
eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk

Universities of Leeds, Sheffield and York

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/236364/

Version: Accepted Version

Article:

Butkovsky, O., Dareiotis, K. and Gerencsér, M. (2025) Strong rate of convergence of the 
Euler scheme for SDEs with irregular drift driven by Lévy noise. Annales de l Institut Henri 
Poincaré Probabilités et Statistiques, 61 (4). pp. 2624-2660. ISSN: 0246-0203 (In Press) 

https://doi.org/10.1214/24-aihp1506

Copyright © 2025 Association des Publications de l’Institut Henri Poincaré. This is an 
author produced version of an article published in Annales de l'Institut Henri Poincaré, 
Probabilités et Statistiques. Uploaded in accordance with the publisher's self-archiving 
policy.

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1214/24-aihp1506
https://eprints.whiterose.ac.uk/id/eprint/236364/
https://eprints.whiterose.ac.uk/


ar
X

iv
:2

20
4.

12
92

6v
2 

 [
m

at
h.

PR
] 

 1
1 

Ja
n 

20
24

Strong rate of convergence of the Euler scheme for SDEs

with irregular drift driven by Lévy noise

January 12, 2024

Oleg Butkovsky∗, Konstantinos Dareiotis†, and Máté Gerencsér‡

Abstract

We study the strong rate of convergence of the Euler–Maruyama scheme for a multidi-
mensional stochastic differential equation (SDE)

dXt = b(Xt) dt+ dLt,

with irregular β-Hölder drift, β > 0, driven by a Lévy process with exponent α ∈ (0, 2].
For α ∈ [2/3, 2], we obtain strong Lp and almost sure convergence rates in the entire
range β > 1−α/2, where the SDE is known to be strongly well-posed. This significantly
improves the current state of the art, both in terms of convergence rate and the range
of α. Notably, the obtained convergence rate does not depend on p, which is a novelty
even in the case of smooth drifts. As a corollary of the obtained moment-independent
error rate, we show that the Euler–Maruyama scheme for such SDEs converges almost
surely and obtain an explicit convergence rate. Additionally, as a byproduct of our
results, we derive strong Lp convergence rates for approximations of nonsmooth additive
functionals of a Lévy process. Our technique is based on a new extension of stochastic
sewing arguments and Lê’s quantitative John-Nirenberg inequality.

1. Introduction

We consider the stochastic differential equation

dXt = b(Xt) dt+ dLt, t ≥ 0, X0 = x0, (1.1)

driven by a d-dimensional Lévy process L. Here the coefficient b is a measurable function
R
d → R

d, and the initial condition x0 ∈ R
d. Throughout the article the dimension

d ∈ N = {1, 2, . . .} is arbitrary.
The ‘strength’ of a Lévy process can often be characterised by a single parameter

α ∈ (0, 2] called the stable index (for various examples see Section 2.1), with α = 2
corresponding to the usual Brownian motion. This parameter can be used to describe
the regularisation provided by L. Indeed, assuming a natural nondegeneracy condition
on the jump measure of L, (1.1) has a unique strong solution whenever b belongs to the
Hölder space Cβ(Rd), where β satisfies

β > 1−
α

2
. (1.2)

∗Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany oleg.butkovskiy@gmail.com
†University of Leeds, Woodhouse, LS2 9JT Leeds, United Kingdom k.dareiotis@leeds.ac.uk
‡TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria mate.gerencser@tuwien.ac.at

http://arxiv.org/abs/2204.12926v2
oleg.butkovskiy@gmail.com
k.dareiotis@leeds.ac.uk
mate.gerencser@tuwien.ac.at


2 Introduction

This solution theory was developed in [Pri12, Pri15, Pri18, CSZ18].
Once the well-posedness is understood, it is natural to investigate basic discretisations

of the equation. The most classical Euler-Maruyama approximation of (1.1) reads as

dXn
t = b(Xn

κn(t)) dt+ dLt, Xn
0 = xn0 , (1.3)

with κn(t) := ⌊nt⌋n−1. For Lipschitz b the convergence of Xn to X can be seen by
very straightforward arguments. The Lp-rate of convergence obtained this way, however,
deteriorates for large p (see Remark 2.7 (ii) below for some details). Even though our
main focus will be on non-Lipschitz coefficients, it is noteworthy and perhaps surprising
that our method coincidentally also solves this moment issue and therefore gives new
results even in the Lipschitz case.

One of the first results regarding convergence of Xn to X in the case of irregular b is
[PT17]. It is shown there that

∥∥∥ sup
t∈[0,1]

|Xt −Xn
t |
∥∥∥
Lp(Ω)

≤ Nn
−(

β
2
∧ 1

p
)
, n ∈ N, (1.4)

for the case where L is a truncated symmetric α–stable process, α ∈ (1, 2), β > 2 − α;
here N = N (α, β, p, d) is a certain positive constant. This result was improved in [KS19b]
in three directions: first, the condition on β is relaxed to β > 2/α − 1; second, the rate
of convergence in (1.4) is improved and is β

α ∧ 1
p ; third, the class of considered Lévy

processes is significantly extended and additionally includes standard isotropic stable
processes, tempered stable processes, relativistic stable processes, and others. The same
rate β

α ∧ 1
p is derived [MX18] even for multiplicative noise, under the further relaxed

condition β > 1 − α/2, under which strong solutions are known to exist. Very recently,
for the case of standard isotropic stable processes, [HSY21] showed that the strong Lp
rate of β

α ∧ 1
p holds in the whole range β > 1− α/2 even when β denotes regularity only

in a certain Sobolev scale. A standard example of a coefficient that possesses Sobolev but
not Hölder regularity is one with discontinuity of the first kind, in this case scalar SDEs
driven by a Brownian motion and a finite activity Poisson process were studied in [PS21].

From the discussion above, the reader may notice the following gaps in the literature.
All of the works mentioned above consider the case α ∈ [1, 2]; recall however that the
strong well-posedness of (1.1) is known in the whole range α ∈ (0, 2]. Further, the
aforementioned moment issue is still present: the convergence rate becomes arbitrary
slow for very large p. Note that this also has the consequence that one can not deduce
almost sure convergence of |Xt −Xn

t | as n → ∞. Indeed, to show this one has to prove
the bound E|Xt −Xn

t |
p ≤ Nn−1−ε for some p > 0, ε > 0, while the best available bound

is E|Xt −Xn
t |
p ≤ Nn−1, which is not sufficient.

The present paper closes these gaps; the novelties can be summarised as follows. First,
our methods are completely free from the moment issue. As alluded to above and detailed
in Remark 2.7 (ii) below, this makes our results new even in the smooth drifts, where the
strong Lp rate, which one trivially gets, namely, 1

α ∧ 1

p , p ≥ 1, is improved to 1. Another
factor that may provide poor rate in the previous results is if β/α is small. This issue
is also not present here, the obtained rate is always strictly above 1/2. We also obtain
almost sure convergence (and rate) of the Euler-Maruyama scheme, to our knowledge for
the first time for SDEs of the type (1.1).

Second, we are not restricted to α ∈ [1, 2]. In the regime α ∈ [2/3, 2] our assumption
on β coincides with the optimal condition (1.2). We cover some (but not the optimal)
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range of irregular drifts when α ∈ (1/2, 2/3). For α ∈ (0, 1/2] we require b to be regular
(i.e. more than Lipschitz), the contribution in this case is the handling of high moments.

Third, we have also shown that the solution of (1.1) is the limit of the corresponding
Picard’s successive approximations. This extends to the non-smooth case the correspond-
ing results from [Yam81, Tan92, NO23].

Fourth, the class of considered driving Lévy processes is fairly large. It is similar
to [KS19b], so it includes not only the standard stable processes but also their different
“relatives”. The conditions on the Lévy process, see H1–H3 below, are rather general and
are easy to verify for various examples, see Section 2.1.

Finally, as a byproduct of our proofs, we obtain significant improvements in a differ-
ent but related problem of numerical stochastic analysis: the question of approximating
additive functionals of stochastic processes given high-frequency observations. To wit,
consider an R

d-valued stochastic process Y , a measurable function f : Rd → R
d, and the

’occupation time functional’

Γ =

∫ 1

0

f (Ys) ds. (1.5)

Approximation of Γ is an interesting question in itself (for a detailed overview of the
literature, we refer to [Alt21, Section 1]). A natural estimation scheme is given by

Γn =

∫ 1

0

f (Y nκn(s)) ds =
1

n

n∑

i=0

f (Y n
i/n), (1.6)

where Y n is the process approximating Y . If the increments of Y can be simulated directly,
then one can, of course, take Y n := Y . For the case where Y is a Markov process, whose
density satisfies certain estimates (e.g., Y is an α-stable process), Y n = Y , and f is a
bounded or Hölder continuous function, Lp error bounds for Γ − Γn were obtained in
[GK14, GKK15]. For the case p = 2, Altmeyer [Alt21] improved the convergence rate to
the one which was shown to be optimal in some setups [AL22, AJP22].

In this article, we take the best of both worlds. Namely, we obtain the Lp convergence
rate for the error Γ − Γn as in [Alt21] but for general p ≥ 2. Furthermore, we provide
Lp bounds on the convergence rate of the error for the case Y n 6= Y . This is relevant
if the process Y cannot be simulated directly (this is often the case if Y is a solution
to SDE (1.1)) and we have access only to its approximation Y n (which can be its Euler
approximation (1.3)).

Our approach is rather different from the one used in the papers [PT17, MX18, KS19b,
HSY21] discussed above, as we do not rely on any form of Zvonkin transformation or
Itô-Tanaka trick (in fact, Itô’s formula is not even once applied for either X or Xn).
Instead, we employ stochastic sewing, which originates from the work of Lê [Lê20] and
has been developed for discretisation problems in [BDG21a, BDG21b, DGL21, LL21]. In
[BDG21a] the Euler-Maruyama scheme for fractional Brownian motion-driven SDEs is
studied. One may hope due to the scaling correspondance between stable indices and
Hurst parameters (α↔ 1/H) that the methods therein translate easily to the Lévy case.
This is unfortunately not the case, for several reasons. First, the usual regime H < 1
corresponds to α > 1. To consider α < 1, one needs tools from the H > 1 case, in
particular the shifted stochastic sewing lemma [Ger20]. Second, high moments of Lévy
processes do not scale (or they do not even exist for several examples). This is related
to the aforementioned moment issue yielding poor rate for large moments in preceding
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literature. Overcoming this challenge relies on the recently obtained quantitative John-
Nirenberg inequality [Lê22a]. Finally, there is no useful form of Girsanov theorem to
remove the drift at any part of the analysis.

This article deals only with the strong rate of convergence. Clearly, the weak rate of
convergence is at least as good as the strong rate of convergence; already with this simple
observation our results imply weak rates which are better than the ones available in the
literature [KP02, MZ11] in the range of parameters that we cover. An interesting and
challenging question is whether these weak rates can be improved further, and whether
the range of β can be upgraded to β > 1−α (in this range SDE (1.1) is weakly well–posed
[Kul19, LZ22]). We leave this for the future work.

The rest of the paper is organized as follows. Our main result concerning the Lp con-
vergence of the numerical scheme is formulated in Section 2. Examples of Lévy processes
satisfying the assumptions of the convergence theorem are given in Section 2.1. A number
of technical tools needed for the proofs are collected in Section 3. The main results are
proved in Section 4, whilst the proofs of some technical auxiliary statements are placed
in the Appendix.

Acknowledgements. The authors are grateful to Randolf Altmeyer and Mark Podol-
skij for very helpful discussions regarding approximation of additive functionals of a Lévy
process, and to Khoa Lê for many useful conversations and for bringing to our attention
the articles [GK14, GKK15]. We would like to thank the referees for their helpful com-
ments and feedback. OB has received funding from the DFG Research Unit FOR 2402
and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy — The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689, sub-project EF1-22). MG was funded by
the Austrian Science Fund (FWF) Stand-Alone programme P 34992. The project has
been conceived during the stay of the authors at the Hausdorff Research Institute for
Mathematics (HIM), Bonn. Significant progress on the project has been achieved during
the visits of the authors to TU Wien, Mathematisches Forschungsinstitut Oberwolfach
(mini-workshop 2207c), and Università degli Studi di Torino. We would like to thank all
these institutions and their staff for providing excellent working conditions, support, and
hospitality.

2. Main results

We begin by introducing the basic notation. For β ∈ (0, 1) and a Borel subset Q of Rk,
k ∈ N, let Cβ(Q) be the corresponding Hölder space, that is, the set of functions f : Q→ R

such that

‖f‖Cβ(Q) := sup
x∈Q

|f (x)|+ [f ]Cβ(Q) := sup
x∈Q

|f (x)|+ sup
x 6=y∈Q

|f (x) − f (y)|

|x− y|β
<∞.

With a slightly unconventional notation we set C0(Q) to be the set of bounded measurable
functions (not necessarily continuous) equipped with the supremum norm. The definition
of the analogous spaces for R

d-valued functions is simply understood coordinate-wise.
For β ∈ [1,∞) we denote by Cβ(Q) the set of functions whose weak derivatives of order
0, 1, . . . , ⌊β⌋ all have representatives belonging to Cβ−⌊β⌋(Q). In the particular caseQ = R

d
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sometimes we will use a shorthand and write Cβ instead of Cβ(Rd) in order not to overcrowd
the notation.

Fix a probability space (Ω,F ,P) and on it a d-dimensional Lévy process L, equipped
with a right-continuous, complete filtration F = (Ft)t∈[0,1]. The conditional expectation
given Ft will be denoted by E

t. The Markov transition semigroup associated to the
process L is denoted by P = (Pt)t≥0, and the generator of P is denoted by L.

We fix α ∈ (0, 2], d ∈ N and impose the following assumptions on P and L.

Assumption H1 (gradient type bound on the semigroup). There exists a constant M
such that for any f ∈ C0(Rd), one has

‖∇Ptf‖C0(Rd) ≤Mt−1/α‖f‖C0(Rd), 0 < t ≤ 1. (2.1)

Assumption H2 (action of the generator). For δ = 0, 1, and any ε > 0 there exists a
constant M =M (δ, ε) such that for any f ∈ Cα+δ+ε(Rd) vanishing at infinity, one has

‖Lf‖Cδ(Rd) ≤M‖f‖Cα+δ+ε(Rd). (2.2)

Assumption H3 (moment conditions). For any p ∈ (0, α), ε > 0, there exists a constant
M =M (p, ε) such that

E[|Lt|
p ∧ 1] ≤Mt

p
α
−ε, 0 < t ≤ 1.

With some abuse of notation, in the sequel when we refer to the parameter M given
a process L satisfying the above assumptions, we understand the collection of all of the
M -s in H1-H3.

We provide a long list of examples of processes satisfying H1-H3 in Section 2.1, let us
here just briefly mention three of the most standard examples. First let α ∈ (0, 2) and
L be the standard d-dimensional α–stable process. That is, L is a Lévy process whose
characteristic function is

Eei〈λ,Lt〉 = e−tcα|λ|
α
, λ ∈ R

d, t ≥ 0,

for some constant cα > 0. In this case H1-H3 are satisfied. A similar example is the
d-dimensional cylindrical α–stable process, that is, a process L whose coordinates are d
independent 1-dimensional standard α–stable processes. Its characteristic funtion is given
by

Eei〈λ,Lt〉 = e−tc̃α
∑d

i=1
|λi|α , λ ∈ R

d, t ≥ 0,

for some constant c̃α > 0. In this case H1-H3 are also satisfied. Finally the most standard
of the most standard examples is the d–dimensional Brownian motion, which satisfies
H1-H3 with α = 2.

Convention on the operator ∧. The expression of the form c1 + c2 ∧ c3, where
ci ∈ R, will quite often appear in the paper. We will always mean that in this expression
the minimum is taken first and then the addition, thus it equals to c1 + (c2 ∧ c3) =
c1 +min(c2, c3).

Convention on constants. Throughout the paper N denotes a positive constant
whose value may change from line to line; its dependence is always specified in the corre-
sponding statement.
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We begin with the well-posedness of (1.1). As mentioned in the introduction, this
is essentially known, but since none of the available results cover the whole range of ex-
ponents and generality of driving processes considered herein, we provide a short proof
in the appendix. This is done for the sake of presentation as well as to highlight the
usefulness of stochastic sewing for well-posedness of SDEs with jumps; our method for
obtaining strong well-posedness is very different from [Pri12, Pri15, Pri18, CSZ18]. An-
other advantage of our proof strategy is that we get “for free” that the solution of (1.1) is
the limit of Picard’s successive approximations. While this fact is known for Lipschitz or
essentially Lipschitz drifts [Yam81, Theorem 1], [Tan92, Theorem 2], [NO23, Lemma 6.2
and Theorem 6.1], to the best of our knowledge, this result is new for Hölder continuous
drifts.

Define successively a sequence of approximations Y (0)(t) := η + Lt, t ∈ [0, 1],

Y (n+1)(t) = η +

∫ t

0

b(Y (n)(s)) ds + Lt, t ∈ [0, 1], n ∈ Z+.

Theorem 2.1. Suppose that L satisfies H1–H3. Let η be a F0–measurable random vector
taking values in R

d. Suppose additionally that

β >
(
1−

α

2

)
∨
(
2− 2α

)
(2.3)

and let b ∈ Cβ(Rd,Rd). Then equation (1.1) with the initial condition X0 = η has a unique
strong solution. Furthermore, this solution X is the limit of the Picard iterations, namely

‖X − Y (n)‖C0([0,1]) → 0 as n→ ∞ a.s. and in Lp(Ω), p ≥ 1.

