. eprints@whiterose.ac.uk
Whlte Rose https://eprints.whiterose.ac.uk

N
(®)) Research oni
N’ esearc niine Universities of Leeds, Sheffield and York

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/236331/

Version: Published Version

Article:
Vadakekolathu, J. and Rutella, S. (2024) Escape from T-cell-targeting immunotherapies in
acute myeloid leukemia. Blood, 143 (26). pp. 2689-2700. ISSN: 0006-4971

https://doi.org/10.1182/blood.2023019961

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ﬁ A University Of { $n UNIVERSITY

UNIVERSITY OF LEEDS %~ Sheffield NS W



mailto:eprints@whiterose.ac.uk
https://doi.org/10.1182/blood.2023019961
https://eprints.whiterose.ac.uk/id/eprint/236331/
https://eprints.whiterose.ac.uk/

Review Series

ONCOGENIC SIGNALING AND IMMUNE EVASION IN HEMATOLOGIC MALIGNANCIES

Escape from T-cell-targeting immunotherapies in

acute myeloid leukemia

Jayakumar Vadakekolathu and Sergio Rutella

John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom

Single-cell and spatial multimodal technologies have pro-
pelled discoveries of the solid tumor microenvironment
(TME) molecular features and their correlation with clinical
response and resistance to immunotherapy. Computa-
tional tools are incessantly being developed to charac-
terize tumor-infiltrating immune cells and to model tumor
immune escape. These advances have led to substantial
research into T-cell hypofunctional states in the TME and
their reinvigoration with T-cell-targeting approaches,
including checkpoint inhibitors (CPIs). Until recently, we
lacked a high-dimensional picture of the acute myeloid
leukemia (AML) TME, including compositional and func-
tional differences in immune cells between disease onset
and postchemotherapy or posttransplantation relapse,
and the dynamic interplay between immune cells and AML
blasts at various maturation stages. AML subgroups with

heightened interferon gamma (IFN-y) signaling were
shown to derive clinical benefit from CD123xCD3-
bispecific dual-affinity retargeting molecules and CPIs,
while being less likely to respond to standard-of-care
cytotoxic chemotherapy. In this review, we first high-
light recent progress into deciphering immune effector
states in AML (including T-cell exhaustion and senes-
cence), oncogenic signaling mechanisms that could reduce
the susceptibility of AML cells to T-cell-mediated killing,
and the dichotomous roles of type | and Il IFN in antitumor
immunity. In the second part, we discuss how this
knowledge could be translated into opportunities to
manipulate the AML TME with the aim to overcome
resistance to CPls and other T-cell immunotherapies,
building on recent success stories in the solid tumor field,
and we provide an outlook for the future.

Introduction

Acute myeloid leukemia (AML) is a model of highly efficient
metastatic spread and is characterized by tremendous molec-
ular, immunological, and clinical heterogeneity.’ The treatment
landscape of AML has changed dramatically in recent years.?
However, most patients eventually relapse and have disap-
pointing outcomes, with a 5-year overall survival (OS) rate of
10%.” Checkpoint inhibitors (CPls) restrain T-cell suppressive
signals delivered through cytotoxic T-lymphocyte—associated
protein 4 (CTLA-4) and programmed cell death protein 1 (PD-
1)/programmed death-ligand 1 (PD-L1) and promote antitumor
immune responses. Distinct cellular mechanisms underlie
CTLA-4 and PD-1 checkpoint blockade, with the former
affecting CD4™ T-cell clonal expansion and trafficking, and the
latter largely affecting the exhausted CD8" T-cell compart-
ment.*” Patients with certain solid tumor types, including
glioblastoma and pancreatic cancer, demonstrate de novo
resistance to CPls, and a substantial proportion of patients with
CPl-sensitive solid tumors eventually develop adaptive resis-
tance.” Although CPls offer long-term clinical benefit in a large
proportion of patients with solid tumors, results in AML, which
has historically been considered an immunologically “cold”
tumor,®’” have been less impressive.

Integrative immunogenomic approaches can refine the accu-
racy of outcome prediction by supporting a more granular
stratification of AML within existing European LeukemiaNet
(ELN) risk categories.g'9 In particular, immune gene expression
profiling of primary bone marrow (BM) samples uncovered
novel immune-infiltrated and interferon gamma (IFN-y)-domi-
nant AML subtypes associated with poor outcome after
standard-of-care chemotherapy and with response to immu-
notherapy with flotetuzumab, a bispecific T-cell engager tar-
geting CD123.7"° The IFN-dominant gene module in
pretreatment BM specimens from patients with immune-
infiltrated AML reflected the abundance of IFN-y signaling;
immunoproteasome; myeloid inflammation; inflammatory che-
mokine; IL-10, PD-L1, and PD-L2 gene expression scores; as
well as higher expression of molecules involved in antigen
processing and presentation. BM-resident CD8" T cells from
patients with immune-infiltrated AML were polyfunctional, as
suggested by their coexpression of intracellular IFN-y and
tumor necrosis factor a (TNF-a).”

A large-scale study of genotype-immunophenotype correla-
tions across lymphoid and myeloid malignancies identified
associations between immune checkpoint ligands and disease
subgroups, including expression of PD-L1, ARG1, CD86, and
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VSIR (VISTA), encoding an inhibitory T-cell checkpoint of the B7
family, in monocytic AML as well as high infiltration of natural
killer (NK) and CD8" T cells in AML with myelodysplastic
syndrome-like features.®'" This observation suggests that the
differentiation stage of the blasts may enable AML-specific
immune evasion mechanisms. Furthermore, an inflammation-
associated gene expression metric has been correlated with
reduction in T-cell clonal expansion, increase in CD8"GZMK™
and regulatory T (Treg) cells, and worse clinical outcomes both
in children and adults with AML."?

