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Abstract

How quickly we attend to objects plays an important role in navigating the world, especially in dynamic and rapidly changing 

environments. Measuring individual differences in attention speed is therefore an important, yet challenging, task. Although 

reaction times in visual search tasks have often been used as an intuitive proxy of such individual differences, these measures 

are limited by inconsistent levels of reliability and contamination by non-attentional factors. This study introduces the rate 

of post-target distractor intrusions (DI) in the rapid serial visual presentation (RSVP) paradigm as an alternative method of 

studying individual differences in the speed of attention. In RSVP, a target is presented for a brief duration and embedded 

among multiple distractors. DIs are reports of a subsequent distractor rather than the target and have previously been shown 

to be associated with the speed of attention. The present study explored the reliability and validity of DI rates as a measure 

of individual differences. In three studies, DI rates showed high internal consistency and test–retest reliability over a year 

(>.90), even with a short task administration of only about 5 minutes. Moreover, DI rates were associated with measures 

related to attention speed, but not with unrelated measures of attentional control, reading speed, and attentional blink effects. 

Taken together, DI rates can serve as a useful tool for research into individual differences in the speed of attention. Links 

to a downloadable and easily executable DI experiment, as well as a brief discussion of methodological considerations, are 

provided to facilitate such future research.

Keywords Individual differences · Distractor intrusions · Visual search · RSVP · Attentional blink

Introduction

How quickly people notice important events in dynamic 

environments plays a critical role in guiding our actions 

and determining their outcomes. For example, as any driver 

knows, a tiny delay in detecting a sudden change on the 

road can mean the difference between safely stopping the 

car and a fatal accident. Visual selective attention is crucial 

for rapid perception of such hazards, as it enables prioritized 

processing of potentially important events in the changing 

environment. Accordingly, much effort has been devoted to 

studying the various factors that affect how quickly attention 

is deployed (see, e.g., Wagner et al., 2024; Wolfe, 2020, for 

reviews). In the current study, we focus on one such factor: 

individual differences.

The study of individual differences in cognition has the 

potential to bridge insights from well-controlled lab experi-

ments with predictions of behavior in the real world. For 

example, individual differences in the speed of attention can 

advance understanding as to why some people are slower to 

detect road hazards or are more prone to have car accidents 

(e.g., Barragan & Lee, 2021). However, despite their impor-

tance, individual differences in the speed of attention are still 

poorly understood.

Selective attention research has overwhelmingly relied on 

an experimental approach that tends to emphasize universal 

regularities in attention mechanisms, rather than variability 

between individuals. Ideally, progress in one research tradi-

tion, experimental or individual differences, would trans-

late to progress in the other. However, various challenges 

limit this kind of cross-fertilization (Cronbach, 1957). One 

recently discussed challenge is that measures suitable for 

experimental research may not be suitable for individual 
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differences research, due to their restricted reliability (Hedge 

et al., 2018a; Rouder & Haaf, 2019).

Take, for example, the Visual Search task, arguably the 

most popular task used to study the determinants of the 

speed of attention (Nakayama & Martini, 2011; Wolfe, 

2020). In Visual Search, participants are presented with a 

static display where a target is surrounded by distractors. 

Performance is most often measured using participants’ 

reaction times (RTs). Linking between RTs and the speed 

of attention seems straightforward: participants who are 

slower to detect and attend to the target should take longer 

to react to it. However, RTs reflect the endpoint of multiple 

processes, not just attention. Therefore, when a difference in 

RTs is observed between conditions or between individuals, 

it is often unclear which of the processes is responsible for 

this difference (Palmer et al., 2011). To isolate attention-

related differences from other processes, attention research-

ers often use sophisticated experimental designs where two 

or more conditions differ in one key aspect, and then calcu-

late measures derived from the difference between scores 

on these conditions. These kinds of difference measures 

are useful because they control for any differences that are 

unaffected by the manipulation, such as response-selection 

mechanisms and general individual differences in process-

ing speed. For example, changing the number of distractors 

in a Visual Search display allows one to calculate the aver-

age speed of discarding a distractor (a search slope; Wolfe, 

2001). If a participant is generally slower to respond, this 

irrelevant source of variability should emerge in all meas-

urements and therefore should be cancelled out when the 

slope is calculated. Thus, calculating difference scores is 

key for the experimental study of the speed of attention. 

At the same time, the difference score method can result in 

poor reliability, as it relies on subtracting strongly correlated 

measures (participants’ raw RTs) from each other (Caruso, 

2004; Cronbach & Furby, 1970). Indeed, while very few 

papers report the reliability of search slopes (Wagner et al., 

2024), the ones that do often report restrictively low values 

(e.g., Sisk et al., 2022).

Research on individual differences in the speed of atten-

tion is impeded by these issues. Intuitively, it seems rea-

sonable that some participants deploy their attention more 

quickly than others, and that RTs can be used to measure 

these differences. In practice, individual differences in raw 

RT scores are confounded by additional intervening pro-

cesses and are also prone to speed–accuracy trade-offs (Dra-

heim et al., 2019). Difference scores, which are meant to 

resolve some of these issues, are highly prone to reliability 

issues (Hedge et al., 2018a). Together, these issues limit the 

usability and interpretability of RTs in research into indi-

vidual differences in the speed of attention. The purpose 

of this study is to overcome these challenges. We do so by 

introducing a new measure for individual differences in the 

speed of selective attention: distractor intrusion rates.

Distractor intrusions as a measure of the speed 
of attention

Other than the Visual Search task, the speed of attention 

has been studied using the rapid serial visual presentation 

(RSVP) paradigm. In RSVP, participants are asked to iden-

tify one or more targets among multiple objects that appear 

and disappear in rapid succession (usually around 100 ms 

per object, i.e., 10 Hz) at the same location. Thus, whereas 

Visual Search requires the (rapid) deployment of attention to 

the right location in space, performance in the RSVP para-

digm depends on rapidly allocating attention to the right 

object at the right moment in time. Importantly, responses 

in the RSVP paradigm are usually given without time pres-

sure. Hence, unlike Visual Search (and other RT-based 

experiments), performance in RSVP is largely assumed to be 

impervious to variability in the speed of response selection 

mechanisms or to individual differences in overall response 

speed.

Since its inception, performance in the RSVP paradigm 

has been associated with the speed of attention (Lawrence, 

1971; Broadbent & Broadbent, 1987). Broadbent and Broad-

bent (1987) suggested that performance in the RSVP para-

digm relies on two processes: detection and identification. 

When a unique and salient target is presented in the RSVP 

paradigm, detection occurs rapidly and with little variabil-

ity. In contrast, the attentional selection process responsible 

for identification and encoding is temporally variable and, 

therefore, can sometimes be delayed. This delay leads to the 

perception and report of the wrong object. For example, if 

the target is defined as a digit inside a disk (Fig. 1A), par-

ticipants will often report seeing the immediately follow-

ing (post-target) distractor digit (Fig. 1B). Such distractor 

reports have been documented in numerous studies using 

various types of stimuli (e.g., Adler & Intraub, 2021; Botella 

& Eriksen, 1992; Botella et al., 2001; Vul et al., 2008; 

Zivony & Eimer, 2020, 2024a, 2024b).

Moreover, studies have documented that distractor reports 

do not emerge merely due to guessing or response bias. 

Rather, these responses reflect occasions where the distrac-

tor’s identity is encoded to working memory instead of (or 

alongside) the target’s identity (Recht et al., 2019; Vul et al., 

2009; Zivony & Eimer, 2020). Distractor reports in RSVP 

tasks reflect a genuine temporal binding error between the 

feature that defines the target (e.g., the selection cue) and 

the distractor (Zivony & Eimer, 2024a). Accordingly, these 

responses have been aptly labelled “distractor intrusions” 

(Botella & Eriksen, 1992), as they reflect an involuntary 
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intrusion of the distractor information into conscious 

perception.

Over the last three decades, many studies have used dis-

tractor intrusion (hereafter DI) rates (and measures derived 

from DI responses) as an index of the speed of attention 

(e.g., Chun, 1997; Vul et al., 2008; Goodbourn et al., 2016; 

Ludowici & Holcombe, 2021). In these studies, a higher 

rate of post-target DIs was assumed to reflect occasions 

where attention was delayed. However, direct evidence to 

support this association has only recently been obtained. 

First, DI rates have been shown to be affected by manipula-

tions known to affect the speed of attention. For example, 

target attentional selection is faster when there is more cer-

tainty about the target’s spatial location (e.g., Foster et al., 

2020) and temporal position (e.g., MacKay & Juola, 2007), 

and when the target-defining feature is easier to detect 

(e.g., Wolfe & Horowitz, 2017). Correspondingly, DI rates 

increase when the target can appear in more locations (i.e., 

more RSVP streams), when the target’s temporal position 

is less predictable, and when the selection cue is less sali-

ent (Ludowici & Holcombe, 2021; Zivony & Eimer, 2021; 

2023). Second, DIs have been associated with a delay to the 

N2pc, a well-known electrophysiological marker of selec-

tive attention (Eimer, 1996; Woodman & Luck, 1999). The 

onset of the N2pc has been closely linked with the timing 

of selective attention (Callahan-Flintoft et al., 2018; Zivony 

et al., 2018). In line with the view that DIs are more likely 

to occur when attention is slowed (e.g., Chun, 1997), sev-

eral studies reported that these responses are consistently 

associated with a delay to the N2pc’s onset, relative to cor-

rect responses (Zivony & Eimer, 2020, 2021; see Fig. 1C).

A framework for conceptualizing attention

The studies that report an association between DIs and the 

speed of attention fit well with Broadbent and Broadbent’s 

(1987) account of this phenomenon (unlike other theoretical 

accounts, see Zivony & Eimer, 2020 for a detailed discus-

sion). However, one issue with Broadbent and Broadbent’s 

account is its reliance on the problematic concept of “atten-

tional selection”. It has been argued by many that attentional 

selection (and attention more broadly) is a flawed and vague 

concept that can result in circular logic (Anderson, 2011; Di 

Lollo, 2018; Rosenholtz, 2024). Moreover, the conceptual-

ization of attentional selection in Broadbent and Broadbent’s 

(1987) account (as in many other accounts) necessitates the 

adoption of implausible assumptions, like the notion that 

attention is a temporally discrete process (Zivony & Eimer, 

2022). Given these issues, it is unsurprising that some have 

expressed skepticism about the merit of relying on the 

concept of attentional selection in scientific investigation 

(Anderson, 2011; Di Lollo, 2018; Rosenholtz, 2024).

We suggest that a coherent framework for (the speed 

of) attention is possible if one rejects the view that equates 

attention to selection, in favor of a view of attention as mod-

ulation (Fazekas & Nanay, 2021). Elsewhere, we provided a 

detailed discussion of why we believe this view resolves the 

theoretical problems with the concept of attention (Zivony 

Fig. 1  Illustration of the stimulus sequence in the tasks analyzed in 

Study 1 (A), including typical behavioral results (B) and electrophysi-

ological (C) results. A Participants had to report a target from a pre-

specified alphanumeric category (digit or letter) in one of two RSVP 

streams, defined by a predefined selection feature (circle or square). 

In the current example, the target is the digit inside the circle cue. 

