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—— Abstract

Nominal Isabelle provides powerful tools for meta-theoretic reasoning about syntax of logics or
programming languages, in which variables are bound. It has been instrumental to major veri-
fication successes, such as Goédel’s incompleteness theorems. However, the existing tooling is not
compositional. In particular, it does not support nested recursion, linear binding patterns, or
infinitely branching syntax. These limitations are fundamental in the way nominal datatypes and
functions on them are constructed within Nominal Isabelle. Taking advantage of recent theoretical
advancements that overcome these limitations through a modular approach using the concept of
map-restricted bounded natural functor (MRBNF), we develop and implement a new definitional
package for binding-aware datatypes in Isabelle/HOL, called MrBNF. We describe the journey
from the user specification to the end-product types, constants and theorems the tool generates.
We validate MrBNF in two formalization case studies that so far were out of reach of nominal
approaches: (1) Mazza’s isomorphism between the finitary and the infinitary affine A-calculus, and
(2) the POPLmark 2B challenge, which involves non-free binders for linear pattern matching.
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1 Introduction

Most programming languages involve variable-binding constructs, or simply binders, such as
the lambda abstraction or the recursive and non-recursive let operators. For the study of these
languages’ metatheory, the specific choice of bound variable names in a language expression is
immaterial. For example, it is customary to treat the lambda calculus expressions A\z. x and
Ay. y as being syntactically equal and to choose bound variables in a way that avoids name
clashes with surrounding free variables — this is known as Barendregt’s variable convention [6].
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The mechanization of programming language metatheory in proof assistants struggles
to keep up with this informal convention. The POPLmark challenge [4] initiated a flurry
of approaches to mechanized binders, each with its own strengths and weaknesses (§2).
The used approaches can be categorized into three main paradigms: (1) the nameless
representation that replaces bound variables in terms with pointers to the binding position [17,
23]; (2) the nameful or nominal representation that includes bound variable names but
identifies terms modulo alpha-equivalence, i.e., up to bound variable renaming [18]; and
(3) the reductive representation that embeds the programming language’s binders into the
metalogic’s binders [19, 28, 30].

The nominal representation faithfully encodes Barendregt’s variable convention in that the
accompanying reasoning principles (e.g., nominal induction) allow their users to assume that
bound variables do not clash with surrounding free variables whenever bound variables are
introduced. Nominal Isabelle [21] implements the nominal representation in the Isabelle/HOL
proof assistant with successful applications ranging from Godel’s incompleteness theorems [29]
to verifying the correctness of Haskell’s compiler optimizations [13] and the security of
authenticated data structures [14]. All these developments use the expected binder constructs:
lambda abstractions, existential quantifiers, and (parallel) recursive let constructs.

Nominal Isabelle is fundamentally restricted to syntaxes with finite support, i.e., expres-
sions may only contain finitely many free and bound variables. This rules out applications
like Mazza’s infinitary affine lambda calculus [22]. Moreover, nested recursion, which e.g.,
is needed to model function applications to multiple arguments, is not directly supported.
Sometimes this limitation can be overcome by using mutual recursion instead, but this
workaround is limited to cases where the nesting type is a datatype itself. Nesting through
coinductive datatypes such as streams or lazy lists or non-free structures such as finite or
countable sets remains problematic. Also nominal datatypes, even in their flexible variant
provided by Nominal 2 [42], cannot directly incorporate linear patterns, which are required
in most of the complex binder structures including those of POPLmark 2B.

Blanchette et al. [10] have proposed map-restricted bounded natural functors (MRBNFs) as
a new modular foundation for binding-aware datatypes that overcomes the above limitations.
MRBNFs generalize bounded natural functors (BNFs) [41], which underly Isabelle’s datatypes
and codatatypes [11]. In this paper, we present the journey from the theoretical MRBNF
framework to a practical package in Isabelle/HOL, called MrBNF (pronounced “Mister
BNE"”).

MrBNF’s heart is the binder_datatype command for declaring binding-aware datatypes.
Behind the scenes, the command composes and takes least fixed points of MRBNFs, defines
the new type as the quotient of a raw nameful datatype by alpha-equivalence, lifts the
raw constructors to the quotient, and proves nominal induction principles as well as a
wealth of constructor properties (§3). The command also provides a nominal recursor
infrastructure, which is crucial for defining recursive functions. All constructions are carried
out foundationally in Isabelle/HOL: no axioms have been introduced (§4). Our main
contributions are twofold:

We extend Isabelle/HOL with a foundational package for defining binding-aware datatypes
that supports nested recursion, complex inductive binders, and types that may have
infinitely many free or bound variables. This involves proving that MRBNFs, the key
notion underlying our approach, are closed under composition and least fixed points. We
design and automate these mechanized proofs as Isabelle/ML tactics. Our implementation
includes a user-friendly proof method for applying the nominal induction principles and
a nominal recursor for defining binding-aware primitive recursive functions on datatypes
with binders.
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Two case studies illustrate our tool’s usefulness. First, we prove Mazza’s result [22] that
the A-calculus is isomorphic to an infinitary affine A-calculus (§5). Second, we formalize
the POPLmark challenge [4], i.e., type soundness of System F .., including parts 1B and
2B, which extend the language with records and pattern matching (§6). To the best of our
knowledge, this is the first formalization of these extensions using a nominal approach.

Our implementation and case studies are publicly available [44].

2 Related Work

We refer to Blanchette et al. [10, Section 9] for a broad overview of syntax with bindings
approaches in programming languages and proof assistants. Here, we focus our attention
on how these approaches manifest themselves in proof assistants and discuss strength and
weaknesses.

The representation of variables as de Bruijn indices [17] is widely popular in proof
assistants [8,16, 20, 25,35, 37,40,45] because it is readily available via standard datatypes.
Thereby bound variables point to the respective binders using a simple indexing scheme: a
number indicates how many binders to skip when traversing the syntax tree towards its root.
Binders such as A-abstractions do not need to mention the bound variable. Free variables
are numbers, too, namely those larger than the number of binders above them. For example,
Lm (Lm (Ap (Ap 1 0) 2)) is the de Bruijn version of the A-calculus term Az. Ay. ((y z) z).
Working with indices frequently requires shifting when a term is moved under a binder, e.g.,
during substitution. Good automation as provided by Autosubst in Coq [36,39] can eliminate
much of the tedium of index shifting. Nonetheless the internal representation occasionally
leaks: index shifts may pop up in induction proofs and sometimes even lemma statements.

The related locally nameless representation [15,33] combines de Bruijn indices for bound
variables with the named representation for free variables, which allows to use readable
names for the free variables. Locally nameless replaces shifting by opening terms such that
bound variables are turned into free ones. One downside of the locally nameless approach is
that terms with loose bounds are malformed and need to be ruled out using a predicate (or
a subtype).

Nominal Logic [18] provides a nameful alternative to the two above approaches: binders
carry explicit bound variable names, but the syntax is quotiented by a notion of alpha-
equivalence which makes the name choice immaterial. Still the explicit mention of the bound
meta-variable in the binders allows us to refer to it explicitly and choose it to avoid other
surrounding variables, which enforces Barendregt’s variable convention. Nominal Isabelle is
the Isabelle/HOL implementation of nominal logic [21,42], which has been used in several
substantial formalizations efforts [7,13,14,29]. Our contribution follows the nominal approach,
while generalizing the support for nested recursion and allowing infinitely many variables in
terms.

