

1 **Release of IFN- γ by acute myeloid leukemia cells remodels bone marrow immune
2 microenvironment by inducing regulatory T cells**

3 Giulia Corradi,^{1#} Barbara Bassani,^{2#} Giorgia Simonetti,³ Sabina Sangaletti,² Jayakumar
4 Vadakekolathu,⁴ Maria Chiara Fontana,³ Martina Pazzaglia,³ Alessandro Gulino,⁵ Claudio Tripodo,⁵
5 Gianluca Cristiano,¹ Lorenza Bandini,⁶ Emanuela Ottaviani,⁶ Giovanni Martinelli,³ Mario Paolo
6 Colombo,² Sergio Rutella,^{4,7} Michele Cavo,^{1,6} Marilena Ciciarello*⁸ and Antonio Curti*⁶

7

8 ¹ Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna,
9 Bologna, Italy; ² Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy; ³ IRCCS Istituto
10 Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST, Meldola (FC), Italy; ⁴ John van Geest
11 Cancer Research Centre, College of Science and Technology, Nottingham Trent University,
12 Nottingham, UK; ⁵ Tumor Immunology Unit, Department of Health Sciences, University of
13 Palermo, Palermo, Italy; ⁶ IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di
14 Ematologia "Seragnoli", Bologna, Italy; ⁷ Centre for Health, Ageing and Understanding Disease
15 (CHAUD), Nottingham Trent University Clifton Campus, Nottingham, UK. ⁸ Istituto di Ematologia
16 "Seragnoli", Bologna, Italy

17

18 [#] G.C. and B.B. contributed equally to this study.

19 * M. Ciciarello and A.C. contributed equally to this study.

20

21 **Running title:** IFN- γ and leukemic microenvironment

22 **Keywords:** IFN- γ , acute myeloid leukemia, leukemic microenvironment, regulatory T cells,
23 stromal microenvironment

24 **Financial support:** this research was supported by FATRO/Foundation Corrado and Bruno Maria
25 Zaini-Bologna, Fabbri1905 and Bologna AIL (Associazione Italiana contro le Leucemie)/Section of
26 Bologna, Associazione Italiana per la Ricerca sul Cancro (IG22204 to SS and IG20654 to AC). MC
27 was supported by the University of Bologna (Alma Idea Junior Grant 2017) and the American
28 Society of Hematology (ASH)/Giuseppe Bigi Memorial Award. BB is funded by the FIRC-AIRC

29 (Fondazione Italiana per la Ricerca sul Cancro) fellowship "Guglielmina Lucatello e Gino
30 Mazzega".

31

32 **Correspondence:** Prof. Michele Cavo, Istituto di Ematologia "Seragnoli", Dipartimento di
33 Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna
34 Via Massarenti 9, 40138 Bologna, Italy. Tel: +39-0512143809, +39-0512143537; Fax: +39-
35 051398973; e-mail: michele.cavo@unibo.it

36

37 Marilena Ciciarello, Ph.D., Istituto di Ematologia "Seragnoli", Dipartimento di Medicina
38 Specialistica, Diagnostica e Sperimentale, Università di Bologna, Via Massarenti 9, 40138 Bologna,
39 Italy. Tel.: +39-0512143064; Fax: +39-0512144037; e-mail: marilena.ciciarello2@unibo.it

40

41 **Authors' Disclosures**

42 The authors declare no potential conflicts of interest.

43

44 **Word count: 4292**

45 **Number of figures and tables: 6**

46

47

48

49

50

51

52

53

54

55 **Translational significance**

56 In most tumors, IFN- γ provides a signal resulting in enhanced anti-tumor immunity and better clinical
57 outcome. By contrast, our study reveals the “dark side” of IFN- γ in the creation of an immune-
58 tolerant microenvironment enriched in Tregs and correlated with a worse prognosis in AML patients.
59 *In vitro* and *in vivo* results demonstrate that IFN- γ released by AML cells, not by leukemia-infiltrating
60 immune cells, remodels the BM immune and stromal microenvironment by inducing suppressive
61 Tregs. Given the emerging role of immunotherapies for AML, our findings support the incorporation
62 of a new panel of microenvironment-based immunological factors into current AML classification
63 and prognostication systems. Moreover, a greater understanding of the IFN- γ -dependent tolerogenic
64 tuning of the BM microenvironment provides the rationale for therapies targeting IFN- γ -driven
65 immune-modulatory effects on stromal and immune AML microenvironment, i.e., IDO1 inhibitors,
66 and combining the activation of effector cells with the inhibition of Tregs.