At the same location as the target, the frame contained a category-

matching post-target distractor (e.g., digit), which therefore allowed 

for distractor intrusion responses. B Behavioral results from Zivony 

and Eimer (2021). When the target is followed by a nonreportable 

distractor, accuracy (black bar) is high. In contrast, when the target is 

followed by a reportable distractor, accuracy is substantially lowered, 

and distractor intrusions are common. C N2pc results from Zivony 

and Eimer (2021). When the target is followed by a reportable dis-

tractor, the onset of the N2pc is slowed on trials where participants 

make intrusion errors relative to correct responses. Reprinted with 

permission
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& Eimer, 2022). What follows here is a brief description of 

our view, aimed at clarifying the concepts used in this work.

According to the attention-as-modulation view, percep-

tion occurs gradually and can be viewed as an evidence 

accumulation process. Encoding is the process of stabilizing 

a fragile sensory representation, making it resilient to com-

petition from other sensory signals; this occurs only when 

sufficient sensory evidence about an object is accumulated. 

Attention is a family of modulatory processes that unfold 

over time (a “diachronic” process) and continuously modu-

late the efficiency of perceptual processing, thereby increas-

ing the likelihood of encoding. Attention is associated with 

selectivity for two reasons. First, attention is deployed selec-

tively: when and where attention is deployed is based on 

prior computations of salience and a stimulus’ match to the 

observer’s goals (Luck et al., 2021). Second, attention is not 

merely dependent on selective processes but also results in 

further selectivity. Specifically, attention biases the percep-

tual competition between multiple sensory signals, thereby 

increasing the chance that some will be encoded and oth-

ers will not (Wyble et al., 2011). However, attention and 

selection are not one and the same: once deployed, attention 

modulates sensory signals indiscriminately.

This framework allows for a coherent association between 

the speed of selective attention and DIs. In RSVP tasks, 

most distractor stimuli are not encoded because their fragile 

sensory representation is overridden by preceding and fol-

lowing items. Detection of the target (i.e., sufficient evidence 

is accumulated about the presence of its defining feature) 

results in “attentional engagement”, a ballistic and transient 

attentional modulation. Attentional engagement substan-

tially amplifies the processing of all stimuli at the target’s 

location for a short amount of time, which greatly enhances 

the likelihood that these stimuli will be encoded (whether 

they are relevant to the task or not). While attention is not 

a unitary process, throughout this work, we use the term 

“attention” and “the speed of attention”, to refer specifically 

to this transient modulation that follows the target’s detec-

tion. It is the timing of this attentional process, which is 

indexed by the N2pc component (Callahan-Flintoft et al., 

2018; Zivony et al., 2018), that determines whether the 

target or distractor will be reported in the DI task. Correct 

responses occur when attentional engagement is triggered 

quickly (indexed by an early N2pc), which allows the tar-

get’s processing to be enhanced before its sensory trace is 

overridden by the following item. In contrast, DI responses 

occur when attentional engagement is slow (indexed by a 

later N2pc), which means that the post-target item benefits 

from more indiscriminate amplification than the target.

Finally, this framework suggests that temporal selectivity 

is the outcome of multiple interrelated yet distinct processes. 

Dissociating attention from these processes is a challenging 

task, but not an impossible one. For example, while attention 

and encoding are closely related, they are not one and the 

same. Attention modulates perceptual processing which, in 

turn, promotes encoding. However, various factors (includ-

ing individual differences) have been found to affect the 

speed at which an object is encoded, independently of atten-

tional modulations (Martens et al., 2006; Zivony & Eimer, 

2024b). As will become apparent later, this is an important 

feature of our framework, as it will allow for pinpointing 

which processes are reflected by individual differences in 

DI rates.

The current study

Previous research has shown that both experimental manipu-

lations and trial-by-trial variability can affect the speed of 

attention, and consequently, affect DI rates. However, to 

date, these studies did not consider the possibility of con-

sistent individual differences as a factor that affects the speed 

of attention. This is not surprising given that, like most of 

the field of visual attention, research into DIs has gener-

ally relied on an experimental approach. Therefore, it is still 

unclear whether people consistently vary in their speed of 

attention and whether DI rates could be a suitable measure 

for individual differences research.

In the current study, we aimed to provide a thorough test 

of DIs in a standardized task as a measure of individual 

differences in the speed of attention. Our first goal was to 

test the reliability of the DI rate measure, i.e., the likelihood 

of reporting a post-target distractor instead of the target. A 

strong test of a measure’s reliability requires a demonstration 

of both within-session reliability (i.e., internal consistency) 

as well as between-session (i.e., test–retest) reliability. In 

Study 1, we examined within-session reliability in previ-

ously collected data, and ran a simulation based on these 

data to determine the minimum number of trials and partici-

pants required for achieving high within-session reliability. 

In Studies 2 and 3, we collected new data which allowed us 

to examine within-session reliability as well as test–retest 

reliability in two sessions, 1 week apart and 1 year apart.

Our second goal was to provide additional tests exam-

ining the validity of DI rates as a measure of individual 

differences in the speed of attention. First, we examined 

whether DI rates are associated with other constructs that 

are not directly related to the speed of attention. Specifically, 

we tested whether individual differences in DI rates were 

associated with the attentional blink (Study  2A), reading 

abilities (Study 2B), and attentional control (Study  3A). 

Strong correlations between these measures and DI rates 

would indicate that these measures index similar processes 

– and, therefore, that DIs do not reflect a distinct cognitive 

process. In contrast, weak or no correlations between DI 

rates and these measures would suggest that DI rates tap 

into the speed of attention as a separate process. Second, we 
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examined whether DI rates predict performance on measures 

that are directly related to the speed of attention: overall RTs 

in standard attention tasks (Study  3A) and errors in a time 

judgment task (Study 3B). Here, a correlation would sug-

gest that DI rates assess the same cognitive process as other 

measures assessing the speed of attention.

To preview our results, we found DI rates to be highly 

reliable (≥.90), both within and between sessions, even with 

small sample sizes and relatively few trials. We also found 

that DI rates correlate with overall RT in standard attention 

tasks and with Time Judgment performance, but not with the 

other measures employed in this study. We argue that these 

results allow us to link DI rates and the speed of attention, 

rather than similar constructs (e.g., the speed of encoding). 

These findings open the door to new and potentially fruitful 

research using DI rates to examine the relationship between 

the speed of attention, other psychological variables, and 

real-world behavior.

Study 1

In the first study, we examined the number of trials and 

participants required to achieve adequate levels of within-

session reliability in a DI task. To do so, we combined data 

from previously conducted experiments and followed the 

down-sampling method developed by Xu et al. (2018) to 

measure the average within-session reliability for various 

combinations of trial and participant numbers. Both fac-

tors can substantially affect a measure’s reliability, which in 

turn can affect the ability to observe correlations between 

measures and reach valid conclusions about the speed of 

attention. Determining the minimum number of trials and 

participants is also important from a practical and meth-

odological perspective. Unnecessarily long studies waste 

participants’ time and researchers’ funds. Moreover, shorter 

studies reduce participant fatigue and increase participant 

concentration, which is an important methodological con-

sideration when employing large batteries of tasks and when 

studying special populations.

Method

The current study was a reanalysis of datasets collected in 

three previous studies (Zivony & Eimer, 2020, Experiments 

1–4; 2021, Experiments 1–2; 2023, Study 1), and the para-

digm is fully described in these papers. The following is a 

description only of the information relevant to the particular 

reanalysis conducted here.

Participants

A total of 119 participants (73 women, 46 men, 0 non-

binary) whose age ranged from 18 to 57 (Mage = 26.75 years, 

SDage = 8.09) were included in the sample. All participants 

had normal or corrected-to-normal vision.

Apparatus

Stimuli were presented on a 24-in BenQ monitor (100 Hz; 

1920 x 1080 screen resolution) attached to a SilverStone PC, 

with participant viewing distance at approximately 80 cm. 

Manual responses were registered via a standard computer 

keyboard.

Procedure

Participants had to report as accurately as possible the iden-

tity of an alphanumeric character that appeared inside a 

prespecified shape (circle or square; selection feature). For 

most participants (n = 103) the target was always a digit, 

whereas, for the rest (n = 16), the target was a letter. These 

targets were presented in one of two RSVP streams (on the 

left and right side of fixation). A critical feature of the trials 

analyzed here is that the distractor that appeared immedi-

ately following the target (post-target distractor) shared the 

target’s alphanumeric category. Therefore, the identity of 

the post-target distractor was confusable with the identity of 

the target. The sequence of events is illustrated in Fig. 1A. 

Manual responses were executed without time pressure at 

the end of each trial. While response screens varied across 

experiments, a shared feature of all the analyzed trials was 

that participants could report the post-target distractor, 

allowing DI responses.

All experiments included ten practice trials, which were 

not analyzed. While the different experiments contained a 

different number of trials, they all included at least 80 tri-

als relevant for the current analysis. Therefore, we included 

the first 80 relevant trials from each experiment, resulting 

in the inclusion of 9520 experimental trials in total. Trials 

were coded based on whether participants committed a DI 

response or not.

Stimuli and design

Each trial began with the presentation of a fixation cross 

(a grey 0.2° x 0.2° “+” sign at the center of the screen). 

After 500 ms, two lateral RSVP streams, including 7 to 11 

frames appeared along with the fixation cross. Each frame 

appeared for 50 ms, followed by an interstimulus interval 

(ISI) of 50 ms. The response display was a blank screen that 
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remained present until a response was registered. Following 

this response, a blank screen appeared for 800 ms before a 

new trial started.

All stimuli in the RSVP streams were grey (CIE color 

coordinates: 0.309/.332, luminance 46.6 cd/m2). Each frame 

consisted of two alphanumeric characters appearing left and 

right of fixation. The characters were either 1° in size and 

appeared at a center-to-center distance of 3.5° from fixation 

(n = 64) or were 1.3° and appeared 4.5° from fixation (n = 

55).

The target appeared with equal probability and unpre-

dictably in one of few possible positions in the stream (5th 

to 8th), either in the left or right RSVP stream. This target 

frame contained one digit and one letter. The target appeared 

within the prespecified selection cue. In all the analyzed 

trials, the frame immediately preceding the target frame 

included two unreportable characters (i.e., a letter if the tar-

get was a digit, or a digit if the target was a letter) to prevent 

any pretarget intrusion errors. The earlier pretarget frames 

were equally likely to contain two unreportable characters 

or one reportable character and one unreportable character 

(with digit and letter location randomly selected for each 

frame). The length of the RSVP was determined by the tar-

get’s position, as the target frame was always followed by 

two additional frames. In all the analyzed trials, the frame 

immediately following the target contained a reportable 

character in the same location as the target. The final frame 

always included nonreportable characters.

Results

Reliability of the full sample

We calculated two measures of reliability: Spearman–Brown 

split-half reliability (r’) and Cronbach’s alpha. After apply-

ing the Spearman–Brown correction formula, the split-half 

correlation of the intrusion scores for even and odd trials was 

r’ (117) =.90. Cronbach’s alpha yielded a score of α =.89.

Iterative down‑sampling

We investigated the number of participants and trials 

required to achieve acceptable levels of reliability (i.e., r’ 

or α values higher than.80). Following Xu et al. (2018), we 

used an iterative down-sampling procedure, whereby we 

repeatedly sampled a random subset of trials and participants 

from the full dataset. The number of participants (n) varied 

from 10 to 100 and the number of trials (t) varied from 20 to 

80 in steps of 2. For each of these combinations, we ran 100 

sampling iterations. On each iteration, we randomly sampled 

n participants and t trials from the full dataset and calculated 

Spearman–Brown split-half reliability and Cronbach’s alpha. 

