for the expected LCOE. It also enables 

tornado charts or other sensitivity outputs to rank which uncertainties contribute most to LCOE 

variance. In summary, while the traditional (deterministic) LCOE formula gives a single-point estimate 

useful for baseline comparison, incorporating stochastic methods and uncertainty analysis yields a 

more robust evaluation methodology for floating offshore wind farms. This comprehensive approach 

aligns with recent academic recommendations to support better risk-informed investment decisions and 

policy planning in the offshore wind sector. 

Weighted Average Cost of Capital (WACC) 

The Weighted Average Cost of Capital (WACC) represents the average rate of return that a 

project must pay to its capital providers (debt and equity holders). It is a foundational input in 

project finance modelling, determining how future cash flows are discounted and thus 

influencing metrics like the levelized cost of energy (LCOE) and investor returns. In the context 

of floating offshore wind farms, which are capital-intensive and relatively new, accurately 

evaluating WACC is crucial. The U.S. National Renewable Energy Laboratory (NREL) provides 

widely respected guidance on WACC through its Annual Technology Baseline (ATB) and 

financing publications. These resources outline how to compute WACC and integrate it into 

renewable energy financial models. According to NREL’s ATB, WACC is used as the discount rate 

in LCOE calculations, feeding into the capital recovery factor that annualizes capital costs. This 



section develops a detailed WACC evaluation methodology for floating offshore wind, explaining 

how WACC is computed, how it factors into LCOE and return on equity (ROE) calculations, and 

how debt and equity costs under a given capital structure are accounted for. We also discuss the 

limitations of using a static WACC in offshore wind models and explore methods to incorporate 

dynamic or annual WACC in probabilistic analyses. In financial terms, WACC is the blended cost 

of a project’s financing, weighted by the proportion of debt and equity in the capital structure. 

The WACC is calculated as: 
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Where: 

●​ i = nominal interest rate, 

●​  = inflation rate,  π
●​ DF = debt factor,  

●​ ROE = Return on Equity,  

●​ r = real interest rate 

●​ R = corporate tax rate 

While WACC represents the discount rate, the return on equity (ROE) is a component of WACC that 

represents the equity investors target internal rate of return. Equity investors typically target a certain 

IRR (internal rate of return) on their invested capital, which we refer to as the cost of equity in the WACC. 

In a project finance model, analysts often solve for the feed-in tariff that yields a target ROE for equity 

investors, given assumptions about debt terms. The ROE feeds into the WACC. It’s important to clarify 

that WACC is not the same as ROE, but a composite. For a highly leveraged project, the WACC will be 

much lower than the equity’s required return, because cheaper debt capital dominates the mix. 

Conversely, for a project financed mostly with equity, WACC approaches the equity return. For floating 

offshore wind projects, which might initially involve somewhat higher risk, equity investors could 

demand higher returns, but if substantial debt financing is available at moderate interest, the WACC 

could still remain in single digits. Financial models ensure consistency between WACC and ROE by linking 

them through capital structure.  

Fixed WACC vs time-varying WACC: 

A single, unchanging WACC is straightforward to apply in LCOE applications, yet it obscures fundamental 

realities that shape financing costs for floating-offshore wind. First, the risk profile of a project does not 

stay fixed. Capital is most expensive during construction, when technology and schedule uncertainties 

dominate; once turbines have been commissioned and power is flowing under a long-term contract, the 

same project can refinance on markedly better terms. Treating WACC as constant therefore overstates 

the cost of capital in later, de-risked operating years and understates it in the risk-laden build phase. 

Second, WACC moves with the macro-economy and is affected by Interest-rate cycles, inflation surprises, 

tax rates and ROE. Therefore, a static WACC cannot capture these dynamics. Also, a fixed discount rate is 



deterministic. It provides no way to express uncertainty in future operating costs, leaving analysts blind 

to how much levelized-energy cost (LCOE) might rise or decrease in the future. A more realistic 

modelling lets WACC vary. One option is a time-varying approach which apply a stochastic treatment 

representing the cost of debt, target return on equity and debt fraction as probability distributions and 

sample them in a Monte Carlo simulation, producing a distribution of WACC values and, by extension, a 

distribution of LCOE. Advanced studies may go further by linking these WACC draws to other variables 

such as higher inflation can raise nominal WACC yet also index tariff revenues so that each simulated 

future remains internally consistent. Any of these methods adds limited complexity but yields a far richer 

and more credible picture of financing risk for floating-offshore wind than a single, static discount rate. 