This review will summarize recent discoveries on T-cell func-
tional states in AML and their impact on response to CPls,
bispecific T-cell engagers, and adoptive cell therapies. We
discuss how resistance to immunological treatments could be
overcome, and provide an outlook for the future.

Advances in defining T-cell-

dysfunctional states

Both senescent and exhausted T cells accumulate in the tumor
microenvironment (TME), in which they exhibit impaired anti-
tumor functions. Senescent T cells acquire a unique transcrip-
tional profile, downregulate costimulatory molecules (CD27 and
CD28), and highly express CD57 and killer cell lectin-like
receptor subfamily member 1 (KLRG1)."® Although senescent
T cells are in a state of cell cycle arrest, do not proliferate in
response to T-cell receptor (TCR) triggering, and manifest
defective killing abilities, they produce high amounts of proin-
flammatory and suppressive cytokines and remain metabolically
active." Senescent-like CD27 CD287CD8" T cells expressing
NK markers expand in older individuals and lose the signaling
activity of the TCR."® T-cell exhaustion in tumors is a proxy for
tumor antigen-driven T-cell activation and is believed to be a
dynamic and gradual state analogous to that elicited by
continuous antigen exposure during viral infections.'® Remark-
able phenotypic diversity is observed within intratumoral T cells,
which can be broadly compartmentalized into memory T cells
and exhausted T cells,'” and reside along a continuum of pro-
gressively declining T-cell function that spans progenitor
exhausted T cells (Tpey), '8 GZMK* predysfunctional or “transi-
tional” T cells (Tex), and early-to-late dysfunctional T cells
(Table 1).?* During chronic lymphocytic choriomeningitis virus
(LCMV) infection in mice, Tpex self-renew and exhibit multi-
potent repopulation capacity, which is governed by sustained
expression of MYB.?® In sharp contrast to their CD62L" Tpex and
CX3CR1* or CX3CR1™ Tgx descendants, a subpopulation of
CDé62L" Teex has been reported to proliferate vigorously and to
acquire enhanced potential for effector cell generation in
response to CPls.?® Studies in melanoma-bearing mice identi-
fied subsets of stem-like or Tpex and terminally exhausted CD8*
T cells, which differ in gene expression, transcription factor
activity, cytokine production, cytolytic function, and epigenetic
|ano|sca|oe.27 Importantly, a larger fraction of CD8" Tpex with a
TCF17PD-1" phenotype in pretreatment biopsies from patients
with advanced melanoma correlated with significantly longer
progression-free  survival and OS after nivolumab or
ipilimumab.'®

By applying longitudinal single-cell RNA sequencing (scRNA-
seq) and single-cell assay for transposase-accessible chromatin
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sequencing, novel Tgx subsets have been revealed in LCMV-
infected mice, including a distinct T-cell population coex-
pressing NK markers and high levels of Tox, Bcl2, and Lag3,
that is dependent on the transcription factor Zeb2 and retains
superior functional and proliferative capacity compared with
other intermediate Tgx states.’'?? Treatment of LCMV-infected
mice with PD-1 blocking agents substantially altered the fre-
quency of Tex and induced their differentiation to functionally
intermediate Tgy states.’” Interestingly, addition of interleukin-2
(IL-2) to PD-1 immunotherapy improved responses and
expanded stem-like PD-1"TCF1°CD8" T cells resembling
highly functional effector CD8* T cells.?® These findings sug-
gest that Tpex are not fate-locked into the exhaustion program
and warrant the evaluation of synergistic cytokine effects in
future clinical trials of AML and other cancers.

A novel cellular stress state (Tstr) characterized by unique
expression of stress-related heat shock genes, including
HSP1A1 and HSPA1B, has been uncovered in a recent study
integrating single-cell and spatial transcriptomes from 308 048
high-quality T cells across 16 cancer types.”> Notably, Tsrg
predicted inferior clinical outcomes in 6 independent solid
tumor immunotherapy cohorts and were enriched in mutation-
associated neoantigen-specific CD8" T cells in tumors from
patients with no major pathological response.”” It would be of
great interest to explore the prognostic and/or predictive
relevance of an analogous Tstg functional state for AML.

Cancer cell-intrinsic signaling and

immune dysfunction

Oncogenic drivers

In addition to T-cell-intrinsic mechanisms, the immune milieu of
solid tumors can be shaped by cancer-cell-intrinsic features,
including genetic aberrations in oncogenes, tumor suppressor
genes, or DNA damage repair genes, which affect CPI sensi-
tivity.?”% TP53 is the most commonly altered tumor suppressor
gene in cancer. In epithelial tumors, tumor-infiltrating lympho-
cytes can recognize autologous TP53 neoantigens, pointing to
the immunogenicity of TP53 hotspot mutations and providing a
biological rationale for TP53-specific immunotherapies.®' In this
respect, bispecific antibodies targeting a common TP53 neo-
antigen (arginine-to-histidine substitution at codon 175; R175H)
bound to HLA-A*02:01 on the cell surface can activate T cells
and promote tumor cell lysis both in vitro and in vivo.*?