Higher-order abstract syntax (HOAS) [30] uses binding primitives available in the meta-
logic to represent binders of the object of study. For example, abstraction in the A-calculus
becomes Lm : (var — term) — term under weak HOAS and Lm : (term — term) — term
under HOAS, reusing the A-abstraction available in the language when writing specific
lambda terms, e.g., Lm (Az. Lm (Ay. Ap (Apy x) (Vr 2))). A challenge with (weak) HOAS
are so-called exotic terms, i.e., terms that do not constitute valid A-calculus terms because
they observe aspects of the meta-language that the object language should not see. HOAS is
popular in logical frameworks pioneered by Twelf [31] and refined and extended in Beluga [32]
and Abella [5].
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Berghofer and Urban [9] provide a detailed comparison between the de Bruijn and nominal
approaches; Momigliano et al. [24] perform a similar exercise for de Bruijn and (weak) HOAS.
Ambal et al. [2] compare all above approaches in the context of a higher-order m-calculus.
Norrish and Vestergaard [27] establish a formal connection between de Bruijn and nominal
terms.

Solutions using different above techniques [1] target the POPLmark challenge [4]. However,
only four cover all proof-related parts, in particular including complex binders for linear
pattern matching: three using de Bruijn indices in Isabelle [8] and Coq [38,45] and one using
HOAS in Twelf [3]. We provide the first complete solution following the nominal approach.

3 MrBNF in Action

As users, what do we want to be the effect of specifying a datatype with bindings, such as
those of A- or m-calculus syntax? We want the following: (1) a type capturing the syntax
fully abstractly, i.e., not distinguishing between alpha-equivalent terms and not including
“junk”, i.e., invalid terms; (2) constants corresponding to the syntactic constructors and other
syntactic operators such as renaming and free-variables; (3) propositions describing the basic
properties of non-binding constructors), and quasi-injectivity for the binder constructors;
(4) propositions describing the basic properties concerning the interaction of constructors
and the renaming and free-variable operators; (5) a proposition stating a binding-aware
structural induction principle; and (6) a proposition stating the characteristic equations of a
binding-aware structural recursion principle.

Importantly, we would not care how such a type and constants have been defined internally,
because (a subset of) the above properties characterize the type uniquely up to an isomorphism.
This ensures that these internal definitions, however they proceed, give us the correct result.

In the remainder of this section, using a sequence of increasingly sophisticated syntaxes
with bindings we will illustrate how our MrBNF definitional package achieves these goals.

3.1 Preliminaries on cardinals and permutations

Isabelle has a well-developed theory of ordinals and cardinals [12]. In a nutshell: an ordinal
is just a well-order, while a cardinal is an ordinal that is minimal under the preorder relation
<, on ordinals defined as follows: r <, r’ iff there exists a well-order embedding between
r and r’; we also write <, for the strict counterpart of this preorder, and also =, for its
induced equivalence relation. Given any set A :'a set, we define |A]| to be its cardinality;
technically, this is a (necessarily unique up to an order isomorphism) choice of a cardinal
on ‘a whose domain is A and that forms a well-order on A. Instead of |[UNIV :’a set|, the
cardinality of the set of all elements of type 'a, we will simply write |'a|, and refer to it as
the cardinality of the type ’a.

For a function o : 'a — ’a, we write supp o for its support, defined as the set of
elements that o modifies, {x | o  # x}. We call permutation any such function that
(1) is bijective and (2) has the cardinality of its support strictly smaller than that of its
underlying type. Formally, the (polymorphic) predicate perm : (‘a — 'a) — bool reflects this
as perm o <— bij o A |supp 0| <, |'al. When ’a is countably infinite, being a permutation
amounts to being a bijection of finite support, so this generalizes the standard nominal
logic assumption. We let o range over permutations and write o~! for the inverse of 0. We
let a <+ b denote the swapping permutation, which takes a to b, takes b to a, and leaves
everything else unchanged.
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3.2 A-calculus terms

Let us start with the paradigmatic example of syntax with bindings, that of untyped A-
calculus. Using our package, this can be declared as the following datatype lterm of A-terms,
which is polymorphic in the type of variables, i.e., depends on the Isabelle type-variable 'var:

binder_datatype ’var lterm = Vr ’var | Ap "’var lterm" "’var lterm"
| Lm x::’var t::"’var lterm" binds x in t

When using the type 'var lterm, we will always implicitly assume that 'var has at least
countably infinite cardinality. (This is achieved in practice via a type class large,; pm, i-€.,
being “large enough”, which means having cardinality at least as large as bound;;ery, and
bound;;er, is a cardinal bound specific to each datatype — here, for 1term, it is a countable
cardinal, i.e., bound¢ern = Ng, so smallness means “at least countably infinite” — see §4 for
more details.)

The command produces the following constants, all polymorphic in 'var:

the constructors Vr : ‘var — 'var lterm, Ap : 'var lterm — 'var lterm — 'var lterm

and Lm : 'var — "var 1term — 'var lterm;

the free-variable operator FVien, : 'var lterm — 'var set;

the permutation operator PERMtern @ (‘var — 'var) — 'var lterm — 'var lterm,

where we write t[0]tern instead of PERMier, o t;

a cardinal bound, bound;ser (Which, as explained above, in this case it is Rg);

a binding-aware recursion combinator

reCitern (("var — "var) — ('p = 'p)) — ('p — 'var set) —
((var = 'var) = (‘la = 'a)) = (‘a = 'var set) —
('var = ('p = 'a)) —
((p—="a) > (p—='a) = (p—='a) —
('var = ('p—='a) = ('p = 'a)) —
"var 1term — ('p — 'a) .
We write FV and _ [ ] instead of FVitern and _ [ ]itern (and similarly for other examples).

The following properties are generated (stated and proved) by our command:

» Prop 1.
(1) Distinctness and (quasi-)injectivity of the constructors:
(1) Vrx #£ Apty ta; (2) Vrz £ Lma’ ¢; (3) Apty ta #Lm z ¢;
(A Vrz=Vra' «— z=12'; (5) Aptr1 ta =Apti th +— t1 =) Nta = th;
6)Lmzt=Lma’'t «— (¢/ ¢FViVvae=a")At=t[ze2];
(1) Equivariance of the constructors:
(1) perm 0 — (Vr z)[o] = Vr (o z); (2) perm ¢ — (Ap t1 t2)[o] = Ap (t1[o]) (t2]0]);
(3) perm 0 — (Lm z t)[o] = Lm (o z) (t[o]);
(111) Smallness (here, equivalently, finiteness) of the set of free variables:
(1) |FV t| <, bound;tern;
(V) Interaction between free variables and constructors:

(1) FV (Vra) ={a}; (2) FV(Apt1 t2) = FV 1 UFV t9; (3) FV(Lmxz ¢) = FV ¢ ~ {z}.

