

Controlling cortisol excess and comorbidities in Cushing's syndrome with osilodrostat

Maria Fleseriu¹ · John Newell-Price² · Mônica R. Gadelha³ · Beverly M.K. Biller⁴

Received: 13 October 2025 / Accepted: 2 November 2025

© The Author(s) 2025

Osilodrostat, a potent 11 β -hydroxylase inhibitor with extensive clinical-trial and real-world data, demonstrated rapid and sustained reductions in mean urinary free cortisol (mUFC), alongside improvements in signs and symptoms of hypercortisolism and quality of life (QoL), in patients with Cushing's syndrome (CS) [1–7].

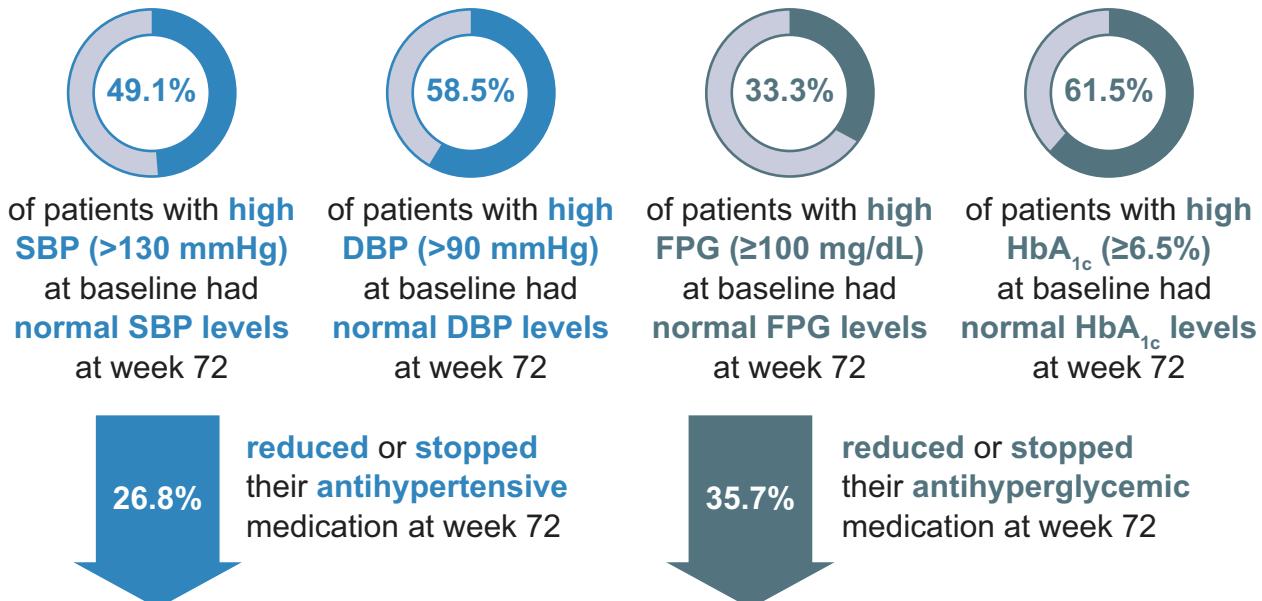
Our recent article in *Pituitary* reported findings from the largest prospective analysis of long-term changes in blood pressure (BP) and glycemic and clinical parameters in patients with Cushing's disease (CD) receiving long-term osilodrostat treatment [8]. To our knowledge, this is the first analysis of prospective data to assess correlations between long-term changes in BP and glycemic control and changes in the clinical characteristics of CD. Of the 210 patients included in the LINC 3 and LINC 4 studies, 82.9% had hypertension and 40.0% had diabetes at baseline. Osilodrostat led to rapid improvements in systolic and diastolic BP, and fasting plasma glucose (FPG) and glycated hemoglobin (HbA_{1c}) levels, as early as week 12, which were maintained during long-term treatment (up to 72 weeks). Improvements in BP and glycemic parameters were greatest in those with high baseline systolic and diastolic BP, as well as high baseline FPG and HbA_{1c} levels. Nearly 50% of hypertensive patients and >60% of patients with diabetes experienced normalization

