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A B S T R A C T

Urban air pollution from tra!c poses serious public health risks. Pollution exposure can be
minimised through tra!c routing systems; these currently rely on detailed local environmental
information, which is often di!cult to collect or generalise within and across cities. Here, we
introduce a new data-driven approach for ready application to di"erent urban road networks by
directly relating NO2 to tra!c density in a time-dependent and weather-corrected manner. We
demonstrate this application by comparing pollution-optimal routings, using our novel direct
NO2/density approach, to the conventional tra!c assignment minimising user travel time, in a
case study of She!eld, UK. There, we find user-optimal tra!c flows result in 21% higher total
NO2 concentrations than pollution-optimal routings, while saving only 9% in total travel time:
an average of 0.3 minutes per road. Our generalisable framework o"ers a practical alternative
to current emissions-based models for air-quality-aware tra!c control and environmental zone
planning.

1. Introduction
Urban air pollution remains a defining environmental and public health challenge, with nitrogen dioxide (NO2)

strongly linked to motor tra!c. In the UK, 68% of roadside NO2 concentration measurements in 2023 originated from
nitrogen oxides (NO𝜀) emissions from exhaust pipes (DEFRA, 2025). This has resulted in widespread non-compliance
with the annual mean concentration limit for NO2 set by the Air Quality Standards Regulations (UK Government,
2010), particularly at many urban roadsides. Traditional routing systems optimise for e!ciency – minimising time,
distance, or fuel – but ignore the spatial distribution and magnitude of pollutant exposure caused by the chosen routings.
This disconnect represents a missed opportunity for cities seeking to balance mobility with air quality outcomes.

The EU standard tool for calculating vehicle-associated road emissions is COPERT (European Environment
Agency, 2011). This tool requires inputs such as vehicle type, vehicle population, mileage, and speed to model various
output emissions, including carbon dioxide (CO2) and those in the NO𝜀 family. Limited environmental conditions
may be optionally input to the model, such as minimum/maximum/ambient temperatures, humidity, and Reid vapor
pressure. However, important factors such as wind speed – which plays a large role in pollutant dispersion – are
ignored (Rodríguez, Van Dingenen, Putaud, Dell’Acqua, Pey, Querol, Alastuey, Chenery, Ho, Harrison et al., 2007;
Grundström, Hak, Chen, Hallquist and Pleijel, 2015). The COPERT model is highly adapted for shaping policies
around air quality, but does not provide tools required for scenario analysis or optimisation of tra!c routing.

Despite these limitations, COPERT has facilitated the development of tra!c-control strategies based on air quality
in cases where in-region emissions sensors are not available (Ingole, Mariotte and Leclercq, 2020; Kovács, Leel#ssy,
Tettamanti, Esztergár-Kiss, Mészáros and Lagzi, 2021). Using the COPERT IV model (Ntziachristos, Gkatzoflias,
Kouridis and Samaras, 2009), a gating control strategy to influence road users’ route choice in an urban environment
found a network-wide reduction of 9.3% in NO𝜀 emissions compared to the uncontrolled scenario (Ingole et al.,
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2020). This demonstrates how, given a fixed origin-destination (OD) travel demand, re-routing tra!c can lead to
an improvement in air quality. However, placing gates around the city perimeter requires infrastructural investment;
policy interventions aimed at changing driving behaviour o"er an alternative. In cities such as Nanjing, the rise of NO2
concentrations has been significantly decreased by alternating groups of private vehicles able to circulate daily, with
groups split by license plate characteristics (Tu, Xu, Wang, Wang and Jin, 2021). This supports the assertion that local
transport policy alone can positively impact air quality, although reliance upon an arbitrary decision metric – such as
splitting the vehicle fleet based on license plates – lacks an optimised strategy.

Tra!c assignment (TA) models are useful tools for the evaluation of changes to transport networks, as they predict
tra!c flow patterns based on a fixed OD demand and network topology. When paired with emission models, TA models
allow the assessment of road-specific environmental impacts, providing critical information into the relationship
between tra!c distribution and air pollution.

In the literature, a small number of examples are presented where TA has been used to generate tra!c flows
that minimise functions relating tra!c-associated emissions (Patil, 2016; Macedo, Tomás, Fernandes, Coelho and
Bandeira, 2020a). Given a particular tra!c regime, an estimation of the corresponding pollutant levels may be output.
To minimise travel time (as is traditional for static TA models), the bureau of public roads (BPR) congestion function
is commonly used (Carlier, Jimenez and Santambrogio, 1964), which relates travel time to flows along each road
segment. By re-formulating emissions-speed functions as emissions-flow, and combining this with the BPR equation,
a functional relationship between emissions and tra!c flow may be incorporated into TA models. This approach has
been applied to minimise CO2 across hypothetical transport networks, using popular BPR-specific parameter values
in the CO2 cost function (Patil, 2016). Counter-intuitively, though the regime minimised CO2 emissions for each user,
higher levels of CO2 were output than in the regime to minimise user travel times.

It is appropriate to use models tuned with actual data, as the di"ering characteristics of roads can result in divergent
tra!c and emission outcomes, even within the same city. Data-informed model selection facilitates more accurate
impact evaluations of in-region policy changes. Moreover, as di"erent tra!c profiles show varied emissions with
respect to either tra!c flow or density, it may be more appropriate to consider emissions models that depend on
tra!c density (Tsanakas, Ekström and Olstam, 2017; Tsanakas, 2021). For example, when a road becomes heavily
congested, vehicle flow virtually drops to zero, but exhaust-pipe emissions remain high (Shi, Di, Zhang, Feng and
Svirchev, 2018). This highlights that density and vehicles’ spatial distribution, rather than flow, may better capture
emission dynamics under certain conditions (Tsanakas, Ekström and Olstam, 2020). Finally, in addition to the spatial
distribution of vehicles, the fleet composition – such as vehicle type, age, and fuel technology – has been highlighted as
a key determinant for output emissions, sometimes even exceeding the influence of tra!c distribution itself (Tsanakas
et al., 2020).

Environmental and meteorological factors, such as wind and temperature, play a significant role in shaping local
air pollution profiles. Wind a"ects NO2 concentrations by dispersing or accumulating NO2 depending on its strength
and direction (Shen, Jiang, Feng, Zheng, Cai and Lyu, 2021), while temperature a"ects also atmospheric mixing and
pollutant dispersion (Zhang, Wang, Hu, Ying and Hu, 2015).

