

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236474/>

Version: Published Version

Proceedings Paper:

Low, A., Ntalianis, G., Tsvetanov, K.A. et al. (2025) Disadvantaged neighbourhoods, modifiable risk factors, and cerebral small vessel disease in healthy midlife adults: the PREVENT dementia study. In: Wilcock, D.M., (ed.) *Alzheimer's & Dementia*. Alzheimer's Association International Conference 2025, 27-31 Jul 2025, Toronto, Canada. Wiley. Article no: e106158. ISSN: 1552-5260. EISSN: 1552-5279.

https://doi.org/10.1002/alz.70860_106158

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
<https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

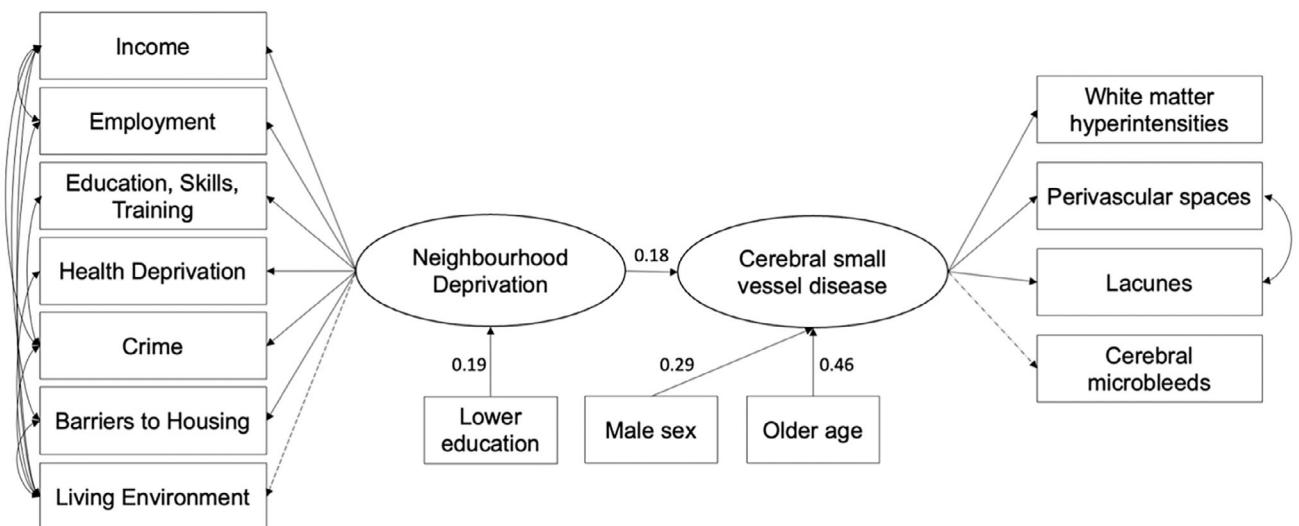
PREVENTION (NONPHARMACOLOGICAL)

Disadvantaged neighbourhoods, modifiable risk factors, and cerebral small vessel disease in healthy midlife adults: the PREVENT Dementia study

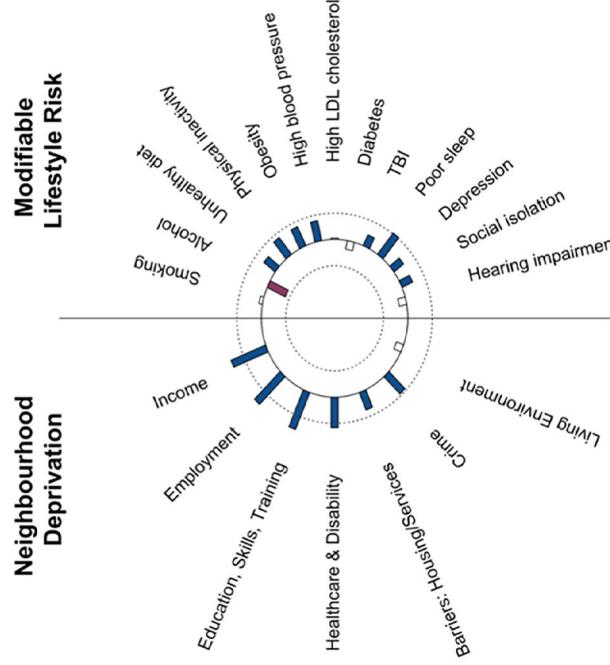
Audrey Low¹ | Georgios Ntalianis² | Kamen A Tsvetanov³ | Maria A Prats-Sedano⁴ | Elizabeth Frances McKiernan⁴ | Stephen F Carter⁴ | James D Stefaniak⁴ | Stefania Nannoni⁴ | Anna McKeever⁴ | Li Su^{4,5} | Maria-Eleni Dounavi⁴ | Graciela Muniz-Terrera^{2,6} | Katie Bridgeman² | Sarah Gregory^{2,7} | Karen Ritchie^{2,8} | Brian A Lawlor⁹ | Lorina Naci⁹ | Paresh Malhotra¹⁰ | Ivan Koychev¹¹ | Craig Ritchie^{7,12} | John T O'Brien^{4,13} | the PREVENT Dementia Investigators

¹Mayo Clinic, Rochester, MN, USA²Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom³Department of Clinical Neurosciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom⁴University of Cambridge, Cambridge, Cambridgeshire, United Kingdom⁵University of Sheffield, Sheffield, United Kingdom⁶Department of Social Medicine, Ohio University, Athens, OH, USA⁷Scottish Brain Sciences, Edinburgh, Scotland, United Kingdom⁸INSERM, Montpellier, France⁹Trinity College Dublin, Dublin, Ireland¹⁰Imperial College London, London, United Kingdom¹¹University of Oxford, Oxford, United Kingdom¹²University of St Andrews, St Andrews, Scotland, United Kingdom¹³Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom**Correspondence**

Audrey Low, Mayo Clinic, Rochester, MN, USA.
Email: Low.Audrey@mayo.edu


Abstract

Background: Individuals living in socioeconomically disadvantaged areas are disproportionately affected by dementia. However, the pathway leading from neighbourhood deprivation to cognitive symptoms is not well understood. To test our hypothesis that this relationship is associated with cerebral small vessel disease (SVD), we examined (1) whether neighbourhood deprivation related to midlife SVD burden and cognition, and (2) whether these links can be explained by modifiable lifestyle risk factors.