67

68 **Abstract**

69 **Purpose:** The stromal and immune bone marrow (BM) landscape is emerging as a crucial
70 determinant for acute myeloid leukemia (AML). Regulatory T cells (Tregs) are enriched in the AML
71 microenvironment, but the underlying mechanisms are poorly elucidated. Here, we addressed the
72 effect of IFN- γ released by AML cells in BM Tregs induction and its impact on AML prognosis.

73 **Experimental design:** BM aspirates from AML patients were subdivided according to *IFNG*
74 expression. Gene expression profiles in *INF G^{high}* and *INF G^{low}* samples were compared by microarray
75 and NanoString analysis and used to compute a prognostic index. The IFN- γ release effect on the BM
76 microenvironment was investigated in mesenchymal stromal cell (MSC)/AML cell co-cultures. In
77 mice, AML cells silenced for IFN- γ expression were injected intrabone.

78 **Results:** *IFNG^{high}* AML samples showed an upregulation of inflammatory genes, usually correlated
79 with a good prognosis in cancer. By contrast, in AML patients, high *IFNG* expression associated with

80 poor overall survival. Notably, IFN- γ release by AML cells positively correlated with a higher
81 frequency of BM suppressive Tregs. In co-culture experiments, IFNG^{high} AML cells modified MSC
82 transcriptome by up-regulating IFN- γ -dependent genes related to Treg induction, including
83 indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 inhibitor abrogated the effect of IFN- γ release by AML
84 cells on MSC-derived Treg induction. *In vivo*, the genetic ablation of IFN- γ production by AML cells
85 reduced MSC IDO1 expression and Treg infiltration, hindering AML engraftment.

86 **Conclusions:** IFN- γ release by AML cells induces an immune-regulatory program in MSCs and
87 remodels BM immunological landscape toward Treg induction, contributing to an immunotolerant
88 microenvironment.

89

90

91

92

93

94

95

96

97

98

99

100 **Introduction**

101 Acute myeloid leukemia (AML) is a heterogeneous clonal disease that develops from a rare
102 population of bone marrow leukemic stem cells (1). For many years, cytogenetic and molecular
103 aberrations in hematopoietic stem cells were considered the only causative factors in AML onset
104 and development. Recently, this notion has been challenged, and it is now established that AML
105 pathophysiology also depends on the bone marrow (BM) microenvironment (2,3).

106 A component of the BM microenvironment that is crucial to AML pathophysiology is the
107 immunological landscape (4,5). Aberrant cytokine production and a profound dysregulation of the
108 frequency and function of immune cell subsets induce an immunosuppressive milieu, which favors
109 the escape of AML cells from immune control (6,7). In particular, the BM microenvironment in
110 AML is enriched in regulatory T cells (Tregs) (8,9), which contribute to the immunosuppressive
111 phenotype (10), chemoresistance, and disease relapse (8,11). The induction and the suppressive
112 functions of Tregs are regulated, among others, by mesenchymal stromal cells (MSCs) (12),
113 recognized as pivotal contributors to the hematopoietic stem cell niche (13). A crucial mediator of
114 MSC-driven Treg induction is indoleamine 2,3-dioxygenase 1 (*IDO1*) (14,15), a well-known
115 tryptophan metabolizing enzyme contributing to the immunosuppressive tumor microenvironment
116 (16). Notably, MSCs are not constitutively immunosuppressive but rather acquire this capacity,
117 including the ability to induce Tregs, in response to pro-inflammatory stimuli (14,15).