TP53 abnormalities occur in 8% to 10% of de novo AML and
portend a high risk of primary induction failure and relapse and
a dismal prognosis.>> AML cells carrying TP53 missense muta-
tions express gene signatures of TP53 inactivation, suggesting
dominant-negative activity without evidence of neomorphic
gain-of-function capacity.** AML cases with TP53 mutations
from The Cancer Genome Atlas (TCGA) cohort express higher
levels of cytolytic molecules in contrast to the common driver
mutations FLT3 and NPM1, which preferentially occur in AML
samples with low cytolytic activity (Table 2).% Both de novo and
secondary TP53-mutated AML harbor an inherently immuno-
suppressive TME, with expanded Treg cells and myeloid-
derived suppressor cells, decreased NK cells, enhanced IFN-y
signaling, and increased PD-L1 in hematopoietic stem cells
(HSCs).3>2¢ Importantly, mouse double minute 2 inhibition in
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Table 1. T-cell states in cancer

Phenotype/
T-cell signature
compartment Subpopulation genes Function Other remarks
Memory T cells Stem cell memory T TCF1 Display increased proliferative capacity [ Do not exhibit tumor-specific
(reduced overall cells' IL7R and mediate superior antitumor localization
clonal CDé2L responses compared with known Retain the ability to regenerate a vast
expansion) CCR7 memory populations progeny of effector cells
Central memory T TCF1 Express lymph node homing receptors
cells?® IL7R and lack immediate effector function,
CCR7 but efficiently stimulate DCs and
differentiate into CCR7™ effector cells
upon secondary stimulation
Effector memory T TCF1 Express receptors for migration to
cells® IL7R inflamed tissues and display rapid
CDé2L production of IFN-y and immediate
effector function
Exhausted T cells | Tpex PD1 Are early dysfunctional T cells Can self-renew and differentiate and are
(highly CTLA4 A subset of predysfunctional (or a reservoir of Tex cells
clonotypically LAG3 “transitional”) T cells is defined by high | Are often found in lymph nodes and TLS
expanded)'’ TOX expression of GZMK Responsible for immunotherapy efficacy
CDé2L Lack effector functions
TCF1
Tex PD1 Have impaired cytotoxic function Even if terminally differentiated, Tex can
CTLA4 (gradually lose effector functions) proliferate in an antigen-dependent
LAG3 fashion
TIM3
CD39
TOX
CXCL13
BCL2L11
Tissue-resident CD103 Represent a continuum in the spectrum | Likely reflect a variation of Tex
memory-like Tex HOBIT (ZNF683) of TIL phenotypes differentiation in the TME
Have high cytotoxic potential
Express high levels of inhibitory
molecules
NK-cell receptor— CD8 Are dysfunctional (ie, have reduced Are more abundant in R/R AML but can
positive Tex KLRG1 cytotoxicity against autologous AML also be detected in mice with LCMV
CD57 blasts) infection, in which they may be
Bcl2 dependent on the transcription factor
LAG3 Zeb2”!??
Stress response Both CD8" and Stress-related Are highly correlated with IFN-response | Are detectable in situ in the TME across
state (TstR)>> CD4" T cells heat shock CD4" and CD8" T-cell subsets various cancer types (especially those
genes with aggressive phenotypes)
(HSPATA, Have a potential role in immunotherapy
HSPA1B); resistance
NF-xB signaling
molecules

Intratumoral T cells are characterized by a remarkable phenotypic and functional diversity. This gradient of T-cell states has been described mostly for CD8" TILs residing along a continuum
of dysfunctionv'24 The current status of CD4" T cells in cancer has been reviewed elsewhere.?> HOBIT, homologue of BLIMP1 in T cell; TCF1, T-cell-specific transcription factor 1; Tex cells,
terminally exhausted T cells; TILs, tumor-infiltrating lymphocytes; TIM3, T-cell immunoglobulin mucin receptor; TLS, tertiary lymphoid structures; TOX, thymocyte selection-associated high

mobility group box protein.

patient-derived AML cells counteracts immune evasion by
enhancing TNF-related apoptosis-inducing ligand receptor 1
and 2 and major histocompatibility complex class Il (MHC-II)
expression in a TP53-dependent manner, thereby restoring
AML susceptibility to allogeneic T-cell-mediated cytotoxicity.*°
An interesting finding that could be relevant in the context of
AML therapies that target phagocytosis such as monoclonal
antibodies blocking CD47, a “don't eat me"” signal overex-
pressed on AML blasts and leukemia stem cells (LSCs),*" is that
TP53 loss in lymphoma cells modulates macrophage phago-
cytic capacity by enhancing the biogenesis of PD-L1" extra-
cellular vesicles from tumor B cells.*” Notably, a phase 1b trial

IMMUNE CHECKPOINT BLOCKADE IN AML

of azacitidine and magrolimab in frontline treatment of TP53-
mutant AML has shown durable responses and encouraging
OS, although immune correlates of success have not yet been
reported.*?

However, a complete evaluation of safety and efficacy of aza-
citidine and venetoclax, with or without magrolimab, in patients
with untreated AML (ENHANCE-3; ClinicalTrials.gov ID:
NCT05079230) has shown a CR rate of 39.7% in the magroli-
mab-containing arm and 42.9% in the control arm, leading to
study termination."’® These negative results underscore the
existing challenges in enhancing outcomes for patients unfit for
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Table 2. Driver mutations and the immunological TME

Driver

mutation Disease

Vadakekolathu et al” RUNX1, TP53 | AML

Higher TIS, IFN signaling, and cytotoxicity scores relative to patients with favorable
or intermediate-risk AML

Immune correlates

Vadakekolathu et al®® TP53 AML

High expression of IFNG, FOXP3, immune checkpoints, markers of immune
senescence, and phosphatidylinositol 3-kinase-Akt and NF-kB signaling
intermediates

Sallman et al® TP53 AML

Reduced numbers of BM-infiltrating OX40" cytotoxic T cells and helper T cells
Decreased ICOS" and 4-1BB™ NK cells

Expansion of myeloid-derived suppressor cells and Treg cells

Increase of PD-L1 expression in HSCs

Dufva et al® TP53 AML
NPM1 AML
RUNX1 AML

High cytolytic score (especially in MDS-like cases) and high expression of PD-L1
Increased expression of VISTA and ULBP1 (NKG2D ligand)

High expression of B-cell-associated markers (BTN2A2, SLAMF7, and LY9) in
addition to HLA Il

Abbas et al*’ chr7/7q loss | AML

Higher Treg and CD8" T-cell infiltration, downregulation of IFN-y pathway genes,
and worse survival compared with AML cases with intact chr7/7q

cancers

Yeaton et al*® TET2 AML Emergence of inflammatory monocyte-like cells during progression to myeloid
transformation
Notarangelo et al*’ IDH1/IDH2 | Human IDH-mutant | Acute but reversible inhibition of CD8" T-cell proliferation, cytotoxicity, and IFN-y

signaling by oncometabolite b-2HG

p-2HG, p-2-hydroxyglutarate; ICOS, inducible T-cell costimulator; MDS, myelodysplastic syndrome; TIS, tumor inflammation signature.

intensive induction chemotherapy and emphasize the necessity
for immunotherapy agents with improved safety and efficacy
profiles.