of BP or glycemic parameters, with some able to reduce or stop their antihypertensive or antihyperglycemic medications (Fig. 1). New cases of hypertension and diabetes were rare; most patients without these comorbidities at baseline did not experience increases in BP or glycemic parameters. Notably, improvements in BP and glycemic parameters correlated with improvements in mUFC. This further strengthens the link between cortisol excess and increased cardiometabolic risk, reinforcing the importance of achieving early and complete biochemical control. These clinically meaningful cardiometabolic improvements with osilodrostat provide evidence of its impact on comorbidity burden. Although this analysis is strengthened by its large, pooled population from two pivotal Phase III studies and its 72-week long follow-up period, it is limited by its *post hoc*, descriptive design. There is a need for longer-term, independent, real-world studies to support these findings and determine whether early therapeutic intervention with osilodrostat may prevent cardiometabolic complications of hypercortisolism.

The findings from the pooled LINC 3 and LINC 4 analysis are clinically relevant as most patients with CS have hypertension at diagnosis (80–85%) and diabetes is a frequent early complication of CS [9, 10]. Another common comorbidity of CS is bone disease, with uncoupled bone formation and bone resorption leading to an increased risk of skeletal complications [11, 12]. Patients with a higher overall burden of cardiovascular morbidity, including those with hypertension and impaired glucose metabolism, are more likely to experience these fragility fractures [13]. CS is also associated with an increased risk of all cancer types compared with the general population [14]. These long-term comorbidities adversely affect QoL and survival [12, 15], with the risk of morbidity and mortality persisting, particularly in patients not in biochemical remission [15, 16]. The results from the LINC 3 and LINC 4 pooled analysis indicate that osilodrostat may reduce the treatment burden associated with long-term comorbidities in patients with CD [8].

✉ Maria Fleseriu
fleseriu@ohsu.edu

¹ Pituitary Center, Departments of Medicine and Neurological Surgery, Oregon Health & Science University, Portland, OR, USA


² School of Medicine and Population Health, University of Sheffield, Sheffield, UK

³ Neuroendocrinology Research Center, Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

⁴ Neuroendocrine and Pituitary Tumor Clinical Center, Massachusetts General Hospital, Boston, MA, USA

Patients with Cushing's syndrome **manifest long-term comorbidities** such as hypertension and diabetes, adversely **affecting their QoL and survival**

LINC 3 and LINC 4 pooled analysis in patients with Cushing's disease (N=210)

Monitoring patients during osilodrostat long-term treatment

Monitor **blood glucose, blood pressure and potassium levels** periodically
Adjust concomitant medications as needed

Measure **morning serum cortisol** levels every **2–4 weeks** during initiation and **dose increases** or if **symptoms suggestive of adrenal insufficiency** occur

If adrenal insufficiency is suspected, measure **serum cortisol levels** (preferably using **liquid chromatography–tandem mass spectrometry** to avoid precursor cross-reactivity causing an artificially high cortisol reading)

Conduct **pituitary MRI 6–12 months** after initiating treatment; **repeat scans every few years**, depending on clinical scenario

Monitor **ACTH levels regularly**; **abrupt increases should prompt further evaluation**

Fig. 1 Summary of the findings from the LINC 3 and LINC 4 pooled analysis evaluating the effect of osilodrostat on blood pressure and glycemic control in patients with Cushing's disease [8] and key considerations for monitoring patients during osilodrostat long-term treatment.

ACTH, adrenocorticotrophic hormone; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA_{1c}, glycated hemoglobin; MRI, magnetic resonance imaging; QoL, quality of life; SBP, systolic blood pressure

Although surgery is recommended as first-line therapy [17, 18], the contribution of medical therapy in the management of patients with CS is increasing. Medical therapy is an option for patients with persistent or recurrent disease after surgery to remove the tumor, for those who refuse or are not eligible for surgery, for those requiring emergency treatment for severe hypercortisolism, and as a bridging therapy for those waiting for surgery or for the effects of radiation for pituitary CS [12, 17, 18]. In a recent study, adrenal steroidogenesis inhibitors were the most used medications at pituitary tumor centers of excellence [19]. With increased use of osilodrostat in clinical practice, additional practical, evidence-based guidance for tailoring treatment is needed.

