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Strong rate of convergence of the Euler scheme for SDEs
with irregular drift driven by Lévy noise

January 12, 2024

Oleg Butkovsky®, Konstantinos Dareiotis| and Maté Gerencsér?

Abstract

We study the strong rate of convergence of the Euler-Maruyama scheme for a multidi-
mensional stochastic differential equation (SDE)

dX, = b(X,)dt + dL,

with irregular S-Holder drift, 8 > 0, driven by a Lévy process with exponent a € (0, 2].
For o € [2/3,2], we obtain strong L, and almost sure convergence rates in the entire
range 8 > 1 — /2, where the SDE is known to be strongly well-posed. This significantly
improves the current state of the art, both in terms of convergence rate and the range
of a. Notably, the obtained convergence rate does not depend on p, which is a novelty
even in the case of smooth drifts. As a corollary of the obtained moment-independent
error rate, we show that the Euler-Maruyama scheme for such SDEs converges almost
surely and obtain an explicit convergence rate. Additionally, as a byproduct of our
results, we derive strong L,, convergence rates for approximations of nonsmooth additive
functionals of a Lévy process. Our technique is based on a new extension of stochastic
sewing arguments and Lé’s quantitative John-Nirenberg inequality.

1. Introduction

We consider the stochastic differential equation
dXt = b(Xt) dt + st, t Z 0, XQ = 2o, (11)

driven by a d-dimensional Lévy process L. Here the coeflicient b is a measurable function
R? — R, and the initial condition zq € RY Throughout the article the dimension
de N={1,2,...} is arbitrary.

The ‘strength’ of a Lévy process can often be characterised by a single parameter
a € (0,2] called the stable indexr (for various examples see [Section 2.1)), with a = 2
corresponding to the usual Brownian motion. This parameter can be used to describe
the regularisation provided by L. Indeed, assuming a natural nondegeneracy condition
on the jump measure of L, (ILI)) has a unique strong solution whenever b belongs to the
Holder space CP(RY), where 3 satisfies

B>1—%. (1.2)
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2 INTRODUCTION

This solution theory was developed in [Pril2, [Pril5l [Pril8| [CSZ18].
Once the well-posedness is understood, it is natural to investigate basic discretisations
of the equation. The most classical Euler-Maruyama approximation of (ILI]) reads as

dX{ = bX; @) dt +dL;, Xy = g, (1.3)

with #,(t) := |[nt|n~!. For Lipschitz b the convergence of X" to X can be seen by
very straightforward arguments. The L,-rate of convergence obtained this way, however,
deteriorates for large p (see Remark 27 (ii) below for some details). Even though our
main focus will be on non-Lipschitz coefficients, it is noteworthy and perhaps surprising
that our method coincidentally also solves this moment issue and therefore gives new
results even in the Lipschitz case.

One of the first results regarding convergence of X™ to X in the case of irregular b is
[PT17]. It is shown there that

—(BAL
<Nn ™) neN, (1.4)
L)

sup |X; — X}
te[0,1]

for the case where L is a truncated symmetric a—stable process, a € (1,2), 8 > 2 — «;
here N = N(a, 8, p,d) is a certain positive constant. This result was improved in [KS19b]
in three directions: first, the condition on f is relaxed to 5 > 2/a — 1; second, the rate
of convergence in (L4) is improved and is g A %; third, the class of considered Lévy
processes is significantly extended and additionally includes standard isotropic stable
processes, tempered stable processes, relativistic stable processes, and others. The same
rate g A % is derived [MX18] even for multiplicative noise, under the further relaxed
condition 5 > 1 — «/2, under which strong solutions are known to exist. Very recently,
for the case of standard isotropic stable processes, [HSY21] showed that the strong L,
rate of g A % holds in the whole range 5 > 1 — «/2 even when [ denotes regularity only
in a certain Sobolev scale. A standard example of a coefficient that possesses Sobolev but
not Holder regularity is one with discontinuity of the first kind, in this case scalar SDEs
driven by a Brownian motion and a finite activity Poisson process were studied in [PS21].

From the discussion above, the reader may notice the following gaps in the literature.
All of the works mentioned above consider the case « € [1,2]; recall however that the
strong well-posedness of (1) is known in the whole range a € (0,2]. Further, the
aforementioned moment issue is still present: the convergence rate becomes arbitrary
slow for very large p. Note that this also has the consequence that one can not deduce
almost sure convergence of | Xy — X['| as n — oo. Indeed, to show this one has to prove
the bound E|X; — XJ*|P < Nn~!'=¢ for some p > 0, € > 0, while the best available bound
is E|X; — X'|P < Nn~!, which is not sufficient.

The present paper closes these gaps; the novelties can be summarised as follows. First,
our methods are completely free from the moment issue. As alluded to above and detailed
in Remark 2.7 (ii) below, this makes our results new even in the smooth drifts, where the
strong L, rate, which one trivially gets, namely, é A %, p > 1, is improved to 1. Another
factor that may provide poor rate in the previous results is if §/« is small. This issue
is also not present here, the obtained rate is always strictly above 1/2. We also obtain
almost sure convergence (and rate) of the Euler-Maruyama scheme, to our knowledge for
the first time for SDEs of the type (LII).

Second, we are not restricted to a € [1,2]. In the regime « € [2/3,2] our assumption
on f coincides with the optimal condition (L2). We cover some (but not the optimal)
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range of irregular drifts when «a € (1/2,2/3). For o € (0,1/2] we require b to be regular
(i.e. more than Lipschitz), the contribution in this case is the handling of high moments.

Third, we have also shown that the solution of (L)) is the limit of the corresponding
Picard’s successive approximations. This extends to the non-smooth case the correspond-
ing results from [Yam81l [Tan92, NO23].

Fourth, the class of considered driving Lévy processes is fairly large. It is similar
to [KS19b], so it includes not only the standard stable processes but also their different
“relatives”. The conditions on the Lévy process, see [ HIHH3| below, are rather general and
are easy to verify for various examples, see [Section 2.1l

Finally, as a byproduct of our proofs, we obtain significant improvements in a differ-
ent but related problem of numerical stochastic analysis: the question of approximating
additive functionals of stochastic processes given high-frequency observations. To wit,
consider an R%valued stochastic process Y, a measurable function f : R — R¢, and the
‘occupation time functional’

1
r:/o F(Yy)ds. (1.5)

Approximation of I' is an interesting question in itself (for a detailed overview of the
literature, we refer to [Alt21, Section 1]). A natural estimation scheme is given by

1 1 n
r = [ RO ds = 30 0, (16)
1=0

where Y™ is the process approximating Y. If the increments of Y can be simulated directly,
then one can, of course, take Y := Y. For the case where Y is a Markov process, whose
density satisfies certain estimates (e.g., Y is an a-stable process), Y =Y, and f is a
bounded or Holder continuous function, L, error bounds for I' — I'" were obtained in
[GK14, [GKK15]. For the case p = 2, Altmeyer [Alt21] improved the convergence rate to
the one which was shown to be optimal in some setups [AL22, [AJP22].

In this article, we take the best of both worlds. Namely, we obtain the L, convergence
rate for the error I' — I' as in [Alt21] but for general p > 2. Furthermore, we provide
L, bounds on the convergence rate of the error for the case Y™ # Y. This is relevant
if the process Y cannot be simulated directly (this is often the case if Y is a solution
to SDE (L.I))) and we have access only to its approximation Y™ (which can be its Euler
approximation (L3])).

Our approach is rather different from the one used in the papers [PT17, MX18| [KS19b,
HSY?21] discussed above, as we do not rely on any form of Zvonkin transformation or
Ito-Tanaka trick (in fact, Itd’s formula is not even once applied for either X or X™).
Instead, we employ stochastic sewing, which originates from the work of Lé [Lé20] and
has been developed for discretisation problems in [BDG21al, BDG21bl DGL21l [LL21]. In
[BDG21a] the Euler-Maruyama scheme for fractional Brownian motion-driven SDEs is
studied. One may hope due to the scaling correspondance between stable indices and
Hurst parameters (« <> 1/H) that the methods therein translate easily to the Lévy case.
This is unfortunately not the case, for several reasons. First, the usual regime H < 1
corresponds to a > 1. To consider @ < 1, one needs tools from the H > 1 case, in
particular the shifted stochastic sewing lemma [Ger20]. Second, high moments of Lévy
processes do not scale (or they do not even exist for several examples). This is related
to the aforementioned moment issue yielding poor rate for large moments in preceding
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literature. Overcoming this challenge relies on the recently obtained quantitative John-
Nirenberg inequality [Lé22a]. Finally, there is no useful form of Girsanov theorem to
remove the drift at any part of the analysis.

This article deals only with the strong rate of convergence. Clearly, the weak rate of
convergence is at least as good as the strong rate of convergence; already with this simple
observation our results imply weak rates which are better than the ones available in the
literature [KP02, [IMZ11] in the range of parameters that we cover. An interesting and
challenging question is whether these weak rates can be improved further, and whether
the range of 5 can be upgraded to 8 > 1—« (in this range SDE (I.T]) is weakly well-posed
[Kul19l [LZ22]). We leave this for the future work.

The rest of the paper is organized as follows. Our main result concerning the L, con-
vergence of the numerical scheme is formulated in Examples of Lévy processes
satisfying the assumptions of the convergence theorem are given in[Section 2.1 A number
of technical tools needed for the proofs are collected in [Section 3l The main results are
proved in [Section 4, whilst the proofs of some technical auxiliary statements are placed
in the Appendix.

Acknowledgements. The authors are grateful to Randolf Altmeyer and Mark Podol-
skij for very helpful discussions regarding approximation of additive functionals of a Lévy
process, and to Khoa Lé for many useful conversations and for bringing to our attention
the articles [GK14l, [GKK15]. We would like to thank the referees for their helpful com-
ments and feedback. OB has received funding from the DFG Research Unit FOR 2402
and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy — The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689, sub-project EF1-22). MG was funded by
the Austrian Science Fund (FWF) Stand-Alone programme P 34992. The project has
been conceived during the stay of the authors at the Hausdorff Research Institute for
Mathematics (HIM), Bonn. Significant progress on the project has been achieved during
the visits of the authors to TU Wien, Mathematisches Forschungsinstitut Oberwolfach
(mini-workshop 2207c¢), and Universita degli Studi di Torino. We would like to thank all
these institutions and their staff for providing excellent working conditions, support, and
hospitality.

2. Main results

We begin by introducing the basic notation. For 8 € (0,1) and a Borel subset @Q of R¥,
k € N, let C?(Q) be the corresponding Holder space, that is, the set of functions f: Q — R
such that

I fllcsg) == Slelg Lf @]+ [flesg) == Slelg |f(x)] + sup 1@ = Fw)l < 00

THAYEQR |£C - y|ﬁ

With a slightly unconventional notation we set C°(Q) to be the set of bounded measurable
functions (not necessarily continuous) equipped with the supremum norm. The definition
of the analogous spaces for R%valued functions is simply understood coordinate-wise.
For 3 € [1,00) we denote by C8(Q) the set of functions whose weak derivatives of order
0,1,...,|B] all have representatives belonging to C#~ 151(Q). In the particular case Q = R?
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sometimes we will use a shorthand and write C? instead of C#(R%) in order not to overcrowd
the notation.

Fix a probability space (£2, F,P) and on it a d-dimensional Lévy process L, equipped
with a right-continuous, complete filtration F = (F;):e[0,1]- The conditional expectation
given F; will be denoted by E!. The Markov transition semigroup associated to the
process L is denoted by P = (P;)¢>0, and the generator of P is denoted by L.

We fix o € (0,2], d € N and impose the following assumptions on P and L.

Assumption H1 (gradient type bound on the semigroup). There exists a constant M
such that for any f € C°(R%), one has

IVPLfllcoray < Mtfl/aHchO(Rd)a 0<t<1. (2.1)

Assumption H2 (action of the generator). For § = 0,1, and any € > 0 there exists a
constant M = M (6, ) such that for any f € C*t9t¢(R%) vanishing at infinity, one has

ILflcsmay < M| fllcasstemay- (2.2)

Assumption H3 (moment conditions). For any p € (0, «), € > 0, there exists a constant
M = M(p, ¢) such that

P
a

E[|LeP A 1] < Mta=, 0<t<1.

With some abuse of notation, in the sequel when we refer to the parameter M given
a process L satisfying the above assumptions, we understand the collection of all of the
M-s in H1-H3.

We provide a long list of examples of processes satisfying H1-H3 in [Section 2.1] let us
here just briefly mention three of the most standard examples. First let a € (0,2) and
L be the standard d-dimensional a—stable process. That is, L is a Lévy process whose
characteristic function is

EeiM) = e~tealN” ) e RY, ¢ >0,

for some constant ¢, > 0. In this case H1-H3 are satisfied. A similar example is the
d-dimensional cylindrical a—stable process, that is, a process L whose coordinates are d
independent 1-dimensional standard a—stable processes. Its characteristic funtion is given
by

RNl — o~a TN N eRY ¢ >0,

for some constant ¢, > 0. In this case H1-H3 are also satisfied. Finally the most standard
of the most standard examples is the d—dimensional Brownian motion, which satisfies
H1-H3 with a = 2.

Convention on the operator A. The expression of the form ¢; + ¢ A ¢3, where
¢; € R, will quite often appear in the paper. We will always mean that in this expression
the minimum is taken first and then the addition, thus it equals to ¢; + (c2 A ¢3) =
c1 + min(co, c3).