Now we are ready to present our main results: the Lp convergence of the Euler–
Maruyama scheme with an explicit rate. In the statements below, X is a solution to (1.1)
with the initial condition x0 ∈ R

d, and Xn, n ∈ Z+, is its Euler approximation with the
initial condition xn0 ∈ R

d, which solves (1.3).

Theorem 2.2. Suppose that L satisfies H1–H3 and that (2.3) holds. Let b ∈ Cβ(Rd,Rd),
p > 2, ε > 0. Then there exists a constant N = N (d, α, β, p, ε,M, ‖b‖Cβ ) such that for all
n ∈ N the following bound holds:

∥∥∥‖X −Xn‖C0([0,1])

∥∥∥
Lp(Ω)

≤ Nn−(
1

2
+

β
α
∧ 1

2
)+ε +N |x0 − xn0 |. (2.4)

One can also show the almost sure convergence of Xn to X.

Corollary 2.3. Suppose that L satisfies H1–H3 and β satisfies (2.3). Let b ∈ Cβ(Rd,Rd).
Take xn0 = x0 for all n ∈ N. Then for any ε > 0, there exists an a.s. finite random
variable η such that for any n ∈ N, ω ∈ Ω

‖X(ω) −Xn(ω)‖C0([0,1]) ≤ η(ω)n−(
1

2
+

β
α
∧ 1

2
)+ε.

The next theorem gives strong Lp rate of convergence of approximations of additive
functionals of a Lévy process.
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Theorem 2.4. Suppose that L satisfies H1–H3. Let p ∈ [1,∞), ε > 0, θ ∈ [0, 1],
f ∈ Cθ(Rd,Rd). Then there exists a constant N = N (d, α, p, θ, ε,M ) such that for all
n ∈ N the following bound holds:

∥∥∥ sup
t∈[0,1]

∣∣∣
∫ t

0

f (Lr) dr −

∫ t

0

f (Lκn(r)) dr
∣∣∣
∥∥∥
Lp(Ω)

≤ N‖f‖Cθn−(
1

2
+ θ

α
∧ 1

2
)+ε. (2.5)

In the case p = 2 this rate is proven in [Alt21, Theorem 11]. For general p, a worse
rate 1

2
+ θ

2α ∧ 1

2
− ε is proved in [GK14, Theorem 2.2, Section 2.4]. For special cases of f

(indicator function or Dirac-δ) even central limit theorems are available in the literature,
see e.g. [AJP22, Theorem 2.3], and also [AL22].

The next theorem concerns approximations of additive functionals of the solution X
of an SDE driven by a Lévy process. In this case the underlying process X can not be
simulated directly, and one has to use the corresponding Euler approximation Xn. We
were not able to find any relevant results in this direction in the literature.

Theorem 2.5. Suppose that L satisfies H1–H3 and that (2.3) holds. Let b ∈ Cβ(Rd,Rd),
f ∈ Cθ(Rd,Rd), where

θ >
(
1−

α

2

)
∨
(
2− 2α

)
. (2.6)

Let p ∈ [1,∞), ε > 0. Then there exists a constant N = N (d, α, β, θ, p, ε,M, ‖b‖Cβ ) such
that for all n ∈ N the following bound holds:

∥∥∥ sup
t∈[0,1]

∣∣∣
∫ t

0

f (Xr) dr−

∫ t

0

f (Xn
κn(r)) dr

∣∣∣
∥∥∥
Lp(Ω)

≤ N‖f‖Cθn−(
1

2
+

β∧θ
α

∧ 1

2
)+ε+N‖f‖Cθ |x0−x

n
0 |.

(2.7)

The proofs of these statements are given in Section 4.

Remark 2.6. For any κ ∈ R
d, equations (1.1) and (1.3) can be rewritten as:

dXt = b̃(Xt) dt+ dL̃t; dXn
t = b̃(Xn

κn(t)) dt+ dL̃t,

where b̃(x) := b(x) − κ, L̃t := Lt + κt. Clearly, if b ∈ Cβ, then b̃ ∈ Cβ . Therefore, if
for some κ ∈ R

d the process (Lt + κt)t∈[0,1] satisfies H1–H3, then Theorems 2.2 and 2.5
and Corollary 2.3 hold (provided that all the other conditions on β, b, p are met).

Remark 2.7. Figure 1 shows the region where Theorem 2.2 guarantees the convergence of
the Euler scheme. Let us give some context for some of the different regimes of interest
for the exponents.

(i) In the regime α ∈ [2/3, 2], (2.3) coincides with the well-known condition (1.2), and
thus Theorem 2.2 establishes strong convergence in the optimal range of β. We
also remark that the threshold 2/3 appears in the theory of Lévy driven SDEs
from time to time, e.g., in [CSZ18, FKM21]. We are unsure whether there is some
connection between these appearances, or if this is just an instance of the “law of
small numbers”.

(ii) The result is new even in the case of smooth drift. In the regime β ≥ 1 the drift is
regular enough to make the strong well-posedness of (1.1) trivial. Furthermore, it
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is easy to get some rate of convergence from elementary arguments: assuming for
simplicity x0 = xn0 , by Gronwall’s lemma one has almost surely

sup
t∈[0,1]

|Xt −Xn
t | ≤ e[b]

C1‖b‖C1

∫ 1

0

(|Xn
t −Xn

κn(t)| ∧ 1) dt.

This yields for any p ≥ 1, ε > 0,

‖ sup
t∈[0,1]

|Xt −Xn
t |‖Lp(Ω) ≤ Nn−(

1

α
∧ 1

p
)+ε, (2.8)

with some constant N = N (α, p, ε,M, ‖b‖C1 ). This provides little control for high
moments of the error; further this does not allow to get almost sure rate of conver-
gence. This is markedly improved by Theorem 2.2 and Corollary 2.3.

(iii) Whenever β ≥ α/2 (which is enforced by (2.3) for all α ≤ 1), the minimum in β
α∧

1
2
is

the second term, and so in this case the expression for the Lp-rate simplifies to 1−ε.
Thus in this regime we recover the best possible (up to ε) rate for an Euler-type
approximation.

2

1

1/2 2/3 1 2

α

β

Figure 1: Convergence rates. is the required lower bound for β; is the classical
condition (1.2); shading indicates rate of Lp-convergence from 1/2 ( ) to 1 ( ).

In the case when L is a standard Brownian motion, Theorem 2.2 is consistent with
the results of [BDG21a] in the case H = 1/2.
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An implementation of the Euler–Maruyama scheme (1.3) would also require simulation
of the driving Lévy process L. This is a well–studied problem, and many techniques and
tricks are available in the literature. We do not discuss this problem here but rather
refer the reader to a concise collection of methods for simulating L provided in [Pap08,
Section 14].

2.1 Examples of Lévy processes satisfying the main assumptions

Let us present some examples of Lévy processes satisfying H1–H3. Denote by Φ the
characteristic exponent (symbol) of L, that is,

Eei〈λ,Lt〉 = e−tΦ(λ), λ ∈ R
d, t ≥ 0.

Recall that (see, e.g., [App09, Corollary 2.4.20]) Φ can be written in the form

Φ(λ) = −i〈a, λ〉 +
1

2
〈λ,Qλ〉+

∫

Rd

(1− ei〈λ,y〉 + i〈λ, y〉1|y|≤1) ν(dy), λ ∈ R
d,

where a ∈ R
d, Q ∈ R

d×d is a positive semidefinite matrix, and ν is a σ-finite measure on
R
d such that ν({0}) = 0 and

∫
Rd(1∧ |y|2) ν(dy) <∞. It is common to refer to (a,Q, ν) as

the generating triplet of L. We begin with general sufficient conditions on Φ, and then
move on to the specific examples. By ReΦ we mean the real part of Φ.

Proposition 2.8. Assume that for some α ∈ (0, 2), c1, c2, N > 0 the symbol Φ satisfies

c1|λ|
α ≤ ReΦ(λ) ≤ c2|λ|

α, when |λ| > N. (2.9)

Then the following hold:

(i) if α ∈ [1, 2), then H1 and H2 are satisfied for the process L;

(ii) if α ∈ (0, 1), then
∫
|y|≤1

|y|ν(dy) < ∞ and H1 and H2 are satisfied for the process

L̃t := Lt + κt, where κ = −a+
∫
|y|≤1

yν(dy).

Recall that thanks to Remark 2.6 it is sufficient in Theorem 2.2 to verify Assumptions
H1 and H2 for the shifted process L̃. The proof of Proposition 2.8 is provided in the
Appendix. To verify H3 the following result can be applied.

Proposition 2.9 ([DS15, Theorem 3.1(c)]). Assume that for some α ∈ (0, 2), C > 0 the
symbol Φ satisfies

|Φ(λ)| ≤ C|λ|α, λ ∈ R
d. (2.10)

Then for any p ∈ (0, α), there exists N = N (κ, α,C, d) such that

E|Lt|
p ≤ Ntp/α, t ∈ (0, 1].

One can also derive an explicit formula for the moments of L in terms of Φ [DS15,
p. 3865]; this is also very useful in verifying H3. Namely, for any p ∈ (0, 2), there exists a
constant N = N (p, d) such that for any t > 0

E|Lt|
p = N

∫

Rd

(1− Re e−tΦ(λ))|λ|−p−d dλ.

Now let us give an extensive list of examples of Lévy processes satisfying H1–H3. This
list is inspired by [Pri12, p. 425], [Pri18, Example 6.2], [SSW12, p. 1147] and [CSZ18,
Section 4]. All the corresponding proofs are placed in the Appendix.
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Example 2.10 (General non-degenerate α–stable process, α ∈ (0, 2)). Take Q = 0, a = 0,
and

ν(D) =

∫ ∞

0

∫

S

r−1−α
1D(rξ)µ(dξ)dr, D ∈ B(Rd),

where µ is a finite non-negative measure concentrated on the unit sphere S := {y ∈
R
d : |y| = 1} that is non-degenerate, i.e. its support is not contained in a proper linear

subspace of Rd. Then there exists κ ∈ R
d such that the shifted process L̃t := Lt + κt

satisfies H1–H3 (and, thus, Theorem 2.2 holds by Remark 2.6). If α ∈ [1, 2), then κ = 0;
if α ∈ (0, 1), then κ =

∫
|y|≤1

yν(dy) <∞

Example 2.11 (Standard isotropic d-dimensional α–stable process, α ∈ (0, 2)). This is a
special case of Example 2.10 with µ being the uniform measure on S. One can check that
in this case ν(D) = cα

∫
D |y|−d−α dy, D ∈ B(Rd) and κ = 0 for all values of α ∈ (0, 2).

Example 2.12 (Cylindrical α–stable process, α ∈ (0, 2)). Let L be a d-dimensional
process whose coordinates are independent standard 1-dimensional α-stable processes.
Then L satisfies H1–H3.

Example 2.13 (α-stable-type process, α ∈ (0, 2), see [SSW12, p. 1146]). Take Q = 0,
a = 0, and

ν(D) =

∫ ∞

0

∫

S

r−1−αρ(r)1D(rξ)µ(dξ)dr, D ∈ B(Rd), (2.11)

where µ is a symmetric (that is µ(D) = µ(−D) for any Borel set D) non-degenerate finite
non-negative measure concentrated on S and ρ : (0,∞) → R+ is a measurable function
such that for some constants C,C1, C2 > 0 one has

1[0,C](r) ≤ C1ρ(r) ≤ C2. (2.12)

Then L satisfies H1–H3.

Example 2.14 (α-stable tempered process, α ∈ (0, 2)). This is a special case of Example 2.13
with ρ(r) = e−cr with some c > 0.

Example 2.15 (Truncated α-stable process, α ∈ (0, 2)). This is a special case of Example 2.13
with ρr = c1[0,1] with some c > 0 and µ being the uniform measure on S. One can check
that in this case ν(D) = cα

∫
D∩{y:|y|≤1} |y|

−d−α dy, D ∈ B(Rd)

Example 2.16 (Relativistic α-stable process, α ∈ (0, 2), [CMS90, CVST20]). Take L
with symbol Φ(λ) = (|λ|2+C2/α)α/2−C, with some parameter C > 0. It satisfies H1–H3.

Example 2.17 (Brownian motion). If L is the standard d–dimensional Brownian motion,
then it satisfies H1–H3 with α = 2.

Example 2.18 (Linear combinations). (i) Let L(1), L(2) be two independent Lévy pro-
cesses. Assume that the process L(i), i = 1, 2, satisfies H1–H3 with α = αi. Then
the process L(1) + L(2) satisfies H1–H3 with α = α1 ∨ α2.

(ii) In particular, if L is a sum of a d–dimensional Brownian motion and the standard

α–stable process, then the rate in (2.4) is n−( 1
2
+

β
2
∧ 1

2
)+ε for b ∈ Cβ, β > 0.
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(iii) In general, if L has a non-degenerate diffusion part (that is, Q is positive definite) and
for some γ > 0 we have

∫
{|y|>1} |y|

γν(dy) < ∞, then the statement of Theorem 2.2

is valid with α = 2. This corresponds to the rate n−( 1
2
+

β
2
∧ 1

2
)+ε. This significantly

improves [KS19b, Remark 2.3].

Remark 2.19. Let d = 1 and take Q = 0, ν(D) = cα
∫
D y

−1−α
1(y > 0) dy, D ∈ B(R),

α ∈ (0, 1), a =
∫
|y|≤1

yν(dy) <∞. Then the process L satisfies H1–H3 (since it is a special

case of (2.10)) and is increasing ([App09, Theorem 1.3.15]). Thus, regularization by noise
can occur for monotone drivers as well.

Finally, let us present a simple example of a class of Lévy processes for which regu-
larization by noise cannot occur. Suppose that a = 0, Q = 0, ν(Rd) < ∞. Then, the
corresponding process L is a pure jump process and it has only finitely many jumps on
the interval [0, 1] [Sat13, Theorem 21.3]. Denoting its first jumping time by T (ω), we
see that on the time interval [0, T (ω)], equation (1.1) becomes dXt = b(Xt)dt. Clearly, if
b ∈ Cβ, β < 1, this equation might have infinitely many or no solutions. Thus, for such
Lévy noises the original equation (1.1) is not well-posed.

3. Preliminaries

Before we proceed to the proofs of our main results, let us collect a number of useful
methods and bounds which we are going to apply later.

For a random variable ξ, a sub-σ-algebra G ⊂ F , and p ≥ 1 we introduce the quantity

‖ξ‖Lp(Ω)|G := (E[|ξ|p|G])
1

p , (3.1)

which is a G-measurable non-negative random variable. It is clear that

‖ξ‖Lp(Ω) = ‖‖ξ‖Lp(Ω)|G‖Lp(Ω).

Note that if p ≥ 1, G ⊂ H are σ-algebras, then the following simple bounds hold almost
surely

‖E[ξ|H]‖Lp(Ω) ≤ ‖ξ‖Lp(Ω); ‖E[ξ|H]‖Lp(Ω)|G ≤ ‖ξ‖Lp(Ω)|G . (3.2)

These quantities are not norms, but rather G-measurable nonnegative random variables.
To simplify the presentation, any inequality between such expressions is understood in
the almost sure sense.

3.1 Conditional shifted stochastic sewing lemma

An important tool to obtain Theorem 2.2 is an adjusted version of [Ger20, Lemma 2.2],
which in turn is based on Lê’s stochastic sewing lemma [Lê20]. We need the following
notation. For 0 ≤ S ≤ T we denote a modified simplex

∆[S,T ] := {(s, t) : S ≤ s < t ≤ T, s− (t− s) ≥ S}. (3.3)

For a function f : ∆[S,T ] → R
d and a triplet of times (s, u, t) such that S ≤ s ≤ u ≤ t ≤ T ,

we denote
δfs,u,t := fs,t − fs,u − fu,t.

The conditional expectation given Fs is denoted by E
s.
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Lemma 3.1. Let 0 ≤ S < T ≤ 1, p ∈ [2,∞) and let (As,t)(s,t)∈∆[S,T ]
be a family of random

variables in Lp(Ω,Rd) such that As,t is Ft-measurable. Let G ⊂ FS be a σ-algebra. Suppose
that for some ε1, ε2, ε3 > 0 and G-measurable random variables Γ1,Γ2,Γ3 ≥ 0 the bounds

‖As,t‖Lp(Ω)|G ≤ Γ1|t− s|1/2+ε1 , (3.4)

‖Es−(t−s)δAs,u,t‖Lp(Ω)|G ≤ Γ2|t− s|1+ε2 + Γ3|t− s|1+ε3 (3.5)

hold for all (s, t) ∈ ∆[S,T ] and u = (s+ t)/2.
Further, suppose that there exists a process A = {At : t ∈ [S, T ]} such that for any

S ≤ s ≤ t ≤ T one has

At −As = lim
m→∞

m−1∑

i=1

As+i t−s
m
,s+(i+1) t−s

m
in probability. (3.6)

Then there exist deterministic constants K1,K2 > 0, which depend only on ε1, ε2, ε3, p,
and d such that for any S ≤ s ≤ t ≤ T we have

‖At −As‖Lp(Ω)|G ≤ K1Γ1|t− s|1/2+ε1 +K2Γ2|t− s|1+ε2 +K3Γ3|t− s|1+ε3 . (3.7)

The proof of Lemma 3.1 is given in the appendix.