118 Inflammation has recently emerged as a hallmark of cancer (17). Along with its pro-tumorigenic
119 effects, inflammatory signals also influence the host immune response inhibiting tumor
120 development (18). One such signal is interferon (IFN)- γ , a cytokine produced predominantly by T
121 cells and natural killer (NK) cells that suppresses hematopoiesis and is a master regulator of innate
122 and adaptive immunity (19,20). In the tumor microenvironment, IFN- γ orchestrates an array of anti-
123 proliferative, pro-apoptotic, anti-tumor, immune-activating responses (21). IFN-related gene
124 signature is a favorable predictive marker for chemotherapy and radiotherapy efficiency as well as

125 immunotherapy in various types of malignancies (22,23). However, emerging and seemingly
126 paradoxical findings indicate that IFN- γ can also be involved in pathways supporting tumorigenesis
127 and immune evasion (24).

128 This study aimed to address whether IFN- γ regulates immunological changes of the BM
129 microenvironment in AML. For this purpose, we used BM aspirates from AML patients, cell-
130 culture systems, and a murine AML model to investigate the ability of AML cells to favor the
131 establishment of a Treg-centered immunosuppressive microenvironment through the release of IFN-
132 γ .

133

134

135

136

137

138

139

140

141

142

143

144

145 **Materials and Methods**

146 The Supplementary Methods detail procedures for primary cell isolation, qRT-PCR, flow
147 cytometry, western blotting, immunohistochemistry, immunofluorescence, and prognostic index
148 calculation.

149 **Ethics statement**

150 This study is part of ongoing research approved by the Independent Ethics Committee of the Area
151 Vasta Emilia Centro (94/2016/O/Tess). AML patients and healthy BM donors were recruited at
152 Seragnoli Hematology Institute in Bologna. Clinical samples and data were collected with written
153 informed consent. The investigations were conducted in accordance with the Declaration of
154 Helsinki.

155 **Biological samples and cell cultures**

156 BM aspirate samples were collected from 49 AML patients at diagnosis (blasts $\geq 80\%$) and 8 healthy
157 donors (Supplementary Table S1). BM samples were used to isolate mononuclear cells. Throughout
158 the text, we referred to IFN- γ ^{high} or IFN- γ ^{low} AML cells as BM cells in the large majority ($\geq 80\%$)
159 expressing blast cell-associated markers and co-expressing IFN- γ , respectively above or below the
160 median within our AML patients' cohort. BM samples were also used to isolate MSCs
161 (Supplementary Methods).

162 **GeneChip gene expression profiling**

163 The first part of the study used gene expression data generated for our previous studies, specifically
164 from BM mononuclear cells of 61 AML patients (blasts $\geq 80\%$) (GSE161532) (25) and 7 healthy
165 BM donors (not previously reported). The patients include 29 men and 32 women of mean age 60.1
166 (SD = 11.9) years. In all cases, mononuclear cells had been isolated from BM aspirates by density
167 gradient centrifugation and lysed in RLT buffer (Qiagen). RNA was extracted and reverse-
168 transcribed into cDNA as previously reported (26). cDNA was hybridized to GeneChip Human

169 Transcriptome Assay 2.0 microarrays (Thermo Fisher Scientific). Data were analyzed using
170 Transcriptome Analysis Console 4.0 software (Thermo Fisher Scientific) and the SST-RMA (signal
171 space transformation – robust multiple-array average) algorithm.

172 GeneChip data for *IFNG* mRNA were used to dichotomize the AML cell preparations into an
173 $IFNG^{low}$ group (below the median) and $IFNG^{high}$ group (above the median). Then, for all genes, fold
174 change (FC) in expression was calculated as $IFNG^{high}/IFNG^{low}$. Genes with $|FC| \geq 2.0$ and $P \leq 0.05$
175 (according to Transcriptome Analysis Console software) were considered differentially expressed. A
176 heatmap of differentially expressed genes (DEGs) was generated using ClustVis (27). DEGs were
177 attributed to macro-pathways according to pathway analysis and functional annotation (GeneCards)
178 and analyzed using Enrichr (<https://amp.pharm.mssm.edu/Enrichr/>)(28).