Convention on constants. Throughout the paper N denotes a positive constant
whose value may change from line to line; its dependence is always specified in the corre-
sponding statement.
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We begin with the well-posedness of (LI]). As mentioned in the introduction, this
is essentially known, but since none of the available results cover the whole range of ex-
ponents and generality of driving processes considered herein, we provide a short proof
in the appendix. This is done for the sake of presentation as well as to highlight the
usefulness of stochastic sewing for well-posedness of SDEs with jumps; our method for
obtaining strong well-posedness is very different from [Pril2l Pril5l [Pril8| [CSZ18]. An-
other advantage of our proof strategy is that we get “for free” that the solution of (ILT]) is
the limit of Picard’s successive approximations. While this fact is known for Lipschitz or
essentially Lipschitz drifts [Yam81, Theorem 1], [Tan92, Theorem 2], [NO23, Lemma 6.2
and Theorem 6.1], to the best of our knowledge, this result is new for Holder continuous
drifts.

Define successively a sequence of approximations Y O(t) := n+ L, t € [0,1],

t
YO = + / bY ™ (s)ds + Ly, t€[0,1], n € Zy.
0

Theorem 2.1. Suppose that L satisfies[HIHHS. Let n be a Fo—measurable random vector
taking values in R®. Suppose additionally that

8> <1 - %) v (2 - 2a) (2.3)

and let b € CP(RE, RY). Then equation (1) with the initial condition Xo = n has a unique
strong solution. Furthermore, this solution X is the limit of the Picard iterations, namely

| X — Y(n)HCO([O,l]) —0 asn— o0 a.s. and in L,(§)), p > 1.

Now we are ready to present our main results: the L, convergence of the Euler—
Maruyama scheme with an explicit rate. In the statements below, X is a solution to (L)
with the initial condition zg € R?, and X™, n € Z,, is its Euler approximation with the
initial condition x7 € R?, which solves (L3).

Theorem 2.2. Suppose that L satisfies [HIHHZ and that @3) holds. Let b € CP(R?,RY),
p>2,e>0. Then there exists a constant N = N(d,«, 8, p,e, M,||b||cs) such that for all
n € N the following bound holds:

< N~ (G+3A3)+ 4 Njag — 22]. (2.4)
Lp(E)

1% = X lleogo )

One can also show the almost sure convergence of X" to X.

Corollary 2.3. Suppose that L satisfies[HI'3 and B satisfies 23). Let b € CP(R?,RY).
Take xy = ¢ for all n € N. Then for any € > 0, there exists an a.s. finite random
variable n such that for any n € N, w € Q)

HX((JJ) — Xn(W)HCO([O,l]) S U(W)n_(%-i_g/\%)-i_e

The next theorem gives strong L, rate of convergence of approximations of additive
functionals of a Lévy process.
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Theorem 2.4. Suppose that L satisfies [HIHH3. Let p € [1,00), € > 0, 6 € [0,1],
f € CORY,RY). Then there exists a constant N = N(d, o, p,0,e, M) such that for all
n € N the following bound holds:

<N ~(3+&n)+e, 2.5
o < Nl 25

t t
| sun | [ r@odr = [ st ar |
0 0

t€[0,1]

In the case p = 2 this rate is proven in [Alt21] Theorem 11]. For general p, a worse
rate % + % A % — ¢ is proved in [GK14, Theorem 2.2, Section 2.4]. For special cases of f
(indicator function or Dirac-0) even central limit theorems are available in the literature,
see e.g. [AJP22 Theorem 2.3|, and also [AL22].

The next theorem concerns approximations of additive functionals of the solution X
of an SDE driven by a Lévy process. In this case the underlying process X can not be
simulated directly, and one has to use the corresponding Euler approximation X™. We
were not able to find any relevant results in this direction in the literature.

Theorem 2.5. Suppose that L satisfies [HIHHZ and that @3) holds. Let b € CP(R?,RY),
f € CORY, RY), where

0> <1—%) v(2—2a>. (2.6)

Let p € [1,00), € > 0. Then there exists a constant N = N(d,c, 3,6,p,e, M, ||bllcs) such
that for all n € N the following bound holds:

(1 BAO AT
< N||fleon™GHE4)= 4 N|l ]l oo — 2.

t t
sup ‘ /0 F(X,)dr— /0 &G e[, o
(2.7)

t€[0,1]

The proofs of these statements are given in
Remark 2.6. For any s € R? equations (LI)) and (I3]) can be rewritten as:

dX, = DXy dt +dLy;  dXP = WXL o) dt + dLy,

where g(ac) = b(x) — K, Et := Ly + kt. Clearly, if b € CP, then b e Ch. Therefore, if
for some x € R the process (L + kt)efo,1] satisfies HIHA3, then [Theorems 2.2] and
and hold (provided that all the other conditions on 3, b, p are met).

Remark 2.7. [Figure 1|shows the region where [Theorem 2.2 guarantees the convergence of
the Euler scheme. Let us give some context for some of the different regimes of interest
for the exponents.

(i) In the regime « € [2/3,2], (23] coincides with the well-known condition (L2]), and
thus [Theorem 2.2 establishes strong convergence in the optimal range of 3. We
also remark that the threshold 2/3 appears in the theory of Lévy driven SDEs
from time to time, e.g., in [CSZI8| [FKM21]. We are unsure whether there is some
connection between these appearances, or if this is just an instance of the “law of
small numbers”.

(ii) The result is new even in the case of smooth drift. In the regime 5 > 1 the drift is
regular enough to make the strong well-posedness of ([LI]) trivial. Furthermore, it
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is easy to get some rate of convergence from elementary arguments: assuming for
simplicity o = x{, by Gronwall’s lemma one has almost surely

1
sup |X; — X7| < et [ / (X — X7 o A L) dt.
te[0,1] 0

This yields for any p > 1, € > 0,

_ (1AL
I sup 1% = X7l 0 < N (00 (2.8)

with some constant N = N(«,p,e, M,||b||c1). This provides little control for high
moments of the error; further this does not allow to get almost sure rate of conver-
gence. This is markedly improved by [Theorem 2.2 and [Corollary 2.3|

Whenever 5 > «/2 (which is enforced by (2.3]) for all @ < 1), the minimum in g/\% is
the second term, and so in this case the expression for the L,-rate simplifies to 1 —e¢.
Thus in this regime we recover the best possible (up to ¢) rate for an Euler-type
approximation.

Figure 1: Convergence rates. s is the required lower bound for §; - --- is the classical
condition (L2); shading indicates rate of L,-convergence from 1/2 () to 1 ((39).

In the case when L is a standard Brownian motion, [Iheorem 2.2] is consistent with
the results of [BDG21a] in the case H = 1/2.
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An implementation of the Euler—-Maruyama scheme (LL3]) would also require simulation
of the driving Lévy process L. This is a well-studied problem, and many techniques and
tricks are available in the literature. We do not discuss this problem here but rather
refer the reader to a concise collection of methods for simulating L provided in [Pap08|
Section 14].

2.1 Examples of Lévy processes satisfying the main assumptions

Let us present some examples of Lévy processes satisfying [HIHH3l Denote by ® the
characteristic exponent (symbol) of L, that is,

B = %0 ) e R, ¢ > 0.

Recall that (see, e.g., [App09} Corollary 2.4.20]) ® can be written in the form
1 A
D(N\) = —’L'<CL, )‘> + §<)‘a Q)‘> + (1- ez()\,y) + Z<)" y>]]-\y|§1)y(dy)a A€ Rd,
R4

where a € R4, Q € R¥*? is a positive semidefinite matrix, and v is a o-finite measure on
R such that »({0}) = 0 and fRd(l Aly?) v(dy) < co. Tt is common to refer to (a, Q,v) as
the generating triplet of L. We begin with general sufficient conditions on ®, and then
move on to the specific examples. By Re ® we mean the real part of ®.

Proposition 2.8. Assume that for some o € (0,2), c¢1,c9, N > 0 the symbol ® satisfies
1| A|* < Re®(N) < | A|¥, when |A| > N. (2.9)
Then the following hold:
(4) if a € [1,2), then[HI and [H2 are satisfied for the process L;
(1) if a € (0,1), then f\y|§1 lylv(dy) < oo and [HIl and [H2 are satisfied for the process
L := L; + kt, where kK = —a + f‘y|§1 yv(dy).

Recall that thanks to Remark 2.6]it is sufficient in Theorem 2.2]to verify Assumptions
H1] and for the shifted process L. The proof of Proposition 2.8 is provided in the
Appendix. To verify [H3] the following result can be applied.

Proposition 2.9 (|[DS15, Theorem 3.1(c)]). Assume that for some a € (0,2), C' > 0 the
symbol ® satisfies
V)| < CIA®, A eR4 (2.10)

Then for any p € (0, ), there exists N = N(k, o, C,d) such that
E|L(P < NtP/*. t e (0,1].

One can also derive an explicit formula for the moments of L in terms of ® [DS15,
p. 3865]; this is also very useful in verifying [H3l Namely, for any p € (0, 2), there exists a
constant N = N(p, d) such that for any ¢t > 0

E|Li|P = N/ (1 — Ree 1M \|7P=d g\,
R4

Now let us give an extensive list of examples of Lévy processes satisfying [HIHH3l This
list is inspired by [Pril2] p. 425|, [Pril8, Example 6.2], [SSW12, p. 1147] and |CSZ18,
Section 4]. All the corresponding proofs are placed in the Appendix.
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Example 2.10 (General non-degenerate a—stable process, a € (0,2)). Take Q@ =0, a =0,
and

u(D) = / h / F L rOudedr, D e BRY,
0 S

where p is a finite non-negative measure concentrated on the unit sphere S := {y €
R? : |y| = 1} that is non-degenerate, i.e. its support is not contained in a proper linear
subspace of R%. Then there exists k € R? such that the shifted process L; := L; + kt
satisfies [HIHH3] (and, thus, [Theorem 2.2l holds by [Remark 2.6). If a € [1,2), then x = 0;
if a € (0,1), then k = f|y\§1 yr(dy) < oo

Example 2.11 (Standard isotropic d-dimensional a—stable process, a € (0,2)). This is a
special case of with p being the uniform measure on S. One can check that
in this case (D) = ¢4 [ ly|~4*dy, D € B(R% and x = 0 for all values of a € (0, 2).

Example 2.12 (Cylindrical a—stable process, a € (0,2)). Let L be a d-dimensional

process whose coordinates are independent standard 1-dimensional a-stable processes.
Then L satisfies [HIHH3!

Example 2.13 (a-stable-type process, a € (0,2), see [SSW12, p. 1146]). Take Q = 0,
a =0, and

u(D) = / h / M LprOudS)dr, D € BRY), (2.11)
0 S

where p is a symmetric (that is u(D) = u(—D) for any Borel set D) non-degenerate finite
non-negative measure concentrated on S and p: (0,00) — R, is a measurable function
such that for some constants C,C7,Cy > 0 one has

Lio,c1(r) < Cip(r) < Ch. (2.12)
Then L satisfies [HIHH3L

Example 2.14 (a-stable tempered process, a € (0,2)). This is a special case of[Example 2.13]
with p(r) = e™" with some ¢ > 0.

Example 2.15 (Truncated a-stable process, a € (0,2)). This is a special case of[Example 2.13
with p, = cljo,17 with some ¢ > 0 and p being the uniform measure on S. One can check
that in this case v(D) = ¢, fDm{y:\y|<1} ly|~4=>dy, D € BR%)

Example 2.16 (Relativistic a-stable process, a € (0,2), |[CMS90, [CVST20]). Take L
with symbol ®(\) = (|\|> + C¥*)*/2 — C, with some parameter C' > 0. It satisfies [HTHA3L

Example 2.17 (Brownian motion). If L is the standard d-dimensional Brownian motion,
then it satisfies [HIHH3] with a = 2.

Example 2.18 (Linear combinations). (i) Let L"), L® be two independent Lévy pro-
cesses. Assume that the process L, i = 1,2, satisfies [HIHH3] with o = a;. Then
the process LY + L® satisfies HINHAZ with o = a1 V ao.

(ii) In particular, if L is a sum of a d-dimensional Brownian motion and the standard
8
a—stable process, then the rate in ([2.4)) is n~GHEADFE for b € ch, B >o0.
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(iii) In general, if L has a non-degenerate diffusion part (that is, @ is positive definite) and
for some v > 0 we have f{ly\>1} ly|"v(dy) < oo, then the statement of [Theorem 2.2]

]
is valid with @ = 2. This corresponds to the rate n~G+3A+e This significantly

improves [KS19bl Remark 2.3].

Remark 2.19. Let d = 1 and take Q@ = 0, v(D) = ¢, fD y 11y > 0)dy, D € BR),
a€(0,1),a= fly\gl yv(dy) < oo. Then the process L satisfies [HIHH3] (since it is a special
case of (2.10)) and is increasing ([App09, Theorem 1.3.15]). Thus, regularization by noise
can occur for monotone drivers as well.

Finally, let us present a simple example of a class of Lévy processes for which regu-
larization by noise cannot occur. Suppose that a = 0, @ = 0, ¥(R%) < oo. Then, the
corresponding process L is a pure jump process and it has only finitely many jumps on
the interval [0, 1] [Sat13, Theorem 21.3]. Denoting its first jumping time by T(w), we
see that on the time interval [0, T'(w)], equation (LI)) becomes dX; = b(X;)dt. Clearly, if
b e CP, B < 1, this equation might have infinitely many or no solutions. Thus, for such
Lévy noises the original equation (II]) is not well-posed.