Finally, we calculated the average split-half reliability and 

Cronbach’s alpha for each combination of participants and 

trials. Figure 2 shows the results of the down-sampling pro-

cedure for both reliability estimates. This analysis revealed 

high average within-session reliability (r’ >.80 and α >.80) 

even for a sample of 20 participants and 40–50 trials.

Fig. 2  Average Spearman–Brown split-half reliability and Cronbach’s 

alpha as a function of the number of trials and the number of partici-

pants in Study 1. In each cell, average split-half reliability and Cron-

bach’s alpha were computed across 100 iterations for t trials (x-axis) 

and n participants (y-axis)
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Discussion

Study 1 revealed that a DI task produces very high levels of 

within-session reliability (r’ =.90, α =.89). Using a simula-

tion, we could estimate that within-session reliability is high 

even with a small sample size and relatively few trials. For 

a sample size as small as n = 20, we can expect high aver-

age within-session reliability (r’ >.80 and α >.80) even for 

40–50 trials. From a practical point of view, this suggests 

that researchers can get a reliable measure of DI rate with 

a 5-min session. In comparison, most attention measures 

produce lower reliability despite being much longer and 

requiring many more participants (Xu et al., 2018; Hedge 

et al., 2018a).

While encouraging, Study 1 has some limitations. Mainly, 

the analysis in Study 1 relied exclusively on a paradigm with 

two RSVP streams. This paradigm was developed mainly to 

facilitate N2pc research that necessitates lateral displays. In 

contrast, standard RSVP tasks traditionally employ a single 

RSVP stream, which results in fewer DI responses on aver-

age (Zivony & Eimer, 2023). Thus, it remains to be seen 

whether similar levels of reliability can be achieved when 

participants monitor only a single RSVP. Study 2 addresses 

this issue.

Study 2

The first goal of Study 2 was to extend the results of Study 1 

and examine within-session reliability in a task with a single 

RSVP stream, and to assess the between-session reliability 

of DI rates. We therefore invited participants to complete 

two identical experimental sessions. To preview our results, 

we found high within-session reliability but encountered sur-

prisingly high attrition rates between the first and second 

sessions, preventing a strong conclusion on between-session 

reliability. We therefore re-examined this issue in Study 3.

The second goal of Study 2 was to examine the relation-

ship between DI rates and individual differences in another 

task that measures temporal limitations in attentional pro-

cessing, the attentional blink (AB). The AB is a nearly ubiq-

uitous limitation in attending to two sequentially presented 

targets (Raymond et al., 1992). When two targets (T1 and 

T2) are presented within the same RSVP stream, accuracy 

in reporting the second of the two targets is substantially 

reduced when it appears between 200 and 500 ms after the 

first (hereafter the blink period), relative to when it appears 

farther apart. Despite decades of research, some controversy 

remains regarding the exact causes of the AB. Nevertheless, 

it is widely agreed that the duration of the blink period is 

governed by the amount of time taken to encode T1 (Ouimet 

& Jolicœur, 2007; Visser, 2007) to working memory (WM). 

During this time, attentional processing and WM encoding 

of new targets are disrupted.

Whilst most of the research on the attentional blink has 

taken an experimental approach, some studies have docu-

mented consistent individual differences in sensitivity to the 

AB. In this line of research, an individual’s AB rate is often 

calculated as the difference between their performance in 

reporting the second target (T2) outside the blink period 

(e.g., when T1-T2 lag is seven items, or 700 ms) and dur-

ing the peak of the blink period (e.g., when T1-T2 lag is 

three items, or 300 ms). Unfortunately, this line of research 

often produced inconsistent results (see Willems & Mar-

tens, 2016, for review). A possible reason for this is that, 

like other measures of attention, previous research into indi-

vidual differences in AB rates has found inconsistent levels 

of reliability, ranging from.48 to.92 for both within-session 

and between-session reliability (Dale & Arnell, 2013; Dale 

et al., 2013). Another demonstration of this limitation is that 

individual differences in AB rates also vary with the exact 

variant of the AB task (e.g., Martens et al., 2010, 2015).

One approach to studying individual differences in AB 

performance focused on participants who consistently show 

no AB or extremely low AB rates (‘non-blinkers’) and com-

pared them to participants with regular AB rates (blinkers). 

Two studies of non-blinkers (Martens et al., 2006; Troche 

& Rammsayer, 2013) have used the ERP method to measure 

the P3 component, a component that can be associated with 

WM encoding in the context of RSVP experiments (Hos-

seini et al., 2024). These studies found that non-blinkers 

produce earlier P3 components, which led to the conclusion 

that individual differences in AB performance reflect differ-

ences in the speed of WM encoding (Martens et al., 2006). 

That is, people who are quicker to encode T1 in WM show 

a smaller AB because T1’s encoding disrupts processing for 

a shorter period of time.

The association between the AB and the speed of WM 

encoding allows us to use this task to clarify the process 

reflected by individual differences in DI rates. We suggested 

that individual differences in DI rates reflect differences in 

the speed of attention. However, it is also possible that DI 

rates, similar to the AB, reflect individual differences in WM 

encoding speed. In other words, it is possible that partici-

pants with low intrusion rates are not quicker to attend to the 

target (and thereby extract the relevant sensory information 

from it) but are rather quicker to encode it (given the same 

amount of available sensory information). If that is the case, 

we should expect that DI rates should be strongly correlated 

with AB performance: participants who commit more DI 

errors should also show larger AB effects. In contrast, if DI 

rates uniquely reflect differences in the speed of attention 

(in line with previous accounts and findings, e.g., Broadbent 

& Broadbent, 1987; Chun, 1997; Zivony & Eimer, 2020, 
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2021), DI rates should be only weakly or not at all correlated 

with AB rates.

Only one study examined whether sensitivity to the AB 

is related to DIs, and found inconclusive results. Willems 

et  al. (2013) compared blinkers and non-blinkers in an 

RSVP task in which the target was a colored letter among 

black letters, thereby allowing intrusions from all surround-

ing distractors. One of the measures employed in Willems 

et al. was the average reported position of the item rela-

tive to the target (see also Botella et al., 2001; Vul et al., 

2008). With this measure, a correct response is indexed 

as + 0, whereas reporting the distractors that immediately 

precede or immediately follow the target is indexed as – 1 

and + 1, respectively. Willems et al. were most concerned 

with performance during the blink period. For the purposes 

of the present study, the key results were those following 

T1 responses and following T2 outside the blink period, as 

these better represent participants’ tendency to report post-

target distractors regardless of the AB. In one experiment, 

no difference was observed in the average reported position 

between blinkers and non-blinkers. In a second experiment 

with a larger sample size, an effect was observed only for T1, 

but its direction was not reported, though it can be specu-

lated based on descriptive figures that non-blinkers showed 

more, not less, post-target DIs.

The results of Willems et al. (2013) suggest that AB and 

DI reflect two distinct phenomena. However, some aspects 

of their research prevent a clear conclusion at this point. 

First, Willems et al. used a unique color as the target-defin-

ing feature, which reduces the number of intrusions (Zivony 

& Eimer, 2021). Second, in their experiments, participants 

could report both pre-target and post-target distractors. 

While previous studies used the average reported position as 

a representation of a single process (Botella et al., 2001; Vul 

et al., 2008), it is likely that pre-target reports and post-target 

reports depend on separate attentional processes (Zivony & 

Eimer, 2023). For example, in a single-stream RSVP task, 

pre-target distractors may be reported because they benefit 

from (sustained) spatially focused attention, whereas post-

target distractors may be reported because they are ampli-

fied by (transient) attentional engagement. In turn, this may 

reduce the reliability of Willems et al.’s (2013) measure 

of DIs. In contrast, our measure of DIs assesses only the 

perceptual competition between the target and immediately 

following post-target distractor, which has shown to result 

in stronger within-subject correlations (Zivony & Eimer, 

2024a) and has been more closely associated with delays 

to the speed of transient attention (Zivony & Eimer, 2020; 

2021). Therefore, we re-examined whether higher DI rates 

are associated with higher AB rates, using an RSVP task that 

isolates both measures. A strong correlation would support 

the conclusion that the two measures may reflect the same 

underlying mechanism, namely the speed of encoding.

Finally, and relatedly, we also conducted an additional 

control study to examine whether DI rates are associated 

with reading speed, a measure that is associated with AB 

magnitude (La Rocque & Visser, 2009). While DIs have 

been demonstrated using various types of stimuli (e.g., Adler 

& Intraub, 2021; Botella et al., 2001), our DI task relies on 

the identification of an alphanumeric stimulus and differen-

tiating it from a following item from the same alphanumeric 

category. This raises the possibility that individual differ-

ences in reading speed, rather than in the speed of attention, 

explain DI rates. Study 2B was conducted to address this 

concern.

Study 2A

Method

Ethics. All methods used in this study were approved by the 

institution’s ethical guidelines committee at the School of 

Psychology, University of Sheffield.

Sample size selection. Study 1 demonstrated that high 

within-session reliability can be achieved with a sample size 

of N = 25 and at least 50 trials. We hypothesized that if 

individual differences in intrusions and AB are caused by 

the same mechanism, then the correlation should be at least 

r =.40 (e.g., Arnell et al., 2006). A power analysis using 

G*Power indicated that 34 participants are required to detect 

such a correlation with 80% power and α =.05. Neverthe-

less, we sampled 64 participants, which would allow us to 

observe smaller correlations.

Participants. Participants consisted of 64 students from 

the University of Sheffield (47 women, 12 men, and five par-

ticipants who did not report their gender, Mage = 19.3, SDage 

= 2.2) who participated for course credits. All participants 

had normal or corrected-to-normal vision and were fluent 

in English.

Apparatus. The study was conducted using participants’ 

own computers. They downloaded and accessed the study 

via the E-Prime Go cloud service, and were instructed to 

sit approximately 60 cm from the screen (approximately an 

arm’s length), in a quiet and distraction-free environment. 

Manual responses were given through computer keyboards.

Procedure. The procedure was similar to the experi-

ments reported in Study 1, except for the following differ-

ences. Participants entered a Qualtrics webpage where they 

were informed how to access the study. They provided con-

sent and downloaded the experimental file to their private 

computer. All the stimuli were presented in a single RSVP 

stream, centered at fixation. The task (Fig. 3) was to identify 

either one or two digits (2–9) that were indicated by a circle 

(the selection cue). In the response screen, participants were 

informed whether there was a single target or two targets 
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on that trial, and they provided the appropriate number of 

forced-choice responses.

The RSVP contained both letters and digits. On single-

target trials, the target was always followed by a reportable 

digit distractor, allowing for DI responses. On two-target 

trials, both targets were followed by nonreportable letter 

distractors and so DI responses were not possible. In these 

trials, the two targets were either presented at a target-to-

target lag of three frames (lag 3) or seven frames (lag 7). 

Thus, T2 was either inside the blink period (lag 3) or outside 

of it (lag 7).

In the first session, participants completed ten practice 

trials, followed by four blocks of 30 experimental trials (a 

total of 120 trials). Half of the trials were single-target tri-

als and half were two-target trials. On two-target trials, the 

second target randomly appeared at either lag 3 or lag 7. A 

week after their participation, participants were contacted 

and were requested to complete a second session. Out of the 

full sample, only 40.6% (n = 26) agreed to participate in the 

second session. The procedure, stimulus, and design of the 

second session were identical to those of the first.

