

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/236331/>

Version: Published Version

Article:

Vadakekolathu, J. and Rutella, S. (2024) Escape from T-cell–targeting immunotherapies in acute myeloid leukemia. *Blood*, 143 (26). pp. 2689-2700. ISSN: 0006-4971

<https://doi.org/10.1182/blood.2023019961>

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: <https://creativecommons.org/licenses/>

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ONCOGENIC SIGNALING AND IMMUNE EVASION IN HEMATOLOGIC MALIGNANCIES

Escape from T-cell–targeting immunotherapies in acute myeloid leukemia

Jayakumar Vadakekolathu and Sergio Rutella

John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom

Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with

heightened interferon gamma (IFN- γ) signaling were shown to derive clinical benefit from CD123 \times CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.

Introduction

Acute myeloid leukemia (AML) is a model of highly efficient metastatic spread and is characterized by tremendous molecular, immunological, and clinical heterogeneity.¹ The treatment landscape of AML has changed dramatically in recent years.² However, most patients eventually relapse and have disappointing outcomes, with a 5-year overall survival (OS) rate of 10%.³ Checkpoint inhibitors (CPIs) restrain T-cell suppressive signals delivered through cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and promote antitumor immune responses. Distinct cellular mechanisms underlie CTLA-4 and PD-1 checkpoint blockade, with the former affecting CD4 $^{+}$ T-cell clonal expansion and trafficking, and the latter largely affecting the exhausted CD8 $^{+}$ T-cell compartment.^{4,5} Patients with certain solid tumor types, including glioblastoma and pancreatic cancer, demonstrate de novo resistance to CPIs, and a substantial proportion of patients with CPI-sensitive solid tumors eventually develop adaptive resistance.⁴ Although CPIs offer long-term clinical benefit in a large proportion of patients with solid tumors, results in AML, which has historically been considered an immunologically “cold” tumor,^{6,7} have been less impressive.

Integrative immunogenomic approaches can refine the accuracy of outcome prediction by supporting a more granular stratification of AML within existing European LeukemiaNet (ELN) risk categories.^{8,9} In particular, immune gene expression profiling of primary bone marrow (BM) samples uncovered novel immune-infiltrated and interferon gamma (IFN- γ)-dominant AML subtypes associated with poor outcome after standard-of-care chemotherapy and with response to immunotherapy with flotetuzumab, a bispecific T-cell engager targeting CD123.^{9,10} The IFN-dominant gene module in pretreatment BM specimens from patients with immune-infiltrated AML reflected the abundance of IFN- γ signaling; immunoproteasome; myeloid inflammation; inflammatory chemokine; IL-10, PD-L1, and PD-L2 gene expression scores; as well as higher expression of molecules involved in antigen processing and presentation. BM-resident CD8 $^{+}$ T cells from patients with immune-infiltrated AML were polyfunctional, as suggested by their coexpression of intracellular IFN- γ and tumor necrosis factor α (TNF- α).⁹

A large-scale study of genotype-immunophenotype correlations across lymphoid and myeloid malignancies identified associations between immune checkpoint ligands and disease subgroups, including expression of PD-L1, ARG1, CD86, and

VS/R (VISTA), encoding an inhibitory T-cell checkpoint of the B7 family, in monocytic AML as well as high infiltration of natural killer (NK) and CD8⁺ T cells in AML with myelodysplastic syndrome-like features.^{8,11} This observation suggests that the differentiation stage of the blasts may enable AML-specific immune evasion mechanisms. Furthermore, an inflammation-associated gene expression metric has been correlated with reduction in T-cell clonal expansion, increase in CD8⁺GZMK⁺ and regulatory T (Treg) cells, and worse clinical outcomes both in children and adults with AML.¹²

This review will summarize recent discoveries on T-cell functional states in AML and their impact on response to CPIs, bispecific T-cell engagers, and adoptive cell therapies. We discuss how resistance to immunological treatments could be overcome, and provide an outlook for the future.

Advances in defining T-cell-dysfunctional states

Both senescent and exhausted T cells accumulate in the tumor microenvironment (TME), in which they exhibit impaired anti-tumor functions. Senescent T cells acquire a unique transcriptional profile, downregulate costimulatory molecules (CD27 and CD28), and highly express CD57 and killer cell lectin-like receptor subfamily member 1 (KLRG1).¹³ Although senescent T cells are in a state of cell cycle arrest, do not proliferate in response to T-cell receptor (TCR) triggering, and manifest defective killing abilities, they produce high amounts of proinflammatory and suppressive cytokines and remain metabolically active.¹⁴ Senescent-like CD27⁻CD28⁻CD8⁺ T cells expressing NK markers expand in older individuals and lose the signaling activity of the TCR.¹⁵ T-cell exhaustion in tumors is a proxy for tumor antigen-driven T-cell activation and is believed to be a dynamic and gradual state analogous to that elicited by continuous antigen exposure during viral infections.¹⁶ Remarkable phenotypic diversity is observed within intratumoral T cells, which can be broadly compartmentalized into memory T cells and exhausted T cells,¹⁷ and reside along a continuum of progressively declining T-cell function that spans progenitor exhausted T cells (T_{PEX}),¹⁸ GZMK⁺ predysfunctional or "transitional" T cells (T_{EX}), and early-to-late dysfunctional T cells (Table 1).²⁴ During chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, T_{PEX} self-renew and exhibit multipotent repopulation capacity, which is governed by sustained expression of MYB.²⁶ In sharp contrast to their CD62L⁻ T_{PEX} and CX3CR1⁺ or CX3CR1⁻ T_{EX} descendants, a subpopulation of CD62L⁺ T_{PEX} has been reported to proliferate vigorously and to acquire enhanced potential for effector cell generation in response to CPIs.²⁶ Studies in melanoma-bearing mice identified subsets of stem-like or T_{PEX} and terminally exhausted CD8⁺ T cells, which differ in gene expression, transcription factor activity, cytokine production, cytolytic function, and epigenetic landscape.²⁷ Importantly, a larger fraction of CD8⁺ T_{PEX} with a TCF1⁺PD-1⁺ phenotype in pretreatment biopsies from patients with advanced melanoma correlated with significantly longer progression-free survival and OS after nivolumab or ipilimumab.¹⁶

By applying longitudinal single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin

sequencing, novel T_{EX} subsets have been revealed in LCMV-infected mice, including a distinct T-cell population coexpressing NK markers and high levels of *Tox*, *Bcl2*, and *Lag3*, that is dependent on the transcription factor Zeb2 and retains superior functional and proliferative capacity compared with other intermediate T_{EX} states.^{21,22} Treatment of LCMV-infected mice with PD-1 blocking agents substantially altered the frequency of T_{EX} and induced their differentiation to functionally intermediate T_{EX} states.²¹ Interestingly, addition of interleukin-2 (IL-2) to PD-1 immunotherapy improved responses and expanded stem-like PD-1⁺TCF1⁺CD8⁺ T cells resembling highly functional effector CD8⁺ T cells.²⁸ These findings suggest that T_{PEX} are not fate-locked into the exhaustion program and warrant the evaluation of synergistic cytokine effects in future clinical trials of AML and other cancers.

A novel cellular stress state (T_{STR}) characterized by unique expression of stress-related heat shock genes, including *HSP1A1* and *HSPA1B*, has been uncovered in a recent study integrating single-cell and spatial transcriptomes from 308 048 high-quality T cells across 16 cancer types.²³ Notably, T_{STR} predicted inferior clinical outcomes in 6 independent solid tumor immunotherapy cohorts and were enriched in mutation-associated neoantigen-specific CD8⁺ T cells in tumors from patients with no major pathological response.²³ It would be of great interest to explore the prognostic and/or predictive relevance of an analogous T_{STR} functional state for AML.