3. Preliminaries

Before we proceed to the proofs of our main results, let us collect a number of useful
methods and bounds which we are going to apply later.
For a random variable £, a sub-c-algebra G C F, and p > 1 we introduce the quantity

1€] L, = (EIEPIGN (3.1)

which is a G-measurable non-negative random variable. It is clear that

€l = €L, @igllZo@)-

Note that if p > 1, G C H are o-algebras, then the following simple bounds hold almost
surely

IEEIH L@ < [Ellp@;  IELEHI L @)g < lEllr,@lg- (3.2)

These quantities are not norms, but rather G-measurable nonnegative random variables.
To simplify the presentation, any inequality between such expressions is understood in
the almost sure sense.

3.1 Conditional shifted stochastic sewing lemma

An important tool to obtain [Theorem 2.2 is an adjusted version of [Ger2(), Lemma 2.2],
which in turn is based on Lé’s stochastic sewing lemma [Lé20]. We need the following
notation. For 0 < S < T we denote a modified simplex

Ay i={(,1): S<s<t<T,s—(t—s)> S} (3.3)

For a function f: Aig ) — R? and a triplet of times (s, u,t) such that S < s <u <t < T,
we denote

5fs,u,t = fs,t - fs,u - fu,t-
The conditional expectation given F is denoted by E®.
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Lemma 3.1. Let 0 < S <T <1, p € [2,00) and let (Ast)syens.r be a family of random
variables in Ly(€2, R%) such that Ag i is Fr-measurable. Let G C Fg be a o-algebra. Suppose
that for some e1,e9,e3 > 0 and G-measurable random variables I'y,I'9,'s > 0 the bounds

[ Asllz, g < Tilt — s'/2Fer (3.4)
IES= 96 A utllz g < Talt — s|'T2 + Tyt — s|!+es (3.5)
hold for all (s,t) € Ay and v = (s +t)/2.

Further, suppose that there exists a process A = {Ay : t € [S,T1} such that for any
S <s<t<T one has

m—1

Ay — As = W}gnoo Z ASHFS’SHHD%S in probability. (3.6)
i=1

m

Then there exist deterministic constants K1, Ko > 0, which depend only on €1,e9, €3, p,
and d such that for any S < s <t <T we have

H-At - ASHLP(Q)|Q S Kll“l]t — 8‘1/2+€1 + KQPQ’t — 8’1+€2 + KgFg’t — 8’1+€3. (3.7)
The proof of [Lemma 3.1]is given in the appendix.

3.2 Weighted John-Nirenberg inequality

Proposition 3.2. Let 0 < S < T and let A: Q x [S,T] — R%, £: Q x [S,T] — R be
stochastic processes adapted to the filtration (Fi)icis,1- Assume additionally that A is
continuous and A € L1(QQ) for all t € [S,T]. Suppose that for any S < s <t <T one
has

E*|A; — As| <& as. (3.8)
Then for any p > 1 there exists a constant N = N(p) such that for any S < s <t <T
| sup A, — As| ||z, 7 < NI sup & l|,@)7. (3.9)
re(s,t] re(s,t]

The above proposition is very close to [Lé22a, Theorem 1.3], and the only difference
is that the condition (3.8]) is imposed there for all stopping times s(w), t(w) € [S,T]. On
the other hand, we only assume that (B.8)) holds for deterministic s, ¢ € [S, T']; this will be
crucial later in the proofs of [Theorems 2.2] 2.4 and For the case when € is a constant,
[Lé22b, Proposition 2.2] shows that if (3.8) is satisfied for deterministc s, ¢, then it is
also satisfied for s,t being stropping times. In general case, this seems to be not true.
Therefore, for the proof of [Proposition 3.2] we adapt the argument from [Lé22al, Theorem
1.3]. This is done in the appendix.

3.3 Heat kernel and related bounds

Recall that P is the Markov transition semigroup associated to the process L. Quite
often we use the following simple observation. For any measurable bounded function
f:R* 5 R4 0< s <t and any Fs-measurable random vector € one has

Esf(Lt + 5) = ’Ptfsf(Ls + 5) (310)

We now formulate some consequences of [HIHH3] in the form that they are actually used
in the proofs.
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Proposition 3.3. Suppose that [H1l and [H3 hold. Then for every e > 0, 8 > 0, p as
below, u € (e,1+¢l, u > (B — p)/a there exists a constant N = N(«, 5, u, €, p) such that
the following holds for any f € CP:

(B=p)NO

[Pefllce < Nl fllest =, 0<t<1, p=0; (3.11)
B—p
[Pef = Psfllee < Nllfllges =

TRE—9)F, 0<s<t<1, p=0,1. (3.12)
The proof of this proposition is mostly technical and is provided in the appendix.
Assuming that L satisfies [H3], it is immediate to see that this implies that for any

m >0, p>1, e >0 there exists a constant N = N(p, m, e, «) such that

m (AL —¢
NLe|™ AL S Nte™» ", te[0,1]. (3.13)

We further recall two elementary inequalities:

|f(@1) = fx)] < |21 — z2[| fllen (3.14)
|f(x1) = f(x2) — f(x3) + f(xa)] < |21 — 22 — 23 + 24| fllcr + |21 — 22[|T1 — 23][| f]| 2
(3.15)

for any 1,22, 23,24 € R? and any f from C! or C2, respectively.

4. Proof of the main results

We will denote
p=X—-L ¢"=X"-1L, ne”Zy. (4.1)

We consider the following decomposition of the difference between the additive functional
of the process and its estimate. For 0 < s <t <1, n € Z,, f € C? we write

t t t
/ G dr — / FXD o) dr = / FLo+ 00) — [(Ly + o™y dr
t
4 / FLo+ 9" — (Lot 0 o) dr

t
+ / f@Lr + ¢ ) — Ly + Prar) AT
S
=&l el v el (4.2)

Clearly, for f = b we get the increment of the difference between the process and its Euler
approximaiton:

t t
O = X0 = (X = XD = [ b0y dr = [ b, ) dr = 20t €7 4 gl (43)

Remark 4.1. This decomposition differs from the one in e.g. [BDG21a]: therein, £5™2 4
Ebm3 can be treated as one term, and by Girsanov’s theorem, the perturbation ™ can in
fact be transformed away. Such trick is not available in the Lévy case due to the lack of
an appropriate Girsanov’s theorem.



14 PROOF OF THE MAIN RESULTS

Our goal is to bound the L,(£2) norm of the left-hand side of (43]). However, doing
this directly for the term Eg,’f 3 would lead to a rate that deteriorates for large p, see
[Remark 4.8 below. Therefore, we bound a conditional L?-“norms” instead and eventually
after buckling apply John-Nirenberg inequality. First, in [Section 4.1] we prove certain a
priori bounds for ¢, ™. Then in [Section 4.2] we produce general bounds for conditional
“norms” of integrals of irregular functions along the perturbed Lévy process, which are
then applied to bound Ei ’tn’i in [Section 4.3l Finally, these bounds are combined for the
proofs of the main theorems in [Section 4.4

4.1 A priori bounds

Let f:[0,1] x Q — R? be a measurable bounded function adapted to the filtration F. Let
vye€(0,1],p>2,0<5<T <1,let GC Fg be a o-algebra. We consider the following
quantities of f:

Hleog s == sup [[f®OllL, )6
10161571 te[S7T]|| I 2,15

1f® = f) 16

[fler = sup ; 4.4
G157 s,t€[S,T1] It — s (44)
0 . 5@ = E*fOll 7 00 (4.5)
~y = sup . .
CplG.[5,T1 s it — s

Part (iii) of the following lemma is the main a priori estimate on the “stochastic
regularity” of ¢, ™.

Lemma 4.2. (i) Let ¢ > 1. Let G C F be a o-algebra. Let Y,Z € Ly(Q) be random
variables and suppose that Z in G—measurable. Then

1Y = ElY[G1| L, < 21V = Z[| L, @pg, a5 (4.6)

(i) For any 0 < s <t <1, q¢> 1, measurable function f: [s,t] x Q — R? adapted to the
filtration F, v € (0,1), o-algebra G C Fs one has

[f]C;’\G,[s,t] < 2[f]<gg\g,[s7t]- (4.7)

(ii) Letq>1,e>0. Assume that B > 1—« and that[H3 holds. There exists a constant
N = N@G,|blles, o, €,q, M) such that for 0 < s <t <1 one has a.s.

1 (BAL ALY

gt — Bl o, < NJt— s HE& 1), (4.8)
14 (BAL ALY

et — B2l ar, < Nt — s a0 <. (4.9)

Proof. (i) We have

1Y = ElY[Gllz,16 < IY = Zl 2,6 + IEYIG] = Z| L, )6
=Y = Z| L6 + IELY = Z|G|| L, @)¢
<2lY = Z|lz )95

where the last inequality follows from (3.2]).
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(ii) By part (i) of the lemma and Jensen’s inequality we have for any s < s’ <t/ <t

HHf(tl)_ESIf(tl)HL1(Q)|]—'S/HLq(Q)\g < 2| F&) = FN @z g < 21/ E=F$D @6

where we used that G C Fs C Fy. The desired result follows now from the definitions of
the seminorms (4.4]) and (4.5]).

(iii) Without loss of generality, we can assume that § < 1. Suppose that (48] holds
for some m > 0 in place of 1+ (% A %) — €. This is certainly true for m = 0 thanks
to the fact that b is bounded; we proceed now by induction on m. We apply (£6]) with
G=FY =@ Z=ps+ [T0(Ls+E°p,)dr. We get

t
_E° < 2” _ —/ (L + E*py)d (
|t ol 17 < 2||pr — w5 i (Ls + E’pp)dr .

=1 / (L + o) — KLy + 1) dr] Ly,

t
<N| [ (1L - L + for - o) A1
S

Lq()|Fs
t

<N [ = Ll ALz, + lor = Eorl] o) dr
S

Using ([B.I3)), the independence of L, — L4 from Fg, and the induction hypothesis, we get
a.s.

ler — E*oilln 7 < NIt — S\H(gA%Aﬁm)fs-
It is elementary to see that if € > 0 is small enough, then the recursion mg = 0, m;11 =
1+ (g A % A Bm;) — € reaches 1+ (g A %) — ¢ in finitely many steps (recall that « > 1—
and thus a > (1 — B)/(1 — ¢) for small enough ¢ > 0). Recalling our initial assumption
B <1, we get (4L8).

Inequality (£9) is obtained by a similar argument, though one has to be a bit more
careful because now L,y — Ly, (s) is not independent of F;. For fixed s € [0, 1], define
s’ to be the smallest grid point which is bigger or equal to s, that is, s’ := [ns]n~!. It is
crucial to note that ¢¥, is F; measurable.

We proceed by induction as before and assume that (€3] holds for some m > 0. If
s <t < ¢, then ¢} is Fs—measurable. Hence ¢} = ES¢} and the left-hand side of (£9)
is zero. Therefore it remains to consider the case ¢ > s’. In this case, using again (Z.6)
with G = F,, Y = ¢!, Z = ¢, + f;, b(Ls + E 9y ) dr, we deduce

t
P _ RSl <2H"— ",—/bL ES" d‘
o3 ot | LyF < 2||%F — »s ; (Ls + E°pp () dr LI,

t
/S\/ ( ( Kn(r) + SDI{n(T)) ( s + Splin(r))) " LQ(Q)‘]:S

t
<N|| [ (e = Lol + 107 — B |) A Ll :
- /s (1L s|” F |k Pranl”) " Lo(Q)| Fs

Note that for r > &', k,(r) > s’ > s, and therefore Ly, ) — Ls is independent of Fs. From
here we obtain (49]) exactly as before. O

Remark 4.3. The reason for the non-standard portion of our main assumption (2.3]) (con-
dition 5 > 2 — 2a) and the strange threshold 2/3 in [Remark 2.7 is the appearance of 1/q

in (A.8)-@9).
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4.2 General bounds

Since £F™! and £/™2 in decomposition (2] have similar forms (difference of averages of
f along L with two different perturbations), we begin with the following general bound
that can be applied to both.

Lemma 4.4. Let p € [2,00). Assume [HIHHS Let 7,v,e9 € (0,11, € > 0, be constants

satisfying s 01
bea-29, 224750, 4+ ">o. (4.10)
2 « «a

Let f € C%. Let g,h: [0,1] x Q — R? be bounded, adapted, measurable functions and
suppose that there exist Cy, Cy, > 0 such that for any 0 < s <t <1 one has a.s.

E®lge — Efgi| < Cylt — 5|, (4.11)
[he — E*Ry| £, < Chlt — |7 (4.12)

Then there exists a constant N = N(a, 0,p,d,~y,T) such that for any 0 < S <T <1 and
any o-algebra G C Fg one has the bound

(0—1)A0

< N[ flleoT = H* =2 |lg = hllgoigs.m

T
| [ e sa0 =+ hyr

Lp(|G
(6—1)A0

+ N[ fllea(T = S = g — hleyig.ism1

-2
+ N[ flleeCo(T = )™ |lg = hllg0ig, 1571
(4.13)

Remark 4.5. Tt is pivotal that the seminorm appearing in the right-hand side of (Z.I3))
is [g — hlcy|g,1s,) rather than a much less precise seminorm [g — hlyr g s (recall
Lemma 4.2(ii) and the definitions of the seminorms in (5] and (£4)). This will be
crucial for bounding £7™2, see [Remark 4.10] below.