The epigenetic regulator ten-eleven translocation 2 (TET2) is
mutated in 10% to 30% of AML cases. In mice carrying a
patient-derived TET2 missense mutation, progression to
myeloid transformation has been correlated with the emer-
gence of inflammatory monocyte-like cells,*® whose transcrip-
tional signature independently predicted shorter OS in a broad
AML validation cohort. Exploring whether a proinflammatory
TME affects response of TET2-mutated AML to CPIs could have
promising translational potential.

Isocitrate dehydrogenase (IDH 1) mutations, which are identified
in 6% to 10% of patients with AML and impart a poor prog-
nosis,** constrain T-cell accumulation and expression of IFN-
y=inducible chemokines in patients with lower-grade glioma.*®
Mechanistically, the oncometabolite b-2-hydroxyglutarate,
which is produced by cancers with gain-of-function mutations in
both IDH1 and IDH2, alters glycolysis in CD8" T cells and
reversibly inhibits their proliferation, antitumor killing capacity,
and expression of IFN-y gene programs.’” These findings
highlight a potential role for specific inhibitors of mutant IDH in
improving immunotherapy efficacy through the removal of
immunosuppressive D-2-hydroxyglutarate.

Inferred chr7/7q loss correlates with higher Treg and CD8" T-
cell infiltration, downregulation of IFN-y pathway genes, and
worse survival compared with AML cases with intact chr7/7q.*’
Finally, an immunogenomic analysis of TCGA cohorts and 8
clinical trials of anti—-PD-1/PD-L1 therapy in >1000 patients with

2692 € blood® 27 JUNE 2024 | VOLUME 143, NUMBER 26

solid tumors has uncovered that homozygous deletion of
9p21.3 (9p21 loss), a genomic defect occurring in ~13% of all
cancers and eliminating CDKN2A/B tumor suppressors, confers
“cold” tumor-immune phenotypes, with reduced abundance of
tumor-infiltrating lymphocytes, diminished immune-cell traf-
ficking/activation, decreased rate of PD-L1 positivity, activation
of immunosuppressive signaling, and primary resistance to
CPls.** A "response score” incorporating 9p21 loss, PD-L1
expression, and tumor mutational burden in pretreatment
tumors was shown to outperform PD-L1, tumor mutational
burden, and their combination in identifying patients who are
likely to achieve sustained response after CPl treatment.
Furthermore, 9p21.3 deletions encompassing a cluster of 16
type | IFN genes have been associated with dendritic cell (DC)
and CD8" T-cell dysfunction, derepression of solid tumor
metastasis, and immunotherapy resistance.”’ Notably, homo-
zygous deletions of type | IFN genes are very rare in AML (<1%
of patients who are queried), as indicated by our interrogation
of 1661 cases from the TCGA,*® Beat-AML," and TARGET-
AML®® cohorts accessed through the cBioPortal for Cancer
Genomics (30 April 2023). Determining whether AML with
KMT2A-MLLT3 fusion caused by t(9;11) is immunogenetically
distinct could be an interesting avenue for future research.

Type I/11 IFN signaling

IFNs are pleiotropic cytokines implicated in cancer immuno-
surveillance and immunotherapy response, although also
exerting protumorigenic effects in a context-dependent
manner.”’ Melanoma tumors harboring genomic defects in
type Il (IFN-y) pathway genes and amplification of [FN-y
pathway inhibitors SOCST and PIAS4 may be resistant to anti—
CTLA-4 and anti-PD-1 immunotherapy.””** The relationship
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between IFN-y signaling and CPI responses may indeed be
more complex than currently appreciated, as suggested by a
meta-analysis of 29 studies encompassing 2154 patients with
solid tumors from 7 different tissues.® Tumor-intrinsic muta-
tions of core IFN-y signaling genes, including JAK1, JAK2,
IFNGR1, IFNGR2, and STATI1, correlated with a greater likeli-
hood of responding to CPls. IFN-y signaling gene alterations
had opposing effects in vitro, with tumor screens identifying
positive selection for alterations in IFN-y pathway genes in the
setting of host immune pressure. Inflammatory and IFN-y gene
signatures, suggestive of preexisting anti-AML immune
responses, are associated with poor outcome across all
ELN2017 stratifications.” Although IFN-y-related RNA profiles
are good predictors of response to CPls in solid tumors as well
as in AML,77%° prolonged IFN-y signaling in tumor cells has
been shown to promote resistance to genotoxic damage
through STAT1-dependent molecular circuits.”® Whether pre-
treatment IFN-y signaling gene alterations in tumor cells pre-
clude or favor responses of AML to CPls remains to be
conclusively established.

Genes typically associated with type | IFN signaling are largely
detected in cancer cells and their tonic expression is maintained
by OAS1.%”%% Intact type | IFN signaling in cancer cells medi-
ates resistance to CD8" T-cell cytotoxicity after genotoxic

damage with or without anti-PD-L1 immunotherapy.®’
Responsiveness to type | IFN in peripheral immune cells, that
is, higher levels of basal IFN-I-stimulated proteins, is epige-
netically predetermined and correlates with solid tumor pro-
gression after anti-PD1 immunotherapy.®® Conversely, T cells
from “low responders” to type | IFN are enriched in pathways
for immune effector functions, RNA metabolism and oxidative
phosphorylation, and demonstrate a reduced exhaustion
signature.

