
Completing Gordon’s Higher-Order Logic
Andrei Popescu

School of Computer Science, University of Sheffield, UK. Email: a.popescu@sheffield.ac.uk

Abstract—Mike Gordon’s Higher-Order Logic (HOL) is one
of the most important logical foundations for interactive theorem
proving. The standard semantics of HOL, due to Andrew Pitts,
employs a downward closed universe of sets, and interprets
HOL’s Hilbert choice operator via a global choice function on
the universe. In this paper we fill a gap in the meta-theory
of HOL: We provide a natural Henkin-style notion of general
model corresponding to the standard models, and discover an
enrichment of HOL deduction that we prove to be sound and
complete w.r.t. these general models.

I. INTRODUCTION

Interactive theorem provers, also known as proof assistants,
are being increasingly deployed to verify meta-theoretic prop-
erties of operating systems, programming languages, compil-
ers and hardware architectures, and to formalize mathematical
theories. The list of major verification successes includes
the verified compilers CompCert [60] and CakeML [54] and
the verified operating system kernel seL4 [51] in computer
science, and formal proofs of the the Four Color [32], Kepler
[41] and Odd Order [33] theorems in mathematics. Solid and
well-understood logical foundations for such provers are of
paramount importance for the reliability of these results.

We can distinguish two kinds of logical foundations that
dominate today’s interactive theorem proving landscape. On
the one hand, provers based on dependent type theories such
as Agda [20], Coq [12], Lean [67] and Matita [6] rely on
sophisticated type systems to manage both the data of interest
and the proofs themselves. Developments in these provers of-
ten emphasize constructiveness and the computational content
of the proofs. On the other hand, provers such as HOL4 [35],
[82], HOL Light [42], Isabelle/HOL [68], ProofPower-HOL
[5] and HOL Zero [2], all rely on Higher-Order Logic (HOL),
a foundation with a different flavor: It is classical rather than
intuitionistic, employs simple types and custom-defined types
with rank-1 polymorphism (hence a less sophisticated type
system), relies essentially on the Hilbert choice operator and
the corresponding choice axiom, and (consequently) relies
much more heavily than dependent type theory on semantic
intuitions coming from set-based models—indeed, HOL is
often colloquially referred to as “typed set theory”.

In this paper, we are concerned with the latter foundation.
More precisely, we focus on what the theorem proving
community refers to as Higher-Order Logic (HOL), a logic
proposed by Mike Gordon at the end of the eighties inspired
by practical verification needs [34], [35]. At its core, HOL
is a rank-1 polymorphic extension of Church’s Simple Type
Theory [22], featuring built-in axioms of equality, Hilbert
choice and infinity and some minimalistic deduction rules

that can bootstrap the entire apparatus of classical logic
connectives and quantifiers (Section II). In addition to this
initial layer, users can further populate the HOL theories with
constant and type declarations and definitions, as well as
non-definitional axioms that underspecify constants or types
[4], postulate the existence of large types [43], [53], [69], [70],
model system behavior [19], etc. Even leaving non-definitional
axioms aside, dialects of HOL differ in the exact forms of
the definitional axioms. For example, while traditional HOL
practice prescribes upfront proofs of non-emptiness for newly
introduced types, Isabelle/HOL introduces type definitions
in conditional form, conditioned by the nonemptyness of
the defining predicate; moreover, overloaded constant and
type definitions are permitted, and Haskell-style type classes
are introduced by extending the theory with uninterpreted
constants and axioms about them [89], [39].

This variety of types of axioms that are or have been fea-
tured in HOL-based systems all have in common the concern
for logical consistency, and many of them are instances or mild
extensions of the definitional approach to theorem proving
[27], [64], [36], which insists on the use of definitions or oth-
erwise safe-by-construction axioms as opposed to unrestricted
axioms. For example, HOL’s traditional type definitions are
not equational definitions but axioms asserting that the newly
introduced type is isomorphic to a subset of the underlying
type (akin to the Axiom of Separation from set theory); they
nevertheless can be regarded as “definitionally safe”. Indeed,
the concern for consistency and stronger properties such as
conservativity have been a major theme in HOL from the very
beginning (see [37], [4], [57] for some history). Also from
early on, HOL has benefited from a powerful mechanism of
ensuring consistency and conservativity: a natural set-theoretic
semantics worked out by Andrew Pitts [72], which employs
a downward closed universe of sets, and interprets type con-
structors as operators on this universe. The Pitts semantics cap-
tures intuitively the models that HOL users are likely to have in
mind when introducing concepts and performing proofs, while
also hosting interpretations for various safe axioms, including
constant and type definitions and underspecifications—and
facilitate simple semantic arguments for consistency using the
soundness of HOL deduction in these models.

Here, we study not consistency, but a related problem that
represents a gap in the current meta-theory of HOL: the
completeness of deduction with respect to semantic models.
Our main result will be the discovery of an enrichment of HOL
deduction that achieves completeness w.r.t. to the Henkin-
style generalization of the standard models of HOL, the
Pitts models. We call this generalization Pitts-Henkin models

(Section III), and we provide a proof of completeness of HOL
deduction w.r.t. these models (Section IV) along the route
pioneered by Henkin: showing how a (syntactically) consistent
theory extends to a maximally consistent one satisfying
additional well-behavedness conditions (that later came to
be) called Hintikka conditions [83], [9], which in turn admit
a syntactic model consisting of sets of deductive equivalence
classes of terms. Our saga in this paper will be fitting HOL
with its Pitts-Henkin models into this scheme. It will turn out
that this requires (1) the reduction of completeness to ground
(non-polymorphic) conclusion completeness, (2) a downward
closure of the syntactic model, and an infrastructure on the
closure that allows for interpretation “by proxy” to the original
syntactic model, (4) additional Hintikka conditions for witness
types and representation terms that make the downward
closure possible, and ultimately (5) an enrichment of the
HOL deduction with a rule for uniform local type definitions
and an axiom for trivial choice in order to support extensions
satisfying the Hintikka witness conditions. Our result joins a
rich body of completeness results for logics and calculi that
adapt the methods of Henkin and Birkhoff (Section V).

More details about our constructions, as well as detailed
proofs, can be found in a technical report available online [75].

II. HOL PRELIMINARIES

A. Syntax

We fix an infinite set TVar, of type-variables, ranged by
α, β, and an infinite set Var, of (term) variables, ranged by
x, y, z or by other symbols, as suitable for the context. A type
structure is a pair (K, arOf) where K, ranged by κ, is the set of
type constructors, among which bool, ind and⇒ (representing
the type of booleans, an infinite type of individuals, and the
function type constructor) and arOf : K→N associates arities
to the type constructors, such that arOf(bool) = arOf(ind) = 0
and arOf(⇒) = 2. We will call bool, ind and ⇒ the built-in
type constructors, and let K0 = {bool, ind,⇒}.

The types of (K, arOf), ranged by σ, τ, are defined by the
following grammar: σ ::= α | (σ1, . . . , σarOf(κ)) κ. Thus, a
type is either a type-variable or an n-ary type constructor κ
postfix-applied to a number of types corresponding to its arity.
Type(K,arOf) denotes the set of types of (K, arOf).

A signature is a tuple Σ = (K, arOf, C, tpOf), where:
(K, arOf) is a type structure; C, ranged over by c, is a set
of symbols called constants, containing two special symbols,
= and ε (aimed at representing equality and Hilbert choice
of some element from a type, respectively); and tpOf : C→
Type(K,arOf) is a function associating a type to every constant,
such that tpOf(=) = α ⇒ α ⇒ bool and tpOf(ε) = (α ⇒
bool)⇒ α (where α is a type-variable). We will call = and ε
the built-in constants, and let C0 = {=, ε}. We usually write
TypeΣ instead of Type(K,arOf) for the set of types associated
to the type structure part (K, arOf) of a signature Σ.

Given a signature Σ = (K, arOf, C, tpOf) and an item u, we
write u ∈ Σ to mean that u ∈ K or u ∈ C. Given signatures
Σ = (K, arOf, C, tpOf) and Σ′ = (K′, arOf ′, C′, tpOf ′), we say
Σ′ extends Σ when K ⊆ K′, C ⊆ C′ and the functions arOf ′

and tpOf ′ are extensions of arOf and tpOf. We write Σinit =
(K0, arOf, C0, tpOf) for the initial signature, containing only
built-in type constructors and constants.

In this section, we fix a signature Σ = (K, arOf, C, tpOf),
and all the concepts we introduce will be relative to Σ; so we
write, e.g., Type and Term instead of TypeΣ and TermΣ.

Given a type σ, TV(σ) denotes the set of its type-variables.
σ is called ground, or monomorphic if TV(σ) = /0, and
polymorphic otherwise. Let GType be the set of ground types.
A type-substitution is a function ρ : TVar→ Type with finite
support, i.e., such that it changes only finitely many type-
variables. The application of ρ to a type σ, written σ[ρ],
replaces in σ each type-variable α with ρ(α). We say that σ is
an instance of τ via ρ, written σ≤ρ τ, when τ[ρ] =σ; and that
it is an instance of τ when there exists ρ such that σ≤ρ τ. A
constant instance is a pair of a constant and a type, written cσ,
such that σ≤ tpOf(c). We let CInst denote the set of constant
instances. A typed variable is a pair of a variable x and a type
σ, written xσ. We let VarT denote the set of typed variables.

The signature’s terms, ranged over by s, t, are defined by
the grammar t ::= xσ | cσ | t1 t2 | λxσ. t. Thus, a term is
either a variable, or a constant instance, or an application,
or an abstraction. As usual, we identify terms modulo alpha-
equivalence. Typing relates terms and types, is written t : σ
and is defined inductively in the expected way:

xσ ∈ VarT
xσ : σ

cσ ∈ CInst
cσ : σ

t1 : σ⇒ τ t2 : σ
t1 t2 : τ

t : τ
λxσ. t : σ⇒ τ

A term t is typable if there exists a (necessarily unique) type
σ such that t : σ. We let Term denote the set of all typable
terms, and Termσ the set of terms of type σ. In what follows,
we implicitly assume that the terms we consider are typable.

FTV(t) denotes the set of t’s free typed variables. For
example, assuming x 6= y, we have FTV(λxσ. xσ= yσ)= {yσ}.
A term t is closed if it has no free typed variables: FTV(t) = /0.
TV(t) is the set of type-variables occurring in (any type that
occurs in) t. A term is ground, or monomorphic, if TV(t) = /0,
and polymorphic otherwise. GTerm denotes the set of
(typable) ground terms, and GCTerm that of (typable) ground
closed terms; moreover, GTermσ and GCTermσ denote the
sets of ground and ground closed terms of type σ. We apply
a type-substitution ρ to a term t, written t[ρ], by applying it
to the types of all typed variables and constant instances in t.

A term-substitution is a function δ : VarT→ Term of finite
support (i.e., changing only finitely many typed variables) such
that δ(xσ) :σ for all xσ ∈VarT. The application of δ to a term
t, written t[δ], proceeds by replacing all free variables xσ of t
with δ(xσ) in a capture-avoiding way. t/x is term-substitution
that sends xσ to t and any other typed variable to itself.

A formula is a term of type bool. Fmla, ranged by ϕ, ψ, is
the set of formulas; and GFmla the set of ground formulas.
The formula connectives (e.g., ∧ and −→) and quantifiers (∀
and ∃) are defined from HOL primitives. (App. A1 from [75]
gives details.)

We often omit the types of variables and constants if they
can be inferred—e.g, writing λxσ. x instead of λxσ. xσ. We use

2

Equality
xα = x

xα = yα −→ pα⇒bool x−→ p y

Infinity
∃sind⇒ind, zind. (∀xind, yind. s x = s y−→ x = y)

∧ (∀xind. s x 6= z)

Choice pα⇒bool xα −→ p (ε p)

Fig. 1. The axioms of HOL, forming the set Ax

infix for equality, and standard functional notations: 1σ abbre-
viates λxσ. x, and t◦ s abbreviates λxσ. t(s x) when s : σ⇒ τ.