Cancer cell–intrinsic signaling and immune dysfunction

Oncogenic drivers

In addition to T-cell–intrinsic mechanisms, the immune milieu of solid tumors can be shaped by cancer-cell–intrinsic features, including genetic aberrations in oncogenes, tumor suppressor genes, or DNA damage repair genes, which affect CPI sensitivity.^{29,30} TP53 is the most commonly altered tumor suppressor gene in cancer. In epithelial tumors, tumor-infiltrating lymphocytes can recognize autologous TP53 neoantigens, pointing to the immunogenicity of TP53 hotspot mutations and providing a biological rationale for TP53-specific immunotherapies.³¹ In this respect, bispecific antibodies targeting a common TP53 neoantigen (arginine-to-histidine substitution at codon 175; R175H) bound to HLA-A*02:01 on the cell surface can activate T cells and promote tumor cell lysis both in vitro and in vivo.³²

TP53 abnormalities occur in 8% to 10% of de novo AML and portend a high risk of primary induction failure and relapse and a dismal prognosis.³³ AML cells carrying TP53 missense mutations express gene signatures of TP53 inactivation, suggesting dominant-negative activity without evidence of neomorphic gain-of-function capacity.³⁴ AML cases with TP53 mutations from The Cancer Genome Atlas (TCGA) cohort express higher levels of cytolytic molecules in contrast to the common driver mutations *FLT3* and *NPM1*, which preferentially occur in AML samples with low cytolytic activity (Table 2).⁸ Both de novo and secondary TP53-mutated AML harbor an inherently immunosuppressive TME, with expanded Treg cells and myeloid-derived suppressor cells, decreased NK cells, enhanced IFN-γ signaling, and increased PD-L1 in hematopoietic stem cells (HSCs).^{35,36} Importantly, mouse double minute 2 inhibition in

Table 1. T-cell states in cancer

T-cell compartment	Subpopulation	Phenotype/signature genes	Function	Other remarks
Memory T cells (reduced overall clonal expansion)	Stem cell memory T cells ¹⁹	TCF1 IL7R CD62L CCR7	Display increased proliferative capacity and mediate superior antitumor responses compared with known memory populations	Do not exhibit tumor-specific localization Retain the ability to regenerate a vast progeny of effector cells
	Central memory T cells ²⁰	TCF1 IL7R CCR7	Express lymph node homing receptors and lack immediate effector function, but efficiently stimulate DCs and differentiate into CCR7 ⁺ effector cells upon secondary stimulation	
	Effector memory T cells ²⁰	TCF1 IL7R CD62L	Express receptors for migration to inflamed tissues and display rapid production of IFN- γ and immediate effector function	
Exhausted T cells (highly clonotypically expanded) ¹⁷	T_{PEX}	PD1 CTLA4 LAG3 TOX CD62L TCF1	Are early dysfunctional T cells A subset of predysfunctional (or "transitional") T cells is defined by high expression of GZMK Lack effector functions	Can self-renew and differentiate and are a reservoir of T_{EX} cells Are often found in lymph nodes and TLS Responsible for immunotherapy efficacy
	T_{EX}	PD1 CTLA4 LAG3 TIM3 CD39 TOX CXCL13 BCL2L11	Have impaired cytotoxic function (gradually lose effector functions)	Even if terminally differentiated, T_{EX} can proliferate in an antigen-dependent fashion
	Tissue-resident memory-like T_{EX}	CD103 HOBIT (ZNF683)	Represent a continuum in the spectrum of TIL phenotypes Have high cytotoxic potential Express high levels of inhibitory molecules	Likely reflect a variation of T_{EX} differentiation in the TME
	NK-cell receptor-positive T_{EX}	CD8 KLRG1 CD57 Bcl2 LAG3	Are dysfunctional (ie, have reduced cytotoxicity against autologous AML blasts)	Are more abundant in R/R AML but can also be detected in mice with LCMV infection, in which they may be dependent on the transcription factor Zeb2 ^{21,22}
Stress response state (T_{STR}) ²³	Both CD8 ⁺ and CD4 ⁺ T cells	Stress-related heat shock genes (HSPA1A, HSPA1B); NF- κ B signaling molecules	Are highly correlated with IFN-response CD4 ⁺ and CD8 ⁺ T-cell subsets	Are detectable in situ in the TME across various cancer types (especially those with aggressive phenotypes) Have a potential role in immunotherapy resistance

Intratumoral T cells are characterized by a remarkable phenotypic and functional diversity. This gradient of T-cell states has been described mostly for CD8⁺ TILs residing along a continuum of dysfunction.^{17,24} The current status of CD4⁺ T cells in cancer has been reviewed elsewhere.²⁵ HOBIT, homologue of BLIMP1 in T cell; TCF1, T-cell-specific transcription factor 1; T_{EX} cells, terminally exhausted T cells; TILs, tumor-infiltrating lymphocytes; TIM3, T-cell immunoglobulin mucin receptor; TLS, tertiary lymphoid structures; TOX, thymocyte selection-associated high mobility group box protein.

patient-derived AML cells counteracts immune evasion by enhancing TNF-related apoptosis-inducing ligand receptor 1 and 2 and major histocompatibility complex class II (MHC-II) expression in a *TP53*-dependent manner, thereby restoring AML susceptibility to allogeneic T-cell-mediated cytotoxicity.⁴⁰

An interesting finding that could be relevant in the context of AML therapies that target phagocytosis such as monoclonal antibodies blocking CD47, a "don't eat me" signal overexpressed on AML blasts and leukemia stem cells (LSCs),⁴¹ is that *TP53* loss in lymphoma cells modulates macrophage phagocytic capacity by enhancing the biogenesis of PD-L1⁺ extracellular vesicles from tumor B cells.⁴² Notably, a phase 1b trial

of azacitidine and magrolimab in frontline treatment of *TP53*-mutant AML has shown durable responses and encouraging OS, although immune correlates of success have not yet been reported.⁴³

However, a complete evaluation of safety and efficacy of azacitidine and venetoclax, with or without magrolimab, in patients with untreated AML (ENHANCE-3; ClinicalTrials.gov ID: NCT05079230) has shown a CR rate of 39.7% in the magrolimab-containing arm and 42.9% in the control arm, leading to study termination.¹¹⁶ These negative results underscore the existing challenges in enhancing outcomes for patients unfit for

Table 2. Driver mutations and the immunological TME

Study	Driver mutation	Disease	Immune correlates
Vadakekolathu et al ⁹	RUNX1, TP53	AML	Higher TIS, IFN signaling, and cytotoxicity scores relative to patients with favorable or intermediate-risk AML
Vadakekolathu et al ³⁵	TP53	AML	High expression of <i>IFNG</i> , <i>FOXP3</i> , immune checkpoints, markers of immune senescence, and phosphatidylinositol 3-kinase-Akt and NF- κ B signaling intermediates
Sallman et al ³⁶	TP53	AML	Reduced numbers of BM-infiltrating OX40 $^{+}$ cytotoxic T cells and helper T cells Decreased ICOS $^{+}$ and 4-1BB $^{+}$ NK cells Expansion of myeloid-derived suppressor cells and Treg cells Increase of PD-L1 expression in HSCs
Dufva et al ⁸	TP53 NPM1 RUNX1	AML AML AML	High cytolytic score (especially in MDS-like cases) and high expression of PD-L1 Increased expression of <i>VISTA</i> and <i>ULBP1</i> (NKG2D ligand) High expression of B-cell-associated markers (<i>BTN2A2</i> , <i>SLAMF7</i> , and <i>LY9</i>) in addition to HLA II
Abbas et al ³⁷	chr7/7q loss	AML	Higher Treg and CD8 $^{+}$ T-cell infiltration, downregulation of IFN- γ pathway genes, and worse survival compared with AML cases with intact chr7/7q
Yeaton et al ³⁸	TET2	AML	Emergence of inflammatory monocyte-like cells during progression to myeloid transformation
Notarangelo et al ³⁹	<i>IDH1</i> / <i>IDH2</i>	Human <i>IDH</i> -mutant cancers	Acute but reversible inhibition of CD8 $^{+}$ T-cell proliferation, cytotoxicity, and IFN- γ signaling by oncometabolite d-2HG

d-2HG, d-2-hydroxyglutarate; ICOS, inducible T-cell costimulator; MDS, myelodysplastic syndrome; TIS, tumor inflammation signature.

intensive induction chemotherapy and emphasize the necessity for immunotherapy agents with improved safety and efficacy profiles.