(V) Permutation identity and compositionality:
(1) t[id] = ¢; (2) perm o A perm o/ — t[o][o’] = t[o’ o 7];
(V1) Interaction between free variables and permutation (infix * denotes image):
(1) permo — FV (t[o]) =0 " FV t; (2) perm o A (Vz € FV t. 0 © = ) — to] = t.
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ITP 2025



11:6

Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

Note that the constructors Vr and Ap are free, hence injective (points (4) and (5) in the
above proposition). On the other hand, the A-constructor Lm is not free, since it introduces
bindings — for example, Lm a (Vr 2) = Lm y (Vr y) for any variables x,y. Therefore, only a
quasi-injectivity, i.e., injectivity up to a renaming, property holds for it (point (6)).

Points (1.6), (IV.3) and (VI.2) all reflect the fact that we work not with entirely free
terms but with terms quotiented to alpha-equivalence. And so does the following propos-
ition, expressing a strong version of structural induction, which is also generated by the
binder__datatype command:

» Prop 2 (Binding-aware structural induction). Assume Pvars : 'p — ‘var set and ¢ : 'p —
"var lterm — bool are such that (1) Vp. |Pvars p| <, boundserm, i.e., Vp. finite (Pvars p);
(2) Vp,x. o p (Vr x); (3) Yp,ti,ta. (Vg ¢ g t1) A (Vg ¢ g t2) — ¢ p (Ap 1 t2); and
(4) Vp.Va,t. x ¢ Pvarsp A (Vg. p qt) — @ p (Lm x t). Then Vp,t. ¢ p t.

The above resembles standard structural induction (as available for the standard data-
types), except for the highlighted part, which allows one to assume during the induction
process that the bound variables are disjoint from the variables coming from a designated type
'p of parameters — this enables the rigorous application of Barendregt’s variable convention [6].
Taking 'p to be the unit type and Pvars p = &, we obtain standard structural induction.

Given a type 'a together with operators resembling the free-variable and permutation
operators, namely afv : 'a — "var set and aprm : (‘var — 'var) — 'a —' a, we say that they
form a loosely-supported pre-nominal structure, written Ispnom afv aprm, when the following
holds:

Compositionality (Prop. 1, V.2): perm o Aperm o’ — aprm o (aprm o’ a) = aprm (cocd’) a.

Congruence (Prop. 1, VI.2): perm o A (Vz € afva. 0 x =x) — aprm o a = a.
Moreover, for any cardinal x, we say that they form a k-loosely-supported nominal structure,
written Isnom, afv aprm, when Ispnom afv aprm holds and additionally the following holds:

Smallness (Prop. 1, II1.1 in case kK = boundytern ): |FV a| <, k.

Finally, given two types 'p and ’'a and operators on them

pfv:'p = "var set, pprm : ("var — 'var) = 'p = 'p,

afv:'a — "var set, aprm : (var — 'var) —'a —'a,

vr :'var = ('p = 'a), ap : 'var tterm — ('p = 'a) = 'var lterm — ('p —'a) = (
‘a), Im : "var — 'var lterm — ('p = 'a) = ('p = 'a)

(where vr, ap, Im have types resembling those of 1term’s constructors Vr, Ap and Lm), we say

p—

that they form an 1term-model, written model;;ern pfv pprm afv aprm vr ap Im, provided that:
(1) IsnoMpound,,.., Pfv pprm holds; (2) Ispnom afv aprm holds; and (3) the following properties,
corresponding to properties of lterm, hold, where paprm o f = aprm oo f o pprm (o™ 1):
1. equivariance of the constructors (Prop 1, I1.1, I1.2, I1.3):

perm o — paprm o (vr ) = vr (o x);

perm o — paprm o (ap t1 f1 ta f2) = ap (t1[o]) (paprm o f1) (t2[0]) (paprm o fa);

perm o — paprm o (Im x t f) = Im (o z) (t[o]) (paprm o f);
2. free-variables sub-distributing under constructors (weaker versions of Prop 1, IV.1, IV.2,

IV.3, with inclusions instead of equalities):

afv (vr  p) € {z} U pfo p;

afv (fip) C afvti U pfop A afv(fap) Cafvts Upfop —

afv(ap ty f1 ta fop) Cafvt; U afvty U pfop;

x & pfop A afo(fp) Cafvt~{z}Upfop — afv(lmzxt fp)Cafvt~ {z}Upfop.
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We refer to the types 'p and 'a above as the parameter type and the carrier type of the
lterm-model, respectively. Our binding-aware recursor operates on lterm-models, in that,
given any lterm-model it returns a function from terms and parameters to carrier elements
that (1) commutes with the constructors and permutation operators; and (2) preserves
the free-variable operators. Moreover, commutation with the binding constructor happens
in a binding-aware fashion, that is, avoiding clashes between the bound variables and the
parameter variables — i.e., again obeying Barendregt’s variable convention. This is expressed
in the following proposition:

» Prop 3 (Binding-aware recursion). Assume modelyiern pfo pprm afv aprm vr ap Im holds
and let ¢ : ‘var lterm — 'p — 'a denote recitern pfv pprm afv aprm vr ap Im. The following
properties hold: (1) g (Vrz) p = vr x p; (2) g (Ap t1 t2) p = ap t1 (g t1) ta (g t2) p;
B)xgpfop— g(lmat)p=Imzt(gt)p; (4) perm o — g (alo]) p = paprm o (g a) p;
and (5) afv (gt p) CFVt U pfvp.

In the current implementation, we do not get a single recursor constant and the above
recursion theorem, but rather given a model we define g and derive its properties on the fly.
Our recursor definition follows Blanchette et al’s design [10], which generalizes Norrish’s
nominal recursor [26] and removes one of the unnecessary assumptions [34].

Here is an example of applying the recursor. For any p : 'var — 'var lterm, we
let its support Supp p be {z : 'var | p x # Vr x}, and its image-support ImSupp p be
Supp p U UtESuppp FV t. We let the type of substitution-functions 'var substFun be the
type of all functions p such that |Supp p| <, bound;iern (Obtained as a subtype of p :
'var — 'var lterm); function application and composition are inherited to ‘var substFun
from the function type and are denoted the same. To define term-for-variable substitution
operator subst : 'var lterm — 'var substFun — 'var lterm, we take 'p = 'var substFun
and 'a = 'var lterm, and determine the model from the desired recursive clauses for the
constructors and the desired behavior of substitution w.r.t. free variables and permutation:
(1) subst (Vrz) p=px;

(2) subst (Ap ty t2) p = Ap (subst t; p) (subst t2 p);

(3) = ¢ ImSupp p — subst (Lm z t) p = Lm x (subst ¢ p);

(4) subst (t[o]) p = subst ¢ ((_[o]) o p);

(5) FV (substt p) € FV ¢t U ImSupp p.

Namely, here is the lterm-model structure (pfv, pprm, afv, aprm, vr, ap, Im) corresponding
to (and unambiguously determined from) the above:

(M1) vrazp=pa;

(M2) ap ty fita f2 p=Ap (f1p) (f2 p);

(M3) tmat fp=Lmaz (f p)

(M4) aprmt o =tlo] and pprm po = (_[o])op;

(M5) afvt =FVt and pfv p = ImSupp p.