Lower temperatures are associated with elevated NO2 concentrations, as reduced atmospheric mixing limits
pollutant dispersion, and a shallower planetary boundary layer (PBL) that traps emissions near the ground. Relative
humidity also influences NO2 concentrations by enhancing the conversion of NO2 into nitric acid through reactions
with hydroxyl radicals and water vapour. While this reduces NO2 concentrations, it contributes to overall air quality
degradation by forming particulate pollution (Zhang et al., 2015). Although NO2 has a relatively short atmospheric
lifetime, local tra!c emissions are typically the dominant source in urban areas, although long-range transport from
industrial regions can occasionally impact air quality under favourable weather conditions (Shen et al., 2021; Zhang
et al., 2015; Pope, Arnold, Chipperfield, Latter, Siddans and Kerridge, 2018; Pope, Savage, Chipperfield, Arnold and
Osborn, 2014).

In addition to meteorological e"ects, chemical interactions between NO2, nitrogen oxide (NO), and ozone
(O3) introduce important non-linearities into the relationship between tra!c emissions and NO2 concentrations.
At low tra!c densities, NO2 concentrations increase approximately linearly with emissions. However, at high
tra!c densities, i.e., near roadways, O3 titration – where O3 is depleted by excess NO – limits the formation of
NO2, meaning that increases in emissions do not proportionally increase NO2 concentrations (Richmond-Bryant,
Snyder, Owen and Kimbrough, 2018). These complex dynamics, influenced by chemical equilibrium and atmospheric
conditions, emphasize the importance of tailoring emissions models to account for both tra!c characteristics and local
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environmental variability (Tsanakas et al., 2020; Kuik, Kerschbaumer, Lauer, Lupascu and Schneidemesser, 2018;
Kendrick, Koonce and George, 2015).

In this study, we introduce a novel OD-specific, pollution-sensitive routing framework that directly links disaggre-
gated tra!c density to empirical NO2 concentrations. Central to our approach is a data-derived pollution cost function
that is robust to short-term meteorological variation (de-weatherised) and seasonality, enabling generalisability across
urban contexts. Unlike static emissions factors, our cost function captures real-world variation in NO2 concentrations
from tra!c patterns and local meteorology. This provides a transferable foundation for route optimisation without
requiring infrastructure changes to the transport network.

We demonstrate our framework using tra!c and air quality data from the city of She!eld (UK). However, the
method itself is not bound to this urban environment: the cost function is generalisable and requires only edge-wise
tra!c densities, which can be obtained from standard TA models.

To achieve this, we combine tra!c data gathered by the She!eld City Council (SCC) for TA modelling, with
environmental sensor data from the She!eld Urban Flows Observatory to model the associated NO2 concentrations
caused by transport emissions.

In particular, this paper delivers the following:

a) A formulation of the TA problem with a novel congestion function – fitted to empirical sensor data – that reflects
the air quality cost of mobility.

b) A characterisation of the data-driven TA for minimising NO2 pollution in comparison to the time-based user-
equilibrium for an urban case study (She!eld, UK), including comparisons between optimised tra!c flows in the
two scenarios, and the associated spatial mapping of NO2 concentrations.

c) Analysis of the role of vehicle fleet composition on roadside NO2 concentrations, using vehicle-type data from an
automated number plate recognition (ANPR) camera. We show that passenger car flow emerges as the dominant
predictor of NO2, likely reflecting congestion-related emissions rather than tailpipe intensity alone.

This analysis allows us to assess the potential air quality improvements achievable through pollution-optimal TA.

2. Methods and data
2.1. Transport network construction

To construct the road network model, topological data was imported with geographic coordinates from Open-
StreetMap (OpenStreetMap contributors, 2017), which was subsequently processed into a graph-based representa-
tion (Boeing, 2024). The imported network edges correspond to all roads within She!eld accessible by car (Figure 1a).
Chains were resolved by merging nodes of degree two, resulting in nodes representing major road junctions. The
network is directed, as tra!c flow along an edge in one direction may not equal that in the opposite direction.

Network reduction was achieved by computationally merging nodes within a distance threshold of 58.6m: the
median radius of She!eld lower layer super output areas (LSOAs). These are statistical boundaries for population,
and is the level at which the travel demand data is available. Reducing the network led to an 81% and 74% decrease
in nodes and edges, respectively, compared to the full network. The reduced network was used throughout the TA
modelling process (Figure 1b). Sensitivity testing was performed on this threshold to ensure nodes were not over-
merged (Figure 20 in Appendix).

The following assumptions were considered to consolidate the data available with the city-scale modelling:

a) Drivers join the transport network at the closest junction to their origin location.
b) Drivers choose to drive the route which is the shortest time for them.

(a) To this respect, the literature suggests that drivers often choose a consistent route, not necessarily the
fastest (Ciscal-Terry, Dell’Amico, Hadjidimitriou and Iori, 2016). However, in the static TA, the user-
equilibrium state is generally modelled such that tra!c flows correspond to drivers all choosing the quickest
route (She!, 1985).

c) Through tra!c - that is, tra!c that does not both begin and end on the network - does not have a significant e"ect
on local travel times or air quality. For the size of the area we consider, this assumption is justified considering that
the majority of journeys by private vehicle are much shorter than the region’s diameter (DfT, 2024).

The major routes (motorways, A-roads, and B-roads) host many of the sensors throughout the city, which have
been prioritised to roads with higher tra!c and/or locations near schools.
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(a) Full network (3943 nodes, 8405 edges), consisting of motor-
ways, A, B, tertiary, and unclassified roads.

(b) Reduced network used for modelling (754 nodes, 2152 edges),
with distance threshold 58.6m for node merging.

Figure 1: Car-accessible road networks with administrative boundary for the city of She!eld. Edge thickness is proportional
to road class seniority.

2.1.1. Network origin-destination pairs

Demand between OD pairs was averaged at an hourly resolution across Lower Super Output Areas (LSOAs). This
analysis focused on weekday AM and PM peak periods – defined as 07:00–09:00 and 16:00–19:00, respectively – to
capture commuting-related travel. To align with the available sensor data, the OD dataset was restricted to the period
from February to October. For each LSOA within She!eld, OD demand matrices were derived from anonymised
vehicle movement data collected by The Floow™ through black box devices installed in private vehicles in 2019 (The
Floow, 2023). Comparing the average weekday and weekend travel demand within the AM and PM peak periods, we
find that weekend demand (11,110 cars/hour) is 34.7% less than weekday demand (17,015 cars/hour). Moreover, an
additional 8.3% of all possible OD LSOA pairs have zero average demand on weekends.

A distance-based method was employed to assign representative origin and destination nodes within each LSOA.
Each transport network node was first spatially joined to its corresponding LSOA based on boundary containment.
The likelihood of a node being selected as an origin or destination was weighted inversely with its distance from the
LSOA’s population-weighted centroid (PWC). Where LSOAs with valid OD demand did not contain any nodes from
the computational network, the node nearest to the PWC was assigned as a proxy.