Guidelines advocate a personalized treatment approach for CS, aiming for cortisol control while considering patient preferences and how comorbidities may impact patient health and QoL [17, 18]. Despite theoretical concerns regarding accumulation of mineralocorticoid precursors, new or worsening hypertension and hypokalemia were uncommon in clinical studies of osilodrostat [2, 4, 8]. However, comorbidities should be closely monitored during osilodrostat treatment as adjustments in concomitant medications are required for some patients when cortisol levels decline, including those who experience improvements in hypertension or diabetes [8].

Although the LINC studies did not specifically focus on patients with higher baseline mUFC levels [20], a higher starting dose and/or faster dose escalation may be considered in severe cases requiring urgent mUFC control. Conversely, in our clinical experience, lower starting doses and/or slower dose escalation may be considered in patients with mild mUFC elevations (>1 –1.3 times the upper limit of normal). Additionally, patients of Asian origin may require lower doses than non-Asian patients because of the higher bioavailability of osilodrostat in this population [21].

Adverse events (AEs) related to adrenal insufficiency (AI) are expected with most treatments for CS, especially steroidogenesis inhibitors. In the LINC trials, hypocortisolism-related AEs (as determined by investigators) were mostly mild to moderate and manageable predominantly with temporary interruption and glucocorticoid therapy [20]. In clinical practice, differentiating between glucocorticoid-withdrawal syndrome (GWS) and AI can be challenging because of overlapping symptoms, including musculoskeletal discomfort, fatigue, weight loss and anorexia [22]. GWS is associated with abrupt reduction in cortisol levels after prolonged pathological elevation and may be a low-grade inflammatory state caused by upregulation of cytokines and prostaglandins [22, 23]. Physical deconditioning, mood/cognitive disturbance and hypersomnia suggest a GWS diagnosis [23]. AI is associated with true low cortisol levels and usually displays more severe symptoms than GWS, such as vomiting, hypotension and hypoglycemia, requiring glucocorticoid-replacement therapy

[22, 23]. Biochemical assessments of cortisol levels can provide valuable insight; however, results must be interpreted in the context of the clinical presentation [23]. Where results are available in a timely manner, we recommend assessing serum cortisol levels with liquid chromatography–tandem mass spectrometry in patients with suspected AI. Alternative cortisol assays may be misleading because of potential cross-reactivity in some immunoassays of precursors (11-deoxycortisol) with cortisol [17], giving a false impression of higher circulating cortisol values with potential for inappropriate dose escalation. Clinical decisions may be required before laboratory results are available; as AI can be life threatening, we recommend treating patients with suspected AI or GWS with glucocorticoid-replacement therapy (particularly if the patient has a sudden drop in BP or increased heart rate upon standing). Treatment of confirmed AI includes replacement or stress-dose glucocorticoids and fluid repletion, according to treatment guidelines [24, 25]. We recommend monitoring patients receiving osilodrostat for hypocortisolism-related AEs by assessing morning serum cortisol levels every 2–4 weeks, especially at treatment initiation, up-titration and during instances of increased cortisol demand (physical/psychological stress or changes in concomitant medications that may affect osilodrostat exposure).

As AI may occur after the patient has received osilodrostat for some time [20], regular biochemical and clinical assessments for the duration of treatment and during temporary dose interruptions are important, alongside comprehensive patient education to raise awareness, so that AEs can be detected early and treatment initiated to prevent severe acute adrenal crises. Risk of prolonged AI has also been noted in several reported cases [26]. Patients with adrenocorticotrophic hormone (ACTH)-dependent CS treated with osilodrostat may experience adrenal shrinkage, with or without AI, and require lower doses to remain biochemically controlled [27].