Since HOL was designed to formalize mathematical prac-
tice, we have a correspondence between standard concepts
used in the meta-language of this paper and HOL syntax—
reflected in some notation overlap, e.g., = for both meta-level
and HOL equality, ◦ for both meta-level and HOL composi-
tion, and : for both meta-level function (co)domain indication
and HOL typing. To help with disambiguation, we use single
arrow for meta-level function spaces, as in A→ B where A
and B are sets, but double arrow for HOL function types, as in
σ⇒ τ; and use parenthesized function application notation at
the meta-level, as in f (a) when f : A→ B and a∈ A, but non-
parenthesized one in HOL, as in t s when t : σ⇒ τ and s : σ.

A predicate is a function from a set A to the two-element set
{>,⊥} (where > represents “true” and ⊥ represents “false”).
The extent (or extension) of a predicate p : A→{>,⊥} is the
subset B of A on which p is true, i.e., B= {a∈ A | p(a) =>}.
We also say that B was defined by comprehension from p, and
that p is the indicator of B in A. The HOL counterparts of
predicates are terms of type σ⇒ bool for given types σ. HOL
models interpret HOL predicates as meta-level predicates.

B. Axioms and deduction

At its core, HOL contains axioms for equality, infinity and
choice, forming the set Ax shown in Fig. 1. Thus, we have
the usual introduction (reflexivity) and elimination rules for
equality. The infinity axiom ensures that ind is an infinite
type, by stating that there exists an injective but non-surjective
function between the type ind and itself. Finally, the choice
axiom regulates the behavior of the Hilbert choice operator ε,
indicating that if the argument predicate holds true for some
item (i.e., is not vacuously false), then it will hold for the
element returned by ε—in other words, this operator chooses
an element satisfying its argument predicate if at all possible.

A theory over Σ is a set of Σ-formulas. A context Γ is a finite
set of formulas. A type-variable α is fresh for Γ when it does
not appear in any formula from Γ. A typed variable xσ is fresh
for Γ when xσ does not appear free in any formula from Γ.

The HOL deduction is a ternary relation ` between theories
T , contexts Γ and formulas ϕ, written T ; Γ ` ϕ, defined
inductively by the rules shown in Fig. 2—referring to the use
of formulas from the underlying theory or context, and to the
application of type- or term- substitution, β-reduction, exten-
sionality, and implication introduction and elimination. The
familiar rules for the other connectives and quantifiers (such
as ¬ and ∀) are derived. We write T ` ϕ instead of T ; /0 ` ϕ.

C. Monomorphic HOL (MHOL)

The MHOL syntax and deduction are obtained by modifying
those of HOL: types no longer contain type-variables; the
equality and choice axioms are modified by replacing the type-
variable α with an arbitrary type σ (so they become axiom
schemas); the type instantiation rule (T-INST) is removed.

Thus, what we call MHOL is a small extension and variation
of Church’s Simple Type Theory [22]. The extension consists
of allowing non-built-in type constructors and constants, and
including the axiom of infinity as primitive. The variation con-
sists of taking equality as primitive instead of ¬, ∧ and ∀, and
of using a Gentzen rather than a Hilbert system for deduction;
such alternative presentations are equivalent [10], [85].

D. Type definitions

Def 1: Given types τ and σ and a closed term t :σ⇒ bool,
we let τ ∼= (t, σ) be the formula ∃repτ⇒σ. tdefτ,σ,t,rep where
tdefτ,σ,t,rep is (∀yτ, y′τ. rep y = rep y′ −→ y = y′) ∧ (∀xσ. t x
←→ (∃yτ. x = rep y)). We call τ ∼= (t, σ) a type definition,
provided τ has the form (α1, . . . , αm)κ such that κ is a non-
built-in type constructor, the αi’s are all distinct type-variables
and TV(t)⊆ {α1, . . . , αm}.

In a HOL development, a type definition is performed
while extending the current signature with a new type
constructor κ. So the type definition expresses that the (new)
type τ = (α1, . . . , αm)κ is in bijection with the extent of t in
σ. Since types in HOL must be nonempty, the definition is
only accepted if the user provides a proof that ∃xσ. t x holds.

E. Standard semantics: Pitts models

Using our notations, we follow Pitts’s account [72], which
is part of the standard documentation of the HOL system [73].

Def 2: A Pitts type-model for a type structure (K, arOf)
is a tuple M= (U , Mbool, Mind, (Mκ)κ∈KrK0) where
• U , the universe ofM, is a set of nonempty sets which is:

– closed under function space, i.e., (A→ B) ∈ U for all
A, B ∈ U ,

– downward closed (closed under inclusion), i.e., B ∈ U
for all A, B such that B⊆ A ∈ U ;

• Mbool ∈ U is a two-element set and Mind ∈ U is an
infinite set;

• Mκ : UarOf(κ) → U (i.e., Mκ is an arOf(κ)-ary operator
on the universe) for all κ ∈ KrK0.

Recall that K0 is the set of built-in type constructors
{bool,ind,⇒}. So a Pitts type-model provides custom
semantic interpretations for the non-built-in type constructors,
while for the built-in ones it has the expected requirements:
bool must be interpreted as a two-element set, ind as an
infinite set, and implicitly ⇒ as the (full) function space
operator—under which the universe U is required to be
closed. A main distinguishing feature of Pitts type-models
is that their universe is also required to be downward
closed—which, as we will discuss shortly, offers semantics
(and semantic intuition) for type definitions.

3

T ; Γ ` ϕ
(FACT)
[ϕ ∈ Ax∪T] T ; Γ ` ϕ

(ASSUM)
[ϕ ∈ Γ]

T ; Γ ` ϕ
T ; Γ ` ϕ[σ/α]

(T-INST)
[α fresh for Γ]

T ; Γ ` ϕ
T ; Γ ` ϕ[t/xσ]

(INST)
[xσ fresh for Γ]

T ; Γ ` (λxσ. t) s = t[s/xσ]
(BETA)

T ; Γ ` yσ⇒τ xσ = zσ⇒τ xσ
T ; Γ ` yσ⇒τ = zσ⇒τ

(EXT)
[xσ fresh for Γ]

T ; Γ∪{ϕ} ` ψ
T ; Γ ` ϕ−→ ψ

(IMPI)
T ; Γ ` ϕ−→ ψ T ; Γ ` ϕ

T ; Γ ` ψ
(MP)

Fig. 2. Deduction rules for HOL

Given a Pitts type-model M = (U , Mbool, Mind,
(Mκ)κ∈KrK0) for (K, arOf), a type-valuation in M is a
function θ : TVar→ U . We define the interpretation of types
〈 〉M : Type(K,arOf)→ (TVar→U)→U recursively, where θ
is a type-valuation (omitting the superscript M):
• 〈α〉(θ) = θ(α); • 〈bool〉(θ) = Mbool; • 〈ind〉(θ) = Mind;
• 〈σ1⇒ σ2〉(θ) = (〈σ1〉(θ)→ 〈σ2〉(θ));
• 〈(σ1,. . ., σarOf(κ))κ〉(θ) = Mκ (〈σ1〉(θ),. . ., 〈σarOf(κ)〉(θ)) if
κ ∈ KrK0.

The interpretation actually only depends on the type-
variables occurring in the type, in that 〈σ〉M(θ) = 〈σ〉M(θ′)
if θ(α) = θ′(α) for all α ∈ TV(σ). Therefore, given
θ : TV(σ) → U , we write 〈σ〉M(θ) for 〈σ〉M(θ′), where
θ′ : TVar→U is some/any extension of θ.

Def 3: Given a signature Σ = (K, arOf, C, tpOf), a Pitts
model for Σ is a tuple M = (U , Mbool, Mind, (Mκ)κ∈KrK0 ,
M>, M⊥, Mε, (Mc)c∈CrC0) where:
• (U , Mbool, Mind, (Mκ)κ∈KrK0) is a Pitts type-model for
(K, arOf) whose type interpretation we denote by 〈 〉;

• M> and M⊥ are the two (distinct) elements of Mbool;
• Mε is a family (Mε,A)A∈U such that Mε,A ∈ A;
• if c ∈ Cr C0 with tpOf(c) = σ, then Mc is a family
(Mc,θ)θ:TV(σ)→U such that Mc,θ ∈ 〈σ〉(θ).

Recall that C0 is the set of built-in constants {=, ε}. So a
Pitts model provides custom semantic interpretations for the
the non-built-in constants and a global choice function for
ε (while implicitly assuming that = will be interpreted as
equality). Moreover, although true and false are not primitive
but derived symbols in HOL, a Pitts model has semantic
counterparts for them, M> and M⊥ (and indeed, it can be
shown from the definition of interpretation given below that
true and false will necessarily be interpreted as M> and M⊥).

Given a Pitts model M = (U , Mbool, Mind, (Mκ)κ∈KrK0 ,
M>, M⊥, Mε, (Mc)c∈CrC0) and letting N = (U , Mbool, Mind,
(Mκ)κ∈KrK0) be its underlying Pitts type-model, we will refer
to the universe U of N as also the universe of M, and to
any type-valuation θ : TVar→U in N as a type-valuation in
M; and also write 〈σ〉M instead of 〈σ〉N .

A term-valuation in M is a function ξ : VarT→
⋃

A∈U A.
For any type-valuation θ and term-valuation ξ, both in M,
we say ξ is θ-compatible when ξ(xσ) ∈ 〈σ〉M(θ) for all
xσ ∈ VarT. We let Compat(M, θ) be the set of θ-compatible
term-valuations inM. We define the interpretation of terms as
a function 〈 〉M : TermΣ→ (∑θ:TVar→U Compat(M, θ))→U
recursively as follows, where θ is a type-valuation and ξ a θ-
compatible term-valuation (again omitting the superscriptM):
• 〈xσ〉(θ, ξ) = ξ(xσ).

• 〈=σ⇒σ⇒bool〉(θ, ξ) is the function f : 〈σ〉(θ)→ (〈σ〉(θ)→
Mbool) where f (a)(b) =

{
M>, if a = b
M⊥, otherwise

(the (M>, M⊥)-encoded equality predicate on 〈σ〉(θ)).
• 〈ε(σ⇒bool)⇒σ〉(θ, ξ) is the function

f : (〈σ〉(θ)→ Mbool)→ 〈σ〉(θ) where

f (p) =


Mε, {a∈〈σ〉(θ) | p(a)=M>},
if there exists a ∈ 〈σ〉(θ) such that p(a) = M>

Mε,〈σ〉(θ), otherwise.

• If c ∈ CrC0 and σ ≤ρ tpOf(c), then 〈cσ〉(θ, ξ) = Mc,θ′ ,
where θ′ : TV(tpOf(c))→ U is the restriction of ρ · θ to
TV(tpOf(c)) and ρ ·θ is the type-valuation taking any α to
〈ρ(α)〉(θ).

• 〈t1 t2〉(θ, ξ) = 〈t1〉(θ, ξ) (〈t2〉(θ, ξ)).
• 〈λxσ. t〉(θ, ξ) the function f : 〈σ〉(θ)→ 〈τ〉(θ), where τ is

the type of t, given by f (a) = 〈t〉(θ, ξ[xσ← a]).
In the clause for λ-abstraction, ξ[xσ ← a] is the term-

valuation obtained by updating ξ to send xσ to a, which is
θ-compatible because ξ is θ-compatible and a ∈ 〈σ〉(θ). In the
clause for non-built-in constant instances cσ, basic properties
of type-interpretation and type-substitution ensure that
〈cσ〉(θ, ξ) ∈ 〈σ〉(θ) (because 〈tpOf(c)〉(θ′) = 〈tpOf(c)〉(ρ ·
θ) = 〈tpOf(c)[ρ]〉(θ) = 〈σ〉(θ)) and that 〈cσ〉(θ, ξ) does not
depend on the choice of ρ (because σ≤ρ tpOf(c) determines
uniquely the action of ρ on TV(tpOf(c))).

In the clause for ε, the important case is when the argument
predicate is not vacuously false, allowing one to chose an
element from its extent. On the other hand, when the predicate
is vacuously false, one still needs to provide an element in the
interpretation of the type—and in Pitts models this case is
handled by applying the choice function Mε to the entire set.