3.2 Weighted John-Nirenberg inequality

Proposition 3.2. Let 0 ≤ S ≤ T and let A : Ω × [S, T ] → R
d, ξ : Ω × [S, T ] → R+ be

stochastic processes adapted to the filtration (Ft)t∈[S,T ]. Assume additionally that A is
continuous and At ∈ L1(Ω) for all t ∈ [S, T ]. Suppose that for any S ≤ s ≤ t ≤ T one
has

E
s|At −As| ≤ ξs a.s. (3.8)

Then for any p ≥ 1 there exists a constant N = N (p) such that for any S ≤ s ≤ t ≤ T

‖ sup
r∈[s,t]

|Ar −As| ‖Lp(Ω)|Fs
≤ N‖ sup

r∈[s,t]
ξr ‖Lp(Ω)|Fs

. (3.9)

The above proposition is very close to [Lê22a, Theorem 1.3], and the only difference
is that the condition (3.8) is imposed there for all stopping times s(ω), t(ω) ∈ [S, T ]. On
the other hand, we only assume that (3.8) holds for deterministic s, t ∈ [S, T ]; this will be
crucial later in the proofs of Theorems 2.2, 2.4 and 2.5. For the case when ξ is a constant,
[Lê22b, Proposition 2.2] shows that if (3.8) is satisfied for deterministc s, t, then it is
also satisfied for s, t being stropping times. In general case, this seems to be not true.
Therefore, for the proof of Proposition 3.2, we adapt the argument from [Lê22a, Theorem
1.3]. This is done in the appendix.

3.3 Heat kernel and related bounds

Recall that P is the Markov transition semigroup associated to the process L. Quite
often we use the following simple observation. For any measurable bounded function
f : Rd → R

d, 0 ≤ s ≤ t, and any Fs-measurable random vector ξ one has

E
sf (Lt + ξ) = Pt−sf (Ls + ξ). (3.10)

We now formulate some consequences of H1-H3 in the form that they are actually used
in the proofs.



Proof of the main results 13

Proposition 3.3. Suppose that H1 and H2 hold. Then for every ε > 0, β ≥ 0, ρ as
below, µ ∈ (ε, 1 + ε], µ ≥ (β − ρ)/α there exists a constant N = N (α, β, µ, ε, ρ) such that
the following holds for any f ∈ Cβ:

‖Ptf‖Cρ ≤ N‖f‖Cβ t
(β−ρ)∧0

α , 0 < t ≤ 1, ρ ≥ 0; (3.11)

‖Ptf − Psf‖Cρ ≤ N‖f‖Cβs
β−ρ
α

−µ(t− s)µ−ε, 0 ≤ s < t ≤ 1, ρ = 0, 1. (3.12)

The proof of this proposition is mostly technical and is provided in the appendix.

Assuming that L satisfies H3, it is immediate to see that this implies that for any
m > 0, p ≥ 1, ε > 0 there exists a constant N = N (p,m, ε, α) such that

‖|Lt|
m ∧ 1‖Lp(Ω) ≤ Nt

(m
α
∧ 1

p
)−ε
, t ∈ [0, 1]. (3.13)

We further recall two elementary inequalities:

|f (x1) − f (x2)| ≤ |x1 − x2|‖f‖C1 (3.14)

|f (x1) − f (x2) − f (x3) + f (x4)| ≤ |x1 − x2 − x3 + x4|‖f‖C1 + |x1 − x2||x1 − x3|‖f‖C2

(3.15)

for any x1, x2, x3, x4 ∈ R
d and any f from C1 or C2, respectively.

4. Proof of the main results

We will denote

ϕ := X − L, ϕn = Xn − L, n ∈ Z+. (4.1)

We consider the following decomposition of the difference between the additive functional
of the process and its estimate. For 0 ≤ s ≤ t ≤ 1, n ∈ Z+, f ∈ Cβ we write

∫ t

s
f (Xr) dr −

∫ t

s
f (Xn

κn(r)) dr =

∫ t

s
f (Lr + ϕr) − f (Lr + ϕnr ) dr

+

∫ t

s
f (Lr + ϕnr ) − f (Lr + ϕnκn(r)) dr

+

∫ t

s
f (Lr + ϕnκn(r)) − f (Lκn(r) + ϕnκn(r)) dr

=: Ef,n,1s,t + Ef,n,2s,t + Ef,n,3s,t . (4.2)

Clearly, for f = b we get the increment of the difference between the process and its Euler
approximaiton:

(Xt −Xn
t ) − (Xs −Xn

s ) =

∫ t

s
b(Xr) dr −

∫ t

s
b(Xn

κn(r)) dr = Eb,n,1s,t + Eb,n,2s,t + Eb,n,3s,t . (4.3)

Remark 4.1. This decomposition differs from the one in e.g. [BDG21a]: therein, Eb,n,2 +
Eb,n,3 can be treated as one term, and by Girsanov’s theorem, the perturbation ϕn can in
fact be transformed away. Such trick is not available in the Lévy case due to the lack of
an appropriate Girsanov’s theorem.
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Our goal is to bound the Lp(Ω) norm of the left-hand side of (4.3). However, doing

this directly for the term Eb,n,3s,t would lead to a rate that deteriorates for large p, see
Remark 4.8 below. Therefore, we bound a conditional L2-“norms” instead and eventually
after buckling apply John-Nirenberg inequality. First, in Section 4.1 we prove certain a
priori bounds for ϕ,ϕn. Then in Section 4.2 we produce general bounds for conditional
“norms” of integrals of irregular functions along the perturbed Lévy process, which are
then applied to bound Ef,n,is,t in Section 4.3. Finally, these bounds are combined for the
proofs of the main theorems in Section 4.4.

4.1 A priori bounds

Let f : [0, 1]×Ω → R
d be a measurable bounded function adapted to the filtration F. Let

γ ∈ (0, 1], p ≥ 2, 0 ≤ S ≤ T ≤ 1, let G ⊂ FS be a σ-algebra. We consider the following
quantities of f :

‖f‖C 0
p |G,[S,T ] := sup

t∈[S,T ]

‖f (t)‖Lp(Ω)|G;

[f ]C γ
p |G,[S,T ] := sup

s,t∈[S,T ]

‖f (t) − f (s)‖Lp(Ω)|G

|t− s|γ
; (4.4)

[f ]C
γ
p |G,[S,T ] := sup

s,t∈[S,T ]

‖‖f (t) − E
sf (t)‖L1(Ω)|Fs

‖Lp(Ω)|G

|t− s|γ
. (4.5)

Part (iii) of the following lemma is the main a priori estimate on the “stochastic
regularity” of ϕ, ϕn.

Lemma 4.2. (i) Let q ≥ 1. Let G ⊂ F be a σ-algebra. Let Y,Z ∈ Lq(Ω) be random
variables and suppose that Z in G–measurable. Then

‖Y − E[Y |G]‖Lq (Ω)|G ≤ 2‖Y − Z‖Lq(Ω)|G, a.s. (4.6)

(ii) For any 0 ≤ s ≤ t ≤ 1, q ≥ 1, measurable function f : [s, t]×Ω → R
d adapted to the

filtration F, γ ∈ (0, 1), σ-algebra G ⊂ Fs one has

[f ]C
γ
q |G,[s,t] ≤ 2[f ]C γ

q |G,[s,t]. (4.7)

(iii) Let q ≥ 1, ε > 0. Assume that β > 1−α and that H3 holds. There exists a constant
N = N (β, ‖b‖Cβ , α, ε, q,M ) such that for 0 ≤ s ≤ t ≤ 1 one has a.s.

‖ϕt − E
sϕt‖Lq(Ω)|Fs

≤ N |t− s|1+(
β∧1

α
∧ 1

q
)−ε

; (4.8)

‖ϕnt − E
sϕnt ‖Lq(Ω)|Fs

≤ N |t− s|1+(
β∧1

α
∧ 1

q
)−ε. (4.9)

Proof. (i) We have

‖Y − E[Y |G]‖Lq(Ω)|G ≤ ‖Y − Z‖Lq(Ω)|G + ‖E[Y |G] − Z‖Lq(Ω)|G

= ‖Y − Z‖Lq(Ω)|G + ‖E[Y − Z|G]‖Lq (Ω)|G

≤ 2‖Y − Z‖Lq(Ω)|G,

where the last inequality follows from (3.2).
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(ii) By part (i) of the lemma and Jensen’s inequality we have for any s ≤ s′ ≤ t′ ≤ t

‖‖f (t′)−E
s′f (t′)‖L1(Ω)|Fs′

‖Lq(Ω)|G ≤ 2‖‖f (t′)−f (s′)‖L1(Ω)|Fs′
‖Lq(Ω)|G ≤ 2‖f (t′)−f (s′)‖Lq(Ω)|G ,

where we used that G ⊂ Fs ⊂ Fs′ . The desired result follows now from the definitions of
the seminorms (4.4) and (4.5).

(iii) Without loss of generality, we can assume that β ≤ 1. Suppose that (4.8) holds
for some m ≥ 0 in place of 1 + (

β∧1
α ∧ 1

q ) − ε. This is certainly true for m = 0 thanks
to the fact that b is bounded; we proceed now by induction on m. We apply (4.6) with
G = Fs, Y = ϕt, Z = ϕs +

∫ t
s b(Ls + E

sϕr) dr. We get

‖ϕt − E
sϕt‖Lq(Ω)|Fs

≤ 2
∥∥∥ϕt − ϕs −

∫ t

s
b(Ls + E

sϕr) dr
∥∥∥
Lq(Ω)|Fs

= 2
∥∥∥
∫ t

s
(b(Lr + ϕr) − b(Ls + E

sϕr)) dr
∥∥∥
Lq(Ω)|Fs

≤ N
∥∥∥
∫ t

s
(|Lr − Ls|

β + |ϕr − E
sϕr|

β) ∧ 1 dr
∥∥∥
Lq(Ω)|Fs

≤ N

∫ t

s
(‖|Lr − Ls|

β ∧ 1‖Lq(Ω)|Fs
+ ‖ϕr − E

sϕr‖
β
Lq(Ω)|Fs

) dr.

Using (3.13), the independence of Lr −Ls from Fs, and the induction hypothesis, we get
a.s.

‖ϕt − E
sϕt‖Lq(Ω)|Fs

≤ N |t− s|1+(
β
α
∧ 1

q
∧βm)−ε.

It is elementary to see that if ε > 0 is small enough, then the recursion m0 = 0, mi+1 =
1+ (

β
α ∧ 1

q ∧ βmi)− ε reaches 1 + (
β
α ∧ 1

q )− ε in finitely many steps (recall that α > 1− β
and thus α > (1 − β)/(1 − ε) for small enough ε > 0). Recalling our initial assumption
β ≤ 1, we get (4.8).

Inequality (4.9) is obtained by a similar argument, though one has to be a bit more
careful because now Lκn(r) − Lκn(s) is not independent of Fs. For fixed s ∈ [0, 1], define
s′ to be the smallest grid point which is bigger or equal to s, that is, s′ := ⌈ns⌉n−1. It is
crucial to note that ϕns′ is Fs measurable.

We proceed by induction as before and assume that (4.9) holds for some m ≥ 0. If
s ≤ t < s′, then ϕnt is Fs–measurable. Hence ϕnt = E

sϕnt and the left–hand side of (4.9)
is zero. Therefore it remains to consider the case t ≥ s′. In this case, using again (4.6)
with G = Fs, Y = ϕnt , Z = ϕns′ +

∫ t
s′ b(Ls + E

sϕnκn(r)) dr, we deduce

‖ϕnt − E
sϕnt ‖Lq(Ω)|Fs

≤ 2
∥∥∥ϕnt − ϕns′ −

∫ t

s′
b(Ls + E

sϕnκn(r)) dr
∥∥∥
Lq(Ω)|Fs

= 2
∥∥∥
∫ t

s′
(b(Lκn(r) + ϕnκn(r)) − b(Ls + E

sϕnκn(r))) dr
∥∥∥
Lq(Ω)|Fs

≤ N
∥∥∥
∫ t

s′
(|Lκn(r) − Ls|

β + |ϕnκn(r) − E
sϕnκn(r)|

β) ∧ 1 dr
∥∥∥
Lq(Ω)|Fs

.

Note that for r ≥ s′, κn(r) ≥ s′ ≥ s, and therefore Lκn(r) −Ls is independent of Fs. From
here we obtain (4.9) exactly as before.

Remark 4.3. The reason for the non-standard portion of our main assumption (2.3) (con-
dition β > 2− 2α) and the strange threshold 2/3 in Remark 2.7 is the appearance of 1/q
in (4.8)-(4.9).
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4.2 General bounds

Since Ef,n,1 and Ef,n,2 in decomposition (4.2) have similar forms (difference of averages of
f along L with two different perturbations), we begin with the following general bound
that can be applied to both.

Lemma 4.4. Let p ∈ [2,∞). Assume H1-H3. Let τ, γ, ε0 ∈ (0, 1], θ > 0, be constants
satisfying

θ ∈ (1−
α

2
, 2],

θ − 2

α
+ τ > 0, γ +

θ − 1

α
> 0. (4.10)

Let f ∈ Cθ. Let g, h : [0, 1] × Ω → R
d be bounded, adapted, measurable functions and

suppose that there exist Cg, Ch > 0 such that for any 0 ≤ s ≤ t ≤ 1 one has a.s.

E
s|gt − E

sgt| ≤ Cg|t− s|τ , (4.11)

‖ht − E
sht‖L1(Ω) ≤ Ch|t− s|ε0 . (4.12)

Then there exists a constant N = N (α, θ, p, d, γ, τ ) such that for any 0 ≤ S ≤ T ≤ 1 and
any σ-algebra G ⊂ FS one has the bound

∥∥∥
∫ T

S
f (Lr + gr) − f (Lr + hr) dr

∥∥∥
Lp(Ω)|G

≤ N‖f‖Cθ (T − S)1+
(θ−1)∧0

α ‖g − h‖C 0
p |G,[S,T ]

+N‖f‖Cθ (T − S)γ+
(θ−1)∧0

α
+1[g − h]C

γ
p |G,[S,T ]

+N‖f‖CθCg(T − S)1+
θ−2

α
+τ‖g − h‖C 0

p |G,[S,T ].

(4.13)

Remark 4.5. It is pivotal that the seminorm appearing in the right–hand side of (4.13)
is [g − h]C

γ
p |G,[S,T ] rather than a much less precise seminorm [g − h]C γ

p |G,[S,T ] (recall
Lemma 4.2(ii) and the definitions of the seminorms in (4.5) and (4.4)). This will be
crucial for bounding Ef,n,2, see Remark 4.10 below.

Proof. Fix 0 ≤ S ≤ T ≤ 1. Put

As,t := E
s−(t−s)

∫ t

s
f (Lr + E

s−(t−s)gr) − f (Lr + E
s−(t−s)hr) dr, (s, t) ∈ ∆[S,T ];

At :=

∫ t

0

f (Lr + gr) − f (Lr + hr) dr, t ∈ [S, T ].

Let us verify that the processes A, A satisfy all the conditions of the stochastic sewing
lemma (Lemma 3.1).

Let (s, t) ∈ ∆[S,T ]. Then recalling (3.10) and (3.14), we see that

|As,t| ≤

∫ t

s
|Pr−(s−(t−s))f (Ls−(t−s) + E

s−(t−s)gr) − Pr−(s−(t−s))f (Ls−(t−s) + E
s−(t−s)hr)| dr

≤

∫ t

s
‖Pr−(s−(t−s))f‖C1 |Es−(t−s)(gr − hr)| dr.

Thus, by (3.11) (applied with ρ = 1 and β = θ) and (3.2), we have

‖As,t‖Lp(Ω)|G ≤ ‖f‖Cθ

∫ t

s
(r − s)

(θ−1)∧0

α ‖Es−(t−s)(gr − hr)‖Lp(Ω)|G dr
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≤ N‖f‖Cθ (t− s)1+
(θ−1)∧0

α sup
r∈[S,T ]

‖Es−(t−s)(gr − hr)‖Lp(Ω)|G

≤ N‖f‖Cθ (t− s)1+
(θ−1)∧0

α sup
r∈[S,T ]

‖gr − hr‖Lp(Ω)|G

= N‖f‖Cθ (t− s)1+
(θ−1)∧0

α ‖g − h‖C 0
p |G,[S,T ].

Here in the penultimate line we used that G ⊂ FS ⊂ Fs−(t−s). Note that by the assumption
θ > 1 − α/2, we have 1 + θ−1

α > 1/2. Therefore, condition (3.4) is satisfied with Γ1 =
N‖f‖Cθ‖g − h‖C 0

p |G,[S,T ].

Now let us verify condition (3.5). As required, we take (s, t) ∈ ∆[S,T ], and u := (t+s)/2.
It will be convenient to denote s1 := s− (t− s), s2 := s− (u− s), s3 := s, s4 := u, s5 := t.
One has s1 ≤ s2 ≤ s3 ≤ s4 ≤ s5. Then we deduce

E
s−(t−s)δAs,u,t

= E
s1δAs3,s4,s5

= E
s1

∫ s4

s3

(f (Lr + E
s1gr) − f (Lr + E

s1hr) − f (Lr + E
s2gr) − f (Lr + E

s2hr)) dr

+ E
s1

∫ s5

s4

(f (Lr + E
s1gr) − f (Lr + E

s1hr) − f (Lr + E
s3gr) − f (Lr + E

s3hr)) dr

=: I1 + I2. (4.14)

Here in the term I2 we used the identity u− (t− s) = s = s3. We begin with the analysis
of I1. Recalling (3.10), we obviously have

I1 = E
s1E

s2

∫ s4

s3

(f (Lr + E
s1gr) − f (Lr + E

s1hr) − f (Lr + E
s2gr) − f (Lr + E

s2hr)) dr

= E
s1

∫ s4

s3

(Pr−s2f (Ls2 + E
s1gr) − Pr−s2f (Ls2 + E

s1hr)

− Pr−s2f (Ls2 + E
s2gr) −Pr−s2f (Ls2 + E

s2hr)) dr.

