

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236461/>

Version: Published Version

Article:

Stein, D.J., Kazdin, A.E., Baldwin, D.S. et al. (2026) Anxiolytic medication use in low-middle- and high-income countries: a world mental health surveys report. *Human Psychopharmacology: Clinical and Experimental*, 41 (1). e70031. ISSN: 0885-6222

<https://doi.org/10.1002/hup.70031>

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: <https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

RESEARCH ARTICLE OPEN ACCESS

Anxiolytic Medication Use in Low- Middle- and High-Income Countries: A World Mental Health Surveys Report

Dan J. Stein¹ | Alan E. Kazdin² | David S. Baldwin³ | Meredith G. Harris^{4,5} | Irving Hwang⁶ | Julia R. Pozuelo^{6,7} | Nancy A. Sampson⁶ | Peter Woodruff⁸ | Maria Carmen Viana⁹ | Sergio Aguilar-Gaxiola¹⁰ | Ali Al-Hamzawi¹¹ | Jordi Alonso^{12,13,14} | Laura Helena Andrade¹⁵ | Corina Benjet¹⁶ | Ronny Bruffaerts¹⁷ | José-Miguel Caldas-de-Almeida¹⁸ | Stephanie Chardouli¹⁹ | Giovanni de Girolamo²⁰ | Oye Gureje²¹ | Josep M. Haro²² | Elie G. Karam^{23,24} | Aimee Karam^{23,24} | Viviane Kovess-Masfety²⁵ | Fernando Navarro-Mateu^{26,27,28} | Daisuke Nishi²⁹ | José Posada-Villa³⁰ | Annelieke Roest³¹ | Juan Carlos Stagnaro³² | Cristian Vladescu³³ | Daniel V. Vigo³⁴ | Ronald C. Kessler⁶ | the WHO World Mental Health Survey collaborators

¹Department of Psychiatry & Neuroscience Institute, SAMRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa | ²Department of Psychology, Yale University, New Haven, Connecticut, USA | ³Faculty of Medicine, University of Southampton, Southampton, UK | ⁴School of Public Health, The University of Queensland, Herston, Australia | ⁵Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia | ⁶Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA | ⁷Department of Psychiatry, University of Oxford, Oxford, UK | ⁸School of Medicine and Population Health, University of Sheffield, Sheffield, UK | ⁹Department of Social Medicine, Postgraduate Program in Public Health, Federal University of Espírito Santo, Vitória, Brazil | ¹⁰Department of Internal Medicine, Center for Reducing Health Disparities, UC Davis Health System, Sacramento, California, USA | ¹¹College of Medicine, Al-Qadisiya University, Diwaniya Governorate, Diwaniya, Iraq | ¹²Health Services Research Unit, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain | ¹³Pompeu Fabra University (UPF), Barcelona, Spain | ¹⁴CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain | ¹⁵Núcleo de Epidemiología Psiquiátrica - LIM 23, Instituto de Psiquiatria Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil | ¹⁶Department of Epidemiologic and Psychosocial Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico | ¹⁷Universitair Psychiatrisch Centrum - Katholieke Universiteit Leuven (UPC-KUL), Leuven, Belgium | ¹⁸Lisbon Institute of Global Mental Health and Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal | ¹⁹Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA | ²⁰IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy | ²¹Department of Psychiatry, University College Hospital, Ibadan, Nigeria | ²²Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Barcelona, Spain | ²³Department of Psychiatry and Clinical Psychology, Faculty of Medicine, St George University of Beirut, Beirut, Lebanon | ²⁴Institute for Development, Research, Advocacy and Applied Care (IDRAAC), Beirut, Lebanon | ²⁵Ecole des Hautes Etudes en Santé Publique (EHESP), Paris Descartes University, Paris, France | ²⁶Unidad de Docencia, Investigación y Formación en Salud Mental, Gerencia Salud Mental, Servicio Murciano de Salud, Murcia, Spain | ²⁷Biomedical Research Institute of Murcia Pascual Parrilla-IMIB, Murcia, Spain | ²⁸CIBER Epidemiology and Public Health-Murcia, Murcia, Spain | ²⁹Department of Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan | ³⁰Colegio Mayor de Cundinamarca University, Faculty of Social Sciences, Bogota, Colombia | ³¹Department of Developmental Psychology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, the Netherlands | ³²Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina | ³³National Institute for Health Services Management, Bucharest, Romania | ³⁴Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada

Correspondence: Daniel V. Vigo (daniel.vigo@ubc.ca)

Received: 16 July 2025 | **Revised:** 26 November 2025 | **Accepted:** 26 November 2025

Keywords: anxiolytic medications | perceived effectiveness | reasons for use

ABSTRACT

Background: Anxiolytic medications, particularly benzodiazepines, are widely prescribed, giving impetus to long-standing debates about how often these agents should be employed in clinical practice. There are, however, few cross-country studies

Professor Dan Stein was a beloved colleague, with a rare combination of wisdom, humility, and bonhomie that made working with him a reward unto itself. He made countless contributions to the fields of clinical psychiatry, psychiatric epidemiology, and psychopharmacology. In a testament of his love for our field and unparalleled work ethic, he submitted the final revisions to this posthumous article days before his passing.

This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial-NoDerivs](#) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). *Human Psychopharmacology: Clinical and Experimental* published by John Wiley & Sons Ltd.

of the pharmacoepidemiology of these agents. We report on the frequency of anxiolytic medication use, reasons for use, and perceived effectiveness of use in general population surveys across 20 countries.

Methods: Face-to-face interviews with community samples totaling $n = 49,919$ respondents in the World Health Organization World Mental Health (WMH) Surveys asked about anxiolytic medication use anytime in the prior 12 months in conjunction with validated fully structured diagnostic interviews. Treatment questions were administered independently of diagnoses to all respondents.

Results: A weighted 5.6% ($n = 4079$) of respondents reported anxiolytic medication use within the past 12 months; the vast majority comprised benzodiazepine use, and use was highest amongst respondents with a subthreshold major depressive episode (MDE) (25.2%) and a 12-month MDE (19.8%). Rates were significantly higher in high-income countries (HICs) than low- and middle-income countries (LMICs) (8.5% vs. 2.2%, $\chi^2_1 = 559.6$, $p < 0.001$). Short-acting benzodiazepines and z-drugs were most commonly used for sleep (66.5% and 85.5%), while intermediate-acting benzodiazepines and long-acting benzodiazepines were most commonly used either for sleep (37.9% and 30.1%) or anxiety (33.3% and 32.0%). Across all conditions, anxiolytic medications were reported as *very effective* by 55.7% of users and *somewhat effective* by an additional 32.2% of users, with similar proportions in HICs and LMICs. Negative predictors of high perceived effectiveness were a 12-month MDE and taking anxiolytic medication for comorbid anxiety and depression.

Conclusion: These data do not definitely answer the question of how often benzodiazepines should be prescribed in clinical practice, but they usefully inform discussions of how to optimize their use. It is noteworthy that anxiolytic medications, particularly benzodiazepines, are largely prescribed for anxiety and sleep, and that they are widely perceived to be either very or somewhat effective by users. However, more targeted prescription of these agents may be necessary; in particular antidepressant intervention should be prioritized in the pharmacotherapy of major depressive disorder.

1 | Introduction

Since their discovery in the 1960s, benzodiazepines have been commonly used for anxiolysis and sedation, and in some countries several (with intermediate or long half-life) are approved for anxiety disorders such as generalized anxiety disorder and panic disorder, while others (with a short or intermediate half-life) are approved for insomnia (Junkes et al. 2024; López-Muñoz et al. 2011). Given their improved safety profile, benzodiazepines replaced earlier anxiolytic and sedative agents such as the barbiturates and meprobamate. Concerns about benzodiazepine adverse events, most notably tolerance and dependence, gave impetus to development of newer agents such as buspirone and pregabalin for generalized anxiety disorder, and 'z-drugs' (such as zopiclone) for insomnia. The introduction of selective serotonin reuptake inhibitors provided clinicians with additional efficacious and well-tolerated options for the treatment of anxiety disorders (Baldwin et al. 2014; Bandelow et al. 2023).