Stimulus and design. The stimuli were the same as those 

used in Study 1, except for the following differences. Each 

trial began with a fixation cross in the center of the screen 

and was displayed for 500 ms. After this time, the fixation 

cross was replaced by a single RSVP stream. On single-

target trials, the target was presented in either the 12th, 14th, 

or 16th frame of the stream. On two-target trials, the position 

of the second target (T2) was either the 12th, 14th, or 16th 

frame, and the first target (T1) appeared either three or seven 

frames prior to it. The stream ended two frames after the last 

target. Following (one or two) responses, there was a blank 

display for 500 ms before the study automatically moved on 

to the next trial.

Half of the distractor stimuli in the stream were letters 

and half were digits, which were randomly selected with-

out repetition from the set of possible digits (2–9) and the 

English alphabet (except for the letters I and O). Targets 

were also selected without repetition from the set of possible 

digits. The order of the stimuli in the stream was random 

except for the possible restrictions: on single-target trials, 

the target was preceded by a letter and followed by a digit; 

on two-target trials, both targets were preceded and followed 

by letters; the last frame always contained letters.

All the stimuli in the stream were grey (RGB: 125, 125, 

125). Since participants completed the task on their personal 

computer, the exact luminosity of the stimuli could not be 

determined. Letters and digits were 1.3° in height (assuming 

a viewing distance of 60 cm). The target-defining circle cues 

were 1.68° in diameter. The response screen contained all 

possible digits, presented on the middle third of the partici-

pants’ display, with each digit appearing in rising order and 

equidistant from one another.

Data curation and analysis. Practice trials were not ana-

lyzed. Study  2A did not employ any continuous measures, 

and therefore no individual trials were considered to be out-

liers. On the first session, one participant had an intrusion 

rate that was higher than 3 SDs from the mean intrusion rate 

Fig. 3    Illustration of the stimulus sequence in Study 2A. Partici-

pants had to identify either one or two digits that appeared inside a 

circle selection cue. On single-target trials (A), a single target digit 

appeared, followed by a reportable post-target distractor, allowing 

for DI responses. On two-target trials (B), two targets appeared (T1 

and T2), either at lag 3 or 7 from each other. These targets were pre-

ceded and followed by nonreportable letter distractors, precluding DI 

responses



 Behavior Research Methods           (2026) 58:47    47  Page 10 of 25

(93.3% versus M = 29.6%, SD = 20.1%) and one partici-

pant had T1 accuracy rate that was lower than 3 SDs from 

the mean T1 accuracy rate (23.3% versus M = 82.9%, SD 

= 14.7%). Therefore, for correlational analyses involving 

these measures, we excluded these participants to prevent 

undue influence of these extreme results on the observed 

correlations.

In this and the following studies, we conducted standard 

frequentist analyses (e.g., correlation, repeated measures 

ANOVA) alongside comparable Bayesian analyses. Spe-

cifically, we calculated Bayes Factors in favor of the alter-

nate hypotheses (BF10) and in favor of the null hypothesis 

(BF01). Which BF was reported was based on whether the 

frequentist test yielded a significant result (p <.05) or not. 

The inclusion of BFs is particularly helpful in cases where 

the frequentist analysis does not yield a significant result, 

where a BF can provide positive evidence in favor of the 

null hypothesis  (BF01). Specifically, BFs provide a measure 

of the degree to which our beliefs should be updated given 

the data. For example, a BF of 3 means that, given the data, 

we should update our belief (relative to our prior belief) in 

favor of the supported hypothesis by a factor of 3. Following 

Dienes and Mclatchie (2018), we consider a BF to provide 

substantial evidence for the related hypothesis if it is larger 

than 3. We consider Bayes factors smaller than 3 to provide 

inconclusive evidence.

For correlation analyses, we calculated BFs using JASP 

(0.18.0.3). Since we had a priori expectations regarding the 

direction of correlations, but not their exact effect sizes, we 

used directional BFs and the default JASP prior (stretched 

beta prior of 1.0). However, in all cases, we reached the same 

conclusions (i.e., substantial evidence or inconclusive evi-

dence) whether we used a narrower or wider prior (0.5 and 

1.5). For ANOVAs and t tests, we conducted BF analyses 

using the anovaBF and lmBF functions from the BayesFac-

tor package in R (Morey et al., 2018). As recommended by 

Van Doorn et al. (2023), we used the “maximal” model (i.e., 

the model that includes both participant intercepts and effect 

slopes as random effects) to evaluate our effects, although all 

the results were comparable when only participant intercepts 

were included as random factors. Bayes factors associated 

with a two-way interaction were calculated by dividing two 

Bayes factors: (i) the Bayes factor associated with the main 

effect for both factors and the interaction term, and (ii) the 

Bayes factor associated with the model that includes only 

the two main effects. Since we had no a priori expectations 

regarding these effects, we used the default medium prior (r 

=.50), yet in all studies, we reached the same conclusions 

with wider priors (r =.707 or r = 1.0).

Results

Session 1. On two-target trials, accuracy in reporting T1 was 

generally high (M = 82.9%, SD = 14.8%), as was accuracy 

in reporting T2 when it was outside the blink period (M = 

81.1%, SD = 17.7%). T2 accuracy was substantially lower 

when T2 appeared inside the blink period (M = 40.8%, SD = 

20.0%), and this difference was significant, t(63) = 16.63, p 

<.001, d = 2.08, BF10 > 100. AB rate was calculated as the 

difference between these latter two measures (M = 40.3%, 

SD = 19.4%). When a single target appeared in the stream 

followed by a reportable distractor, accuracy was M = 62.3% 

(SD = 23.1%), and intrusion rates were M = 29.6% (SD = 

20.0%).

Session 2. Results from participants who completed the 

second session (n = 26) were similar to those observed in the 

first session. T1 accuracy was M = 86.5% (SD = 13.0%) and 

the size of the AB was M = 37.7% (SD = 19.4%). The dif-

ference in these measures between the two sessions was not 

significant, both ts < 1, BF01s > 16. The average intrusion 

rate was 26.8% (SD = 20.4%), which was also not signifi-

cantly different from the first session, t(25) = 1.10, p =.28, 

d = 0.22, BF01 = 5.38.

Within-session reliability. We calculated the Spear-

man–Brown split-half reliability for the three main meas-

ures: T1 accuracy, AB rate, and DI rates, on both the first 

and second sessions. Within-session reliability was high for 

T1 accuracy, r’ =.94 and r’ =.90 (for the first and second 

sessions, respectively), lower for the AB, r’ =.62 and r’ 

=.79, and high for DI rates, r’ =.94 and r’ =.96.

Between-session reliability. We calculated the between-

session reliability as the correlation between the three main 

measures. The correlation was significant for all three meas-

ures. It was strongest for DI rates, r(24) =.90, p <.001, BF10 

> 100, (Fig. 4A), weaker for T1 accuracy, r(24) =.72, p 

<.001, BF10 > 100, and weaker still for the AB, r(24) =.61, 

p <.001, BF10 > 100.

Correlations between measures. Correlations between 

the three measures were calculated only for the first ses-

sion. The only significant correlation was between intrusion 

rates and T1 accuracy, r(60) = –.68, p <.001, BF10 > 100: 

participants with higher intrusion rates also had lower T1 

accuracy (Fig. 4B). Importantly, the correlation between 

intrusion rates and AB rates was non-significant, r(62) = 

–.05, p =.96, BF01 = 5.93 (Fig. 4C). Finally, the correlation 

between AB rates and T1 accuracy was also non-significant, 

r(61) =.21, p =.09, but the evidence in favor of this null 

effect was inconclusive, BF01 = 1.65.
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Study 2B

Method

Ethics. All methods used in this study were approved by 

the institution’s ethical guidelines committee at the School 

of Psychology and Clinical Language Sciences, University 

of Reading.

Participants. The participants consisted of 40 students 

from the University of Reading (31 women, eight men, one 

non-binary, Mage = 20.3, SDage = 2.8) who participated for 

course credits. All participants had normal or corrected-to-

normal vision and were fluent in English.

Apparatus. The study was conducted in one of three labs 

with a Viglen desktop PC and DELL standard screen (100 

Hz; 1920 x 1080 screen resolution), with participant viewing 

distance at approximately 60 cm. Manual responses were 

registered via a standard computer keyboard. Luminance 

was not measured.

Procedure. Participants provided written informed con-

sent via an online MS Form prior to attendance in the lab. 

They completed the Test of Word Reading Efficiency Sec-

ond Edition (TOWRE-2; Torgesen et al., 2012), whereby 

they were asked to read aloud as many single words (Single 

Word Efficiency, SWE) and pseudowords (Phonemic Decod-

ing Efficiency, PDE) of increasing difficulty as accurately 

and as quickly as possible from printed lists of 108 and 66 

words respectively, within 45s. The measure yielded by each 

task reflects the number of correct words (SWE) and pseu-

dowords (PDE) produced by participants within the fixed 

timespan. Participants then completed the DI task.

Stimuli and design. The stimuli and design of the DI task 

were the same as the stimuli and design described in Study  

2A, except for the following changes. Participants completed 

a single session with 10 practice trials and 60 experimental 

trials, presented in two blocks. There was only a single target 

presented in the RSVP, and therefore participants provided 

only one response per trial. The target was always followed 

by a reportable distractor. The target appeared in either the 

8th, 10th, or 12th frame.

Data curation. Practice trials were not analyzed. Study 

2B did not employ any continuous measures, and therefore 

no individual trials were considered to be outliers. No par-

ticipant had a score more extreme than 3 SD above or below 

the mean of any measure, and therefore no participants were 

treated as outliers.

Results

We calculated the correlation between intrusion rates, SWE, 

and PDE. As expected, SWE and PDE were significantly 

correlated, r(38) =.53, p <.001, BF10 > 100. In contrast, 

there was nearly no association between intrusion rates 

and SWE, r(38) = –.05, p =.76, BF01 = 4.85, nor between 

intrusion rates and PDE, r(38) = –.08, p =.64, BF01 = 4.56 

(Fig. 5).

Discussion

Study 2 produced several clear-cut results. First, like Study 

1, DI rates had high within-session reliability (r’ >.90), even 

with a small sample and relatively few trials. Within-session 

reliability was also very high for accuracy in reporting the 

first target (T1) on two-target trials, but was lower for AB 

rates. Second, DI rates showed high between-session reli-

ability, which was higher than the between-session reliabil-

ity of either T1 accuracy or AB rates. These findings are 

consistent with previous AB studies that revealed moderate 

Fig. 4  Scatterplots describing the relationship between DI rates 

(x-axis) and: A DI rates on a second session, B T1 accuracy, and C 

attentional blink (T2 accuracy at lag 7 minus accuracy at lag 3) in 

Study 2A. The dotted line reflects the linear regression equation cal-

culated based on these results
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levels of reliability for AB rates (e.g., Dale et al., 2013). 

While the observed between-session reliability of DI rates 

is promising, this finding comes with the caveat that a high 

proportion of our participants did not complete the second 

session. It is therefore possible that self-selection played a 

role in producing high between-session reliability. We there-

fore revisited test–retest reliability in Study 3.