Note that Mε ∈∏A∈U A is a global choice function on the
universe U of a Pitts model, i.e., it selects an element from
each set A∈U . This global choice follows set-theoretical tradi-
tion, and it matches the type (α→ bool)→ α of the ε constant
if we think of predicates via their extent. On the other hand, a
more ordinary interpretation Mε of a constant such as ε would
belong, by virtue of its type (α→ bool)→ α, not to ∏A∈U A
but to ∏A∈U (A→ Mbool)→ A; that is, Mε would choose not
from any (nonempty) set, but from any combination of a set
and a nonempty-extent predicate on that set. Such an “ordi-
nary” interpretation would not guarantee, like the one in the
Pitts models does, that the choice is the same for any two pred-
icates p : A→Mbool and q : B→Mbool that are defined on two
distinct (yet overlapping) underlying sets A and B, and have the
same extent, i.e., {a∈ A | p(a) = M>}= {b∈ B | q(b) = M>}.
We call this feature of the Pitts models Uniform Choice.

The term-valuation ξ does not matter when interpreting

4

closed terms, so when t is closed we write 〈t〉M(θ) to mean
that 〈t〉M(θ, ξ) for some/any θ-compatible term-valuation ξ.

Given a Pitts model M and a Σ-formula ϕ, we say that M
satisfies ϕ, written M|=Σ ϕ, when we have 〈ϕ〉M(θ, ξ) = M>
for all type-valuations θ and θ-compatible term-valuations
ξ; which, if ϕ is closed, becomes 〈ϕ〉M(θ) = M> for all
type-valuations θ. We extend satisfaction to theories, defining
M |=Σ T to mean that M |=Σ ϕ for all ϕ ∈ T .

The HOL rules of deduction are sound for Pitts models.
Moreover, these models provide semantic justification for sev-
eral safe specification mechanisms, including type definitions:

Prop 4: [72] If T is a Σ-theory that has a Pitts model
M, in that M |=Σ T , then the extension of Σ and T with a
provably nonempty type definition also has a Pitts model M′

which is an extension of M.

Thus allows the HOL users to work as if in a Pitts model
M with persistent identity, growing along with the theory.

III. HENKIN-STYLE GENERALIZATION OF PITTS MODELS

It follows from Gödel’s first incompleteness theorem
[31] that any recursively enumerable notion of deduction is
incomplete w.r.t. standard models (for sufficiently expressive
logics). Henkin-style generalizations, pioneered by Leon
Henkin for Simple Type Theory [45] and then applied to
many logics, are a technique for turning a logic’s standard
models into more abstract models for achieving completeness.

There are two features of the Pitts models that require gen-
eralization: (1) closedness under full function spaces, and (2)
unrestricted downward closedness, which means that for any
set in the universe, its full powerset is included in the universe.

Generalizing the first feature is well understood: We
weaken closedness under full function spaces into closedness
under restricted function spaces, containing not all functions
but only enough of them to make term interpretation possible,
i.e., to comprise all definable functions. We take a similar
approach with the second feature: We do not consider all
subsets, i.e., all elements of the full powerset, but only
enough of them to comprise the definable subsets, i.e., those
that are extents of definable predicates. This is achieved by
first introducing structures called frames that feature restricted
function space and restricted downward closedness, and then
defining Henkin-style models to be frames that allow the
interpretation of all terms. The next definitions use gray to
highlight points of generalization from standard (Pitts) models.

Def 5: Given a type structure (K, arOf), a type-frame for
(K, arOf) is a tuple M = (U , Mbool, Mind, M⇒, (Mκ)κ∈KrK0)
defined like a Pitts type-model (Def. 2), except that:
• there is an additional component M⇒ : U2→U such that

M⇒(A, B)⊆ (A→ B) for all A, B ∈ U ;
• both the closedness of U under function space and its

downward closedness are removed.
Thus, type-frames are more abstract than Pitts type-models

in that by abstracting closedness under function space to
closedness under a type-frame-specific operator M⇒. As for
downward closedness, while this is removed from type-frames,

a Henkin-style weakening of it will be introduced below for
frames, when we can talk about sets definable from predicates.

The interpretation of types in type-frames M 〈 〉= 〈 〉M :
Type(K,arOf)→ (TVar→U)→U , is defined like the one for
Pitts type-models, except that⇒ is interpreted not as function
space but as M⇒, i.e., 〈σ1⇒σ2〉(θ) = M⇒(〈σ1〉(θ), 〈σ2〉(θ)).

Def 6: A frame for the signature Σ = (K, arOf, C, tpOf), is
a tupleM= (U , Mbool, Mind, M⇒, (Mκ)κ∈KrK0 , M>, M⊥, Mε,
(Mc)c∈CrC0) defined like a Pitts model (Def. 3), except that:
• (U , Mbool, Mind, M⇒, (Mκ)κ∈KrK0) is (not a Pitts type-

model but) a type-frame for (K, arOf);
• U is (M⇒, M>)-downward closed, i.e., for all A∈U and p∈

M⇒(A, Mbool), if B= {a∈ A | p(a) = M>} and ιB,A : B→ A
is the inclusion function, then B ∈ U and ιB,A ∈ M⇒(B, A).

Note that (M⇒, M>)-downward closedness is essentially
a dual of the subobject classifier property from toposes [50],
as it says there are enough subobjects of A in the universe to
account for all the classifying morphisms in M⇒(A, Mbool).

Given a frameM=(U , M⇒, Mbool, Mind, (Mκ)κ∈KrK0 , M>,
M⊥, Mε, (Mc)c∈CrC0) for Σ = (K, arOf, C, tpOf), we
define the interpretation of terms as a partial function
〈 〉M : TermΣ → (∑θ:TVar→U Compat(M, θ))⇀

⋃
A∈U A

recursively by the following clauses, where θ is a type-
valuation and ξ a θ-compatible term-valuations ξ (as usual,
omitting the superscript M):
• The clauses for variables xσ, non-built-in constants cσ

and applications t1 t2 are like for Pitts models.
• Consider the function f : 〈σ〉(θ)→〈σ〉(θ)→Mbool given

by f (a)(b) =
{

M>, if a = b
M⊥, otherwise.

Define 〈=σ⇒σ⇒bool〉(θ, ξ) ={
f , if f ∈ M⇒(〈σ〉(θ), M⇒(〈σ〉(θ), Mbool))
undefined, otherwise.

• Consider the function f : M⇒(〈σ〉(θ), Mbool)→ 〈σ〉(θ),

f (p)=


Mε, {a∈〈σ〉(θ) | p(a)=M>},
if there exists a ∈ 〈σ〉(θ) such that p(a) = M>

Mε,〈σ〉(θ), otherwise.
Define 〈ε(σ⇒bool)⇒σ〉(θ, ξ) ={

f , if f ∈ M⇒(M⇒(〈σ〉(θ), Mbool), 〈σ〉(θ))
undefined, otherwise.

• Consider the function f : 〈σ〉(θ)→〈τ〉(θ), where τ is the
type of t, given by f (a) = 〈t〉(θ, ξ[xσ← a]).

Define 〈λxσ. t〉(θ, ξ) =
{

f , if f ∈ M⇒(〈σ〉(θ), 〈τ〉(θ))
undefined, otherwise.

Implicit above is that the interpretation is undefined on a
term if undefined on one of its immediate subterms.

Def 7: A Pitts-Henkin model is a frame for which the
term interpretation partial function is actually a total function
〈 〉M : TermΣ→ (∑θ:TVar→U Compat(M, θ))→

⋃
A∈U A.

Roughly speaking, a Pitts-Henkin model is a frame whose
sets of the universe contain all the definable functions (and
therefore, thanks to the frame properties, the universe contains
all the definable subsets). The notions of satisfaction by a
Pitts-Henkin model of a formula or a theory are defined
similarly to those for Pitts models. For a theory T over Σ and

5

a Σ-formula ϕ, we define the semantic Pitts-Henkin model
deduction of ϕ from T , written T |=Σ ϕ, to mean thatM|=Σ T
implies M |=Σ ϕ for all Pitts-Henkin models M.

With the Henkin-style generalization in place, we ask about
soundness and completeness. While deduction is sound for
Pitts-Henkin models, completeness fails immediately:

Prop 8: HOL deduction is not complete w.r.t. the Pitts-
Henkin models, (i.e., it is not true that, for all signatures Σ, and
all theories T and formulas ϕ over Σ, T |=Σ ϕ implies T `Σ ϕ).

Proof: Let ϕ be the Σinit-formula ∀xα. ∃yα. x 6= y, which is
polymorphic in α and says that α is not a singleton. The
satisfaction of ϕ by a Pitts-Henkin model means that there
is no singleton set in its universe—but this is false: {M>} is
a definable subset of Mbool hence it belongs to the universe.
So we have {ϕ} |=Σinit false.

However, it is not true that {ϕ} `Σinit false. Indeed, this
would imply {ϕ[σ1/α], . . . , ϕ[σn/α]} `Σinit false for some
ground types σ1, . . . , σn. But since the only ground types in
Σinit are built from bool, ind and ⇒ which all provably have
more than one element, we would obtain that /0 `Σinit ϕ[σi/α]
for each i, and therefore /0 `Σinit false, which contradicts the
consistency of (initial) HOL.

IV. DEVELOPING THE COMPLETENESS RESULT

We aim to prove a completeness theorem of the form: A
suitable enrichment of HOL deduction is complete w.r.t. the
Pitts-Henkin models, i.e., T |=Σ ϕ implies T `Σ ϕ (where `Σ

now refers to the enriched HOL deduction). As usual, we will
often omit the signature Σ, writing ` and |= for `Σ and |=Σ.

(We will discover such a suitable enrichment from
attempting a proof of completeness in the style of Henkin. As
shown by Thm 9 from the end of this section, it will consist of:
• a major addition: the Strong Local Typedef rule (shown

in Fig. 6), which allows performing type definitions in
local proof contexts while preserving the behavior of the
ε function of the host type;

• a minor addition: the Trivial Choice Axiom, ε (λxα. false) =
ε (λxα. true), equating the behavior of ε on the vacuously
false and vacuously true predicates.)

We are after a Henkin-style proof of completeness, so let us
recall the steps required by Henkin’s original proofs [45], [44]:
Step 1. Reducing the completeness problem to the model

existence problem, i.e., the problem of showing that any
(syntactically) consistent theory has a model.

Step 2. Showing that any consistent theory can be extended
to a (maximally consistent) Hintikka theory.

Step 3. Showing that any Hintikka theory has a model.
And since Steps 2 and 3 solve the model existence problem,
completeness is proved thanks to Step 1.

A. Dealing with polymorphism in the deduction system

For many logics, FOL and Simple Type Theory included,
Step 1 (a generalization of the refutability-based reformulation
from Gödel’s original proof for FOL [30]) is straightforward:

Assuming T |= ϕ and wanting to prove T ` ϕ, for a contra-
diction assume that T ` ϕ does not hold. From this, we obtain
T ∪{¬ϕ} is consistent, often expressed as T ∪{¬ϕ} 6` false (or
an equivalent formulation). By the model existence property,
there is a model M with M |= T ∪{¬ ϕ}, i.e., M |= T and
M |= ¬ ϕ, i.e., M |= T and M 6|= ϕ, contradicting T |= ϕ.

However, the above argument does not work for HOL,
specifically because it is not true that the failure of T ` ϕ
implies the consistency of T ∪{¬ ϕ}. E.g., consider again the
α-polymorphic formula ϕ that says α is not a singleton type.
Then /0 6`Σinit ϕ, yet {¬ ϕ} is inconsistent, as it requires all types
to be singletons. The culprit is the implicit polymorphism at
the top of HOL judgments: a formula ϕ in T ` ϕ implicitly
refers to what could be written as ∀TV(ϕ). ϕ, the universal
quantification of ϕ over all its type-variables. In this notation,
T ` ¬ ϕ means T ` ∀TV(ϕ).¬ ϕ, and not T ` ¬(∀TV(ϕ). ϕ).

So the above argument for reducing completeness to
model existence can only be applied to ground formulas. To
address this, we reduce completeness to ground-conclusion
completeness, namely the property that T |= ϕ implies T ` ϕ
assuming ϕ is ground, along the following lines. Given a
polymorphic formula ϕ, we extend the signature with fresh
ground types uα corresponding to the type-variables α of ϕ and
prove a fact in the style of Shoenfield’s “theorem on constants”
from FOL [81], [66] showing that deduction of ϕ (within the
original signature) is implied by deduction of ϕ[ρ], i.e., of ϕ
type-substituted via ρ, in the extended signature—where ρ is a
“grounding substitution”, replacing every type-variable α from
ϕ with uα. This implies our desired reduction. In conclusion,
we complete Step 1 with the help of a preliminary step:

Step 0. Reducing completeness to ground-conclusion com-
pleteness.