It is important to note that the TA model does not address intra-LSOA tra!c, as such trips are typically not subject
to strategic re-routing. Both inter- and intra-LSOA OD demands for private vehicles are shown in Figure 9 in Appendix.

2.2. Data inputs for the tra!c assignment models
2.2.1. Road characteristics

Through the OpenStreetMap (OSM) road network import (OpenStreetMap contributors, 2017; Boeing, 2024),
three main road features were considered: (1) speed limit, (2) number of lanes, and (3) road class. The road network
analysis incorporated a multi-tiered imputation strategy to address missing and anomalous attribute data from OSM.
First, physically implausible width values (i.e., roads with widths less than 70% of the minimum expected width based
on lane count) were identified, and subsequently treated as missing data. Missing speed limits were imputed using
a hierarchical approach based on UK road classification standards (DfT, 2018), while lane counts were estimated
using within-class median values supplemented by classification-based defaults aligned with Design Manual for Roads
and Bridges guidelines (Highways England, 2020). For width imputation, we used a rule-based estimation model,
incorporating lane width parameters calibrated to observed road characteristics (3.4m for high-speed roads, i.e. with
speed limit greater than or equal to 50mph, to 2.0m for low-speed roads), with correction factors applied to account for
systematic patterns in OSM data quality (Boeing, 2017; Barrington-Leigh and Millard-Ball, 2017). Additional width
allowances were included to represent features such as central reservations, hard shoulders, and edge bu"ers, with the
specific values adjusted according to road type and function (Highways England, 2020). This approach allowed for
reliable estimation of road parameters, while accounting for known limitations in the OpenStreetMap data. Given that
the input road network forms the basis for TA modelling, city-wide sensor data was extensively used to validate the
associated road attributes.

Based on the above characteristics, road-specific maximum flow capacities were joined to the network using
standard methodology (TfL, 2013), assuming a 50/50 distribution of tra!c per direction. Free-flow travel times for
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Figure 2: The quasi-density Fundamental Diagram for the She!eld ring road, aggregated across two sensors, capturing
North/South bound tra!c respectively. The critical density is calculated as 69.1 veh/km.

each road were computed using the road’s length and speed limit. Additional road characteristics were obtained using
the following data.

2.2.2. Tra!c data

The tra!c data in the city was collected using inductive loop sensors and an automatic vehicle counting camera,
co-located with an AQMesh air quality sensor (Section 2.2.3. Three types of data were gathered for this research:

• Tra!c flow: the number of vehicles passing the sensor (veh/min).

• Sensor occupation: the percentage of time the sensor area was occupied by a vehicle, used as a proxy for tra!c
density (veh/km).

• Tra!c speed: the average speed of all vehicles recorded in each observation period (km/hour).

Data points were collected and aggregated with a 30-minute frequency.
Figure 2 shows the relationship between tra!c flow and density – known as the quasi-density Fundamental Diagram

– from our sensor data measure on the She!eld ring road. The flow-density relationship is well-established in the
literature (Knoop and Hoogendoorn, 2014; Helbing, 2009). Flow behaviour can be categorised in two regimes relative
to the critical density: hypo- and hyper- critical. In the hypo-critical regime, the flow-density relationship on a single
road is linear, that is, with low congestion. In the hyper-critical regime, increasing density results in a reduction of flow
due to congestion. This behaviour highlights that tra!c flow is not the most appropriate predictor for travel time; travel
time increases monotonically with density but not necessarily with flow (Kucharski and Drabicki, 2017). Therefore,
density provides a more appropriate measure for modelling tra!c and its impact on emissions.

Tra!c density (veh/km) was calculated from sensor occupancy using the following relationship:

density (veh/km) = 10 ε occupancy (%)
length of sensor (m)

. (1)

When a road-specific Fundamental Diagram is available, the critical density can be estimated as the density
corresponding to the 95th percentile of observed tra!c flows (Kucharski and Drabicki, 2017). For the She!eld ring
road, the critical density was 69.1 veh/km.

Relationships between NO2 concentrations and tra!c flow and density are shown in Figure 13 in Appendix.

2.2.3. Air quality and meteorological data

Air quality data was collected by an AQ Mesh sensor collocated with a tra!c sensor (Section 2.2.2). The AQMesh
(Environmental Instruments Ltd., UK, Gas algorithm v4.2.3) is a multi-sensor platform capable of measuring several
gases with electrochemical (EC) gas sensors, as well as temperature and humidity (AQMesh, 2017). For this study, the
AQMesh was equipped with EC sensors (B4-series, Alphasense, UK) to measure NO, NO2, and O3. The manufacturer-
reported limits of detection are 6.25 µg/m3 for NO and 19.2 µg/m3 for NO2 (AQMesh, 2017). The AQMesh also
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Figure 3: Breakdown of vehicle types passing the automated number plate recognition (ANPR) camera in She!eld from
Feb-Oct 2023. Abbreviations: diesel (DSL), petrol (PTRL), electric (ELEC), heavy/light goods vehicle (H/LGV), minibus
(mBus), motorcycle, excluding motor-assisted bicycles (Mcy), passenger car (PCr), hybrid electric (he), tonnes (T).

included an optical particle counter for measuring particulate matter in di"erent size fractions (PM1, PM2.5, PM10);
however, PM data was not used in the analysis.

All individual sensors were factory-calibrated and mounted into the AQMesh unit. AQMesh sensors have
been extensively used in air pollution studies across She!eld (Munir, Mayfield, Coca, Jubb and Osammor, 2019;
Redondo Bermúdez, Chakraborty, Cameron, Inkson and Val Martin, 2023), as well as in other locations (Hickman,
Baker, Cai, Delgado-Saborit and Thornes, 2018; Wahlborg, Björling and Mattsson, 2021), highlighting their reliability
and applicability in urban air quality monitoring. In this study, data from the AQMesh sensor were uploaded via GPRS
communication to a remote database. The transmitted raw data was cross-referenced and validated against air quality
data from nearby UK DEFRA and SCC monitoring sites. AQMesh data was then aggregated into 30-minute averages
to align with the temporal resolution of the tra!c and meteorological datasets. The NO2 sensor readings used in this
study cover the period from 24th Jan to 31st Oct 2023 (Figure 12 in Appendix).

Meteorological data for this study was obtained from the automated weather station at She!eld Hallam University
City Athletics Stadium (location: 53⋛23’20.4"N 1⋛25’55.2"W). The station provided measurements of temperature,
air pressure, rainfall, and wind speed/direction at 10m and 24m above the ground.