How to monitor potential adenoma growth in patients with CD treated with adrenal steroidogenesis inhibitors remains controversial. Although mean ACTH levels increased steadily from baseline in the LINC trials, no correlations were identified with total daily osilodrostat dose or tumor volume over time [20]. Nevertheless, in our opinion, ACTH levels should be monitored regularly for progressive, sustained increases in ACTH, excluding the expected rise and plateau at the start, when osilodrostat is initiated. Pituitary magnetic resonance imaging 6–12 months after initiating treatment and repeat scans every few years thereafter, depending on the clinical scenario, has been recommended [17]. If progressive adenoma growth is identified, medical treatment that is not pituitary directed should be withheld and the management plan reassessed. Longer-term data are needed to determine any attributable risk of tumor growth with osilodrostat use.

Better markers of control are needed to optimize the management of patients with CS. In clinical practice, mUFC is frequently used but has a high degree of variability, with multiple sample collections recommended [17]. Late-night salivary cortisol (LNSC) is more likely to show abnormal findings before mUFC when CS is developing or recurring, potentially allowing for earlier intervention [17]. However, LNSC is more sensitive to disruption of circadian rhythm and takes longer to normalize than mUFC with treatment, so more regular assessment of multiple LNSC samples over time may provide more accurate results [28]. A recent pooled analysis of LINC 3 and LINC 4 demonstrated a moderate correlation between LNSC and mUFC during osilodrostat treatment [28]. Patients with control of both LNSC and mUFC generally exhibited greater improvements in cardiovascular and metabolic-related parameters than those with only mUFC control or uncontrolled LNSC and mUFC [28]. Treatments should therefore aim to normalize both mUFC and LNSC for optimal patient outcomes, provided that morning cortisol levels are maintained in the normal range. A recent study used osilodrostat once daily in the evening as a 'reverse circadian' dosing schedule, which preserved morning cortisol levels while lowering abnormal late-night/overnight levels [29]. More data are needed on this interesting approach. Other potential novel markers of control that do not rely on cortisol measurements are being identified, including changes in biomarkers (growth-differentiating factor 15 and osteocalcin), metabolomic profiles, micro-RNA, gene expression and epigenetics [30]. Future assessment of biochemical control may incorporate a comprehensive evaluation of these novel biomarkers, cortisol levels and changes in clinical signs and symptoms of disease.

There is a wealth of data for osilodrostat from clinical trials, including the pooled analysis of >200 patients from the LINC 3 and LINC 4 Phase III studies [8], real-life studies and our clinical practice experience. Together, these demonstrate that osilodrostat achieves mUFC normalization, leads to clinical improvements in comorbidities and improves QoL in most patients with CS. Balancing efficacy with safety is important, and for most patients, slow up-titration is needed. However, patients with severe CS may benefit from a 'block-and-replace' regimen with higher osilodrostat starting doses. Personalizing the management of patients with CS is key to optimizing outcomes and improving patient satisfaction. Future research should explore the integration of osilodrostat into personalized treatment algorithms and its real-world impact on long-term cardiovascular and metabolic outcomes.

Acknowledgements The authors thank Eleanor Wigg of Amiculum, funded by Recordati Rare Diseases, for editorial assistance, as well as Recordati Rare Diseases for support for open-access publication.

Author contributions This editorial was conceptualized and drafted by the authors.

Funding Financial support for editorial assistance was provided by Recordati Rare Diseases.

Data availability No datasets were generated or analyzed during the current study.