There are nevertheless several reasons for the widespread use of benzodiazepines (Balon et al. 2020; Dubovsky and Marshall 2022; Silberman et al. 2023). Anxiety disorders are the most prevalent of mental disorders, and they are associated with significant distress and impairment (Stein et al. 2017). Furthermore, anxiety and anxiety adjacent symptoms such as agitation and insomnia are key symptoms in a range of mental health conditions, including major depressive disorder (MDD), where anxiety is now recognized as a specifier that deserves targeted intervention (Maj et al. 2020). Notably, a large evidence-base of randomized controlled trials (RCTs) demonstrates the efficacy of benzodiazepines for anxiety disorders and anxiety adjacent symptoms. These agents generally have low costs relative to other treatments, and they are accessible

in countries where access to psychological services is limited (Dubovsky and Marshall 2022).

There are also important reasons for judicious use of benzodiazepines (Dell'osso and Lader 2013; Lader 2014; Peppin et al. 2021). There is robust evidence for the short-term efficacy of benzodiazepines in some anxiety disorders such as generalized anxiety disorder, but little evidence of efficacy in other conditions such as posttraumatic stress disorder and obsessive-compulsive disorder. Benzodiazepines are associated with a range of important adverse events. With longer-term use, there are fewer data on efficacy, and more concerns about the risk of tolerance and the potential for dependence and abuse. Still, meta-analysis of anxiety disorder trials suggests that for some disorders, benzodiazepines may be associated with greater efficacy and fewer adverse events than antidepressants (Bighelli et al. 2016; Gomez et al. 2018; Offidani et al. 2013). Clinical judgment is therefore needed to weigh the benefits that may follow from the use of benzodiazepines, the risk of the underlying conditions for which treatment is being provided, the risks of long-term benzodiazepine use, and potential risks associated with other treatments (Baldwin et al. 2013).

Epidemiological data may be useful in informing this debate (Cosci et al. 2015; Fisher et al. 2012; Kurko et al. 2015; Soumerai et al. 2024). In a national registry study in Luxembourg, around 80% of benzodiazepine users were short-term or intermittent users, while the rest were continuous users. The authors predicted and confirmed that specific benzodiazepines with short and intermediate half-lives (alprazolam and triazolam) were associated with continuous and high-dose use (Cloos et al. 2015). Comparison of prescription data before and after triplicate benzodiazepine regulations in New York State found that although benzodiazepine prescription decreased, there was an increase in prescription of older more dangerous agents, indicating the need

for alternative approaches to optimize benzodiazepine use (Weintraub et al. 1991).

Despite this evidence, there are few published cross-country comparisons of the pharmacoepidemiology of benzodiazepines (Huerta et al. 2016). Comparative data from low- and middle-income countries is particularly scant (Campanha et al. 2020). Further, extant studies have largely drawn on administrative data on prescriptions received rather than on respondent reports of benzodiazepine use. Fundamental questions therefore remain about the use of benzodiazepines, including the conditions for which they are used and how effective they are perceived to be.

The World Health Organization (WHO) World Mental Health (WMH) surveys provide an important resource to address these questions. This is a large cross-national series of community epidemiological surveys on the prevalence and correlates of common mental disorders (<https://www.hcp.med.harvard.edu/wmh/>) (Scott et al. 2017). We earlier used this dataset to report on the use of antidepressants, including the conditions for which they are used and how effective they are perceived to be, in countries of varying income levels across the world (Kazdin et al. 2023). An additional publication on the use of mood-stabilizers and antipsychotic medications is under way.

Here we build on this prior work to report on the cross-country use of benzodiazepines, including the conditions for which they are used and how effective they are perceived to be. Given important clinical differences between benzodiazepines with different half-lives, as well as previous epidemiological work differentiating these medications by half-life, we classified benzodiazepines into short-acting, intermediate-acting, and long-acting agents, and this represents the large majority of the medication use covered in this paper. Given partial overlaps in debates about benzodiazepines and z-drugs (Huerta et al. 2016; Nutt 2005), as well as in their underlying mechanisms of action, we also report here on the use of z-drugs.

As noted earlier, the benzodiazepines replaced earlier anxiolytic and sedative agents such as the barbiturates and meprobamate, and newer drugs such as hydroxyzine, buspirone and pregabalin were in turn developed for generalized anxiety disorder. These agents are not covered in other WMH papers on psychiatric medications, and if included here would represent only a small minority of the medication use covered. From a neuroscientific point of view, these agents have entirely different mechanisms of action, and are used for a range of indications other than anxiolysis and sedation. However, from an epidemiological perspective, they potentially provide a useful contrast with the main focus here on benzodiazepines and z-drugs, and so we have chosen to include them in the analysis, as a miscellaneous group of “anxiolytic medications”.

The paper covers several questions. First, we examine use of anxiolytic medications (i.e., short-acting, intermediate-acting and long-acting benzodiazepines, z-drugs, and miscellaneous) in 20 countries of varying income levels across the world. Second, we evaluate the diagnoses of the people who use anxiolytic medication, paying special attention to anxiety disorders and major depressive episodes. Third, we examine the reasons given by respondents for anxiolytic medication use. Finally, we

examine how effective respondents perceive their anxiolytic medications to be overall and as a function of reasons for use.

2 | Methods

2.1 | Sample

Data are included from 22 WMH surveys with adult respondents (18 years or older) in 20 countries. Ten surveys were carried out in low- or middle-income countries (LMICs; Brazil, Bulgaria, 2 surveys in Colombia, Iraq, Lebanon, Mexico, Nigeria, Peru, and Romania) and 12 in high-income countries (HICs; Argentina, Belgium, France, Germany, Israel, Italy, Japan, the Netherlands, Portugal, 2 surveys in Spain, and the United States). Thirteen of these surveys were based on nationally representative multi-stage clustered area probability household designs, two others on samples representative of all urbanized areas in the countries, and the remaining surveys on samples representative of selected regions or metropolitan areas (Supporting Information S1). Average response rate weighted by sample size was 71.1%.

The interview schedule used in the WMH surveys was developed in English and translated into other languages using a standardized WHO translation, team translation, and harmonization protocol (Harkness et al. 2008). Interviews were administered face-to-face in respondents' homes after obtaining informed consent. At all survey sites, the local ethics or institutional review committees reviewed and approved the protocol to ensure protection of human subjects in line with appropriate international and local guidelines.

Interviews were carried out in two parts to reduce respondent burden. Part I was administered to all respondents and assessed core mental disorders. Part II was administered to all Part I respondents with any lifetime disorder and a probability subsample of other respondents. Part II data were weighted to adjust for the under-sampling of Part I non-cases, with the resulting Part II prevalence estimates being equivalent to Part I estimates (Heeringa et al. 2008). *The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.*

2.2 | Measures

2.2.1 | Diagnoses

The survey instrument was the WHO Composite International Diagnostic Interview (CIDI) Version 3.0 (Kessler and Üstün 2004), a fully structured interview generating diagnoses of lifetime and 12-month DSM-IV disorders. The conditions considered here are anxiety disorders including agoraphobia, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, social phobia and specific phobia, as well as major depressive episode (MDE). Blinded clinical reappraisal diagnostic interviews using the Structured Clinical Interview for DSM-IV (SCID) (First et al. 1997) as gold standard found good concordance with CIDI diagnoses (Haro et al. 2006). We

categorized respondents into four hierarchically-ordered categories of anxiety disorders, reflecting recency and severity (i.e., 12-month anxiety disorder includes respondents who met full criteria for at least one anxiety disorder; lifetime anxiety disorder includes other respondents who met lifetime criteria for at least one anxiety disorder; partial anxiety disorder includes other respondents who met 12-month subthreshold criteria for at least one anxiety disorder, and respondents who had none of these conditions). The same four categories were used to define MDE hierarchically (i.e., 12-month MDE; lifetime MDE for other respondents who met lifetime criteria for MDE; partial MDE for other respondents who met 12-month subthreshold criteria for MDE; and respondents who had none of these conditions). We also created a four-category hierarchical variable that combined scores on the separate four-category MDE and anxiety disorder variables.