Applying (3.15) and (3.11) we see that

|I1| ≤ ‖f‖Cθ

∫ s4

s3

(r − s2)
(θ−1)∧0

α E
s1 |Es1(gr − hr) − E

s2(gr − hr)| dr

+ ‖f‖Cθ

∫ s4

s3

(r − s2)
θ−2

α |Es1(gr − hr)| E
s1 |Es2gr − E

s1gr| dr. (4.15)

Using conditional Jensen’s inequality and the assumption (4.11), we see that a.s.

E
s1 |Es2gr − E

s1gr| = E
s1 |Es2(gr − E

s1gr)| ≤ E
s1 |gr − E

s1gr| ≤ Cg|r − s1|
τ . (4.16)

Similarly,

E
s1 |Es2(gr − hr) − E

s1(gr − hr)| = E
s1 |Es2((gr − hr) − E

s1(gr − hr))|

≤ E
s1 |(gr − hr) − E

s1(gr − hr)|. (4.17)

Combining (4.15), (4.16), (4.17), and using the Minkowski inequality together with (3.2)
and the fact that G ⊂ Fs1 , we finally get

‖I1‖Lp(Ω)|G ≤ N‖f‖Cθ (s4 − s1)γ+
(θ−1)∧0

α
+1[g − h]C

γ
p |G,[S,T ]
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+N‖f‖CθCg(s3 − s2)
θ−2

α (s4 − s3)(s4 − s1)τ‖g − h‖C 0
p |G,[S,T ]

≤ N‖f‖Cθ (t− s)γ+
(θ−1)∧0

α
+1[g − h]C

γ
p |G,[S,T ]

+N‖f‖CθCg(t− s)
θ−2

α
+1+τ‖g − h‖C 0

p |G,[S,T ], (4.18)

where the last inequality follows from the fact s3 − s2 = s4 − s3 = (t− s)/2 and s4 − s1 =
(u − s) + (t − s) = 3

2
(t − s). By exactly the same argument (we just need to take s3 in

place of s2, s4 in place of s3 and s5 in place of s4), we get the exact same bound for I2,
and then by (4.14), for E

s−(t−s)δAs,u,t as well. Since by the assumptions of the lemma
γ + (θ−1)∧0

α + 1 > 1 and θ−2
α + 1 + τ > 1, we see that condition (3.5) is satisfied with

Γ2 = N‖f‖Cθ [g − h]C
γ
p |G,[S,T ] and Γ3 = N‖f‖CθCg‖g − h‖C 0

p |G,[S,T ].

It remains to verify condition (3.6). Let s, t ∈ [S, T ], s < t. Fix m ∈ N. Denote
ti := s+ i t−sm , i = 0, . . . ,m. Note that ti − (ti+1 − ti) = ti−1. Then we have

|At −As −
m−1∑

i=1

Ati,ti+1
| ≤

m−1∑

i=1

∫ ti+1

ti

|f (Lr + gr) − Pr−ti−1
f (Lti−1

+ E
ti−1gr) |dr

+

m−1∑

i=1

∫ ti+1

ti

|f (Lr + hr) − Pr−ti−1
f (Lti−1

+ E
ti−1hr) |dr

+

∫ t1

t0

(|f (Lr + gr)|+ |f (Lr + hr)|) dr

=: Im,1 + Im,2 + Im,3. (4.19)

Using (3.12) (with ρ = 0, θ ∧ α in place of β, and µ = θ∧α
α ) we easily deduce that for any

ε > 0

|f (Lr + gr) − Pr−ti−1
f (Lti−1

+ E
ti−1gr) |

≤ ‖f‖Cθ∧1(|Lr − Lti−1
|θ∧1 ∧ 1) + ‖f‖Cθ∧1 |gr − E

ti−1gr|
θ∧1 + ‖f‖Cθ∧α |r − ti−1|

θ∧α
α

−ε.

This together with (3.13), (4.11) and the Minkowski inequality yields

‖Im,1‖L1(Ω) ≤ N (1 + Cg)‖f‖Cθ (t− s)
1

m( θ∧1

α
∧((θ∧1)τ )∧1)−ε

. (4.20)

Similarly, with the help of (4.12) we bound

‖Im,2‖L1(Ω) ≤ N (1 +Ch)‖f‖Cθ (t− s)
1

m( θ∧1

α
∧((θ∧1)ε0)∧1)−ε

. (4.21)

Finally, it is obvious that |Im,3| ≤ Nm−1‖f‖C0 . Therefore, substituting this, (4.20) and
(4.21) into (4.19) and choosing ε > 0 sufficiently small, we see that the sum

∑m−1

i=1 Ati,ti+1

converges to At −As in L1(Ω) and hence in probability as m→ ∞. Hence, (3.6) holds.

Thus, all the conditions of Lemma 3.1 are satisfied. The claimed bound (4.13) follows
now from (3.7).

Remark 4.6. We now understand why it was essential to use the shifted stochastic sewing
lemma rather than the usual stochastic sewing lemma. Indeed, the exponent in the second
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term in (4.15), θ−2

α , can be less than −1. Had we applied the usual stochastic sewing

lemma, we would have been required to impose θ−2
α > −1 to ensure integrability. Later,

when we apply Lemma 4.4 for f = b and θ = β, this would have led to the suboptimal
condition β > 2− α rather than β > 1− α

2
. This issue is effectively resolved through the

use of shifting.

Next, we obtain a general quadrature estimate. It will be crucial for bounding the
third error term Ef,n,3 in decomposition (4.2) as well as for the proof of Theorem 2.4. An
analogue of such a bound in the case of fractional Brownian motion in place of L and 0
in place of g is obtained in [BDG21a, Lemma 4.1], with rate that is consistent with (4.25)
below.

Lemma 4.7. Assume H1-H3. Let g : [0, 1] × Ω → R
d be a bounded measurable function,

let f ∈ Cθ, θ ∈ [0, 1]. Suppose that the following holds:

(i) there exist constants τ > 0, Cg > 0 such that

τ >
1

2
+

1

α
+
θ

α
∧
1

2
−
θ

α
; (4.22)

E
s|Etgr − E

sgr| ≤ Cg|r − s|τ , 0 ≤ s ≤ r ≤ 1, t ∈ [s, 1]; (4.23)

(ii) for some n ∈ N and all t ∈ [0, 1]

gκn(t) is F(κn(t)− 1

n
)∨0 measurable. (4.24)

(iii) g ≡ 0 or θ > 0.

Then for any ε ∈ (0, 1/2) there exists a constant N = N (α, θ, d, τ, ε,M ) independent
of n such that for any {0 ≤ S ≤ T ≤ 1}, and any σ-algebra G ⊂ Fκn(S) the following
holds:

∥∥∥
∫ T

S
(f (Lr + gκn(r)) − f (Lκn(r) + gκn(r))) dr

∥∥∥
L2(Ω)|G

≤ N‖f‖Cθ (1 +Cg)n−(
1

2
+ θ

α
∧ 1

2
)+2ε|T − S|

1

2
+ε. (4.25)

Proof. To simplify notations, set ψs := gκn(s). We fix 0 ≤ S ≤ T ≤ 1 and apply Lemma 3.1
for the processes

As,t := E
s−(t−s)

∫ t

s
(f (Lr + E

s−(t−s)ψr) − f (Lκn(r) + E
s−(t−s)ψr)) dr, (s, t) ∈ ∆[S,T ];

(4.26)

At :=

∫ t

0

(f (Lr + ψr) − f (Lκn(r) + ψr)) dr, t ∈ [S, T ].

First we verify (3.4). If (s, t) ∈ ∆[S,T ] and s ≤ t ≤ s + 2/n, then we have from (3.13)
(with m = θ and p = 2)

‖As,t‖L2(Ω)|G ≤

∫ t

s
‖f (Lr + E

s−(t−s)ψr) − f (Lκn(r) + E
s−(t−s)ψr)‖L2(Ω)|G dr
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≤ ‖f‖Cθ

∫ t

s
‖|Lr − Lκn(r)|

θ ∧ 1‖L2(Ω)|G dr

≤ N‖f‖Cθ |t− s|n−(
θ
α
∧ 1

2
)+ε

≤ N‖f‖Cθ |t− s|
1

2
+εn−(

1

2
+ θ

α
∧ 1

2
)+2ε, (4.27)

where we used in the penultimate inequality that G ⊂ Fκn(S) and thus Lr − Lκn(r) is
independent of G. The last inequality follows from the fact that t− s ≤ 2/n.

Now consider the case t ≥ s+2/n. Then we note that r ≥ s implies κn(r) ≥ s− (t−s),
and in fact κn(r) − (s− (t− s)) ≥ (t− s)/2. Recalling (3.10), we see that

As,t =

∫ t

s
(Pr−(s−(t−s)) − Pκn(r)−(s−(t−s)))f (Ls−(t−s) + E

s−(t−s)ψr) dr.

Applying (3.12) with ρ = 0, θ ∧ ((1− ε)α) in place of β, µ = ( θα ∧ 1
2
)+ 1

2
− ε, we get (note

that all the assumptions of Proposition 3.3 are satisfied with such choice of parameters)

|As,t| ≤ N‖f‖Cθ

∫ t

s
n−(

1

2
+ θ

α
∧ 1

2
)+2ε|t− s|(

θ
α
∧(1−ε))−( θ

α
∧ 1

2
)− 1

2
+ε dr

≤ N‖f‖Cθn−(
1

2
+ θ

α
∧ 1

2
)+2ε|t− s|

1

2
+ε,

which implies

‖As,t‖L2(Ω)|G ≤ N‖f‖Cθn−(
1

2
+ θ

α
∧ 1

2
)+2ε|t− s|

1

2
+ε.

Recalling (4.27), we see that the condition (3.4) is satisfied with Γ1 = N‖f‖Cθn−(
1

2
+ θ

α
∧ 1

2
)+2ε

and ε1 = ε.
Moving on to the condition (3.5), take (s, t) ∈ ∆[S,T ] and u := (t + s)/2. As before,

denote s1 := s − (t − s), s2 := s − (u − s), s3 := s, s4 := u, s5 := t. We need to bound
E
s−(t−s)δAs,u,t = E

s1δAs3,s4,s5 . By a standard computation we see that

E
s1δAs3,s4,s5 = E

s1E
s2

∫ s4

s3

f (Lr + E
s1ψr) − f (Lκn(r) + E

s1ψr)

− f (Lr + E
s2ψr) + f (Lκn(r) + E

s2ψr) dr

+ E
s1E

s3

∫ s5

s4

f (Lr + E
s1ψr) − f (Lκn(r) + E

s1ψr)

− f (Lr + E
s3ψr) + f (Lκn(r) + E

s3ψr) dr

=: I1 + I2. (4.28)

The two terms are treated in exactly the same way, so we only discuss bounding the first
one. When |t− s| ≥ 4/n, then for r ≥ s3 we have

κn(r) − s2 ≥ s3 − 1/n − s2 ≥ (t− s)/4 > 0. (4.29)

Therefore we first write

I1 = E
s1

∫ s4

s3

(Pr−s2 − Pκn(r)−s2)f (Ls2 + E
s1ψr)

− (Pr−s2 − Pκn(r)−s2)f (Ls2 + E
s2ψr) dr.
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Applying (3.12) with ρ = 1, θ in place of β, µ = 1

2
+ θ

α ∧ 1

2
, and using (4.29) yields

(we see again that all the assumptions of Proposition 3.3 are satisfied with such choice of
parameters)

|I1| ≤

∫ s4

s3

‖(Pr−s2 − Pκn(r)−s2)f‖C1E
s1 |Es1ψr − E

s2ψr| dr

≤ N‖f‖Cθ

∫ s4

s3

n−(
1

2
+ θ

α
∧ 1

2
)+ε|t− s|−(

1

2
+ θ

α
∧ 1

2
+ 1

α
− θ

α
)|r − s1|

τ dr

≤ N‖f‖CθCgn
−( 1

2
+ θ

α
∧ 1

2
)+ε|t− s|1+ε̃, (4.30)

where we used (4.23) in the second inequality and put ε̃ := τ − (1
2
+ θ

α ∧ 1
2
+ 1

α − θ
α) > 0

by (4.22). By a similar argument, (4.30) holds for |I2|. Therefore, taking L2(Ω)|G norm
and recalling (4.28) we can conclude that in the case |t− s| ≥ 4/n we have

‖Es−(t−s)δAs,u,t‖L2(Ω)|G ≤ N‖f‖CθCgn
−( 1

2
+ θ

α
∧ 1

2
)+ε|t− s|1+ε̃. (4.31)

Next, consider the case |t − s| ≤ 4/n. By assumption, ψr = gκn(r) is F(κn(r)− 1

n
)∨0

measurable. Therefore, if r ∈ [κn(s1), κn(s1) + 2
n ), then ψr is Fκn(s1)–measurable. Since

κn(s1) ≤ s1 ≤ s2, one has E
s1ψr = E

s2ψr = ψr and thus the integrand in I1 is zero.
Hence, we can concentrate on the case r ≥ κn(s1) + 2

n . In this case, κn(r) − 1/n ≥ s1.
Thus we get

I1 = E
s1

∫

[s3,s4]∩ [κn(s1)+ 2

n
,1]

E
κn(r)− 1

n

(
f (Lr + E

s1ψr) − f (Lκn(r) + E
s1ψr)

− f (Lr + E
s2ψr) + f (Lκn(r) + E

s2ψr)
)
dr

= E
s1

∫

[s3,s4]∩ [κn(s1)+ 2

n
,1]

P 1

n
f (Lκn(r)− 1

n
+ E

s2ψr) − P 1

n
f (Lκn(r)− 1

n
+ E

s1ψr)

+ Pr−κn(r)+ 1

n
f (Lκn(r)− 1

n
+ E

s1ψr) − Pr−κn(r)+ 1

n
f (Lκn(r)− 1

n
+ E

s2ψr) dr,

where we used again that ψr is Fκn(r)− 1

n
-measurable. Applying (3.11) with ρ = 1 and

recalling (4.23), we immediately deduce

|I1| ≤ N‖f‖CθCg

∫

[s3,s4]∩ [κn(s1)+ 2

n
,1]

(‖P 1

n
f‖C1 + ‖Pr−κn(r)+ 1

n
f‖C1)Es1 |Es1ψr − E

s2ψr| dr

≤ N‖f‖CθCg|t− s|1+τn−
θ−1

α

≤ N‖f‖CθCg|t− s|1+εn−τ−
θ−1

α
+ε

≤ N‖f‖CθCg|t− s|1+εn−(
1

2
+ θ

α
∧ 1

2
)+ε,

where the penultimate inequality follows from the fact that |t− s| ≤ 4/n, and in the last
inequality we used (4.22). By the same argument, exactly the same bound holds also for
|I2|. Recalling now (4.28) and (4.31), we can therefore conclude that (3.5) is satisfied

with with Γ2 = N‖f‖CθCgn
−( 1

2
+ θ

α
∧ 1

2
)+ε and ε2 = ε ∧ ε̃.

It remains to verify that the process At satisfies (3.6). Fix now m ∈ N. Denote
ti := s+ i t−sm , i = 0, . . . ,m. We get

∥∥∥At −As −
m−1∑

i=1

Ati,ti+1

∥∥∥
L1(Ω)

≤ ‖At1 −At0‖L1(Ω)
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+
∥∥∥
m−1∑

i=1

Ati+1
−Ati − E

ti(Ati+1
−Ati)

∥∥∥
L2(Ω)

+
∥∥∥
m−1∑

i=1

E
ti(Ati+1

−Ati) − E
ti−1(Ati+1

−Ati)

∥∥∥
L2(Ω)

+
∥∥∥
m−1∑

i=1

Ati,ti+1
− E

ti−1(Ati+1
−Ati)

∥∥∥
L1(Ω)

:= I1 + I2 + I3 + I4. (4.32)

Since f is bounded, we clearly have

I1 ≤ 2‖f‖C0m−1. (4.33)

Next, we note that the sequence (Ati+1
− Ati − E

ti(Ati+1
− Ati))i=1,...,m−1

is a martin-
gale difference sequence with respect to the filtration (Fti+1

)i=1,...,m−1. Therefore, the
Burkholder-Davis-Gundy inequality implies

I22 ≤
m−1∑

i=1

∥∥∥Ati+1
−Ati − E

ti(Ati+1
−Ati)

∥∥∥
2

L2(Ω)
≤ 4‖f‖2C0m

−1. (4.34)

Similarly, the sequence (Eti(Ati+1
− Ati) − E

ti−1(Ati+1
− Ati))i=1,...,m−1

is a martingale
difference sequence with respect to the filtration (Fti)i=1,...,m−1, and we get

I23 ≤
m−1∑

i=1

∥∥∥Eti(Ati+1
−Ati) − E

ti−1(Ati+1
−Ati)

∥∥∥
2

L2(Ω)
≤ 16‖f‖2C0m

−1. (4.35)

Finally, if g ≡ 0, then I4 = 0. If g 6≡ 0, then by condition (iii) of the theorem θ > 0.
Therefore, using (3.2) we derive for any i = 1, . . . ,m− 1

‖Eti−1(Ati+1
−Ati) −Ati,ti+1

‖L1(Ω)

≤
∥∥∥
∫ ti+1

ti

f (Lr + gκn(r)) − f (Lr + E
ti−1gκn(r))

∥∥∥
L1(Ω)

+
∥∥∥
∫ ti+1

ti

f (Lκn(r) + gκn(r)) + f (Lκn(r) + E
ti−1gκn(r)) dr

∥∥∥
L1(Ω)

≤ 2‖f‖Cθ

∫ ti+1

ti

‖gκn(r) − E
ti−1gκn(r)‖

θ
L1(Ω) dr

≤ 2‖f‖Cθ (1 + Cg)(ti+1 − ti−1)1+θτ ≤ N‖f‖Cθ (1 + Cg)m−1−θτ ,

where the penultimate inequality follows from the fact that if κn(r) ≤ ti−1, then gκn(r) =
E
ti−1gκn(r) and if κn(r) ≥ ti−1, then (4.23) is applicable and κn(r) − ti−1 ≤ ti+1 − ti−1.