Indeed, the (Mi) definitions are obtained by “fishing” the codomain operator behind the () re-
cursive clause — e.g., (M2) turns (2) into subst (Ap t; t2) p = ap t; (subst p t1) ta (subst p t2) p.
Currently this fishing process is not implemented in our package, so the user has to explicitly
indicate these operators and then infer (1)—(5) from the recursion theorem.

3.3 Infinitary A-calculus terms

Let ‘a stream and 'a dstream be the polymorphic types of streams (i.e., countable sequences)
and distinct (i.e., non-repetitive) streams, respectively. While streams exist in Isabelle’s
standard library, we introduce distinct streams as a subtype of streams that ensures that
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stream elements do not repeat. To simplify the exposition, we pretend that making a type
non-repetitive (or linear) is performed automatically using the following command, while for
now we are executing manually a uniform construction sketched by Blanchette et al. [10, §4].

linear__type ‘a dstream = 'a stream on'a

The type of infinitary A-terms [22], where A-abstraction binds a distinct stream of variables
and application applies a term to a stream of terms, is introduced by the following command:

binder_datatype ’var iterm = iVr ’var | iAp "’var iterm" "’var iterm stream"
| ilm "(xs::’var) dstream" t::"’var iterm" binds xs in t

This time (employing the same type-class mechanism explained in §3.2) when using the
type 'var iterm we will implicitly assume that 'var has cardinality at least Ry, i.e., is more
than countable. Indeed, to accommodate the countable branching syntax while ensuring that
no term can exhaust the entire supply of variables, we now have bound;;er, = N7.

Our command produces again the familiar constants: the constructors iVr, iAp and iLm,
free-variable operator iFV, permutation operator iPERM (written _[_]), a cardinal bound
bound;tern (here, 1), and a binding-aware recursion combinator rec;ter,. ~ Moreover, it
generates similar properties as for 1term. We only show properties that differ in a major
way from the lterm case (while keeping the numbering). We use an auxiliary predicate for
a function that behaves as identity on a given set: id_on A f=Vx € A. fz ==.

» Prop 4.
(1) Distinctness and (quasi-)injectivity of the constructors: (6) iLm zst = iLm zs' t' +—
(Jo. perm o Aid_on (iFV t \ dsset zs) o A dsmap o zs = zs' A tlo] = t');
(1) Equivariance of the constructors:
(2) perm o — (iAp t ts)[o] = iAp (t[o]) (smap (M. t'[o]) ts);
(3) perm 0 — (iLm zs t)[o] = iLm (dsmap o zs) (t[0]);
(111) Smallness (here, equivalently, at most countability) of the set of free variables:
(1) iFV t| <, bound;term;
(IV) Interaction between free variables and constructors:
(2) iFV (iAp t ts) = iFV t U Uy coset 15 IFV 5 (3) iIFV (iLm zs t) = iFV t ~ dsset xs;
(V) Permutation identity and compositionality;

(V1) Interaction between free variables and permutation.

Again, iVr and iAp are free constructors, hence injective, whereas the binding constructor
iLm only satisfies quasi-injectivity, i.e., injectivity up to a permutation of the bound variables
which leaves the term’s free variables untouched (I.6) — note that the latter property uses
the dstream-specific free variables (dsset) and permutation operators (dsmap). Similarly the
recursive occurrences of 4term nested under stream in the iAp constructor are accessed via
the stream’s smap and sset functions in I1.2 and IV.2, respectively. We obtain binding-aware
structural induction and recursion principles, too, and highlight the main differences to
Props. 2 and 3 (for a corresponding notion of 4termmodel):

» Prop 5 (Binding-aware structural induction). Assume Pvars : 'p — ‘var set and ¢ : 'p —
"var iterm — bool are such that (1) Vp. |Pvars p| <, bound;term, i.€., ¥p. countable (Pvars p);
(2) Vp,xz. ¢ p (iVr x); (3) Vp,t,ts. (Vq. ¢ qt) N (V' Esset ts. Vq. ¢ qt') — ¢ p (IAp t ts);
and (4) Vp, zs,t. dsset zs N Pvars p = & A (Vq. p ¢t) — ¢ p (iLm xs t). Then Vp,t. p p t.
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» Prop 6 (Binding-aware recursion). Assume model;ier pfv pprm afv aprm dvr iap ilm holds,
and let g : "var iterm — 'p — 'a denote rec;iern pfv pprm afv aprm ifvr iap ilm. Further
let paprm o f = aprm oo f o pprm (¢~ 1). The following hold: (1) g (iVr x) p = dvr = p;
(2) g (Aptts)p=iapt (gt)ts(smapg ts) p; (3) dssetxsNpfop=2 — g (iLmast) p=
ilm zs t (g t) p; (4) perm 0 — ¢ (alo]) p = paprm o (g a) p; and (5) afv (g t p) C
iFVt U pfup.

3.4 Types and terms for System F_.

We define the types and terms of System F_., which we will use in our solution to the POP-
Lmark challenge (§6). Because we aim for the challenge 2B, we directly introduce the syntax
that incorporates nested types and pattern matching. Compared to the previous subsections
we will be much briefer regarding the output of our binder__datatype commands: the
previous examples already cover many of the arising ingredients and phenomena.

We start by introducing a non-repetitive (in the keys) type of finite sets of key-value pairs
that will be used to represent records (where we use strings as keys).

type__synonym label = string

linear__type (‘a,’b) lfset = (ax’b) fseton’a

The challenge description and all existing solutions favor ordered collections for records, and
it would be easy for us to adjust our entire formalization to use lists instead of finite sets
(fset). We chose to use fset as the basis for our records because in practical languages like
Standard ML or JSON records are considered to be unordered collections. We also chose
it because it displays the flexibility of our approach to work with nested recursion through
non-datatypes:

binder_datatype ’tvar type = TVr ’tvar | Top | Arr "’tvar type" "’tvar type"

| A1l X::’tvar "’tvar type" T::"’tvar type" binds X in T
| TRec "(label, ’tvar type) lfset"

The above command defines POPLmark types. The only binding constructor is All and we
obtain the following quasi-injectivity property for it (where TFV : "tvar type — 'tvar set):
ANXT Th=AlX"T/T) +— (i =TINX' ¢ TFVIT, VX = X')ANTy, = T}[X < X']).
Naturally, we also obtain binding-aware induction and recursion principles.