2.2.2 | Anxiolytic Medication Use

Anxiolytic medication users were defined as those who took an anxiolytic medication at any time in the past 12 months. Information on use was captured by presenting respondents with a list of available psychotropic medications using both generic and trade names and asking about use of these medications in the past 12 months for *problems with your emotions, nerves, mental health, substance use, energy, concentration, sleep, or ability to cope with stress*. The medication list included antidepressants, anxiolytics (including sedatives and hypnotics), antipsychotics, mood stabilizers, and other psychotropic agents—the current paper focuses only on anxiolytic medications. Respondents were instructed to *include medicines even if you took them only once*. Because anxiolytic medication administration policies vary across countries, the medication list was modified for each country. Information was gathered on a total of 56 anxiolytic medications (Supporting Information S1), which were categorized for analysis into short-acting benzodiazepines, intermediate-acting benzodiazepines, long-acting benzodiazepines, z-drugs, and miscellaneous agents. Two clinical psychiatrists with expertise in public health (DJS, DV) independently reviewed responses (which involved selecting from country-specific lists including generic and brand names) and classified anxiolytic medications into the five categories. Discrepancies were reconciled by consensus.

For each psychotropic medication used in the past 12 months, the type and duration of use were recorded. As noted above in the section on the sample, additional questions were asked in 15 of the 22 surveys. We focus on the latter surveys for the subset of analyses that considered two of these additional questions.

1. *What problems did you take (NAME OF MEDICATION) for?* Both structured and open-ended responses were recorded and classified into the categories (i) depression (sadness/depression/crying or suicidal thoughts), (ii) anxiety (nerves/anxiety or panic), (iii) poor sleep, (iv) other physical problems (low energy, poor appetite or physical pain), and (v) other reasons, such as little or no sexual functioning, sexual problems, not getting along with others, poor work performance, alcohol or drug problems, poor concentration, and poor memory (Supplementary

Table 3). Respondents could report multiple reasons, which is important because some of the “other” reasons are also symptoms of anxiety disorders.

2. *Overall, how effective was (NAME OF MEDICATION) in doing the things you expected it to do—very, somewhat, not very, or not at all effective?* These medication-specific follow-up questions were asked separately for up to 5 psychotropic medications in 6 European countries (Belgium, France, Germany, Italy, Netherlands, Spain) and up to three in other countries. These numbers captured well over 90% of anxiolytic medication uses in each survey.

2.3 | Data Analysis

Individual weights were applied within survey to adjust for differences in within-household probabilities of selection. Part II data were then weighted to adjust for differential probabilities of selection into Part II and deviations between the sample and population demographic-geographic distributions. All statistical analyses were carried out using the Taylor series linearization method (Wolter 1985), a design-based method implemented in SAS 9.4 program (SAS/STAT, 2016) that adjusts estimates of standard errors for design effects. Logistic regression analysis was used to examine predictors of respondent reports about the effectiveness of specific anxiolytic medication classes. In cases where the predictors were categorical (e.g., anxiolytic medication classes), log-odds ratios were normalized by centering them around a mean of zero on the log-odds scale rather than omitting a contrast category. Coefficients and ± 2 of their design-based standard errors (SEs) were then exponentiated to create odds ratios (ORs) and 95% confidence intervals (CIs). The centered ORs for the individual predictor categories had a product of 1.0, indicating that these individual ORs can be interpreted in comparisons to average odds across categories. Significance of OR sets defining a single categorical variable (e.g., the dummy variables defining anxiolytic medication classes) was evaluated with Wald χ^2 tests based on design-corrected coefficient variance-covariance matrices. Statistical significance was evaluated consistently using 2-sided design based 0.05-level tests.

3 | Results

3.1 | Prevalence and Associations of Anxiolytic Medication Use With MDE and Anxiety Disorders

Of the $n = 49,919$ Part-II WMH survey respondents that were analyzed, a weighted 5.6% ($n = 4079$) reported using anxiolytic medications in the 12 months before the interview (Table 1). Use was considerably more prevalent in HICs than LMICs (8.5% vs. 2.2%, $\chi^2_1 = 559.6$, $p < 0.001$). Use was highest amongst respondents with partial MDE (25.2%) and 12-month MDE (19.8%), lower among respondents with partial anxiety disorder (15.0%) and 12-month anxiety disorders (14.3%), lower still among respondents with lifetime MDE (12.3%) and lifetime anxiety disorder (10.7), and lowest among respondents with no 12-month, lifetime, or partial MDE (3.5%) and no 12-month, lifetime, or partial anxiety disorders (2.5%). For each of these categories, use was considerably more prevalent in HICs than

TABLE 1 | Prevalence of anxiolytic medication use by anxiety disorder and MDE histories within and across country income groups ($n = 49,919$).

	Total		High-income		Low- and middle-income		HIC vs. LMIC χ^2_1
	%	(SE)	%	(SE)	%	(SE)	
Anxiety disorder							
12-month	14.3	(0.5)	20.5	(0.8)	6.3	(0.5)	200.6 ^a
Lifetime ^b	10.7	(0.6)	14.7	(0.9)	3.6	(0.6)	67.7 ^a
Partial ^c	15.0	(0.6)	21.9	(0.9)	5.7	(0.5)	199.3 ^a
None ^d	2.5	(0.1)	3.9	(0.2)	1.1	(0.1)	158.3 ^a
MDE							
12-month	19.8	(0.7)	26.9	(1.1)	9.3	(0.8)	135.4 ^a
Lifetime ^b	12.3	(0.5)	16.9	(0.6)	4.5	(0.6)	95.2 ^a
Partial ^c	25.2	(1.2)	32.0	(1.6)	14.4	(1.6)	49.5 ^a
None ^d	3.5	(0.1)	5.6	(0.2)	1.4	(0.1)	282.4 ^a
Total	5.6	(0.1)	8.5	(0.2)	2.2	(0.1)	559.6 ^a

Abbreviations: MDE: major depressive episode; LMIC: low- and middle-income countries.

^aSignificant at the 0.05 level, two-sided test.

^bLifetime: Meet full criteria for lifetime MDE/anxiety disorder, excluding 12-month MDE or anxiety disorder.

^cPartial: Did not meet full criteria but has 12-month symptoms or selected depression or anxiety as reason for medication use.

^dNone: Did not meet criteria for 12-month, lifetime, or partial MDE or anxiety disorder.

TABLE 2 | The distributions of anxiety disorder and MDE among anxiolytic medication users ($n = 4079$).

	Total		High-income		Low- and middle-income		χ^2_1 HIC vs. LMIC
	%	(SE)	%	(SE)	%	(SE)	
Anxiety disorder							
12-month	25.5	(1.0)	25.1	(1.0)	27.4	(1.7)	1.4
Lifetime ^a	9.3	(0.6)	10.1	(0.6)	6.1	(0.8)	13.0 ^b
Partial	31.8	(1.1)	32.6	(1.1)	28.4	(1.8)	3.9 ^b
None	33.3	(1.2)	32.2	(1.2)	38.1	(2.0)	6.9 ^b
MDE							
12-month	18.7	(0.7)	18.5	(0.8)	19.6	(1.5)	0.5
Lifetime ^a	14.5	(0.5)	15.6	(0.6)	9.7	(1.1)	16.8 ^b
Partial	12.7	(0.6)	12.2	(0.7)	15.4	(1.3)	4.8 ^b
None	54.1	(1.0)	53.8	(1.1)	55.4	(2.0)	0.5
Anxiety disorder or MDE							
12-month	33.7	(1.0)	33.1	(1.1)	36.5	(1.9)	2.5
Lifetime	14.4	(0.6)	15.5	(0.6)	9.2	(0.9)	25.2 ^b
Partial	26.8	(1.0)	26.7	(1.1)	27.0	(1.9)	0.0
None	25.2	(1.0)	24.7	(1.1)	27.3	(1.9)	1.4

Abbreviations: MDE: major depressive episode; LMIC: low- and middle-income countries.