Return on Equity 

Return on Equity  (ROE) measures the annual return that project shareholders earn on the capital they 

have invested. ROE is expressed as 
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 𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟 𝑒𝑞𝑢𝑖𝑡𝑦 =  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑏𝑦 𝑜𝑤𝑛𝑒𝑟𝑠 =  𝐶𝐴𝑃𝐸𝑋 *  𝐸𝑞𝑢𝑖𝑡𝑦 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Where Hr = number of hours per year, Capacity factor refers to the actual energy produced by a power 

plant over a specific period to the maximum possible output if the plant, CAPEX is the Capital 

expenditure, OPEX is the operating and maintenance expenditure during the operation years of the 

FOWT plant, and  WACC is the discount rate. 

Capacity Factor 

Annual wind power production 

The capacity-factor workflow begins by describing the site wind climate with a Weibull 

probability-density function. The shape parameter, k, controls how sharply the annual wind-speed 

distribution peaks: larger values yield a narrower range of speeds and therefore a steadier resource. For 

each pilot, k is calculated year-by-year from ten years of hourly hub-height data downloaded from the 

New European Wind Atlas (NEWA). Where a full decade of measurements is still being compiled, an 

interim default is assigned from the ten-year mean at an offshore grid cell that best matches the licence 

area; typical defaults span roughly 1.9 in the Sicily Strait to about 2.3 in the central North Sea, and are 

replaced as soon as site-specific records become available. The scale parameter, C, is estimated 

alongside k from the same NEWA data set and anchors the distribution to the observed speed range, 

thereby dictating the absolute level of expected energy capture. A third meteorological input, the 

average hub-height wind speed, v̅, is read directly from the interactive NEWA map. Although it plays no 

direct role in the Monte-Carlo draws, v̅ provides an important cross-check on the plausibility of the fitted 

Weibull parameters and offers a fallback estimate of energy yield should the parameter fit prove 

unstable. Note that due to the complexity of modeling year-to-year variability in these parameters, the 

Box-Muller transformation [G. E. P. Box and Mervin E. Muller, A Note on the Generation of Random 



Normal Deviates, The Annals of Mathematical Statistics (1958), Vol. 29, No. 2, pp. 610–611] was used to 

generate a multi-year synthetic dataset of Weibull parameters. This method allows for the generation of 

pairs of normally distributed, independent random numbers with zero mean and unit variance. Each 

parameter was assumed to follow a normal distribution centered around its 10-year mean, with 

variability limited to within two standard deviations. Using the random sequences obtained through the 

Box-Muller method, multiple Weibull distributions were generated to represent interannual variations in 

wind resource at the site  calculated by the following: 

 

Turbine power-curve parameters 

Wind climate alone does not determine electrical output; the turbine’s aerodynamic response is 

encoded through five design variables. The rotor diameter sets the swept area that captures kinetic 

energy, while the hub height guarantees that the wind-speed data and the manufacturer’s power curve 

refer to the same elevation. Three threshold speeds—cut-in, rated (nominal) and cut-out—define the 

operating envelope; wind below the cut-in or above the cut-out produces no power, and between those 

limits the curve rises to its rated plateau. The generator-system efficiency then converts aerodynamic 

power into electrical output through a uniform scalar adjustment. Long-term performance decay is 

represented by an ageing factor that reduces the entire power curve by a fixed proportion each year, 

reflecting empirical evidence from operational offshore fleets. Together, these variables map every 

hourly wind speed generated by the Weibull model to an instantaneous electrical power value. The 

shape and scale parameters are given by:  

 

 



 
For each synthetic year, wind distributions were used to simulate the expected power production from a 

turbine at hub height. The turbine model selected for this study was the IEA-15-240-RWT 

(https://github.com/IEAWindSystems/IEA-15-240-RWT), which defines the expected power output as a 

function of wind speed at hub height. The power curve of the turbine was implemented following the 

methodology described in [RDS Lanni 2023], based on the following equation: 
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Where  is the air density at hub height, A is the rotor swept area, y is the yearly overall efficiency of the 

turbine, CP(V) is the power coefficient at wind speed v, and v is the wind speed at hub height.In our 

analysis the input data used for the turbine model are the same as those provided by the IEA task that 

developed the IEA-15-240-RWT reference turbine. These data are publicly available on GitHub. The 

specific values adopted for this analysis are summarized in the table below: 

Parameter Value Unit 

Turbine Size 15 MW 

Rotor_diameter 242.237756
5 m 

Cut-in Wind Speed 3 m/s 

Nominal Wind Speed 10.8677069
4 m/s 

Cut-out Wind Speed 25 m/s 

https://github.com/IEAWindSystems/IEA-15-240-RWT


Hub Height 150 m 

Generator_Rated_efficienc
y 

0.95897999
2 % 

 

Plant-level configuration parameters 

To estimate the LCOE of an offshore wind farm, we define the size of the plant in terms of the number of 

turbines it comprises. Accordingly, the expected energy production must be calculated, accounting for 

realistic system losses typically expressed as a percentage of gross production. Additionally, to account 

for the degradation in turbine performance over time—an effect documented in multiple studies—an 

aging factor was introduced in the computational tool. This factor directly affects the turbine’s power 

curve efficiency, which nominally is around 0.959 as reported in Table 2. According to Mathew et al. 