B. Traditional Hintikka theories and syntactic Henkin models

For engaging in Steps 2 and 3, we need a suitable notion
of Hintikka theory. Traditionally, Hintikka conditions on a
theory T refer to the model-like behavior of deduction from
T—e.g., ensuring that T ` ϕ iff not T ` ¬ ϕ (which mimics
the semantics of negation), and that T ` ∃xσ. ϕ iff there
exists a (closed) term t such that T ` ϕ[t/x] (mimicking the
semantics of existential quantification).

This behavior makes it possible to construct an actual
model. Namely, for any Hintikka theory T one defines the
T-deductive equivalence on closed (typable) terms, according
to which two terms t, t′ are equivalent, written t ' t′, when
they have the same type and their equality is inferable from
T , i.e., T ` t = t′. Finally, based on these equivalence classes,
one should (ideally) be able to define a so-called syntactic
model for T . In Henkin’s completeness proof for Simple Type
Theory, each type σ is interpreted as a set isomorphic to
the set CTermσ/' of '-equivalence classes of closed terms—
not equal but only isomorphic because function types of the
form σ1⇒ σ2 are interpreted not as CTermσ1⇒σ2 /', but as a
restricted function space between CTermσ1 /' and CTermσ2 /',
namely the subset of CTermσ1 /' → CTermσ2 /' contain-
ing all functions determined by the syntactic application of

6

a term in CTermσ1⇒σ2 . This induces a bijection between
CTermσ1⇒σ2 /' and this restricted function space. Overall, the
syntactic model interprets each type σ as a set Uσ for which
we have the mutually inverse to-and-fro bijections with the sets
of equivalence classes of terms, toσ : Uσ → CTermσ/' and
froσ : CTermσ/'→Uσ. For the non-function types σ, includ-
ing the built-ins bool and ind, we have actual equality, in that
Uσ = CTermσ/', and toσ and froσ are the identity functions.

For the Henkin models of Simple Type Theory the above
is enough, in that it can be proved that the sets Uσ form the
basis of a model of T . Moreover, it is not difficult to factor in
the rank-1 polymorphism in this scheme, by (1) building the
sets Uσ only for ground types σ and ground closed terms (so
replacing CTerm with GCTerm) and then, taking advantage of
the fact that each set Uσ determines σ uniquely, (2) proving
that the interpretation of polymorphic types and formulas can
be reduced to substitution.

C. Constructing a downward closed model

The syntactic model sketched above, whose universe, let’s
denote it by U , is the set of all sets Uσ, is not downward
closed—far from it, since the sets Uσ are mutually disjoint.
We address this in two stages:

Substep 3.1. At the syntactic level, we enrich the notion of
Hintikka theory to witness, via certain ground types τσ,t,
all extents of (ground closed) predicates t : σ ⇒ bool
(i.e., τσ,t will be in bijection with the extent of t in σ,
like with type definitions).

Substep 3.2. At the semantic level, we produce a downward
closure V of the syntactic universe U using the
interpretation of the witness types τσ,t as “proxies”
whose structure we copy.

So V is (definably) downward closed by construction, while
at the same time it does not satisfy any new syntactically-
definable properties compared to U , since the proxy
infrastructure delegates the interpretation in V to the U
subuniverse (which is well-behaved by construction). This
allows us to conclude Step 3 with:

Substep 3.3. We define a Pitts-Henkin model with universe
V , and prove that it is a model of our Hintikka theory T .

The above three substeps are discussed below. Substep 3.1 is
about bringing witness types into the Hintikka conditions. We
start by adding the requirement that, for every ground closed
predicate t : σ⇒ bool whose extent’s non-emptiness is prov-
able from the given theory (in that T ` ∃xσ. t x) there exists a
ground type τσ,t that is T -provably isomorphic to the extent of
t in σ. Recall from Def. 1 that this is exactly what type defi-
nitions express, so we can write it as T ` τσ,t ∼= (σ, t), where
τσ,t ∼= (σ, t) denotes ∃repτσ⇒σ. tdefτσ,t ,σ,t,rep , and tdefτσ,t ,σ,t,rep
says that rep is a bijection between τσ,t and the extent of t in
σ. We will actually consider some concrete (ground closed)
terms Repσ,t : τσ,t⇒ σ such that T ` tdefτσ,t ,σ,t,Repσ,t , and the
terms Absσ,t : σ⇒ τσ,t expressing the inverses of Repσ,t. We
call Repσ,t the representation function of the witness type τσ,t.

Since the identity of a term in the syntactic universe is up
to T -deductive equivalence, we do not want our witness types
to break this abstraction layer, so we require the following.
Witness Abstractness: τσ,t = τσ,t′ and Repσ,t = Repσ,t′

whenever σ is a ground type, t, t′ : σ⇒ bool are ground
closed terms, and T ` t = t′.

Now we move to discussing Substep 3.2 (and will get back
to Substep 3.1 later, after Substep 3.2 suggests more Hintikka
conditions). First, let us gather some facts and notations about
the syntactic universe U : Recall that U consists of the sets Uσ

where σ is a ground type. Each Uσ determines σ uniquely and
is isomorphic to GCTermσ/' via the to-and-fro bijections toσ
and froσ. Moreover, Ubool is actually equal to GCTermbool/',
and consists of exactly two elements: the T -deductive equiv-
alence classes of true and false—we denote these by > and
⊥. Finally, U is closed under definable function space; we let
Fun :U×U →U denote this restricted function space operator,
defined as Fun(Uσ1 , Uσ2) = Uσ1⇒σ2 ⊆ (Uσ1 → Uσ2).

We want to close U under definable subsets. To this end,
by induction-recursion we define (1) the extended universe
V ⊇ U together with (2) its restricted function space operator
Fun′ : V × V → V (so that Fun′(A, B) ⊆ (A → B) for all
A, B ∈ V), (3) the function Proxy : V → U , and (4) for each
A ∈ V , the mutually inverse bijections toUA : Proxy(A)→ A
and froUA : A→ Proxy(A). The definition has three inductive-
recursive rules, summarized below.
The base rule: This rule deals with the sets in U , taking

the proxy infrastructure to be trivial for U . Namely for
all A ∈ U , Proxy(A) = A and toUA = froUA = 1A; in
particular, Proxy(Ubool) = Ubool. And Fun′ extends Fun,
i.e., coincides with Fun on sets from U .

Rule for downward closedness: This ensures that V contains
every nonempty subset B = {a ∈ A | p(a) =>} of an ex-
isting set A definable as the extent of an existing predicate
p, i.e., B∈V whenever A∈V and p∈ Fun′(A, Ubool). As
the proxy for B, Proxy(B), we take the set Uτσ,t , where σ
is the unique ground type such that Proxy(A) = Uσ and
t : σ⇒ bool is the syntactic counterpart of the predicate
that corresponds to p via the proxy infrastructure, i.e.,
t/' = toσ⇒bool(p◦ froUA). By Witness Abstractness, τσ,t
is uniquely identified by A and p—because t is uniquely
identified by p up to T -deductive equivalence.

Rule for restricted-function-space closedness: This rule
keeps V closed under the restricted function space
operator Fun′ which copies the one from U via the proxy
infrastructure. In particular, we have that, for all A, B∈V ,
Proxy(Fun′(A, B)) = Fun(Proxy(A), Proxy(B)).

Correctness of the definition. To guarantee that our
inductive-recursive definition of V and its proxy infrastructure
is correct, we must prove that the rule for downward
closedness does not introduce any ambiguity. Indeed, the rule
offers two potentials for ambiguity.

One arises in the degenerate case when the predicate
p : A → Ubool is vacuously true, so that the newly
introduced set B = {a′ ∈ A | p(a)} is equal to A. In

7

V V ⊇ U

∈ ∈ ∈

Super(A) ⊇ A
toUA //

Proxy(A)
froUA

oo

Fig. 3. The extension V of the universe U .

this case, since Proxy(A) = Uσ and Proxy(B) = Uτσ,t where
t/' = toσ⇒bool(p ◦ froUA), we have Uτσ,t = Proxy(B) =
Proxy(A) = Uσ, hence an overlap between Uτσ,t and Uσ. So
the ambiguity would be avoided provided τσ,t = σ. Because,
thanks to p being vacuosuly true, we have t/' = (λxσ. true)/'
hence T ` t = (λxσ. true), and also factoring in Witness
Abstractness, it suffices to assume the following, which we
add to our Hintikka conditions (as part of Substep 3.1).

Witness Identity: τσ, λxσ.true =σ and T ` Repσ, λxσ.true = 1σ
whenever σ is a ground type.

The other potential for ambiguity goes deeper into the
structure of our definition. We must prove that, for the
newly added set B, we obtain the same proxy infrastructure
Proxy(B), toUB, froUB regardless of the superset A and predi-
cate p : A→Ubool used to produce B (as the extent of p in A).

To achieve this, we introduce another bit of infrastructure,
namely for each set A ∈ V , we also define (as part of the
inductive-recursive definition), the set Super(A) ∈ V as the
maximal superset of A in V . In fact, Super(A) will be
the original superset ancestor of A via applications of the
downward closedness rule, in that there will exist a chain
Super(A) = A0 ⊇ A1 ⊇ . . . ⊇ An = A leading from Super(A)
to A such that each Ai was introduced (by comprehension) as
a subset of Ai−1. Moreover, we maintain as an invariant the
fact that the indicator q : Super(A)→Ubool of A in Super(A)
is definable in V , in that q ∈ Fun′(Super(A), Ubool). (This
is true because q is the conjunction of the all the indicator
predicates along the aforementioned ancestry chain.) Note
that Super(A) = A for all A ∈ U. Fig. 3 depicts the extended
universe V and its proxy and superset infrastructures.

As another invariant of the definition (a consequence of the
fact that new subsethood relations appear only via the down-
ward closedness rule), we have the diamond-like property that
non-disjoint sets always have the same superset, i.e., A1∩A2 6=
/0 implies Super(A1) = Super(A2) for all A1, A2 ∈ V . Thanks
to this, we can normalize the process of comprehension in V
by reducing every comprehension to one from the superset.
Indeed, now we have the opportunity to state the following:
(1) introducing B by the downward closedness rule from some
set A1 ∈V and predicate p1 : A1→Ubool should give the same
result (i.e., same Proxy(B), toUB, froUB) as (2) introducing B
by the downward closedness rule from any other set A2 ∈ V
and predicate p2 : A2 → Ubool, because they both give the
same result as introducing B from the common ancestor A =
Super(A1) = Super(A2), using, as predicate on A, (1) the con-
junction between p1 and the indicator predicate q1 : A→Ubool
of A1 in A, which is the same as (2) the conjunction between
p2 and the indicator predicate q2 : A→ Ubool of A2 in A.

To make the emphasized claims true, we again go back, via
the proxy infrastructure, to the syntactic model, and further to
the underlying theory T . Since the proxies for comprehension
are Uτσ,t for suitable witness types τσ,t where t is determined
by the defining predicates, we can to reduce these claims
to the following property depicted in Fig. 4 (right), which
becomes a new Hintikka condition.
Witness Compositionality: ττσ,t , t′ = τσ, t ∧2 (t′ ◦ Absσ,t) and

Repσ, t ∧2 (t′ ◦ Absσ,t) = Repσ,t ◦Repτσ,t , t′ whenever σ is a
ground type, t : σ⇒ bool and t′ : τσ,t⇒ bool are ground
closed terms, T ` ∃xσ. t x and T ` ∃yτσ,t . t′ y.