^aSignificant at the 0.05 level, two-sided test.

^bSee Table 1 for definitions of lifetime, partial, and none.

LMICs, but the pattern of distribution was remarkably similar in HICs and LMICs, with use highest in partial and 12-month MDE, followed by partial and 12-month anxiety disorder, and then by lifetime anxiety disorder and none of these conditions.

We also looked at the distribution of anxiety disorders and MDE at the person-medication level of analysis (Table 2). One-fourth

(25.2%) of all use occurred among respondents who did not meet criteria for either an anxiety disorder or MDE (33.3% without an anxiety disorder, 54.1% without a MDE), with the remainder consisting of 33.7% with a 12-month disorder (25.5% anxiety disorder, 18.7% MDE), 14.4% with a lifetime but not 12-month disorder (9.3% anxiety disorder, 14.5% MDE), and 26.8% with a subthreshold 12-month disorder (31.8% anxiety disorder,

12.7% MDE). These patterns were strikingly similar in HICs and LMICs, with some statistically significant but substantively minor differences.

3.2 | Use of Anxiolytic Medications by Class

Intermediate-acting benzodiazepines were the anxiolytic medication class most commonly used in the past year across surveys (53.3%), followed by long-acting benzodiazepines (34.0%), other anxiolytic medications (13.0%) and z-drugs (10.0%) (Table 3). These percentages sum to more than 100% because 16.0% of respondents used two or more anxiolytic medication classes in the past year. Intermediate-acting benzodiazepines were more commonly used than long-acting benzodiazepines in HICs compared to LMICs (57.2% vs. 35.4%, $\chi^2_1 = 74.8, p < 0.001$), whereas long-acting benzodiazepines were more commonly used than intermediate-acting benzodiazepines in LMICs compared to HICs (55.9% vs. 29.1%, $\chi^2_1 = 112.3, p < 0.001$). Z-drugs were also more commonly used in HICs compared to LMICs (11.6% vs. 2.8%, $\chi^2_1 = 49.9, p < 0.001$), while rates of use of short-acting benzodiazepines, and of two or more anxiolytic medications, were similar in HICs and LMICs.

3.3 | Reasons for Anxiolytic Medication Use

Most respondents reported a single reason for anxiolytic medication use. Intermediate-acting and long-acting benzodiazepines were largely used for the single reasons of anxiety (33.3% and 32.0%) and poor sleep (37.9% and 30.1%) (Table 4). Short-acting benzodiazepines and especially z-drugs, in comparison, were largely used for poor sleep (66.5% and 85.5%). While other anxiolytic medications were also used largely for anxiety (23.8%) and sleep (34.2%), they had the highest rate of use across types for other physical symptoms (7.2%) and other symptoms (21.5%). Relatively few respondents gave multiple reasons for their use. Intermediate-acting benzodiazepines, long-acting benzodiazepines, and other anxiolytic medications were used for both anxiety and depression (5.7%, 4.2%, 2.6% respectively) as well as for anxiety without depression (5.5%, 5.5%, 2.8% respectively). Short-acting benzodiazepines and z-drugs were more likely to be used for anxiety without depression (5.3% and 2.1%). Taken together, differences in reasons for use across

anxiolytic medication classes were statistically significant as a set ($\chi^2_{32} = 398.3, p < 0.001$).

3.3.1 | Patterns and Predictors of Perceived Treatment Effectiveness

Anxiolytic medications were perceived to be *very effective* by 55.7% of users and *somewhat effective* by an additional 32.2%, with similar rates in HICs (55.0%, 32.2%) versus. LMICs (60.7%, 24.7%; $\chi^2_1 = 8.2, p = 0.004$). For *very effective* treatment, anxiolytic medications were differentially effective as a function of MDE recency and severity ($\chi^2_3 = 9.9, p = 0.019$) as well as reasons for use ($\chi^2_8 = 27.2, p = 0.001$), with anxiolytic medications reported less effective in those with 12-month MDE (OR = 0.8, 95% CI 0.7–0.9) and in those using anxiolytic medication for both anxiety and depression (OR = 0.5, 95% CI 0.3–0.7) (Table 5). For *very or somewhat effective* treatment, anxiolytic medications were differentially effective as a function of reasons for use ($\chi^2_8 = 19.3, p = 0.013$), with anxiolytic medications reported as less effective in those using anxiolytic medication for other reasons (OR = 0.6, 95% CI 0.4–1.0) and more effective in those using these agents for anxiety and another reason other than depression (OR = 3.5, 95% CI 1.7–7.0).

We repeated these analyses separately in HICs and in LMICs. In HICs, predictors were largely the same as those in the overall sample (Supplement Table 4a-4b). In HICs, for *very effective* treatment anxiolytic medications were again differentially effective as a function of MDE recency and severity ($\chi^2_3 = 8.1, p = 0.044$) and reasons for use ($\chi^2_8 = 20.3, p = 0.009$), and for *very or somewhat effective* treatment, anxiolytic medications were again differentially effective as a function of reasons for use ($\chi^2_8 = 24.5, p = 0.002$). In LMICs, for both *very effective* treatment and *very or somewhat effective* treatment anxiolytic medications were differentially effective as a function of anxiety disorder recency and severity ($\chi^2_3 = 19.9, p = 0.001$ and $\chi^2_3 = 8.9, p = 0.031$ respectively). In both *very effective* treatment and *very or somewhat effective* treatment anxiolytic medications were reported as less effective in those with 12-month anxiety disorder (OR = 0.5, 95% CI 0.3–0.9 and OR = 0.5 95% CI 0.3–0.9 respectively) and more effective in those with lifetime anxiety disorder (OR = 3.5, 95% CI 1.8–6.9 and OR = 3.7 95% CI 1.5–9.2 respectively). Furthermore, for *very effective* treatment anxiolytic medications

TABLE 3 | Among anxiolytic medication users, distribution of anxiolytic medication classes by country income group ($n = 4079$)^a.

	Total		High-income		Low- and middle-income		χ^2_1 HIC vs. LMIC
	%	(SE)	%	(SE)	%	(SE)	
Short-acting Bz	2.8	(0.3)	2.8	(0.3)	2.4	(0.7)	0.4
Intermediate-acting Bz	53.3	(1.0)	57.2	(1.1)	35.4	(2.1)	74.8 ^b
Long-acting Bz	34.0	(1.0)	29.1	(1.1)	55.9	(2.3)	112.3 ^b
Z-drugs	10.0	(0.7)	11.6	(0.8)	2.8	(0.5)	49.9 ^b
Other Anx med	13.0	(0.7)	12.9	(0.8)	13.5	(1.5)	0.1
2+ Anx med in the past year	16.0	(0.7)	16.3	(0.8)	14.6	(1.3)	1.2

Abbreviations: Anx Med: Anxiolytic Medications; Bz: benzodiazepine, LMIC: low- and middle-income countries.

^aSignificant at the 0.05 level, two-sided test.

^bSee Appendix Table 2 for classifications for types of anxiolytic medications.

TABLE 4 | Distribution of reasons for taking anxiolytic medications, among all anxiolytic medications taken ($n = 4147$)^b.