We continue with defining terms. For that purpose we introduce patterns as the non-
repetitive subtype of the (non-binding) “pre-pattern” datatype that recurses through 1fset.

datatype ('tvar,’var) ppat = PPVr var ('tvar type) | PPRec (label, ('tvar, var) ppat) lfset

linear__type ('tvar,’var) pat = (‘var,’tvar) ppat on 'var

We lift the pre-pattern constructors PPVr and PPRec to the pattern type as PVr: 'var —
"tvar type — ("tvar,’var) pat and PRec: (label, ("tvar, var) pat) 1fset — ("tvar,’var) pat.
The latter operator is not a free constructor: its argument must satisfy a non-repetitiveness
predicate (nonreppgre. : (Label, ("tvar,’var) pat) lfset — bool). We are ready to define
terms:

binder_datatype (’tvar, ’var) term = Vr ’var

Ap "(’tvar, ’var) term" "(’tvar, ’var) term"

Lm x::’var "’tvar typ" t::"(’tvar, ’var) term" binds x in t

ApT "(’tvar, ’var) term" "’tvar typ"

LmT X::’tvar "’tvar typ" t::"(°tvar, ’var) term" binds X in t

Rec "(label, (’tvar, ’var) term) lfset" | Proj "(’tvar, ’var) term" label

Let "(’tvar, P::’var) pat" "(’tvar, ’var) term" t::"(’tvar, ’var) term" binds P in t
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Of the eight constructors, three are binding. We show their quasi-injectivity properties:

maeTt=Lma' Tt +— (T=T'N(z' ¢FVitvae=a2")At=t[z+2])
LT X Tt=LmT X' T/t «— (T=T'A(X' ¢ FTVitVz=2) At =#[X ¢ X))
Let Pty to = Let P’ tll t/2 — (tl :tll/\

(Jo. perm o Aid_on (FV ¢ N PV P) o A Plo] = P’ A talo] = t}))

These hinge on our ability to refer to a term’s free variables (FV) and its free type variables
(FTV), as well as a pattern’s free type variables (PV). Similarly, we obtain and make use
of infrastructure to permute a pattern’s variables, a term’s variables, and a term’s type
variables. Again, we also obtain binding-aware induction and recursion principles, where
e.g., the parameter p avoids a pattern P’s free variables in the Let case of the induction by
providing the assumption PVars p N PV P = & to the user.

4 MrBNF’s Internals: Construction of Datatypes with Bindings

Isabelle’s definitional package for standard (co)datatypes [12], sometimes referred to as the
BNF package, is based on bounded natural functors (BNFs) [41] — which are comprised of meta-
information associated with well-behaved type constructors and are closed under composition
and fixpoints (datatype and codatatype construction). The meta-information consists of a
few constants and relations between them. Specifically, a BNF is an n-ary type constructor
a T (here we use the overlined notation as a shorthand for (a1, ..., a,) T and similarly in the
following for other types and terms) along with a mapper mapy : (& — ) — a T — B T, the
relator relp : (o — 8 — bool) — a T — B T — bool, several setters set. : aT = a; set,
and the cardinal bound boundr satisfying a number of properties, e.g., mapy id = id or
set’. (map f x) = f; * seth x. For example, standard lists form a BNF with the standard
map function, the relator list_ all2, which relates two lists of the same length provided that
lists” elements satisfy the given relation when zipped pair-wise, the set function that returns
all the list’s elements and the cardinality bound ¥Ny. Standard datatypes are least fixpoints
of BNFs.

The BNF properties require mapy to behave well when applied to arbitrary functions.
Blanchette et al. [10] observed that this is too restrictive when dealing with syntax with
bindings and generalized BNFs to map-restricted bounded natural functions (MRBNFs).
MRBNFs thus resemble BNFs but distinguish between three modes of type arguments: bound
variables which can be mapped by permutations, free variables which can be mapped by
small-support (endo)functions, and live variables which correspond to BNF’s variables and
can be mapped by arbitrary functions. (Both BNFs and MRBNFs also support variables
that are ignored by map;, which are called dead.) We write (57 E) T for the MRBNF with
m = |l free and bound variables and || live variables (dead variables are left implicit) with
the mapper mapy : (o — a) — (8 — 7) — (a, ) T — (a,7) T, the relator relp : (o — o) —
(B =~ — bool) — (a,) T — (a,7) T — bool, several setters set?. : (, ) T — 7; set
where v; = a; if i < m and ; = B;_,, otherwise, and the cardinal bound boundr. Note that

relr only acts on the bound and free variables using permutations or small-support functions,
respectively. The MRBNF properties clarify which of the a are bound or free. For example,
distinct streams ‘a dstream are an MRBNF with bound variable ‘a. Our MrBNF package
implements Blanchette et al’s [10] construction of binding-aware datatypes as least fixpoints
of MRBNF type equations, and also customizes it to the high-level operators and theorems
required by the users. In this section, we describe the construction’s main milestones.



J. van Briigge, A. Popescu, and D. Traytel

4.1 From User-Specifications to Fixpoint Equations

The binder__datatype command’s syntax is inspired by Isabelle’s standard datatype
command. Bound and free variables in binder datatypes are always left polymorphic. A
custom name can be provided for the free variable operators. A type class on the type
argument ensures that the type chosen is large enough for the size of the binder datatype,
e.g., that it is at least countably infinite for finite syntax like 1term and at least uncountably
infinite for 1term. The “at least” makes nesting binder datatypes in other potentially larger
(e.g. uncountable) types easier as the variable type can be increased to match the size of the
surrounding type.

The other major addition to the command’s syntax compared with standard datatypes
are the binding annotations (inspired by Nominal Isabelle) and the subterm selectors. Normal
datatypes allow to automatically define accessor functions using the fun_name: : type syntax.
For binder datatypes this syntax is repurposed and generalized to define the binding structure.
A selector can not only appear on the top level (i.e. on a field of a constructor as in the Lm
constructor in term) but also nested within other types (as in the Let constructor in term).
Valid targets for the selectors are variable positions and (potentially mutually) recursive
positions.

MrBNF translates the user specification into the pre-datatype, a non-recursive sum of
products. Thereby, variable and recursive positions are separated based on whether they
appear in a binding clause. Next to the free variables visible in the syntax (’var), the
pre-datatype also has a bound variable position, and two recursive positions for recursive
occurrences under a binder and not under a binder respectively. The iterm type’s pre-
datatype is:

type_synonym (’var, ’bvar, ’rec, ’brec) pre_iterm = ’var (* free occurrence *)

+ (Prec * ’rec stream) (* recursive non-binding occurrences *)
+ (’bbar dstream * ’brec) (* bound and recursive bound occurrence )

Next, MrBNF defines a “raw” standard datatype with a single constructor (which is
completely free, i.e., not yet quotiented to a-equivalence):

datatype ’var raw_iterm =
CctOrray_iterm "(’var, ’var, ’var raw_iterm, ’var raw_iterm) pre_iterm"

For the above step as well as to prepare for the next steps in the construction of the binder
datatype, the pre-datatype must form an MRBNF with free 'var (setter set;re_iterm), bound
"buar (setter set? . ;i .m), and live "rec (setter setd,, ;i) and 'brec (setter sety . ;i) POSi-

tions — this is ensured by tracking the registered MRBNFs and automating their composition.