2.2.4. Vehicle fleet composition data

Data on vehicle fleet composition was obtained from camera footage using ANPR technology. ANPR data was
interfaced with the Driving and Vehicle Licensing Agency (DVLA) register to retrieve vehicle categories, age, engine
type and fuel used. Privacy was maintained, as vehicle data was anonymised at the source by removing license plate
details. The function of our ANPR camera was solely number plate recognition. Vehicle type data came directly
from cross-correlating plate numbers with DVLA vehicle information; a procedure performed by the ANPR camera’s
computer. This approach provided a census of the circulating vehicle fleet over nine months (Feb-Oct 2023), as
summarised in Figure 3. This data was subsequently used to calibrate the air pollution cost function.

2.3. Building the tra!c assignment model
The TA problem involves assigning road-wise optimal flows in order to meet the given travel demand between OD

pairs. The assignment depends on the congestion function associated with each road.
In this work, we use two types of cost function that relate tra!c density either to NO2 concentrations or travel

time. Both of these functional forms are specific to road segments within the transport network. The data-informed
formulation of these cost functions, along with the formalisation of the TA problem, is detailed in this section.
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2.3.1. Tra!c-associated NO2 concentration

No consensus exists in the literature for the most appropriate choice of function representing the relationship
between tra!c parameters and NO2. Most existing studies model NO2 primarily as a function of vehicle speed (Patil,
2016; Macedo, Tomás, Fernandes, Coelho and Bandeira, 2020b). In this work, we seek to develop a pollution-based
cost function dependent solely on tra!c density.

To assess the reliability of the AQMesh measurements, we first compared them to NO2 observations from three
nearby DEFRA reference monitoring stations: three classified as urban tra!c (Barnsley Road, Lowfield and Wicker)
and three as urban background (Devonshire Green, Tinsley and Firvale) (Figure 18 in Appendix). The AQMesh sensor
showed good agreement with the urban tra!c sites (r2=0.4-0.5, mean bias=-0.3-9 µg/m3) and a consistent, although
elevated, pattern relative to the urban background sites (r2=0.20-0.55, mean bias=14-17 µg/m3) – confirming its
sensitivity to local tra!c emissions while aligning with expected spatial gradients within the city.

The AQMesh NO2 measure in parts per billion (ppb) were then de-weatherised by accounting for meteorological
e"ects, such as temperature, humidity, and wind speed, in order to isolate tra!c-driven changes. In addition, cyclic
seasonal, weekly, and daily components were resolved through de-seasonalisation to eliminate long-term temporal
trends unrelated to tra!c. The dataset was randomly partitioned into training and testing subsets with a 4:1 ratio.
De-weatherisation and de-seasonalisation was performed using predictive random forest models for meteorological
normalisation (Grange and Carslaw, 2019; Grange, Carslaw, Lewis, Boleti and Hueglin, 2018).

The random forest model achieved a correlation coe!cient of 𝜗 = 0.77 between predicted and actual NO2
(Figure 14 in Appendix). The ranked feature importances for training the random forest model are shown in Figure 15
in the Appendix, indicating that temperature (21%) was the strongest predictor of NO2 concentrations, followed by
tra!c density (13%).

While de-weatherisation removes meteorological confounding factors, it does not inform us of the direct relation-
ship between NO2 and tra!c density that is independent of other variables. To isolate the specific influence of tra!c
density on NO2, the partial dependence between NO2 and density was computed using established methods (Friedman,
2001). The partial function 𝜛𝜚𝜍 (𝜀𝜍 ) was estimated from the training data using the equation

𝜛𝜚𝜍 (𝜀𝜍 ) =
1
𝜑

𝜑
⌋

𝛻=1

𝜛𝜚 (𝜀𝜍 , 𝛚
(𝛻)
𝜕 ) (2)

for the random forest model 𝜛𝜚 with 𝜑 observations, where 𝜀𝜍 is the density and 𝛚𝜕 is the set of remaining features used
for model training. Tra!c flow was excluded from the random forest model, as flow and density are highly correlated,
which violates the conditions for computing partial dependency.

The estimated partial dependence was then used to train a simple linear model with general formulation

ℵNO2
(𝛻ℶ) (ϑ(𝛻ℶ)) = ℷ ε ϑ𝛻ℶ , (3)

where ℷ is a constant gradient. A linear relationship was selected to represent the approximately linear increase in NO2
concentrations with tra!c density up to the onset of ozone titration e"ects (Richmond-Bryant et al., 2018).

To calibrate the model (Equation (3)), a zero-intercept o"setting was applied, assuming NO2 concentration
approaches zero at zero tra!c density. A parameter search was then used to fit the gradient ℷ = 0.0137, such that the
model intersected the observed NO2 saturation point at tra!c density= 240.125 veh/km. The resulting model achieved
a coe!cient of determination (r2) of 0.91, as shown in Figure 4. This linear fitted function, derived from de-weatherised
data and expressed as a partial dependency on tra!c density, allows extrapolation to continuous density values across
di"erent roads. As such, it served as a road-specific cost function for use in the TA modelling framework.

NO2 concentrations output by our TA models are faithful to the model (Equation 3), i.e., road-side pollutant
concentrations directly caused by the density of vehicles. This relationship is used for TA modelling as it is these
concentrations which are able to be tackled through vehicle re-routing. To re-incorporate background levels of NO2, a
scaling factor is applied to our modelled NO2 outputs. This factor is derived from the median multiplicative di"erence
between the zero-o"set partial dependency values for NO2 concentrations and tra!c density, and the non-o"set values
which inherently include background pollutant levels. Unit conversion from ppb to µg/m3 is achieved using the ideal
gas law.
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Figure 4: Scatter plot with fitted linear function for the partial dependency of NO2 concentration on tra!c density.

2.3.2. Travel time

The BPR congestion function is typically used to model travel time with respect to road-wise tra!c flows (Carlier
et al., 1964). Here, we convert flow to density as is more appropriate for the application of understanding tra!c-related
emissions (Shi et al., 2018). The BPR congestion function thus takes the form

ℵBPR
(𝛻ℶ) (ϑ(𝛻ℶ)) = ℵ0(𝛻ℶ)

⌈

1 + ℸ
⌉ ϑ(𝛻ℶ)
ϑ(𝛻ℶ)(⊳(𝛻ℶ))

{⊲}

, (4)

where ℵ0(𝛻ℶ) is the free-flow travel time for edge (𝛻ℶ), ϑ(𝛻ℶ)(⊳(𝛻ℶ)) is the road-wise critical density, and ℸ, ⊲ are constants.
We use parameter values ℸ = 0.15 and ⊲ = 4 which are widely accepted in the literature (Patriksson, 2015).