The third finding was that participants’ DI rates were 

negatively associated with T1 accuracy but were unrelated to 

the AB effect. We did not make explicit a priori predictions 

about DI rates and T1 accuracy. Since T1 accuracy is often 

very high, we did not expect a high rate of between-subject 

variability in this measure. Nevertheless, the strong negative 

correlation between these measures may not be surprising. 

In RSVP, a target’s identity is at risk of being overridden 

by the following item. While this risk is greater when the 

post-target item is reportable (see Fig. 1B), it can also occur 

if the post-target item is completely irrelevant to the task. 

Thus, individual differences in the speed of attention should 

affect the likelihood of reporting the target even when DI 

responses are not possible. Note, however, that we do not 

advocate using T1 accuracy as a measure of individual dif-

ferences in the speed of attention. First, in the absence of 

competition from a nearby distractor, target reports should 

be more resilient to changes in the speed of attention. Sec-

ond, under such conditions, target reports are more likely to 

reach ceiling levels (as has been demonstrated by numer-

ous AB studies), which consequently reduces the variability 

of this measure and, thereby, reduces its reliability (Hedge 

et al., 2018a).

The lack of association between intrusion rates and AB 

rates suggests that they do not reflect the same mechanism. 

On the face of it, the two phenomena seem closely related, 

as the AB occurs due to (amongst other things) a disrup-

tion to attentional processes (Nieuwenstein, 2006; Zivony 

et al., 2018). However, people who inherently show delayed 

attentional engagement (as demonstrated by DIs) are not 

more necessarily sensitive to additional disruption caused by 

the AB’s deleterious effect. One possible limitation of this 

conclusion is that we could not compare DI rates between 

blinkers and non-blinkers, as has been done in previous stud-

ies. Indeed, in Study  2A, only 3 (out of 64) participants in 

our sample could be classified as non-blinkers. Therefore, 

it is possible that in a paradigm that can more clearly dis-

tinguish between blinkers and non-blinkers (e.g., Willems 

et al., 2013), a correlation between the two measures could 

emerge. Nevertheless, we suggest that the results allow us 

to reject the notion that the two measures reflect the same 

underlying mechanism. Had that been the case, a strong 

correlation should have been observed, despite the small 

number of non-blinkers. Therefore, we conclude that the 

two phenomena reflect two separate limitations to temporal 

selection that are functionally independent. While individ-

ual differences in AB performance reflect differences in the 

speed of WM encoding, individual differences in DI rates 

are more closely linked to attentional deployment.

Finally, our control Study 2B revealed no correlation 

between DI rates and reading efficiency, and this conclusion 

was supported by a Bayesian analysis. The small sample size 

in the current study precludes any strong conclusions about 

the existence or the absence of a relationship between the 

speed of attention and reading efficiency. However, they do 

suggest that DI rates are not entirely caused by differences 

in reading efficiency, which would have resulted in a strong 

correlation.

Fig. 5.  Scatterplots describing the relationship between DI rates (x-axis) on the one hand and (A) SWE, and (B) PDE, on the other, in Study 2B. 

The dotted line reflects the linear regression equation calculated based on these results
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Thus, taken together, the findings of Studies  2A and 2B 

suggest that individual differences in DI rates are not merely 

a reflection of variability in the same mechanisms underpin-

ning the AB effect or reading efficiency. This conclusion not 

only helps identify the exact processes reflected in DI rates 

but also has implications for future research. Had individual 

differences in AB effects and DI rates been closely linked, 

one could have relied on the vast AB literature to predict 

the factors that may affect DI rates. However, since the AB 

and DI tasks measure different constructs and two different 

temporal limitations on selection, learning about one is not 

necessarily informative about the other.

Study 3

The purpose of Study 3 was twofold. The first goal was to re-

examine within-session and between-session reliability of DI 

rates in a larger sample (Study  3A) and after a much longer 

period – 1 year – between test and retest sessions (Study 3B). 

The second goal was to further examine the convergent and 

divergent validity of DI rates.

First, if DI rates reflect individual differences in the speed 

of attention, then they should correlate with other measures 

associated with that speed. In Study  3A, we examine the 

correlation between DI rates and RTs in standard attention 

tasks, such as the Visual Search task. The speed of atten-

tion reflects only one of the multiple processes that affect 

overall RTs (Palmer et al., 2011). Nevertheless, barring a 

negative correlation between these processes, variability in 

the speed of attention should predict individual RTs to some 

degree. Therefore, if DI rates assess the speed of attention, 

they should also be associated with slower RTs. In Study 

3B, we examine the correlation between DI rates and perfor-

mance on a Time Judgment task. The Time Judgment task 

required participants to observe a moving clock and indicate 

the position of a clock hand at a cued moment. The original 

version of this task was used by Wundt more than a century 

ago (Wundt, 1883). More recently, Carlson and colleagues 

(2006) showed that (similar to DI rates) manipulations that 

slow attentional engagement also result in delayed time 

judgment relative to the actual cued time. They concluded 

that errors in time judgment (hereafter time errors) can be 

used to directly measure the speed of attention. Therefore, 

if DI rates assess the speed of attention, they should also be 

associated with larger time errors.

Second, we examined whether DI rates correlate with 

individual differences in measures of attentional control, 

which we define as the ability to ignore irrelevant infor-

mation or resolve different kinds of conflicts (von Bastian 

et al., 2020). While individuals’ attentional control has been 

shown to be predictive of performance in other cognitive 

tasks (Hedge et al., 2020), it should be largely irrelevant 

for performance in a task that measures the speed of atten-

tion. Moreover, a standard DI task demands only little atten-

tional control, as there are few conflicts to be monitored. The 

goal in a standard DI task is quite simple: Participants are 

required to attend to a selection cue, which is both salient 

and unique. In our variant of the task, the selection cue is the 

only circle presented in the RSVP, and also the only stimu-

lus that is not masked by a preceding or following stimu-

lus. Therefore, attending to the cue relies on both an easily 

maintainable top-down attentional template for a specific 

and simple feature (the circle), as well as automatic saliency 

detection mechanisms (see Luck et al., 2021). These low 

demands of attentional control should leave little room for 

individual differences, and accordingly, little room for cor-

relations between attentional control and DI rates.

To test the association between DI rates, overall RT, and 

attention control, in Study  3A we included two attentional 

control tasks, the Simon task and a Visual Search/Cueing 

task (Fig. 6). In the Simon task (Simon, 1990), participants 

are presented with a stimulus that appears either on the 

left or right side of the monitor and have to respond to the 

Fig. 6  Sample sequence of events in the Visual Search (A) and Simon 

tasks (B) used in Study 3A. In the visual search task, participants had 

to report whether the red arrow was pointing left or right. Prior to 

the target display, non-predictive cues consisting of four refd dots ran-

domly appeared around one of the squares. In this example, the target 

appeared in a different location than the cue. In the Simon task, par-

ticipants had to report whether the letter in the target display was an 

“X” or an “O”
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target’s identity either with their left or right hand (Fig. 6B). 

While the stimulus location is irrelevant to the task, most 

participants find it difficult to ignore this information. The 

automatic association between the stimulus location and 

the motor response creates a conflict that results in lower 

accuracy and longer response times (the Simon effect). 

Some participants are highly efficient in maintaining the 

task goal and ignoring or resolving irrelevant conflicts, and 

these participants should have a smaller Simon effect (e.g., 

Hedge et al., 2020). In the Cueing task, participants perform 

a simple Visual Search task. However, prior to the Visual 

Search display, an irrelevant and non-predictive distractor 

(cue) appears (Fig. 6A). Such cues are known to involuntar-

ily capture observer’s attention (Folk et al., 1992; Luck et al., 

2021). When spatial attention is captured to an irrelevant 

location, it needs to reorient to the target location before 

attentional engagement can occur. Therefore, RTs should be 

slower when the cue appears in the location of a non-target 

relative to when it appears in the target location (a cueing 

location effect). Participants’ ability to resist attentional 

capture has been shown to be predictive of performance in 

cognitive tasks (Fukuda & Vogel, 2011). Since it is more 

closely related to the kind of attentional control that may 

affect performance in the DI task, we used participants’ loca-

tion effects as a second measure of attentional control. A 

weak or no correlation between DI rates and attentional con-

trol measures would be compatible with the notion that indi-

vidual differences in DI rates reflect variability in the speed 

of attention, rather than differences in attentional control.

Study 3A

Method

All methods used in this study were approved by the institu-

tion’s ethical guidelines committee at the School of Psychol-

ogy, University of Sheffield.

Sample size selection. We aimed to sample 100 par-

ticipants to achieve 80% power to detect effects of r =.25 

(when α =.05), which is what we expected to be the effect 

size of the correlation between an error-based measure (i.e., 

DI rates) and an RT-based measure (i.e., overall RT in the 

Visual Search and Simon tasks) that share an underlying 

process (Hedge et al., 2018a,b).

Participants. Participants were recruited via Prolific. 

Overall, 101 participants completed the first session (Mage 

= 34.8 years, SDage = 6.9), of whom 53 were men, 46 were 

women, and two participants who did not report their gender 

identity (other gender identities were available for report but 

these options were not selected). They were paid £3 for each 

session. Out of the original pool of participants who com-

pleted the first session, 100 participants agreed to complete 

the second session. However, due to technical problems, 

five participants could not complete the second session. The 

results of these participants were included for all analyses 

that pertained to the first session.

Procedure. On each session, participants completed a 

DI task and either the Visual Search task or the Simon task. 

Within each session, the order of the two tasks was rand-

omized. Fifty-one participants completed the Visual Search 

(and DI) task on the first session, and the rest completed 

the Simon (and DI) task on the first session. To account for 

variability caused by presentation order, we replicated all the 

analyses after using the correction applied by Wilhelm and 

Oberauer (2006) and by Von Bastian and Oberauer (2013). 

This correction removes the average group difference (e.g., 

Simon task session first versus Visual Search task session 

first) from one group’s score, thereby equalizing between the 

two and removing any order-related variance. All the con-

clusions (i.e., significant versus non-significant, substantial 

evidence versus inconclusive evidence) were the same after 

these corrections. Moreover, preliminary analysis indicated 

that the order of sessions in which participants completed 

the Visual Search and Simon tasks (first or second), as well 

as the order of tasks within each session (DI task first or 

the alternative task first) did not affect RTs and accuracy 

rates. Therefore, we collapsed the data across the different 

viewing order conditions, and we report the analyses on the 

original data.

Like Study 2B, the DI task included ten practice trials and 

60 experimental trials, presented in 30-trial blocks. The Vis-

ual Search task and the Simon task each included 40 prac-

tice trials and 200 experimental trials presented in 50-trial 

blocks. Participants were allowed a self-paced rest between 

blocks. During these breaks, participants were informed of 

their average accuracy and RT for the preceding block in 

both the Visual Search and Simon tasks.

Stimuli and design

Distractor intrusion task. The stimuli and design were the 

same as those described in Study 2B.

Visual Search (Cuing) task. The sequence of events 

on each trial is presented in Fig. 6A. Participants were 

instructed to report as quickly and as accurately as possible 

whether a red arrow was aiming right or left by pressing 

the “K” key with their right hand or the “A” key with their 

left hand, respectively. These stimuli were chosen to mini-

mize inaccurate responses due to weak stimulus-response 

associations and due to individual differences in response 

selection efficacy. Each trial began with the fixation display, 

which appeared for a random duration ranging from 250 ms 

to 750 ms. Then, on 80% of the trials, a cue display appeared 

for 50 ms. The cue display contained one set of four red dots, 

which appeared randomly in one of the four locations.
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When present, the cue display was followed by the fixa-

tion display for an additional 100 ms and then by the target 

display, which remained on the screen until the response. 