(2022) in "Estimation of Wind Turbine Performance Degradation with Deep Neural Networks", a 

degradation rate of approximately 0.64% per year was observed in Norway, consistent with trends 

identified in the UK and US. Assuming a 30-year operational lifetime for an offshore turbine, the 

resulting reduction in the power curve was implemented in the model as shown in the figure below. 

  



To compute the annual Capacity Factor (CF) for each year, the generated power (derived from the power 

curve) was multiplied by the expected occurrences of each wind speed value as described by the annual 

Weibull distributions. The CF for year y is computed using the following integral: 
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Where  is the turbine power output at wind speed v, adjusted for year y including degradation, 𝑃
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the trapezoidal method, requiring the definition of a sufficiently small wind speed step . In this ∆𝑣
implementation, a step size of 0.01 m/s was found to provide good convergence without incurring 

excessive computational cost. A 20-year simulation was then conducted using the described input 

parameters.  

Empirical study 

Data input 
For the UK, we use the Kincardine floating offshore wind farm as our case study for the comprehensive 

LCOE evaluation model. The table below provides the initial data input required to conduct the 

simulation analysis for the UK and the kincardine specific input variables. The initial inflation rate (3.8%, 

bounded 0–10%, truncated normal) establishes the price index used to move between nominal and real 

terms. It works in tandem with the interest rate to derive the real cost of debt and to apply the tax shield 

correctly in the discount rate. The interest rate on debt (7.4%, bounded 0–14%, truncated normal) sets 

the coupon on project borrowing; together with the equity share and the corporate tax rate, it 

determines the year‑by‑year weighted average cost of capital (WACC) used for discounting. The feed‑in 

tariff (271 per MWh in the selected currency) defines the unit revenue applied to net energy, so it is the 

anchor for the income side of the cash‑flow. The corporate tax rate (25%) is used to transform pre‑tax 

operating surplus into after‑tax income and to calculate the after‑tax cost of debt in WACC. 

Wind resource and energy yield.​
 The capacity factor is not imposed directly; it is generated from the site’s wind regime using a Weibull 

representation. The Weibull shape (k = 2.23) and Weibull scale (c = 11.329) are the inputs to the 

Weibull probability density used to describe hub‑height wind speeds. These parameters are mapped 

through the turbine power curve (with the tool’s aging and loss allowances) to produce annual energy 

and, hence, the effective capacity factor. The table also lists an annual production loss (0.064%), which is 

a gross‑to‑net adjustment applied after aggregating turbine output to the farm level (e.g., electrical or 

availability losses). Finally, the number of turbines (6) provides a cross‑check on plant configuration and 

underpins any per‑turbine calculations embedded in the power‑curve integration. 



Project configuration and horizon.​
The farm capacity (50 MW) sets the physical scale for both energy and cost scaling (e.g., converting 

per‑MW OPEX to plant totals). The operational life (25 years) defines the analysis horizon for 

discounting, shaping the relative influence of early versus late cash flows in the LCOE ratio and the 

evaluation of financing metrics over time. 

Capital and operating costs.​
CAPEX (£7,600,000) identifies the initial investment to be recovered through the levelised cost. In the 

financing block it is also used, together with the equity share, to size the debt and equity contributions at 

financial close. (If this figure is intended per MW rather than total, it should be labelled accordingly; 

otherwise the model treats it as a project‑total.) OPEX is specified per MW‑year with an initial value 

(£190,000 MW⁻¹ yr⁻¹) and admissible interval (£79 to £270 MW⁻¹ yr⁻¹, truncated normal). In the 

calculations, a per‑MW value within this interval is used for each operating year, then scaled by 50 MW 

to obtain the plant’s annual operating cost. Providing both a central value and bounds ensures that 

annual operating costs remain within plausible limits while still reflecting site‑specific uncertainty 

captured in the O&M literature for offshore wind. 

Capital structure.​
The equity share (initially 18%, bounded 5–80%, beta distribution) sets the financing mix at financial 

close and, with the interest rate and tax rate, determines WACC. Lower equity shares (higher leverage) 

tilt the discount rate closer to the after‑tax cost of debt; higher equity shares tilt it toward the equity 

return. The use of a beta distribution is appropriate because equity share is a proportion confined to 

[0,1], and the stated bounds reflect typical ranges observed in project finance for offshore wind. 