Above, ∧2 denotes componentwise conjunction of
predicates (i.e., s1∧2 s2 denotes λxσ. s1 x ∧ s2 x). To explain
why this condition solves our non-ambiguity problem, we
chase the diagrams of Fig. 4. The figure focuses on the
route of introducing B from A1 versus that of introducing B
from A = Super(A1), and we will show that the two routes
yield the same result. (A similar argument works for A2
versus A = Super(A2), and the two therefore prove what we
want.) The left edges of the three triangles (center, left and
right) account for the first route, tracing the superset chain
A⊇ A1 ⊇ B, where q1 : A→Ubool and p1 : A1→Ubool are the
indicator predicates of A1 in A, and of B in A1, respectively:
• σ is the type corresponding to A = Super(A1), i.e.,

Proxy(A) = Uσ; and t : σ⇒ bool is the (unique up to T -
deducibility) syntactic predicate corresponding to q1, i.e.,
t/'= toσ⇒bool(toUFun′(A,Ubool)

(q1)) = toσ⇒bool(q1◦ froUA);
• τσ,t corresponds to A1, i.e., Proxy(A1) = Uτσ,t ; and

t′ : τσ,t ⇒ bool corresponds to p1, i.e., t′/' = toτσ,t⇒bool
(toUFun′(A1,Ubool)

(p1))= toτσ,t⇒bool(p1 ◦ froUA1);
• ττσ,t ,t′ is the type corresponding to B along this route, i.e.,

Proxy(B) = Uττσ,t ,t′
.

On the other hand, the right edges of the three triangles
account for the second route, tracing the direct superset
relationship A ⊇ B, where r1 : A→ Ubool, the indicator of B
in A, is the conjunction of q1 and p1, and we let s be the
syntactic conjunction t∧2 (t′ ◦Absσ,t):
• s : σ⇒ bool can be shown to be (T -provably equal to) the

syntactic predicate corresponding to r1, i.e.,
s/' = toσ⇒bool(toUFun′(A,Ubool)

(r1)) = toσ⇒bool(r1 ◦ froUA);
• τσ,s is the type corresponding to B along this route, i.e.,

Proxy(B) = Uτσ,s .
Now, the two alternative definitions of Proxy(B) and froUB
(and consequently of toUB too), emerging from the two routes
of introducing B, are seen to be reconciled thanks to Witness
Compositionality. Indeed, the two definitions of Proxy(B) are
equivalent because τσ,s = ττσ,t ,t′ . Moreover, the (T -provable)
commutativity of the right triangle implies the commutativity
of the center triangle. In turn, this ensures that defining froUB
based on froUA1 (so to make the rectangle of vertices B, A1,
Proxy(A1) and Proxy(B) commutative) gives the same result
as defining it based on froUA (so to make the rectangle of
vertices B, A, Proxy(A) and Proxy(B) commutative).

We are finally ready for Substep 3.3, namely organizing V
into a Pitts-Henkin model for the Hintikka theory T . First, we

8

A=Super(A1)=Super(B) Proxy(A) = Uσ
froUAoo

A1 = {a ∈ A | q1(a)}
?�

OO

Proxy(A1) = Uτσ,t

froτσ,t⇒σ(Repσ,t/')

OO

froUA1oo

B = {a ∈ A1 | p1(a)}
?�

OO

= {a ∈ A | r1(a)}
- M

\\

Proxy(B) = Uττσ,t ,t′

froUBoo

froτ
τσ,t ,t′

⇒τσ,t (Repτσ,t , t′ /'
)

OO

= Uτσ, t ∧2 (t′ ◦ Absσ,t)

froτ
σ, t ∧2 (t′ ◦ Absσ,t)

⇒σ(Repσ, t ∧2 (t′ ◦ Absσ,t)/'
)

ZZ σ

τσ,t

Repσ,t

KS

ττσ,t , t′

Repτσ,t , t′

KS

= τσ, t ∧2 (t′ ◦ Absσ,t)

Repσ, t ∧2 (t′ ◦ Absσ,t)

S[

Fig. 4. Tracing back the desired comprehension unambiguity in V (left), via U (center) to the Witness Compositionality property (right).

define a type-frame M having universe V and interpreting
the type constructors using the natural syntactic intepretation
in U , via proxy. Thus, we take M⇒ to be Fun′ (which had
already been set up to relate to the Fun operator on U via
proxy), Mbool = Ubool and Mind = Uind. Moreover, if κ is a
non-built-in n-ary type constructor, Mκ : V n → V is defined
by Mκ(A1, . . . , An) = U(σ1,. . .,σn)κ where each σi is the unique
ground type such that Proxy(Ai) = Uσi .

We write 〈σ〉 for the semantic interpretation of (not
necessarily ground) types σ in our type-frame M; thus, for
any type-valuation θ : TVar→ U , we have that 〈σ〉(θ) ∈ V .
The above “by-proxy” interpretation of the type constructors
extends to the interpretation of types, in that we can prove
the following by structural induction on types:

The type interpretation lemma. Proxy(〈σ〉(θ)) = Uσ[ρθ],
where ρθ : TVar → GType is the syntactic counterpart of θ
(via proxy), i.e., for all α, ρθ(α) is the unique ground type
σ′ with Proxy(θ(α)) = Uσ′ .

On top of this type-frame, we define a frame, also denoted
by M, using again the proxy infrastructure to borrow
the natural syntactic interpretation from U . We take M>
and M⊥ to be > and ⊥. If c is a non-built-in constant
of type σ, we define Mc ∈ ∏θ:TV(σ)→V〈σ〉(θ) by Mc,θ =
froU〈σ〉(θ)(froσ[ρθ](cσ[ρθ]/')). We postpone the definition of
Mε ∈∏A∈V A, as we will infer it from proof requirements.

We write 〈t〉 for the semantic interpretation of (not
necessarily ground or closed) terms t in our frame M; thus,
for any type-valuation θ : TVar→ V and θ-compatible term-
valuation ξ : VarT→

⋃
A∈V A, we have that 〈t〉(θ, ξ) is either

undefined or is an element of 〈σ〉(θ) where σ is the type of t.

The term interpretation lemma. 〈t〉(θ, ξ) is defined and
〈t〉(θ, ξ) = froU〈σ〉(θ)(froσ[ρθ](t[ρθ, δθ,ξ]/')), where σ is the
type of t, and δθ,ξ : VarT → GCTerm is a syntactic coun-
terpart of ξ (again via the proxy infrastructure), i.e.: for all
xσ′ ∈ VarT, δθ,ξ(xσ′) = s where s ∈ GCTermσ′[ρθ] is such that
s/' = toσ′[ρθ](toU〈σ′〉(θ)(ξ(xσ′))).

Above, t[ρθ, δθ,ξ] denotes the application of the type-
substitution ρθ and the quasi-term-substitution δθ,ξ in tandem
to the term t, namely δθ,ξ is applied to all the free typed
variables xσ (in a capture-avoiding fashion) while ρθ is
applied to all occurrences of types in t that are not within

free typed variables. We call δθ,ξ a quasi-term-substitution
because it does not preserve the types directly, but only
modulo ρθ, i.e., each δθ,ξ(xσ) has type not σ but σ[ρθ]; this
mirrors syntactically the semantic compatibility relationship
between ξ and δ, i.e., the fact that ξ(xσ) ∈ 〈σ〉(θ).

While the definedness part of the term interpretation lemma
means thatM is a Pitts-Henkin model, the lemma also yields
the final desired fact from Substep 3.3: that M is a model
of T . Indeed, for any ϕ ∈ T , any θ and any θ-compatible
ξ, using that bool[ρθ] = bool and that frobool and froUUbool
are 1Ubool , the lemma gives 〈ϕ〉(θ, ξ) = froU〈bool〉(θ)(frobool[ρθ]
(ϕ[ρθ, δθ,ξ]/')) = ϕ[ρθ, δθ,ξ]/'. Moreover, using that T ` ϕ
and therefore (by a substitution lemma) T ` ϕ[ρθ, δθ,ξ], i.e.,
T ` ϕ[ρθ, δθ,ξ] = true, we obtain that ϕ[ρθ, δθ,ξ]/' = true/' =
>= M>. Hence 〈ϕ〉(θ, ξ) = M>, as desired.

The proof of the term interpretation lemma goes by
structural induction on terms. The cases different from ε are
fairly routine, using the properties of U and V . Now let us
look into the ε case, which will inform our definition of Mε.

Letting σ′ denote (σ ⇒ bool) ⇒ σ, we must prove
〈εσ′〉(θ, ξ) defined and equal to froU〈σ′〉(θ)(fro(σ′)[ρθ](εσ′
[ρθ, δθ,ξ]/')). Expanding the definitions, this amounts
to proving f = g, where f and g are functions in
Fun′(〈σ〉(θ), Mbool)→ 〈σ〉(θ) acting as follows, for any p ∈
Fun′(〈σ〉(θ), Mbool):

f (p)=
{

Mε, {a∈〈σ〉(θ) | p(a)=>}, if p has non-empty extent
Mε, 〈σ〉(θ), otherwise.

g(p) = froU〈σ〉(θ)(froσ[ρθ]((ε t)/')), where t : σ[ρθ]⇒ bool
corresponds to p, i.e., t/' = toσ[ρθ]⇒bool(p◦ froU〈σ〉(θ)).

Case 1: Assume p has nonempty extent. We need to prove
Mε, {a∈〈σ〉(θ) | p(a)=>} = froU〈σ〉(θ)(froσ[ρθ]((ε t)/')) (*)

So we are compelled to define Mε such that, for all B ∈ V ,
Mε,B = froU〈σ〉(θ)(froσ[ρθ]((ε t)/')) whenever B has the form
{a ∈ 〈σ〉(θ) | p(a) = >} for some type σ and predicate p
(where t is the term corresponding to p). The problem is that
such σ and p are not unique, i.e., we can have σ1, p1 and σ2,
p2 with B = {a ∈ A1 | p1(a) = >} = {a ∈ A2 | p2(a) = >},
where A1 = 〈σ1〉(θ) and A2 = 〈σ2〉(θ). So in such cases
we would like to have froU〈σ1〉(θ)(froσ1[ρθ]((ε t1)/')) =
froU〈σ2〉(θ)(froσ2[ρθ]((ε t2)/')), for any t1 and t2 such that

9

t1/' = toσ1[ρθ]⇒bool(p1 ◦ froU〈σ1〉(θ)) and t2/' = toσ2[ρθ]⇒bool
(p2 ◦ froU〈σ2〉(θ)). We faced a similar situation when proving
the definition of V unambiguous, and the solution was to “nor-
malize” via the common superset A = Super(A1) = Super(A2)
and show that either comprehension (from A1 and A2) yields
the same result as comprehension from A.

This suggests that, when defining Mε ∈ ∏A∈V A,
we again take the superset as reference point for
comprehension. So for all A ∈ V , we define Mε,A =
froUSuper(A)(froσ′((ε s)/')), where σ′ is the unique ground
type such that Proxy(Super(A)) = Uσ′ , and s : σ′⇒ bool and
r : Super(A)→Ubool are such that A = {a∈ Super(A) | r(a) =
>} and s/' = toσ′⇒bool(r ◦ froUSuper(A)). Thus, in our model,
the act of choosing an element of a set A∈V is delegated to the
proxy of the maximal superset of A, Proxy(Super(A)), where
a syntactic choice is being made via the syntactic counterpart
s of the indicator r of A within Super(A); and then copied
back to Super(A) via the proxy infrastructure. The result is
guaranteed to be not only in Super(A) but also in A, because
it satisfies r (courtesy of using its syntactic counterpart s).

With this definition, the desired equality (*) becomes
froUC(froσ′((ε s)/')) = froU〈σ〉(θ)(froσ[ρθ]((ε t)/')) where
• the left side uses the indicator of B in C = Super(〈σ〉(θ)) =

Super(B), i.e.: B = {c ∈ C | r(c) = >}, and s/' =
toσ′⇒bool(r ◦ froUC), where Proxy(C) = Uσ′ ;

• the right side uses the indicator of B in 〈σ〉(θ), i.e.: B= {a∈
〈σ〉(θ) | p(a) =>} and t/' = toσ[ρθ]⇒bool(p◦ froU〈σ〉(θ)).
Let q ∈ Fun′(C, Ubool) be the indicator of 〈σ〉(θ) in

C, and u : σ′ ⇒ bool its syntactic counterpart, in that
u/' = toσ′⇒bool(q ◦ froUC). By the definition of V and
the type interpretation lemma, we have that τσ′,u = σ[ρθ]
and Proxy(〈σ〉(θ)) = Uτσ′ ,u = Uσ[ρθ], yielding the situation
depicted in Fig. 5. Chasing the figure’s commutative diagram
with vertices Proxy(〈σ〉(θ)), Proxy(C),C, 〈σ〉(θ) and using
that froUC is injective, the desired equality reduces to
froσ′((ε s)/') = froσ[ρθ]⇒σ′(Repσ,u/') (froσ[ρθ]((ε t)/'));
hence, by the definition of froσ[ρθ]⇒σ′ , to froσ′(ε s)/' =
froσ′((Repσ,u (ε t))/')); hence, by the injectiveness of froσ′
and the definition of ', to T ` Repσ′,u (ε t) = ε s. Moreover,
because s is T -provably equal to u∧2 (t◦Absσ,t) (since, on the
semantic counterpart level, r is the conjunction of q and p),
this further reduces to T ` Repσ′,u (ε t) = ε (u∧2 (t◦Absσ′,u)).
Thus, going back to our Hintikka conditions, we add one more.