Proof. Fix 0 < S <T <1. Put
t
Agy =BT / F@Ly + B9 — f(Ly + ESTIhdr, (s,0) € Agsyr;
S
¢
-At ::/ f(Lr"i_gr)_f(Lr"i_hr)dra te [S,T]
0
Let us verify that the processes A, A satisfy all the conditions of the stochastic sewing

lemma (Lemma 3.T).
Let (s,t) € Ars,r). Then recalling (3.10) and ([3.14]), we see that

t
’As,t‘ < / ‘,Pr—(s—(t—s))f(Ls—(t—s) + ES_(t_S)gr) - Pr—(s—(t—s))f(Ls—(t—s) + ES_(t_S)hr)‘ dr
s

t
S/ 1Pr—s——sp fller [ES~ (g, — hy)| dr
S

Thus, by (B.11)) (applied with p =1 and 8 = ) and (B.2]), we have

(0—1)A0

t
[ Astll 16 < ||f||c0/ (r—s) = |E“g, — ho)ll, g dr
S
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(6—1)A0

<N[[fllest =)' o sup [|E* (g, — bl 1,006
relS,T]
@—1DA0
SN[ flles@t— 9" sup |lgr — hellz, )0
relS,T]
@—1DA0

= N fllest = 9 =" |lg = Pllgoig s

Here in the penultimate line we used that G C Fs C Fs_1—s). Note that by the assumption
0 >1—«a/2, we have 1 + 9%“1 > 1/2. Therefore, condition ([B.4]) is satisfied with I'; =
Nl fllcellg = hlizoig,i5,m1-

Now let us verify condition ([B.5). As required, we take (s,t) € Ay, and u := (t+5)/2.
It will be convenient to denote s; :=s—(t—S), o :=s—(u—S8), S3 := S, S4 := U, S5 := t.
One has s < 59 < s3 < 84 < s5. Then we deduce

Esf(tfs)(SAS’%t
= E815A83,S4785

=B [+ B — J(Ly o+ ) — (L + B — (L, + B dr

+ET / Ly + E*g,) — f(Lr + E*hy) — f(Ly + ESg,) — f(Ln + Ehy)) dr
=11 + Is. (414)

Here in the term I» we used the identity u — (t — s) = s = s3. We begin with the analysis
of I1. Recalling (3.10), we obviously have

S4
Il - ESI E82 / (f(Lr + E81g7") - f(Lr + ESlhr) - f(Lr + ESQQT) - f(Lr + ESQhr)) dr
S3

S4
_ g / (Proy f(Loy + ESg) — Pysy f(Lsy + ES )

Ss3

- PT‘*SQf(LSQ + ESQQT) - PT'*SQ f(LSQ + E82h7’)) dr.
Applying [B.15) and B.I1]) we see that

(0—1)A0

S4q
0] < [ fleo / (r — 59) 2 BN B (g, — hy) — E(ge — )| dr
53

54 0—2
+ Hche/ (r — 59) 2 [E(gr — hy)| B [E*2g, — B g, dr- (4.15)
S3

Using conditional Jensen’s inequality and the assumption (ZI1]), we see that a.s.
E*E*g, — E*g,| = E*'[E*(g, — E*g,)| < E*'[g, — E*'g,| < Cylr —s1|".  (4.16)
Similarly,
E*E*(gr — hy) = E* (gr — hy)| = E*E™ ((gr — hy) — E*(gr — D))
< E*(gr — he) — E*(gr — hy). (4.17)

Combining (£15), (£16), (£17), and using the Minkowski inequality together with (3.2)
and the fact that G C Fs,, we finally get

(0=1DA0
11l Lyg < NllflleoCsa — s = g = hleyg sy
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0—2
+ N[ flles Cylsz — s2) 7o (sa — s3)(s4 = 51)"|lg — hlloig 15,19

(0—1)A0

<N fllest = 7=+ g = hleyigrsmy
0—2
+ N[ flleeCo(t = )= T Nlg = hllegoig.15,71: (4.18)

where the last inequality follows from the fact s3 —so = s4 —s3 = (t —s)/2 and s4 — 51 =
(u—8)+({—s) = %(t — 5). By exactly the same argument (we just need to take sz in
place of s9, s4 in place of s3 and s5 in place of s4), we get the exact same bound for I,
and then by (4I14]), for Esf(tfs)éA&u,t as well. Since by the assumptions of the lemma
v+ (9?% +1>1and 9;—2 + 1+ 7 > 1, we see that condition (B.5) is satisfied with
Ly = Nl flleslg = Plcyig s, and T's = N|[ fllceCyllg — hll%0ig,15,71-

It remains to verify condition B.0]). Let s,t € [S,T], s < t. Fix m € N. Denote
ti:=s+ itﬁ, t=20,...,m. Note that ¢; — (t;11 — t;) = t;—1. Then we have

tit1

m—1 m—1
A= As = Y A < ) / [f(Lr + g0) = Proty, f(Lt,, + B g, |dr
i=1 i=1 7t

m—l ety
+ Z / |f(LT + hr) - Prftifl f(Ltifl + }Etiilhr) |d7‘
i=1 7t

(3

t1
+ / (| f(Ly + go)| + | f(Ly + Ry)]) dr

to

=:dp1+ Im,2 + Im,3- (419)

Using (B.12) (with p =0, § A v in place of 5, and p = eﬁ\TO‘) we easily deduce that for any
e>0

’f(Lr + gr) - ,Pr—ti_1 f(Lti_l + Etiilgr) ‘
) fha
< Ifllgens 1Ly = Lty [ AL + [ fllgont lgr — B4 o "+ [|f llgonalr — tima] = =,
This together with (313]), (4I1) and the Minkowski inequality yields
1

< — . .
Iallan < N+ Gl et = 9~ (1.20)
Similarly, with the help of (£I2)) we bound
1
2l < NQA 4 Cu)l|flicot = 5) (4.21)

m (B AOA DAL )~
Finally, it is obvious that |1, 3| < Nm™L| f|lco. Therefore, substituting this, (£20) and
(4.21) into (4.19]) and choosing € > 0 sufficiently small, we see that the sum ZZWQI Attt
converges to A; — A, in L1(€2) and hence in probability as m — oco. Hence, (B8:6]) holds.
Thus, all the conditions of [Lemma 3.1] are satisfied. The claimed bound (£13)) follows
now from (B.7). O

Remark 4.6. We now understand why it was essential to use the shifted stochastic sewing
lemma rather than the usual stochastic sewing lemma. Indeed, the exponent in the second
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term in (415, 9;—2, can be less than —1. Had we applied the usual stochastic sewing
lemma, we would have been required to impose 9;—2 > —1 to ensure integrability. Later,
when we apply [Lemma 4.4] for f = b and 6 = 3, this would have led to the suboptimal
condition 3 > 2 — a rather than 3 > 1 — 5. This issue is effectively resolved through the
use of shifting.

Next, we obtain a general quadrature estimate. It will be crucial for bounding the
third error term £/™3 in decomposition [#2) as well as for the proof of Mheorem 2.4l An
analogue of such a bound in the case of fractional Brownian motion in place of L and 0
in place of g is obtained in [BDG21al, Lemma 4.1], with rate that is consistent with (4.25])
below.

Lemma 4.7. Assume[HIMH3. Let g: [0,1] x Q — R? be a bounded measurable function,
let f €C’ 0cl0,1]. Suppose that the following holds:

(9) there exist constants 7 > 0, Cy > 0 such that

1 46 0

ST RN S (4.22)
e a2 T '
ES|Elg, — Efg,| < Cylr —s|7, 0<s<r<1, telsl] (4.23)
(1) for some n € N and all t € [0,1]
Grnt) 8 F, (1y— 1yvo measurable. (4.24)

(11i) g =0 or 6 > 0.
Then for any € € (0,1/2) there exists a constant N = N(a,0,d,7,e, M) independent

of n such that for any {0 < S < T < 1}, and any o-algebra G C F, (s) the following
holds:

T
L — f(L

H/S (f(Lr + Grpnir) — L) + Grn@)) drHLQ(Q)\g

< NIflles + Cpn~ (A 42| — g|ate, (4.25)

Proof. To simplify notations, set ¢s := gx,.(s) Wefix 0 < S < T < 1 and apply Lemma 3.1
for the processes

t
Agy = B0 / (f(Ly + B9 — (L, + B 990) dr, (s,) € Asy;
(4.26)

t
-At = A (f(Lr + wr) - f(Lnn(r) + 1/}7")) d7”7 te [Sa T]

First we verify (34)). If (s,t) € Agr and s < ¢t < s+ 2/n, then we have from (B.13)
(with m = 6 and p = 2)

t
[As.tll @) < / Ly + B — f(Lry + B9 | Ly dr
S
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t
%
<Ifler [ e = Lol A Ul ao dr
S
< N|fllgolt — sin~(&A3)+
< Nl llgolt — s|2+en~(3+an3)+2 (4.27)

where we used in the penultimate inequality that G C Fj (s) and thus L, — Ly, ¢ is
independent of G. The last inequality follows from the fact that ¢t — s < 2/n.

Now consider the case t > s+2/n. Then we note that r > s implies K, (r) > s—(t—s),
and in fact k,(r) — (s — (t — 8)) > (t — s)/2. Recalling (3.10]), we see that

t
As,t = / (Pr—(s—(t—s)) - Pnn(r)—(s—(t—s)))f(LS—(t—s) + ES_(t_S)wr) dr.
s

Applying B.12]) with p =0, # A((1 —€)a) in place of 3, u = (g A %) + % — ¢, we get (note
that all the assumptions of [Proposition 3.3| are satisfied with such choice of parameters)

t
Aot < Nl fleo [ (a0 2 — gfbna-on-tinb-begy
S
< N||fleon™ (Har) 2] — g)ite,

which implies
[ As tll Loyg < N||fllgon=(GHans)+es _ g3+e,

Recalling ([A.27]), we see that the condition (3.4]) is satisfied with I'y = N|]f|]cen_(%+%/\%)+25
and e = €.

Moving on to the condition ([B.3]), take (s,t) € Arsry and u := (t + s)/2. As before,
denote s; ;== s—(t —5), s9:=s—(u—35), S3:= 8, S4 := u, S5 := t. We need to bound
IES_(t_S)éAS,W = [E°10A,, s,55- By a standard computation we see that

S4
E815A53,54785 = E1E™ / f(Lr + ESlwr) - f(Llin(T’) + ESlwr)
83
- f(Lr + ES27/}7") + f(Llin(T’) + ESQwr) dr
S5
+ E*'E* / fLy + E* ) — (L, o) + E*r)
S4

— J(Lr + E*¢p) + f(Li, oy + E® ) dr

The two terms are treated in exactly the same way, so we only discuss bounding the first
one. When |t — s| > 4/n, then for r > s3 we have

Kn(r) — Sg > 83— 1/n—s9 > (t —s)/4 > 0. (4.29)
Therefore we first write
B =B [ (P = Py (L + E)
53
— (Pr—sz = Pru—s2) [ (Lsy + E¥¢y) dr.
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Applying (B.I12) with p = 1, 0 in place of 5, u = % + % A %, and using (£29) yields
(we see again that all the assumptions of [Proposition 3.3 are satisfied with such choice of
parameters)

S4
) < / 1(Press = Prontry—sa) Flr B [ES1ap, — E24h, | dr
S

3
S4

< N||fllo / n=Grans) e — o~Grans+a-Dp — s dr
s3

< N flleoCynGGHans)¥els — 5|14+, (4.30)

where we used (£23) in the second inequality and put £:=7 — (1 + £ ALl +1 0y~

(&7

by [@22). By a similar argument, (£30) holds for |I3|. Therefore, taking Lo(£2)|G norm
and recalling (4.28]) we can conclude that in the case |t — s| > 4/n we have

1B 284, g < NI leoCon™Handleee —s+e )

Next, consider the case |t —s| < 4/n. By assumption, ¢, = gy, 18 }-(nn(r)f%)\/o

measurable. Therefore, if r € [k,(51), kn(s1) + %), then v, is F, (s, measurable. Since
kn(s1) < s1 < s9, one has E®1y, = E®21, = 9, and thus the integrand in [y is zero.
Hence, we can concentrate on the case r > k,(s1) + % In this case, k,(r) — 1/n > s;.
Thus we get

Il =E* j 1M Dena1) 5 1 Eﬁn(r)_% <f(Lr + ESI%) - f(Lnn(r) + ESlwr)
53,84] N [Kn(s1)+7,

— FLy+ E4) + f(Ly + E™00) ) dr

- /[ 10l (s2)+ 2,11 Pif(Ly, a1+ EZ¢r) = PLf(Ly, g1+ E74r)
53,54 Kn(S1 poul

n

+ Pr—nn(r)Jr%f(Lnn(r)*% + By — Pr*ﬁn(T)Jr%f(Lﬁn(r)*% + E= ) dr,
where we used again that ¢, is F, ., 1-measurable. Applying B.II)) with p = 1 and
recalling (£23]), we immediately deduce

11| < N[ fllesCy UPLfller + 1Py —pirys 2 flle)EZHE 4y — B4 [ dr
[s3,54]N[Kn(s)+2,11 " "
6—1
< NIl Cylt — 5"~
< N[ fllesColt — s +on~7 =3¢
< N flleoCylt = o +on=lirans)se,

where the penultimate inequality follows from the fact that |t — s| < 4/n, and in the last
inequality we used ([A22]). By the same argument, exactly the same bound holds also for
|I3]. Recalling now (A28]) and [A31)), we can therefore conclude that ([B3) is satisfied
with with Ty = N||f[leeCyn~ G873+ and e = e A &0