Macroeconomic data for the UK 

 Initial value Lower bound Upper bound Distribution 
density 

Inflation rate 3.8% 0% 10% Truncated normal 
distribution 

Interest rate on 
debt 

7.4% 0% 14% Truncated normal 
distribution  

Feed in Tarif 271    

Tax rate 25%    

Capacity factor  

Weibull Shape 
factor 

2.33   Weibull partial 
distribution 

function 



Weibull scale 
factor 

11.329   Weibull partial 
distribution 

function 

Number of 
turbines 

6    

Annual 
production loss 

0.064%    

Site specific data 

Capacity of the 
Farm 

50 mw    

Operational years 
of the farm 

25    

CAPEX £ 7,600,000    

OPEX £200,000 
MW/year 

£79 MW/year £270 MW/year Truncated normal 
distribution 

Equity share 18% 5% 40% Random Beta 
Distribution 

 

Macroeconomic variables simulation results 

Inflation rate 

The median inflation path is broadly flat at about 3.6% throughout the horizon, easing only slightly to 

3.55% by year 20. The interval between the lowest and highest values widens over time—from 

3.08–4.27% in year 1 to 1.65–6.93% by year 20—showing that more extreme outcomes become possible 

in later years. In the model, inflation interacts with the nominal debt rate to form the real cost of debt 

and therefore influences WACC. When prices run higher without matching revenue indexation, operating 

cash margins compress in nominal terms and ROE can soften; if indexation is aligned on both revenue 

and key cost lines, inflation mainly flows through the real/nominal conversion with little effect on real 

LCOE. 



 

 Inflation rate %  simulations UK 

Year median min max 

1 3.60038 3.08 4.27 

2 3.59843 2.74 4.42 

3 3.59538 2.53 4.73 

4 3.58833 2.48 4.77 

5 3.59445 2.42 5.24 

6 3.59623 2.41 5.23 

7 3.58167 2.34 5.35 



8 3.57566 2.25 5.45 

9 3.58248 2.07 5.69 

10 3.58636 2.17 5.83 

11 3.58486 2.04 5.89 

12 3.57735 1.99 5.89 

13 3.58025 2.07 6.22 

14 3.57237 1.75 6.42 

15 3.57861 1.8 6.74 

16 3.57974 1.68 6.8 

17 3.5724 1.7 6.94 

18 3.56358 1.77 6.77 

19 3.56738 1.84 6.91 

20 3.55394 1.65 6.93 

 

Interest rate on debt 

Borrowing costs start near 7.40% and drift a touch lower to about 7.33% by year 20, while the upper end 

of the range allows for stress years (roughly 12–13% mid-life) and the lower end stays close to 4%. 

Because debt is a large share of the capital stack, even modest changes in the coupon move the after-tax 

cost of debt and therefore WACC. Higher-rate years push up debt service and reduce residual cash to 

equity, lowering ROE in those years. A lower coupon has the opposite effect and, via a lower WACC, 

tends to reduce LCOE by down-weighting long-dated costs and valuing later MWh more. 



 

 

 

 Interest rate on debt - UK 

Year median min max 

1 7.39601 6.31 8.83 

2 7.39798 5.59 9.23 

3 7.40204 5.35 9.51 

4 7.38807 5 9.88 

5 7.41279 4.88 9.85 

6 7.40969 4.91 10.13 



7 7.39836 4.83 10.5 

8 7.41813 4.71 10.95 

9 7.42496 4.54 11.12 

10 7.43321 4.6 11.18 

11 7.43801 4.1 11.64 

12 7.42417 4.41 11.85 

13 7.41814 4.28 11.96 

14 7.40043 4.27 12 

15 7.39872 4.04 12.4 

16 7.38994 4.11 12.35 

17 7.37282 4.1 13.43 

18 7.35604 4.05 12.66 

19 7.33432 4.06 13.3 

20 7.32949 4 12.45 

 

Equity fraction 

The average equity share declines steadily from about 30% in year 1 to about 24% by year 20, bounded 

within 10–40% each year. This tilt toward debt increases the weight of cheaper, tax-shielded capital and 

is a principal reason the model’s WACC falls over time. The smaller equity base also amplifies percentage 

movements in ROE for a given cash-flow swing, contributing to wider ROE tails in some years. On LCOE, 



the increased use of debt typically lowers the discount rate applied to future costs and energy, 

which—other things equal—pulls LCOE down and partly offsets the effect of ageing on generation. 