Uniform Choice: T ` Repσ,t (ε s) = ε (t ∧2 (s ◦Absσ,t)) if
σ is a ground type, t : σ⇒ bool and s : τσ,t ⇒ bool are
ground closed terms, T ` ∃xσ. t x and T ` ∃yτσ . s y.

This condition says that the behavior of ε on the type
τσ,t is uniform along the translation Repσ,t in that, for any
predicate s : τσ,t ⇒ bool with nonempty extent: (1) making
a choice for (an element satisfying) s in τσ,t and translating
it via Repσ,t, is T -provably the same as (2) making a choice
for (an element satisfying) its counterpart t ∧2 (s ◦ Absσ,t)
on σ. Essentially, Uniform Choice allows our syntactically
constructed model to comply with the semantic feature of
Pitts-Henkin models which we called choice uniformity: that

choice is performed on each set, and not on each combination
of set and predicate on it separately.

Case 2: Assume p has empty extent, i.e., is vacuously ⊥.
We must prove Mε, 〈σ〉(θ) = froU〈σ〉(θ)(froσ[ρθ]((ε t)/')), i.e.,
froUSuper(〈σ〉(θ))(froσ′((ε s)/')) = froU〈σ〉(θ)(froσ[ρθ]((ε t)/')),
where t/' = toσ[ρθ]⇒bool(p ◦ froU〈σ〉(θ)) = (λxσ[ρθ]. false)/',
Proxy(Super(〈σ〉(θ))) = Uσ′ , q is the indicator of 〈σ〉(θ) in
Super(〈σ〉(θ)) and s/' = toσ′⇒bool(q◦ froUSuper(〈σ〉(θ))).

By Uniform Choice, froUSuper(〈σ〉(θ))(froσ′((ε s)/')) =
froU〈σ〉(θ)(froσ[ρθ]((ε (λxσ[ρθ]. true))/')), so the desired fact
becomes froU〈σ〉(θ)(froσ[ρθ]((ε (λxσ[ρθ]. true))/')) = froU〈σ〉(θ)
(froσ[ρθ]((ε (λxσ[ρθ]. false))/')), i.e., T ` ε (λxσ[ρθ]. false) =
ε (λxσ[ρθ]. true). Thus we need the following.
Trivial Choice property: T ` ε (λxα. false) = ε (λxα. true).
We call this “Trivial Choice” because it equates the applica-

tions of the choice constant ε on the two trivial extremes. For
the vacuously true predicate, it is expected that ε simply re-
turns an element about which we only know that the predicate
holds, which is to say we do not know anything. But how about
for a vacuously false predicate? Since HOL is a total logic, in
that case ε has no choice but to also return an unknown ele-
ment of the given type. So in both cases ε returns a completely
unknown item, though for different reasons. Trivial Choice
requires that these two “unknowns” be equated. It reflects the
design decision underlying Pitts (hence Pitts-Henkin) models
of interpreting impossible choice as choice on the whole type.
And indeed, all Pitts-Henkin models validate this equation.

Thus, assuming Uniform Choice and Trivial Choice allows
us to prove the term interpretation lemma, finishing Step 3.

D. Constructing a Hintikka theory extension
The only remaining part of the completeness proof is Step

2: showing that any consistent theory T admits an (also
consistent) Hintikka theory extension T ′ (possibly over an
extended signature). We need T ′ to satisfy the usual Hintikka
conditions (allowing “model-like” behavior w.r.t. connectives
and quantifiers); and additionally, as we discovered in
§IV-C, to guarantee the existence of certain ground types
τσ,t that witness all the extents of ground closed predicates
t : σ⇒ bool, via ground closed terms Repσ,t : τσ,t ⇒ σ and
Absσ,t : σ⇒ τσ,t such that Repσ,t is a T -provable bijection
between σ and the extent of t in σ, i.e., T ` tdefτσ,t ,σ,t,Repσ,t ,
and Absσ,t is its inverse. These must satisfy the Abstractness,
Identity, Compositionality and Uniform Choice properties
identified during our model construction exploration.

But why should a consistent theory T admit a consistent
extension that proves the above bijections? What if, to the
contrary, for some σ and t, T proves ¬ tdefτ,σ,t,Rep for all τ and
Rep? For example, let T be {ϕ} where ϕ is (yet again) the α-
polymorphic formula ϕ saying that α is not a singleton, and let
σ be bool and t be λxbool. x= true. Then T `¬ tdefτ,σ,t,Rep for
all τ and Rep because tdefτ,σ,t,Rep implies that τ is a singleton.

A generic way to exclude counterexamples as above would
be postulating the existence of such types and representation
functions for any σ and t : σ⇒ bool, i.e., adding an axiom

(∃xσ. t x)−→ (∃α. ∃repα⇒σ. tdefα,σ,t,rep)

10

Ubool C = Super(B) = Super(〈σ〉(θ))
r

oo
qoo

Proxy(C) = Uσ′
froUCoo GCTermσ′ /'

froσ′oo σ′
u +3

s
+3bool

〈σ〉(θ) = {c ∈C | q(c) =>}
� ?

OO

p

hh

Proxy(〈σ〉(θ)) = Uτσ′ ,u = Uσ[ρθ]

froU〈σ〉(θ)oo

froσ[ρθ]⇒σ′ (Repσ′ ,u/')

OO

GCTermσ[ρθ]/'

froσ[ρθ]oo σ[ρθ] = τσ′,u

Repσ′ ,u

KS

t

<D

B = {a ∈ 〈σ〉θ | p(a) =>}= {c ∈C | r(c) =>}
� ?

OO

Fig. 5. The items from the proof of the term-interpretation lemma, the case of the ε constant and nonempty extent of the argument predicate.

However, existential quantification over types is not
supported in HOL, and adding such support would take us
too far afield, outside rank-1 polymorphism (a restriction
of HOL celebrated for its simplicity). A less intrusive
solution comes from the work of Kunçar and Popescu [56],
who wanted the ability to assume the existence of types
corresponding to nonempty predicate-definable subsets on a
dynamic basis, inside proof contexts. They noticed that the
effect of the above existential quantification over types can
be achieved with the addition of a new rule, called Local
Typedef, seen in Fig. 6 when ignoring the parts highlighted
in gray. The rule has the following intuition, when applied
backwards: While in a proof context with assumptions Γ and
desired conclusion ϕ, given any nonempty-extent predicate t
on some type σ, we are allowed to assume (that there exists)
a type α which is in bijection with the extent of t.

The Local Typedef rule has the potential of helping us
construct the Hintikka theory extension along the following
lines. We would incrementally extend the signature with fresh
types τσ,t for each σ and t such that ∃xσ. t x is inferrable,
and postulate the existence of a witnessing bijection—while
counting on Local Typedef to guarantee consistency of the
extension. As for the other Hinitikka conditions about the
witness types (besides bijectiveness), it will turn out that
Witness Abstractness, Identity and Compositionality can be
“mended” after the fact. On the other hand, Uniform Choice
must be addressed early: Since this property requires that the
behavior of ε on τσ,t be consistent (via the chosen bijection
Repσ,t) with its behavior on the larger type σ, we must
ensure that in Local Typedef the existentially quantified rep
satisfies this. So we strengthen Local Typedef as highlighted
in Fig. 6, obtaining what we call Strong Local Typedef. It
additionally requires choice uniformity for rep, expressed by
the following formula which we denote by chUniα,σ,t,rep:

∀sα⇒bool. rep (ε s) = ε (λxσ. ∃yα. rep y = x∧ s y)
Note that T ` (t ∧2 (s ◦Absσ,t)) = (λxσ. ∃yτσ,t . Repσ,t y =

x∧ s y), so the conclusion of the Uniform Choice condition
is equivalent to T ` chUniτσ,t ,σ,t,Repσ,t (taking α and rep to be
τσ,t and Repσ,t). Overall:
We enrich HOL deduction with the Strong Local Typedef rule
and the Trivial Choice axiom ε (λxα. false) = ε (λxα. true).

This allows us to complete Step 2 as sketched above. (The
proof of Prop. 19 in App. G from [75] gives details.)

Summary. To obtain completeness w.r.t. the Pitts-Henkin
models, we enriched HOL deduction with a rule for introduc-
ing new types in arbitrary proof contexts in a choice-uniform
manner, and an axiom for handling vacuous choice. After
reducing the problem to ground-conclusion completeness,
we took the route prescribed by Henkin: extending any
consistent theory to a Hintikka theory, and showing that any
Hintikka theory has a model. Custom Hintikka conditions
referring to witness types for nonempty extents have been
extracted from the challenges of ensuring that the constructed
model is downward closed and admits uniform choice. Our
model’s universe is the downward closure of a syntactic
universe, connected to it via a proxy infratructure for copying
its behavior. Consequently, our interpretation lemmas that
connect substitution with semantic valuations, and ultimately
show that the model satisfies the theory, proceed “via proxy”.

Here is the completeness result in final form. Let us call
the extension of HOL deduction to incorporate the Strong
Local Typedef rule and the Trivial Choice axiom enriched
HOL deduction, and denote it by
.

Thm 9: Enriched HOL deduction is complete w.r.t. the
Pitts-Henkin models (i.e., for all signatures Σ, and theories T
and formulas ϕ over Σ, we have that T |=Σ ϕ implies T
Σ ϕ).

While completeness can be regarded as a largely theoretical
goal, it is worth asking whether shifting from the original
HOL deduction (`) to the enriched one (
) would bring
any practical improvements. As discussed, (S-L-TYPEDEF)
is a stronger form of a previously proposed rule [56], (L-
TYPEDEF)—which is a useful addition to HOL.

For example, consider the following formula expressing the
functoriality of the map operator on lists:

∀xsα list, fα⇒β, ∀gβ⇒γ.map (g◦ f) xs = map g (map f xs)

Often, a HOL proof developer needs a more flexible set-
relativized version, which quantifies universally over sets
(subsets of the types expressed by the type variables):

∀Aα set, Bβ set, Cγ set. ∀xsα list, fα⇒β, gβ⇒γ.
xs ∈ lists A ∧ image f A⊆ B ∧ image g B⊆C −→
map (g◦ f) xs = map g (map f xs)

where lists A denotes the set of lists whose elements are all
in A. The latter set-relativized version does not follow from
the former “type-only” version using standard HOL deduc-

11

T ; Γ ` ∃xσ. t xσ T ; Γ ` (∃repα⇒σ. tdefα,σ,t,rep ∧ chUniα,σ,t,rep)−→ ϕ

T ; Γ ` ϕ
(S-L-TYPEDEF)
[α fresh for t, ϕ, Γ]

Fig. 6. The Strong Local Typedef rule

tion [58], but would follow with the help of (L-TYPEDEF).
In general, (L-TYPEDEF) allows to relativize to sets state-
ments for which there is sufficiently uniform infrastructure
available—e.g., an operator such as lists for the list type
constructor, and parametricity-like [78], [87] properties for
the constants involved). Our stronger version of this rule, (S-
L-TYPEDEF), guaranteeing consistency of choice across the
typedef embedding, enables a local parametricity property for
the otherwise notoriously non-parametric choice constant—
with the potential of enlarging the scope of parametricity-
based automatic transfer tools for HOL [49], [59], [63],
[76], for which concepts defined using choice are a known
bottleneck. (L-TYPEDEF) and (S-L-TYPEDEF) also have the
potential of simplifying definitional packages for HOL provers
[11], [61], [62], [38], [86], [16], [17], where with standard
HOL deduction one often needs to maintain flexible, set-
based axiomatizations in order to perform the necessary con-
structions. For example, Isabelle/HOL’s current (co)datatype
and corecursive function packages [16], [15] are based on
bounded natural functors [84], [18] (a HOL adaptation of
accessible functors [1]), whose set-relativized axiomatization
is necessary for constructing the required initial algebras and
final coalgebras; simplifying this to a type-only axiomatization
would lead to a sizable reduction of its code base.