The road-wise critical density ϑ(𝛻ℶ)(⊳(𝛻ℶ)) is determined using the linear conversion

ϑ(𝛻ℶ)(⊳(𝛻ℶ)) =
⊳(𝛻ℶ)
0(𝛻ℶ)

(5)

for average speed 0(𝛻ℶ) (km/time) and road capacity ⊳(𝛻ℶ) (veh/time), where the latter corresponds to maximum observed
flow along the edge (𝛻ℶ). Calculated from observed sensor data, the average vehicle speed on the ring road was estimated
at approximately 30% of the posted speed limit. For motorways, where congestion is typically lower and tra!c flows
more freely, a higher scaling of 60% of the speed limit was applied. This factor aligns with practical estimates commonly
used in transport modelling when empirical speed data is unavailable (TfL, 2020; DfT, 2023). Density-dependent travel
times output from the BPR function applied to the She!eld ring road are shown in Figure 16 in Appendix.

Whilst popular, the BPR equation is not the only function appearing in the literature relating travel time with
flow/density. Alternative choices include Davidson (Davidson, 1966), Akçelik (Akçelik, 1991), and conical (Spiess,
1990), which - depending on the tra!c characteristics and the cost considered - may be more or less appropriate than
the BPR function. When fitted to tra!c data, the BPR function out-performs alternatives in terms of computational
time, which is of particular importance when dealing with large transport networks (Roocroft, Ramli and Punzo, 2023).

2.3.3. The tra!c assignment problem

To formalise the TA problem, the road network is modelled as a directed graph 1(2 ,3), with a set of nodes 2
(with ⦃2 ⦃ = 4) and a set of ordered pairs of nodes, called edges, 3 5 2 ε 2 . The set of OD pairs is given by
𝜕 = {(6, 7)⦃6, 7 ϖ 2 }, which have fixed demands 86,7 . The road-specific objective function is denoted 9(𝛻ℶ)(ϑ(𝛻ℶ)) for
edge (𝛻ℶ) ϖ 3. An OD pair may be denoted (6, 7) = . ϖ 𝜕 . With these premises, the TA problem can be expressed as:

min
𝛚,𝛆

9(𝛻ℶ)(ϑ(𝛻ℶ))

s.t. 𝜀(𝛻ℶ) =
⌋

.ϖ𝜕

⌋

,ϖ<.

ℏ,.𝛻ℶ >
,
. ϱ(𝛻ℶ) ϖ 3,
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(a) Tra!c flows. (b) NO2 concentrations.

Figure 5: Road-wise TA outputs for the current transport scenario in She!eld, from Feb - Oct 2019 during peak hours.

8. =
⌋

,ϖ<
>,. ϱ. ϖ 𝜕 , (6)

𝜀(𝛻ℶ) ∱ 0 ϱ(𝛻ℶ) ϖ 3,
>,. ∱ 0 ϱ. ϖ 𝜕 ϱ, ϖ <. ,

where , ϖ <. is a path between an OD pair, and >,. is the flow between the OD pair . on path ,. The entry ℏ,.(𝛻ℶ) in the
node adjacency matrix bounds the flow 𝜀(𝛻ℶ) along edge (𝛻ℶ) to the flow of paths passing through the edge.

For time-based TA to calculate the user-equilibrium flows (i.e. the current scenario), the objective function is

9(𝛻ℶ)(ϑ(𝛻ℶ)) =
⌋

(𝛻ℶ)ϖ3 ∲
ϑ(𝛻ℶ)

0
ℵBPR
(ℏ⋆) (≨(ℏ⋆)) 8≨(ℏ⋆). (7)

Combining this with Equation (6) gives flows such that trip travel times are minimised for each road user, but are
unlikely to be optimal for the whole network.

For a system-optimal TA, the objective function is

9(𝛻ℶ)(ϑ(𝛻ℶ)) =
⌋

(𝛻ℶ)ϖ3
ϑ(𝛻ℶ) ⋜ ℵ(𝛻ℶ)(ϑ(𝛻ℶ)), (8)

as formulated by Beckmann et al. (Beckmann, McGuire and Winsten, 1956). Here, the cost function ℵ(𝛻ℶ)(⋜) is taken as

ℵBPR
(𝛻ℶ) (⋜), i.e. Equation (4), for time-based TA, and respectively ℵNO2

(𝛻ℶ) (⋜), i.e. Equation (3), for pollution-based TA.
The TA problem on a network is solved using the Frank-Wolfe algorithm (Frank and Wolfe, 1956).

3. Results of data-driven tra!c assignment
With the above formulations, TA models were created to capture the current scenario for the mobility of private

cars over the considered date range, and, importantly, the pollution-optimal assignment of tra!c flows while meeting
the same OD demands. In this section, we present the results from these two scenarios.

3.1. Road-wise results for the current and pollution-optimal scenarios
First consider the road-wise outputs for each of the TA model scenarios, reflecting the present state1, mapped in

Figure 5.
1Roads are considered as one or more consecutive segments.
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(a) Required change in tra!c flows per road. (b) Change in NO2 concentrations per km of road.

Figure 6: Road-wise changes in NO2 concentrations and tra!c flows achieved through taking the pollution-optimal routings.
Road indices are ordered based on ascending change in flows from (a).

Based on this, the road-wise changes in tra!c flows required to move from the current to the pollution-optimal
scenario is shown in Figure 6a. In total, 981 roads (45.4%) require flow reduction, 1,039 (48.1%) require an increase,
and 140 (6.5%) require negligible – i.e., modelled as zero – change to flows. Under pollution-optimal routing, increased
tra!c flows are assigned to major roads that have high flow capacities. Meanwhile, roads within the same region as
these, yet of a lower road class, require less flow.

For reducing tra!c congestion, maintaining tra!c flows less than or equal to the road capacity is pivotal. In the
current scenario, our TA output shows that flows on 671 (31.1%) of roads exceed capacity. Many of these roads are
situated at the city centre, extending through major arterial routes connecting the centre to the Northwest, Northeast,
and South areas of the city in particular. In the pollution-optimal case, only 499 (32.1%) of roads exceed flow capacity:
the city centre and the high-flow route towards the upper East of the city still experience congested roads, though
the number of these is reduced. On average, roads in the current scenario are operating at around 71% capacity. In
the pollution-optimal scenario, this figure is 69%, showing that minimising NO2 concentrations desirably does not
increase network-wide tra!c congestion through flow management.