 Equity fraction - UK 

Year median min max 

1 29.8508 13.95 40 

2 29.17115 10 40 

3 28.8296 10 40 

4 28.21686 10 40 

5 27.76798 10 40 

6 27.13349 10 40 

7 26.5551 10 40 

8 26.01154 10 40 

9 25.45398 10 40 

10 25.42682 10 40 

11 25.14965 10 40 

12 24.79131 10 40 

13 24.70866 10 40 

14 24.75405 10 40 



15 24.36058 10 40 

16 24.35178 10 40 

17 23.87881 10 40 

18 23.93609 10 40 

19 23.71688 10 40 

20 23.87141 10 40 

 

Capacity factor 
median capacity factor declines smoothly from roughly 50.0% in year 1 to about 43.5% in year 20. The 

minimum and maximum values also ease downward (for example, maxima contract from ~53.9% to 

~46.9%), indicating that the upside envelope narrows with age. Because many cost items are 

quantity-independent, lower CF spreads fixed and quasi-fixed costs over fewer MWh, raising the unit 

cost of energy. In the model, this late-life erosion in CF places upward pressure on LCOE; the concurrent 

decline in WACC partly counterbalances that pressure by reducing the present-value weight of 

long-dated costs and valuing later-year energy more favourably. 



 

Capacity factor 

Year median min max 

1 49.95074 45.76 53.88 

2 49.57269 45.52 53.52 

3 49.1352 45.15 52.64 

4 48.7711 44.98 52.8 

5 48.52352 44.54 52.44 

6 48.14211 44.24 52.07 

7 47.8833 43.93 51.39 



8 47.46682 43.73 51.36 

9 47.13443 43.45 51 

10 46.80643 43.1 50.41 

11 46.49569 42.71 50.28 

12 46.20908 42.62 49.67 

13 45.82782 42.1 49.56 

14 45.51684 41.79 49.2 

15 45.2264 41.67 48.79 

16 44.87533 41.26 48.3 

17 44.6269 41.06 47.99 

18 44.15487 40.57 47.59 

19 43.89964 40.47 47.36 

20 43.47509 39.99 46.92 

 

Production and Performance Degradation: The declining capacity factor (about 14% relative drop over 

the project life) has a compounding effect on economics. In early years, the farm yields ~218 GWh 

annually (enough for ~55,000 homes), but by the late 2040s annual output falls closer to ~190 GWh due 

to turbine aging and possibly more frequent maintenance outages. This gradual decline, combined with 

any escalation in O&M costs (modeled via the OPEX distribution), means that later years contribute less 

net revenue and relatively higher expenses. The simulation tracks this year-by-year, so the internal rate 

of return on equity (ROE) in each scenario reflects not just upfront costs, but also the mid-life 

performance slump. In scenarios with unfavorable winds or high downtime, the ROE may drop sharply in 

later years, whereas in benign scenarios the project continues to generate solid cash flows well into its 

second decade. These dynamics are entirely missed in a static LCOE calculation, which would assume a 



constant average capacity factor and cost structure. By explicitly modeling performance deterioration, 

our method provides a more realistic risk-adjusted cost of energy for long-lived assets like floating wind 

farms. 

OPEX 
Average OPEX moves down early from about £158k/MW-yr in year 1 to a stable level near £190k/MW-yr, 

with a tight band around that median across the horizon. Because OPEX recurs annually, its level 

materially shapes the present-value cost numerator of LCOE. The quick convergence to a stable level and 

the narrow band limit the contribution of OPEX to LCOE dispersion. Years that combine lower CF with 

higher OPEX are the most demanding for equity cash flows, often coinciding with lower ROE; conversely, 

steady OPEX helps preserve margins and supports the WACC reductions obtained from the 

capital-structure shift. 

OPEX - UK 

Year median min max 

1 207810.5 167409.6 223995.3 

2 198375.1 164098.4 223993.6 

3 195939.5 164030.3 223998 

4 194619.3 164034.8 223996.6 

5 194109.5 164122.6 223875.6 

6 193461.9 164005.5 223971.8 

7 194065.5 164001.8 223868.9 

8 193837.7 164025.2 223995.3 

9 194386.1 164028.2 223885.9 

10 194546.8 164127.5 223959.7 



11 194982 164220.6 223974.4 

12 194143.4 164016.3 223890.2 

13 194051.6 164016 223958.3 

14 194034.8 164076.7 223971.3 

15 194232.1 164020.8 223979.4 

16 194378.8 164114.2 223997.6 

17 194116.8 164054.5 223814.6 

18 193785 164068.6 223999 

19 194117.1 164314.5 223994.7 

20 193825.6 164247.9 223958.1 

WACC 
The discount rate falls from about 10.82% in year 1 to roughly 7.47% by year 20, with narrower tails in 

later years. This pattern reflects the combination of slightly easing coupons, higher debt weight as the 

project matures, and a lower perceived operating risk after commissioning. A lower WACC reduces LCOE 

by decreasing the present-value weight of cost streams that occur far in the future and by assigning 

more value to later-year MWh. It also cushions the LCOE impact of the gradual decline in CF, which is 

why the model’s lifetime LCOE distribution remains relatively concentrated around the reported median. 