V. RELATED WORK

Henkin’s proofs of completeness for Simple Type Theory
[45] and for FOL [44] (interestingly, the former having
inspired the latter not vice versa [46]), led to a method that
has been adapted to many logics (including modal [14],
intuitionistic [52] and fuzzy [40]), with some of its high-
level ideas also incorporated in abstract logic-independent
frameworks [71], [55]. A variation of Simple Type Theory,
featured e.g. in Andrews’ Q0 system [3], uses instead of the
axiom of choice the weaker axiom of definite description,
which only guarantees the correct behavior of the choice
operator on predicates with singleton extents; this requires
a slightly more complex proof of completeness, since
extensionality of the syntactic model is no longer guaranteed
unless a property called extensional completeness is included
in the Hintikka conditions. What make our own adaptation of
Henkin’s method non-trivial are the polymorphism, downward
closedness and choice uniformity features of the standard HOL
semantics, none of which are present in Simple Type Theory.

As part of an effort to convert a model-theoretic into a proof-
theoretic conservativity result for the Isabelle/HOl dialect of
HOL, Gengelbach and Weber [26] proved completeness for
standard HOL deduction ` w.r.t. so-called ground models
[56], which are essentially Henkin’s original general models
for Simple Type Theory adapted to MHOL (in particular,
featuring no downward closedness or choice uniformity),

with satisfaction defined as the MHOL satisfaction of all
monomorphic instances—so that polymorphism is treated
syntactically, as a form of infinitary universal quantification.
By contrast, our completeness results refer to models that
interpret polymorphism in line with the standard HOL
semantics, in a native set-theoretical way, via dependent
products over the considered universe.

In the area of programming language semantics, Henkin-
style models and completeness theorems have been studied
for systems with higher-rank or impredicative polymorphism,
notably Girard and Reynold’s System F [28], [77], [88], and
Mitchell’s Higher-Order Lambda Calculus generalization [65].
These systems feature a purely equational theory, without
any (primitive or derived) deduction rules for first-order
connectives or quantifiers. Consequently, their completeness
theorems [21], [65], while also relying on syntactic models
involving equivalence classes of terms, follow not Henkin’s but
Birkhoff’s method for proving the completeness of equational
logic [13]—initially adapted to handle higher-order features
by Friedman [25] for the Simply-Typed Lambda Calculus
(which incidentally, for its pure β-η equational theory, offers
the pleasant exception that completeness holds not only for
Henkin-style models, but also for the standard model when
starting with an infinite base type). By contrast, standard
set-theoretic models (with dependent products) do not even
exist for System F [79], unless one abandons classical in
favor of intuitionistic logic [74]. Outside the realm of purely
set-theoretic semantics, domain-theoretic and categorical
models have a rich tradition in the study of λ-calculi (System
F included) [80], [7], [29] and some completeness theorems
have been provided there, e.g., [8], [48], [74].

Unlike Henkin’s, Birkhoff’s method does not require
maximally consistent (Hintikka-style) extensions, but it only
applies to equational theories and variations such as Horn the-
ories. (And indeed, Birkhoff-style completeness proofs have
been performed not only for λ-calculi equational theories, but
for their typing judgements too [47], [90], essentially because
these follow a Horn-like format.) Even putting the connec-
tive/quantifier dimension aside, our completeness proof for
Pitts-Henkin models requires a Hintikka extension anyway, in
order to fill all downward closedness gaps with witness types.

To account for downward closedness, our Hintikka
conditions on the witness representation functions enforce
coherent inclusion-like behavior going beyond that of
monomorphisms, resembling inclusions systems [24], [23].

Acknowledgments. We thank the reviewers for their thought-
ful comments and suggestions, including that of emphasizing
the potential practical interest of our proposed deduction
enrichment, independently of completeness. This work was
partially supported by the EPSRC grants EP/V039156/1 and
EP/X015114/1.

12

REFERENCES

[1] Adamek, J., Rosicky, J.: Locally Presentable and Accessible Categories.
London Mathematical Society Lecture Note Series, Cambridge Univer-
sity Press (1994)

[2] Adams, M.: Introducing HOL Zero (extended abstract). In: Fukuda, K.,
van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS,
vol. 6327, pp. 142–143. Springer (2010)

[3] Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Applied Logic Series, Springer (2013)

[4] Arthan, R.: On definitions of constants and types in HOL. J. Autom.
Reason. 56(3), 205–219 (2016)

[5] Arthan, R.D., Jones, R.B.: Z in HOL in ProofPower. In: The Newslet-
ter of the Formal Aspects of Computing Science (FACS) Special-
ist Group (2005), https://web.archive.org/web/20221014122152/https://
www.bcs.org/media/3096/facts200503.pdf

[6] Asperti, A., Ricciotti, W., Coen, C.S., Tassi, E.: The Matita interactive
theorem prover. In: Bjørner, N.S., Sofronie-Stokkermans, V. (eds.)
CADE-23. LNCS, vol. 6803, pp. 64–69. Springer (2011)

[7] Barendregt, H.P.: The lambda calculus - its syntax and semantics, Studies
in logic and the foundations of mathematics, vol. 103. North-Holland
(1985)

[8] Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda
model and the completeness of type assignment. J. Symb. Log. 48(4),
931–940 (1983), https://doi.org/10.2307/2273659

[9] Bell, J.L., Machover, M.: A course in mathematical logic. North-Holland
(1977)

[10] Benzmüller, C., Andrews, P.: Church’s Type Theory. In: Zalta, E.N.,
Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, Spring 2024 edn. (2024)

[11] Berghofer, S., Wenzel, M.: Inductive datatypes in HOL - lessons learned
in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz,
A., Paulin-Mohring, C., Théry, L. (eds.) Theorem Proving in Higher
Order Logics, 12th International Conference, TPHOLs’99, Nice, France,
September, 1999, Proceedings. LNCS, vol. 1690, pp. 19–36. Springer
(1999)

[12] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS Series, Springer (2004)

[13] Birkhoff, G.: On the structure of abstract algebras. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 31(4), 433–454 (1935)

[14] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts
in Theoretical Computer Science, vol. 53. Cambridge University Press
(2001), https://doi.org/10.1017/CBO9781107050884

[15] Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.:
Friends with benefits - implementing corecursion in foundational proof
assistants. In: Yang, H. (ed.) Programming Languages and Systems -
26th European Symposium on Programming, ESOP 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. LNCS,
vol. 10201, pp. 111–140. Springer (2017)

[16] Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A.,
Traytel, D.: Truly modular (co)datatypes for isabelle/hol. In: Klein,
G., Gamboa, R. (eds.) Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. LNCS, vol.
8558, pp. 93–110. Springer (2014)

[17] Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational
nonuniform (co)datatypes for higher-order logic. In: 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017. pp. 1–12. IEEE Computer Society
(2017)

[18] Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible
corecursion: a proof assistant perspective. In: Fisher, K., Reppy, J.H.
(eds.) Proceedings of the 20th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015. pp. 192–204. ACM (2015)

[19] Bortin, M., Johnsen, E.B., Lüth, C.: Structured formal development in
Isabelle. Nord. J. Comput. 13(1-2), 2–21 (2006)

[20] Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional
language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer
(2009)

[21] Bruce, K.B., Meyer, A.R., Mitchell, J.C.: The semantics of second-order
lambda calculus. Inf. Comput. 85(1), 76–134 (1990), https://doi.org/10.
1016/0890-5401(90)90044-I

[22] Church, A.: A Formulation of the Simple Theory of Types. The Journal
of Symbolic Logic 5(2), 56–68 (1940)

[23] Căzănescu, V.E., Roşu, G.: Weak inclusion systems. Math.
Struct. Comput. Sci. 7(2), 195–206 (1997), https://doi.org/10.1017/
S0960129596002253

[24] Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modu-
larization. In: Huet, G., Plotkin, G. (eds.) Logical Environments, pp.
83–130. Cambridge (1993)

[25] Friedman, H.: Equality between functionals. In: Parikh, R. (ed.) Logic
Colloquium. pp. 22–37. Springer Berlin Heidelberg, Berlin, Heidelberg
(1975)

[26] Gengelbach, A., Weber, T.: Proof-theoretic conservative extension of
HOL with ad-hoc overloading. In: Pun, V.K.I., Stolz, V., Simão, A.
(eds.) Theoretical Aspects of Computing - ICTAC 2020 - 17th Interna-
tional Colloquium, Macau, China, November 30 - December 4, 2020,
Proceedings. Lecture Notes in Computer Science, vol. 12545, pp. 23–42.
Springer (2020), https://doi.org/10.1007/978-3-030-64276-1 2

[27] Geuvers, H.: Proof assistants: History, ideas and future. Sadhana 34(1),
3–25 (2009)

[28] Girard, J.Y.: Une extension de l’interpretation de Gödel a l’analyse, et
son application a l’elimination des coupure dans l’analyse et la theorie
des types. In: 2nd Scandinavian Logic Symposium. pp. 63–92 (1971)

[29] Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. No. 7 in Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press
(1989)

[30] Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis,
University Of Vienna (1929)

[31] Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I. Monatshefte für Mathematik und Physik
38(1), 173–198 (1931)

[32] Gonthier, G.: The four colour theorem: Engineering of a formal proof.
In: Kapur, D. (ed.) ASCM 2007. LNCS, vol. 5081, p. 333. Springer
(2007)

[33] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F.,
Roux, S.L., Mahboubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau,
L., Solovyev, A., Tassi, E., Théry, L.: A machine-checked proof of
the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) Interactive Theorem Proving - 4th International Conference,
ITP 2013, Rennes, France, July 22-26, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 7998, pp. 163–179. Springer (2013),
https://doi.org/10.1007/978-3-642-39634-2 14

[34] Gordon, M.J.C.: Introduction to the HOL system. In: Archer, M.,
Joyce, J.J., Levitt, K.N., Windley, P.J. (eds.) Proceedings of the 1991
International Workshop on the HOL Theorem Proving System and its
Applications, August 1991, Davis, California, USA. pp. 2–3. IEEE
Computer Society (1991)

[35] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A
theorem proving environment for higher order logic. Cambridge
University Press (1993), http://www.cs.ox.ac.uk/tom.melham/pub/
Gordon-1993-ITH.html

[36] Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G.D.,
Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, Essays
in Honour of Robin Milner. pp. 169–186. The MIT Press (2000)

[37] Gordon, M.: Twenty years of theorem proving for hols past, present
and future. In: Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.) Theorem
Proving in Higher Order Logics, 21st International Conference, TPHOLs
2008, Montreal, Canada, August 18-21, 2008. Proceedings. Lecture
Notes in Computer Science, vol. 5170, pp. 1–5. Springer (2008),
https://doi.org/10.1007/978-3-540-71067-7 1

[38] Gunter, E.L.: A broader class of trees for recursive type definitions for
HOL. In: Joyce, J.J., Seger, C.H. (eds.) Higher Order Logic Theorem
Proving and its Applications, 6th International Workshop, HUG ’93,
Vancouver, BC, Canada, August 11-13, 1993, Proceedings. LNCS, vol.
780, pp. 141–154. Springer (1993)

[39] Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In:
Altenkirch, T., McBride, C. (eds.) Types for Proofs and Programs,
International Workshop, TYPES 2006, Nottingham, UK, April 18-21,
2006, Revised Selected Papers. LNCS, vol. 4502, pp. 160–174. Springer
(2006)

[40] Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4.
Kluwer (1998), https://doi.org/10.1007/978-94-011-5300-3