Recalling the definition of I4 in (4.32), we get

I4 ≤ N‖f‖Cθ (1 + Cg)m−θτ
1θ>0. (4.36)

Collecting together bounds (4.33)–(4.36) and substituting them into (4.32), we get

∥∥∥At −As −
m−1∑

i=1

Ati,ti+1

∥∥∥
L1(Ω)

≤ N‖f‖Cθ (1 + Cg)m−θτ
1θ>0 +N‖f‖C0m− 1

2 .

which implies (3.6). The claimed bound (4.25) is therefore given by (3.7).
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Remark 4.8. The reader might observe two additional constraints introduced in Lemma 4.7
compared to Lemma 4.4. Specifically, we assumed that G ⊂ Fκn(S) and that p = 2. Both
of these conditions are employed to derive the bound (4.27). With a generic p > 2, the

convergence rate becomes suboptimal, given by n−(
1

2
+ θ

α
∧ 1

p
)+ε. Without the assumption

G ⊂ Fκn(S), there is no deterministic bound on conditional moments of Lr − Lκn(r) given
G for r ∈ [S, T ].

These two restrictions substantially complicate the proof of the main results. The con-
dition p = 2 is the reason why we must employ the John–Nirenberg machinery at all and
bound conditional expectations, instead of merely bounding Lp(Ω) moments directly as
done, for example, in [BDG21a]. The limitation G ⊂ Fκn(S) leads to additional challenges
in the buckling part of the proof of Theorem 2.2.

4.3 Bounds on Ef,n,1, Ef,n,2, Ef,n,3

In this part of the paper we apply generic bounds from Section 4.2 to the error terms in
decompositions (4.2) and (4.3).

Corollary 4.9. Assume that all the conditions of Theorem 2.5 are satisfied. Then for
any ε > 0 there exists a constant N = N (α, β, θ, p, d, ‖b‖Cβ , ε,M ) such that for any
0 ≤ s ≤ t ≤ 1, σ-algebra G ⊂ Fs and all n ∈ N the following holds:

‖Ef,n,1s,t ‖Lp(Ω)|G ≤ N‖f‖Cθ (t− s)1+
(θ−1)∧0

α ‖ϕ− ϕn‖C 0
p |G,[s,t]

+N‖f‖Cθ (t− s)
3

2
+

(θ−1)∧0

α [ϕ− ϕn]
C

1/2
p |G,[s,t]

; (4.37)

‖Ef,n,2s,t ‖Lp(Ω)|G ≤ N‖f‖Cθ (t− s)1+
(θ−1)∧0

α n−1 +N‖f‖Cθ (t− s)
3

2
+

(θ−1)∧0

α n−
1

2
−(

β
α
∧ 1

2
)+ε.

(4.38)

Proof. Recall that β > 2 − 2α and β > 1 − α/2. Without loss of generality, we can
assume that β ≤ 2 and θ ≤ 2: indeed, if one of them is larger than 2 then we replace the
corresponding constant by 2, this will not affect neither conditions (2.3) and (2.6), nor
the bounds on the right-hand side of (4.37) and (4.38). Thus, till the end of the proof
choose arbitrary δ > 0 small enough so that

θ ∧ β > max(2− 2α, 1 − α/2) + δα. (4.39)

To establish (4.37) and (4.38), we will apply Lemma 4.4 with τ = 1 + (β∧1α ∧ 1)− δ,
γ = 1/2. Thanks to (4.39), we see that condition (4.10) holds.

First, let us obtain (4.37). We apply Lemma 4.4 with g = ϕ, h = ϕn. It follows from
(4.8) with q = 1 that (4.11) holds with Cg ≤ N . Similarly, (4.9) and (3.2) imply that
(4.12) holds. Thus all the assumptions of Lemma 4.4 are satisfied. Taking into account
(4.7) and the fact that 1 + (θ−1)∧0

α ≤ 1 < 1 + θ−2
α + τ , we see that (4.13) yields (4.37).

Now let us prove (4.38). We will again apply Lemma 4.4 with gt = ϕnt , ht = ϕnκn(t)

and the same τ , γ as above. Thanks to (4.9) with q = 1 we see that (4.11) holds with
Cg ≤ N . Further, if 0 ≤ κn(t) ≤ s < t ≤ 1 then

‖ϕnκn(t) − E
sϕnκn(t)‖L1(Ω) = 0.

If 0 ≤ s < κn(t) ≤ t ≤ 1, then applying (4.9) (in a very rough way) yields

‖ϕnκn(t) − E
sϕnκn(t)‖L1(Ω) ≤ N |κn(t) − s| ≤ N (t− s).
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Hence, (4.12) holds. Thus all the assumptions of Lemma 4.4 are satisfied. Therefore
(4.13) implies

‖Ef,n,2s,t ‖Lp(Ω)|G =
∥∥∥
∫ t

s
f (Lr + ϕnr ) − f (Ls + ϕnκn(r)) dr

∥∥∥
Lp(Ω)|G

≤ N‖f‖Cθ (t− s)1+
(θ−1)∧0

α ‖ϕn − ϕnκn(·)‖C 0
p |G,[s,t]

+N‖f‖Cθ (t− s)
3

2
+

(θ−1)∧0

α [ϕn − ϕnκn(·)]C
1/2
p |G,[s,t]

. (4.40)

Note that for any r ∈ [0, 1], we clearly have

ϕnr − ϕnκn(r) = (r − κn(r))b(Lκn(r) + ϕnκn(r)). (4.41)

Since b is bounded, this implies

‖ϕn· − ϕnκn(·)‖C 0
p |G,[s,t]

≤ ‖b‖C0 sup
r∈[s,t]

|r − κn(r)| ≤ Nn−1. (4.42)

Let now s ≤ r′ ≤ r ≤ t. If κn(r) ≤ r′, then both ϕnr and ϕnκn(r) are Fr′-measurable, so
trivially

ϕnr − ϕnκn(r) − E
r′[ϕnr − ϕnκn(r)] = 0 (4.43)

Otherwise if s ≤ r′ < κn(r) ≤ r ≤ t, then by (4.41) and (4.6),

E
r′ |ϕnr − ϕnκn(r) − E

r′[ϕnr − ϕnκn(r)]|

= (r − κn(r))Er
′

|b(Lκn(r) + ϕnκn(r)) − E
r′b(Lκn(r) + ϕnκn(r))|

≤ 2(r − κn(r))Er
′

|b(Lκn(r) + ϕnκn(r)) − b(Lr′ + ϕnr′)|

≤ N (r − κn(r))Er
′

(|Lκn(r) − Lr′ |
β∧1 ∧ 1 + |ϕnκn(r) − ϕnr′ |

β∧1)

≤ N (r − κn(r))(|r − r′|(
β∧1

α
∧1)−ε + |r − r′|β∧1),

where in the last inequality we used that Lκn(r) − Lr′ is independent of Fr′ , (3.13), and
boundedness of b (which implies Lipschitzness of ϕn). Note that if α ≥ 1, then clearly
β ∧ 1 ≥ β∧1

α . Further, if α < 1, then β > 1/2 thanks to (2.3). Thus in both cases

β ∧ 1 ≥ β∧1
α ∧ 1

2
= β

α ∧ 1
2
, since α ≤ 2. We continue the above inequality by taking

‖ · ‖Lp(Ω|G norms and writing

‖Er
′

|ϕnr − ϕnκn(r) − E
r′[ϕnr − ϕnκn(r)]|‖Lp(Ω)|G ≤ N (r − κn(r))|r − r′|(

β
α
∧ 1

2
)−ε

≤ Nn−
1

2
−(

β
α
∧ 1

2
)+ε|r − r′|1/2,

where in the last inequality we used that r − κn(r) ≤ n−1 ∧ |r − r′|. This together with
(4.43) yields

[ϕn· − ϕnκn(·)]C
1/2
p |G,[s,t]

≤ Nn−
1

2
−(

β
α
∧ 1

2
)+ε. (4.44)

Substituting this and (4.42) into (4.40), we finally get

‖Ef,n,2s,t ‖Lp(Ω) ≤ N‖f‖Cθ (t− s)1+
(θ−1)∧0

α n−1 +N‖f‖Cθ (t− s)
3

2
+

(θ−1)∧0

α n−
1

2
−(

β
α
∧ 1

2
)+ε.
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Remark 4.10. We see now why it was important in the derivation of (4.38) that the
seminorm [·]C

γ
p |G,[s,t] rather than [·]C γ

p |G,[s,t] appeared in (4.13), recall Remark 4.5. Indeed,
by taking r ∈ [s, t] such that r = κn(r) and s ≤ r′ ≤ r ≤ t it is easy to see that one has

‖ϕnr − ϕnκn(r) − ϕnr′ − ϕnκn(r′)]‖Lp(Ω)|G = (r′ − κn(r′))‖b(Lκn(r′) + ϕnκn(r′))‖Lp(Ω)|G.

This implies that [ϕn· − ϕnκn(·)]C γ
p ,[s,t] = ∞ for any γ > 0, and is obviously much worse

than (4.44). Note however that for (4.37) we simply bounded [·]C
γ
p |G,[s,t]

by [·]C γ
p |G,[s,t].

Corollary 4.11. Assume that all the conditions of Theorem 2.5 are satisfied. Then for
any ε ∈ (0, 1/2) there exists a constant N = N (α, β, θ, d, ‖b‖Cβ , ε,M ) such that for any
0 ≤ s ≤ t ≤ 1, n ∈ N, and any σ-algebra G ⊂ Fκn(s) the following holds:

‖Ef,n,3s,t ‖L2(Ω)|G ≤ N‖f‖Cθn−(
1

2
+ θ

α
∧ 1

2
)+2ε|t− s|

1

2
+ε. (4.45)

Proof. Choose δ > 0 small enough so that

θ ∧ β ∧ 1 > 1−
α

2
+ δα.

We apply Lemma 4.7 with g = ϕn and θ ∧ 1 in place of θ. Note that the rate provided in
(4.25) is consistent with (4.45), since θ

α ∧ 1
2
= θ∧1

α ∧ 1
2
. Therefore it remains to verify the

conditions of Lemma 4.7.

For any 0 ≤ s ≤ t ≤ 1, r ∈ [s, 1] we have by (4.9) with q = 1

E
s|Esϕnr − E

tϕnr | = E
s|Et[Esϕnr − ϕnr ]| ≤ E

s|Esϕnr − ϕnr | ≤ N |r − s|1−δ+
β∧α∧1

α .

Therefore, condition (4.23) is satisfied with τ = 1− δ+ β∧α∧1
α and Cg = N . We note that

if β ∧ α ∧ 1 = β ∧ 1, then using that θ
α ∧ 1

2
≤ θ∧1

α and 1
2
− 1

α + β∧1
α > δ, we get

τ = 1− δ +
β ∧ 1

α
>

1

2
+

1

α
≥

1

2
+

1

α
+
θ

α
∧
1

2
−
θ ∧ 1

α

and condition (4.22) holds. Alternatively, if β ∧ α ∧ 1 = α, then we use that 1
2
≥ θ

α ∧ 1
2

and 1− 1
α + θ∧1

α > δ to get

τ = 2− δ >
1

2
+

1

α
+
θ

α
∧

1

2
−
θ ∧ 1

α
.

Hence also in this case condition (4.22). We also see that ϕnκn(t) is F(κn(t)− 1

n
)∨0-measurable

for t ∈ [0, 1]. Thus all the conditions of Lemma 4.7 are satisfied and we get (4.45).

Gathering the error bounds of Corollary 4.9 and Corollary 4.11, we finally derive the
following crucial conditional quadrature estimate.

Corollary 4.12. Assume that all the conditions of Theorem 2.5 are satisfied. Then for
any ε ∈ (0, 1

2
+ (θ−1)∧0

α ) there exists a constant N0 = N0(α, β, θ, d, ‖b‖Cβ , ε,M ) such that
for any n ∈ N, k ∈ {0, 1, ...n}, 0 ≤ k/n ≤ s ≤ t ≤ 1, the following holds:
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∥∥∥
∫ t

s
f (Xr) dr −

∫ t

s
f (Xn

κn(r)) dr
∥∥∥
L2(Ω)|F k

n

≤ N0‖f‖Cθ |t− s|
1

2
+ε(n−(

1

2
+

β∧θ
α

∧ 1

2
)+2ε + ‖ϕ − ϕn‖C 0

2
|F k

n
,[s,t] + [ϕ− ϕn]

C
1/2
2

|F k
n
,[s,t]

).

(4.46)

Proof. Fix k/n ≤ s ≤ t ≤ 1. We use (4.37), (4.38), and (4.45) with G = F k
n
to bound each

term in (4.2). Since k/n ≤ s, we see that k/n ≤ κn(s). Therefore, F k
n
⊂ Fκn(s) and the

conditions of Corollary 4.11 hold. Using that 1+ (θ−1)∧0
α > 1

2
+ε and (1

2
+ β∧θ

α ∧ 1
2
)−ε < 1,

we get the desired bound.

4.4 Main proofs

Proof of Theorem 2.2. Fix ε > 0 small enough so that

γ0 :=
1

2
+
β

α
∧

1

2
− 2ε > 0.

In the proof we will apply (4.46) with f = b, θ = β. We take now ∆ > 0 small enough
so that

∆εN0‖b‖Cβ ≤ 1/4, (4.47)

where N0 is the constant from (4.46). Recall the decomposition (4.1). Fix n ∈ N and put

An
t := Xt −Xn

t = ϕt − ϕnt =

∫ t

0

(b(Xr) − b(Xn
κn(r)) dr + x0 − xn0 , t ∈ [0, 1]. (4.48)

Step 1. We claim that for any S ∈ {0, 1n ,
2
n , . . . , 1}, T ∈ [S, 1 ∧ (S +∆)] we have

[An]
C

1/2
2

|FS ,[S,T ]
≤ n−γ0 + |An

S|. (4.49)

Indeed, fix S ∈ {0, 1n ,
2
n , . . . , 1}, T ∈ [S, 1∧ (S +∆)]. Note that for any S ≤ s ≤ t ≤ T

An
t −An

s = (ϕt − ϕs) − (ϕnt − ϕns ) =

∫ t

s
b(Xr) dr −

∫ t

s
b(Xn

κn(r)) dr.

By taking in (4.46) k/n = S, we get from the above identity

‖An
t −An

s ‖L2(Ω)|FS
≤ N0‖b‖Cβ |t− s|

1

2
+ε(n−γ0 + ‖ϕ− ϕn‖C 0

2
|FS ,[S,T ] + [ϕ− ϕn]

C
1/2
2

|FS ,[S,T ]
)

≤ N0‖b‖Cβ |t− s|
1

2
+ε(n−γ0 + |ϕS − ϕnS |+ 2[ϕ− ϕn]

C
1/2
2

|FS ,[S,T ]
),

(4.50)

where we used that if s, t ∈ [S, T ], then trivially both (semi)norms on the right-hand side
of equation (4.46) can be replaced by the ones on [S, T ]. Dividing (4.50) by |t− s|1/2 and
taking supremum over s, t ∈ [S, T ], s ≤ t, we get

[An]
C

1/2
2

|FS ,[S,T ]
≤ N0‖b‖Cβ∆ε(n−γ0 + |An

S |+ 2[An]
C

1/2
2

|FS ,[S,T ]
),
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where we also used the definition of An in (4.48) and the inequality t−s ≤ T−S ≤ ∆. By
our choice of ∆ (4.47), the estimate buckles and by putting 2N0‖b‖Cβ∆ε[An]

C
1/2
2

|FS ,[S,T ]

to the left-hand side, we get (4.49).
Step 2. We get rid of the assumption that S is a gridpoint and claim that for any

0 ≤ S < T ≤ 1, T ∈ [S, 1 ∧ (S +∆)] we have

‖An
T −An

S‖L2(Ω)|FS
≤ ∆

1

2 (n−γ0 + |An
S|) + 4‖b‖C0n−1. (4.51)

Let 0 ≤ S < T ≤ 1, T ≤ S+∆. If T −S ≤ 1
n , there is nothing to prove: (4.51) follows

from the fact that |An
T −An

S | ≤ 2‖b‖C0 |T − S| ≤ 2‖b‖C0n−1. Therefore, we assume from
now on that T > S + 1

n . Denote S′ := κn(S) + 1
n ; that is, S′ is the smallest gridpoint

strictly bigger than S. We see that S′ > S and therefore we have

‖An
T −An

S‖L2(Ω)|FS
≤ ‖An

T −An
S′‖L2(Ω)|FS

+ ‖An
S′ −An

S‖L2(Ω)|FS

= (E[E(|An
T −An

S|
2|FS′)|FS ])

1

2 + ‖An
S′ −An

S‖L2(Ω)|FS
. (4.52)

Next, since S′ is a gridpoint we have S′ ∈ {0, 1n ,
2
n , ..., 1} and T ≤ S′ +∆. Therefore, the

results of Step 1 are applicable and we get from (4.49)

‖An
T −An

S′‖L2(Ω)|FS′
≤ ∆

1

2 (n−γ0 + |An
S′ |) ≤ ∆

1

2 (n−γ0 + |An
S |) + |An

S −An
S′ |.

Substituting this back into (4.52) and using again that |An
S − An

S′| ≤ 2‖b‖C0 |S − S′| ≤
2‖b‖C0n−1, we get (4.51).