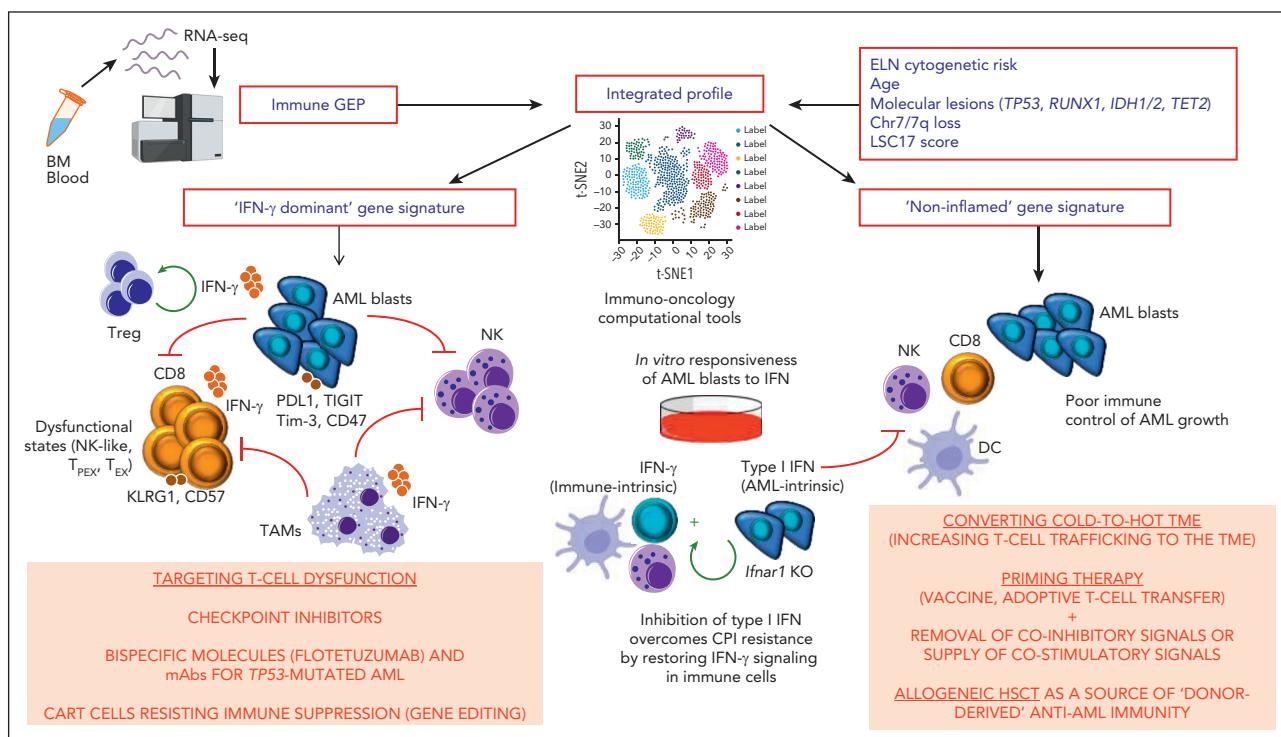
The epigenetic regulator ten-eleven translocation 2 (*TET2*) is mutated in 10% to 30% of AML cases. In mice carrying a patient-derived *TET2* missense mutation, progression to myeloid transformation has been correlated with the emergence of inflammatory monocyte-like cells,³⁸ whose transcriptional signature independently predicted shorter OS in a broad AML validation cohort. Exploring whether a proinflammatory TME affects response of *TET2*-mutated AML to CPIs could have promising translational potential.

Isocitrate dehydrogenase (*IDH1*) mutations, which are identified in 6% to 10% of patients with AML and impart a poor prognosis,⁴⁴ constrain T-cell accumulation and expression of IFN- γ -inducible chemokines in patients with lower-grade glioma.⁴⁵ Mechanistically, the oncometabolite d-2-hydroxyglutarate, which is produced by cancers with gain-of-function mutations in both *IDH1* and *IDH2*, alters glycolysis in CD8 $^{+}$ T cells and reversibly inhibits their proliferation, antitumor killing capacity, and expression of IFN- γ gene programs.³⁹ These findings highlight a potential role for specific inhibitors of mutant *IDH* in improving immunotherapy efficacy through the removal of immunosuppressive d-2-hydroxyglutarate.

Inferred chr7/7q loss correlates with higher Treg and CD8 $^{+}$ T-cell infiltration, downregulation of IFN- γ pathway genes, and worse survival compared with AML cases with intact chr7/7q.³⁷ Finally, an immunogenomic analysis of TCGA cohorts and 8 clinical trials of anti-PD-1/PD-L1 therapy in >1000 patients with

solid tumors has uncovered that homozygous deletion of 9p21.3 (9p21 loss), a genomic defect occurring in ~13% of all cancers and eliminating *CDKN2A/B* tumor suppressors, confers "cold" tumor-immune phenotypes, with reduced abundance of tumor-infiltrating lymphocytes, diminished immune-cell trafficking/activation, decreased rate of PD-L1 positivity, activation of immunosuppressive signaling, and primary resistance to CPIs.⁴⁶ A "response score" incorporating 9p21 loss, PD-L1 expression, and tumor mutational burden in pretreatment tumors was shown to outperform PD-L1, tumor mutational burden, and their combination in identifying patients who are likely to achieve sustained response after CPI treatment. Furthermore, 9p21.3 deletions encompassing a cluster of 16 type I IFN genes have been associated with dendritic cell (DC) and CD8 $^{+}$ T-cell dysfunction, derepression of solid tumor metastasis, and immunotherapy resistance.⁴⁷ Notably, homozygous deletions of type I IFN genes are very rare in AML (<1% of patients who are queried), as indicated by our interrogation of 1661 cases from the TCGA,⁴⁸ Beat-AML,⁴⁹ and TARGET-AML⁵⁰ cohorts accessed through the cBioPortal for Cancer Genomics (30 April 2023). Determining whether AML with *KMT2A-MLLT3* fusion caused by t(9;11) is immunogenetically distinct could be an interesting avenue for future research.

Type I/II IFN signaling


IFNs are pleiotropic cytokines implicated in cancer immuno-surveillance and immunotherapy response, although also exerting protumorigenic effects in a context-dependent manner.⁵¹ Melanoma tumors harboring genomic defects in type II (IFN- γ) pathway genes and amplification of IFN- γ pathway inhibitors *SOCS1* and *PIAS4* may be resistant to anti-CTLA-4 and anti-PD-1 immunotherapy.^{52,53} The relationship

between IFN- γ signaling and CPI responses may indeed be more complex than currently appreciated, as suggested by a meta-analysis of 29 studies encompassing 2154 patients with solid tumors from 7 different tissues.⁵⁴ Tumor-intrinsic mutations of core IFN- γ signaling genes, including JAK1, JAK2, *IFNGR1*, *IFNGR2*, and *STAT1*, correlated with a greater likelihood of responding to CPIs. IFN- γ signaling gene alterations had opposing effects in vitro, with tumor screens identifying positive selection for alterations in IFN- γ pathway genes in the setting of host immune pressure. Inflammatory and IFN- γ gene signatures, suggestive of preexisting anti-AML immune responses, are associated with poor outcome across all ELN2017 stratifications.⁹ Although IFN- γ -related RNA profiles are good predictors of response to CPIs in solid tumors as well as in AML,^{7,9,55} prolonged IFN- γ signaling in tumor cells has been shown to promote resistance to genotoxic damage through *STAT1*-dependent molecular circuits.⁵⁶ Whether pre-treatment IFN- γ signaling gene alterations in tumor cells preclude or favor responses of AML to CPIs remains to be conclusively established.

Genes typically associated with type I IFN signaling are largely detected in cancer cells and their tonic expression is maintained by *OAS1*.^{57,58} Intact type I IFN signaling in cancer cells mediates resistance to CD8 $^{+}$ T-cell cytotoxicity after genotoxic

damage with or without anti-PD-L1 immunotherapy.⁵⁹ Responsiveness to type I IFN in peripheral immune cells, that is, higher levels of basal IFN-I-stimulated proteins, is epigenetically predetermined and correlates with solid tumor progression after anti-PD1 immunotherapy.⁶⁰ Conversely, T cells from "low responders" to type I IFN are enriched in pathways for immune effector functions, RNA metabolism and oxidative phosphorylation, and demonstrate a reduced exhaustion signature.