Interrogation of TCGA solid tumors has indicated that immune
dysfunction is associated with high IFN resistance signatures in
cancer cells relative to a nonoverlapping set of IFN-stimulated
genes that are preferentially expressed by immune cells, such
as T cells, NK cells, and macrophages.®® Intriguingly, the
establishment of acquired CPI resistance correlated with
epigenetic features of IFN-associated “inflammatory memory,”
that is, with prolonged chromatin accessibility after signal
termination, in Res 499 melanoma tumors.>® Abolishing type |
IFN signaling through knock out of IFN o and f receptor subunit
1 (Ifnar1) in cancer cells increased immune-cell expression of
IFN-stimulated genes in myeloid cells, DCs, NK cells, and CD8™
T cells and restored the antitumor response.”® Orthogonal
single-cell transcriptome analyses predicted strong interactions
between CD8" T cells and proinflammatory type 3 DCs,*" and
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Figure 1. AML immune interplay and potential avenues for clinical translation. Current understanding of T-cell functional states and their effect on AML response to
chemotherapy, bispecific molecules, and CPls. Immune gene expression profiling (bulk and/or scRNA-seq) should be integrated with clinically validated prognosticators,
including ELN risk category, LSC17 score, and molecular lesions (TP53, RUNX1, IDH1/2, and TET2 mutational status), to accurately stratify patients with AML into subgroups
with substantially different survival probabilities. Patients with an IFN-y-dominant, immune-enriched TME could be allocated immunotherapies that target AML-induced T-cell
dysfunctional states, including T-cell engagers and CPls. TP53-mutated AML have been shown to respond to a CD123-targeting bispecific molecule. Conversely, patients with
a "cold,” immune-depleted profile could benefit from increasing T-cell trafficking to the TME and/or from priming therapies such as vaccines, adoptive T-cell transfer, or
allogeneic HSCT. Interventions that balance type | (tumor-cell intrinsic) and type Il (immune-cell intrinsic) IFN signaling could be instrumental to overcoming resistance to CPls
and other T-cell-based immunotherapies. In this respect, IFN-I hyporesponsiveness in tumor cells before anti-PD1 treatment has been correlated with long-term survival, as
discussed in the main text. Furthermore, abrogating cancer cell IFN-I signaling increases IFN-II signaling in immune cells, thereby expanding T cells toward effector-like
functional states. Red arrows denote inhibition; green arrows denote stimulation. GEP, gene expression profiling; LSC17, 17-gene leukemia stem cell; mAbs, monoclonal

antibodies; TAM, tumor-associated macrophage.
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highlighted an enhanced transition of CD8" T cells to an
effector-like state. This elegant body of work suggests that
inhibition of type | IFN signaling in cancer cells could antago-
nize CPl resistance through remodeling of inflammatory
epigenetic states and feedback modulation of immune cells.
Further discovery work on whether inducibility of type | IFN
genes correlates with immune function may offer potential
therapeutic relevance by allowing the identification of molec-
ularly defined AML subgroups unlikely to benefit from CPls
(Figure 1). A systematic evaluation of inherent AML blast
responsiveness to type | IFN might also reveal the molecular
basis for AML cell susceptibility and/or resistance to immune
attack.®? Future prospective studies in AML should ascertain
whether loss of IFN-y signaling pathway genes, including JAK1
and JAK2,>? affects immunotherapy responses by limiting the
release of T-cell-attracting chemokines and/or the upregulation
of antigen processing machinery genes. Despite the complexity
and rapidly evolving scenario of the cancer genome-
immunophenotype relationships, these examples illustrate
that select cancer-cell-intrinsic features and downstream
immunoregulatory pathways, including primary and acquired
insensitivity to IFNs, affect immunotherapy response. This
knowledge should inform the development of novel immune
interventions tailored to individual patients.

Impact of T-cell exhaustion and

senescence on therapy response
Chemotherapy

How T-cell derangement affects AML response to standard-of-
care chemotherapy, molecularly targeted therapies, and
immunotherapies is incompletely understood. Patients with
prolonged first complete remission (CR) (lasting >5 years) have
a TME at presentation that is relatively less immunosuppressive
and T cells that express lower levels of activation- and
exhaustion-associated genes.®® A landmark scRNA-seq study
highlighted quantitative defects in T/NK cells, an increase in
Treg cells, and predominance of T/NK cells after chemo-
therapy in a relatively small number of patients with AML.**
Another study using high-dimensional flow cytometry has
shown that the transcriptional profile of CD8" T cells diverges
between chemotherapy responders and nonresponders, with
the former patient group showing upregulation of cos-
timulatory molecules, downregulation of apoptotic and inhib-
itory pathways, and overall reversal of CD8" gene expression
signatures to a healthy-like pattern.®® A silenced gene
expression profile in CD8" T cells may correlate with longer OS
in patients with ELN favorable-risk AML, an observation that
establishes previously unappreciated links between clinically
validated cytogenetic abnormalities and the AML-immune
TME.®® We have shown that NK-like CD8" T cells with tran-
scriptional features of immune effector dysfunction (IED) are
more abundant in patients with TP53 and RUNXT mutations
and predict significantly shorter relapse-free survival and OS.>”
These CD8'CD57"KLRG1" senescent-lke T cells were
impaired in their ability to lyse autologous AML blasts when
activated with an anti-CD33/CD3 bispecific T-cell engaging
antibody construct. Teex with a GZMK'IL7R*CD8" phenotype
clonally expand in complete responders to induction chemo-
therapy compared with in nonresponders, and correlate with
prolonged 0S.” T cells with NK-like (KLRG1Y), effector
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memory (EM1), and cytotoxic T-lymphocyte (CTL11) transcrip-
tional profiles may be more abundant in relapsed/refractory (R/
R) AML compared with in newly diagnosed AML.%® The analysis
of gene regulatory networks associated with the aforemen-
tioned T-cell clusters revealed high activity of NFYB and STAT1
regulons, consistent with enhanced longevity and type | IFN
production. The latter finding was also confirmed by in silico
prediction of cytokine signaling activity.®® In agreement with
previous reports,” higher CD8 gene scores correlated with
worse survival in treatment-naive TCGA AML cases.®®