Step 3. Now with (4.51) in hand we apply the weighted John-Nirenberg inequality

Proposition 3.2 to the process An introduced in (4.48). Setting ξnt := ∆
1

2 (n−γ0 + |An
t |) +

4‖b‖C0n−1, t ∈ [0, 1], we see that both processes An and ξn are continuous and (3.8)
holds thanks to (4.51). Therefore (3.9) implies that for any p ≥ 1 there exists N1 = N1(p)

independent of n such that for any 0 ≤ S < T ≤ 1, T ≤ S +∆

‖ sup
r∈[S,T ]

|An
r −An

S | ‖Lp(Ω)|FS
≤ N1∆

1

2n−γ0 +N1∆
1

2 ‖ sup
r∈[S,T ]

|An
r | ‖Lp(Ω)|FS

+ 4N1‖b‖C0n−1

≤ N1∆
1

2n−γ0 +N1∆
1

2 |AS |

+N1∆
1

2‖ sup
r∈[S,T ]

|An
r −AS | ‖Lp(Ω)|FS

+ 4N1‖b‖C0n−1.

Take now ∆ small enough so that in addition to our standing assumption (4.47) we have
also

N1∆
1

2 ≤ 1/2.

Then the estimate buckles and we get

‖ sup
r∈[S,T ]

|An
T −An

S | ‖Lp(Ω) ≤ n−γ0 + ‖AS‖Lp(Ω) + 8N1‖b‖C0n−1,

whenever 0 ≤ S < T ≤ 1, T − S < ∆. Iterating this bound ⌈∆−1⌉ times yields

‖ sup
r∈[0,1]

|An
r | ‖Lp(Ω) ≤ Nn−γ0 +N |x0 − xn0 |,

for some N = N (d, α.β, p, ε,M, ‖b‖Cβ ), which is the claimed error estimate (2.4).
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Proof of Corollary 2.3. The statement follows from Theorem 2.2 by the standard argu-
ment. Namely, we fix ε > 0 and choose p > 1/ε. Set

η(ω) := sup
n∈N

(n
1

2
+

β
α
∧ 1

2
−2ε‖X(ω) −Xn(ω)‖C0([0,1])).

Then by Theorem 2.2,

Eηp = E[sup
n∈N

(np( 1
2
+

β
α
∧ 1

2
−2ε)‖X(ω) −Xn(ω)‖p

C0([0,1])
)]

≤ E[
∑

n∈N

np( 1
2
+

β
α
∧ 1

2
−2ε)‖X(ω) −Xn(ω)‖p

C0([0,1])
]

≤ N
∑

n∈N

n−pε <∞.

Thus η <∞ a.s. which completes the proof.

Proof of Theorem 2.5. We argue as in the proof of Corollary 4.12, but we skip the buck-
ling step. Take ε > 0 small enough so that

γf :=
1

2
+
β ∧ θ

α
∧

1

2
− 2ε > 0.

Fix n ∈ N and put

An,f
t :=

∫ t

0

(f (Xr) − f (Xn
κn(r))) dr, t ∈ [0, 1]. (4.53)

Step 1. Take ∆ = ∆(α, β, d, ‖b‖Cβ , ε,M ) as in (4.47). Then Corollary 4.12 and (4.49)
imply for any S ∈ {0, 1n ,

2
n , ..., 1}, T ∈ [S, 1 ∧ (S +∆)]

‖An,f
T −An,f

S ‖L2(Ω)|FS
≤ N‖f‖Cθ (n−γf + ‖ϕ− ϕn‖C 0

2
|FS ,[S,T ] + [ϕ− ϕn]

C
1/2
2

|FS ,[S,T ]
)

≤ N‖f‖Cθ (n−γf + |ϕS − ϕnS |+ 2[ϕ − ϕn]
C

1/2
2

|FS ,[S,T ]
)

≤ N‖f‖Cθ (n−γf + |ϕS − ϕnS |) (4.54)

for N = N (α, β, θ, d, ‖b‖Cβ , ε,M ).
Step 2. We remove the restriction in (4.54) that S is a grid point. Let 0 ≤ S < T ≤ 1,

T ≤ S +∆. We note that again that if T − S ≤ 1
n , then |An,f

T −An,f
S | ≤ 2‖f‖C0n−1 and

(4.54) holds. Otherwise, if T > S + 1
n , we put S′ := κn(S) + 1

n . Since S′ is a gridpoint,
we have from Step 1

‖An,f
T −An,f

S′ ‖L2(Ω)|FS′
≤ N‖f‖Cθ (n−γf + |ϕS′ − ϕnS′ |)

≤ N‖f‖Cθ (n−γf + |ϕS − ϕnS |) +N‖f‖Cθn−1, (4.55)

where we used that |ϕS − ϕS′ | ≤ ‖b‖C0n−1 and |ϕnS − ϕnS′ | ≤ ‖b‖C0n−1. Therefore, using
that FS ⊂ FS′ and the boundedness of f , we get from (4.55) for any 0 ≤ S < T ≤ 1,
T ≤ S +∆

‖An,f
T −An,f

S ‖L2(Ω)|FS
≤ ‖An,f

T −An,f
S′ ‖L2(Ω)|FS

+ ‖An,f
S′ −An,f

S ‖L2(Ω)|FS
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≤ N‖f‖Cθ (n−γf + |ϕS − ϕnS |), (4.56)

where N = N (α, β, θ, d, ‖b‖Cβ , ε,M ).
Step 3. Now we apply the weighted John-Nirenberg inequality Proposition 3.2 to the

process An,f . Thanks to the boundedness of f and b the processes An,f and ϕ − ϕn are
continuous. Therefore, by Proposition 3.2, inequality (4.56) yields for any 0 ≤ S < T ≤ 1,
T ≤ S +∆, p ≥ 1

‖ sup
r∈[S,T ]

|An,f
r −An,f

S | ‖Lp(Ω) ≤ N‖f‖Cθn−γf +N‖f‖Cθ‖ sup
r∈[S,T ]

|ϕr − ϕnr | ‖Lp(Ω)

≤ N‖f‖Cθ (n−γf + |x0 − xn0 |),

where the last inequality follows from Theorem 2.2 and N = N (α, β, θ, d, ‖b‖Cβ , ε,M, p)

is independent of S, T . Iterating the above bound ⌈∆−1⌉ times, we get (2.5).

Proof of Theorem 2.4. We will use the same proof strategy as in the proofs of Theorems 2.2
and 2.5: namely, we first obtain the conditional bound at grid points, then remove the
grid points restriction, and finally, apply the John-Nirenberg inequality.

We note that the theorem does not follow directly from Theorem 2.5 because the
function f is allowed to be of any non-negative regularity (or just bounded if θ = 0). We
stress that we do not impose the restriction θ > 1− α

2
as before.

Take ε > 0 small enough so that

γL,f :=
1

2
+
θ

α
∧
1

2
− 2ε > 0.

Fix n ∈ N and put

An,L,f
t :=

∫ t

0

(f (Lr) − f (Lnκn(r))) dr, t ∈ [0, 1].

Step 1. Let S ∈ {0, 1n ,
2
n , . . . , 1}, T ∈ [S, 1] and apply Lemma 4.7 with g ≡ 0. We get

‖An,L,f
T −An,L,f

S ‖L2(Ω)|FS
≤ N‖f‖Cθn−γL,f (4.57)

for N = N (α, θ, d, ε,M ).
Step 2. Now we take arbitrary S ∈ [0, 1]. Let T ∈ [S, 1]. Let S′ := κn(S) + 1

n .

As before, if T − S ≤ 1/n, then there is nothing to prove: one have |An,L,f
T − An,L,f

S | ≤
2‖f‖C0n−1. Alternatively, we have T ≥ S′ and therefore by (4.57) and boundedness of f

‖An,L,f
T −An,L,f

S ‖L2(Ω)|FS′
≤ ‖An,L,f

T −An,L,f
S′ ‖L2(Ω)|FS′

+ ‖An,L,f
S′ −An,L,f

S ‖L2(Ω)|FS′

≤ N‖f‖Cθn−γL,f .

This implies that (4.57) holds for any 0 ≤ S ≤ T ≤ 1.
Step 3. Since the process An,L,f is continuous and (4.57) holds for any 0 ≤ S ≤

T ≤ 1, we see that all the conditions of the John-Nirenberg inequality Proposition 3.2 are
satisfied. Therefore for any p ≥ 1 there exists a constant N = N (α, θ, d, ε, p,M ) > 0 such
that

‖ sup
r∈[0,1]

|An,L,f
r | ‖Lp(Ω) ≤ N‖f‖Cθn−γL,f ,

which is the desired bound (2.5).
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Appendix A. Proofs of the well-posedness of SDE (1.1)

To show that SDE (1.1) is strongly well-posed we will run a fixed point argument.
Throughout the Appendix we will assume that assumptions H1–H3 holds. We will
assume without loss of generality that β ≤ 2. For a measurable bounded function
f : [0, 1] × Ω → R

d, γ ∈ (0, 1], p ≥ 1, T ∈ (0, 1] put

‖f‖C
γ
p ,[0,T ] := sup

t∈[0,T ]

‖f (t)‖Lp(Ω) + sup
s,t∈[0,T ]

‖f (t) − f (s)‖Lp(Ω)

(t− s)γ
.

and consider a mapping

Sf (t) := η +

∫ t

0

b(Ls + fs) ds, 0 ≤ t ≤ 1,

where η ∈ R
d is a F0–measurable vector. We claim the following contraction bound.

Lemma A.1. Let ϕ,ψ : [0, 1] × Ω → R
d be bounded, adapted, measurable functions.

Suppose that 1−α/2 < β < 2. Assume that there exist constants τ ∈ (0, 1], τ > (2−β)/α,
Cϕ, Cψ > 0, T0 ∈ (0, 1], S ∈ [0, 1− T0] such that for any S ≤ s ≤ t ≤ S + T0 one has a.s.

E
s|ϕt − E

sϕt| ≤ Cϕ|t− s|τ ; E
s|ψt − E

sψt| ≤ Cψ|t− s|τ . (A.1)

Then for any p ≥ 2 there exist constants N = N (α, β, τ, p, d, ‖b‖Cβ ), ε = ε(α, β, τ ) > 0
such that for any T ∈ (0, T0] and S ∈ [0, 1 − T ] one has

‖Sϕ− Sψ‖
C

1
2
p ,[S,S+T ]

≤ N (1 + Cϕ)T ε‖ϕ− ψ‖
C

1
2
p ,[S,S+T ]

+ ‖Sϕ(S) − Sψ(S)‖Lp(Ω). (A.2)

Proof. Fix T ∈ (0, T0]. We will apply Lemma 4.4 with g = ϕ, h = ψ, γ = 1/2, θ = β,
f = b, and G = {∅,Ω}. We see that all the conditions of the Lemma are satisfied and it
follows from (4.13) that for any S ≤ s ≤ t ≤ S + T

‖(Sϕ(t) − Sψ(t)) − (Sϕ(s) − Sψ(s))‖Lp(Ω) =
∥∥∥
∫ t

s
(b(Ls + ϕs) − b(Ls + ψs)) ds

∥∥∥
Lp(Ω)

≤ N (1 + Cϕ)|t− s|
1

2
+ε‖ϕ − ψ‖

C

1
2
p ,[0,T ]

, (A.3)

where ε := 1
2
+ (β−1)∧0

α > 0 thanks to (2.3). Therefore, by taking in the above inequality
s = S, we get

‖Sϕ(t) − Sψ(t)‖Lp(Ω) ≤ NT ε(1 + Cϕ)‖ϕ − ψ‖
C

1
2
p ,[0,T ]

+ ‖Sϕ(S) − Sψ(S)‖Lp(Ω).

Combining this with (A.3), we get the desired bound (A.2).

Proof of Theorem 2.1: strong uniqueness. Let X, X̃ be two strong solutions to (1.1) with
the initial condition η adapted to the same filtration F ; here η is F0–measurable vector in
R
d. Define ϕ := X − L, ϕ̃ := X̃ − L. Since X, X̃ solve (1.1), we obviously have Sϕ = ϕ,

Sϕ̃ = ϕ̃.
It follows from (2.3) that one can choose δ > 0 small enough so that

β > max(2− 2α+ δα, 1 − α/2 + δα). (A.4)
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We apply Lemma A.1 with S = 0 to the functions ϕ, ϕ̃. By Lemma 4.2(iii), condition
(A.1) holds with T0 = 1, τ = 1 + (

β∧α∧1
α ) − δ and Cϕ = Cψ = N . It is easy to see that

with such choice of τ , one has τ > (2 − β)/α, and thus all the conditions of Lemma A.1
hold. Therefore, (A.2) implies for any T ∈ (0, 1]

‖ϕ− ϕ̃‖
C

1
2
2
,[0,T ]

= ‖Sϕ− Sϕ̃‖
C

1
2
2
,[0,T ]

≤ NT ε‖ϕ− ϕ̃‖
C

1
2
2
,[0,T ]

. (A.5)

Note that ‖ϕ − ϕ̃‖
C

1
2
2
,[0,T ]

< ∞ regardless of the moment conditions imposed on η (we

did not impose any). Indeed,

‖ϕ− ϕ̃‖
C

1
2
2
,[0,T ]

=
∥∥∥
∫ ·

0

(b(Ls + ϕs) − b(Ls + ϕ̃s)) ds
∥∥∥

C

1
2
2
,[0,T ]

≤ 2‖b‖C0 .

Since N in (A.5) does not depend on T , by taking in (A.5) T small enough such that
NT ε ≤ 1/2, we have ϕ = ϕ̃ on [0, T ], which implies X = X̃ on [0, T ]. Repeating this
procedure ⌈1/T ⌉ times by starting at time iT instead of 0, i = 1, . . . , ⌈1/T ⌉ − 1, (note
that we have not imposed any moment conditions on η, so there is no problem that, e.g.,
XT does not have a second moment) we get strong uniqueness on the interval [0, 1].

To establish strong existence, we consider a sequence ϕ(0)(t) := η, 0 ≤ t ≤ 1, ϕ(n) :=
Snϕ(0), n ∈ N. Clearly, for any n ∈ Z+, t ∈ [0, 1]

ϕ(n+1)(t) = η +

∫ t

0

b(Ls + ϕ(n)(s)) ds. (A.6)

Lemma A.2. For any ε > 0, there exist constants N = N (α, β, ε, ‖b‖Cβ ) > 0, T0 =
T0(α, β, ε, ‖b‖Cβ ) ∈ (0, 1] such that for any n ∈ Z+, S ≤ s ≤ t ≤ S + T0

E
s|ϕ(n)

t − E
sϕ(n)

t | ≤ N |t− s|1+
β∧1∧α

α
−ε. (A.7)

Proof. Fix ε > 0. Denote m := 1 + β∧1∧α
α − ε. First we note that

1 + (β ∧ 1)m−m > 0. (A.8)

Indeed, if β ≥ 1 this is obvious; otherwise since β > 1− α we have

m < 1 +
β

α
< 1 +

β

1− β
=

1

1− β
,

which implies (A.8). Fix now T0 ∈ (0, 1] small enough such that

(8‖b‖Cβ )β∧1T 1+(β∧1)m−m
0 ≤ 1. (A.9)

We will prove by induction over n that (A.7) holds with 8M∗‖b‖Cβ in place of N ,
where

M∗ := M (β ∧ (α− εα/2), ε/2) + 1;

recall the definition of the function M =M (p, ε) in H3.
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The case n = 0 is obvious. Assume that the lemma holds for some n ∈ Z+, and let us
prove it for n+ 1. Arguing similar to the proof of Lemma 4.2 and using (4.6), we derive
for any S ≤ s ≤ t ≤ S + T0

E
s|ϕ(n+1)

t − E
sϕ(n+1)

t | ≤ 2Es
∣∣∣ϕ(n+1)
t − ϕ(n+1)

s −

∫ t

s
b(Ls + E

sϕ(n)
r ) dr

∣∣∣

= 2Es
∣∣∣
∫ t

s
(b(Lr + ϕ(n)

r ) − b(Ls + E
sϕ(n)

r )) dr
∣∣∣

≤ 4‖b‖Cβ

∫ t

s
(Es[|Lr − Ls|

β∧1 ∧ 1] + (Es|ϕ(n)
r − E

sϕ(n)
r |)β∧1) dr

≤ 4‖b‖Cβ

(
M∗|t− s|1+(

β∧1∧α
α

−ε) + (8‖b‖CβM∗)β∧1|t− s|1+(β∧1)m
)

(A.10)

≤ 4‖b‖CβM∗
(
|t− s|m + (8‖b‖Cβ )β∧1|t− s|mT 1+(β∧1)m−m

0

)
(A.11)

≤ 8‖b‖CβM∗|t− s|m,

where in (A.10) we used the induction step and assumption H3, in (A.11) we used (A.8),
and in the last inequality we used (A.9). This proves (A.7) for n+1, and thus completes
the proof.

Now we can obtain the existence part of Theorem 2.1.

Proof of Theorem 2.1: strong existence and convergence of the Picard iterations. Fix p ≥
2 and δ > 0 small enough such that (A.4) holds.