It remains to verify that the process A; satisfies (B.6). Fix now m € N. Denote
t; ::s—{—i%,izo,...,m. We get

m—1
H-At - A — Z Ati,ti+1 L1 < HAtl - AtoHLl(Q)
i=1 !
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m

-1
+ Z Ati+1 - Ati - Eti(AtiH - Atz)

i=1

La(€)

m—1
+ Z Eti(-AtH-l - Atz) - Etiil(‘AtH-l B Atl)
i=1

La(£)

m—1
+ Z AtiytH»l - Eti_l(-AtiH - Ay,)
=1

L1()
=11 + 15+ I3 + I4. (4.32)
Since f is bounded, we clearly have
I < 2| fllcom ™. (4.33)

Next, we note that the sequence (A, — Az, — Eti(./élti+1 —At;))i—1 1 is a martin-
gale difference sequence with respect to the filtration (F,, )i=1,...,m—1. Therefore, the
Burkholder-Davis-Gundy inequality implies

< 4] Zom", (4.34)

m—1
2
2 2 : t
IQ S HAti+1 - Ati - E (At¢+1 - Atz) La()
i=1

Similarly, the sequence (E'(Ay,,, — Ay) — Eli-1(Ay,, — A))izq1 oy I8 a martingale
difference sequence with respect to the filtration (F,)i=1,...m—1, and we get

2
< 16| f|[2om L. 4.35
.— | fllgom (4.35)

m—1
1< B Ay — A = B Ay, — A
i=1

Finally, if ¢ = 0, then I, = 0. If g # 0, then by condition (i) of the theorem 6 > 0.
Therefore, using (3.2]) we derive for any ¢ =1,...,m —1

‘|Eti71(-’4t¢+1 - Atz) - AtiytH»l HL1(Q)

tit1
< H / f(Lr + gmn(r)) - f(Lr + Etiilgnn(r))
t

‘L1(Q)

tit1
+ H / J L) + Gine) + [ (L) + Etiflgﬁn(r)) d?“‘
t; Li()

tit1
< 2/ flen / 1y — E5 gl

< 2| flleo + Co(tipr — tim)' 7 < NJ|fllea (L + Coym ™07,

where the penultimate inequality follows from the fact that if x,(r) < t;,_1, then g.,¢) =
Eti-1g,, o and if k,(r) > t;_1, then @23)) is applicable and k,(r) — t;—1 < tiy1 — ti—1.
Recalling the definition of I in (£32]), we get

I4 < N|fllee@ 4+ Coym " 1gso. (4.36)
Collecting together bounds (£.33)—([4.30]) and substituting them into (£32), we get

m—1
_or _1
4= 4= 3 A, ) < NI leot + Cpm™0 Lo + N llcom ™.
i=1

which implies ([3.6]). The claimed bound (.25]) is therefore given by (B.7]). O
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Remark 4.8. The reader might observe two additional constraints introduced in[Lemma, 4.7
compared to [Lemma 4.4l Specifically, we assumed that G C F,, (s) and that p = 2. Both
of these conditions are employed to derive the bound ([£.27]). With a generic p > 2, the
convergence rate becomes suboptimal, given by n_(%+%/\%)+€. Without the assumption
G C Fx,(S), there is no deterministic bound on conditional moments of L, — Ly, () given
g for r € [S,T1].

These two restrictions substantially complicate the proof of the main results. The con-
dition p = 2 is the reason why we must employ the John—Nirenberg machinery at all and
bound conditional expectations, instead of merely bounding L,(£2) moments directly as
done, for example, in [BDG21al. The limitation G C Fj, (s leads to additional challenges
in the buckling part of the proof of [Theorem 2.2

4.3 Bounds on /™1, gfn2, gfn3
In this part of the paper we apply generic bounds from [Section 4.2] to the error terms in
decompositions ([4.2) and (43)).

Corollary 4.9. Assume that all the conditions of [Theorem 2.5 are satisfied. Then for
any € > 0 there exists a constant N = N(a,3,0,p,d,||bllcs,e, M) such that for any
0<s<t<1, cg-algebra G C Fs and all n € N the following holds:

(Chd

1
||5fn @16 < NI fllee(t — )1 ||80 ©"lz01g,15,

0—

+N\|f\lce(t—s)2+ “lp - ¢ &/2G [ t) (4.37)
(U _ (O—=DAO
”gfnz”Lp(Q)‘g <NHfHC0(t_$)1+ 1+NHfHC0(t_S)2+ a n 2 (a/\2)+€
(4.38)

Proof. Recall that 5 > 2 —2a and f > 1 — «/2. Without loss of generality, we can
assume that f < 2 and 0 < 2: indeed, if one of them is larger than 2 then we replace the
corresponding constant by 2, this will not affect neither conditions (23] and (2.6), nor
the bounds on the right-hand side of (£37]) and (£38]). Thus, till the end of the proof
choose arbitrary § > 0 small enough so that

0N B >max(2 — 2,1 —a/2) + da. (4.39)

To establish (@37) and (£38), we will apply [Lemma 4.4 with 7 = 1 + (% A1) =9,
v = 1/2. Thanks to ([£39), we see that condition (£I0) holds.

First, let us obtain (&37). We apply [Lemma 4.4l with g = ¢, h = ¢™. It follows from
@.8) with ¢ = 1 that (£II) holds with C;, < N. Similarly, (43)) and [3.2) imply that
(£12) holds. Thus all the assumptions of [Lemma 4.4 are satisfied. Taking into account
([#1) and the fact that 1+ w <1<1+ 2247 we see that (£I3) yields [37).

Now let us prove (£38). We will again apply Lemma 4.4l with g; = ¢, hy = @]
and the same 7, v as above. Thanks to (£9) with ¢ = 1 we see that (@I1]) holds with
Cy < N. Further, if 0 < k,(t) < s <t <1 then

||802n(t) - ESSDZn(t)HLl(Q) =0.
If 0 < s < kp(t) <t <1, then applying ([£9) (in a very rough way) yields

e, — E*vn wllLi@ < Nlkn@) — s| < N(t - s).
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Hence, (£I2) holds. Thus all the assumptions of [Lemma 4.4] are satisfied. Therefore
(#I13) implies

t
185 e = || [ £Eo+ o)~ FLo+ b ]

Lp(|G
(O=1)A0
< Nl flloott = 922 0™ = 02 llgoig o
3, (0=DAO
+ NI flleott = 2" = oleyeg g (440)
Note that for any r € [0, 1], we clearly have
(P:} - (Pzn(r) = (T - '%n(r))b(Lnn(r) + @Zn(r))- (4'41)
Since b is bounded, this implies
1" = i, lz01g,15,m < lbllco sup |7 — k()] < Nn™. (4.42)
rels,

Let now s < ' <r <t. If k,(r) < ¢/, then both ¢! and ¥y are Fp-measurable, so
trivially

Or = Paney — B Loy — vi,am] =0 (4.43)

Otherwise if s <7/ < k,(r) <r <, then by (441 and (4.6]),

E" |0 — 0 o — E" el — o o]l
= (r = KaDE" (ML) + @) = BT 0Ly + 9|
<200 — Kn(NE" [b(Lyc, ) + @1 ) — DLy + 01
< N = k(DB (| Ly — Lol AL+ (07 ) — 1)
< N@ — Kn(r)(|r — r’](%/\l)_g +|r— 7"'\6/\1),
where in the last inequality we used that Ly, ) — L, is independent of F,-, (3.13)), and

boundedness of b (which implies Lipschitzness of ¢™). Note that if « > 1, then clearly

BAL > % Further, if @ < 1, then f > 1/2 thanks to ([23]). Thus in both cases

AL > % A % = g A %, since @ < 2. We continue the above inequality by taking

|- llz,@)g norms and writing
' ' BALY_
IE" |7 — i, — B o7 — o, alll g < N = sn(m)]r — r|(2h3)—e
< anéf(gAéweV _ )2,

where in the last inequality we used that 7 — k,(r) < n~' A |r — #/|. This together with

(#A3)) yields

1 _(BaL
[p" — <Pzn(~)]c},/2\g,[s,t] < Nn7z-(@hate, (4.44)

Substituting this and ([@.42]) into ([£40]), we finally get

(0—DAO 34(0=DA0 _1_ B 1
Ly < N flleet = ) o n™ + N flleet — )2 = n 2= @24 O
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Remark 4.10. We see now why it was important in the derivation of (438]) that the
seminorm [1¢y|g 15, Tather than [l g 1. appeared in ([@13)), recall Remark 4.5 Indeed,
by taking r € [s,t] such that r = k,(r) and s <’ <r <t it is easy to see that one has

oy — @Zn(r) 2 SDZ,L(T')]HLP(Q)lg = (' - “n(rl))Hb(Lnn(r’) + @Zn(r'))HLP(Q)IQ-

This implies that [p™ — o))y s, = O° for any v > 0, and is obviously much worse
than (£.44). Note however that for (L37) we simply bounded [-1¢y|g,1s.1 PY [0, 15,-

Corollary 4.11. Assume that all the conditions of [Theorem 2.5 are satisfied. Then for
any € € (0,1/2) there exists a constant N = N(a, f3,0,d,||b||cs,e, M) such that for any
0<s5<t<1,neN, and any o-algebra G C Fi, (s the following holds:

157 I raeig < Nl flleon (a8 2eyy — gpbee, (4.45)
Proof. Choose § > 0 small enough so that
6’/\5/\1>1—%+5a.

We apply [Lemma. 4.7] with ¢ = ¢™ and 8 A 1 in place of #. Note that the rate provided in
(@25) is consistent with (Z4H), since £ A § = %A1 A L Therefore it remains to verify the
conditions of [Lemma 4.7]

For any 0 < s <t <1, r € [s, 1] we have by (£9) with ¢ =1

E* (B! — Bl = E°[EES) — o7| < E°|E*gr — o] < Njr — s['-0+55%,

Therefore, condition {L23) is satisfied with 7 = 1 — § 4 522AL /\O‘M and Cy = N. We note that
if BAaAl= A1, then using that %/\% < 9/\1 and 1 — —1—% > 4, we get

BA1 1 1 1 1 6 1 O0n1
T=1—-60+— >—+— —+—+—/\———
« 2 -2 a 2 «

and condition (£22]) holds. Alternatively, if 5 A a A1l = «, then we use that % > g A %
and 1 — + 0/\1 > J to get

1 1 6

ON1
T—2—5>2+ —i——

1

2 o

Hence also in this case condition (£.22]). We also see that ¢ is F o (t)— )vo—measurable
for t € [0,1]. Thus all the conditions of [Lemma 4.7 are satisfied and we get @#4n). 0O

Gathering the error bounds of [Corollary 4.9 and |Corollary 4.11] we finally derive the
following crucial conditional quadrature estimate.

Corollary 4.12. Assume that all the conditions of [Theorem 2.5 are satisfied. Then for
any € € (0, % + (97%) there exists a constant Ny = No(a, 5,0, d, ||bl|cs,e, M) such that
foranyn € N, k€ {0,1,..n}, 0 < k/n <s<t<1, the following holds:
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/ f(X/@n(r))

1 BAO AL
gNMﬂmﬁ—ﬂ”% D o — iy o+ 10— P gy )
" (4.46)

LQ(Q)|.F

k
n

Proof. Fix k/n < s <t <1. We use ([@.37), ([438)), and ([@.45]) with G = F« to bound each
term in (£2)). Since k/n < s, we see that k/n < k,(s). Therefore, .7:k C Frn(s) and the

conditions of [Corollary 4.11] hold. Using that 1+ =220 > 14 ¢ and (1 + BrOALY—e <1,
we get the desired bound. O

4.4 Main proofs
Proof of [Theorem 2.2. Fix ¢ > 0 small enough so that

— 1 + P A L 2e >0
oEmL TNy T
In the proof we will apply (£40) with f = b, § = 8. We take now A > 0 small enough
so that
ANyl < 1/4, (4.47)

where Ny is the constant from (£46]). Recall the decomposition (41]). Fix n € N and put
=Xy —X{'=pt— ¢} = / (W(Xy) — 0(Xg ) dr + 20 — 2, t€[0,1]. (4.48)

Step 1. We claim that for any S € {0, 1 1}, T € [S,1 A (S + A)] we have

’n’n""

[A"] G/ n= 0 + | A% (4.49)

| Fs,LS, T]

Indeed, fix S € {0,1,2,...,1}, T € [S,1A(S + A)]. Note that for any S < s <t <T

’n’n?

t t
A= A==~ 01 = o = [ X = [ bOXE g
By taking in (£46) k/n = S, we get from the above identity

1 _
IA? = A 0 ps < Nollblles |t = s (077 + lle = " gy zg sm1 + 19 = "Nz 2 g.y)
_ |3 FE(y—0 — — "
< Nollblles [t = s (077 + los — @51 + 20 = 9"l y1r2y g1y,
(4.50)

where we used that if s, ¢ € [S,T], then trivially both (semi)norms on the right-hand side
of equation (@48) can be replaced by the ones on [S, T]. Dividing @50Q) by |t — s|'/? and
taking supremum over s,t € [S,T], s < t, we get

AL 1, gy < Nollbles A%(n 70 + A3 +214%) o

|Fs,[5T] — IJ"s,[S7T])’
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where we also used the definition of A" in (£48]) and the inequality t —s < T—S < A. By
our choice of A ([@A7]), the estimate buckles and by putting 2N0HbHCBA€[A"]%1/2
to the left-hand side, we get (4.49).