179 **Amplification-free gene expression profiling**

180 Messenger RNA was extracted from BM mononuclear cells of AML patients (18 men and 6
181 women; mean age, 53.4 years; SD=17.6 years) (Supplementary Table S1) using Maxwell RSC
182 simplyRNA Blood Kit (Promega). Samples (100-150 ng) were analyzed on the nCounter FLEX
183 system using the PanCancer IO 360 Panel (NanoString Technologies). Reporter probe counts were
184 analyzed using nSolver software (v4.0.62) and nSolver Advanced Analysis module (v2.0.115).
185 Captured transcript counts were normalized to the geometric mean of the included reference genes
186 and internal positive controls. DEGs between $IFNG^{high}$ and $IFNG^{low}$ groups (based on qRT-PCR)
187 were identified using $|\log_2 FC| > 2.0$ and $P < 0.05$ (Benjamini–Yekutieli false discovery rate, Student's
188 *t* test). The nSolver software package was used to calculate, for each sample, biological activity, and
189 pathway scores, as linear combinations of pre-defined gene sets. STRING (<https://string-db.org/>)
190 was used to analyze functional interaction networks.

191

192

193

194 **Co-culture experiments**

195 To study the effects of AML cells on BM-derived MSCs, we used two-chamber co-cultures with
196 MSCs in the lower and AML cells in the upper chamber. Cells were cultured for up to 4 days and
197 recovered for analyses (Supplementary Methods).

198 **Murine model of AML**

199 Animal studies were approved by the Committee for Animal Welfare of Fondazione IRCCS Istituto
200 Nazionale dei Tumori and Italian Ministry of Health (authorization 781/2018-PR) and performed
201 following Italian law D.lgs 26/2014. To create a murine model of AML, the murine acute leukemia
202 cell line C1498 was infected with lentiviral particles containing a vector expressing *Ifng*-specific
203 interfering shRNA (shIFN- γ) or non-specific shRNA (control cells). These cells were injected into
204 the tibias of C57BL/6 mice. BM cells were later obtained for analysis (Supplementary Methods).

205 **Data availability**

206 For the original gene expression data, please contact: giorgia.simonetti@irst.emr.it. For the original
207 NanoString nCounter FLEX data, please contact: sergio.rutella@ntu.ac.uk. Gene expression and
208 Nanostring data have been deposited in NCBI's Gene Expression Omnibus and are accessible
209 through GEO Series accession numbers GSE161532 (AML)(25), GSE155441 (MSCs vs.
210 AML/MSCs), and GSE146204 (NanoString).

211 **Statistical analysis**

212 Tests used in statistical analyses are indicated in the figure legends. $P<0.05$ was considered
213 significant. Analyses were done using GraphPad Prism software (v6.0).

214

215

216

217 **Results**

218 **IFNG^{high} AML samples have a gene signature enriched in IFN- γ signaling, inflammatory, and**
219 **immune-response pathways, which correlates with poor clinical outcome**

220 To clarify the role of IFN- γ signaling in AML, we first compared *IFNG* mRNA levels in BM
221 aspirates of AML patients and healthy donors (Fig. 1A). From existing GeneChip microarray data,
222 it emerged that *IFNG* mRNA levels in AML samples had a broad distribution skewed to higher
223 values. The median was used to dichotomize AML samples into IFNG^{low} and IFNG^{high} groups (Fig.
224 1B). Expression levels in IFNG^{low} and IFNG^{high} groups were lower and higher, respectively, than in
225 samples from healthy BM donors.

226 To determine whether the groups of AML cells differed in overall gene expression, we used the
227 same data to identify differentially expressed genes (DEGs) and found 47 up-regulated and 19
228 down-regulated genes in the IFNG^{high} group compared to the IFNG^{low} group (Fig. 1C,
229 DataSheet_page1). Ranking DEGs in macro-pathways revealed that 19 genes belonged to
230 inflammation and immune response pathways. Notably, the IFNG^{high} group had lower expression
231 levels of genes involved in immune responses (e.g., *CIITA*, *CD180*, *CD1C*) and higher expression
232 levels of genes involved in inflammation (e.g., *CXCL8*, *CCL4*, *CXCL2*). Enrichment analysis
233 revealed that the DEGs were involved in IFN- γ response pathways, including cytokine-mediated
234 signaling, among other pathways (Supplementary Table S2).