Interrogation of TCGA solid tumors has indicated that immune dysfunction is associated with high IFN resistance signatures in cancer cells relative to a nonoverlapping set of IFN-stimulated genes that are preferentially expressed by immune cells, such as T cells, NK cells, and macrophages.⁵⁸ Intriguingly, the establishment of acquired CPI resistance correlated with epigenetic features of IFN-associated "inflammatory memory," that is, with prolonged chromatin accessibility after signal termination, in Res 499 melanoma tumors.⁵⁸ Abolishing type I IFN signaling through knock out of IFN α and β receptor subunit 1 (*Ifnar1*) in cancer cells increased immune-cell expression of IFN-stimulated genes in myeloid cells, DCs, NK cells, and CD8 $^{+}$ T cells and restored the antitumor response.⁵⁸ Orthogonal single-cell transcriptome analyses predicted strong interactions between CD8 $^{+}$ T cells and proinflammatory type 3 DCs,⁶¹ and

Figure 1. AML immune interplay and potential avenues for clinical translation. Current understanding of T-cell functional states and their effect on AML response to chemotherapy, bispecific molecules, and CPIs. Immune gene expression profiling (bulk and/or scRNA-seq) should be integrated with clinically validated prognosticators, including ELN risk category, LSC17 score, and molecular lesions (*TP53*, *RUNX1*, *IDH1/2*, and *TET2* mutational status), to accurately stratify patients with AML into subgroups with substantially different survival probabilities. Patients with an IFN- γ -dominant, immune-enriched TME could be allocated immunotherapies that target AML-induced T-cell dysfunctional states, including T-cell engagers and CPIs. *TP53*-mutated AML have been shown to respond to a CD123-targeting bispecific molecule. Conversely, patients with a "cold," immune-depleted profile could benefit from increasing T-cell trafficking to the TME and/or from priming therapies such as vaccines, adoptive T-cell transfer, or allogeneic HSCT. Interventions that balance type I (tumor-cell intrinsic) and type II (immune-cell intrinsic) IFN signaling could be instrumental to overcoming resistance to CPIs and other T-cell-based immunotherapies. In this respect, IFN-I hyporesponsiveness in tumor cells before anti-PD1 treatment has been correlated with long-term survival, as discussed in the main text. Furthermore, abrogating cancer cell IFN-I signaling increases IFN-II signaling in immune cells, thereby expanding T cells toward effector-like functional states. Red arrows denote inhibition; green arrows denote stimulation. GEP, gene expression profiling; LSC17, 17-gene leukemia stem cell; mAbs, monoclonal antibodies; TAM, tumor-associated macrophage.

highlighted an enhanced transition of CD8⁺ T cells to an effector-like state. This elegant body of work suggests that inhibition of type I IFN signaling in cancer cells could antagonize CPI resistance through remodeling of inflammatory epigenetic states and feedback modulation of immune cells. Further discovery work on whether inducibility of type I IFN genes correlates with immune function may offer potential therapeutic relevance by allowing the identification of molecularly defined AML subgroups unlikely to benefit from CPIs (Figure 1). A systematic evaluation of inherent AML blast responsiveness to type I IFN might also reveal the molecular basis for AML cell susceptibility and/or resistance to immune attack.⁶² Future prospective studies in AML should ascertain whether loss of IFN- γ signaling pathway genes, including JAK1 and JAK2,⁵³ affects immunotherapy responses by limiting the release of T-cell-attracting chemokines and/or the upregulation of antigen processing machinery genes. Despite the complexity and rapidly evolving scenario of the cancer genome-immunophenotype relationships, these examples illustrate that select cancer-cell-intrinsic features and downstream immunoregulatory pathways, including primary and acquired insensitivity to IFNs, affect immunotherapy response. This knowledge should inform the development of novel immune interventions tailored to individual patients.

Impact of T-cell exhaustion and senescence on therapy response

Chemotherapy

How T-cell derangement affects AML response to standard-of-care chemotherapy, molecularly targeted therapies, and immunotherapies is incompletely understood. Patients with prolonged first complete remission (CR) (lasting >5 years) have a TME at presentation that is relatively less immunosuppressive and T cells that express lower levels of activation- and exhaustion-associated genes.⁶³ A landmark scRNA-seq study highlighted quantitative defects in T/NK cells, an increase in Treg cells, and predominance of T/NK cells after chemotherapy in a relatively small number of patients with AML.⁶⁴ Another study using high-dimensional flow cytometry has shown that the transcriptional profile of CD8⁺ T cells diverges between chemotherapy responders and nonresponders, with the former patient group showing upregulation of costimulatory molecules, downregulation of apoptotic and inhibitory pathways, and overall reversal of CD8⁺ gene expression signatures to a healthy-like pattern.⁶⁵ A silenced gene expression profile in CD8⁺ T cells may correlate with longer OS in patients with ELN favorable-risk AML, an observation that establishes previously unappreciated links between clinically validated cytogenetic abnormalities and the AML-immune TME.⁶⁶ We have shown that NK-like CD8⁺ T cells with transcriptional features of immune effector dysfunction (IED) are more abundant in patients with TP53 and RUNX1 mutations and predict significantly shorter relapse-free survival and OS.⁵⁵ These CD8⁺CD57⁺KLRG1⁺ senescent-like T cells were impaired in their ability to lyse autologous AML blasts when activated with an anti-CD33/CD3 bispecific T-cell engaging antibody construct. T_{PEX} with a GZMK⁺IL7R⁺CD8⁺ phenotype clonally expand in complete responders to induction chemotherapy compared with in nonresponders, and correlate with prolonged OS.⁶⁷ T cells with NK-like (KLRG1⁺), effector

memory (EM1), and cytotoxic T-lymphocyte (CTL11) transcriptional profiles may be more abundant in relapsed/refractory (R/R) AML compared with in newly diagnosed AML.⁶⁸ The analysis of gene regulatory networks associated with the aforementioned T-cell clusters revealed high activity of NFYB and STAT1 regulons, consistent with enhanced longevity and type I IFN production. The latter finding was also confirmed by in silico prediction of cytokine signaling activity.⁶⁸ In agreement with previous reports,⁹ higher CD8 gene scores correlated with worse survival in treatment-naïve TCGA AML cases.⁶⁸

Finally, a high inflammation risk score has been associated with adverse-risk molecular features, expanded Treg cells and GZMK⁺CD8⁺ T cells, reduced event-free survival and OS, and a myeloid-like phenotype,¹² suggesting that inflammatory programs may be driven by AML blasts.⁶⁹

T-cell immunotherapies

Although conserved TME subtypes have been shown to correlate with immunotherapy efficacy in multiple solid tumor types,⁷⁰ little is known concerning biomarkers of immunotherapy success and/or failure in AML (Table 3). A clinical trial of azacitidine and nivolumab reported an overall response rate of 33% vs 20% in historical controls treated on hypomethylating agent-based clinical trials, with pretherapy BM CD3⁺ and CD8⁺ T-cell frequencies being significantly associated with improved overall response rate.⁷² Responses were largely measured in patients who had received only 1 or 2 lines of prior salvage therapy, suggesting that T-cell dysfunction associated with AML progression and/or extensive treatment with chemotherapy negatively affects response to CPIs. In nonresponders, Th17-like T cells coexpressing ROR γ t and inducible T-cell costimulator were expanded on treatment.

In the recent CP-MGD006-01 clinical trial, 47% (7 of 15) of patients with R/R AML and TP53 abnormalities derived benefit from flotetuzumab immunotherapy and had a significantly higher tumor inflammation signature, FOXP3, and CD8 gene expression scores at baseline compared with nonresponders,³⁵ likely reflecting an IFN- γ -driven TME.^{7,78} In line with this observation, loss of TP53 correlates with enhanced expression of immune checkpoints and effector T-cell-associated genes, including IFN- γ and CXCL9, in lung adenocarcinoma and with improved responses to CPI treatment.⁷⁹ In contrast, TP53^{R172H} gain-of-function mutations in pancreatic tumors drive the recruitment of immunosuppressive CD11b⁺Ly6G⁺ neutrophils, which promote resistance to combination CD40 immunotherapy and chemotherapy.⁸⁰ Further studies should dissect the functional state of BM-infiltrating neutrophils in TP53-mutated AML, both in patients who are treatment naïve and after immunotherapy, also in light of recent evidence supporting a key role for SELL^{high} neutrophils in mediating response of lung cancer to T-cell-targeting approaches.⁸¹ Intriguingly, anti-OX40 antibodies might elicit neutrophils with a distinct anti-tumorigenic, activated phenotype in mice with melanoma.⁸²