Participants were asked to respond as quickly as possible 

and to aim for responses faster than 800 ms with an accuracy 

above 90%. Errors were followed by a display where the 

fixation was replaced by “X” for 100 ms. After the response, 

a blank screen appeared for 500 ms, after which a new trial 

began. Participants were instructed to maintain their eyes on 

the fixation cross. They were informed about the presence of 

the cues, which were not informative of the target’s location, 

and were instructed to ignore them.

Stimuli were four 0.8° × 0.5° arrows, drawn with 4-pixel-

thick lines, which appeared against a black background. The 

fixation display consisted of a 0.2° × 0.2° cross in the center 

of the screen, surrounded by four 1.5° × 1.5° empty square 

placeholders, drawn with 1-pixel-thick lines. These squares 

appeared at the corners of an imaginary 3° × 3° square cen-

tered at fixation. The cue and target displays were similar to 

the fixation display except for the following differences. In 

the cue display, four filled dots (0.2° in diameter) appeared 

at cardinal locations around all of the placeholders, with 

dot-placeholder center-to-center distance set at 1.1°. One 

set of dots was red (RGB: 220, 0, 35), and the rest were 

grey (125, 125, 125). In the target display, right-pointing 

or left-pointing stimuli were presented in the center of each 

placeholder. One arrow, the target, was red (220, 0, 35), and 

the three distractors were yellow (103, 102, 0), green (0, 115, 

0), or blue (71, 71, 250). The target display always contained 

two left-pointing arrows and two right-pointing arrows.

A cue display was present on 80% of the trials and absent 

on 20% of the trials. On trials that included a cue, the cue 

and target locations were randomly set on each trial. Accord-

ingly, the cue and target appeared at the same location on 

~ 20% of the trials (same location trials), and on one of the 

different locations on ~ 60% of the trials (different location 

trials), making the cue unpredictive of the target’s location.

Note that since the cue shared the target’s color, it should 

result in contingent capture (Folk et al., 1992), rather than 

pure bottom-up capture. We chose this variant of a cueing 

task because previous studies have shown that this type 

of cueing effect was more robust (i.e., it occurred in more 

participants) and more reliable than pure bottom-up cueing 

effects (Roque et al., 2016). Nevertheless, Roque et al. found 

that contingent capture is correlated with bottom-up capture.

Simon task. The sequence of events on each trial is pre-

sented in Fig. 6B. Participants were instructed to report 

as quickly and as accurately as possible whether a single 

object was the letter “X” or “O”, by pressing the “K” (the 

right-hand key) or “A” (left-hand key) keys. The association 

between key and letter was counterbalanced between par-

ticipants. Each trial began with the fixation display, which 

appeared for a random duration ranging from 250 ms to 

750 ms. Then, the target letter appeared either to the left or 

right of fixation until the response. Participants were asked 

to respond as quickly as possible and aim for responses faster 

than 800 ms with an accuracy of above 90%. Errors were 

followed by a display where the fixation cross turned red 

for 100 ms. After the response, a blank screen appeared for 

500 ms, after which a new trial began. The target appeared 

on the same side as the associated response key (compatible 

condition) on 75% of the trials and the side associated with 

the alternative response (incompatible condition) on the rest. 

For example, if “X” was associated with the left-hand key 

(and “O” with the right-hand key), it appeared left of fixation 

on 75% of the trials and right of fixation on 25% of the trials. 

This version of the Simon task was used because previous 

studies showed that it increases reliability relative to tasks 

where compatible and incompatible trials were equiprobable 

(Borgmann et al., 2007). The targets were written in “Conso-

las” font, were 1° in height, grey (125, 125, 125), and their 

center-to-center distance from fixation was 3°.

Data curation and analysis. Practice trials were not ana-

lyzed. For the DI task, all other trials were analyzed, and 

none of the participants were removed, as none showed an 

intrusion rate more extreme than 3 SDs from the mean intru-

sion rate. For the Visual Search and Simon tasks, different 

sets of trials were analyzed depending on the analysis. For 

analyses of accuracy rates, all trials were analyzed, regard-

less of RTs. For RT analysis, only correct trials were ana-

lyzed (95.5% of trials for both Visual Search and Simon 

tasks). For both the Visual Search task and Simon task, trials 

were excluded from analysis if they were faster than 150 ms 

or slower than 1000 ms, resulting in the removal of 0.1%  

of trials. Next, trials were considered to be outliers (and 

were excluded from analysis) if they were either slower or 

faster by 3 SDs than a participant’s average RT on that spe-

cific condition. This analysis resulted in the exclusion of 

0.7% and 1.4% of trials in the Visual Search and Simon task, 

respectively. Finally, following this procedure, participants 

were considered to be outliers if their mean RTs were slower 

or faster than 3 SDs from the average RT in either task. One 

participant had a mean RT of 733 ms in the Visual Search 

task, compared to a mean RT of 547 (SD = 58), and another 

had a mean RT of 594 ms in the Simon task, compared to a 

mean RT of 436 ms (SD = 52). The results of these partici-

pants were excluded only from the analyses related to the 

particular tasks for which they were outliers. This was done 

to reduce their undue effect on any correlational analysis 

without completely rejecting all their results.

Other than overall reaction time, the introduction of a 

spatial cue in the Visual Search task allowed us to examine 

cueing effects. Cueing effects were examined by entering 

RTs and accuracy rates to repeated-measures ANOVA with 

cue condition (absent, different location, and same location) 

as an independent factor, followed by Bonferroni-corrected 
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post hoc comparisons. The Simon effect was examined by 

using a dependent-samples t test where the compatible con-

dition is compared to the incompatible condition, and RTs 

and accuracy rates were used as dependent variables.

Within-session reliability was examined by calculating 

Spearman–Brown split-half reliability. This measure was 

calculated for overall RTs in the Visual Search task and the 

Simon task, the cueing effect on RTs in the Visual Search 

task, and the Simon effect on RTs. Split-half reliability was 

also calculated for intrusion rates, separately for the first 

session and the second session. Between-session reliability 

was examined only for DI rates (as it was the only task that 

repeated on both sessions) by calculating the Pearson cor-

relation between DI rates.

Results

Cueing. The presence and the location of the cue affected 

RTs, F(2, 192) = 572.20, p <.001, η2
p =.86, BF10 > 100. RTs 

were slowest when the cue appeared in a different location 

than the target (M = 568 ms, SD = 56), faster when the cue 

was absent (M = 531 ms, SD = 57), and faster still when the 

cue appeared in the location of the target (M = 495 ms, SD 

= 55). Post-hoc tests indicated that the comparison between 

each pair of conditions was significant, all ps <.001, BF10s > 

100. Analysis of accuracy indicated that the location of the 

cue, but not its presence, affected accuracy. The difference 

between all three conditions was significant, F(2, 194) = 

31.62, p <.001, �2

p
 =.24, BF10 > 100. Accuracy was highest 

when the cue appeared in the location of the target (M = 

97.8%, SD = 4.0%), slightly lower when the cue was absent 

(M = 97.5%, SD = 3.6%), and lower when the cue appeared 

in a non-target location (M = 95.0%, SD = 3.7%). Accuracy 

under the non-target cue location condition was significantly 

lower than when the cue was absent or appeared in the target 

location (both ps <.001, BF10s > 100), whereas the differ-

ence between accuracy under the no-cue and same-location 

cue conditions was not significant (p >.05, BF01 = 26.31).

Simon effects. Simon effects emerged for both RTs and 

accuracy. Responses were slower and accuracy rates were 

lower when the target appeared in the response-incompatible 

location than the response-compatible location, M = 497 ms 

(SD = 59) vs. M = 416 ms (SD = 48), t(97) = 28.22, p 

<.001, dz = 2.85, BF10 > 100, and M = 85.7% (SD = 9.5%) 

vs. M = 98.9% (SD = 1.8%), t(98) = 14.65, p <.001, dz = 

1.47, BF10 > 100, respectively.

Reliability. Split-half reliability was very high for over-

all RT in both the Visual Search and Simon tasks, r’ =.99 

and r’ =.98, respectively. Split-half reliability was lower for 

the cueing effects and Simon effects, r’ =.58 and r’ =.66, 

respectively. In contrast, split-half reliability was high for 

intrusion rates on both the first and second session, r’ =.95 

and r’ =.94. Importantly, test–retest reliability for intrusion 

rates was high, r(94) =.90, p <.001, BF10 > 100.

Correlations. For this analysis, only intrusion rates from 

the first session were used (although the results were com-

parable if an average of both sessions was used instead). 

A Pearson correlation was computed to examine whether 

intrusion rates correlated significantly with overall RTs, 

cueing effects, and Simon effects. This analysis revealed a 

significant correlation with Visual Search RTs, r(95) =.25, p 

=.015, BF10 = 3.73 (Fig. 7A), and Simon task RTs, and r(97) 

=.26, p =.01, BF10 = 4.98 (Fig. 7B). As can be seen, there 

was only a marginal difference between these correlations. 

This observation was confirmed by a non-significant Fisher 

r-to-z transformation test, Z =.07, p =.95. Finally, there was 

no correlation between DI rates and either cueing effect, 

r(97) = –.05, p =.60, BF01 = 8.85, or the Simon effect, r(98) 

Fig. 7    Scatterplots describing the relationship between measures in 

Study 3. The x-axis represents DI rates in a first session and the y-axis 

represents (A) DI rates on a second session, (B) overall RT in a vis-

ual search task, and (C) overall RT in a Simon task. The dotted line 

reflects the linear regression equation calculated based on these data
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=.17, p =.10, BF01 = 2.65 respectively, although evidence 

for the latter was inconclusive.

Accounting for age. One factor that is well known to 

affect overall RTs is general slowing caused due to partici-

pants’ aging. Indeed, in the current study, despite the limited 

range of participants’ age (18–45), there was a significant 

positive correlation between age and overall RT in both the 

Visual Search task and the Simon task, r(93) =.36, p <.001, 

BF10 > 100, and r(96) =.25, p =.014, BF10 = 4.05. There-

fore, as an exploratory analysis, we examined whether the 

relationship between DI rates and overall RTs in the Visual 

Search and Simon tasks remained significant when age is 

controlled for. To do so, we recalculated the correlations 

between DI rates and overall RTs, while controlling for age 

(i.e., when age is partialed out). For this analysis, partici-

pants who did not report their age (n = 2) were excluded. 

This analysis indicated that the correlations between intru-

sion rates and overall RTs for both the Visual Search and 

Simon task remained significant,  rpartial(93) =.27, p =.008, 

and rpartial (94) =.28, p =.006. Indeed, the correlation coef-

ficients were slightly larger compared to when age was not 

accounted for, suggestive of a slight suppressive relationship 

between age and the DI-RT association.

Study 3B

Method

Sample size selection. This study had two goals. The first 

was to examine test–retest reliability after 1 year. The second 

was to examine the association between DI rates and time 

errors in a Time Judgment task, thought to reflect variability 

in the speed of attention. Like Study  2A, we hypothesized 

that if individual differences in intrusions and time errors 

were due to the same mechanism (speed of attention), then 

the correlation should be at least r =.40 (e.g., Arnell et al., 

2006). A power analysis using G*Power indicated that 34 

participants are required to detect such a correlation with 

80% power and α =.05.