Finally, a high inflammation risk score has been associated with
adverse-risk molecular features, expanded Treg cells and
GZMK*CD8™ T cells, reduced event-free survival and OS, and a
myeloid-like phenotype,’? suggesting that inflammatory pro-
grams may be driven by AML blasts.®”

T-cell immunotherapies

Although conserved TME subtypes have been shown to
correlate with immunotherapy efficacy in multiple solid tumor
types,’? little is known conceming biomarkers of immuno-
therapy success and/or failure in AML (Table 3). A clinical trial of
azacitidine and nivolumab reported an overall response rate of
33% vs 20% in historical controls treated on hypomethylating
agent-based clinical trials, with pretherapy BM CD3™ and CD8"
T-cell frequencies being significantly associated with improved
overall response rate.”” Responses were largely measured in
patients who had received only 1 or 2 lines of prior salvage
therapy, suggesting that T-cell dysfunction associated with AML
progression and/or extensive treatment with chemotherapy
negatively affects response to CPls. In nonresponders, Th17-
like T cells coexpressing RORyt and inducible T-cell costim-
ulator were expanded on treatment.

In the recent CP-MGDO006-01 clinical trial, 47% (7 of 15) of
patients with R/R AML and TP53 abnormalities derived benefit
from flotetuzumab immunotherapy and had a significantly
higher tumor inflammation signature, FOXP3, and CD8 gene
expression scores at baseline compared with nonresponders,*”
likely reflecting an IFN-y—driven TME.”’® In line with this
observation, loss of TP53 correlates with enhanced expression
of immune checkpoints and effector T-cell-associated genes,
including IFN-y and CXCL9, in lung adenocarcinoma and with
improved responses to CPI treatment.”” In contrast, TP53%'72"
gain-of-function mutations in pancreatic tumors drive the
recruitment of immunosuppressive CD11b*Ly6G™ neutrophils,
which promote resistance to combination CD40 immuno-
therapy and chemotherapy.® Further studies should dissect the
functional state of BM-infiltrating neutrophils in TP53-mutated
AML, both in patients who are treatment naive and after
immunotherapy, also in light of recent evidence supporting a
key role for Sellhish neutrophils in mediating response of lung
cancer to T-cell-targeting approaches.?’ Intriguingly, anti-OX40
antibodies might elicit neutrophils with a distinct anti-
tumorigenic, activated phenotype in mice with melanoma.®?

CTLA-4 inhibition with ipilimumab in relapse of AML after
hematopoietic stem cell transplantation (HSCT) and other
hematological malignancies induces responses in approxi-
mately one-third of patients, with an acceptable safety pro-
file.”"’¢ Correlative analyses revealed upregulation of CD8A
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Table 3. Immune correlatives of immunotherapy success and failure in AML

Treatment

Disease

Number of
patients, N

Immune correlates

Trial ID

Davids et al”’ Ipilimumab Post-HSCT relapse 28 Infiltration of cytotoxic CD8" T cells, decreased | NCT01822509
activation of Treg cells, and expansion of
effector T cells in responders
Daver et al’? Azacitidine + R/R AML 70 Pretherapy BM CD3" and CD8" T cells associate [ NCT02397720
nivolumab with improved ORR
Th17 cell expansion in nonresponders
Vadakekolathu | Flotetuzumab R/R AML 88 (15 with | TIS higher at baseline in responders NCT02152956
etal” and TP53
Uy et al'® mutations)
Zeidner et al”® | High-dose R/R AML 37 Higher frequency of CD8" Teex expressing TCF-1 [ NCT02768792
cytarabine + at baseline in responders
pembrolizumab
Abbas et al*’ Azacitidine + R/R AML 8 Higher abundance of CD8*GZMK*TCF7™" T cells | NCT02397720
nivolumab in responders
Loss of chr7/7q associated with NR
Goswami et al’* [ Decitabine + R/R AML 10 irAEs linked to clonal expansions of CD8"PD1* [ NCT02996474
pembrolizumab effector T cells
Rutella et al*® Azacitidine + R/R AML 33 Dysfunctional NK-like CD8" T cells associated NCT02845297
pembrolizumab with NR to pembrolizumab
Rimando et al’® | Azacitidine + Newly diagnosed 31 Differentiated blasts (promonocytic profile) NCT02845297
pembrolizumab and R/R AML 18 expanded in responders NCT02768792
High-dose
cytarabine +
pembrolizumab
Garcia et al’® Decitabine + R/R AML (after HSCT 54 Immune activation (irAEs) associated with survival [ NCT02890329
ipilimumab and HSCT naive) benefit
Penter et al’’ Decitabine + R/R AML (after HSCT 18 Altered CD4" T-cell gene expression after NCT02890329
ipilimumab and HSCT naive) ipilimumab. Increased infiltration with antigen—
experienced resident memory T cells in
leukemia cutis samples from responders.

irAEs, immune-related adverse events; NR, no response; ORR, overall response rate; TCF-1, T-cell factor 1; TIS, tumor inflammation signature.