235 To further investigate this phenomenon, we analyzed 24 BM samples of AML patients. qRT-PCR
236 on *IFNG* mRNA was used to dichotomize samples into IFNG^{high} and IFNG^{low} groups. The
237 expression of 750 cancer-related genes was profiled in an amplification-free manner on the
238 nCounter platform using the PanCancer IO 360 Panel (NanoString). Samples classified as IFNG^{high}
239 expressed significantly higher levels of *IFNG* mRNA than IFNG^{low} AML samples (Supplementary
240 Fig. S1A).

241 These data were then used to identify DEGs between IFNG^{high} and IFNG^{low} groups (**Fig. 2A**,
242 DataSheet_page2). *CD28*, *CXCL8* *GZMH*, *GZMA*, *IFIT1*, *CD8A*, and *CD3G* were among the most
243 significantly up-regulated genes in IFNG^{high} samples, corroborating the relationship between high
244 IFNG expression and modulated IFN- γ signaling observed above (**Fig. 1C**; Supplementary Table
245 S2). Pathway analysis revealed an enrichment of DEGs in KEGG pathways related to T cell
246 receptor signaling, Th1 and Th2 cell differentiation, Wnt, and NF- κ B signaling (Supplementary
247 Table S3). Network interaction analysis showed the DEGs involved in molecular pathways known
248 to be enriched in solid cancers (Supplementary Fig. S1B).

249 We then used the DEGs to compute 25 biological activity and pathway scores (**Fig. 2B**). IFNG^{high}
250 samples expressed higher levels of genes belonging to PI3K-Akt, MAPK, JAK/STAT, and NF- κ B
251 signaling pathways. In contrast, IFNG^{low} samples had increased expression of gene sets reflecting
252 epigenetic regulation, DNA damage repair, cellular proliferation, and autophagy.

253 Finally, using NanoString data for all 24 samples, we examined correlations in expression between
254 IFNG and genes activated by IFN- γ signaling (**Fig. 2C**). IFNG expression correlated positively with
255 that of *IDO1*, nitric oxide synthase 2 (*NOS2*), interferon regulatory factor 1 (*IRF1*), and granzymes
256 *GZMB* and *GZMM*, but not programmed death-ligand 1 (*PD-L1*).

257 These results prompted us to evaluate the impact of IFNG expression on the clinical outcomes of
258 AML patients. We computed a prognostic index (PI), as previously published (29), based on
259 expression levels of the 30 DEGs from our NanoString analysis (DataSheet_page2), which was
260 applied to 149 cases of non-promyelocytic AML from the TGCA project (30). Survival analysis
261 revealed that patients whose PI was above the median had significantly shorter overall survival than
262 those with a PI below the median (**Fig. 2D**). Remarkably, only the up-regulated genes contributed to
263 poor survival; the down-regulated genes were not prognostic (Supplementary Fig. S1C and S1D).

264 Overall, these data suggest that IFNG^{high} and IFNG^{low} AML samples express distinct gene signatures.
265 Intriguingly, along with genes belonging to inflammatory pathways, high *IFNG* expression also
266 correlated with high expression of immunosuppressive genes induced by IFN- γ signaling and
267 associated with a poor clinical outcome.