4.2 Composition of MRBNFs

The proof that a given type forms an MRBNF proceeds recursively via composition. For
the individual components there are three cases to consider. If the type is a type-variable
then return the identity MRBNF (live 'a, T1p :='a, mapy, :=id : (a = 'a) = 'a = 'a,
relzp :=id : (‘fa = 'a = bool) = 'a = 'a — bool, and setyp := \x. {2} :— 'a — 'a set).
If the topmost type constructor is not known to be a (MR)BNF then return the constant
MRBNF (dead 'd, T¢sr :='d, mapggr :=id : 'd — 'd, relgsr := (=) : 'd = 'd — bool).
Otherwise (i.e., the topmost type constructor is a MRBNF) recursively prove that its
arguments are MRBNFs. Then do a composition step between the outer MRBNF and the
inner MRBNFs.
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Inspired by BNF composition [12], MRBNF composition is split into several phases. First
step is demoting. All type-variables shared between the involved MRBNFs are demoted to
the same mode. Given that modes can only become more specific (live > free > bound >
dead), this will result in the lowest mode a variable is used at in any of the MRBNFs. If a
type-variable appears under a type constructor that is not a (MR)BNF, it must be demoted
to dead (using the constant MRBNF). The second step is lifting: new dummy type-variables
are added to all MRBNFs to ensure that all involved MRBNFs have the same (modulo
reordering) bound and free type-variables and all the inner MRBNFs have the same live
type-variables (again modulo reordering). The third step is permuting: bring shared type
variables into the same order in all involved MRBNFs. Finally, composition proceeds along
the following definition:

» Definition 1. Given an outer MRBNF (o, B) G where |a| = m and |§| = n and inner
MRBNFs (a, ) Fi ... («,7) F, where |y| = k, the composed MRBNF («,v) H is given by:

(O"V)TH = (%EO‘?’Y)Fll"'?(av’Yi)iFn)G L

mapy = Afg.mapg f(mapg, fg)...(mapg, fg)
Ha=a) = (y=9) = (7)) Te = () T

seti="" = Az.sethb a U (y €seti T asetl, y) U--- U (y € setli . setl, y)
(o, y) Th — ay set

setiy™ = . U (i/g setg ™ aosetl, y) U U (y € setZ " setl, )
(o, y) Ty — Yiem set

relg = M R.relg f (relp, fR)...(relp, fR)

(0= a) = (y = o = bool) = (a,7) Ter — (@,7') Trr — bool

4.3 Fixpoint and Quotienting Constructions

Next, MrBNF automates Blanchette et al. [10] definition of free variables, permutation and
a-equivalence on the raw datatype. Free variables are defined via an inductive predicate free
that specifies if a variable x is free in a term ¢, here shown on our running example %term.

1 3
a €sety o storm z € sets o itorn T freea z
Pre- TOPFREE Pre- RECFREE
free a (Ctorray itern &) free a (CtOrray itern &)
2z € set? T freea z a ¢ set? x
pre_iterm pre_iterm
RECBOUND

free a (ctorray_itern )

The FVyay itern function is then defined as At. {a. free a z}. One also defines a primitive
recursive function permute that takes an permutation on the variable position and applies it
to all variables (bound and free). This function uses the map function of the pre-datatype:
permute o (CtOfray_itern ) = CtOrray itern (MaPpre_itern @ O (permute o) (permute o) ).
Equipped with these two functions, alpha-equivalence is defined inductively as follows:

. 2
perm o |dion ((Uzesetgre ttorn T eraw_iterm Z) \ Setpre_iterm l‘) o
relpre_iterm id o alpha

iterm (AZ alphaiterm (permUte o Z)) Ty

alphaiterm (Ctorraw_iterm 1') (Ctorraw_iterm y)

MrBNF proves alpha
of the raw datatype. The constructor, free variable and permutation operators are lifted
from the raw datatype to the quotient. The lifted constructor ctorjtery is used to define the
high-level constructors iVr, iAp, and iLm, and to prove all the high-level theorems illustrated
in §3.

to be an equivalence relation and uses it to define a quotient

iterm
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MrBNF actually implements a mild generalization of Blanchette et al. [10]’s fixpoint
construction, which only allows to bind variables in recursive subterms. However, sometimes
it is necessary to bind variables that appear free in another (non-recursive) type occurrence.
To solve this issue in the pre-datatype, instead of just having positions for free and bound
type-variables, we also introduce a hybrid called bfree type-variables. Then, alpha-equivalence
ensures that the portion of bfree variables that appear bound is appropriately renamed.

4.4 Recursion

MrBNF also implements Blanchette et al’s binding-aware recursion principle [10]. To define
a recursive function from a binding-aware datatype @ T of free type-variables @ to some other
a-type @ U, one needs: (1) a parameter structure consisting of a type @ P, a permutation
Pmap : @« —=a — a@ P — @ P and support operators PVars; : @ P — «; set, and (2) a
model consisting of a type @ U, permutation, and support operators similar to the parameter
structure as well as an algebra structure encoding the recursive behavior of the all the

constructors, Uctor : (a,aT x(@P—a U)) pre_T — a P — a U, where pre_ T is the

pre-datatype of T.

We introduce a precursor of our recursor on raw terms, which applies Uctor recursively
while suitably permuting bound variables “out of the way” with regard to the parameter
structure. Suitably means that the “out of the way” function f returns a permutation that
does not change the frees and makes bounds disjoint from the frees. For iterm, suitable is
defined as:

suitable;jtern f = YV p. perm (f 2 p) A
imsupp (f Z‘p) N ((Fviterm (Ctoriterm JJ) U PVars p) \setgre_iterm J}) =9A
Jop’ setd iiom N (FVitern (CtOrisern ) UPVars p) = &

Here, imsupp f = supp fU f * supp f. As the precursor must permute the bound variables,
it is not possible to define it using primitive recursion. Instead, we use well-founded recursion
via an auxiliary subshape relation, which provides the necessary wiggle room:

3 4
perm o alphaiterm (permUteraw_iterm g y) z Z € Setpre_iterm x U Setpre_iterm z

subshape y (ctorray iternm &)
We obtain the definition of the precursor recy for a suitable “out of the way” function f:

recy f (Ctorray iterm ) p = if —suitable;ter, f then undefined else Uctor
(mappre_iterm id (f xp) (()‘t (t7 recy f t)) o permUteraw_iterm (f l‘p)) ()‘t (t7 recuy f t)) ‘T) D

The main lemma that the package proves is that the precursor commutes with permutation,
it returns the same result for alpha-equivalent terms, and that the specific choice of the
“out of the way” function is irrelevant. These properties must be proved simultaneously by
induction on the binder datatype using the induction scheme associated with the subshape
relation:

suitable;yern f = suitable;iern [/ = perm 0 = alpha; o, t ' =
recy f (permute ot)p= Umapo (recy ft(Pmapo=tp)) Arecy ftp=recy f't'p

raw_iterm

To move towards the binding-aware recursor, we use Hilbert Choice to hide the “out of
the way” function by choosing an arbitrary suitable one rrecyy = recy (ef. suitablejtern f)-

The invariance of the precursor under alpha is needed to lift it from the raw type to the
quotient type. The definition of the precursor is used to derive a better simplification rule
that hides the permuting function. This rule requires that the top-level bound variables
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are disjoint from the parameter structure and from the free variables. We then use identity
as the “out of the way” function on the top level and an arbitrary suitable function in the
recursion.

Set2 o stern £ (setll,re_i,mm 2 U (U, o » FVitern 2) U PVars p) =g =

pre_itern

rrecy (Ctorray_stern ) p = Uctor (Mapy o sierm id id (AL. (¢, rrecy t)) (Xt. (t, rrecy t)) ) p

Relativized Recursion. The above is a slightly simplified version of our recursion facilities.
To accommodate situations where the domain of parameters or the target domain for the
intended recursion function do not make up the entire types but only certain subsets, MrBNF
allows the user to optionally provide predicates validp : @ P — bool and validy : @ U — bool
that restrict these domains — while producing proof obligations that the user-provided
parameter-structure and recursor-model operators preserve these predicates, and producing
recursor clauses relativized to these predicates. For normal datatypes such a feature would
be useless, as there are no proof obligations incurred for recursion. But for binding datatypes
this is useful, since organizing the entire type as a parameter structure or a recursor
model (so that the proof obligations can be discharged) is often difficult or awkward. An
example of leveraging the validp flexibility is if the user prefers to define substitution using
actual functions subject to the small-support requirement, as opposed to defining a subtype
corresponding to this requirement (substFun at the end of §3.2). In §5, we show an example
that leverages the validy flexibility.