							Other		Total/ Any Anx Med	
		S-Bz % ^b (SE)	I-Bz % (SE)	L-Bz % (SE)	Z-Drugs % (SE)	Anx Med % (SE)	Anx Med % (SE)	Anx Med % (SE)	Anx Med % (SE)	Total/ Any Anx Med
Single Reason ^a	Anxiety	10.4 (1.8)	33.3 (1.5)	32.0 (1.9)	2.0 (0.8)	23.8 (3.4)	28.6 (1.1)			
	Depression	6.0 (2.5)	8.3 (0.7)	9.2 (1.0)	3.0 (1.4)	6.8 (1.5)	7.8 (0.5)			
	Poor sleep	66.5 (5.3)	37.9 (1.7)	30.1 (1.8)	85.5 (2.6)	34.2 (3.6)	40.5 (1.3)			
	Other physical	3.7 (2.4)	1.9 (0.6)	4.7 (0.9)	0.5 (0.2)	7.2 (1.5)	3.1 (0.4)			
	Reasons	5.8 (3.6)	6.3 (0.7)	12.5 (1.5)	3.9 (1.4)	21.5 (2.4)	9.2 (0.7)			
	Other reason									
Multiple reasons	Anxiety and depression	0.7 (0.5)	5.7 (0.6)	4.2 (0.6)	1.5 (0.6)	2.6 (0.8)	4.5 (0.4)			
	Anxiety and not depression, +1	5.3 (2.7)	5.5 (0.7)	5.5 (0.8)	2.1 (0.8)	2.8 (1.3)	4.9 (0.5)			
	Depression and not anxiety, +1	0.4 (0.4)	0.9 (0.2)	1.1 (0.4)	0.0 (0.0)	0.5 (0.3)	0.8 (0.2)			
	No anxiety, no depression, +2	1.2 (1.0)	0.4 (0.1)	0.7 (0.3)	1.6 (1.0)	0.6 (0.4)	0.6 (0.1)			

Abbreviations: Anx Med, Anxiety Medication; S-Bz, short-acting benzodiazepine; I-Bz, intermediate-acting benzodiazepine; L-Bz, long acting benzodiazepine.

^a $\chi^2_{32} = 398.3$, $p < 0.001$.

^bSample is based on a person-medication file (each Anx Med taken is a separate record). Dropped data from surveys: Iraq, Nigeria, Brazil, Bulgaria, Lebanon, Israel, Japan, due to the surveys not asking about reasons for medication. For the remaining 15 surveys, another 45 records were dropped due to missing responses from the reasons questions. See Supplementary Table 3 for classifications for reasons for medication.

were reported as less effective among those without anxiety disorder (OR = 0.5, 95% CI 0.3–0.8).

4 | Discussion

Several limitations of this work deserve emphasis. First, respondents may underreport or deny benzodiazepine use due to stigma, recall bias, or concerns about confidentiality. Second, data came from self-reports of treatment effectiveness rather than from clinician-rated standardized symptom measures or objective measures of sleep. Third, information about several key characteristics of anxiolytic medication use, such as dose and duration were not obtained, and we did not assess the temporal relationship between anxiolytic medication use and symptom occurrence. Fourth, although we made comparisons across different classes of anxiolytic medications, respondents were not randomly assigned to anxiolytic medication class, limiting conclusions about the differential effectiveness of anxiolytic medication classes. Fifth, we did not consider the combined use of antidepressant and anxiolytic medications, which may be useful in certain clinical contexts. Relatedly, it is possible that some who reported taking anxiolytic medication for depression, were prescribed these agents primarily for treatment of anxiety symptoms in depression.

Consistent with our interest in long-standing debates about benzodiazepines and related drugs, the vast majority of data reported on here pertains to the use of short-acting, intermediate-acting and long-acting benzodiazepines and z-drugs. Nevertheless, we also reported on the much less frequent use of a range of miscellaneous anxiolytic medications. The inclusion of this miscellaneous group cannot be justified on the basis of mechanism of action or of indication for prescription. While some of the agents in this miscellaneous group have long been primarily used for anxiolysis and sedation, or are registered for the treatment of

GAD, others are much less commonly used as anxiolytic medications and/or have other indications. From an epidemiological perspective, the less frequent use of these medications prevented further subclassification based on mechanism of action or indication for prescription, and instead their inclusion as a group allowed for comparison with benzodiazepines and z-drugs. Still, any interpretation of such comparisons needs to bear in mind the heterogeneity of this group.

Despite these limitations and considerations, the study provides informative data on the use of several anxiolytic medication classes in a large sample of individuals across 20 countries. 5.6% of respondents across these countries reported anxiolytic medication use in the past 12 months. In comparison, an earlier parallel analysis of antidepressant use in the World Mental Health Surveys found that 3.1% of respondents reported use of these agents in the previous 12 months (Kazdin et al. 2023). Benzodiazepines comprise the vast majority of anxiolytic medication use, a finding that is consistent with a broad range of prior epidemiological work highlighting the widespread use of these agents (Dell'osso and Lader 2013; Junkes et al. 2024; López-Muñoz et al. 2011). While other anxiolytic medications are less commonly used, the ongoing use of outdated and dangerous agents such as the barbiturates is concerning.

There are considerably higher rates of anxiolytic medication use in HICs than LMICs. This finding is consistent with our earlier work on antidepressant use (Kazdin et al. 2023), and treatment gaps in anxiety disorders (Alonso et al. 2018). Several reasons may be driving this difference. First, lower relative personal income and higher health related out-of-pocket costs can be assumed for respondents in LMICs versus HICs, which would inevitably result in lower use of medication. Second, there may be significant differences in availability of prescribers and of medication among LMICs and HICs, and this may contribute to differences in medication use. Third, there may be more

TABLE 5 | Predictors of perceived treatment effectiveness ($n = 4126$)^a.

	Very effective		Very/somewhat effective	
	OR	(95% CI)	OR	(95% CI)
I. MDE				
12-Month	0.8 ^b	(0.7–0.9)	0.8 ^b	(0.7–1.0)
Lifetime ^c	1.1	(1.0–1.3)	1.2	(0.9–1.5)
Partial	1.1	(0.9–1.3)	1.0	(0.8–1.3)
None	1.0	(0.9–1.2)	1.0	(0.8–1.3)
χ^2_3	9.9 ^b		5.8	
II. Anxiety disorder				
12-Month	1.0	(0.8–1.2)	1.0	(0.8–1.2)
Lifetime ^c	1.1	(0.8–1.3)	1.0	(0.7–1.4)
Partial	1.1	(0.9–1.3)	1.1	(0.8–1.4)
None	0.9	(0.8–1.1)	1.0	(0.8–1.4)
χ^2_3	1.6		0.5	
III. Anxiolytic medication classes				
Short-acting benzodiazepines	0.8	(0.5–1.2)	1.0	(0.6–1.7)
Intermediate-acting benzodiazepines	1.1	(0.9–1.3)	1.3 ^b	(1.0–1.6)
Long-acting benzodiazepines	1.0	(0.8–1.2)	0.8	(0.7–1.1)
Z-drugs	1.2	(0.9–1.7)	0.9	(0.6–1.4)
Other anxiolytic medications	1.0	(0.8–1.3)	1.1	(0.8–1.5)
χ^2_4	2.5		8.6	
IV. Single reasons				
Anxiety	1.1	(0.9–1.4)	0.9	(0.6–1.3)
Depression	0.7	(0.5–1.0)	0.7	(0.5–1.2)
Poor sleep	1.1	(0.9–1.3)	0.9	(0.6–1.3)
Other physical reasons	1.0	(0.6–1.7)	0.8	(0.5–1.4)
Other reasons	1.2	(0.8–1.6)	0.6 ^b	(0.4–1.0)
Multiple reasons				
Anxiety and depression	0.5 ^b	(0.3–0.7)	0.7	(0.4–1.1)
Anxiety and not depression, +1	1.4	(1.0–2.1)	3.5 ^b	(1.7–7.0)
Depression and not anxiety, +1	1.4	(0.7–2.6)	1.1	(0.4–3.0)
No anxiety, no depression, +2	1.0	(0.5–2.2)	1.4	(0.4–5.6)
χ^2_8	27.2 ^b		19.3 ^b	

Abbreviation: MDE: major depressive episode.

^bSignificant at the 0.05 level, two-sided test.

^aControlling for survey. Seven of the surveys (in Israel, Japan, Brazil, Bulgaria, Iraq, Lebanon, and Nigeria) did not ask about reasons for use or assess the detailed survey items exploring details about medication use (e.g., current use or stop; reason for medication use; perceived effectiveness). These surveys were dropped from the analyses that used these variables, reducing the sample to $n = 4192$. Another 66 records were dropped due to missing values for the questions asking about reasons for treatment and effectiveness, further reducing the sample to 4126.