13

https://web.archive.org/web/20221014122152/https://www.bcs.org/media/3096/facts200503.pdf
https://web.archive.org/web/20221014122152/https://www.bcs.org/media/3096/facts200503.pdf
https://doi.org/10.2307/2273659
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1016/0890-5401(90)90044-I
https://doi.org/10.1016/0890-5401(90)90044-I
https://doi.org/10.1017/S0960129596002253
https://doi.org/10.1017/S0960129596002253
https://doi.org/10.1007/978-3-030-64276-1_2
https://doi.org/10.1007/978-3-642-39634-2_14
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
https://doi.org/10.1007/978-3-540-71067-7_1
https://doi.org/10.1007/978-94-011-5300-3

[41] Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang,
T.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen,
T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J.M., Solovyev, A., Ta,
A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A
formal proof of the Kepler conjecture. CoRR abs/1501.02155 (2015),
http://arxiv.org/abs/1501.02155

[42] Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M.K.,
Camilleri, A.J. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269.
Springer (1996)

[43] Harrison, J.: Towards self-verification of HOL Light. In: Furbach,
U., Shankar, N. (eds.) Automated Reasoning, Third International Joint
Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4130, pp. 177–
191. Springer (2006), https://doi.org/10.1007/11814771 17

[44] Henkin, L.: The completeness of the first-order functional calculus. J.
Symb. Log. 14(3), 159–166 (1949), https://doi.org/10.2307/2267044

[45] Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2),
81–91 (1950), https://doi.org/10.2307/2266967

[46] Henkin, L.: The discovery of my completeness proofs. Bull. Symb. Log.
2(2), 127–158 (1996), https://doi.org/10.2307/421107

[47] Hindley, J.R.: The completeness theorem for typing lambda-
terms. Theor. Comput. Sci. 22, 1–17 (1983), https://doi.org/10.1016/
0304-3975(83)90136-6

[48] Honsell, F., Plotkin, G.D.: On the completeness of order-theoretic
models of the lambda-calculus. Inf. Comput. 207(5), 583–594 (2009),
https://doi.org/10.1016/j.ic.2008.03.027

[49] Huffman, B., Kuncar, O.: Lifting and transfer: A modular design for
quotients in Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) Certified
Programs and Proofs - Third International Conference, CPP 2013,
Melbourne, VIC, Australia, December 11-13, 2013, Proceedings. LNCS,
vol. 8307, pp. 131–146. Springer (2013)

[50] Johnstone, P.T.: Topos theory. Journal of Symbolic Logic 47(2), 448–450
(1982)

[51] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin,
P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T.,
Tuch, H., Winwood, S.: seL4: formal verification of an operating-system
kernel. Commun. ACM 53(6), 107–115 (2010)

[52] Kripke, S.A.: Semantical Analysis of Intuitionistic Logic I. In: Dummett,
M., Crossley, J.N. (eds.) Formal Systems and Recursive Functions, pp.
92–130. North Holland (1963)

[53] Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions:
Semantics, soundness, and a verified implementation. In: Klein, G.,
Gamboa, R. (eds.) Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8558, pp. 308–324. Springer (2014),
https://doi.org/10.1007/978-3-319-08970-6 20

[54] Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified
implementation of ML. In: Jagannathan, S., Sewell, P. (eds.) The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-
21, 2014. pp. 179–192. ACM (2014), https://doi.org/10.1145/2535838.
2535841

[55] Kuncar, O.: An Isabelle/HOL framework for synthetic completeness
proofs. In: Tabareau, N., Blazy, S. (eds.) Proceedings of the 2025
Conference on Certified Programs and Proofs, CPP 2025. To appear

[56] Kuncar, O., Popescu, A.: From types to sets by local type definitions
in higher-order logic. In: Blanchette, J.C., Merz, S. (eds.) Interactive
Theorem Proving - 7th International Conference, ITP 2016, Nancy,
France, August 22-25, 2016, Proceedings. LNCS, vol. 9807, pp. 200–
218. Springer (2016)

[57] Kuncar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J.
Autom. Reason. 62(4), 531–555 (2019)

[58] Kuncar, O., Popescu, A.: From types to sets by local type definition in
higher-order logic. J. Autom. Reason. 62(2), 237–260 (2019)

[59] Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring,
C., Pichardie, D. (eds.) Interactive Theorem Proving - 4th International
Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7998, pp. 84–99. Springer
(2013), https://doi.org/10.1007/978-3-642-39634-2 9

[60] Leroy, X.: Formal verification of a realistic compiler. Commun. ACM
52(7), 107–115 (2009)

[61] Melham, T.F.: Automating Recursive Type Definitions in Higher Order
Logic, pp. 341–386. Springer (1989)

[62] Melham, T.F.: A package for inductive relation definitions in HOL. In:
Archer, M., Joyce, J.J., Levitt, K.N., Windley, P.J. (eds.) Proceedings of
the 1991 International Workshop on the HOL Theorem Proving System
and its Applications, August 1991, Davis, California, USA. pp. 350–357.
IEEE Computer Society (1991)

[63] Milehins, M.: An extension of the framework types-to-sets for Is-
abelle/HOL. In: Popescu, A., Zdancewic, S. (eds.) CPP ’22: 11th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
Philadelphia, PA, USA, January 17 - 18, 2022. pp. 180–196. ACM
(2022)

[64] Milner, R.: LCF: A way of doing proofs with a machine. In: Becvár,
J. (ed.) Mathematical Foundations of Computer Science 1979, Proceed-
ings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7, 1979.
Lecture Notes in Computer Science, vol. 74, pp. 146–159. Springer
(1979), https://doi.org/10.1007/3-540-09526-8 11

[65] Mitchell, J.C.: Lambda calculus models of typed programming lan-
guages. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA (1984), https://hdl.handle.net/1721.1/15394

[66] Monk, J.D.: Mathematical Logic. Springer (1976)
[67] de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The

Lean theorem prover (system description). In: Felty, A.P., Middeldorp,
A. (eds.) CADE-25. LNCS, vol. 9195, pp. 378–388. Springer (2015)

[68] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

[69] Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Caval-
canti, A., Cerone, A. (eds.) Theoretical Aspects of Computing - ICTAC
2006, Third International Colloquium, Tunis, Tunisia, November 20-24,
2006, Proceedings. LNCS, vol. 4281, pp. 272–286. Springer (2006)

[70] Paulson, L.C.: Zermelo Fraenkel Set Theory in Higher-Order Logic.
Arch. Formal Proofs 2019 (2019), https://www.isa-afp.org/entries/ZFC
in HOL.html

[71] Petria, M.: An institutional version of Gödel’s completeness theorem.
In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) Algebra
and Coalgebra in Computer Science, Second International Conference,
CALCO 2007, Bergen, Norway, August 20-24, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4624, pp. 409–424. Springer
(2007), https://doi.org/10.1007/978-3-540-73859-6 28

[72] Pitts, A.: Introduction to HOL: A theorem proving environment for
higher order logic, chap. The HOL Logic, pp. 191–232. In: Gor-
don and Melham [35] (1993), http://www.cs.ox.ac.uk/tom.melham/pub/
Gordon-1993-ITH.html

[73] Pitts, A.: The HOL System: Logic (1991), part of the HOL4 doc-
umentation. Available from http://sourceforge.net/projects/hol/files/hol/
trindemossen-1/trindemossen-1-logic.pdf/download

[74] Pitts, A.M.: Polymorphism is set theoretic, constructively. In: Pitt, D.H.,
Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science, Edinburgh, UK, September 7-9, 1987, Proceedings. Lecture
Notes in Computer Science, vol. 283, pp. 12–39. Springer (1987),
https://doi.org/10.1007/3-540-18508-9 18

[75] Popescu, A.: Completing Gordon’s Higher-Order Logic – Ex-
tended Technical Report (2025), https://www.andreipopescu.uk/pdf/
TRcompletingGordonHOL.pdf

[76] Popescu, A., Traytel, D.: Admissible types-to-PERs relativization in
higher-order logic. Proc. ACM Program. Lang. 7(POPL), 1214–1245
(2023)

[77] Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B.J.
(ed.) Programming Symposium, Proceedings Colloque sur la Program-
mation, Paris, France, April 9-11, 1974. Lecture Notes in Computer
Science, vol. 19, pp. 408–423. Springer (1974), https://doi.org/10.1007/
3-540-06859-7 148

[78] Reynolds, J.C.: Types, abstraction and parametric polymorphism. In:
Mason, R.E.A. (ed.) IFIP 1983, pp. 513–523. North-Holland/IFIP (1983)

[79] Reynolds, J.C.: Polymorphism is not set-theoretic. In: Kahn, G., Mac-
Queen, D.B., Plotkin, G.D. (eds.) Semantics of Data Types, International
Symposium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings.
Lecture Notes in Computer Science, vol. 173, pp. 145–156. Springer
(1984), https://doi.org/10.1007/3-540-13346-1 7

[80] Scott, D.S.: Data types as lattices. SIAM J. Comput. 5(3), 522–587
(1976), https://doi.org/10.1137/0205037

[81] Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading, Mass.,
(1967)

[82] Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A.,
Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
28–32. Springer (2008)

14

http://arxiv.org/abs/1501.02155
https://doi.org/10.1007/11814771_17
https://doi.org/10.2307/2267044
https://doi.org/10.2307/2266967
https://doi.org/10.2307/421107
https://doi.org/10.1016/0304-3975(83)90136-6
https://doi.org/10.1016/0304-3975(83)90136-6
https://doi.org/10.1016/j.ic.2008.03.027
https://doi.org/10.1007/978-3-319-08970-6_20
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/3-540-09526-8_11
https://hdl.handle.net/1721.1/15394
https://www.isa-afp.org/entries/ZFC_in_HOL.html
https://www.isa-afp.org/entries/ZFC_in_HOL.html
https://doi.org/10.1007/978-3-540-73859-6_28
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
http://sourceforge.net/projects/hol/files/hol/trindemossen-1/trindemossen-1-logic.pdf/download
http://sourceforge.net/projects/hol/files/hol/trindemossen-1/trindemossen-1-logic.pdf/download
https://doi.org/10.1007/3-540-18508-9_18
https://www.andreipopescu.uk/pdf/TRcompletingGordonHOL.pdf
https://www.andreipopescu.uk/pdf/TRcompletingGordonHOL.pdf
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-13346-1_7
https://doi.org/10.1137/0205037

[83] Smullyan, R.M.: First-Order Logic. Springer Verlag, New York [etc.]
(1968)

[84] Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: Category theory applied to theorem
proving. In: Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012.
pp. 596–605. IEEE Computer Society (2012)

[85] Troelstra, A.S.: Basic Proof Theory. Cambridge University Press, New
York (2000)

[86] Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In:
Nieuwenhuis, R. (ed.) Automated Deduction - CADE-20, 20th Interna-
tional Conference on Automated Deduction, Tallinn, Estonia, July 22-27,
2005, Proceedings. LNCS, vol. 3632, pp. 38–53. Springer (2005)

[87] Wadler, P.: Theorems for free! In: Stoy, J.E. (ed.) FPCA 1989. pp. 347–
359. ACM (1989)

[88] Wadler, P.: The Girard-Reynolds isomorphism (second edition). Theor.
Comput. Sci. 375(1-3), 201–226 (2007), https://doi.org/10.1016/j.tcs.
2006.12.042

[89] Wenzel, M.: Type classes and overloading in higher-order logic. In:
Gunter, E.L., Felty, A.P. (eds.) Theorem Proving in Higher Order
Logics, 10th International Conference, TPHOLs’97, Murray Hill, NJ,
USA, August 19-22, 1997, Proceedings. LNCS, vol. 1275, pp. 307–322.
Springer (1997)

[90] Yokouchi, H.: Completeness of type assignment systems with intersec-
tion, union, and type quantifiers. Theor. Comput. Sci. 272(1-2), 341–398
(2002), https://doi.org/10.1016/S0304-3975(00)00356-X

15

https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1016/S0304-3975(00)00356-X

	I Introduction
	II HOL Preliminaries
	II-A Syntax
	II-B Axioms and deduction
	II-C Monomorphic HOL (MHOL)
	II-D Type definitions
	II-E Standard semantics: Pitts models

	III Henkin-Style Generalization of Pitts Models
	IV Developing the Completeness Result
	IV-A Dealing with polymorphism in the deduction system
	IV-B Traditional Hintikka theories and syntactic Henkin models
	IV-C Constructing a downward closed model
	IV-D Constructing a Hintikka theory extension

	V Related Work
	References