 

WACC - UK 

Year median min max 

1 10.81904 9.23 12.15 

2 10.69191 9.02 12.03 

3 10.48912 8.87 12.14 

4 10.27825 8.52 11.88 

5 10.10157 8.58 11.61 

6 9.89447 8.25 11.54 

7 9.70326 7.93 11.52 



8 9.48833 8.02 11.17 

9 9.28696 7.71 11.06 

10 9.11028 7.66 11.12 

11 8.9338 7.33 10.8 

12 8.77662 7.39 10.56 

13 8.58685 7.2 10.25 

14 8.41744 6.93 10.72 

15 8.2648 6.73 9.89 

16 8.09395 6.66 9.97 

17 7.95639 6.46 9.85 

18 7.76468 6.26 9.56 

19 7.63154 6.32 9.53 

20 7.46757 5.9 9.27 

 ROE 
median ROE begins high—around 18–19% in the early years—and trends down to about 9% by year 20, 

with widening dispersion and occasional negative outcomes in late life. The pattern is consistent with 

healthy early-life margins when CF is strongest, followed by thinner residual cash as CF eases and OPEX 

continues, with debt-service requirements varying by interest-rate realisation. ROE itself does not enter 

the LCOE calculation, but decisions taken in response to ROE pressure—such as refinancing to lower debt 

cost or modestly adjusting leverage—feed back into WACC and thus affect LCOE. In aggregate, the results 

show CF ageing nudging ROE lower over time, while financing improvements and contained OPEX help 

stabilise returns and keep lifetime LCOE close to the ~£195/MWh median. 



 

ROE - UK 

Year median min max 

1 18.82736 12.98 41.04 

2 19.39916 11.71 49.59 

3 19.43319 11.07 49.09 

4 19.41251 10.46 49.13 

5 19.14202 9.08 48.47 

6 18.67737 9.13 49.14 

7 18.30325 7.89 47.5 



8 18.0075 2.88 48.7 

9 17.5069 -5.96 46.79 

10 16.48202 -10.29 48.95 

11 15.94025 -4.29 41.69 

12 15.26984 -10.6 45.98 

13 14.56513 -10.9 42.03 

14 13.89889 -12.38 46.86 

15 12.9345 -14.01 43.53 

16 12.24388 -11.99 40.57 

17 11.6831 -14.48 44.51 

18 10.70988 -14.61 37.13 

19 10.0769 -12.94 37.43 

20 9.0773 -14.23 37.72 

 

LCOE 
The table below presents the LCOE analysis for the Kincardine floating offshore wind farm (UK). Results 

reflect multiple future economic scenarios—including variations in inflation, debt costs, capital structure, 

and tax—together with the expected deterioration in wind-turbine electricity generation over time 

(capacity-factor decline and operational losses). The model LCOE is reported alongside a fixed-charge 

simplified LCOE for benchmarking, while the accompanying WACC and ROE ranges summarise financing 

and equity-return conditions consistent with those scenarios. Taken together, these indicators provide a 

decision-grade view of Kincardine’s levelised cost of energy under plausible macro-financial paths and 



performance ageing, showing how changing discount rates, operating costs, and gradual reductions in 

net MWh combine to shape the project’s lifetime unit cost of electricity. the model LCOE for Kincardine 

centres at £194.78/MWh, with a minimum of £173.01/MWh and a maximum of £209.61/MWh across 

the simulated futures. This band is consistent with a setting where two forces largely counterbalance: (i) 

a gradual reduction in annual net MWh due to turbine performance ageing and operational losses; and 

(ii) improving financeability over time, reflected in lower effective discount rates. The result is a 

distribution that is neither excessively tight (ignoring risk) nor overly wide (suggesting instability). The 

simplified NREL LCOE of £202.17/MWh sits above the model median because a fixed-charge calculation 

does not incorporate year-by-year movements in leverage, interest costs, and discounting that the 

MARINEWIND analysis applies to cash flows. 

The WACC summary shows a median of 8.60% with a range of 6.57–10.93%. Scenarios at the lower end 

correspond to conditions with stronger debt capacity and moderate coupons, which increase the present 

value of later-life energy and temper the cost impact of ageing. Scenarios at the upper end capture 

periods of tighter credit or higher coupons, which raise the cost of capital and shift LCOE toward the top 

of the reported range. 

The ROE distribution—median 13.35%, 1.40–28.93%—reflects how residual cash to equity evolves once 

debt service and operating costs are met under the same economic and performance trajectories. 

Higher-return cases align with years that combine favourable borrowing terms and stronger generation; 

lower-return cases coincide with weaker output and/or costlier debt. Importantly, even the lower tail 

remains positive on a lifetime basis, indicating that the project’s equity performance is preserved across 

the plausible scenarios evaluated, while the LCOE remains concentrated at just under £200/MWh when 

both macroeconomic variability and expected generation losses are considered. 