Associated changes in road-wise NO2 concentrations per km of road in taking pollution-optimal routes are shown
in Figure 6b. We find that 52% of roads see either no change or a reduction in NO2 concentration by taking the
pollution-optimal routings, demonstrating overall success in improving air quality.

Roads with the current highest flows – and highest NO2 concentrations – are situated within and around the city
centre, diminishing towards the West of the city. Much of the East shows low flow/NO2, with the exception of very
high results on the upper East route.

Given that the preferred geographies across UK government for publishing small area statistics are lower/medium
super output areas, and given the necessity of capturing small spatial variations in NO2 for public health, we aggregate
the following results to LSOA level. The median road in each LSOA is reported; it is useful to bear in mind that some
LSOAs may have very few roads passing through them, particularly after performing network reduction, in which case
the median road may take a high number of vehicles in comparison to LSOAs with high road counts. Click here to open
an interactive LSOA map for She!eld in 2019 (HTML). She!eld train station is marked with a red dot, Meadowhall
Shopping Centre a blue dot, and green dots mark the hospitals Northern General and the Royal Hallamshire.

3.2. Tra!c flows for the current and pollution-optimal scenarios
For the current mobility scenario, Figure 7a shows the median road’s tra!c flows within each of She!eld’s LSOAs,

output by the user-equilibrium TA model. The ten highest regional flow contributors, making up 3% of all She!eld
LSOAs in 2019, account for a combined total of 6% of modelled tra!c flows along the median road per LSOA (Table 1
in Appendix). Several of these LSOAs are situated around She!eld’s train station slightly East of the centre, with high
flows also in directly bordering regions. Moving away from the centre, high flows remain along major arterial roads;
particularly those connecting the North and East of the city with the centre.

In terms of commuting routes, we see that a route with some of the heaviest tra!c flows in the current scenario is
associated with commuting to/from the East of She!eld city towards both Rotherham and, further afield, Doncaster.
Moreover, this route is situated very closely to both Meadowhall (She!eld’s major shopping complex) and the Northern
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(a) Flows per LSOA in the current scenario. (b) Current to pollution-optimal flow changes.

Figure 7: LSOA-aggregated tra!c flow results from two TA models: the current scenario, and the pollution-optimal. For
each LSOA, the median road is visualised.

General Hospital. The highest flow LSOA along this route is an industrial area (company count 1,676, population
1,872), while other high-flow LSOAs are residential; Figure 10 provides spatial visualisations of these metrics. These
results indicate that residential LSOAs, located near major roads connecting industrial zones, are most impacted by
through-tra!c.

The shift in median road flows required to move from the current scenario to the pollution-optimal is shown in
Figure 7b. In the pollution-optimal case, we find that the industrial district between She!eld and Rotherham would
see an increase of tra!c away from the shortest route between the origin and destination, distributed instead along
currently low-flow roads. In particular, increased flows are assigned within a small number of spatially heterogenous
LSOAs peripheral to the city centre, with the largest flow increase directly South of the train station. This redistribution
appears to facilitate flow reductions in neighbouring regions. The North/Mid-West of the city would also experience
slight increases in tra!c flows, as these areas are currently traversed very little. As a result, increasing the flow of
vehicles in these areas provides a more balanced distribution across the city. Flow reductions are found in the East, and
along spatially connected regions in the North; residential areas that are well-serviced by She!eld’s public transport
networks.

The top ten LSOAs with maximum flow in the pollution-optimal scenario still contain areas surrounding the train
station, which is most likely due to the high vehicle demand starting/ending in this region. However, all of the top-ten
highest flow LSOAs in the pollution-optimal scenario would see lower median flows compared to the current scenario,
achieving a 28% reduction. Across the whole network, an 8% total reduction in median road flows is able to be attained.
This shows a redistribution of vehicles away from busy roads where tra!c re-routing is feasible, reinforcing the road-
wise results in Section 3.1.

3.3. NO2 concentrations associated with the current and pollution-optimal scenarios
We now examine the associated NO2 concentrations for each TA model scenarios. The ratio of the total NO2

concentrations in the TA model between the current (time-optimal) and the pollution-optimal routing scenarios returns
an Environmental Price of Anarchy (EPoA) (Koutsoupias and Papadimitriou, 2009). In our case, the EPoA is 1.21,
meaning that selfish time-based routings are 21% more environmentally costly than the pollution-optimal routings.

Figure 8a shows the median NO2 concentration per road within each LSOA for the current scenario. As expected
from the modelled tra!c flow counts, the highest NO2 concentrations – especially the top ten – are found in and
around the city centre, and generally coincide with the top ten highest tra!c flows (Table 1 in Appendix). Elevated
concentrations are especially prominent along spatially connected corridors running vertically through She!eld and
intersecting the centre. Some regions in the South, not experiencing excessive tra!c flows, also show elevated NO2
concentrations. This is likely due to the associated roads operating near or above their saturation rate (flow/capacity),
leading to high air pollutant outputs.
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(a) NO2 concentrations per LSOA in the current scenario. (b) Pollution-optimal changes in NO2 concentrations.

Figure 8: LSOA-aggregated NO2 concentration results from two TA models: the current scenario, and the pollution-optimal.
For each LSOA, the median road is visualised.

Figure 8b shows the di"erence in modelled NO2 concentrations per LSOA between the current and the pollution-
optimal scenario. We find that 204 LSOAs (59%) experience a reduction in median NO2 concentration under pollution-
optimal routing, while 141 LSOAs (41%) see an increase. Although some regions in the city show modest increases in
NO2, the largest air quality improvements are observed within the currently most polluted LSOAs. Conversely, some
of the increases occur in low-pollution LSOAs, suggesting a re-distribution of pollution that results in a more balanced
spatial distribution of NO2 across the city.

These changes in NO2 concentrations also have implications for public health. Under the current tra!c scenario,
37% of roads in the network exceed the World Health Organization (WHO) annual mean guideline of 10µg/m3 during
peak hours. In the pollution-optimal scenario, this proportion falls to 30%. Additionally, the proportion of roads
exceeding 20µg/m3 – a level associated with elevated long-term health risks (WHO, 2021) – declines from 8% to 5%.
These results suggest that optimal tra!c re-routing can meaningfully reduce population exposure to harmful levels of
air pollution.

To investigate the role of vehicle fleet composition on NO2 pollution in the city, we trained a linear regression
model using forward feature selection to identify the largest tra!c-related contributors. Data for vehicle types passing
tra!c sensors was split into training:validation:testing sets at a ratio 8:1:1.