Declarations

Competing interests MF reports grants to her university from Crinetics and Sparrow and occasional scientific consulting fees from Crinetics, Recordati Rare Diseases, Sparrow, and Xeris Pharmaceuticals; she served as a member of the LINC 3 steering committee and is a member of the editorial board of Pituitary. JN-P reports research grants and consultancy payments to his university from Crinetics, Diurnal, and Sparrow. MRG has received speaker fees from Recordati Rare Diseases and attended advisory boards for Crinetics Pharmaceuticals and Recordati Rare Diseases; she is a research investigator for Crinetics Pharmaceuticals and Recordati Rare Diseases and is a member of the editorial board of Pituitary. BMKB reports serving as the principal investigator of a study with a research grant to her hospital from Crinetics and occasional consulting honoraria from Crinetics, H Lundbeck A/S, Recordati Rare Diseases, and Xeris Pharmaceuticals; she served on the LINC 3 steering committee.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Fleseriu M, Biller BMK, Bertherat J, Young J, Hatipoglu B, Arnaldi G et al (2022) Long-term efficacy and safety of osilodrostat in Cushing's disease: final results from a phase II study with an optional extension phase (LINC 2). *Pituitary* 25(6):959–970
2. Pivonello R, Fleseriu M, Newell-Price J, Bertagna X, Findling J, Shimatsu A et al (2020) Efficacy and safety of osilodrostat in patients with Cushing's disease (LINC 3): a multicentre phase III study with a double-blind, randomised withdrawal phase. *Lancet Diabetes Endocrinol* 8(9):748–761
3. Fleseriu M, Newell-Price J, Pivonello R, Shimatsu A, Auchus RJ, Scaroni C et al (2022) Long-term outcomes of osilodrostat in Cushing's disease: LINC 3 study extension. *Eur J Endocrinol* 187(4):531–541
4. Gadelha M, Bex M, Feeders RA, Heaney AP, Auchus RJ, Gilis-Januszewska A et al (2022) Randomized trial of osilodrostat for the treatment of Cushing disease. *J Clin Endocrinol Metab* 107(7):e2882–e2895
5. Gadelha M, Snyder PJ, Witek P, Bex M, Belya Z, Turcu AF et al (2023) Long-term efficacy and safety of osilodrostat in patients with Cushing's disease: results from the LINC 4 study extension. *Front Endocrinol (Lausanne)* 14:1236465
6. Tanaka T, Satoh F, Ujihara M, Midorikawa S, Kaneko T, Takeda T et al (2020) A multicenter, phase 2 study to evaluate the efficacy and safety of osilodrostat, a new 11 β -hydroxylase inhibitor, in Japanese patients with endogenous Cushing's syndrome other than Cushing's disease. *Endocr J* 67(8):841–852