 

Model Median Minimum Maximum 

LCOE £227.16 £215.37 £249.61 

simplified LCOE £238.20 £238.20 £238.20 

WACC 8.69% 6.57% 10.93% 

ROE 13.35% 1.40% 28.93% 

 

CfD strike price 
Given the assumed strike price of £271/MWh (indexed), the project’s equity investors would enjoy 
robust returns in most scenarios. The distribution of realized ROE has a median of 13.35%, with most 
outcomes between ~1.4% and ~28.9%. This wide range reflects how sensitive equity returns are to 
underlying conditions: in a handful of simulations, severe downside combinations (high costs, low 
output) yield ROEs in the low single digits – effectively near breakeven on equity. At the other extreme, if 



everything goes right (strong winds, low inflation, etc.), the fixed high strike price leads to windfall profits 
(ROE approaching 30%). Such variability highlights a core flaw of the UK’s current static strike price 
approach: a single fixed price will inevitably be “wrong” for many realized futures, either overly generous 
or insufficient. In the UK Allocation Round 5 (AR5) in 2023, for instance, the government’s Administrative 
Strike Price for floating wind was £116/MWh, which developers deemed far too low given inflation and 
supply chain costs. Our results corroborate this – £116 is well below even the lowest few percent of our 
LCOE distribution. Even the AR6 revised cap of £176/MWh would fall at roughly the 10th percentile of 
our LCOE range. Had we applied £176 in our Kincardine simulations, the median ROE would drop 
dramatically (likely into negative NPV territory), explaining the lack of participation by developers at 
those levels. Indeed, a recent government-commissioned review found that a floating project awarded 
£87.3/MWh (2012 prices, ~£104 in 2022 money) was unlikely to cover its costs. By contrast, the 
risk-adjusted method proposes a strike price grounded in the project’s probabilistic LCOE. In this case, 
one could justify a strike price on the order of £195–£205/MWh – roughly the median to 75th percentile 
of the LCOE distribution – to ensure a high probability of full cost recovery. For instance, £202/MWh (the 
simplified LCOE) can be seen as a benchmark: it is higher than the median because it implicitly cushions 
some risk. Setting a strike price around this level would significantly improve the expected outcomes for 
investors while avoiding undue profiteering. To illustrate, at a £200/MWh strike, our model indicates the 
project’s equity IRR would center around ~10% (with a tighter distribution), which is a reasonable reward 
for the risk profile. In contrast, at the government’s static £176 level, the model shows the project would 
more likely underperform, with a considerable chance of a negative net present value, deterring 
investment. 

Payoff   

The payoff analysis compares developer outcomes under the current UK CfD strike price and the strike 

price derived from the proposed methodology. Under the UK approach, the payoff distribution is skewed 

toward negative values, indicating a high probability that projects fail to recover costs or meet equity 

return targets. 

By contrast, the risk-adjusted strike price produces a payoff distribution centred around zero net present 

value, with substantially reduced downside risk. Although upside gains remain limited due to the 

symmetric structure of CfDs, the improvement in downside protection significantly enhances project 

bankability. From a policy perspective, this suggests that higher strike prices do not represent excessive 

subsidy, but rather a correction for the systematic underpricing of macroeconomic and financial risk in 

the current CfD framework. 

 



 



 
 

 



 

 
 

Conclusions: 

This study illustrates the technical and economic advantages of modeling time-varying LCOE 
and strike prices for renewable energy support schemes. By moving beyond static assumptions, 
we capture the reality that key drivers of project economics – inflation, interest rates, energy 
output, and operational costs – are not fixed, but fluctuate over a project’s life. Accounting for 
these dynamics yields a more accurate and risk-aware strike price. Technically, our approach 
treats the levelized cost of energy as a time series of cash flows subject to uncertainty, rather 
than a single expected value. This allows the strike price to be “risk-adjusted” in a rigorous way: 
instead of adding large safety margins or using outdated hurdle rates, we simulate those risks 
directly. The result is a pricing that adapts to real-world variations in cost of capital and 
performance. For example, rather than assume a constant 7.5% WACC, we let WACC evolve 



with market conditions – thus if interest rates spike, the model effectively raises the required 
strike price to compensate investors for the higher financing costs. Similarly, by incorporating 
turbine degradation and variability in wind, the method internalizes weather uncertainty: low 
wind years or faster performance decay will raise the computed LCOE, signaling the need for a 
higher strike price to maintain viability. This dynamic modeling is a clear improvement over the 
UK’s current static CfD approach, which has been hampered by inflexible assumptions. Recent 
allocation rounds have shown that when strike prices are set using historic cost data and 
neglecting current risks, projects either bid cautiously or not at all. Our findings support a shift to 
more nuanced, simulation-informed pricing that can adjust to new information and conditions. 