268 **High IFN- γ production by AML cells results in increased Tregs in the BM**

269 We next investigated whether all BM cells synthesize IFN- γ or if specific cell populations were
270 responsible. BM mononuclear cells of AML patients (Supplementary Table S1) were stained for CD3,
271 blast cell-associated markers (i.e., CD34, CD33, or CD117), and intracellular IFN- γ . Flow cytometry
272 showed that a substantial fraction of CD3⁻ cells expressing a blast-surface marker contained IFN- γ
273 (**Fig. 3A**). Similar to *IFNG* mRNA data (**Fig. 1A**), there was high inter-patient variability in the
274 fraction of IFN- γ ⁺ AML cells (median, 21.1%; range, 2.1%-67.0%), allowing us to dichotomize at
275 the median into IFN- γ ^{high} and IFN- γ ^{low} groups (**Fig. 3B**, Supplementary S2A, S2B, and S2C). The
276 mean percentages of IFN- γ ⁺ cells in the IFN- γ ^{high} and IFN- γ ^{low} groups were 35.9% and 6.4%,
277 respectively (**Fig. 3B**). This percentage in the IFN- γ ^{high} group was significantly different from that in
278 CD34⁺ cells from healthy BM donors. Similar results were obtained by analyzing the IFN- γ mean
279 fluorescence intensity (Supplementary Fig. S2B). AML samples classified as IFN- γ ^{high} and IFN- γ ^{low}
280 had similar, low percentages of CD3⁺, CD8⁺, NK, and other cell types (**Fig. 3C**). Within these cell
281 populations, the fraction of IFN- γ ⁺ cells associated with group assignment (IFN- γ ^{high} vs. IFN- γ ^{low})
282 only for AML cells (**Fig. 3D**).

283 We further investigated the immune cell composition of AML samples according to IFN- γ production
284 by AML cells, and we found that the percentage of CD4⁺CD25⁺CD127^{low/-} cells (namely Tregs) (31)
285 was significantly higher in IFN- γ ^{high} than in IFN- γ ^{low} and healthy donor samples (**Fig. 3E**).
286 Furthermore, there was a positive correlation between the percentages of Tregs and IFN- γ ⁺ AML cells
287 (**Fig. 3F**). Notably, the percentage of activated Tregs, which mostly retain suppressive activity among
288 Treg subsets (32) and cytotoxic T-lymphocyte antigen (CTLA)-4⁺PD-1⁺ suppressive Tregs were

289 higher in IFN- γ ^{high} than IFN- γ ^{low} samples (**Fig. 3G**, Supplementary Fig. 2D). Consequently, the ratios
290 between Tregs and both CD4⁺ and CD8⁺ T effector cells were higher in IFN- γ ^{high} than IFN- γ ^{low}
291 samples (Supplementary Fig. S2E).

292 These data indicate that, among cells from patients' BM aspirates, AML cells are the main source of
293 IFN- γ . IFN- γ ^{high} BM samples do not differ in the percentage of the central immune cells (i.e., CD3⁺,
294 CD8⁺, NK cells) compared with IFN- γ ^{low} BM samples but are enriched in suppressive Tregs.

295 **IFN- γ ^{high} AML cells up-regulate IFN- γ -related immunosuppressive genes in MSCs**

296 MSCs are crucial components of the normal and leukemic BM microenvironment and respond to
297 pro-inflammatory stimuli, especially IFN- γ , by modifying the immunological landscape (14,15).
298 With that in mind, we set up an *in vitro* model to investigate interactions between AML cells (IFN-
299 γ ^{high} and IFN- γ ^{low}) and AML patient-derived MSCs. For this purpose, two-chamber co-cultures were
300 used. After 4 days of co-culture, IFN- γ ^{high} cells maintained significantly higher levels of *IFNG*
301 expression and IFN- γ production than IFN- γ ^{low} cells (Supplementary Fig. S3A and S3B), while
302 MSCs did not produce IFN- γ (Supplementary Fig. S3C and S3D). Moreover, there was a
303 significantly higher concentration of IFN- γ in the conditioned medium from co-cultures with IFN-
304 γ ^{high} than IFN- γ ^{low} cells (**Fig. 4A**).

305 We used a similar model to determine if IFN- γ ^{high} and IFN- γ ^{low} cells have different effects on MSC
306 gene expression. After 24 h of co-culture, compared to MSC monocultures, we detected 82 up-
307 regulated and 12 down-regulated genes in co-cultures involving IFN- γ ^{high} cells, and 17 and 10
308 genes, respectively, in co-cultures with IFN- γ ^{low} cells; 14 genes were up-regulated by both
309 conditions (**Fig. 4B**, DataSheet_page3). Interactions with IFN- γ ^{high} cells resulted not only in a
310 greater number of altered genes than with IFN- γ ^{low} cells but also a different pattern of gene
311 induction or down-regulation (**Fig. 4C**). Interestingly, MSCs co-cultured with IFN- γ ^{high} cells had
312 increased expression of genes encoding chemokines (e.g., *CXCL1*, *CCL5*) implicated in Treg