and PRFT in tissue biopsies, decrease of circulating Treg cells,
and increase of T-cell-attracting chemokines in association with
clinical response. The Experimental Therapeutics Clinical Trials
Network (ETCTN) 9204 trial demonstrated that ipilimumab can
induce regression of post-HSCT relapsed AML, possibly
through recruitment of cytotoxic CD8" T cells to leukemic
sites.”’””” However, immune-related adverse events, including 1
death, were observed in 6 patients (21%) and graft-versus-host
disease precluding further administration of ipilimumab was
documented in 4 patients (14%). Integrative transcriptomic
analyses of clinical samples from the ETCTN/Cancer Therapy
Evaluation Program (CTEP) 10026 study testing the combina-
tion of decitabine and ipilimumab for AML/myelodysplastic
syndrome either after HSCT or in the HSCT-naive setting
unveiled a strong association between a high baseline ratio of
T-to-AML cells and response, and showed evidence of immune
activation after ipilimumab exposure.”” In responders, including
patients with leukemia cutis, CD8" T cells were recruited to
extramedullary sites,®® which harbored ZNF683" antigen—
experienced tissue-resident memory T cells. These findings
suggest that ipilimumab may counteract the establishment of
protective, antiapoptotic extramedullary AML niches."

IMMUNE CHECKPOINT BLOCKADE IN AML

A first-in-human clinical trial of pembrolizumab and decitabine
for R/R AML has identified changes in TCR sequences and
immune transcriptomes of patients who develop immune-
related adverse events.” Clonal expansions occurred at irAE
onset and largely involved CD8" effector memory T cells with
high expression of PD-1 and transcriptional features reflective
of an activation/cytotoxic state. Another study leveraging
paired scRNA-seq and TCR profiling of BM samples in R/R AML
has documented TCR repertoire expansion and higher abun-
dance of stem-like CD8"GZMK*TCF7* T cells in responders to
azacitidine and nivolumab and in patients having a stable dis-
ease.” In contrast, lack of response to nivolumab was corre-
lated with TCR repertoire contraction and with inferred loss of
chr7/7q in the malignant cells. One patient who responded to
immunotherapy had an expansion of mucosal-associated
invariant T cells after treatment. Importantly, mucosal-
associated invariant cytotoxic T lymphocytes displayed the
highest fraction of expanded clones, suggesting that CD8" cells
in AML can be effectively reinvigorated by CPIs. Interestingly, a
Th1-like state in pretreatment BMs correlated with better out-
comes, highlighting a previously unappreciated role for CD4* T
cells in mediating response of AML to CPls.®* We showed that
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I[ED multigene signatures encompassing CD8/NK markers
correlate with resistance to pembrolizumab, pointing to T-cell
exhaustion and senescence as targetable circuits to overcome
immune dysfunction.>® IED scores also correlated with shorter
OS in patients with melanoma who received no previous sys-
temic therapy, as well as with lack of response to CPI treate-
ment,>®> suggesting that AML may share immunological
hallmarks with solid tumor types.

Deconvolution of transcriptomic data from >1000 pediatric and
adult patients with AML has allowed the establishment of a
novel cellular hierarchy framework from single-cell reference
profiles of leukemia stem, progenitor, and mature cell types.®
Leukemia hierarchy composition varied across functional and
genomic subtypes of AML and was associated with response to
chemotherapy, survival, and drug sensitivity profiles of investi-
gational targeted therapies. Genes predicting shorter survival
were enriched for HSC-specific programs, whereas genes
associated with longer survival were enriched for granulocyte-
macrophage progenitor—specific programs. By relapse, malig-
nancies in most patients were classified as primitive with sig-
nificant expansion of total leukemia stem and progenitor cell
populations and quiescent leukemia stem and progenitor cells.
Recent observations indicate that AML stem cell hierarchies
could also affect response to CPls. Compared with non-
responders, patients achieving CR to pembrolizumab in com-
bination with either azacitidine®® or high-dose cytarabine’® had
higher inferred proportions of differentiated AML blasts,
including cells with a promonocyte-like transcriptional profile.””
Conversely, AML blasts from nonresponders had higher stem-
ness scores at baseline. Finally, CPI efficacy could be improved
by increasing NK recognition of AML targets. LSCs lack
expression of NKG2D ligands, which is reversed by genetic or
pharmacological inhibition of PARP1.2”#% Importantly, a stim-
ulatory DC-NK axis has been associated with melanoma
response to CPls and with prolonged OS.%

Chimeric antigen receptor (CAR) T cells

CART cells are genetically modified autologous T cells equipped
with a synthetic antigen-binding domain and additional cos-
timulatory domains, enabling MHC-independent target recog-
nition.”® In 2011, second-generation CAR T cells targeting CD19,
which is expressed in B-cell malignancies, emerged as the lead
paradigm for engineered T-cell therapies in cancer.”’ However,
CAR T-cell therapy is challenging in AML, owing to lack of an
ideal target and concems over prolonged myelosuppression.”
AML antigens, which are not significantly expressed on normal
BM progenitor populations, such as B7-H3,”* are being evalu-
ated with the aim to minimize hematopoietic toxicity. A high-
resolution single-cell expression approach has identified
colony-stimulating factor 1 receptor and CD86 as candidate
targets for CAR T-cell therapy, with minimal off-target toxicity in
preclinical models of AML.7*

Novel insights into the basis of clinical resistance to CAR T cells
are surfacing. CAR T-cell exhaustion has been proposed as a
mechanism of tumor escape in patients with large B-cell lym-
phoma.”® Failure to achieve an early molecular response to
CD19 CAR T cells has been associated with CD8" T-cell
exhaustion and high frequency of LAG3"TIM3"CAR™CD8" T
cells.”® Chronically stimulated mesothelin-directed CD8* CAR T
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cells upregulate exhaustion markers and acquire a dysfunctional
phenotype with high levels of NK receptors and checkpoint
molecules.”” Furthermore, genes upregulated in CAR T cells
collected on day 28 after infusion partially overlapped with
genes expressed by intermediate and terminally exhausted T
cells from LCMV-infected mice. Disruption of the transcription
factors ID3 and SOX4 using CRISPR-CRISPR-associated protein
9 translated into a reduction in the frequency of dysfunctional
NK-like T cells compared with wild-type cells and into enhanced
tumor killing.”” In this respect, in AML-bearing mice, pretreat-
ment of AML cells with hypomethylating agents has been
shown to augment CD123 expression and to expand CTLA-4"¢9
anti-CD123 CAR T cells with superior cytotoxic activity.”® This
study suggests that epigenetic modifiers could be combined
with CD123-targeting CAR T cells for AML treatment.