^cSee Table 1 for definitions of lifetime, partial, and none.

attitudinal barriers to use of anxiolytic medications in LMICs than HICs. There is a clear public health and investment case for scaling up interventions for anxiety disorders and MDD in LMICs (Chisholm et al. 2016); this should include judicious use of antidepressants and benzodiazepines (Baldwin et al. 2013).

Intermediate-acting benzodiazepines were the anxiolytic medication class most commonly used across surveys, followed by long-acting benzodiazepines. The finding that intermediate-

acting benzodiazepines were more commonly prescribed than long-acting benzodiazepines in HICs, while long-acting benzodiazepines were more commonly prescribed than intermediate-acting benzodiazepines in LMICs may reflect the readier availability of less expensive longer-acting agents, or a preference for agents that require less frequent administration in some contexts. The more common use of z-drugs in HICs than LMICs likely reflects the more recent availability of these agents and their higher costs.

The use of intermediate-acting and long-acting benzodiazepines for both anxiety and poor sleep, and of short-acting benzodiazepines and especially z-drugs for poor sleep is consistent with clinical guidelines, which rest in turn on the evidence base of RCTs (Balon et al. 2020; Dubovsky and Marshall 2022). Thus, for example, both alprazolam (intermediate-acting) and clonazepam (long-acting) are FDA-approved for the treatment of panic disorder. The increased use of other anxiolytic medications for other physical symptoms and other symptoms, may reflect the evidence base that some of these agents, such as pregabalin, are useful for pain symptoms in some clinical contexts, or may indicate that such agents are turned to when more commonly prescribed agents fail.

Most of the survey respondents who used anxiolytic medications reported that they were very effective and a large majority reported that they were at least somewhat effective, with similar patterns in HICs and LMICs. These findings are consistent with the large evidence-base of RCTs employing clinician-rated measures to demonstrate the efficacy of these agents (Balon et al. 2020; Dubovsky and Marshall 2022). Although the RCT evidence-base derives predominantly from work in HICs, clinicians from around the world have emphasized the usefulness of these agents (Silberman et al. 2023). Self-evaluation of effectiveness in community populations is a useful complement to such work because it allows for the evaluation to take into account individuals' own views about the benefits they experience from treatment in everyday life on the dimensions that matter most to them (Stein et al. 2021).

Anxiolytic medications were more commonly used by respondents with subthreshold and 12-month MDE than by those with subthreshold and 12-month anxiety disorder. Indeed, 45.9% of all use was by respondents with 12-month, lifetime, or subthreshold MDE. These patterns were strikingly similar in HICs and LMICs. Furthermore, anxiolytic medications were reported more effective among respondents who used these medications for anxiety and another reason other than depression, and less effective among respondents with 12-month MDE as well as among respondents who used these agents for both anxiety and depression. These findings are consistent with clinical guidelines which emphasize the importance of antidepressant treatment for individuals with MDD.

The data presented here do not definitely answer the question of how often benzodiazepines should be prescribed in clinical practice, but they usefully inform discussions of how best to optimize their use. The results provide an important complement to the evidence from controlled treatment trials by reporting on perceived effectiveness outside of the context and restrictions of such work. It is reassuring to find that anxiolytic medications, particularly benzodiazepines, are largely prescribed in the general population for anxiety and sleep, and that they are widely perceived to be either very or somewhat effective by users. However, more targeted prescription of these agents may be necessary given that a meaningful proportion of use was reported to be for depression and antidepressant intervention should be prioritized in the pharmacotherapy of MDD.

Author Contributions

D.J.S., A.E.K., C.V., D.V.V. and R.C.K. conceptualized and designed the study. A.A-H., J.A., L.H.A., C.B., J-M C-de-A., G.de.G., A.R.O.G., J.M.H., E.G.K., A.K., V.K-M., F.N-M., D.S., J.P-V., and C.V. acquired and analyzed the data. D.J.S., A.E.K., C.V., D.V., and R.C.K. interpreted the data. N.A.S. created new software used in the work, and I.H. conducted analyses using this. D.J.S., A.E.K., D.S.B., M.G.H., I.H., J.R.P., N.A.S., P.W., M.C.V., A.A-H., J.A., L.H.A., C.B., J-M.C-de-A., G.deG., A.R.O.G., J.M.H., E.G.K., A.K., V.K-M., F.N-M., D.S., J.P-V., C.V., D.V.V. and R.C.K. drafted the work or substantively revised it. All authors read and approved the final manuscript.

Acknowledgments

The World Mental Health Survey collaborators are Sergio Aguilar-Gaxiola, MD, PhD; Ali Al-Hamzawi, MD; Jordi Alonso, MD, PhD; Yasmin A. Altwaijri, PhD; Laura Helena Andrade, MD, PhD; Lukoye Atwoli, MD, PhD; Corina Benjet, PhD; Guilherme Borges, ScD; Ronny Bruffaerts, PhD; Brendan Bunting, PhD; José Miguel Caldas-de-Almeida, MD, PhD; Graça Cardoso, MD, PhD; Stephanie Chardoul, BA Louisa Degenhardt, PhD; Giovanni de Girolamo, MD; Oye Gureje, MD, DSC, FRCPsych; Josep Maria Haro, MD, PhD; Meredith G. Harris, PhD; Hristo Hinkov, MD, PhD; Chi-yi Hu, MD, PhD; Peter de Jonge, PhD; Aimee Nasser Karam, PhD; Elie G. Karam, MD; Georges Karam, MD; Alan E. Kazdin, PhD; Norito Kawakami, MD, DMSc; Ronald C. Kessler, PhD; Andrzej Kiejna, MD, PhD; Viviane Kovess-Masfety, MD, PhD; John J. McGrath, MD, PhD; Maria Elena Medina-Mora, PhD; Jacek Moskalewicz, PhD; Fernando Navarro-Mateu, MD, PhD; Daisuke Nishi, MD, PhD; Marina Piazza, MPH, ScD; José Posada-Villa, MD; Annelieke Roest, PhD; Kate M. Scott, PhD; Juan Carlos Stagnaro, MD, PhD; Dan J. Stein, FRCPC, PhD; Margreet 10 Have, PhD; Nathan Tintle, PhD; Maria Carmen Viana, MD, PhD; Daniel V. Vigo, MD, DrPH; Cristian Vladescu, MD, PhD David R. Williams, MPH, PhD; Bogdan Wojtyniak, ScD; Miguel Xavier, MD, PhD; Alan M. Zaslavsky, PhD.

Funding

The World Health Organization World Mental Health (WMH) Survey Initiative is supported by the United States National Institute of Mental Health (NIMH; R01 MH070884), the John D. and Catherine T. MacArthur Foundation, the Pfizer Foundation, the United States Public Health Service (R13-MH066849, R01-MH069864, and R01 DA016558), the Fogarty International Center (FIRCA R03-TW006481), the Pan American Health Organization, Eli Lilly and Company, *Ortho-McNeil* Pharmaceutical Inc., GlaxoSmithKline, and Bristol-Myers Squibb. We thank the staff of the WMH Data Collection and Data Analysis Coordination Centers for assistance with instrumentation, fieldwork, and consultation on data analysis. None of the funders had any role in the design, analysis, interpretation of results, or preparation of this paper. The views and opinions expressed in this report are those of the authors and should not be construed to represent the views of the World Health Organization, other sponsoring organizations, agencies, or governments.