We find that, passenger car flow alone predicts NO2 levels with over 88% accuracy on the test dataset (89.2% in
training). Adding further vehicle features provides only marginal improvements (<0.2%), and almost no gain beyond
five features. The top five features, all relating to vehicle flow, were: passenger cars, e-hybrid cars, minibuses, standard
buses, and electric cars. Notably, the presence of electric car flow among the top five features appears circumstantial,
rather than causal, given its very small contribution to model performance.

These results demonstrate that the frequency at which vehicles traverse the road network over a given time period –
particularly passenger cars – is the dominant factor influencing NO2 concentrations. Fleet composition plays a relatively
minor role in this context.

4. Discussion
The spatial distribution of NO2 concentrations predicted by our TA model aligns well with existing high-resolution

(100×100m) analyses of She!eld’s air quality (Munir et al., 2019; Munir, Mayfield, Coca and Mihaylova, 2020; Munir,
Mayfield and Coca, 2021). In particular, the model captures the reported hotspots around the city centre and the upper
East, with concentrations declining toward the West and Northwest (Munir et al., 2021). Our results also identify the
city centre and areas around She!eld’s train station as exhibiting the highest modelled NO2 levels, consistent with
previous studies (Munir et al., 2021).
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Notably, our model shows elevated NO2 levels in the northern part of the city; a pattern not consistently reported
in previous studies. By contrast, the industrial Northeast corridor, although showing some elevated levels, does not
emerge as a major hotspot in our results. These di"erences reflect the presence of background non-transport sources of
NO2, which are explicitly not modelled in our study. The Northeast corridor is characterised by high intra-LSOA travel
demand (Figure 9b in Appendix), and significant industrial activity (Figure 10b in Appendix), both of which increase
NO2 concentrations beyond road-tra!c emissions alone. This is consistent with the national estimate that about 15%
of UK NO2 emissions arise from industrial processes (National Atmospheric Emissions Inventory (NAEI), 2021a).
The North of She!eld, meanwhile, having fewer industrial activities, has NO2 levels more strongly governed by road
tra!c.

A limitation of our modelling approach is the use of a uniform background concentration scaling factor across
the city, which does not capture spatial heterogeneity in non-tra!c NO2 sources. Nonetheless, the inclusion of
urban background concentrations allows meaningful comparisons against reported air quality patterns, and our model
performs well in representing NO2 variations attributable to tra!c.

Modelled total NO2 concentrations were validated against DEFRA’s Pollution Climate Mapping model (DEFRA,
2023), as well as SCC sensor datasets (Figure 19 in Appendix). Across these benchmarks, our predicted concentrations
were found to be of the correct order of magnitude, supporting the reliability of the data-driven congestion functions
developed in this work.

According to the UK’s National Atmospheric Emissions Inventory (NAEI), road transport contributed approx-
imately 1,214 tonnes of NO2 emissions in She!eld in 2022, accounting for 34% of the city’s total of 3,556
tonnes (National Atmospheric Emissions Inventory (NAEI), 2021b). The She!eld City Region Transport Model
(SCRTM1), produced by the SCC, reported business-as-usual emissions of 65.05 g/s (equivalent to 2,053 tonnes/year)
for road NO𝜀 in 2022. As transport-related NO2 emissions in She!eld have been declining annually (She!eld City
Council (SCC), 2023), NO2 concentrations for 2019 – the year modelled in our study – are likely to be higher than
those given for 2022. These figures provide a reasonable benchmark for assessing modelled transport-related NO2
concentrations in She!eld over the Feb-Oct 2019 period during peak hours.

A key finding from our analysis is the significant environmental gain achievable through optimal routing. We find
that selfish routing results in NO2 concentrations 21% higher than pollution-optimised routing. This corresponds to
an EPoA of 1.21. Importantly, this environmental gain is achieved with only a modest cost to network e!ciency: the
total travel time in the pollution-optimal scenario is just 9% higher than in the user-optimal scenario, corresponding
to an average of just 0.3 minutes per road. These results highlight the potential for tra!c management strategies that
prioritise air quality without severely impacting travel times.

Our analysis also reveals that the sheer volume of vehicles, rather than fleet composition, is the dominant driver of
NO2 levels in She!eld. Passenger car flow alone explains over 88% of the variation in actual NO2 concentrations from
sensor data, with marginal improvements when additional vehicle types are included. This result should be seen in
relation to the current vehicle fleet composition and volume of circulating vehicles. In this scenario, the substitution of
a limited number of zero-emission vehicles keeps the volume size, meaning maintaining the same level of congestion,
which exacerbates the emissions of conventional vehicles in city tra!c. This suggests that policies aimed at reducing
overall tra!c volumes are likely to be more e"ective in improving air quality than those focusing solely on changing
fleet composition, e.g., changes in fuel type.

Our model shows a substantial health benefit for the overall population of She!eld. Pollution-optimal routings
reduce the number of roads modelled to exceed the WHO annual mean NO2 guideline, 10µg/m3, by 7% during peak
hours. The proportion of roads exceeding 20µg/m3, which is linked to an increased risk in long-term health outcomes,
is decreased from 8% to 5%.

From a socioeconomic perspective, we observe that, under the current tra!c scenario, lower-income areas
(Figure 11 in Appendix) are more likely to experience higher NO2 concentrations. The Kendall rank correlation, which
is well-suited for comparing ordinal data or relationships between rankings, was used to compare median income and
modelled NO2 levels for MSOAs by rank. The correlation coe!cient between these measures is 0.4, indicating a
moderate positive association between lower income and higher pollution. In contrast, this correlation is eliminated
under the pollution-optimal scenario, suggesting that optimal re-routing of tra!c not only improves overall air quality,
but also reduces inequalities in pollution exposure between more and less a$uent communities.

We use a static TA model, meaning that tra!c conditions are assumed to be constant over the modelled time
period. This is a computationally e!cient approach, and produces a good average estimate for tra!c conditions within
the time range. As the analysis focuses on a relatively short period (commuting hours only), demand and network
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conditions can be assumed to remain approximately constant, justifying the use of a static TA model. However, a
dynamic TA approach, which explicitly represents the temporal evolution of tra!c and allows routes to adjust in
response to prevailing conditions, could provide additional insight for real-time tra!c management and short-term
operational planning (Bliemer, Raadsen, Brederode, Bell, Wismans and Smith, 2017). To further tune the accuracy
of the model, it would be beneficial to have more complete data for road characteristics across the network, such as
number of lanes and speed limits, which were not always available. In these cases, the modelling approach described
in Section 2.2.1 gave reasonable estimates based on widely used transport planning advice. We modelled the true
driving speed seen during peak hours as one third of the road’s speed limit (except for motorways), informed by tra!c
data from the She!eld inner ring road during peak time. Further accuracy may be achieved by looking at the driving
speed/speed limit relationship on additional types of roads, such as residential, using tra!c flow sensor data.