We invited participants who completed Study  3A,  1 year 

after the completion of their first session. Of the original 100 

participants, 52 agreed to participate. However, the addi-

tion of the Time Judgment task resulted in a high volume of 

technical problems, preventing 14 of these participants from 

completing the study.

Participants. The final sample of participants included 

38 participants (17 women, 21 men, Mage = 36.9, SDage = 

6.0) who were paid £3. One participant only completed the 

DI task. All participants had normal or corrected-to-normal 

vision and were fluent in English.

Apparatus. The apparatus details were the same as in 

Study 3A.

Distractor intrusion task

Procedure. Participants always completed the distractor 

intrusion task first and the Time Judgment task second. The 

distractor intrusion task was the same as the one used in 

Study  3A, except that each participant completed 50 trials.

Stimuli. The stimuli for the distractor intrusion task were 

the same as Study 3A.

Data curation. Practice trials were not analyzed. No par-

ticipant had a score more extreme than 3 SD above or below 

the mean DI rates, and therefore no participants were treated 

as outliers.

Time judgment task

Procedure. For the Time Judgment task, participants were 

asked to observe eight clocks with rotating clock hands and 

to identify the time on one of the clocks when it was cued 

by a red circle outline. Each trial contained four displays 

(Fig. 8A). First, in the pre-cue display, the eight clocks 

rotated in tandem for a random duration of 1000–1500 ms. 

The starting position of each clock hand was selected at 

random. All the clock hands moved clockwise at a rate of 

one rotation per second. Second, in the cue display, a cir-

cle outline appeared around one of the clocks for 200 ms. 

During this time, the clock hand continued moving. Which 

clock was the target clock was randomly selected for each 

trial. Third, in the post-cue display, the cue disappeared, and 

the clock hand continued moving for an additional random 

duration of 1000–1500 ms. Finally, in the response display, 

participants were presented with a single empty clock and 

used the mouse to indicate the target clock’s time when the 

cue appeared (Fig. 8B). The Time Judgment task was pre-

sented in two blocks of 50 trials each, which were preceded 

by a block of 20 practice trials. The first practice trial had a 

longer (1000 ms) cue display.

Stimuli. Each clock subtended 1.1° in diameter and 

appeared at eight equidistant positions on an invisible 

4°-radius circle around fixation. The clock hands were 0.45° 

in length. Throughout the trial, the clock hand changed its 

position every frame, depending on the participants’ refresh 

rate to produce a speed of 1 rotation per second. E-prime 

go collects data about presentation refresh rates. Since all 

participants had 60-Hz monitors, every 16.67 ms the clock 

hand moved by 6°.

Data curation and analysis. Practice trials were not 

analyzed. Analysis of the Time Judgment task focused on 

the difference between the time indicated by the participant 

 (tp) and the time of the target clock during the cue display 

 (tc). Figure 8C illustrates an example where  tc was set at 80 

degrees (2:40 on the clockface), and  tp is 140 degrees (4:20 

on the clockface), resulting in a time error of 60 degrees 

(140–80 degrees). Since a single revolution of the clock 
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hand took 1 s, this would translate into a 167-ms delay in 

reporting the target. Similarly, responses indicating a time 

that preceded  tc resulted in a negative time error. Because 

time errors of 180° could reflect either a latency of 500 ms or 

−500 ms, any errors of ±160° were discarded from analysis 

(1.9% of trials). Next, trials were considered outliers and 

were excluded from analysis if they reflected an error greater 

than 3 SDs away from a participant’s mean time error (0.9% 

of remaining trials). No participant’s score was more than 3 

SD above or below the sample’s mean time error, and there-

fore no participants were treated as outliers.

Results

Time judgment task. The distribution of errors in the Time 

Judgment task is presented in Fig. 9A. The distribution was 

positively skewed with a mean of M = 22.41° (SD = 15.14), 

corresponding to an error of approximately 62.25 ms. The 

mean time error was significantly different from 0, t(37) = 

9.12, p <.001, BF10 > 100.

Within-session reliability. We calculated the Spear-

man–Brown split-half reliability for the two main measures: 

time errors and intrusion rates. Within-session reliability 

Fig. 8  Time Judgment task. Participants viewed eight moving clocks 

in search of a colored cue (A). In the response display (B), they report 

the orientation (time) of the cued clock’s clock hand at the time of the 

cue’s appearance. The difference in degrees between the actual time 

and the reported time (C) reflects the time error. Any response equal 

to or more extreme than ± 160 degrees was discarded

Fig. 9  Results from Study 3B. The leftmost panel (A) shows the dis-

tribution of time errors in the Time Judgment task. Each bin reflects 

10°. The two rightmost panels show scatterplots describing the rela-

tionship between DI rates (x-axis) and: (B) DI rates from a previous 

session, and (C) average time error in the Time Judgment task. The 

dotted line reflects the linear regression equation calculated based on 

these results
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was high for time errors, r’ =.83 and higher still for distrac-

tor intrusions, r’ =.96.

Between-session reliability. We calculated the between-

session reliability for DI rate as the correlation between the 

DI rate in the current session and DI rate in the first session 

(Study  3A). Similar to the previous studies, the correlation 

was strong and significant, r(36) =.90, p <.001, BF10 > 100 

(Fig. 9B).

Correlation. Finally, we calculated the correlation 

between the average time error and DI rate. The correlation 

was significant, r(36) =.40, p =.007, BF10 = 7.51 (Fig. 9C). 

As in Study  3A, the correlation remained significant when 

participants’ age was controlled for, rpartial (36) =.39, p 

=.008.

Discussion

Study 3 produced three key findings. First, the results con-

firmed the conclusions from Studies 1 and 2 that the DI task 

produces highly reliable results (rs ≥.90) within a single ses-

sion (internal consistency), between two sessions (test–retest 

reliability), a week apart, and even 1 year apart. This con-

trasts with the attention control measures used in Study  3A, 

the Simon effect and the cueing effect, which (in line with 

previous studies, Hedge et al., 2018b; Roque et al., 2016) 

had lower reliability scores (r’ =.58 to.66).

The second key finding is that DI rates were positively 

correlated with tasks that are associated with the speed of 

attention. Higher DI rates were associated with slower RTs 

in the Visual Search and the Simon task (Study  3A) and 

with larger time errors on a Time Judgment task (Study 

3B). In both cases, this relationship was independent of 

participants’ age. The large sample size in Study  3A allows 

for confidently concluding that the association between DI 

rates and overall RTs is weak. This is unsurprising given 

that overall RTs do not only reflect the speed of attention 

but rather the outcome of multiple processes (Palmer et al., 

2011), which are not necessarily correlated with one another. 

A strong correlation would have been more likely to emerge 

if DIs rates relied on all of the same set of processes that 

underlie overall RT, not just the speed of attention. In Study 

3B, the high attrition rate bars any meaningful conclusion 

regarding the absolute magnitude of the correlation between 

DI rates and time errors. Nevertheless, the observed correla-

tion (supported by a Bayesian analysis) suggests that these 

two measures are positively associated with one another: 

higher DI rates are associated with larger time errors. Alto-

gether, the results of Study 3 support the conclusion that DI 

rate is a valid measure of the speed of attention.

The third key finding was that DI rates were not signifi-

cantly correlated with two measures of attentional control, 

the Simon effect and cueing effects. The absence of any 

significant correlation may be attributed to the difference 

score method required to calculate these measures and the 

resulting low reliability, which introduces noise and limits 

the likelihood of observing a correlation. However, these 

null results are also compatible with the view that variability 

in DI rates is not predominantly attributable to attentional 

control. One reason for this is that the DI task used here 

likely results in ceiling levels of attentional control, thereby 

minimizing related variability between participants. Indeed, 

it is possible that a stable correlation with attentional con-

trol will emerge in a DI task where goal maintenance and 

management is more challenging. In such a task, attentional 

control may indeed have observable effects on how quickly 

attentional engagement is deployed.

General discussion

Individual differences in the speed of attention may explain 

real-world behavior, such as detection of road hazards (Bar-

ragan & Lee, 2021), and may predict psychological vari-

ables, such as fluid intelligence (Mashburn et al., 2024). 

However, research into this topic is beset by methodological 

challenges. Specifically, popular measures of the speed of 

attention rely on reaction times (RTs), and therefore suffer 

from issues related to either interpretability or reliability 

(Draheim et al., 2019; Hedge et al., 2018a; Palmer et al., 

2011). The current study examined an alternative measure 

to RTs that is not vulnerable to these issues.

Previous experimental studies showed that Distractor 

Intrusions (DI), the erroneous report of a distractor in an 

RSVP instead of the target, measure the speed of atten-

tion (Chun, 1997; Ludowici & Holcombe, 2021; Vul et al., 

2008; Zivony & Eimer, 2021; 2023). In the current study, 

we demonstrated that DI rates also consistently vary between 

participants, providing a reliable measure of individual dif-

ferences in the speed of attention.

Our first goal was to demonstrate the reliability of DI 

rates. In three studies, DI rates were found to be a highly 

reliable measure, both within a single session, between two 

sessions a week apart, and even between two sessions a 

year apart. Reliability was remarkably high even for a small 

number of trials (50–60). This suggests that DI rates can be 

measured reliably with a single 5-min session. For example, 

in Studies  3A and 3B, completing 50 DI trials took an aver-

age of 3 min (not including instructions and five practice 

trials). A plausible reason for this benefit is that DI rates 

(unlike RTs) do not require the subtraction of raw scores, a 

method known to limit reliability (Caruso, 2004; Cronbach 

& Furby, 1970). Moreover, DI rates do not rely on speeded 

responses, and are therefore unaffected by speed–accu-

racy trade-offs and by variability in overall response speed 
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(Draheim et al., 2019). This suggests that DI rates are a 

highly useful tool for individual differences research.

The second purpose of the current study was to further 

characterize the process reflected by DI rates, by examin-

ing the correlation between DI rates and other measures. 

Even though responses in the DI task are not given with 

time pressure, DI rates correlated with overall RTs in two 

attention tasks, Visual Search and Simon. DI rates also cor-

related with T1 accuracy in an attentional blink (AB) task 

and with errors on a Time Judgment task. These results are 

expected from a measure that indexes the speed of atten-

tion. In contrast, DI rates did not significantly correlate with 

reading efficiency and measures of attentional control. We 

also observed that DI rates are uncorrelated with individu-

als’ attentional blink (AB) rates, and this null finding was 

robustly supported by a Bayesian analysis. The AB reflects a 

decrement in reporting the second of two targets for a short 

period of time (200–500 ms) following attentional engage-

ment and encoding of a first target. The results suggest that 

the two phenomena reflect separate limitations to temporal 

selectivity and that the two measures are not interchange-

able. Whilst individual differences in AB rates are thought 

to reflect an individuals’ speed of encoding (Martens et al., 

2006), individual differences in DI rates are more closely 

linked to an individuals’ speed of attention. Thus, one can-

not assume that factors that affect individual differences in 

sensitivity to the AB (Willems & Martens, 2016) will also 

affect DI rates; the door is open for further research into DIs 

and their correlates.