The Argentina survey – Estudio Argentino de Epidemiología en Salud Mental (EASM) – was supported by a grant from the Argentinian Ministry of Health (Ministerio de Salud de la Nación) – (Grant 2002-17270/13-5). The São Paulo Megacity Mental Health Survey is supported by the State of São Paulo Research Foundation (FAPESP) Thematic Project Grant 03/00,204-3. The Bulgarian Epidemiological Study of common mental disorders EPIBUL is supported by the Ministry of Health and the National Center for Public Health Protection. The Colombian National Study of Mental Health (NSMH) is supported by the Ministry of Social Protection. The Mental Health Study Medellín—Colombia was carried out and supported jointly by the Center for Excellence on Research in Mental Health (CES University) and the Secretary of Health of Medellín. The ESEMeD project is funded by the European Commission (Contracts QLG-1999-01042; SANCO 2004123, and EAHC 20,081,308), the Piedmont

Region (Italy), Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Spain (FIS 00/0028), Ministerio de Ciencia y Tecnología, Spain (SAF 2000-158-CE), Generalitat de Catalunya (2017 SGR 452; 2014 SGR 748), Instituto de Salud Carlos III (CIBER CB06/02/0046, RETICS RD06/0011 REM-TAP), and other local agencies and by an unrestricted educational grant from GlaxoSmithKline. Implementation of the Iraq Mental Health Survey (IMHS) and data entry were carried out by the staff of the Iraqi MOH and MOP with direct support from the Iraqi IMHS team with funding from both the Japanese and European Funds through United Nations Development Group Iraq Trust Fund (UNDG ITF). The Israel National Health Survey is funded by the Ministry of Health with support from the Israel National Institute for Health Policy and Health Services Research and the National Insurance Institute of Israel. The World Mental Health Japan (WMH) Survey is supported by the Grant for Research on Psychiatric and Neurological Diseases and Mental Health (H13-SHOGAI-023, H14-TOKUBETSU-026, H16-KOKORO-013, H25-SEISHIN-IPPAN-006) from the Japan Ministry of Health, Labour and Welfare. The Lebanese Evaluation of the Burden of Ailments and Needs of the Nation (L.E. B.A.N.O.N.) is supported by the Lebanese Ministry of Public Health, the WHO (Lebanon), National Institute of Health/Fogarty International Center (R03 TW006481-01), anonymous private donations to IDRAAC, Lebanon, and unrestricted grants from, Algorithm, AstraZeneca, Benta, Bella Pharma, Eli Lilly, Glaxo Smith Kline, Lundbeck, Novartis, Omni-Pharma, Pfizer, Phenicia, Servier, and UPO. The Mexican National Comorbidity Survey (MNCS) is supported by The National Institute of Psychiatry Ramon de la Fuente (INPRFMDIES 4280) and by the National Council on Science and Technology (CONACyT-G30544-H), with supplemental support from the Pan American Health Organization (PAHO). The Nigerian Survey of Mental Health and Wellbeing (NSMHW) is supported by the WHO (Geneva), the WHO (Nigeria), and the Federal Ministry of Health, Abuja, Nigeria. The Peruvian World Mental Health Study was funded by the National Institute of Health of the Ministry of Health of Peru. The Portuguese Mental Health Study was carried out by the Department of Mental Health, Faculty of Medical Sciences, NOVA University of Lisbon, with collaboration of the Portuguese Catholic University, and was funded by Champalimaud Foundation, Gulbenkian Foundation, Foundation for Science and Technology (FCT) and Ministry of Health. The Romania WMH study projects "Policies in Mental Health Area" and "National Study regarding Mental Health and Services Use" were carried out by National School of Public Health & Health Services Management (former National Institute for Research & Development in Health), with technical support of Metro Media Transilvania, the National Institute of Statistics-National Center for Training in Statistics, SC Cheyenne Services SRL, Statistics Netherlands and were funded by Ministry of Public Health (former Ministry of Health) with supplemental support of Eli Lilly Romania SRL. The Psychiatric Enquiry to General Population in Southeast Spain—Murcia (PEGASUS-Murcia) Project has been financed by the Regional Health Authorities of Murcia (Servicio Murciano de Salud and Consejería de Sanidad y Política Social) and Fundación para la Formación e Investigación Sanitarias (FFIS) of Murcia. US National Comorbidity Survey Replication (NCS-R) is supported by the National Institute of Mental Health (NIMH; U01-MH60220) with supplemental support from the National Institute of Drug Abuse (NIDA), the Substance Abuse and Mental Health Services Anxiolytic medicationinistration (SAMHSA), the Robert Wood Johnson Foundation (RWJF; Grant 044,708), and the John W. Alden Trust. Dr. Laura Helena Andrade is supported by the Brazilian Council for Scientific and Technological Development (CNPq Grant # 307933/2019-9).

None of the funders had any role in the design, analysis, interpretation of results, or preparation of this paper. A complete list of all within-country and cross-national WMH publications can be found at <http://www.hcp.med.harvard.edu/wmh>

Ethics Statement

At all survey sites, the local ethics or institutional review committee reviewed and approved the protocol to ensure protection of human subjects, in line with appropriate international and local guidelines. Details of

the ethics committees for the WMH surveys can be viewed at this link: http://www.hcp.med.harvard.edu/wmh/ftpdir/WMH_Ethics_approval.pdf

Consent

The authors have nothing to report.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Access to the cross-national World Mental Health (WMH) data is governed by the organizations funding and responsible for survey data collection in each country. These organizations made data available to the WMH consortium through restricted data sharing agreements that do not allow us to release the data to third parties. The exception is that the U.S. data are available for secondary analysis.

References

Alonso, J., Z. Liu, S. Evans-Lacko, et al. and ... The WHO World Mental Health Survey Collaborators. 2018. "Treatment Gap for Anxiety Disorders is Global: Results of the World Mental Health Surveys in 21 Countries." *Depression and Anxiety* 35, no. 3: 195–208. <https://doi.org/10.1002/da.22711>.

Baldwin, D. S., K. Aitchison, A. Bateson, et al. 2013. "Benzodiazepines: Risks and Benefits. A Reconsideration." *Journal of Psychopharmacology* 27, no. 11: 967–971. <https://doi.org/10.1177/0269881113503509>.

Baldwin, D. S., I. M. Anderson, D. J. Nutt, et al. 2014. "Evidence-Based Pharmacological Treatment of Anxiety Disorders, Post-traumatic Stress Disorder and Obsessive-Compulsive Disorder: A Revision of the 2005 Guidelines From the British Association for Psychopharmacology." *Journal of Psychopharmacology* 28, no. 5: 403–439. <https://doi.org/10.1177/0269881114525674>.

Balon, R., V. Starcevic, E. Silberman, et al. 2020. "The Rise and Fall and Rise of Benzodiazepines: A Return of the Stigmatized and Repressed." *Revista Brasileira de Psiquiatria* 42, no. 3: 243–244. <https://doi.org/10.1590/1516-4446-2019-0773>.

Bandelow, B., C. Allgulander, D. S. Baldwin, et al. 2023. "World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Treatment of Anxiety, Obsessive-Compulsive and Posttraumatic Stress Disorders – Version 3. Part I: Anxiety Disorders." *World Journal of Biological Psychiatry* 24, no. 2: 79–117. <https://doi.org/10.1080/15622975.2022.2086295>.

Bighelli, I., C. Trespidi, M. Castellazzi, et al. 2016. "Antidepressants and Benzodiazepines for Panic Disorder in Adults." *Cochrane Database of Systematic Reviews* 2016, no. 9. <https://doi.org/10.1002/14651858.CD011567.pub2>.

Campanha, A. M., B. Ravagnani, I. A. Milhorança, et al. 2020. "Benzodiazepine Use in São Paulo, Brazil." *Clinics* 75: e1610. <https://doi.org/10.6061/clinics/2020/e1610>.

Chisholm, D., K. Sweeny, P. Sheehan, et al. 2016. "Scaling-Up Treatment of Depression and Anxiety: A Global Return on Investment Analysis." *Lancet Psychiatry* 3, no. 5: 415–424. [https://doi.org/10.1016/S2215-0366\(16\)30024-4](https://doi.org/10.1016/S2215-0366(16)30024-4).

Cloos, J.-M., V. Bocquet, I. Rolland-Portal, P. Koch, and G. Chouinard. 2015. "Hypnotics and Triazolobenzodiazepines - Best Predictors of High-Dose Benzodiazepine Use: Results From the Luxembourg National Health Insurance Registry." *Psychotherapy and Psychosomatics* 84, no. 5: 273–283. <https://doi.org/10.1159/000434755>.

Cosci, F., J. Guidi, R. Balon, and G. A. Fava. 2015. "Clinical Methodology Matters in Epidemiology: Not all Benzodiazepines Are the Same."