Method: In this multi-centre cross-sectional study, 514 cognitively healthy midlife participants aged 40-59 years (median 52 years, 64.6% female) underwent clinical assessment and 3T MRI. Postcode data were used to obtain national indices of neighbourhood deprivation. To quantify SVD, we assessed white matter hyperintensities (WMH), perivascular spaces, cerebral microbleeds, and lacunes. Cognition was assessed using the Computerized Assessment of Information Processing (COGNITO) battery. Lifestyle risk factors were evaluated based on clinical data. Using multivariate statistics like structural equation modelling (SEM) and canonical correlation analysis (CCA), we examined associations between these constructs both globally and at the item-level (i.e., distinction between domains of cognition/deprivation), to shed light on specific domains that could inform targeted prevention strategies.

Result: Neighbourhood deprivation related to greater prevalence of lifestyle risk factors ($r = 0.36, p < .001$), greater SVD burden ($b=0.18, p = .01$; Figure 1), and greater cognitive impairment ($r = 0.36, p < .001$), independent of educational attainment, sex, and age. These links with neighbourhood deprivation were largely driven by lifestyle factors relating to vascular health (sleep, physical activity, obesity, hypertension) (Figure 2), and cognitive deficits consistent with SVD (processing speed, visuospatial) (Figure 3). Residents of deprived neighbourhoods displayed greater prevalence of lifestyle risk factors, except alcohol consumption. Lower cognitive scores were most closely associated with deprivation domains of Crime and Living Environment (Figure 3). The DEPRIVATION→SVD path was mediated by lifestyle risk factors ($z=2.57, p = .010$), and the DEPRIVATION→COGNITION path was mediated by SVD ($z=-2.14, p = .032$) (global SVD & hypertensive subtype, but not CAA-SVD).

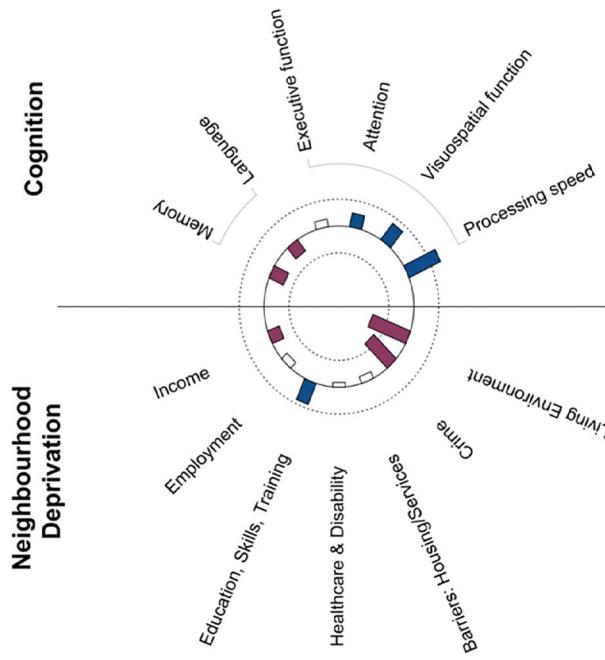

Conclusion: The pathway linking neighbourhood disadvantage to cognitive impairment at midlife is influenced by vascular risk factors and cerebrovascular burden. Tailored strategies could promote resilience against dementia by promoting health behaviours aligned with the community's unique needs.

Figure 1. Structural equation modelling of neighbourhood deprivation and cerebral small vessel disease. The full structural model assesses the associations between the latent variables of neighbourhood deprivation and cerebral small vessel disease, accounting for years of education, sex, and age. Rectangles represent observed variables; ovals represent latent variables. Values represent standardised beta coefficients. Straight lines represent paths, while double-arrowed curved lines represent covariance. Solid lines indicate statistically significant associations; dashed lines indicate non-significant paths.

Figure 2. Canonical correlation analysis between neighbourhood deprivation and modifiable lifestyle risk. Left: Heliograph of canonical variate loadings. Blue bars extending outwards indicate positive weights; red bars extending inwards indicate negative weights; uncoloured bars indicate $|r| < 0.2$; length indicates strength of structural correlations (loadings). Half-maximum strength of correlation is indicated by the innermost ($r = -0.5$) and outermost ($r = 0.5$) circles. Right: Bivariate correlation plots of canonical correlations. Abbreviations: $LDL = \text{low-density lipoprotein}$; $TBI = \text{traumatic brain injury}$.

Figure 3. Canonical correlation analysis between neighbourhood deprivation and cognition. *Left:* Heliograph of canonical variate loadings. Blue bars extending outwards indicate positive weights; purple bars extending inwards indicate negative weights; uncoloured bars indicate $|r| < 0.2$; length indicates strength of structural correlations (loadings). *Half-maximum strength of correlation is indicated by the innermost ($r = -0.5$) and outermost ($r = 0.5$) circles.* *Right:* Bivariate correlation plots of canonical correlations between neighbourhood deprivation and cognitive impairment.