From a policy perspective, adopting a risk-adjusted, dynamic strike price methodology could 
greatly enhance the effectiveness of Contracts for Difference. One immediate implication is the 
potential for dynamic Administrative Strike Price (ASP) setting. Instead of a fixed cap derived 
from a static model (which may quickly become obsolete in volatile markets), regulators could 
use probabilistic models to update ASPs with each auction, reflecting the latest macroeconomic 
outlook (inflation, interest rates) and technology performance data. This would help ensure that 
strike price caps are neither too low (jeopardizing project viability) nor excessively high 
(over-subsidizing developers). In practice, a dynamic ASP might involve setting a base strike 
price that adjusts with certain indices or project benchmarks. For instance, the model could 
calculate a strike price distribution for a “typical” project at the time of auction and choose a 
percentile (e.g. P50 or P75) as the administrative cap. This is analogous to the yardstick 
approach suggested by Newbery (2023), where payments could be tied to a reference output or 
capacity factor rather than a fixed output, thereby decoupling support from actual generation 
and reducing distortions. While our proposal focuses on adjusting the price level itself via risk 
modeling, it complements these ideas: both aim to fine-tune CfD design to better align 
incentives and actual costs. By incorporating evolving cost-of-capital and output risks, the CfD 
mechanism can maintain investor confidence without sacrificing market efficiency. Indeed, a 
well-calibrated CfD that reflects dynamic risks would continue to shield investors from market 
price volatility (the classic benefit of CfDs), while also shielding investors and ratepayers from 
the unforeseen macroeconomic swings that can undermine projects or lead to windfall gains. 
This ensures that public support is used efficiently, targeting just the necessary level of subsidy. 

For investors and the renewable energy industry, the adoption of a dynamic risk-adjusted strike 
price is highly significant. It means greater assurance of viable returns and a lower risk of project 
failure. Under the traditional static CfD regime, developers faced a dilemma: accept a fixed 
strike price that might turn out insufficient if inflation rises or output underperforms, or refrain 
from investing (as seen in AR5’s offshore wind outcome). By contrast, a CfD determined via our 
methodology would reassure investors that all known risks have been accounted for in the 
contract price. The median expected return (e.g. ~10–12% ROE for a floating wind project with 
a strike around £200/MWh) would be built on solid assumptions, and the downside risk of, say, 
only 1–3% ROE would be greatly minimized. This risk alignment is crucial for attracting capital 
at scale: as Gohdes et al. (2022) observe, reducing revenue risk lowers the cost of capital and 
thus the cost of energy. In our case, by stabilizing cash flows against macroeconomic swings 
(through an adequate strike price), projects can leverage higher debt ratios confidently, lowering 
the weighted financing cost – exactly the effect Newbery’s incentive-compatible CfD is also 



designed to achieve (high debt-to-equity is made possible by assured revenue). Over the long 
term, this approach could make more projects bankable and accelerate deployment of emerging 
technologies like floating wind. Investors will be more willing to commit funds if they see that the 
contract terms are responsive to risk and not based on overly rosy or static projections. 
Furthermore, aligning strike prices with dynamic costs protects the government (and 
consumers) from systematic overpayment. Rather than adding a large arbitrary contingency to 
cover unknowns, the probabilistic method quantifies those unknowns, allowing for a balanced 
risk premium. In essence, capital is rewarded in proportion to the risks actually taken, and if 
conditions turn out better than expected (e.g. low inflation, high wind), the benefits accrue to 
ratepayers or the CfD counterparty rather than exclusively as excess profits to the generator. In 
conclusion, the integration of macroeconomic and performance-based simulation into CfD strike 
price setting offers a more resilient and efficient framework for renewable energy finance. 
Technically, it marries the precision of project finance modeling with the uncertainty-handling of 
Monte Carlo analysis, producing strike prices that reflect real project economics year by year. 
Policy-wise, it points to a more dynamic auction design – one that could prevent the kind of 
impasses observed in recent UK rounds by ensuring that price caps are neither naïvely low nor 
politically inflated, but grounded in evidence-based risk assessment. And from the investment 
standpoint, it promises a more stable environment where investors can achieve risk-adjusted 
returns and capital costs are minimized, ultimately lowering the subsidy burden required for the 
energy transition. The superior performance of the proposed method, as evidenced by the 
Kincardine case study, suggests that future CfD allocations would benefit from embracing these 
principles. By incorporating dynamic risk (inflation, interest rate swings), weather uncertainty, 
and the evolution of financial costs into strike price calculations, governments can better align 
renewable energy incentives with reality – ensuring both the success of projects and the 
prudent use of public funds. 
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