Psychotherapy and Psychosomatics 84, no. 5: 262–264. <https://doi.org/10.1159/000437201>.

Dell'osso, B., and M. Lader. 2013. "Do Benzodiazepines Still Deserve a Major Role in the Treatment of Psychiatric Disorders? A Critical Reappraisal." *European Psychiatry* 28, no. 1: 7–20. <https://doi.org/10.1016/j.eurpsy.2011.11.003>.

Dubovsky, S. L., and D. Marshall. 2022. "Benzodiazepines Remain Important Therapeutic Options in Psychiatric Practice." *Psychotherapy and Psychosomatics* 91, no. 5: 307–334. <https://doi.org/10.1159/000524400>.

First, M., R. L. Spitzer, M. Gibbon, and J. B. W. Williams. 1997. *Structured Clinical Interview for DSM-IV Axis I Disorders*. American Psychiatric Press.

Fisher, J., C. Sanyal, D. Frail, and I. Sketris. 2012. "The Intended and Unintended Consequences of Benzodiazepine Monitoring Programmes: A Review of the Literature." *Journal of Clinical Pharmacy and Therapeutics* 37, no. 1: 7–21. <https://doi.org/10.1111/j.1365-2710.2011.01245.x>.

Gomez, A. F., A. L. Barthel, and S. G. Hofmann. 2018. "Comparing the Efficacy of Benzodiazepines and Serotonergic Anti-depressants for Adults With Generalized Anxiety Disorder: A Meta-Analytic Review." *Expert Opinion on Pharmacotherapy* 19, no. 8: 883–894. <https://doi.org/10.1080/14656566.2018.1472767>.

Harkness, J., B. Pennell, A. Villar, N. Gebler, S. Aguilar-Gaxiola, and I. Bilgen. 2008. "Translation Procedures and Translation Assessment in the World Mental Health Survey Initiative." In *The WHO World Mental Health Surveys: Global Perspectives on the Epidemiology of Mental Disorders*, 91–113. Cambridge University Press.

Haro, J. M., S. Arbabzadeh-Bouchez, T. S. Brugha, et al. 2006. "Concordance of the Composite International Diagnostic Interview Version 3.0 (CIDI 3.0) With Standardized Clinical Assessments in the WHO World Mental Health Surveys." *International Journal of Methods in Psychiatric Research* 15, no. 4: 167–180. <https://doi.org/10.1002/mpr.196>.

Heeringa, S., J. Wells, F. Hubbard, et al. 2008. "Sample Designs and Sampling Procedures." In *The WHO World Mental Health Surveys: Global Perspectives on the Epidemiology of Mental Disorders*. Cambridge University Press.

Huerta, C., V. Abbing-Karahagopian, G. Requena, et al. 2016. "Exposure to Benzodiazepines (Anxiolytics, Hypnotics and Related Drugs) in Seven European Electronic Healthcare Databases: A Cross-National Descriptive Study From the PROTECT-EU Project." *Pharmacoepidemiology and Drug Safety* 25, no. 1: 56–65. <https://doi.org/10.1002/pds.3825>.

Junkes, L., M. V. Mendlowicz, R. Shader, and A. E. Nardi. 2024. "Leo Sternbach and the Benzodiazepines 60 Years On: A Revolutionary Treatment for Anxiety Disorders." *Pharmacological Research* 207: 107310. <https://doi.org/10.1016/j.phrs.2024.107310>.

Kazdin, A. E., C.-S. Wu, I. Hwang, et al. and ... The WHO World Mental Health Survey collaborators. 2023. "Antidepressant Use in Low- Middle- and High-Income Countries: A World Mental Health Surveys Report." *Psychological Medicine* 53, no. 4: 1583–1591. <https://doi.org/10.1017/S0033291721003160>.

Kessler, R. C., and T. B. Üstün. 2004. "The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI)." *International Journal of Methods in Psychiatric Research* 13, no. 2: 93–121. <https://doi.org/10.1002/mpr.168>.

Kurko, T. A. T., L. K. Saastamoinen, S. Tähkäpää, et al. 2015. "Long-Term Use of Benzodiazepines: Definitions, Prevalence and Usage Patterns – A Systematic Review of Register-Based Studies." *European Psychiatry* 30, no. 8: 1037–1047. <https://doi.org/10.1016/j.eurpsy.2015.09.003>.

Lader, M. 2014. "Benzodiazepine Harm: How Can It be Reduced?" *British Journal of Clinical Pharmacology* 77, no. 2: 295–301. <https://doi.org/10.1111/j.1365-2125.2012.04418.x>.

López-Muñoz, F., C. Álamo, and P. García-García. 2011. "The Discovery of Clordiazepoxide and the Clinical Introduction of Benzodiazepines: Half a Century of Anxiolytic Drugs." *Journal of Anxiety Disorders* 25, no. 4: 554–562. <https://doi.org/10.1016/j.janxdis.2011.01.002>.

Maj, M., D. J. Stein, G. Parker, et al. 2020. "The Clinical Characterization of the Adult Patient With Depression Aimed at Personalization of Management." *World Psychiatry* 19, no. 3: 269–293. <https://doi.org/10.1002/wps.20771>.

Nutt, D. J. 2005. "NICE: The National Institute of Clinical Excellence - Or Eccentricity? Reflections on the Z-Drugs as Hypnotics." *Journal of Psychopharmacology* 19, no. 2: 125–127. <https://doi.org/10.1177/0269881105051988>.

Offidani, E., J. Guidi, E. Tomba, and G. A. Fava. 2013. "Efficacy and Tolerability of Benzodiazepines Versus Antidepressants in Anxiety Disorders: A Systematic Review and Meta-Analysis." *Psychotherapy and Psychosomatics* 82, no. 6: 355–362. <https://doi.org/10.1159/000353198>.

Peppin, J. F., J. V. Pergolizzi, R. B. Raffa, and S. L. Wright, eds. 2021. *The Benzodiazepines Crisis: The Ramifications of an Over-Used Drug Class*. Oxford University Press.

Scott, K. M., P. de Jonge, D. J. Stein, and R. C. Kessler, eds. 2017. *Mental Disorders Around the World: Facts and Figures From the WHO World Mental Health Surveys*. Cambridge University Press.

Silberman, E., A. E. Nardi, V. Starcevic, et al. 2023. "Resolving the Paradox of Long-Term Benzodiazepine Treatment: Toward Evidence-Based Practice Guidelines." *Journal of Clinical Psychiatry* 84, no. 6: 23com14959. <https://doi.org/10.4088/JCP.23com14959>.

Soumerai, S. B., M. Shahzad, and C. Salzman. 2024. "Setting the Record Straight on Long-Term Use, Dose Escalation, and Potential Misuse of Prescription Benzodiazepines." *American Journal of Psychiatry* 181, no. 3: 186–188. <https://doi.org/10.1176/appi.ajp.20240030>.

Stein, D. J., A. E. Kazdin, A. M. Ruscio, et al. 2021. "Perceived Helpfulness of Treatment for Generalized Anxiety Disorder: A World Mental Health Surveys Report." *BMC Psychiatry* 21, no. 1: 392. <https://doi.org/10.1186/s12888-021-03363-3>.

Stein, D. J., K. M. Scott, P. de Jonge, and R. C. Kessler. 2017. "Epidemiology of Anxiety Disorders: From Surveys to Nosology and Back." *Dialogues in Clinical Neuroscience* 19, no. 2: 127–136. <https://doi.org/10.31887/DCNS.2017.19.2/dstein>.

Weintraub, M., S. Singh, L. Byrne, K. Maharaj, and L. Guttman. 1991. "Consequences of the 1989 New York State Triplicate Benzodiazepine Prescription Regulations." *JAMA* 266, no. 17: 2392–2397. <https://doi.org/10.1001/jama.1991.03470170080028>.

Wolter, K. 1985. *Introduction to Variance Estimation*. Springer-Verlag.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.

Supporting Information S1: [hup70031-sup-0001-suppl-data.docx](https://doi.org/10.1002/hup.70031-sup-0001-suppl-data.docx).