Step 1. For any n ∈ Z+ we apply Lemma A.1 to ϕ(n) and ϕ(n+1) with τ = 1 +
(
β∧α∧1
α )− δ; as in the proof of uniqueness part it is clear that τ > (2− β)/α. We see that

by Lemma A.2 condition (A.1) holds for some T0 not depending on n, Cϕ = Cψ = N ,
where N also does not depend on n. Thus, all the conditions of Lemma A.1 are met and
we have for any n ∈ Z+, T ∈ (0, T0], S ∈ [0, 1− T ],

‖ϕ(n+2) − ϕ(n+1)‖
C

1
2
p ,[S,T ]

= ‖Sϕ(n+1) − Sϕ(n)‖
C

1
2
p ,[S,T ]

≤ NT ε‖ϕ(n+1) − ϕ(n)‖
C

1
2
p ,[S,T ]

+ ‖ϕ(n+2)(S) − ϕ(n+1)(S)‖Lp(Ω),

where N = N (α, β, p, d, ‖b‖Cβ ), ε = ε(α, β).

Pick now T ∈ (0, T0] small enough so that NT ε ≤ 1/2. We stress that the choice of T
does not depend on n. Let M := ⌈ 1

T ⌉ and let 0 = S0 ≤ S1 ≤ . . . ≤ SM = 1 be a partition
of [0, 1] such that Sm+1 −Sm ≤ T , m = 1, . . . ,M . Then for any m = 0, . . . ,M − 1 we get

‖ϕ(n+2) − ϕ(n+1)‖
C

1
2
p ,[Sm,Sm+1]

≤
1

2
‖ϕ(n+1) − ϕ(n)‖

C

1
2
p ,[Sm,Sm+1]

+ ‖ϕ(n+2)(Sm) − ϕ(n+1)(Sm)‖Lp(Ω). (A.12)

Step 2. We claim that for any m = 0, . . . ,M − 1,

‖ϕ(n+1) − ϕ(n)‖
C

1
2
p ,[Sm,Sm+1]

≤ (m+ 1)nm2−n‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

, n ∈ Z+. (A.13)
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We show (A.13) by induction over m. If m = 0 then Sm = 0 and ϕ(n+1)(0) = ϕ(n)(0) = η
for any n ∈ Z+. Hence, we immediately get from (A.12)

‖ϕ(n+1) − ϕ(n)‖
C

1
2
p ,[S0,S1]

≤ 2−n‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[S0,S1]

, n ∈ Z+,

which yields (A.13).
Assume now that (A.13) holds for some m− 1 ∈ {0, 1, . . . ,M − 2}. We will show that

(A.13) holds for m. We have from the induction assumption for any n ∈ Z+

‖ϕ(n+1)(Sm) − ϕ(n)(Sm)‖Lp(Ω) ≤ ‖ϕ(n+1)(Sm) − ϕ(n)(Sm)‖
C

1
2
p ,[Sm−1,Sm]

≤ mnm−12−n‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

.

Therefore, (A.12) yields for any n ∈ N

‖ϕ(n+1)−ϕ(n)‖
C

1
2
p ,[Sm,Sm+1]

≤
1

2
‖ϕ(n)−ϕ(n−1)‖

C

1
2
p ,[Sm,Sm+1]

+mnm−12−n‖ϕ(1)−ϕ(0)‖
C

1
2
p ,[0,1]

.

Iterating this inequality over n (m is fixed!)

‖ϕ(n+1) − ϕ(n)‖
C

1
2
p ,[Sm,Sm+1]

≤ 2−n‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

+m
n∑

i=1

2−n+i2−iim−1‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

= 2−n‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

(1 +m

n∑

i=1

im−1). (A.14)

Clearly,

1 +m
n∑

i=1

im−1 ≤ 1 +mnm ≤ (m+ 1)nm,

which together with (A.14) gives

‖ϕ(n+1) − ϕ(n)‖
C

1
2
p ,[Sm,Sm+1]

≤ 2−n‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

(m+ 1)nm,

which is the desired claim (A.13).
Step 3. Note that by definition of ϕ(1) and ϕ(0)

‖ϕ(1) − ϕ(0)‖
C

1
2
p ,[0,1]

≤ ‖b‖C0 .

Therefore, using the bound (m + 1)nm2−n ≤ N2−
n
2 whenever m ≤ M for some N =

N (M ) = N (α, β, p, d, ‖b‖Cβ ), we rewrite (A.13) as

‖ϕ(n+1) − ϕ(n)‖
C

1
2
p ,[Sm,Sm+1]

≤ N2−
n
2 , n ∈ Z+,

which yields
‖ϕ(n+1) − ϕ(n)‖

C

1
2
p ,[0,1]

≤ N2−
n
2 , n ∈ Z+,
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and eventually

‖ϕ(k) − ϕ(n)‖
C

1
2
p ,[0,1]

≤ N2−
n∧k
2 , n, k ∈ Z+. (A.15)

Step 4. It follows by (A.15)

sup
t∈[0,1]

‖ϕ(k)
t − ϕ(n)

t ‖Lp(Ω) ≤ ‖ϕ(k) − ϕ(n)‖
C

1
2
p ,[0,1]

≤ N2−
n∧k
2 , n, k ∈ Z+. (A.16)

Thus, for any t ∈ [0, 1] the sequence (ϕ(n)
t − η)n∈Z+

= (ϕ(n)
t − ϕ(0)

t )n∈Z+
converges in

Lp(Ω) as n→ ∞. Denote its limit by ψt. We have from (A.15) by Fatou’s lemma

sup
t∈[0,1]

‖ψt − (ϕ(n)
t − η)‖Lp(Ω) ≤ ‖ψ − (ϕ(n) − η)‖

C

1
2
p ,[0,1]

≤ N2−
n
2 . (A.17)

Put Xt := η + ψt + Lt. We claim that a version of X is a strong solution to (1.1) on
[0, 1]. Indeed, for any t ∈ [0, 1] random vector Xt is clearly Ft-measurable as a limit of
Ft-measurable random vectors; further, recalling (A.6) we have

∥∥∥Xt − η −

∫ t

0

b(Xs) ds − Lt

∥∥∥
L2(Ω)

=
∥∥∥ψt −

∫ t

0

b(Ls + η + ψs) ds
∥∥∥
L2(Ω)

≤ ‖ψt − (ϕ(n+1)
t − η)‖L2(Ω)

+
∥∥∥
∫ t

0

(b(Ls + η + ψs) − b(Ls + ϕ(n)
s )) ds

∥∥∥
L2(Ω)

≤ ‖ψt − (ϕ(n+1)
t − η)‖L2(Ω) +

∫ t

0

‖ψs − (ϕ(n)
s − η)‖β∧1L2(Ω) ds.

By (A.17), the right-hand side of the above inequality tends to 0 as n→ ∞. Thus, for any
t ∈ [0, 1] we have Xt = η +

∫ t
0
b(Xs) ds+ Lt a.s. In particular, X̃t := η +

∫ t
0
b(Xs) ds + Lt

coincides with X for a.e. ω, t and therefore satisfies

P

(
X̃t = η +

∫ t

0

b(X̃s) ds+ Lt for all t ∈ [0, 1]

)
= 1.

Hence X is a strong solution to SDE (1.1) on [0, 1].

Step 5. We see from the definition of the Picard approximation Y (n) and ϕ(n) that
Y (n) = ϕ(n) + L. By definition of X̃, we have Xt = X̃t a.s. for any fixed t ∈ [0, 1].
Therefore, we can rewrite (A.17) as

‖X̃ − Y (n)‖
C

1
2
p ,[0,1]

= ‖X − Y (n)‖
C

1
2
p ,[0,1]

≤ N2−
n
2 .

Since the process X̃ − Y (n) is continuous for almost all ω, the Kolmogorov continuity
theorem implies

‖‖X̃ − Y (n)‖C0([0,1])‖Lp(Ω) ≤ N2−
n
2 .

which yields the desired convergence of ‖X̃ − Y (n)‖C0([0,1]) to 0 a.s. and in Lp(Ω).
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Appendix B. Proofs of the auxiliary statements of the article

Proof of Proposition 2.8. Recall that we denoted the generating triplet of L by (a,Q, ν).
By [SSW12, Theorem 1.3] with f (s) = sα, assumption (2.9) implies that there exists
t0 = t0(α) > 0 such that the gradient bound (2.1) holds for small enough t ∈ (0, t0]. If
t ∈ (t0, 1], then

‖∇Ptf‖C0 ≤ ‖Pt−t0∇Pt0f‖C0 ≤ Nt
−1/α
0 ‖f‖C0 ≤ Ñt−1/α‖f‖C0 ,

where Ñ = Nt
−1/α
0 , which proves (2.1).

Now we move on to H2. Fix ε > 0. Note that by [KS19a, Lemma A.2], (2.1) implies
that for any ε > 0 ∫

|y|≤1

|y|α+εν(dy) <∞.

Therefore, by [KS19a, Lemma A.3(i)], Q = 0.
If α ∈ [1, 2), then [KS19a, Theorem 3.2(iii)] implies for any f ∈ Cα+ε vanishing at

infinity

Lf (x) = 〈a,∇f (x)〉+

∫

|y|≥1

(f (x+y)−f (x)) ν(dy)+

∫

|y|≤1

∫ 1

0

〈∇f (x+λy)−∇f (x), y〉 dλν(dy).

Hence

‖Lf‖C0 ≤ |a|‖f‖C1 + 2‖f‖C0ν({|y| ≥ 1}) + ‖f‖Cα+ε

∫

|y|≤1

|y|α+εν(dy) ≤ N‖f‖Cα+ε .

Very similarly, ‖Lf‖C1 ≤ N‖f‖Cα+1+ε .
If α ∈ (0, 1), then by above

∫
|y|≤1

|y|ν(dy) <∞. Consider now the process L̃t := Lt+κt,

where κ = −a+
∫
|y|≤1

yν(dy). Let L̃ be its generator. It is immediate to see that

Eei〈λ,L̃t〉 = exp
(
t

∫

Rd

(ei〈λ,y〉 − 1)ν(dy)

)
, λ ∈ R

d, t ≥ 0.

Therefore all the conditions of [KS19a, Theorem 3.2(ii)] are satisfied and, thus, for any
f ∈ Cα+ε vanishing at infinity

L̃f (x) =

∫

Rd

(f (x+ y) − f (y))ν(dy).

Hence ‖L̃f‖C0 ≤ ‖f‖Cα+ε

∫
Rd(|y|α+ε ∧ 2)ν(dy) ≤ N‖f‖Cα+ε . The bound on ‖L̃f‖C1 is

established by the same argument.

Proofs that Examples 2.10 to 2.18 satisfy H1–H3. We begin with Example 2.10. In this
case, ReΦ(λ) = cα

∫
S
|〈λ, ξ〉|αµ(dξ), for some cα > 0 and the upper bound in (2.9) is

immediate. The lower bound follows from the argument presented in [Pri12, p. 424–425
(after Hypothesis 2)]. By Proposition 2.8, this implies that L (or its shifted version)
satisfies H1 and H2.

It is easy to see that
∫
|y|≥1

|y|pν(dy) < ∞ for any p ∈ (0, α), which implies [Sat13,

Theorem 25.3] that
E|L1|

p <∞, p ∈ (0, α). (B.1)
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If α ∈ (1, 2), then by [Sat13, formula (14.15)], Law(Lt − κt) = Law(t1/α(L1 − κ)) for some
κ ∈ R

d. Thus, using (B.1), we get for p ∈ (0, α), t ∈ (0, 1]

E|Lt|
p ≤ N(tp/αE|L1|

p + tp + tp/α) ≤ Ntp/α,

since α > 1. This shows H3.

If α = 1, then by [Sat13, formula (14.16)], LawLt = Law(tL1 + κt log t) for some
κ ∈ R

d. Thus, by (B.1), for any p ∈ (0, 1) E|Lt|
p ≤ Ntp(1−ε), which is H3.

Finally, if α ∈ (0, 1), then consider the process L̃t := Lt + κt, for κ =
∫
|y|≤1

|y|ν(dy)

(this integral is finite by [Sat13, Proposition 14.5]). By above, L̃ satisfies H1 and H2.
Further, an easy direct calculation (see also [Sat13, Remark 14.6]) shows that L̃ has a
symbol

Φ̃(λ) =

∫

S

∫ ∞

0

(1− ei〈λ,rξ〉)r−1−αdrµ(dξ).

Hence Law(L̃t) = t1/αL̃t, and thus thanks to (B.1), E|L̃t|
p ≤ Ntp/α for p ∈ (0, α). Thus,

L̃ satisfies H3.
Example 2.11 is a special case of Example 2.10 with µ being uniform measure on S.

Similarly, Example 2.12 is a special case of Example 2.10 with µ =
∑d

k=1(δek + δ−ek ),
where (ek) is the standard basis in R

d, see, e.g., [Pri12, p. 425].
Now let us move on to Example 2.13. The Lévy process L now has the symbol

Φ(λ) =

∫ ∞

0

∫

S

(1− cos(r〈λ, ξ〉)r−1−αρ(r)µ(dξ)dr,

where we used the fact that µ is symmetric. It is easy to see that non-degeneracy of µ
implies that

∫
S
|〈λ, ξ〉|µ(dξ) > 0 for any λ ∈ S and thus

inf
λ∈S

∫

S

|〈λ, ξ〉|µ(dξ) > 0. (B.2)

Applying (2.12), we get for any λ ∈ R
d

Φ(λ) ≤ N

∫

S

∫ ∞

0

(1− cos(r〈λ, ξ〉)r−1−α drµ(dξ) ≤ N |λ|α
∫

S

|〈
λ

|λ|
, ξ〉|α µ(dξ) ≤ N |λ|α.

(B.3)
Similarly, denoting λ := λ

|λ| , we get for any λ ∈ R
d, with |λ| > 1/C

Φ(λ) ≥

∫

S

∫ C

0

(1− cos(r〈λ, ξ〉)r−1−α drµ(dξ)

= |λ|α
∫

S

|〈λ, ξ〉|α
∫ C|〈λ,ξ〉|

0

(1− cos r)r−1−α drµ(dξ)

≥
1

10
|λ|α

∫

S

|〈λ, ξ〉|α
∫ |〈λ,ξ〉|

0

r1−α drµ(dξ)

≥ N |λ|α
∫

S

|〈λ, ξ〉|2µ(dξ)

≥ N |λ|α
(∫

S

|〈λ, ξ〉|µ(dξ)

)2
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≥ N |λ|α.

where we used inequality 1 − cos r > r2

10
valid for r ∈ [0, 1] and (B.2). Combining this

with (B.3), we see that symbol Φ satisfies (2.9) for large |λ| and (2.10) for all λ ∈ R
d.

Thus, L satisfies H1–H3.
Examples 2.14 and 2.15 are special cases of Example 2.13.
In case of Example 2.16, we have N−1|λ|α ≤ Φ(λ) ≤ N |λ|α for large enough |λ|.

Further, Φ(λ) ≤ Nλ2 for small enough |λ|. Thus, by Proposition 2.8 and Proposition 2.9,
assumptions H1–H3 holds for the relativistic α–stable process with α̃ = α.

Example 2.17, namely when L is a Brownian motion, is obvious.
Finally, let us treat Example 2.18. We begin with part (i). Without loss of generality,

assume α1 ≤ α2. Put L := L(1) + L(2). Let P (respectively P (i)) be the semigroup
associated with L (respectively L(i), i = 1, 2). Similarly let L, L(i) be the generators of L,
respectively L(i). Then for any f ∈ C0(Rd), x ∈ R

d we have by independence of L(1) and
L(2)

Ptf (x) = EP (2)
t f (x+ L(1)

t ).

Thus, since L(2) satisfies H1,

|∇Ptf (x)| = |E∇P (2)
t f (x+ L(1)

t )| ≤ Nt−1/α2‖f‖C0 .

Therefore, L satisfies H1 with α = α2. Since L = L(1) + L(2), we have for any ε > 0,
f ∈ Cα2+δ+ε(Rd) vanishing at infinity, δ = 0, 1

‖Lf‖Cδ(Rd) ≤ ‖L(1)f‖Cδ(Rd)+‖L(2)f‖Cδ(Rd) ≤M‖f‖Cα1+δ+ε+M‖f‖Cα2+δ+ε ≤ 2M‖f‖Cα2+δ+ε ,

and thus L satisfies H2 with α = α2. Finally, to verify H3 we fix p ∈ (0, α2). Then If
p < α1, then there is nothing to prove:

E[|L(1)
t + L(2)

t |p ∧ 1] ≤ NE|L(1)
t |p +NE|L(2)

t |p ≤ Ntp/α2−ε,

since α2 ≥ α1. Alternatively, if α1 ≤ p < α2, then

E[|L(1)
t + L(2)

t |p ∧ 1] ≤ NE|L(1)
t |α1−εα1 +NE|L(2)

t |p ≤ N (t1−2ε + t
p
α2

−ε
) ≤ Nt

p
α2

−2ε
,

where in the last inequality we used that p
α2
< 1.

Part (ii) of Example 2.18 is immediate.
To treat part (iii) of Example 2.18, we recall that by [App09, Theorem 2.4.16] Lévy–

Itô decomposition holds. Namely, there exists a d-dimensional Brownian motion W with
covariance matrix Q and an independent Poisson random measure N such that

Lt =Wt + Jt =Wt + at+

∫ t

0

∫

|x|≥1

xN (dr, dx) +

∫ t

0

∫

|x|≤1

xÑ(dr, dx), (B.4)

where Ñ is the compensated Poisson measure: Ñ (D1,D2) := N (D1,D2)−Leb(D1)ν(D2),
D1 ∈ B(R+), D2 ∈ B(Rd), Leb is the Lebesgue measure on R+.

By noting, that the processes W and J are independent, it is easy to see that H1 is
satisfied with α = 2 by exactly the same argument as in the proof of part (i) above.