We also assume that the likelihood of a node in the road network being an origin or destination point is inversely
proportional to its distance from the corresponding LSOA’s population weighted centroid. This means that a node is
more likely to be selected if it is close to where people in the area live. However, it may be interesting to compare
the results of this study with a slightly alternative approach: modelling the likelihood of a node being a commuting
destination with respect to its distance from the economic centre, e.g., by using Companies House data to map business
densities. As we present the majority of our results at LSOA level, is expected that this alternative approach would not
produce substantially di"erent results, though at road level this may di"er.

Finally, although our model excludes through-tra!c (e.g., motorway freight), this omission is justified. Motorway
tra!c accounts for only ς4.6% of tra!c volume in South Yorkshire (to which She!eld belongs) (Ivings, Arbabi
and Punzo, 2024), and such journeys typically cannot re-routed using local tra!c management strategies (Levinson
and Zhu, 2012). As a result, our proposed interventions are both robust and practically actionable for urban tra!c
management.

5. Conclusions
In this study, we presented a novel, data-driven tra!c assignment framework. Our main contribution, here, directly

relates NO2 to tra!c density in a time-independent and weather-corrected manner that is transferable and can be
generalised within and across cities.

Our approach enables the evaluation of environmentally optimal tra!c flows using observed pollutant concen-
trations, bypassing the need for tailpipe emissions estimates. By integrating de-weatherised NO2 measurements with
tra!c data in a predictive modelling framework, we demonstrate the feasibility of routing strategies that reduce urban
air pollution with minimal compromise to travel e!ciency.

Applied to She!eld, UK, our model achieves a 21% reduction in NO2 concentrations relative to conventional
time-minimising tra!c assignment, with only a 9% increase in total travel time: equivalent to 0.3 minutes per road
on average. These environmental gains result from redistributing flows away from congested residential and industrial
zones toward higher-capacity arterial routes.

In the pollution-optimal scenario, the proportion of roads exceeding safety thresholds, set by the WHO, declines.
Additionally, the observed correlation between NO2 concentrations and lower-income areas is reduced, indicating
potential equity co-benefits.

We also find that overall vehicle flow, rather than fleet composition, is the dominant driver of NO2 concentrations
under current conditions. This suggests that a transition to electric vehicles alone may not deliver immediate air quality
improvements unless accompanied by broader tra!c reduction strategies.

Our results underscore the potential for low-cost, data-driven tra!c management tools to improve urban air quality,
reduce environmental health disparities, and maintain transport e!ciency. To promote optimal route choices, drivers’
behavioural change may be realised through low-cost interventions such as changing speed limits along certain roads,
altering tra!c light timings, adding speed bumps, or active management via dynamic tra!c signage. The proposed
approach is widely transferable and can inform urban planning and clean air policy in cities with similar tra!c and
monitoring infrastructures.
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(a) Inter-LSOA. (b) Intra-LSOA.

Figure 9: Map visualisations of May - July 2019 OD demand data by private motor vehicle for LSOAs in She!eld (The
Floow, 2023). Correlation coe!cient 𝜗 = 0.78. Referenced in Section 2.1.1.

(a) Total population. (b) Number of registered companies.

Figure 10: LSOA-aggregated statistics from 2022 census data for She!eld. Correlation coe!cient 𝜗 = 0.28. Referenced in
Section 3.2.
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(a) Total. (b) Net.

Figure 11: MSOA-aggregated household income statistics, from 2020 census data for She!eld. Referenced in Section 4.

Figure 12: Time-series data for NO2 ranging from 24th Jan - 31st Oct 2023, measured from the AQMesh sensor. Referenced
in Section 2.2.3.
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(a) Flow (veh/hour). (b) Density (veh/km).

Figure 13: Scatter plots showing the relationships between NO2 concentration and measures of tra!c on the She!eld ring
road. Tra!c sensor readings were aggregated over hourly intervals, ranging from 24th Jan - 31st Oct 2023. Referenced in
Section 2.2.2.

Figure 14: Scatter plot showing predicted NO2 concentrations output by the trained random forest model, vs. actual NO2
concentrations from sensor readings. Correlation coe!cient 𝜗 = 0.77. Guide line in > = 𝜀 indicates a perfect fit (𝜗 = 1).
Referenced in Section 2.3.1.
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Figure 15: Bar chart showing the importance of features input to the random forest model for predicting the NO2 output.
Abbreviations: wind speed (ws), wind direction (wd), meters above ground (m). Referenced in Section 2.3.1.

Figure 16: Travel time per km, output from the density-wise Bureau of Public Roads function applied to the She!eld ring
road (Carlier et al., 1964). Parameters: speed limit=64.4 km/hour, critical density=125 veh/km spanning both directions,
ℸ=0.15, ⊲=4. Referenced in Section 2.3.2.
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(a) 2019.

(b) 2023.

Figure 17: Tra!c flows during 2019 and 2023 in She!eld, UK. Measurements are from She!eld City Council tra!c sensors.
Plots show hourly averages across peak times (7-9am, 4-7pm) for Feb - Oct of each year. Referenced in Section 2.1.1.
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a)

b)

Figure 18: Comparison of the AQMesh data against DEFRA and She!eld City Council NO2 datasets. Referenced in
Section 2.3.1.
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Figure 19: NO2 concentration levels during 2023 in She!eld, UK. City-wide background NO2 concentrations are modelled
by DEFRA (DEFRA, 2023), provided as hourly averages across 2023. Points labelled with (1) show measurements from
She!eld City Council (SCC) sensor datasets, averaged hourly across peak times (7-9am, 4-7pm) for Feb - Oct 2023, with
NO2 measurements provided in the unit µg/m3. Points labelled with (2) show additional SCC sensor readings, averaged
hourly across the same time frame, with NO2 measurements provided in the unit parts per billion (ppb). These measurements
in ppb were then converted to µg/m3 using the ideal gas law. Referenced in Section 4.
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(a) (b) (c)

(d) (e) (f)

Figure 20: Road networks for the city of She!eld, with LSOA boundaries outlined in grey. Networks (b-f) have been
computationally reduced by merging nodes within a given distance threshold. The threshold used for analysis is 58.6m: the
median diameter of She!eld’s LSOAs. Additional thresholds were tested within a ±20% range. (a) The full road network;
(b) 46.88m threshold (20% decrease); (c) 52.74m threshold (10% decrease); (d) 58.6m threshold (used value); (e) 64.46m
threshold (10% increase); (f) 70.32m threshold (20% increase).
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