CTLA-4 inhibition with ipilimumab in relapse of AML after hematopoietic stem cell transplantation (HSCT) and other hematological malignancies induces responses in approximately one-third of patients, with an acceptable safety profile.^{71,76} Correlative analyses revealed upregulation of CD8A

Table 3. Immune correlates of immunotherapy success and failure in AML

Study	Treatment	Disease	Number of patients, N	Immune correlates	Trial ID
Davids et al ⁷¹	Ipilimumab	Post-HSCT relapse	28	Infiltration of cytotoxic CD8 ⁺ T cells, decreased activation of Treg cells, and expansion of effector T cells in responders	NCT01822509
Daver et al ⁷²	Azacitidine + nivolumab	R/R AML	70	Pretherapy BM CD3 ⁺ and CD8 ⁺ T cells associate with improved ORR Th17 cell expansion in nonresponders	NCT02397720
Vadakekolathu et al ⁹ and Uy et al ¹⁰	Flotetuzumab	R/R AML	88 (15 with TP53 mutations)	TIS higher at baseline in responders	NCT02152956
Zeidner et al ⁷³	High-dose cytarabine + pembrolizumab	R/R AML	37	Higher frequency of CD8 ⁺ T _{PEX} expressing TCF-1 at baseline in responders	NCT02768792
Abbas et al ³⁷	Azacitidine + nivolumab	R/R AML	8	Higher abundance of CD8 ⁺ GZMK ⁺ TCF7 ⁺ T cells in responders Loss of chr7/7q associated with NR	NCT02397720
Goswami et al ⁷⁴	Decitabine + pembrolizumab	R/R AML	10	irAEs linked to clonal expansions of CD8 ⁺ PD1 ⁺ effector T cells	NCT02996474
Rutella et al ⁵⁵	Azacitidine + pembrolizumab	R/R AML	33	Dysfunctional NK-like CD8 ⁺ T cells associated with NR to pembrolizumab	NCT02845297
Rimando et al ⁷⁵	Azacitidine + pembrolizumab High-dose cytarabine + pembrolizumab	Newly diagnosed and R/R AML	31 18	Differentiated blasts (promonocytic profile) expanded in responders	NCT02845297 NCT02768792
Garcia et al ⁷⁶	Decitabine + ipilimumab	R/R AML (after HSCT and HSCT naive)	54	Immune activation (irAEs) associated with survival benefit	NCT02890329
Penter et al ⁷⁷	Decitabine + ipilimumab	R/R AML (after HSCT and HSCT naive)	18	Altered CD4 ⁺ T-cell gene expression after ipilimumab. Increased infiltration with antigen-experienced resident memory T cells in leukemia cutis samples from responders.	NCT02890329

irAEs, immune-related adverse events; NR, no response; ORR, overall response rate; TCF-1, T-cell factor 1; TIS, tumor inflammation signature.

and *PRF1* in tissue biopsies, decrease of circulating Treg cells, and increase of T-cell-attracting chemokines in association with clinical response. The Experimental Therapeutics Clinical Trials Network (ETCTN) 9204 trial demonstrated that ipilimumab can induce regression of post-HSCT relapsed AML, possibly through recruitment of cytotoxic CD8⁺ T cells to leukemic sites.^{71,77} However, immune-related adverse events, including 1 death, were observed in 6 patients (21%) and graft-versus-host disease precluding further administration of ipilimumab was documented in 4 patients (14%). Integrative transcriptomic analyses of clinical samples from the ETCTN/Cancer Therapy Evaluation Program (CTEP) 10026 study testing the combination of decitabine and ipilimumab for AML/myelodysplastic syndrome either after HSCT or in the HSCT-naive setting unveiled a strong association between a high baseline ratio of T-to-AML cells and response, and showed evidence of immune activation after ipilimumab exposure.⁷⁷ In responders, including patients with leukemia cutis, CD8⁺ T cells were recruited to extramedullary sites,⁸³ which harbored ZNF683⁺ antigen-experienced tissue-resident memory T cells. These findings suggest that ipilimumab may counteract the establishment of protective, antiapoptotic extramedullary AML niches.¹

A first-in-human clinical trial of pembrolizumab and decitabine for R/R AML has identified changes in TCR sequences and immune transcriptomes of patients who develop immune-related adverse events.⁷⁴ Clonal expansions occurred at irAE onset and largely involved CD8⁺ effector memory T cells with high expression of PD-1 and transcriptional features reflective of an activation/cytotoxic state. Another study leveraging paired scRNA-seq and TCR profiling of BM samples in R/R AML has documented TCR repertoire expansion and higher abundance of stem-like CD8⁺GZMK⁺TCF7⁺ T cells in responders to azacitidine and nivolumab and in patients having a stable disease.³⁷ In contrast, lack of response to nivolumab was correlated with TCR repertoire contraction and with inferred loss of chr7/7q in the malignant cells. One patient who responded to immunotherapy had an expansion of mucosal-associated invariant T cells after treatment. Importantly, mucosal-associated invariant cytotoxic T lymphocytes displayed the highest fraction of expanded clones, suggesting that CD8⁺ cells in AML can be effectively reinvigorated by CPIs. Interestingly, a Th1-like state in pretreatment BMs correlated with better outcomes, highlighting a previously unappreciated role for CD4⁺ T cells in mediating response of AML to CPIs.⁸⁴ We showed that

IED multigene signatures encompassing CD8/NK markers correlate with resistance to pembrolizumab, pointing to T-cell exhaustion and senescence as targetable circuits to overcome immune dysfunction.⁵⁵ IED scores also correlated with shorter OS in patients with melanoma who received no previous systemic therapy, as well as with lack of response to CPI treatment,⁵⁵ suggesting that AML may share immunological hallmarks with solid tumor types.

Deconvolution of transcriptomic data from >1000 pediatric and adult patients with AML has allowed the establishment of a novel cellular hierarchy framework from single-cell reference profiles of leukemia stem, progenitor, and mature cell types.⁸⁵ Leukemia hierarchy composition varied across functional and genomic subtypes of AML and was associated with response to chemotherapy, survival, and drug sensitivity profiles of investigational targeted therapies. Genes predicting shorter survival were enriched for HSC-specific programs, whereas genes associated with longer survival were enriched for granulocyte-macrophage progenitor-specific programs. By relapse, malignancies in most patients were classified as primitive with significant expansion of total leukemia stem and progenitor cell populations and quiescent leukemia stem and progenitor cells. Recent observations indicate that AML stem cell hierarchies could also affect response to CPIs. Compared with non-responders, patients achieving CR to pembrolizumab in combination with either azacitidine⁸⁶ or high-dose cytarabine⁷³ had higher inferred proportions of differentiated AML blasts, including cells with a promonocyte-like transcriptional profile.⁷⁵ Conversely, AML blasts from nonresponders had higher stemness scores at baseline. Finally, CPI efficacy could be improved by increasing NK recognition of AML targets. LSCs lack expression of NKG2D ligands, which is reversed by genetic or pharmacological inhibition of PARP1.^{87,88} Importantly, a stimulatory DC–NK axis has been associated with melanoma response to CPIs and with prolonged OS.⁸⁹

Chimeric antigen receptor (CAR) T cells

CAR T cells are genetically modified autologous T cells equipped with a synthetic antigen-binding domain and additional costimulatory domains, enabling MHC-independent target recognition.⁹⁰ In 2011, second-generation CAR T cells targeting CD19, which is expressed in B-cell malignancies, emerged as the lead paradigm for engineered T-cell therapies in cancer.⁹¹ However, CAR T-cell therapy is challenging in AML, owing to lack of an ideal target and concerns over prolonged myelosuppression.⁹² AML antigens, which are not significantly expressed on normal BM progenitor populations, such as B7-H3,⁹³ are being evaluated with the aim to minimize hematopoietic toxicity. A high-resolution single-cell expression approach has identified colony-stimulating factor 1 receptor and CD86 as candidate targets for CAR T-cell therapy, with minimal off-target toxicity in preclinical models of AML.⁹⁴

Novel insights into the basis of clinical resistance to CAR T cells are surfacing. CAR T-cell exhaustion has been proposed as a mechanism of tumor escape in patients with large B-cell lymphoma.⁹⁵ Failure to achieve an early molecular response to CD19 CAR T cells has been associated with CD8⁺ T-cell exhaustion and high frequency of LAG3⁺TIM3⁺CAR⁺CD8⁺ T cells.⁹⁶ Chronically stimulated mesothelin-directed CD8⁺ CAR T

cells upregulate exhaustion markers and acquire a dysfunctional phenotype with high levels of NK receptors and checkpoint molecules.⁹⁷ Furthermore, genes upregulated in CAR T cells collected on day 28 after infusion partially overlapped with genes expressed by intermediate and terminally exhausted T cells from LCMV-infected mice. Disruption of the transcription factors ID3 and SOX4 using CRISPR–CRISPR-associated protein 9 translated into a reduction in the frequency of dysfunctional NK-like T cells compared with wild-type cells and into enhanced tumor killing.⁹⁷ In this respect, in AML-bearing mice, pretreatment of AML cells with hypomethylating agents has been shown to augment CD123 expression and to expand CTLA-4^{neg} anti-CD123 CAR T cells with superior cytotoxic activity.⁹⁸ This study suggests that epigenetic modifiers could be combined with CD123-targeting CAR T cells for AML treatment.