Immune landscape of AML relapsing after
allogeneic HSCT

Treatment of relapse of AML after HSCT remains a challenge.
Only 20% of patients who respond to further chemotherapy
achieve long-term remissions with a second HSCT or with
chemotherapy followed by donor lymphocyte infusions.> AML
blasts at relapse express low/undetectable MHC-II, ultimately
favoring immune escape.””'%" In this respect, flotetuzumab
may reactivate alloreactive T cells by upregulating MHC-II on
AML cells through local release of IFN-y.'%? Inhibitory receptors
(IRs) and other immune-related genes are more highly
expressed on purified AML blasts from patients with post-HSCT
relapse compared with those from patients with post-
chemotherapy relapse,'®" highlighting the potential for CPls to
reinvigorate T cells and restore beneficial anti-AML immune
responses also in this setting, as further discussed hereafter. In
patients with AML relapsing after a long phase of post-HSCT
clinical remission, functionally impaired but leukemia-reactive
CD8" T cells expressing IRs CTLA-4 and TIM-3 accumulate in
the TME."®® Importantly, the exhausted phenotype of IR* T cells
could be partly reverted by in vitro exposure to high doses of IL-
2, with T cells recovering their polyfunctionality (IFN-y and TNF-
a secretion) but not the ability to produce IL-2."%

It is now established that tumor cells impose metabolic con-
straints on T cells through glucose depletion and generation of
large amounts of lactate and other immunosuppressive
byproducts in the TME."® In this respect, blood T cells isolated
from patients with post-HSCT relapse of AML exhibit reduced
glycolysis and IFN-y production compared with matched
specimens collected at time of disease remission.'®> AML-
derived lactic acid negatively affected T-cell-mediated control
of AML in a humanized MOLM-13 xenograft model. T-cell
dysfunction was reversed after in vitro treatment of CD8" T cells
with sodium bicarbonate.'®® A synergism between sorafenib
and donor lymphocyte infusions has been documented in
patients with FLT3-ITD* AML who relapse after HSCT."% Serum
IL-15 and IFN-y levels, as well as blast IL15 and IRF7 messenger
RNA, were increased in patients who achieved a complete
hematological remission. Concomitantly, metabolic rewiring of
blood CD8* T cells was documented.'® This study suggests
that sorafenib might promote a strong graft-versus-AML effect
in patients with FLT3-ITD* AML relapse after HSCT, who would
otherwise have a dismal prognosis. Finally, machine learning—
informed analyses of longitudinal, paired BM samples have
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revealed novel intriguing associations between proin-
flammatory signaling and AML progression, including over-
expression of CDé, which encodes a lymphoid-associated
surface glycoprotein involved in immune synapse formation, in
adult patients at time of relapse.'”’

Conclusions and perspectives

CPI therapy has been particularly challenging in AML. However,
recent advances in multimodal omics technologies have
considerably deepened our knowledge of the dynamic cellular
interactions at the AML immune interface, highlighting both
AML-associated and conserved, pan-cancer pathways that
could be modified to overcome immune resistance. We pro-
pose that immune gene expression profiling be integrated with
clinically validated prognosticators, including ELN risk category,
17-gene LSC score, and molecular lesions (TP53, RUNX1, IDH1/
2, and TET2 mutational status), to accurately stratify AML into
subgroups with substantially different survival probabilities
(Figure 1). Patients with an IFN-y—dominant, immune-enriched
TME could be allocated immunotherapies that aim to rein-
vigorate dysfunctional T cells, including T-cell engagers and
CPIs. Conversely, patients with a “cold,” immune-depleted
transcriptional profile could benefit from other therapeutic stra-
tegies, such as increasing T-cell trafficking to the BM TME and/or
vaccines, adoptive T-cell transfer, and allogeneic HSCT. Immu-
notherapies targeting immunological hallmarks, such as type |
(tumor-cell intrinsic) and type Il (immune-cell intrinsic) IFN
signaling, and combinatorial approaches incorporating CPls and
molecularly targeted agents that might enhance T-cell-mediated
anti-AML activity such as venetoclax'®"%? should be explored in
future AML clinical trials. It will also be essential to identify and
validate immune correlates of response, resistance, and toxicity
in patients with AML who are treated with CAR T cells, to devise
strategies to antagonize CAR T-cell exhaustion and senescence,
and to neutralize metabolic barriers in the TME.""®

The observation that chemotherapy reduces the expression of
T-cell checkpoints''" raises important questions regarding
optimal timing of immunotherapy and leads to the conjecture
that CPls could be more effective as a first-line treatment option
rather than after multiagent chemotherapy and/or HSCT.
Recent data showing an increase of IED scores after cytotoxic
chemotherapy, irrespective of the achievement of CR,*® lend
additional credence to the concept that immunotherapy, either
alone or in combination with orthogonal cytoreduction strate-
gies,""? could yield superior results if patients were treated
earlier in their disease course rather than in the R/R setting.
Further research is needed to elucidate whether chemotherapy-
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