Step 2. We get rid of the assumption that S is a gridpoint and claim that for any
0<S<T<1, Te[S,1A(S+ A)] we have

| Fs,[S,T]

1 _ —
AR — A Loy rs < A2+ [AGD + 4[b]lcon . (4.51)

Let 0<S<T<1,T<S+A. IfT-5< %, there is nothing to prove: (£.51)) follows
from the fact that |A% — A%| < 2||b||co|T — S| < 2||bllcon™!. Therefore, we assume from
now on that T > S + % Denote S’ := k,(S) + %; that is, S’ is the smallest gridpoint
strictly bigger than S. We see that S’ > S and therefore we have

A7 — ASl Loyrs < AT — Al Loyirs + 1A — ASl Loy Fs

1 n n
= (E[E( A} — A5 | Fs)|Fs])2 + A4S — ASllyoprs-  (452)

Next, since S’ is a gridpoint we have S’ € {0, ,2,...,1} and T < S’ + A. Therefore, the

IRTERE

results of Step 1 are applicable and we get from (4.49])

1 1
AT — A/l Lorg < A2+ [Ag]) < Az 4 [A[) + [Ag — Ag|.

Substituting this back into (£52]) and using again that |A% — A%| < 2[[bl|eo|S — S| <
2||b|con ™!, we get (EEI).

Step 3. Now with (451 in hand we apply the weighted John-Nirenberg inequality
[Proposition 3.2|to the process A" introduced in (£48). Setting &' := A%(n_“/o + |A?]) +
4|[bllcon=t, t € [0,1], we see that both processes A" and &" are continuous and (3.8)
holds thanks to ([{.51]). Therefore (8.9) implies that for any p > 1 there exists N1 = N1(p)
independent of n such that forany 0 < S<T <1, T<S+A

1 1 _
| sup [AY — AG| |7 < NA2n7° + NiA2 || sup [AY ||z, @)z + 4N1[bllcon™
relS,T] relSs,T]

< NjAzp ™0 + Ny Az|Ag|

1 _
+ NiAzZ| sup A} — Ag| ||z, @) 7 + 4N1[bllcon™ "
relS,T]

Take now A small enough so that in addition to our standing assumption (£47]) we have
also )
NiAz <1/2.

Then the estimate buckles and we get

| sup A% — A ||, < 07 + || AsllL@ + 8N1[|bllcon™,
relS,T]

whenever 0 < S < T <1, T — S < A. Tterating this bound [A~!] times yields

| sup | AT L) < Nn™7° + Nlzg — 2p],
r )

for some N = N(d,a.03,p,e, M, ||b]|cs), which is the claimed error estimate (2.4]). O
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Proof of [Corollary 2.3 The statement follows from [Theorem 2.2 by the standard argu-

ment. Namely, we fix £ > 0 and choose p > 1/e. Set

1,81 _
W) := sup(n2*a27F|| X (w) — X"(@)lleoo,1))-

neN
Then by [Theorem 2.2
ErP = Efsup(n? 3+ a5 72| X (@) - X"@)|hogo 1)
neN 7
S E[Z np(%'i'g/\%_ze)“X(w) — Xn(W)HIC)Q([O 1])]
neN 7
<N Z n~ P < oo.
neN
Thus n < co a.s. which completes the proof. O

Proof of [Theorem 2.5. We argue as in the proof of but we skip the buck-
ling step. Take € > 0 small enough so that

1 A6 1
’Yf::§+ﬁT/\§—2€>0.
Fix n € N and put
t
A = / (FOX) — FXT o) dr, ¢ [0,1]. (4.53)
0

Step 1. Take A = A(a, 8,4, ||bl|¢cs, e, M) as in (£4T). Then [Corollary 4.12]and (£.49))
imply for any S € {0,1,2 ...1}, T € [S,1 A (S + A)]

'ndn?
1A — A& yizs < NIflleo™ + [l — P llggiFs s 10 =€l 2 o)
S N flleo™ + s = @81+ 2l = ¢l 12 16y
< N[ flleo(™ + |ps — 5 (4.54)
for N = N((X, /87 07 d7 HbH65 &y M)
Step 2. We remove the restriction in (4.54]) that S is a grid point. Let 0 < S < T < 1,
T < S+ A. We note that again that if 7 — S < 1, then ].Ag’f - Ag’f] < 2||fllcon™t and
(£354) holds. Otherwise, if T > S + %, we put S’ := k,(S) + % Since S’ is a gridpoint,
we have from Step 1
IAT = A% | Laeiry < Nl Flles™ + psr — o))
< NIfleon™ + s — 8D + Nl fleon™,  (455)
where we used that |¢g — pg/| < ||bllcon™! and [p% — %] < ||bl|con™!. Therefore, using

that Fg C Fg and the boundedness of f, we get from (L55]) for any 0 < S < T < 1,
T<S+A

AR — A8 | Lyonirs < MR — A | @irs + 1A — A% | @) 7
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< N[ fllee(m™ + s — ©5D, (4.56)

where N = N(«, 3,0, 4, ||b||¢cs, e, M).

Step 3. Now we apply the weighted John-Nirenberg inequality [Proposition 3.2|to the
process A™f. Thanks to the boundedness of f and b the processes A™/ and ¢ — " are
continuous. Therefore, by [Proposition 3.2] inequality (£.50) yields for any 0 < S < T < 1,
T<S+A p>1

I sup AP — AgT| @ < NI flleon™ + Nliflleoll sup_lor =97 Iz,
rels,T] rels,T]

< N[ fllcotn™ + |wo — xg]),

where the last inequality follows from [Theorem 2.2l and N = N(a, 3,6,d, ||b||cs,€, M, p)
is independent of S, T. Iterating the above bound [A~!] times, we get ([2.5). O

Proof of [Theorem 2.7} We will use the same proof strategy as in the proofs of [Theorems 2.2]
and namely, we first obtain the conditional bound at grid points, then remove the
grid points restriction, and finally, apply the John-Nirenberg inequality.

We note that the theorem does not follow directly from [Theorem 2.5 because the
function f is allowed to be of any non-negative regularity (or just bounded if § = 0). We
stress that we do not impose the restriction § > 1 — 5 as before.

Take £ > 0 small enough so that

1

0 1
7L,f1=§+a/\§—2e>0.

Fix n € N and put
t
A= [ = fa ndr et
Step 1. Let S € {0, %, %, ..., 1}, T € [S,1] and apply [Lemma 4.7 with g = 0. We get
7L7 7L7 -
AR — A fHLg(Q)|]-'S < N[ fllgon™ 121 (4.57)
for N = N(a,0,d,e, M).
Step 2. Now we take arbitrary S € [0,1]. Let T' € [S,1]. Let S’ := k,(S) + %

As before, if T'— S < 1/n, then there is nothing to prove: one have ].A7TL’L’f — AZ’L’f] <
2||fllcon™!. Alternatively, we have T > S’ and therefore by (&57) and boundedness of f

7L7 7L7 7L7 7L7 7L7 7L7
AR5 — A ezy < IAFH — AGH | ez, + 145 — A 07,

< N|[fllcon™".

This implies that ([457) holds for any 0 < .S < T < 1.

Step 3. Since the process A™/ is continuous and ([@57) holds for any 0 < § <
T < 1, we see that all the conditions of the John-Nirenberg inequality [Proposition 3.2] are
satisfied. Therefore for any p > 1 there exists a constant N = N(«,0,d,e,p, M) > 0 such
that

| sup. AP L) < NI flleon™ 7,

rel0,1

which is the desired bound (2.5)). O
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Appendix A. Proofs of the well-posedness of SDE ([L.T])

To show that SDE (L)) is strongly well-posed we will run a fixed point argument.
Throughout the Appendix we will assume that assumptions [HIHH3| holds. We will
assume without loss of generality that § < 2. For a measurable bounded function
f:00,11xQ —=R4 4y €(0,1], p>1, T € (0,1] put

1f® = f$)lly

5,t€[0,T] (t—s)7

1flley 0.y := sup [[fOll, @ +
t€[0,T]

and consider a mapping

t
Sf(t)i=?7+/b(Ls+fs)dS, 0<t<1,
0

where 1 € R? is a Fy-measurable vector. We claim the following contraction bound.

Lemma A.1l. Let ¢,1: [0,1] x Q — R? be bounded, adapted, measurable functions.
Suppose that 1 —a/2 < 3 < 2. Assume that there exist constants T € (0,1], 7 > (2— )/«
Cyp,Cy >0, Ty € (0,1], S € [0,1 —Tp] such that for any S < s <t < S +Ty one has a.s.

Eflpy — Efpy| < Cplt — 5|75 Ef|by — By < Cylt —s|". (A1)

Then for any p > 2 there exist constants N = N(«, 8, 7,p,d,||bllcs), € = e(o, B, 7) > 0
such that for any T € (0,Ty] and S € [0,1 — T one has

Sp—8 <NA+CHT ¢ — Sp(S) — SY(S . (A2
ISp—SUl g oo ENAFCIT o= vl g+ [SpUS) ~ SuS)ry- (A2

Proof. Fix T € (0,Tp]. We will apply [Lemma 4.4 with g = ¢, h = ¢, v = 1/2, 6 = §3,
f=0b,and G = {0,Q}. We see that all the conditions of the Lemma are satisfied and it
follows from (4I3) that for any S <s<t<S+T

t
I(S(t) = S0t ~ St = SV ey = | [ e+ ) = WL+ v s

Lp(§2)

< N+ C)lt — 52+l — || (A.3)

% s
Cp 510,11

where ¢ := % + w > 0 thanks to (2.3]). Therefore, by taking in the above inequality
s =5, we get

1S®) = SYD|L,@ < NT*A + Colly — ¢||Cg% —_— [8¢(S) = SY)|| L,

p LY

Combining this with (A3]), we get the desired bound (A2)). O

Proof of Thearem 2.1): strong uniqueness. Let X, X be two strong solutions to (I.I)) with
the initial condition 7 adapted to the same filtration F; here 1 is Fp—measurable vector in
Re. Define ¢ := X — L, @ := X — L. Since X,)Z' solve ([L1), we obviously have Sp = ¢,
Sp=op.

It follows from (2.3]) that one can choose § > 0 small enough so that

B > max(2 — 2a + da, 1 — /2 4 dav). (A4)
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We apply [Lemma A1l with S = 0 to the functions ¢, ¢. By [Lemma 4.2)(iii), condition
(A7) holds with Tp =1, 7 =1+ (%) — 0 and C, = Cy = N. It is easy to see that
with such choice of 7, one has 7 > (2 — §)/«, and thus all the conditions of [Lemma A.T]
hold. Therefore, (A2]) implies for any T € (0,1]

5 — IS —SG < NT¢|lo—3 . A5

Il wll%%’[w |Se wll%%,[oj] < I wH%%,[m (A.5)

Note that ||¢ — (ZH% 1 < oo regardless of the moment conditions imposed on n (we
65 ,10,T1]

did not impose any). Indeed,

1 < 2[bf|co.

2
o 1LY,

le—all_4

= b(Ls s) —b(Ls + ©s))d
o = @ o0 =+ G

Since N in (AX5) does not depend on T, by taking in (A5 7 small enough such that
NT® < 1/2, we have ¢ = @ on [0,T], which implies X = X on [0,T]. Repeating this
procedure [1/T'] times by starting at time ¢7 instead of 0, 7 = 1,...,[1/T] — 1, (note
that we have not imposed any moment conditions on 7, so there is no problem that, e.g.,
X7 does not have a second moment) we get strong uniqueness on the interval [0,1]. [

To establish strong existence, we consider a sequence O(t) :=n, 0 <t < 1, o™ =
S"p® n € N. Clearly, for any n € Z,, t € [0,1]

¢
") =+ /0 b(Ls + 0™ (s)) ds. (A.6)

Lemma A.2. For any € > 0, there exist constants N = N(«,B,¢,||bllcs) > 0, Tp =
To(a, By e, ||bllcs) € (0,11 such that for anyn € Zy, S <s <t < S+T

BALA
+E

Elp" — %] < Nt — sf' g (A7)

Proof. Fix € > (0. Denote m :=1+ % — . First we note that
1+(@BADM—m>D0. (A.8)

Indeed, if 8 > 1 this is obvious; otherwise since 8 > 1 — a we have

B B 1

m<l+—<1l+-——5=
o

1-8 1-8
which implies (A8)). Fix now Ty € (0, 1] small enough such that
S[[blls)* Ty FONIm <, (A.9)

We will prove by induction over n that (A7) holds with 8M*||bl|cs in place of N,
where
M* = M(BAN(a—eaf2),e/2) + 1,

recall the definition of the function M = M (p,¢) in [H3l
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The case n = 0 is obvious. Assume that the lemma holds for some n € Z,, and let us
prove it for n 4+ 1. Arguing similar to the proof of [Lemma 4.2 and using (.6]), we derive
forany S<s<t<S+1Ty

t
E3|802(5n+1) _ Esgpl(en+1)| < IR sz(thrl) _ SD(SnJrl) _ / b(Ls + Essp(rn)) dr
s

t
= 28| [ QL. + )~ WL + B ]|

t
< 41bll¢s / (E°[|Ly — Ls|P" A 1]+ (E*|p™ — 3™ )M dr
S

BA1A«

< lblles (M*Jt = s/ 4 Sllblles M|t - 5[HOADI™)
(A.10)

< 4lblles M (1t = 5™ + Sllles) ™ |t = 5Ty ) (A1)
< 8blles M|t - 5™,

where in (A10) we used the induction step and assumption [H3] in (A7) we used (A-g]),
and in the last inequality we used (A.9]). This proves (A1) for n+ 1, and thus completes
the proof. O

Now we can obtain the existence part of [Theorem 2.1l

Proof of [Theorem 2.11: strong existence and convergence of the Picard iterations. Fixp >
2 and ¢ > 0 small enough such that (A.4]) holds.