5 Application I: Mazza’'s Isomorphism

In his work on connecting the meta-theory of A-calculus with the notion of metric completion,
Mazza [22] establishes an isomorphic translation between standard A-calculus (using the
lterm syntax in §3.2) and a (uniform affine) infinitary A-calculus (the %term syntax from
§3.3). We show our formalization using MrBNF of some key constructions in his development.

Recall that the type-variable for the lterm type constructor must be infinite (since
bound;tern = Ng), and the one for 4term must be uncountably infinite (since bound ;serm = N1).
In what follows, we fix these type-variables, namely fix a countable type var (a copy of nat)
and an uncountable type ivar; we will refer to the elements of 1var as ivariables. We will
simply write lterm instead of var lterm and iterminstead of ivar iterm.

Following Mazza, we choose a countable set Spr : (var dstream) set of distinct streams
of variables called supervariables, having the property that any two are mutually disjoint:
Vs, ys € Spr. sset xs N sset ys = (). The intention is restricting the A-iterms to only use
these as bindings. Moreover, we choose a function spr : var — (var dstream) set for
which bij_betw spr (UNIV : war set) Spr holds, i.e., spr is a bijection between variables

L: (var dstream) set — war for its inverse. We refer

and supervariables; we write spr—
to the elements of nat list as positions, and choose a bijection natOf : nat list — nat.
For p : nat list and n : nat, p - n denotes the concatenation of p and [n]. According
to Mazza’s definition, the finitary-to-infinitary translation should be a function [ ] :
lterm — nat list — iterm given by: (1) [Vr z], = iVr ((spr &)natof p); (2) [Lm z t], =
iLm (spr Z‘) [[tﬂp; and (3) [[Ap tl tzﬂp = iAp [[tlﬂp.o ([[tz]]p.l, [[tgﬂp.g, [[tgﬂp.g,, .. )

The intuition is that every variable z in the original term is duplicated in the translation
into countably many ivariable “copies” of it sourced from its corresponding supervariable,
spr . The positions make sure that the copies located in different parts of the resulting
iterm are distinct, thus ensuring that the iterm is affine. Indeed, in the recursive case
for application, we see that the position p grows with different numbers appended to the



J. van Briigge, A. Popescu, and D. Traytel

zs € Spr {xz,z'} C sset zs zs € Spr t=t
_p { _} — IVR - P - 1ILM
iVrz =~ iVr o/ iLmxzst ~ iLm zs ¢/
t=t Vi1, ta. {t1,t2} C sset ts Usset ts' — t1 ~ t3 A
IAP

iAptts ~ iApt' ts

Figure 1 Renaming equivalence relation.

arguments of infinitary application, which ensures disjointness in conjunction with choosing
the particular “copy” based on this position counter (natOf p) when reaching the Vr-leaves.
Correspondingly, abstraction over a variable is translated to abstraction over its supervariable,
i.e., over all its “copies”.

Moreover, to describe the image of this translation, Mazza defines the notion of renaming
equivalence expressed as the relation ~ : iterm — 4term — bool defined inductively in Fig. 1.
It relates two A-iterms ¢ and ¢’ just in case they (i) have the same (iVr,iLm,iAp)-structure (as
trees), (ii) only use supervariables in binders, (iii) at the leaves have variables appearing in
the same supervariable, and (iv) for both ¢ and ¢’ all the subterms that form the righthand
side of an application are mutually renaming equivalent. Then uniformity of an iterm, which
will characterize the translation’s image, is self-renaming-equivalence: uniform t = (¢t ~ t).

We aim to define a function satisfying clauses (1)—(3) above, with (2) formally written
as iAp [t1]p.0 (smap [t2]p.  (natsFrom 1)) where, for any n, natsFrom n denotes the stream
of naturals starting from n. To turn these clauses into a formal definition, we deploy our
recursor for lterm, which requires also indicating the desired interaction between the to-
be-defined function with permutation and free-variables. Upon analysis, we converge to
(4) [tlo]]p = [tlplv2ive] and (5) spr=! * touched [t], C FV t, where v2ivo (read “variable
to ivariable”) converts o : var — war, via spr, into a supervariable-preserving function;
namely, for any y € ivar such that y appears in some (necessarily unique) supervariable
18, we define v2ivo y : ivar as (spr (o (spr=!ws))); for the unique i such that zs; = y; and
touched ¢ is the set of all supervariables that are touched by (the free variables of) ¢, namely
{zs € Spr | sset zs N FV t #£ 0}.

Equation (4) above is seen to be intuitive if we remember that the translation sends
variables to supervariables, which means that bijections o between variables naturally cor-
respond to bijections between supervariables, hence (thanks to the supervariables being
mutually disjoint) to supervariable-structure preserving bijections between ivariables; there-
fore indeed (A) applying a bijection on variables and then translating should be the same
as (B) first translating and then applying this corresponding bijection of its ivariable “cop-
ies” in the translation. As for the above inclusion (5), we obtained it by adjunction from
touched [t], C spr * FV t, which is again intuitive if we think in terms of the variable-
supervariable correspondence.

Clauses (1)—(5) give us a structure on the intended codomain of [_] , nat list — iterm,
using the recipe sketched at the end of §3.2. However, for these to give us an 1term-model,
we must restrict the codomain to include only those functions f : nat 1ist — iterm whose
image consists of renaming-equivalent items only — otherwise the model properties do not
hold; this is not suprising, since Mazza’s translation’s goal is to produce uniform iterms. We
therefore employ the codomain-relativized recursion discussed at the end of §4.4, obtaining;:

» Prop 7. There exists a unique function [ ]| : lterm — nat list — iterm such that
clauses (1)—(5) hold, and in addition Vp, q. [t], = [t]4; in particular, ¥p. uniform [¢],.
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For the opposite translation (__) (from infinitary back to finitary terms), Mazza writes
equations that in our notation look as follows, restricting the domain to uniform iterms:
(1) (iVr ms;) = Vr (spr=t as); (2) (iLm zs t) = Lm (spr—t ms) (t); (3) (iAp t ts) = Ap (t) (tso)-

With the help of a custom recursor for a suitable superset of the uniform iterms, again
adding clauses for permuation and free variables, we are able to prove:

» Prop 8. There exists a function () : sterm — lterm satisfying the above clauses (1)—(3)
when resticted to uniform iterms (i.e., assuming iVr zs;, iLm zs t and iAp ¢ ¢s are uniform),
and such that [_]’s restriction to uniform iterms is uniquely determined by these properties.

Mazza’s main result consists of a sequence of five statements, three of which refer to the
syntactic component of the finitary-infinitary isomorphism.