Immune landscape of AML relapsing after allogeneic HSCT

Treatment of relapse of AML after HSCT remains a challenge. Only 20% of patients who respond to further chemotherapy achieve long-term remissions with a second HSCT or with chemotherapy followed by donor lymphocyte infusions.³ AML blasts at relapse express low/undetectable MHC-II, ultimately favoring immune escape.⁹⁹⁻¹⁰¹ In this respect, flotetuzumab may reactivate alloreactive T cells by upregulating MHC-II on AML cells through local release of IFN- γ .¹⁰² Inhibitory receptors (IRs) and other immune-related genes are more highly expressed on purified AML blasts from patients with post-HSCT relapse compared with those from patients with post-chemotherapy relapse,¹⁰¹ highlighting the potential for CPIs to reinvigorate T cells and restore beneficial anti-AML immune responses also in this setting, as further discussed hereafter. In patients with AML relapsing after a long phase of post-HSCT clinical remission, functionally impaired but leukemia-reactive CD8⁺ T cells expressing IRs CTLA-4 and TIM-3 accumulate in the TME.¹⁰³ Importantly, the exhausted phenotype of IR⁺ T cells could be partly reverted by *in vitro* exposure to high doses of IL-2, with T cells recovering their polyfunctionality (IFN- γ and TNF- α secretion) but not the ability to produce IL-2.¹⁰³

It is now established that tumor cells impose metabolic constraints on T cells through glucose depletion and generation of large amounts of lactate and other immunosuppressive byproducts in the TME.¹⁰⁴ In this respect, blood T cells isolated from patients with post-HSCT relapse of AML exhibit reduced glycolysis and IFN- γ production compared with matched specimens collected at time of disease remission.¹⁰⁵ AML-derived lactic acid negatively affected T-cell-mediated control of AML in a humanized MOLM-13 xenograft model. T-cell dysfunction was reversed after *in vitro* treatment of CD8⁺ T cells with sodium bicarbonate.¹⁰⁵ A synergism between sorafenib and donor lymphocyte infusions has been documented in patients with *FLT3-ITD*⁺ AML who relapse after HSCT.¹⁰⁶ Serum IL-15 and IFN- γ levels, as well as blast *IL15* and *IRF7* messenger RNA, were increased in patients who achieved a complete hematological remission. Concomitantly, metabolic rewiring of blood CD8⁺ T cells was documented.¹⁰⁶ This study suggests that sorafenib might promote a strong graft-versus-AML effect in patients with *FLT3-ITD*⁺ AML relapse after HSCT, who would otherwise have a dismal prognosis. Finally, machine learning-informed analyses of longitudinal, paired BM samples have

revealed novel intriguing associations between proinflammatory signaling and AML progression, including overexpression of CD6, which encodes a lymphoid-associated surface glycoprotein involved in immune synapse formation, in adult patients at time of relapse.¹⁰⁷

Conclusions and perspectives

CPI therapy has been particularly challenging in AML. However, recent advances in multimodal omics technologies have considerably deepened our knowledge of the dynamic cellular interactions at the AML immune interface, highlighting both AML-associated and conserved, pan-cancer pathways that could be modified to overcome immune resistance. We propose that immune gene expression profiling be integrated with clinically validated prognosticators, including ELN risk category, 17-gene LSC score, and molecular lesions (*TP53*, *RUNX1*, *IDH1/2*, and *TET2* mutational status), to accurately stratify AML into subgroups with substantially different survival probabilities (Figure 1). Patients with an IFN- γ -dominant, immune-enriched TME could be allocated immunotherapies that aim to reinvigorate dysfunctional T cells, including T-cell engagers and CPIs. Conversely, patients with a "cold," immune-depleted transcriptional profile could benefit from other therapeutic strategies, such as increasing T-cell trafficking to the BM TME and/or vaccines, adoptive T-cell transfer, and allogeneic HSCT. Immunotherapies targeting immunological hallmarks, such as type I (tumor-cell intrinsic) and type II (immune-cell intrinsic) IFN signaling, and combinatorial approaches incorporating CPIs and molecularly targeted agents that might enhance T-cell-mediated anti-AML activity such as venetoclax^{108,109} should be explored in future AML clinical trials. It will also be essential to identify and validate immune correlates of response, resistance, and toxicity in patients with AML who are treated with CAR T cells, to devise strategies to antagonize CAR T-cell exhaustion and senescence, and to neutralize metabolic barriers in the TME.¹¹⁰

The observation that chemotherapy reduces the expression of T-cell checkpoints¹¹¹ raises important questions regarding optimal timing of immunotherapy and leads to the conjecture that CPIs could be more effective as a first-line treatment option rather than after multiagent chemotherapy and/or HSCT. Recent data showing an increase of IED scores after cytotoxic chemotherapy, irrespective of the achievement of CR,⁵⁵ lend additional credence to the concept that immunotherapy, either alone or in combination with orthogonal cytoreduction strategies,¹¹² could yield superior results if patients were treated earlier in their disease course rather than in the R/R setting. Further research is needed to elucidate whether chemotherapy-

induced changes of the immune TME, including heightened inflammation and senescence, affect response to CPIs and other immunotherapeutic modalities. Studies addressing the intricate balance between antitumor immunity and type I/II IFN signaling, and whether an epigenetically poised state of responsiveness to IFN-I favors AML resistance to CPIs by constraining T-cell function, are also warranted.

In conclusion, broader adoption of systems-level approaches, including spatial transcriptomics,¹¹³ underpinned by machine learning and advanced computational pipelines,¹¹⁴ and responsible sharing of immunotherapy clinical trial and biomarker data¹¹⁵ will shed further light onto T-cell functional states and their coordinated changes under immune selection pressure in the AML TME. The collection of pretreatment, on-treatment, and postprogression BM samples should complement clinical efforts, because the availability of longitudinal specimens would enable high-dimensional analyses of response in relation to immune evolutionary dynamics, and potentially suggest personalized treatment options.

Acknowledgments

J.V. and S.R. are supported by the John and Lucille van Geest Foundation and by Nottingham Trent University's School of Science and Technology.

Authorship

Contribution: S.R. wrote the manuscript; and J.V. and S.R. reviewed and/or revised the manuscript.

Conflict-of-interest disclosure: S.R. reports institutional research grants from MacroGenics Inc (Rockville, MD), Kura Oncology (San Diego, CA), and Wugen (St Louis, MO) outside the submitted work; and has a patent (Bispecific CD123 \times CD3 Diabodies for the Treatment of Hematological Malignancies [Davidson JK, Church S, Rutella S; US20210395374A1]) assigned to Nottingham Trent University, Nottingham, United Kingdom. J.V. declares no competing financial interests.

ORCID profiles: J.V., [0000-0002-2671-4285](https://orcid.org/0000-0002-2671-4285); S.R., [0000-0003-1970-7375](https://orcid.org/0000-0003-1970-7375).

Correspondence: Sergio Rutella, John van Geest Cancer Research Centre, Nottingham Trent University, College Dr, Clifton Campus, Nottingham NG11 8NS, United Kingdom; email: sergio.rutella@ntu.ac.uk.

Footnote

Submitted 1 May 2023; accepted 5 July 2023; prepublished online on Blood First Edition 19 July 2023. <https://doi.org/10.1182/blood.2023019961>.