Step 1. For any n € Z, we apply Lemma A1l to ¢™ and ¢tV with 7 = 1 +
(%) — 0; as in the proof of uniqueness part it is clear that 7 > (2 — 8)/a. We see that
by condition (A.I]) holds for some Tj not depending on n, C, = Cy = N,
where N also does not depend on n. Thus, all the conditions of [Lemma A Il are met and
we have for any n € Z,, T € (0,Tp], S € [0,1 = TT7,

n+2) _  (n+1) = |S™D — g™
e ¢ H%%JS,T] 1S ¢ H%%,[&T]
SNT ™0 =™y A 1S =Sy,
P I

where N = N(a, 8,p,d, ||b||cs), € = e(a, B).

Pick now T' € (0, Tp] small enough so that N7 < 1/2. We stress that the choice of T
does not depend on n. Let M := (%} and let 0 = Sy < S1 <...< Sy =1 be a partition
of [0,1] such that Sp,41 — S <T,m=1,...,M. Then for any m =0,..., M — 1 we get

1
(n+2) _ HtDy < Z|pmth _
||s0 v ||<€P§7[Smysm+1] o 2”%0 4 H‘KE,[Sm,SmH]
4 H(P(n-l—Z)(Sm) _ (P(n+1)(Sm)“Lp(Q)- (A.12)

Step 2. We claim that for any m =0,... , M — 1,

HSD(nH) . SD(n)H . < (m+ 1)nm27n‘|80(1) _ SD(O)H

1 1 nez,. A.13
%2 [SmSm 1] %2 10,11 * ( )
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We show ([AI3) by induction over m. If m = 0 then S,,, = 0 and ™ TY(0) = ¢™(0) =,
for any n € Z. Hence, we immediately get from (AT2])

lp™ Y — ™y <27l = 0

> —= i ) n e ZJra
6,2 150,511 %, 150,511

which yields (A.13]).
Assume now that (A13)) holds for some m —1 € {0,1,..., M —2}. We will show that
(A.13) holds for m. We have from the induction assumption for any n € Z,

(n+1) _ () (n+1) _ )
H(P (Sm) 2 (Sm)HLp(Q)SH@ (Sm) P (Sm)H%”p%,[Smfl,Sm]

<mn™ 127 M — O

1 .
%7 ,10,1]
Therefore, [(A.12]) yields for any n € N
1
(n+1) _ ,(n) < Zllp™ _ =1 +mn™ 17| — O )
le LY TP LA A PR 1279t o

Iterating this inequality over n (m is fixed!)

(n+1) _ ) < 9D _ O
llo ® ng%v[smvsmﬂ]_ llo @ H%%’m]

n
+m Z 27n+i27iz~mfl”tp(l) _ @(0)“ 1

P} %7 ,[0,1]
n
=27V =0 4 AFmY . (A4
€7 ,10,1] —

Clearly,
n
1 —}—mZim_l <1l+mn™ <(m+1)n™,
i=1
which together with (A.14) gives

(n+l) _  (n) < 27|,V — O m 4+ 1Dn™
Il "2 H%%v[smsmm_ ™ = H%%,[QH( n,

which is the desired claim (AI3).
Step 3. Note that by definition of ¢ and ¢©
M _ 0 < bl
e = 2Ol < bl
Therefore, using the bound (m + 1)n™2™" < N2~ 2 whenever m < M for some N =
N(M) = N(«, B,p,d,||b||cs), we rewrite (A13) as
D _ ™|, <N2° %, neZ,,
e @ H%?[Sm,smm < +

which yields

[ so(”)\lcf% <N2°2, neZ,,
67 ,[0,1]
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and eventually
HSD(k) (n)Hc,m o < NQ*”TM, nk €7Z,. (A.15)
Op

Step 4. It follows by (A5

k _nAk
sup [l — ¢! )HLP(Q) < j® — ™| 4 L <N2 2, nkecZ,. (A.16)
te[0,1] Gy ,10,1]

Thus, for any ¢t € [0,1] the sequence (gogn) — MneZ, (go(") — gpgo))nez . converges in
L, () as n — co. Denote its limit by ;. We have from (AI5]) by Fatou’s lemma

sup. e = & = Iy < = @™ =y < N2z, (A17)
t€l0,1 %2 ,[0,1]

Put Xy :=n+ ¢ + L;. We claim that a version of X is a strong solution to (ILI]) on
[0,1]. Indeed, for any ¢ € [0, 1] random vector X; is clearly F;-measurable as a limit of
Fi-measurable random vectors; further, recalling (A.6) we have

La(£2)

t t
[0 [oxoas -z :{W»—/tﬂg+n+w9w\
0 La(£2) 0
< e = @ = mllza@

+H/(b(L 14 bs) — b(Ls +<p(">))ds(

La()

ﬂm—ww”—wm@+/u% (@ — e, ds

By (A.17), the right-hand side of the above inequality tends to 0 as n — oo. Thus, for any
t € [0,1] we have X; =n + f(f b(Xs)ds + Ly a.s. In particular, X; :=n + fg b(Xs)ds + Ly
coincides with X for a.e. w,t and therefore satisfies

~ t
P<Xt =1 +/ b(Xs)ds + Ly for all t € [0, 1]> =1
0

Hence X is a strong solution to SDE (L.1]) on [0, 1].

Step 5. We see from the definition of the Picard approximation Y™ and o™ that
Y™ = o™ 4 [ By definition of X we have X; = X; a.s. for any fixed t € [0, 1].
Therefore, we can rewrite (A.I7)) as

IX-Y®| ,  =|X-Y™| , <N25.
%,? [0,1] %2 [0,1]

Since the process X — Y™ is continuous for almost all w, the Kolmogorov continuity
theorem implies

X =Yl coqoapllz,@ < N272.

which yields the desired convergence of || X — Y®||coo.17) to 0 a.s. and in Ly(). O
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Appendix B. Proofs of the auxiliary statements of the article

Proof of [Proposition 2.8 Recall that we denoted the generating triplet of L by (a, Q,v).
By [SSW12, Theorem 1.3] with f(s) = s®, assumption (2.9) implies that there exists
to = to(e) > 0 such that the gradient bound (ZI]) holds for small enough ¢ € (0,¢p]. If
t € (tg, 1], then

IVPiflleo < [Peto VPi flleo < Ntg /[ flleo < Nt flleo,

where N = Ntal/a, which proves (2.1]).
Now we move on to[H2 Fix ¢ > 0. Note that by [KS19a, Lemma A.2], (Z1]) implies
that for any ¢ > 0

/ ly|*teu(dy) < oo.
ly|<1

Therefore, by [KS19a, Lemma A.3(i)], Q = 0.
If @ € [1,2), then [KS19a, Theorem 3.2(iii)] implies for any f € C**¢ vanishing at
infinity

LF@) = (a,V fa)+ /

ly|>1

1
(f(@+y)—f (@) v(dy)+ / - /0 (V @+ )=V f(z),y) d\v(dy).
Yyl
Hence

£ lleo < lalllfller + 201 Fllcovlyl = 1) + (| fllga+e / - ly|* T v(dy) < N fllgase-
Y=

Very similarly, ||Lf|lct < N||f|lcat1+e. N
If « € (0,1), then by above f|y‘<1 ly|v(dy) < oo. Consider now the process L; := L;+kt,
where kK = —a + f‘y|<1 yv(dy). Let L be its generator. It is immediate to see that

Eei(A,Et) = exp (t/ (e’i<)\7y> — 1)7/(dy)), )\ c Rd’ t 2 0.
R4

Therefore all the conditions of [KS19a, Theorem 3.2(ii)] are satisfied and, thus, for any
f € C**¢ vanishing at infinity

Ef@ = [ (fat )~ Fwidy.

Hence [|Lfllco < || fllcate fra(y|®t A 2u(dy) < N| fllca+s- The bound on |[Lf]er is
established by the same argument. O

Proofs that [Examples 2.10 to (218 satisfy [HIHH3 We begin with In this
case, Re®(\) = c, fS [(\, &)|“u(dg), for some ¢, > 0 and the upper bound in (Z9) is
immediate. The lower bound follows from the argument presented in [Pril2l p. 424-425
(after Hypothesis 2)]. By [Proposition 2.8| this implies that L (or its shifted version)
satisfies [HIl and [H2

It is easy to see that f‘y|21 ly|Pr(dy) < oo for any p € (0,«), which implies [Satl3]
Theorem 25.3] that

E|Li|P < 00, pe€(0,a). (B.1)
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If o € (1,2), then by [Satl3, formula (14.15)], Law(L; — st) = Law(t!/*(L; — k)) for some
x € R, Thus, using ([B), we get for p € (0, ), t € (0,1]

E|LiP < N(tP/E|Li [P 4+ 7 + tP/*) < NtP/®,

since a > 1. This shows [H3l

If @« = 1, then by [Satl3] formula (14.16)|, Law L; = Law(tL; + tlogt) for some
x € R Thus, by (B.1), for any p € (0,1) E|L? < NtP1=9) which is [3l

Finally, if o € (0, 1), then consider the process Ly := Ly + kt, for k = f|y‘<1 ly|v(dy)

(this integral is finite by [Satl3, Proposition 14.5]). By above, L satisfies [HI] and [H2
Further, an easy direct calculation (see also [Satl3, Remark 14.6]) shows that L has a
symbol

d(\) = / / (1 — Ny 1= g 1y (de).
SJ0o
Hence Law(L;) = tY/*L,, and thus thanks to (B.1), E|Et|p < NtP/e for p € (0, «). Thus,

L satisfies [H3L

is a Spemal case of [Example 2.10| with p being uniform measure on S.

Similarly, a special case of [Example 210 with 11 = Y0, (8, + 0_c,)
where (ey) is the standard basis in R, see, e.g., [Pr112 p. 425].

Now let us move on to The Lévy process L now has the symbol

DO = /0 /S (1 — cos(r(A, €))r~ () p(d€)dr,

where we used the fact that p is symmetric. It is easy to see that non-degeneracy of
implies that [q [(A, &)|pu(d€) > 0 for any A € S and thus

int [ 10091 > . (B.2)
€S Js
Applying 212), we get for any A € R?

d(\) < N// (1 — cos(r(X, &))r~ = dru(d€) < N])\]O‘/\ Wg | pu(d€) < NN

(B.3)

Similarly, denoting X := ‘—i‘|, we get for any A € R?, with |\ > 1/C

C
d(N) > / / (1 — cos(r(\, ENr~ 17 dru(de)
I8
= \)\\a/l )\ 3l / (1 — cosr)r— 1=« drp(d€)
XE)|
> LA / & / r170 drp(d)
ZNW{éw<MM%>

> N ([ 1R ©)ecas))
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> N[

where we used inequality 1 — cosr > % valid for r € [0,1] and (B.2). Combining this
with (B.3), we see that symbol ® satisfies (Z1) for large |A| and ZI0) for all A € R4
Thus, L satisfies [HIHH3L

Examples 2.14] and are special cases of Example 2.13]

In case of [Example 2.16, we have N71A\|* < ®(\) < NI for large enough |\
Further, ®(\) < NA? for small enough |A|. Thus, by [Proposition 2.8 and [Proposition 2.9}
assumptions [HIHH3| holds for the relativistic a—stable process with & = «.

namely when L is a Brownian motion, is obvious.

Finally, let us treat We begin with part (i). Without loss of generality,
assume a3 < ag. Put L := LW + L@, Tet P (respectively P(i)) be the semigroup
associated with L (respectively L®, i = 1,2). Similarly let £, £L® be the generators of L,
respectively L®. Then for any f € CO(R?%), z € R? we have by independence of L") and
L@

Pef @) = EP f@ + L),
Thus, since L satisfies [HI]

VP, f(x)| = [EVP? fz + L) < Nt~ £ o.

Therefore, L satisfies [HIl with o = an. Since £ = LD + £P | we have for any ¢ > 0,
f e C2t9te(R9) vanishing at infinity, § = 0, 1

£ flles@ay < NP flles@ay HILD Fllesmay < MIfllearssse+M I fllgastsre < 2M||flgarssse,

and thus L satisfies with @ = ao. Finally, to verify [H3] we fix p € (0,a3). Then If
p < a1, then there is nothing to prove:

E[IL" + LP P A1) < NE|LV|P + NE|LP P < NP/o27e,

since ag > . Alternatively, if a1 < p < s, then

E[ILL + LPP A 1] < NE|[LP|—20 4 NE[LO|P < N(t1=% + to: ) < Ntaz =,

where in the last inequality we used that a% < 1.

Part (ii) of is immediate.
To treat part (iii) of we recall that by [App09, Theorem 2.4.16] Lévy—
1t6 decomposition holds. Namely, there exists a d-dimensional Brownian motion W with

covariance matrix () and an independent Poisson random measure N such that
t t ~
Li=Wy+Jy =Wy +at + / / xN(dr,dx) + / / xN(dr,dx), (B.4)
0 Jiz|>1 0 Jlz|<1

where N is the compensated Poisson measure: ]V(Dl, D) := N(Dy, D) — Leb(D1)v(D>),
Dy € BR,), Dy € B(RY), Leb is the Lebesgue measure on R

By noting, that the processes W and J are independent, it is easy to see that [HI] is
satisfied with o = 2 by exactly the same argument as in the proof of part (i) above.