7. Fleseriu M, Auchus RJ, Huang W, Spencer-Segal JL, Yuen KCJ, Dacus KC et al (2025) Osilodrostat treatment of Cushing syndrome in real-world clinical practice: findings from the ILLUSTRATE study. *J Endocr Soc* 9(5):bvaf046
8. Fleseriu M, Pivonello R, Newell-Price J, Gadelha MR, Biller BMK, Auchus RJ et al (2025) Osilodrostat improves blood pressure and glycemic control in patients with Cushing's disease: a pooled analysis of LINC 3 and LINC 4 studies. *Pituitary* 28(1):22
9. Mazzotti G, Formenti AM, Frara S, Maffezzoni F, Doga M, Giustina A (2017) Diabetes in Cushing disease. *Curr Diab Rep* 17(5):32
10. Fallo F, Di Dalmazi G, Beuschlein F, Biermasz NR, Castinetti F, Elenkova A et al (2022) Diagnosis and management of hypertension in patients with Cushing's syndrome: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. *J Hypertens* 40(11):2085–2101
11. Frara S, di Filippo L, Doga M, Loli P, Casanueva FF, Giustina A (2022) Novel approaches to bone comorbidity in Cushing's disease: an update. *Pituitary* 25(5):754–759
12. Gadelha M, Gatto F, Wildenberg LE, Fleseriu M (2023) Cushing's syndrome. *Lancet* 402(10418):2237–2252
13. Voltan G, Mazzeo P, Cannito M, Pinelli S, Barbot M, Scaroni C et al (2025) Relationship among fragility fractures and the overall cardiovascular burden in endogenous Cushing syndrome. *J Endocr Soc* 9(3):bvaf008
14. Rudman Y, Fleseriu M, Dery L, Masri-Iraqi H, Sasson L, Shochat T et al (2024) Endogenous Cushing's syndrome and cancer risk. *Eur J Endocrinol* 191(2):223–231
15. Puglisi S, Perini AME, Botto C, Oliva F, Terzolo M (2023) Long-term consequences of Cushing syndrome: a systematic literature review. *J Clin Endocrinol Metab* 109(3):e901–e919
16. Akirov A, Fleseriu M, Masri-Iraqi H, Shochat T, Kushnir S, Shimon I et al (2025) Mortality in Cushing's syndrome: declining over 2 decades but remaining higher than the general population. *Eur J Endocrinol* 192(4):445–455
17. Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR et al (2021) Consensus on diagnosis and management of Cushing's disease: a guideline update. *Lancet Diabetes Endocrinol* 9(12):847–875
18. Nieman LK, Biller BMK, Findling JW, Murad MH, Newell-Price J, Savage MO et al (2015) Treatment of Cushing's syndrome: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 100(8):2807–2831
19. Giustina A, Uygur MM, Frara S, Barkan A, Biermasz NR, Chanson P et al (2025) Medical management pathways for Cushing's disease in pituitary tumors centers of excellence (PTCOEs). *Pituitary* 28(1):23
20. Fleseriu M, Pivonello R, Lacroix A, Biller BMK, Feelders R, Gadelha M et al (2025) Osilodrostat dose impact on efficacy/safety in Cushing's disease: large, pooled analysis of LINC 2, 3 and 4. *Eur J Endocrinol* 193(5):606–617
21. Shimatsu A, Biller BMK, Fleseriu M, Pivonello R, Lee EJ, Lee-lawattana R et al (2024) Osilodrostat treatment in patients with Cushing's disease of Asian or non-Asian origin: a pooled analysis of two phase III randomized trials (LINC 3 and LINC 4). *Endocr J* 71(12):1103–1123
22. Fleseriu M, Biller BMK (2022) Treatment of Cushing's syndrome with osilodrostat: practical applications of recent studies with case examples. *Pituitary* 25(6):795–809
23. He X, Findling JW, Auchus RJ (2022) Glucocorticoid withdrawal syndrome following treatment of endogenous Cushing syndrome. *Pituitary* 25(3):393–403
24. Beuschlein F, Else T, Bancos I, Hahner S, Hamidi O, van Hulsteijn L et al (2024) European Society of Endocrinology and Endocrine Society joint clinical guideline: diagnosis and therapy of glucocorticoid-induced adrenal insufficiency. *J Clin Endocrinol Metab* 109(7):1657–1683
25. Fleseriu M, Hashim IA, Karavatiki N, Melmed S, Murad MH, Salvatori R et al (2016) Hormonal replacement in hypopituitarism in adults: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 101(11):3888–3921
26. Poirier J, Bonnet-Serrano F, Thomeret L, Bouys L, Bertherat J (2023) Prolonged adrenocortical blockade following discontinuation of osilodrostat. *Eur J Endocrinol* 188(6):K29–K32
27. Varlamov EV, Park BJ, Fleseriu M (2025) Osilodrostat-associated adrenal gland shrinkage: a case series of patients with ACTH-dependent Cushing's syndrome. *J Clin Endocrinol Metab*. <https://doi.org/10.1210/clinem/dgaf552>
28. Newell-Price J, Fleseriu M, Pivonello R, Feelders RA, Gadelha MR, Lacroix A et al (2024) Improved clinical outcomes during long-term osilodrostat treatment of Cushing disease with normalization of late-night salivary cortisol and urinary free cortisol. *J Endocr Soc* 9(1):bvae201
29. Ferrari D, Bonaventura I, Simeoli C, Tomaselli A, Vincenzi L, De Alcubierre D et al (2025) Chronotherapy with once-daily osilodrostat improves cortisol rhythm, quality of life, and sleep in Cushing's syndrome. *J Clin Endocrinol Metab* 110(12):3525–3537
30. Clarke SA, Eng PC, Comninou AN, Lazarus K, Choudhury S, Tsang C et al (2024) Current challenges and future directions in the assessment of glucocorticoid status. *Endocr Rev* 45(6):795–817

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.