H2 is satisfied with α = 2 by the same argument as we used in the proof of Proposition 2.8;
recall that

∫
|y|≤1

|y|2 ν(dy) <∞ thanks to the requirements to the jump measure.
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To show H3, we note that for any p ∈ (0, 2]

E|Wt|
p ≤ Ntp/2; (B.5)

E

∣∣∣
∫ t

0

∫

|x|≤1

xÑ (dr, dx)

∣∣∣
p
≤ Ntp/2

(∫

|x|≤1

x2ν(dx)

)p/2
= Ntp/2, (B.6)

where the inequality follows from, e.g., [Kun04, Lemma 2.4]. Further, by definition

E

∣∣∣
∫ t

0

∫

|x|≥1

xN (dr, dx)

∣∣∣
γ∧1

= E

∣∣∣
∑

0≤s≤t

∆Ls1(|∆Ls| ≥ 1)

∣∣∣
γ∧1

≤ E

∑

0≤s≤t

|∆Ls|
γ∧1

1(|∆Ls| ≥ 1)

= t

∫

|x|≥1

|x|γ∧1 ν(dx) = Nt.

If p ≤ (γ ∧ 1), then combining this with (B.5), (B.6) and substituting into the decompo-
sition (B.4), we get

E|Lt|
p ≤ Ntp/2 +Ntp/(γ∧1) ≤ Ntp/2.

If (γ ∧ 1) ≤ p ≤ 2, then similarly

E[|Lt|
p ∧ 1] ≤ Ntp/2 +Nt ≤ Ntp/2.

Thus L satisfies H3 with α = 2.

Proof of Lemma 3.1. The proof is based on the method of [Ger20, proof of Lemma 2.2]
(see also the proof of the original stochastic sewing lemma in [Lê20]). The novelty here is
that we apply the conditional Burkholder-Davis-Gundy inequality rather than the stan-
dard one. Let (Zi)i=2,...,M be a sequence of random vectors in R

d adapted to the filtration
G := (Gi)i≥0, and assume that G ⊂ G0. Then

M∑

i=2

Zi =

M∑

i=2

E
Gi−2Zi +

∑

i even

(Zi − E
Gi−2Zi) +

∑

i odd

(Zi − E
Gi−2Zi). (B.7)

The sequence (Zi−E
Gi−2Zi)i∈{2,...,M}, i even is a martingale difference sequence with respect

to the filtration (Gi)i∈{2,...,M}, i even. We apply the conditional Burkholder-Davis-Gundy
inequality [CF16, Proposition 27]:

∥∥∥
∑

i even

(Zi − E
Gi−2Zi)

∥∥∥
Lp(Ω)|G

≤ N
∥∥∥

∑

i even

(Zi − E
Gi−2Zi)

2
∥∥∥

1

2

Lp/2(Ω)|G

≤ N
( ∑

i even

(‖Zi‖
2

Lp(Ω)|G + ‖EGi−2Zi‖
2

Lp(Ω)|G)

) 1

2

≤ N
( ∑

i even

‖Zi‖
2

Lp(Ω)|G

) 1

2

,
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where in the last step we used (3.2) and the fact that G ⊂ Gi−2. Treating the term in
(B.7) with the odd terms in the same way, we finally get

∥∥∥
M∑

i=2

Zi

∥∥∥
Lp(Ω)|G

≤
M∑

i=2

‖EGi−2Zi‖Lp(Ω)|G +N
( M∑

i=2

‖Zi‖
2
Lp(Ω)|G

)1/2
. (B.8)

Now we proceed to the proof. For 0 ≤ s ≤ t ≤ 1, m ∈ N, consider the uniform partition
of [s, t]: tmi := s+ i(t− s)2−m, i = 0, . . . , 2m. Put

Ams,t :=

2m−1∑

i=1

Atmi ,tmi+1
, m ∈ N.

Then it follows from (3.6) and the conditional Fatou’s lemma that

‖At −As‖Lp(Ω)|G ≤ lim inf
m→∞

‖Ams,t‖Lp(Ω)|G . (B.9)

For m ∈ N we apply (B.8) with M := 2m, Zi := δAtmi−1
,tm+1

2i−1
,tmi

, Gi := Ftmi . We get

‖Am+1
s,t −Ams,t‖Lp(Ω)|G ≤

∥∥∥
2m∑

i=2

δAtmi−1
,tm+1

2i−1
,tmi

∥∥∥
Lp(Ω)|G

+ ‖Atm+1

1
,tm+1

2

‖Lp(Ω)|G

≤ N

2m∑

i=2

‖E
Fm

ti−2 δAtmi−1
,tm+1

2i−1
,tmi

‖Lp(Ω)|G

+N
( 2m∑

i=2

‖δAtmi−1
,tm+1

2i−1
,tmi

‖2Lp(Ω)|G

)1/2
+ ‖Atm+1

1
,tm+1

2

‖Lp(Ω)|G

≤ N2mΓ22
−m(1+ε2)|t− s|1+ε2 +N2mΓ32

−m(1+ε3)|t− s|1+ε3

+N2m/2Γ12
−m(1/2+ε1)|t− s|1/2+ε1 + Γ12

−m(1/2+ε1)|t− s|1/2+ε1

≤ NΓ22
−mε2 |t− s|1+ε2 +NΓ32

−mε3 |t− s|1+ε3

+NΓ12
−mε1 |t− s|1/2+ε1 + Γ12

−m(1/2+ε1)|t− s|1/2+ε1 , (B.10)

where in the penultimate inequality we used bounds (3.4) and (3.5), the fact that tmi−1 −
(tmi − tmi−1) = tmi−2 and inequality

‖δAs,u,t‖Lp(Ω)|G ≤ ‖As,t‖Lp(Ω)|G + ‖As,u‖Lp(Ω)|G + ‖Au,t‖Lp(Ω)|G .

Summing up inequalities (B.10) over m and using (3.4) once again, we deduce for
m ∈ N

‖Ams,t‖Lp(Ω)|G ≤
m−1∑

i=1

‖Ai+1
s,t −Ais,t‖Lp(Ω)|G + ‖A1

s,t‖Lp(Ω)|G

≤ NΓ2|t− s|1+ε2 +NΓ3|t− s|1+ε3 +NΓ1|t− s|1/2+ε1 .

This together with (B.9) yields the desired estimate (3.7).

The proof of Proposition 3.2 relies on the following inequality which is a very minor
modification of [Lê22a, Lemma 2.1].
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Proposition B.1. Let X, Y be nonnegative random variables. Assume that for any
α > 0, θ ∈ (0, 1) one has

P(X ≥ 2α) ≤ θP(X ≥ α) + P(Y ≥ θα). (B.11)

Then for any p ≥ 1 there exists a constant N = N (p) such that

‖X‖Lp(Ω) ≤ N (p)‖Y ‖Lp(Ω). (B.12)

Proof. We follow the proof of [Lê22a, Lemma 2.1]. Using the identity xp = p
∫ x
0
λp−1 dλ

valid for any x ≥ 0, p ≥ 1, we derive for any θ ∈ (0, 1), M > 0

E(X ∧M )p = p

∫ M

0

P(X ≥ λ)λp−1 dλ = 2pp

∫ M
2

0

P(X ≥ 2λ)λp−1 dλ

≤ 2ppθ

∫ M
2

0

P(X ≥ λ)λp−1 dλ+ 2pp

∫ M
2

0

P(Y ≥ θλ)λp−1 dλ

≤ 2pθE(X ∧M )p + (2θ−1)pEY p,

where in the penultimate inequality we use our main assumption (B.11). Take now
θ := 2−p−1. Then, by above

1

2
E(X ∧M )p ≤ 2p

2+2p
EY p.

Passing to the limit as M → ∞ and using the monotone convergence theorem, we obtain
(B.12).

Proof of Proposition 3.2. Fix 0 ≤ S ≤ T . Put

ξ∗(ω) := sup
r∈[S,T ]

ξr(ω); V ∗(ω) := sup
r∈[S,T ]

|Ar(ω) −AS(ω)|, ω ∈ Ω.

We will assume that ξ is bounded from below by a deterministic constant δ > 0. This is
no loss of generality: if this is not the case, we can replace ξ with ξ′ := ξ ∨ δ, note that
the condition (3.8) still holds with ξ′, apply the claim with ξ′, and pass to the δ → 0 limit
in the final bound (3.9), which is possible thanks to the monotone convergence theorem.

Step 1. We claim that for any stopping times τ ≤ η taking values in [S, T ] we have
a.s.

E
τ |Aη −Aτ |

ξ∗
≤ 2. (B.13)

First, we prove (B.13) for the case when η = T and τ takes finitely many values S ≤
t1 < . . . < tn = T . Recall the identity E

τ (X1τ=t) = E
t(X1τ=t) valid for any integrable

random variable X, see, e.g., [KS91, Problem 1.2.17(i)]. Then, using (3.8) and the fact
that ξ∗ ≥ ξτ we deduce

E
τ |AT −Aτ |

ξ∗
≤ E

τ |AT −Aτ |

ξτ
=

n∑

i=1

E
ti
( |AT −Ati |

ξti
1(τ = ti)

)

=

n∑

i=1

1(τ = ti)
1

ξti
E
ti |AT −Ati | ≤ 1. (B.14)
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Next, for a general stopping time τ ∈ [S, T ], we consider a sequence of stopping times
τn taking finitely many values in [S, T ] and converging to τ from above. Then, for any
N > 0 we have using continuity of A and (B.14):

E
τ |AT −Aτ |

ξ∗
≤ lim inf

n→∞
E
τ |AT −Aτn |

ξ∗
= lim inf

n→∞
E
τ
E
τn |AT −Aτn |

ξ∗
≤ 1. (B.15)

Finally, let τ ≤ η be arbitrarily stopping times taking values in [S, T ]. Then (B.15) yields

E
τ |Aη −Aτ |

ξ∗
≤ E

τ |AT −Aτ |

ξ∗
+ E

τ |AT −Aη|

ξ∗
≤ 1 + E

τ
E
η |AT −Aη|

ξ∗
≤ 2,

which is (B.13).
Step 2. Now we modify the corresponding part of the proof of [Lê22a, Theorem 1.3]

to adapt it to our new condition (B.13). For arbitrary α > 0 we consider two stopping
times:

τα := T ∧ inf{r ∈ [S, T ] : |Ar−AS| ≥ α}; ηα := T ∧ inf{r ∈ [S, T ] : |Ar−AS| ≥ 2α}.

Then for any θ ∈ (0, 1) we clearly have

{V ∗ ≥ 2α} ⊂ {V ∗ ≥ α, |Aηα −Aτα | ≥ α}

⊂ {V ∗ ≥ α, |Aηα −Aτα | ≥ 2θ−1ξ∗} ∪ {2θ−1ξ∗ ≥ α}.

Note that {V ∗ ≥ α} = {|Aτα −AS| ≥ α} and hence the random variable 1{V ∗≥α} is Fτα–
measurable. Therefore, using also the Chebyshev inequality we get for any FS–measurable
set G

P(V ∗
1G ≥ 2α) = P(V ∗ ≥ 2α,G)

≤ P(V ∗ ≥ α, |Aηα −Aτα | ≥ 2θ−1ξ∗, G) + P(2ξ∗ ≥ αθ,G)

≤ E1V ∗≥α1GE
τα
1{|Aηα−Aτα |≥2θ−1ξ∗} + P(2ξ∗1G ≥ αθ)

≤ θE1V ∗≥α1GE
τα |Aηα −Aτα |

2ξ∗
+ P(2ξ∗1G ≥ αθ)

≤ θP(V ∗
1G ≥ α) + P(2ξ∗1G ≥ αθ),

where in the second inequality we used that FS ⊂ Fτα and in the last inequality we
used (B.13). Since α > 0 and θ ∈ (0, 1) were arbitrary, we see that condition (B.11) of
Proposition B.1 holds. Hence, (B.12) yields

‖V ∗
1G‖Lp(Ω) ≤ N‖ξ∗1G‖Lp(Ω),

for N = N (p) independent of G. Since G was an arbitrary FS-measurable set, we get

‖V ∗‖Lp(Ω)|FS
≤ N‖ξ∗‖Lp(Ω)|FS

,

which is the desired bound (3.9).

Proof of Proposition 3.3. We begin with the proof of (3.11). We proceed by induction.
The case ρ = 0 is obvious. Indeed ‖Ptf‖C0 ≤ ‖f‖C0 ≤ ‖f‖Cβ .
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Assume now that the statement is proved for ρ ∈ [0,M ], M ∈ Z+. Let us prove it for
ρ ∈ (M,M + 1].

Let ρ =M + 1. If β ≥ 1, then by the definition of the norm

‖Ptf‖CM+1 ≤ ‖Ptf‖C0 + sup
i∈{1,...,d}

‖∂iPtf‖CM

≤ ‖f‖C0 + sup
i∈{1,...,d}

‖Pt∂if‖CM

≤ ‖f‖C0 +Nt(β−M−1)∧0/α sup
i∈{1,...,d}

‖∂if‖Cβ−1

≤ Nt(β−M−1)∧0/α‖f‖Cβ , (B.16)

where in the third inequality we have used the induction step. If β = 0, then

‖Ptf‖CM+1 ≤ ‖Ptf‖C0 + sup
i∈{1,...,d}

‖∂iPtf‖CM

≤ ‖f‖C0 + sup
i∈{1,...,d}

‖Pt/2∂iPt/2f‖CM

≤ ‖f‖C0 +Nt−M/α sup
i∈{1,...,d}

‖∂iPt/2f‖C0

≤ ‖f‖C0 +Nt−M/αt−1/α‖f‖C0

≤ Nt−(M+1)/α‖f‖C0 , (B.17)

where in the third inequality we used the induction step and in the fourth inequality we
used (2.1). Finally, if β ∈ (0, 1), f ∈ Cβ, then define for λ > 0 the interpolation function

K(λ, f ) := inf
f=a+b

a∈C0(Rd),b∈C1(Rd)

(‖a‖C0 + λ‖b‖C1 ).

It is well-known, that if f ∈ Cβ, then

N−1‖f‖Cβ ≤ sup
λ>0

K(λ, f )

λβ
≤ N‖f‖Cβ , (B.18)

see, e.g., [Lun18, Example 1.8]. Then for any a ∈ C0(Rd), b ∈ C1(Rd) such that f = a+ b
we get using (B.16) and (B.17)

‖Ptf‖CM+1 = ‖Pt(a+ b)‖CM+1 ≤ Nt−(M+1)/α‖a‖C0 +Nt−M/α‖b‖C1

≤ Nt−(M+1)/α(‖a‖C0 + t1/α‖b‖C1 ).

Taking infimum over all a ∈ C0(Rd), b ∈ C1(Rd) such that f = a+ b and using (B.18), we
get

‖Ptf‖CM+1 ≤ Nt−(M+1)/αK(t1/α, f ) ≤ N‖f‖Cβ t−(M+1)/αtβ/α,

which is (3.11). Thus, the case ρ =M + 1, β ≥ 0 is proven.

Finally if ρ ∈ (M,M + 1), then by above and the standard interpolation inequality

‖Ptf‖Cρ ≤ ‖Ptf‖
M+1−ρ
CM ‖Ptf‖

ρ−M
CM+1 ≤ N‖f‖Cβ t

(β−M )∧0

α
(M+1−ρ)t

(β−M−1)∧0

α
(ρ−M )
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≤ N‖f‖Cβ t
(β−ρ)∧0

α .

Now let us prove (3.12). We start by assuming additionally that f vanishes at infinity.
First note that it follows from assumptions of the proposition that 1+ ε ≥ µ ≥ (β− ρ)/α.
Thus

β − ρ− α− εα ≤ 0. (B.19)

We see that for any 0 ≤ s < t, x ∈ R
d,

Ptf (x) − Psf (x) =

∫ t

s
∂rPrf (x) dr =

∫ t

s
LPrf (x) dr,

where we used the fact that for r > 0 we have Prf ∈ C2 by (3.11) and we applied Itô’s
formula for Lévy processes, see, e.g., [App09, Theorem 4.4.7]. Therefore, by (2.2) and
(3.11), taking also into account (B.19) and that Prf vanishes at infinity for any r ≥ 0,
we deduce

‖Ptf − Psf‖Cρ ≤

∫ t

s
‖LPrf‖Cρ dr ≤ N

∫ t

s
‖Prf‖Cρ+α+εα dr

≤ N‖f‖Cβ

∫ t

s
r

β−ρ−α−εα
α dr

≤ N‖f‖Cβ

∫ t

s
s

β−ρ
α

−µ(r − s)µ−1−ε dr

≤ N‖f‖Cβs
β−ρ
α

−µ(t− s)µ−ε,

where in the penultimate inequality we used obvious bounds r ≥ s and r ≥ r−s (we note
that the corresponding exponents are nonpositive since β−ρ

α ≤ µ ≤ 1 + ε), and in the last
bound we used that µ > ε and the singularity is integrable. This implies (3.12) for the
case when f vanishes at infinity.

In general case, take a smooth function χ : R+ → [0, 1] such that χ(x) = 1 for x ∈ [0, 1]

and χ(x) = 0 for x ≥ 2. Then the function fn(x) := f (x)χ(|x|/n) vanishes at infinity and
‖fn‖Cβ ≤ N‖f‖Cβ for some N depending only on the choice of χ. By above,

‖Ptfn − Psfn‖Cρ ≤ N‖fn‖Cβs
β−ρ
α

−µ(t− s)µ−ε ≤ N‖f‖Cβs
β−ρ
α

−µ(t− s)µ−ε.

By the dominated convergence theorem, (Pt−Ps)fn → (Pt−Ps)f everywhere. Therefore,

‖(Pt − Ps)f‖Cρ ≤ lim inf
n→∞

‖(Pt − Ps)fn‖Cρ ≤ N‖f‖Cβs
β−ρ
α

−µ(t− s)µ−ε.
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