One goal of such future research would be to further 

characterize the process reflected by DI rates. If DI rates 

assess the speed of attention, they should correspond to 

other measures related to the speed of attention, as long as 

they do not rely on problematic difference scores calculation 

(e.g., search slopes). For example, DI rates are predicted to 

correlate with an individual’s latency of the N2pc: partici-

pants with lower DI rates should demonstrate earlier N2pcs, 

indicative of a tendency to engage attention quickly (Dris-

delle et al., 2016). Another avenue for future research would 

be to use the DI task to elucidate the processes involved 

in other measures of attention. For example, the d2 test of 

attention is a reliable test of sustained attention commonly 

used in various sectors, including clinical settings (Bricken-

kamp & Zilmer, 1998; Steinborn et al., 2018). In this test, 

participants go over rows of letters and discard specific tar-

gets embedded among distractors. Despite its widespread 

usage, some questions remain about the processes assessed 

by this test (da Silva-Sauer et al., 2022). For example, the 

d2 test relies on speeded responses and therefore it is pos-

sible that the d2 test gauges individuals’ speed of attention, 

not just their sustained attention. Future studies can utilize 

the DI task to examine this option: no correlation between 

d2 test measures and DI rates would indicate that the d2 test 

distinctly assesses sustained attention, whereas a correlation 

with DI rates would suggest an involvement of the speed of 

attention. Finally, the DI task can hopefully be helpful in 

future research aiming to determine what real-world behav-

iors and psychological variables are predicted by individu-

als’ speed of attention.

Limitations and alternative accounts

The results of the current study support the view that DI 

rates reflect individual differences in attentional processing, 

and specifically, in the speed of attention. Thus, the cur-

rent study dovetails with previous experimental studies that 

demonstrated this association (e.g., Ludowici & Holcombe, 

2021; Vul et al., 2008; Zivony & Eimer, 2020; 2021; 2023). 

However, one limitation and one alternative account of our 

findings deserve discussion.

One limitation of the current work is that Studies  2A,  

3A, and 3B were conducted online. While the software used 

in the current study measured monitor size and refresh rates, 

situational factors such as viewing distance, lighting condi-

tions, or background noise could not be controlled for. For 

example, if lighting affects both DI rates and RTs, then two 

participants who completed the studies under differing light-

ing conditions would show a correlation between the two 

measures regardless of real individual differences. However, 

this issue cannot explain the high between-session reliability 

observed for DI rates; in fact, it seems that DI rates are quite 

robust to incidental situational factors. Thus, while we are 

confident about the direction and the existence of some cor-

relations we found (e.g., between DI rate and RTs), we cau-

tion against overinterpreting their effect sizes. These effects 

may be smaller or larger when measured under controlled 

lab conditions.

In addition, there is an alternative account of our results 

that is entirely compatible with our own conceptualization 

of attention. According to “diachronic” accounts of atten-

tion (e.g., Reeves & Sperling, 1986; Wyble et al., 2011; 

Zivony & Eimer, 2022), once triggered, attentional engage-

ment enhances processing for a short period of time—an 

“attentional episode”. As suggested above, differences in 

the speed of attentional engagement can bias the perceptual 

competition between the target and the distractor influence 

and determine which object will be encoded (see Fig. 10A 

versus 10B). However, a delay in the offset of the atten-

tional episode (rather the onset) can also increase the likeli-

hood of DIs, as it would result in the post-target distrac-

tor benefiting from more amplification. Could differences 

in the offset of attention, rather than the onset of attention, 

explain individual differences in DI rates? We suggest that 

the results of Study  3A are inconsistent with this explana-

tion. Specifically, while a later offset of the attentional epi-

sode should increase DI rates, it should not result in slower 
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overall RTs. A delay in the offset of the attentional episode 

should result in poorer performance only in tasks where the 

target is quickly replaced by a masking object (see Fig. 10C 

versus 10D). This amplified distractor object then disrupts 

the processing and encoding of the original target. In the 

absence of a masking object (such as in the Visual Search 

and Simon tasks), delay in the episode’s offset should not 

result in poorer performance (and longer RTs), but rather in 

additional amplification of the correct target. Thus, if offset 

variability alone predicted individual DI rates, one would 

not expect DI rates to be positively correlated with overall 

RT in the Visual Search and Simon tasks.

Taken together, we conclude that similar to DIs in experi-

mental studies, individual differences in DI rates measure 

the speed of attention. Note that this conclusion does not 

deny the possibility that other factors can affect DI rates or 

individual differences in the speed of attention under certain 

circumstances. Moreover, this conclusion neither challenges 

nor supports the diachronic account of selective attention 

over any other theoretical account. Instead, we only suggest 

that the DI task provides a robust index of the speed of atten-

tion that can be easily employed in future studies.

Considerations using the distractor intrusion task

The DI task lends itself to a wide variety of research ques-

tions about factors that affect the speed of attention (e.g., 

aging, developmental conditions, sleep deprivation), and 

performance or psychological traits that are predicted by 

individual differences in the speed of attention (e.g., driving 

performance, fluid intelligence). To facilitate such research, 

we provide in the following link (https:// doi. org/ 10. 6084/ 

m9. figsh are. 28376 198), an easily executable experiment 

file for the DI task used in Study 3, alongside documenta-

tion on how to use the experiment and read the output. The 

experiment requires no installation and produces a.txt file 

that can be read by most spreadsheet software (e.g., Micro-

soft Excel). However, when using this experiment or when 

creating a new experiment where DIs is a key measure, some 

considerations should be kept in mind. The following is a 

non-exhaustive list of such considerations.

Between‑group comparisons

DIs can be used to test for group differences in speed of 

attention. However, whereas the high between-subject 

Fig. 10  Illustration of factors that determine encoding in the dia-

chronic account on hypothetical trials. In this example, the selection 

feature is a circle and the target is “3”. On the two leftmost panels (A 

and B) the post-target distractor is “6”, whereas on the two rightmost 

panels (C and D), there is no post-target distractor. The x-axis in each 

panel represents time in milliseconds from the moment signals from 

the target reach the visual cortex. Evidence about each feature (selec-

tion feature and identity) is accumulated separately and continuously 

modulated by spatially specific attentional enhancement. In addition, 

sensory representations mutually inhibit one another. Once the target 

is detected, it triggers an attentional episode. When this attentional 

episode is triggered early (A), it is more likely that the target’s fea-

tures will be sufficiently strong to cross the encoding threshold and 

be encoded. When the attentional episode is substantially delayed 

(B), there is a higher likelihood that the post-target’s features will be 

encoded instead. If the target is not followed by a distractor, the sen-

sory signal remains highly activated for a longer duration (C), and a 

delay in the offset of the attentional episode (D) should not affect how 

quickly the target is encoded

https://doi.org/10.6084/m9.figshare.28376198
https://doi.org/10.6084/m9.figshare.28376198
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variability in DI rates means that this measure may be suit-

able for individual-differences research, it also poses a chal-

lenge for studies that aim to compare groups. In a between-

group comparison (e.g., using an independent sample t-test), 

high between-subject variability reduces the effect size. 

Therefore, more participants per group are needed to achieve 

adequate levels of statistical power. Using the data from 

Study  3A, we estimated that the standard deviation in intru-

sion rates using our experiment is σ =.23. A power analysis 

(conducted using the Stats package in RStudio) suggests that 

any between-group difference smaller than Δ =.10 would be 

difficult to detect, as it would require a sample size of over n 

= 100 per group (see Fig. 11). However, this estimate might 

be overly conservative, as a true between-groups difference 

may also correspond with lower within-group variability.

Platform

By their nature, performance in RSVP experiments is sen-

sitive to timing (Lawrence, 1971): accuracy will be higher 

if the target is presented for longer durations and DI rates 

will be higher if the post-target distractor is presented for 

longer durations. We therefore recommended programming 

DI experiments using software or a platform that allows for 

a high degree of control over presentation rates. The experi-

ments used in this study (as well as the provided example 

experiment) have all been programmed using E-Prime 

3.0 and downloaded to participants’ computers using the 

E-Prime Go cloud service. Thus, even though participants 

completed the task on their own machines, presentation rates 

were independent of internet speed. Moreover, by tracking 

refresh rates, we were able in previous studies (e.g., Zivony 

& Eimer, 2024a,b) to remove the data from participants 

whose machines could not produce the required presentation 

rate. In contrast, online browser-based experiment platforms 

often have higher variability in presentation rates and do not 

necessarily track presentation times accurately. It is currently 

unknown to what degree random trial-by-trial variability in 

presentation rates is prohibitive to the usage of DI rates in 

individual differences research.

Design

Some features are known to affect DI rates, such as the pres-

entation rate (frame duration and ISI), type of stimulus being 

employed, and the saliency of the selection cue (Botella 

et al., 2001; Vul et al., 2009; Zivony & Eimer, 2021; 2024a, 

2024b). Features that are known to affect visual search, such 

as luminance and stimulus size (Proulx & Egeth, 2008), are 

also likely to play a role in DI rates. However, seemingly 

innocuous features of a DI task may have unforeseen con-

sequences. In the present task, we ensured that the RSVP 

of distractors included potentially reportable distractors 

(digits) except for the distractor that immediately preceded 

the target, which was always non-reportable (a letter). The 

inclusion of reportable distractors ensured that searching for 

digits would be a highly unproductive strategy. Therefore, 

participants can only complete the task if they search for 

the selection cue (the circle), allowing for better experimen-

tal control over participants’ search strategy. Since partici-

pants mostly report distractors that are temporally adjacent 

to the target, it is highly unlikely they will report these 

early distractors. In contrast, the pre-target distractor in our 

experiments was always non-reportable to avoid pre-target 

intrusions. This feature was included because pre-target 

and post-target intrusions may actually be caused by dif-

ferent mechanisms (Zivony & Eimer, 2023). Therefore, the 

exclusion of a reportable pre-target distractor and reliance 

on post-target intrusion rates should produce more reliable 

results (Zivony & Eimer, 2024a).

Limitation in scope

The studies described here are all based on samples of 

healthy adults, whose performance in a standard RSVP task 

is expected to be high (see Fig. 1B). However, it’s reasonable 

to assume that some participants or some populations will be 

unable to even detect the target in the RSVP, let alone report 

its identity. Therefore, we recommend that future studies 

should exclude participants whose guess rates (i.e., reports 

of neither the target nor the post-target) are very high (e.g., 

Fig. 11  Required sample size (per-group) to achieve 80% power in a 

between-group comparison as a function of the expected difference 

between groups and hypothesis directionality (one versus two-tailed 

hypothesis)
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over 25%), as their low intrusion rates may be uninformative 

of their speed of attention.

Conclusion In the current study, we provided evidence that 

measuring distractor intrusions with a short (~ 5 min) task 

produces a highly reliable measure of the speed of atten-

tion. This suggests that the distractor intrusions task is a 

highly useful tool to study individual differences in attention 

research. We provide an example experiment that can be 

easily used on PCs. We hope that this will inspire research-

ers to use distractor intrusions in future research aimed at 

developing attention theories and at examining the role of 

attention in everyday life.

Beyond a contribution to future individual differences 

research, the current study can also potentially contribute 

to the development of theories of attention and perception. 

Theories of attention usually emphasize the universality of 

attention mechanisms. By doing so, these theories implicitly 

treat individual differences as random error to be averaged 

out. The current results show that far from random error, 

individual differences in the speed of attention are a major 

factor that determines the content of perception, deserving 

of serious theoretical consideration.
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