

Microglial Activation and Tau Accumulation in the Alzheimer's Disease Spectrum: Insights from Longitudinal PET Imaging

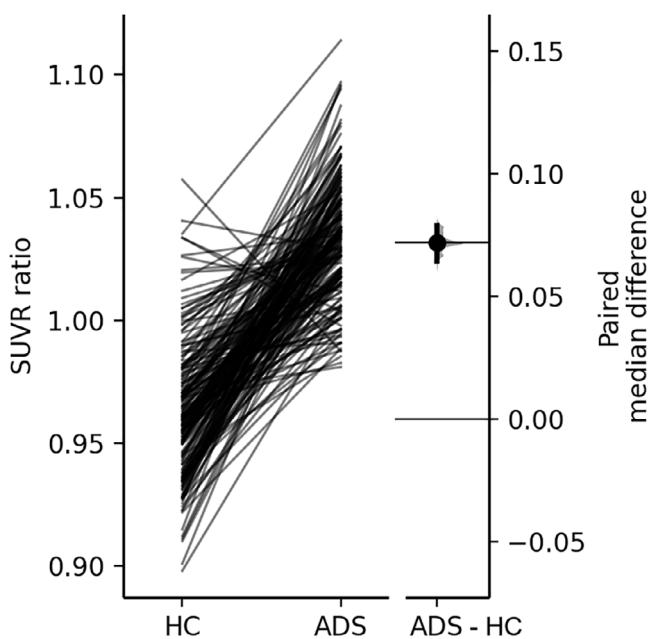
Marco Öchsner¹ | Matthias Brendel² | Nicolai Franzmeier³ |
 Lena-Katharina Trappmann⁴ | Mirlind Zaganjori⁵ | Ersin Ersözlü⁶ |
 Estrella Morenas-Rodriguez⁷ | Selim Üstün Guersel⁵ | Lena Burow⁸ |
 Carolin Isabella Kurz⁹ | Jan Haeckert⁸ | Maia Tato⁸ | Julia Utecht⁸ |
 Boris Papazov⁸ | Oliver Michael Pogarell⁸ | Daniel Janowitz⁴ | Katharina Buerger¹⁰ |
 Michael Ewers¹¹ | Carla Palleis¹² | Endy Weidinger¹³ | Gloria Biechele¹⁴ |
 Sebastian Schuster⁴ | Anika Finze¹⁵ | Florian Eckenweber⁴ | Rainer Rupprecht¹⁶ |
 Axel Rominger^{4,17} | Oliver Goldhardt¹⁸ | Timo Grimmer¹⁸ | Daniel Keeser⁴ |
 Sophia Stöcklein¹⁹ | Olaf Dietrich²⁰ | Peter Bartenstein²¹ | Johannes Levin²² |
 Günter U Höglinger²³ | Robert Perneczky²⁴ | Boris-Stephan Rauchmann^{25,26,27,28}

¹LMU, München, Bavaria, Germany²Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Bavaria, Germany³Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU, Munich, Bavaria, Germany⁴University Hospital, LMU Munich, Munich, Germany⁵LMU University Hospital, Munich, Germany⁶Klinik für Psychiatrie und Psychotherapie, Charité, Berlin, Bavaria, Germany⁷German Center for Neurodegenerative Diseases (DZNE) and Metabolic Biochemistry, Biomedical Center (BMC), Munich, Germany⁸Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Bavaria, Germany⁹Department of Psychiatry and Psychotherapy, LMU Hospital, LMU Munich, Munich, Germany¹⁰Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany¹¹Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany¹²Department of Neurology, Klinikum der Ludwig-Maximilians Universität München, Munich, Bavaria, Germany¹³Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Bavaria, Germany¹⁴University Hospital of Munich, Munich, Germany¹⁵University Hospital, Ludwig-Maximilians-Universität, Munich, Germany¹⁶University of Regensburg, Regensburg, Germany¹⁷Inselspital Bern, Bern, Switzerland¹⁸Technical University of Munich, School of Medicine and Health, TUM University Hospital, Center for Cognitive Disorders, Munich, Bavaria, Germany¹⁹Department of Radiology, University Hospital, LMU Munich, Munich, Bavaria, Germany²⁰University Hospital, LMU Munich, München, Germany²¹Department of Nuclear Medicine, University Hospital, LMU, Munich, Germany

²²Department of Neurology, LMU University Hospital, LMU Munich, Munich, Munich, Germany²³Department of Neurology, Klinikum der Ludwig-Maximilians Universität München, Munich, Munich, Germany²⁴Department of Psychiatry and Psychotherapy, Klinikum der Ludwig-Maximilians Universität München, Munich, Germany²⁵Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom²⁶Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany²⁷German Center for Neurodegenerative Diseases (DZNE), Munich, Germany²⁸Department of Neuroradiology, LMU University Hospital, Munich, Germany, Munich, Germany**Correspondence**

Marco Öchsner, LMU, München, Bavaria, Germany.

Email: m.oehsner@med.uni-muenchen.de


Abstract

Background: Recent evidence suggests that microglial activation mirrors tau accumulation along highly connected brain regions, but their relation remains unclear. We examined (a) longitudinal changes in microglial activation in Alzheimer's disease spectrum (ADS) compared to healthy controls (HC) (b) whether these changes are linked to tau levels and their functional connectivity (FC), and (c) the relation of microglia and tau across CDR-based groups.

Method: As part of the longitudinal ActiGliA prospective cohort study, ADS ($n = 36$, defined by CSF A β 42/A β 40 ratio or an A β PET composite of ADS) and HC ($n = 20$, with CDR=0 and no A β pathology) underwent [18F]GE-180 (TSPO) imaging to assess microglial activation and resting-state fMRI to determine FC, alongside structural T1 MRI. After 18 months, a subset of participants received follow-up TAU-PET ([18F]Flutemetamol) and TSPO-PET.

Results: TSPO ratios (FU/BL SUVRs) increased from baseline to follow-up in ADS when compared to HC (paired median difference 0.0718, $p < 0.001$), and were negatively correlated with TAU ($\rho = -0.207$, $p = 0.003$) or TSPO SUVRs ($\rho = -0.152$, $p = 0.032$), while HCs showed positive correlations. For ADS participants, the TSPO SUVR ratio ($\rho = -0.19$, $p = 0.008$) and ADS-HC TSPO ratio difference ($\rho = -0.27$, $p < 0.001$) were inversely associated with FC distance from the TAU hotspot, a pattern opposite in HCs. Braak-like stage analysis showed TSPO SUVR increases in ADS at advanced stages (Braak 5: 0.011, Braak 6: 0.0115) but decreases in HC. TAU SUVRs in CDR=0 ($n = 13$) were better predicted by TSPO SUVRs in CDR=0.5 ($n = 6$) ($\beta = 1.16$, $R^2 = 0.79$, AIC = -509) than CDR=0 TSPO SUVRs ($\beta = 1.3$, $R^2 = 0.64$, AIC = -307). Similarly, the TAU SUVRs in CDR=0.5 were better estimated by CDR=0.5 TSPO SUVRs ($\beta = 0.79$, $R^2 = 0.64$, AIC = -400), than in CDR=0 ($\beta = 0.89$, $R^2 = 0.5$, AIC = -239).

Conclusion: These findings suggest microglial activation increases in ADS and correlates inversely with TAU, with spatial and temporal patterns supporting a mild pseudotemporal precedence of microglial activation over tau accumulation.