REFERENCES

- Whiteley AE, Price TT, Cantelli G, Sipkins DA. Leukaemia: a model metastatic disease. *Nat Rev Cancer*. 2021;21(7):461-475.
- El Chaer F, Hourigan CS, Zeidan AM. How I treat AML in 2023 incorporating the updated classifications and guidelines. *Blood*. 2023;141(23):2813-2823.
- DeWolf S, Tallman MS. How I treat relapsed or refractory AML. *Blood*. 2020;136(9):1023-1032.
- Sharma P, Goswami S, Raychaudhuri D, et al. Immune checkpoint therapy-current perspectives and future directions. *Cell*. 2023;186(8):1652-1669.
- Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. *Cell*. 2017;170(6):1120-1133.e17.
- Khalidyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune biology of acute myeloid leukemia: implications for immunotherapy. *J Clin Oncol*. 2021;39(5):419-432.
- Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. *J Clin Oncol*. 2019;37(4):318-327.
- Dufva O, Polonen P, Bruck O, et al. Immunogenomic landscape of

hematological malignancies. *Cancer Cell*. 2020;38(3):424-428.

9. Vadakekolathu J, Minden MD, Hood T, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. *Sci Transl Med*. 2020;12(546):eaaz0463.
10. Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. *Blood*. 2021;137(6):751-762.
11. Bruck O, Dufva O, Hohtari H, et al. Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival. *Blood Adv*. 2020;4(2):274-286.
12. Lasry A, Nadorp B, Fornerod M, et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. *Nat Cancer*. 2023;4(1):27-42.
13. Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). *Blood*. 2002;100(10):3698-3702.
14. Ye J, Huang X, Hsueh EC, et al. Human regulatory T cells induce T-lymphocyte senescence. *Blood*. 2012;120(10):2021-2031.
15. Pereira BI, De Maeyer RPH, Covre LP, et al. Sestrins induce natural killer function in senescent-like CD8+ T cells. *Nat Immunol*. 2020;21(6):684-694.
16. Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. *Nat Immunol*. 2019;20(3):326-336.
17. Oliveira G, Wu CJ. Dynamics and specificities of T cells in cancer immunotherapy. *Nat Rev Cancer*. 2023;23(5):295-316.
18. Im SJ, Hashimoto M, Gerner MY, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. *Nature*. 2016;537(7620):417-421.
19. Gattinoni L, Lugli E, Ji Y, et al. A human memory T cell subset with stem cell-like properties. *Nat Med*. 2011;17(10):1290-1297.
20. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. *Nature*. 1999;401(6754):708-712.
21. Giles JR, Ngiow SF, Manne S, et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. *Nat Immunol*. 2022;23(11):1600-1613.
22. Daniel B, Yost KE, Hsiung S, et al. Divergent clonal differentiation trajectories of T cell exhaustion. *Nat Immunol*. 2022;23(11):1614-1627.
23. Chu Y, Dai E, Li Y, et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. *Nat Med*. 2023;29(6):1550-1562.
24. van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. *Nat Rev Cancer*. 2020;20(4):218-232.
25. Speiser DE, Chijioka O, Schaeuble K, Munz C. CD4+ T cells in cancer. *Nat Cancer*. 2023;4(3):317-329.
26. Tsui C, Kretschmer L, Rapelius S, et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. *Nature*. 2022;609(7926):354-360.
27. Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. *Science*. 2016;354(6316):1160-1165.
28. Hashimoto M, Araki K, Cardenas MA, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. *Nature*. 2022;610(7930):173-181.
29. van Weerwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. *Nat Rev Cancer*. 2023;23(4):193-215.
30. Litchfield K, Reading JL, Puttik C, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. *Cell*. 2021;184(3):596-614.e14.
31. Malekzadeh P, Pasetto A, Robbins PF, et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. *J Clin Invest*. 2019;129(3):1109-1114.
32. Hsue EH, Wright KM, Douglass J, et al. Targeting a neoantigen derived from a common TP53 mutation. *Science*. 2021;371(6533):eabc8697.
33. Seifert H, Mohr B, Thiede C, et al. The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. *Leukemia*. 2009;23(4):656-663.
34. Boettcher S, Miller PG, Sharma R, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. *Science*. 2019;365(6453):599-604.
35. Vadakekolathu J, Lai C, Reeder S, et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. *Blood Adv*. 2020;4(20):5011-5024.
36. Sallman DA, McLemore AF, Aldrich AL, et al. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. *Blood*. 2020;136(24):2812-2823.
37. Abbas HA, Hao D, Tomczak K, et al. Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. *Nat Commun*. 2021;12(1):6071.
38. Yeaton A, Cayanan G, Loghavi S, et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. *Cancer Discov*. 2022;12(10):2392-2413.
39. Notarangelo G, Spinelli JB, Perez EM, et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function. *Science*. 2022;377(6614):1519-1529.
40. Ho J, Schmidt D, Lowinus T, et al. Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-II and TRAIL-R1/2 upregulation. *Blood*. 2022;140(10):1167-1181.
41. Dauer NG, Maiti A, Kadia TM, et al. TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: Biology, current therapy, and future directions. *Cancer Discov*. 2022;12(11):2516-2529.
42. Izquierdo E, Vorholt D, Blakemore S, et al. Extracellular vesicles and PD-L1 suppress macrophages, inducing therapy resistance in TP53-deficient B-cell malignancies. *Blood*. 2022;139(25):3617-3629.
43. Dauer NG, Vyas P, Kambhampati S, et al. Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in frontline TP53m AML patients: phase 1b results. *J Clin Oncol*. 2022;40(suppl 16):7020.
44. Montesinos P, Recher C, Vives S, et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. *N Engl J Med*. 2022;386(16):1519-1531.
45. Kohanbash G, Carrera DA, Shrivastav S, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. *J Clin Invest*. 2017;127(4):1425-1437.
46. Han G, Yang G, Hao D, et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. *Nat Commun*. 2021;12(1):5606.
47. Barriga FM, Tsanov KM, Ho YJ, et al. MACHETE identifies interferon-encompassing chromosome 9p21.3 deletions as mediators of immune evasion and metastasis. *Nat Cancer*. 2022;3(11):1367-1385.
48. Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. *N Engl J Med*. 2013;368(22):2059-2074.
49. Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid leukaemia. *Nature*. 2018;562(7728):526-531.
50. Boulouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. *Nat Med*. 2018;24(1):103-112.

51. von Locquenghien M, Rozalen C, Celia-Terrassa T. Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response. *J Clin Invest.* 2021;131(1):e143296.

52. Gao J, Shi LZ, Zhao H, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. *Cell.* 2016;167(2):397-404.e9.

53. Grasso CS, Tsoi J, Onyshchenko M, et al. Conserved interferon-gamma signaling drives clinical response to immune checkpoint blockade therapy in melanoma. *Cancer Cell.* 2020;38(4):500-515.e3.

54. Song E, Chow RD. Mutations in IFN-g signaling genes sensitize tumors to immune checkpoint blockade. *Cancer Cell.* 2023; 41(4):651-652.

55. Rutella S, Vadakekolathu J, Mazziotta F, et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. *J Clin Invest.* 2022; 132(21):e159579.

56. Bencì JL, Xu B, Qiu Y, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. *Cell.* 2016;167(6):1540-1554.e12.

57. Bencì JL, Johnson LR, Choa R, et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. *Cell.* 2019;178(4):933-948.e14.

58. Qiu J, Xu B, Ye D, et al. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction. *Nat Cancer.* 2023; 4(1):43-61.

59. Chen J, Cao Y, Markelc B, Kaeplke J, Vermeer JA, Muschel RJ. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. *J Clin Invest.* 2019;129(10):4224-4238.

60. Boukhaled GM, Gadalla R, Elsaesser HJ, et al. Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy. *Nat Immunol.* 2022;23(8):1273-1283.

61. Gerhard GM, Bill R, Messemaker M, Klein AM, Pittet MJ. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. *J Exp Med.* 2021; 218(1):e20200264.

62. Vadakekolathu J, Meredith R, Ross PM, et al. Interferon- γ induces distinct mRNA and protein profiles in acute and chronic myeloid leukemia [abstract]. *Blood.* 2017;130(suppl 1):3945.

63. Ferraro F, Miller CA, Christensen KA, et al. Immunosuppression and outcomes in adult patients with de novo acute myeloid leukemia with normal karyotypes. *Proc Natl Acad Sci U S A.* 2021;118(49):e2116427118.