» Prop 9. The following hold: (1) (Lemma 16 from [22]) t =t —> (¢t = (t').
(2) (Thm. 19(1) from [22]) ([s],) = s. (3) (Thm. 19(2) from [22]) uniform t — [(t)], =~ .

The theorem states that, for any position p, [_] and (), give mutually inverse bijections
between terms and equivalence classes of uniform iterms w.r.t. renaming equivalence. An
additional lemma (omitted here) shows that the ~-representative produced by (_|), is affine
(i.e., has no repeated variables). Thus the result establishes a syntactic isomorphism, up to
renaming equivalence, between terms and uniform affine iterms. Mazza’s isomorphism also has
an operational-semantics component, given by a theorem stating that [ ] and (_|), preserve
B-reduction in both calculi in a manner that matches the number of reduction steps [22, Thm.
19(3,4)]. We omit this result here, but details can be found in our formalization [44].

6 Application II: POPLmark Challenge

We report on our solution to the Part 2 of the POPLmark challenge [4], which is concerned
with the type soundness of System F_.; our formalization also solves Part 1, which is concerned
with subtyping. We work with the System F .. types and terms we have introduced in §3.4.
With our setup that enforces the variable convention in all induction proofs, the formalization
becomes a routine exercise: we can follow the formalization document and transcribe auxiliary
lemmas and their proofs. We show our core definitions of Part 2. Naturally, they rely on
some definitions of Part 1 (notably the subtyping relation) and other basic infrastructure
(notably contexts modeled as lists); we refer to our formalization for full details [44].
We start with the typing judgments for patterns and terms:

inductive pat_typing ("F _ : _ — _" [30,29,30] 30) where
PTPVr: "W PVr x T : T — & , Inr x <: T"

| PTPRec: "nonrep_PRec PP —> labels PP = labels TT —
(V1PT. 1, P) e PP — (1, T) €€ TT — FP : T —- A 1) =
F PRec PP : TRec TT — concat (map A (labelist TT))"

inductive typing ("_ F _ : _" [30,29,30] 30) where

TVr: "W ' 0K — (Inr x, T) € set ' = I' - Vr x : T"

TLm: "I' , Int x <: T1 F t : T2 = I' - Lm x T1 t : Arr T1 T2"

TAp: "' F t1 : Arr T11 T12 —= I' - t2 : T11 = I' |- App t1 t2 : T12"

TLmT: "I' , Inl X <: T1 Ht : T2 = I' - LmT X T1 t : All X T1 T2"

TApT: "I' = t1 : All X Ti11 T12 = proj_ctxt I' - T2 <: T1l —

I'  ApT t1 T2 : substT (TVr(X := T2)) T12"

TSub: "I' Ft : S = proj ctxt ' FS<: T=T"Ft : T"

TRec: "F I' 0K — rel_1lfset id (At T. ' F t : T) XX TT — I' - Rec XX : TRec TT"
TProj: "I' Ft : TRe¢c TT = (1, T) €€ TT — I' F Proj t 1 : T"

Tlet: "'t : T—FP:T—- A —1, AFtu:U=—TFLetPtu:U"
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All rules follow closely the challenge description [4]. A few rules deserve some explanation.

Rules TVr and TRec assume that the context is well-scoped (- I' OK); other rules preserve
this invariant inductively. Rule TRec uses the relator rel_lfset to relate the values in
two lfsets pairwise grouped by label. Rule TApT uses the parallel substitution function
on System F.. types (substT), which we define using our recursor. Rule PTPRec assumes
that the destructed record pattern is nonrepetitive (nonrep_PRec); it also writes €€ for
membership in 1fset and constructs the resulting context by sorting the finite set of labels
lexicographically (labelist).

We next define matching and the evaluation function for the terms.

inductive match for o where
MPVr: "o X = v — match o0 (PVr X T) v"
| MPRec: "nonrep_PRec PP — labels PP C labels VV —
(V1 Pv. (1, P) €€ PP — (1, v) €€ VW — match 0 P v) —
match o (PRec PP) (Rec VV)"

definition "restrict o A x = (if x € A then o x else Vr x)"

inductive step where

ApLm: "value v = step (Ap (Lm x T t) v) (subst (Vr(x := v)) TVr t)"

ApTLmT: "step (ApT (LmT X T t) T2) (subst Vr (TVr(X := T2)) t)"

LetV: "value v = match o0 P v —> step (Let P v u) (subst (restrict o (PV p)) TVr u)"
ProjRec: "Vv € values VV. value v —= (1, v) €€ VW — step (Proj (Rec VV) 1) v"
ApCongl: "step t t’ = step (Ap t u) (Ap t’> u)"

ApCong2: "value v =—> step t t’ = step (Ap v t) (Ap v t’)"

ApTCong: "step t t’ — step (ApT t T) (ApT t’> T)"

ProjCong: "step t t’ = step (Proj t 1) (Proj t’> 1L)"

RecCong: "step t t’> = (1, t) €€ XX — step (Rec XX) (Rec (XX(1 := t’)))"
LetCong: "step t t’ — step (Let P t u) (Let P t’ w)"

Similar to Berghofer’s solution [8], we use a matching predicate rather than a (partial)
function that computes the matching substitution. The rules ApLm, ApTLmT, LetV, and
ProjRec implement actual transitions; the remaining rules of step are congruence rules
navigating to allowed redexes. We prefer this formulation over an equivalent context-based
one, because the congruence steps are in all cases the easy cases of the involved induction
proofs. The rules ApLm, ApTLmT, LetV use the parallel substitution subst, which we again
define using our recursor. This substitution function acts both on term variables (first
argument) and type variables (second argument). We then prove the main results: progress
and preservation.

lemma progress: "@ F t : T = value t V (3t’. step t t’)"

lemma preservation: : "' Ft : T = stept t> —= ' - t> : T"

The proofs are canonical following the challenge description [4]. We pervasively use
binding-aware induction on our datatypes but also on the shown inductive predicates, which
has recently been developed in Isabelle by van Briigge et al. [43]. Occasionally we use
induction even in places where a case distinction would have sufficed: this is because our
tool lacks case distinction theorems following the variable convention. One omission in the
challenge’s pen-and-paper proof, which has been also noted by Berghofer [8], is the following
lemma, crucial for progress, about the existence of matching substitutions for well-typed
patterns.

lemma pat_typing_ex _match: FP : T - A = @ F v : T = value v = Jdo. match ¢ P v
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7 Conclusion

MrBNF is a new definitional package in Isabelle/HOL for defining binding-aware datatypes.
It follows a modular approach to datatypes relying on the notion of MRBNF as infrastructure
to refer to free, bound, and recursive occurrences in a syntax declaration. It comprises 20 000
lines of Standard ML. While some of its usability edges are still rough, our case studies suggest
that MrBNF can be a cornerstone in mechanized developments, pushing the boundaries of
nominal techniques. We are currently proceeding to polish MrBNF’s rough edges, which
involves providing a high-level interface to the recursor, automating the non-repetitiveness
construction (linear__type), and providing variable-avoiding case distinction rules and a
proof method to apply them effectively. At the same time, we are extending MrBNF’s scope
to binding-aware codatatypes, which will have applications such as Bohm trees [6].
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