[H2lis satisfied with o = 2 by the same argument as we used in the proof of[Proposition 2.8}
recall that f‘y| <1 ly|2 v(dy) < oo thanks to the requirements to the jump measure.
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To show [H3], we note that for any p € (0, 2]
E[W,[P < Nt°/2; (B.5)

t - 2
E( / / =N (dr, dm)(p < NtP/? ( / x2u(dx)>p/ — N2, (B.6)
0 J]z|<1 |z|<1

where the inequality follows from, e.g., [Kun04, Lemma 2.4]. Further, by definition

E‘/Ot /xZIxN(dr,dx)(W - IE‘ ST ALI(AL > 1)‘%1

0<s<t
<E Y |ALMI(AL > 1)

0<s<t

= t/ 2|7 v(dx) = Nt.
|lz|>1

If p < (y A1), then combining this with (B.A), (B.f]) and substituting into the decompo-
sition (B.4), we get
E|L,P < Nt#/2 4 NP/OND < Ngp/2,

If (y A1) <p <2, then similarly
E[| L A 1] < NtP/2 4+ Nt < NtP/2,
Thus L satisfies [H3] with oo = 2. O

Proof of [Lemma 3.1 The proof is based on the method of [Ger20l proof of Lemma 2.2]
(see also the proof of the original stochastic sewing lemma in [Lé20]). The novelty here is
that we apply the conditional Burkholder-Davis-Gundy inequality rather than the stan-
dard one. Let (Z;);—2,... m be a sequence of random vectors in R4 adapted to the filtration
G := (Gi)i>0, and assume that G C Gy. Then

M M
> Zi=> E92Zi+ Y (Zi—-EY2Z)+ > (Zi— B9 7)), (B.7)
§=2 §=2 ieven iodd

The sequence (Zi—Egi_QZi)ie{2,___7 M}, ieven 15 @ martingale difference sequence with respect
to the filtration (Gi)ica,... M}, ieven- We apply the conditional Burkholder-Davis-Gundy
inequality [CEF16l, Proposition 27]:

1
2

LP/2(Q)|G

| 3 @ - ez

reven

< NH Z; — B9 7,)?
g S g;n( i )

1
2 - 2 2
<N( Y UZilnaye + IE9 2 Zill o))

ieven

1
2 2
< N< E ”Zi”Lp(Q)|g> s

ieven
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where in the last step we used (3.2)) and the fact that G C G;_o. Treating the term in
(B with the odd terms in the same way, we finally get

M
17|
1=2

Now we proceed to the proof. For 0 < s <t <1, m € N, consider the uniform partition
of [s,t]: t":=s+i(t —5)27",i=0,...,2". Put

M - M ) 1/2
Lo < Z IE¥ =2 Zi[| Loayg + N(Z ”Zi”Lp(Q)\g> . (B.8)
i—2 =2

2m—1
mo.__
As,t = E At:nvtﬁ-l’ m & N.
=1

Then it follows from (B.6) and the conditional Fatou’s lemma that
[A: = Asllz, g < lminf [[AZ]| L, @)g- (B.9)

For m € N we apply (B.8) with M := 2", Z; .= 5Atm1 (L g G == Fym. We get

2m
Az = A0 < [0 04 et g
=2

i—1:l2i— 1ot + HAt’l"“,tg"Jrl HL,,(Q)\Q

‘Lp«mg

—1st2i—1>

2m
< NZ [t 0Aym  gm1 t;nHLp(Q)IQ
i=2

2m
1/2
2
+ N(Z “5At§g1,t;’;%f}7tzn HLP(Q)|Q> + HAt;"+17t£"+1 HLp(Q)\Q
=2
< N2mTg2-miFe)|p — g|ttes 4 Nompga-mtes)|p — g|1tes
+N2m/2F127m(1/2+€1)‘t _ 8‘1/2+€1 +P127m(1/2+€1)‘t _ 8‘1/2+€1
< NT2 ™2t — s|1e2 4 NT327 e8|t — g|1Tes
+ NT 27 [t — s|V/2Fer T2 m/2 o0 — g|V/2Fa - (BL10)
where in the penultimate inequality we used bounds (3.4]) and (3.3]), the fact that ¢]*; —
@ —t* ) =t", and inequality
1045wtz @ig < 1 Astlln,@ig + 14sull@ig + 1Autllz@)g-

Summing up inequalities (B.I0) over m and using (3.4]) once again, we deduce for
meN

m—1
AT g < D IATE = ALl @ig + 145l @
i=1

< NTolt — s|'e2 4 NT3|t — s|158 4 Ny |t — s|V/2F51

This together with (B.9) yields the desired estimate (3.7]). O

The proof of [Proposition 3.2 relies on the following inequality which is a very minor
modification of [Lé22al Lemma 2.1].
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Proposition B.1. Let X, Y be nonnegative random wvariables. Assume that for any
a>0,0¢c(0,1) one has

P(X > 2a) < OP(X > o)+ P > 0a). (B.11)
Then for any p > 1 there exists a constant N = N(p) such that
XL, < NOIY L@ (B.12)

Proof. We follow the proof of [Lé22al, Lemma 2.1]. Using the identity ¥ = p [;" AP~ dA
valid for any « > 0, p > 1, we derive for any 6 € (0,1), M > 0

M

M M
E(X AMYP =p / P(X > M\~ La) = 27p / ’ P(X > 20N "1 d\
0 0
M M

< %ph / P BX > VAL £ 2Pp / “PY > 00N dr
0 0
< PORE(X A M)P + (20~ HPEY?,

where in the penultimate inequality we use our main assumption (B.I11)). Take now
6 := 27P~!. Then, by above

1
SEX A MY < W TDRYP,

Passing to the limit as M — oo and using the monotone convergence theorem, we obtain

BI). 0
Proof of [Proposition 3.9, Fix 0 < S <T. Put

E'w):= sup &(w); Viw):= sup |A(w) — Asw)l, w € N.
rel[S,T] relS,T]

We will assume that £ is bounded from below by a deterministic constant § > 0. This is
no loss of generality: if this is not the case, we can replace £ with & := £ V 4, note that
the condition (B.8)) still holds with &', apply the claim with &', and pass to the § — 0 limit
in the final bound (B.9]), which is possible thanks to the monotone convergence theorem.

Step 1. We claim that for any stopping times 7 < n taking values in [S,7T] we have
a.s.

grlAn = Al <2 (B.13)
g*

First, we prove (B.I3]) for the case when n = T and 7 takes finitely many values S <

t1 < ...<t, =T. Recall the identity E"(X1,—;) = EY(X1,—_;) valid for any integrable

random variable X, see, e.g., [KS91, Problem 1.2.17(i)]. Then, using (3.8)) and the fact

that £ > &, we deduce

AT = A AT — A (AT = Al
g — Al gl AT Z A NS (AT T Al oy
Ry S D (g e =)

= Z 1I(r = ti)giE“].AT — Al < 1. (B.14)

i=1 t
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Next, for a general stopping time 7 € [S, T'], we consider a sequence of stopping times
T, taking finitely many values in [S,7T] and converging to 7 from above. Then, for any
N > 0 we have using continuity of A and (B.14):

AT — Ar| < lim inf AT = Anl e prEm

&* n—o00 &* n—o00

ET

MTgi*AT"' <1 (B.15)

Finally, let 7 < 7 be arbitrarily stopping times taking values in [S,T]. Then (B.I3) yields

A — Ay §1+IETEnlv‘tT—Anl <o,

T |"477 — AT|
E

§
which is (B.13).
Step 2. Now we modify the corresponding part of the proof of [Lé22a, Theorem 1.3]

to adapt it to our new condition (BI3]). For arbitrary a > 0 we consider two stopping
times:

|-’4T — AT|
£

<E" +E7

To =T ANinf{r € [S,T]: |A, — As| > a}; N :=T ANinf{r € [S,T] : |A, — Ag| > 2a}.
Then for any 6 € (0,1) we clearly have

(V*>2a} Cc{V* > a,|A,, — A | > a}
C{V* > a,|Ay, — A | 220716 U {2071¢" > o},

Note that {V* > a} = {|A;, — As| > a} and hence the random variable 1y +>qy is Fr,—
measurable. Therefore, using also the Chebyshev inequality we get for any Fs—measurable
set G

P(V*1g > 2a) = P(V* > 20, G)
<PV > a, Ay, — A | > 20715, G) + P2 > af, G)
< ElyesalcE™ L4, 4, |520-16) + P2 e > af)
Ao = Ar| + P2 1g > ab)
26+
<OHP(V*1g > o) + P2 1g > ab),

<OELyesqlgE™

where in the second inequality we used that Fg C F,, and in the last inequality we
used (BI3). Since a > 0 and 6 € (0,1) were arbitrary, we see that condition (B.I1]) of
[Proposition B.1] holds. Hence, (B.12)) yields

1V*1clL,@ < NI§ el @),

for N = N(p) independent of GG. Since G was an arbitrary Fg-measurable set, we get

IV 17 < NIEN L, @) 7s

which is the desired bound (3.9]). O

Proof of [Proposition 3.3. We begin with the proof of ([B.I1]). We proceed by induction.
The case p = 0 is obvious. Indeed ||Pf|lco < || fllco < || fllcs-
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Assume now that the statement is proved for p € [0, M], M € Z. Let us prove it for
pe(M,M+1].
Let p= M + 1. If 8 > 1, then by the definition of the norm

[Pefller+r < [1Pefllo +  sup [0iPifllem

ie€{l,....d

<flleo+ sup [P0 fllear
1e{1,....d}

< [ £lleo + NEF=MEDNIE sup 18 flas
Ze{lvvd}

< NEFmMEDA £, (B.16)

where in the third inequality we have used the induction step. If 8 = 0, then

[Pefllerr+r < 1 Pefllco +  sup [[07Pef llem

ie{1,...,d}
< flleo + sup }Hpt/ZaiPt/ZfHCM
el

< | fllco +Nt7M/a. sup }||<9z‘7’t/2f\|co

ie{l

goeey

<[ flleo + Nt/ £l o
< Ne= D/ £l oo, (B.17)

where in the third inequality we used the induction step and in the fourth inequality we
used (ZI). Finally, if 8 € (0,1), f € C5, then define for X\ > 0 the interpolation function

K\ f):= inf (lallco + Al[d]|c1)-
f=a+b
a€CORY),beCL(RY)

It is well-known, that if f € C?, then

- KA\ D
N7 flles < sup =S5 < Nl (B.15)

see, e.g., [Luni8, Example 1.8]. Then for any a € C°(R%), b € C*(R?) such that f =a +b

we get using (BI6) and (BI7)
IPefllesr+r = [[Pila+ b)llearsr < Nt=MHD/af|eo + Nt~/ b]|cx
< Nt=MHEY(|lalco + £/ [b]l ).
Taking infimum over all a € CO(RY), b € C'(R?) such that f = a + b and using (B.I]), we

get
1Pefllenres < Ne—OEEDIOR U0 £y < N £t DIy,

which is (BI1]). Thus, the case p = M + 1, 5 > 0 is proven.
Finally if p € (M, M + 1), then by above and the standard interpolation inequality

_ _ (B=M)AO L (B=M-DAO,
1Pifllee < I Pefllgnd P IPeflIonE < Nllfllot = MF=Pp—a—— =D
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(B=p)AO

< N[ fllest -

Now let us prove ([B:12]). We start by assuming additionally that f vanishes at infinity.
First note that it follows from assumptions of the proposition that 14+¢ > p > (8 — p)/a.
Thus

B—p—a—ca<O. (B.19)

We see that for any 0 < s < t, x € R,

t t
Pof(2) — Puf() = / 0P, f () dr — / £P, [ (@) dr,

where we used the fact that for r > 0 we have P,.f € C? by (11 and we applied It6’s
formula for Lévy processes, see, e.g., [App09, Theorem 4.4.7]. Therefore, by (2.2]) and
(BI1), taking also into account (B.19) and that P,f vanishes at infinity for any r > 0,
we deduce

t t
IPof = Pufller < / 1P, fller dr < N / 1Py fllrsasea dr

t B—p—a—ca
S Nflles [ r = dr

s

t
67
< N||fllcs / sTa THr— syt dr
S

< N flless ™= — s,
where in the penultimate inequality we used obvious bounds r > s and r > r — s (we note
that the corresponding exponents are nonpositive since % < u <1+4¢), and in the last
bound we used that p > ¢ and the singularity is integrable. This implies (3.12]) for the
case when f vanishes at infinity.

In general case, take a smooth function x: Ry — [0, 1] such that x(x) = 1 for = € [0, 1]

and y(z) = 0 for > 2. Then the function f,(z) := f(z)x(Jx|/n) vanishes at infinity and
| frllcs < N fllcs for some N depending only on the choice of x. By above,

b=p_ _ B=p_ _
1Pefn = Pofuller < Nl fulless ™t = sy~ < N[ fllssa #(t = ).

By the dominated convergence theorem, (P; —Ps) fr, = (P: —Ps)f everywhere. Therefore,

Py — Ps)fllce < linrg1£f |(Pr — Ps) fullcr < NHchgs%*“(t —s)HE. O
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