64. van Galen P, Hovestadt V, Wadsworth Li MH, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. *Cell.* 2019;176(6):1265-1281.e24.

65. Knaus HA, Berglund S, Hackl H, et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. *JCI Insight.* 2018;3(21):e120974.

66. Radpour R, Riether C, Simillion C, Hopner S, Bruggmann R, Ochsenbein AF. CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. *Leukemia.* 2019;33(10):2379-2392.

67. Mazziotta F, Biavati L, Rimando JC, et al. CD8+ T-cell differentiation and dysfunction inform treatment response in acute myeloid leukemia. *Blood.* Published online 22 May 2024. <https://doi.org/10.1182/blood.2023021680>

68. Desai PN, Wang B, Fonseca A, et al. Single-cell profiling of CD8+ T cells in acute myeloid leukemia reveals a continuous spectrum of differentiation and clonal hyperexpansion. *Cancer Immunol Res.* 2023;11(7):1011-1028.

69. Corradi G, Bassani B, Simonetti G, et al. Release of IFN γ by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells. *Clin Cancer Res.* 2022;28(14): 3141-3155.

70. Bagaev A, Kotlov N, Nomie K, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. *Cancer Cell.* 2021;39(6): 845-865.e7.

71. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. *N Engl J Med.* 2016;375(2):143-153.

72. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. *Cancer Discov.* 2019;9(3):370-383.

73. Zeidner JF, Vincent BG, Ivanova A, et al. Phase II trial of pembrolizumab after high-dose cytarabine in relapsed/refractory acute myeloid leukemia. *Blood Cancer Discov.* 2021;2(6):616-629.

74. Goswami M, Gui G, Dillon LW, et al. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. *J Immunother Cancer.* 2022;10(1): e003392.

75. Rimando J, Cope L, McKinnon K, et al. The composition of acute myeloid leukemia cell differentiation states predicts response to immune checkpoint blockade [abstract]. *Blood.* 2022;140(suppl 1):6314-6315.

76. Garcia JS, Flamand Y, Penter L, et al. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve settings. *Blood.* 2023;141(15): 1884-1888.

77. Penter L, Liu Y, Wolff JO, et al. Mechanisms of response and resistance to combined decitabine and ipilimumab for advanced myeloid disease. *Blood.* 2023;141(15): 1817-1830.

78. Wang Z, Hong J, Sun W, et al. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+CD25+ T cells to CD4+ Tregs. *J Clin Invest.* 2006;116(9):2434-2441.

79. Dong ZY, Zhong WZ, Zhang XC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. *Clin Cancer Res.* 2017; 23(12):3012-3024.

80. Siolas D, Vucic E, Kurz E, Hajdu C, Bar-Sagi D. Gain-of-function p53(R172H) mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. *Cell Rep.* 2021;36(8): 109578.

81. Gungabeesoon J, Gort-Freitas NA, Kiss M, et al. A neutrophil response linked to tumor control in immunotherapy. *Cell.* 2023; 186(7):1448-1464.e20.

82. Hirschhorn D, Budhu S, Krahenbuehl L, et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. *Cell.* 2023;186(7): 1432-1447.e17.

83. Penter L, Zhang Y, Savell A, et al. Molecular and cellular features of CTLA-4 blockade for relapsed myeloid malignancies after transplantation. *Blood.* 2021;137(23): 3212-3217.

84. Abbas HA, Alaniz Z, Mackay S, et al. Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti-PD-1-based therapy. *Blood Adv.* 2021;5(22):4569-4574.

85. Zeng AGX, Bansal S, Jin L, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. *Nat Med.* 2022; 28(6):1212-1223.

86. Gojo I, Stuart RK, Webster J, et al. Multi-center phase 2 study of pembrolizumab (Pembro) and azacitidine (AZA) in patients with relapsed/refractory acute myeloid leukemia (AML) and in newly diagnosed (≥ 65 years) AML patients [abstract]. *Blood.* 2019;134(suppl 1):832.

87. Paczulla AM, Rothfelder K, Raffel S, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. *Nature.* 2019;572(7768): 254-259.

88. Rutella S, Cashen AF, Muth J, et al. Putative predictors of response to WU-NK-101, an allogeneic, enhanced memory (ML) natural killer (NK) cell therapy product, for relapsed/refractory (R/R) acute myeloid leukemia (AML) [abstract]. *Blood.* 2022;140(suppl 1): 7400-7401.

89. Barry KC, Hsu J, Broz ML, et al. A natural killer-dendritic cell axis defines checkpoint

therapy-responsive tumor microenvironments. *Nat Med.* 2018;24(8):1178-1191.

90. June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. *Science.* 2018;359(6382):1361-1365.

91. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. *N Engl J Med.* 2014;371(16):1507-1517.

92. Kenderian SS, Ruella M, Shestova O, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. *Leukemia.* 2015;29(8):1637-1647.

93. Lichtman EI, Du H, Shou P, et al. Preclinical evaluation of B7-H3-specific chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. *Clin Cancer Res.* 2021;27(11):3141-3153.

94. Gottschlich A, Thomas M, Grunmeier R, et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. *Nat Biotechnol.* 2023;41:1618-1632.

95. Scholler N, Perbst R, Locke FL, et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. *Nat Med.* 2022;28(9):1872-1882.

96. Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. *Nat Med.* 2020;26(12):1878-1887.

97. Good CR, Aznar MA, Kuramitsu S, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. *Cell.* 2021;184(25):6081-6100. e26.

98. El Khawany N, Hughes A, Yu W, et al. Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia. *Nat Commun.* 2021;12(1):6436.

99. Eagle K, Harada T, Kalfon J, et al. Transcriptional plasticity drives leukemia immune escape. *Blood Cancer Discov.* 2022;3(5):394-409.

100. Christopher MJ, Petti AA, Rettig MP, et al. Immune escape of relapsed AML cells after allogeneic transplantation. *N Engl J Med.* 2018;379(24):2330-2341.

101. Toffalori C, Zito L, Gambacorta V, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. *Nat Med.* 2019;25(4):603-611.

102. Rimando JC, Chendamarai E, Rettig MP, et al. Flotetuzumab and other T-cell immunotherapies upregulate MHC class II expression on acute myeloid leukemia cells. *Blood.* 2023;141(14):1718-1723.

103. Noviello M, Manfredi F, Ruggiero E, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. *Nat Commun.* 2019;10(1):1065.

104. DePaeux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. *Nat Rev Immunol.* 2021;21(12):785-797.

105. Uhl FM, Chen S, O'Sullivan D, et al. Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. *Sci Transl Med.* 2020;12(567):eabb8969.

106. Mathew NR, Baumgartner F, Braun L, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. *Nat Med.* 2018;24(3):282-291.

107. Stratmann S, Yones SA, Garbulowski M, et al. Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression. *Blood Adv.* 2022;6(1):152-164.

108. Lee JB, Khan DH, Hurren R, et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. *Blood.* 2021;138(3):234-245.

109. Hänel G, Schöle A, Neumann AS, et al. Combining venetoclax and azacytidine with T-cell bispecific antibodies for treatment of acute myeloid leukemia: a preclinical assessment. *Leukemia.* 2024;38(2):398-402.

110. Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. *Nat Rev Clin Oncol.* 2022;19(12):775-790.

111. Werba G, Weissinger D, Kawaler EA, et al. Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment. *Nat Commun.* 2023;14(1):797.

112. Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. *N Engl J Med.* 2022;386(21):1973-1985.

113. Rutella S, Vadakekolathu J, Altmann H, et al. Capturing the complexity of the immune microenvironment of acute myeloid leukemia with 3D biology technology. *J Clin Oncol.* 2018;36(suppl 5):50.

114. Finetello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational tools for interrogating cancer immunity. *Nat Rev Genet.* 2019;20(12):724-746.

115. Rutella S, Cannarile MA, Gnjatic S, et al. Society for Immunotherapy of Cancer clinical and biomarkers data sharing resource document: volume I-conceptual challenges. *J Immunother Cancer.* 2020;8(2):e001389.

116. Daver N, Vyas P, Huls G, et al. Magrolimab vs placebo in combination with venetoclax and azacitidine in previously untreated patients with acute myeloid leukemia who are ineligible for intensive chemotherapy: the ENHANCE-3 study [abstract]. *EHA Abstr Book.* 2024. Abstract S138.

© 2024 American Society of Hematology. Published by Elsevier Inc. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.