313 recruitment in solid tumors (33,34) and of *NFKB2* and *RELB* genes that encode key regulators of
314 *IDO1* (35,36). Importantly, IFN- γ ^{high} but not IFN- γ ^{low} cells induced MSCs to up-regulate gene sets
315 related to Treg differentiation (**Fig. 4D**). Finally, a set of IFN- γ -dependent immune-modulating
316 pathways, including NF- κ B, chemokine, and cytokine signaling, was up-regulated in MSCs co-
317 cultured with IFN- γ ^{high} cells (Supplementary Table S4). Taken together, these data suggest that
318 IFN- γ synthesis and secretion by AML cells skews MSC phenotype towards immunosuppression.

319 **IFN- γ release by AML cells *in vitro* drives MSCs to induce Tregs via IDO1**

320 Tregs, the most prominent and fundamental cell population in the BM microenvironment of AML
321 patients (5,7-9), significantly contribute to creating an immune-suppressive phenotype (10). We
322 found that the percentage of Tregs was significantly higher in IFN- γ ^{high} than IFN- γ ^{low} samples (**Fig.**
323 **3E**). Based on the results on MSC transcriptome modifications after cultures with IFN- γ ^{high} cells
324 (**Fig. 4C and D**), we asked whether the release of IFN- γ by AML cells induced MSCs to promote
325 Tregs. To this end, we focused on IDO1, widely recognized as the nodal mediator of the IFN- γ -
326 regulated MSC immunomodulatory properties (14). *IDO1* and *IFNG* gene expression were
327 positively correlated in AML samples (**Fig. 2C**), and, among different cytokines, IFN- γ was the
328 most potent stimulus for IDO1 induction in MSCs (Supplementary Fig. S4A and S4B).

329 Thus, we evaluated *IDO1* expression in MSCs co-cultured for 4 days with IFN- γ ^{high} or IFN- γ ^{low}
330 AML cells, distinguished as described above (**Fig. 3A**). We found *IDO1* higher expression only
331 with IFN- γ ^{high} cells, at both mRNA (**Fig. 5A**) and protein levels (**Fig. 5B**, Supplementary Fig. S4C).
332 An IFN- γ -neutralizing antibody in co-cultures with IFN- γ ^{high} cells significantly reduced *IDO1*
333 induction in MSCs (**Fig. 5C**). Similar results were obtained with an anti-IFN- γ receptor antibody
334 (data not shown).

335 Next, we asked if IDO1 up-regulation by IFN- γ ^{high} cells may drive MSCs to induce Tregs. First, we
336 co-cultured IFN- γ ^{high} cells and MSCs and then replaced the IFN- γ ^{high} cells with PBMCs: flow

337 cytometry after 7 days showed a significantly higher fraction of CD3⁺CD4⁺CD25⁺FOXP3⁺ cells
338 (*bona fide* Tregs) in the PBMCs cultured with IFN- γ ^{high} cell-conditioned MSCs than in PBMCs
339 cultured alone (**Fig. 5D**). The addition of an IDO1 inhibitor virtually abrogated Treg induction (**Fig.**
340 **5D**). We used a Treg conversion assay to measure the induction of CD4⁺CD25⁺FOXP3⁺ cells
341 (Tregs) from CD4⁺CD25⁻ cells cultured with IFN- γ ^{high} cell-conditioned MSCs. The fraction of
342 Tregs was low in immunomagnetically purified CD4⁺CD25⁻ cells cultured alone but increased
343 significantly when these cells were co-cultured with MSCs previously co-cultured with IFN- γ ^{high}
344 cells (**Fig. 5E**, Supplementary Fig. S5A). The inclusion of an IDO1 inhibitor substantially reduced
345 the conversion (**Fig. 5E**, Supplementary Fig. S5A). Interestingly, IFN- γ ^{high} AML cells alone were
346 unable to induce CD4⁺CD25⁺FOXP3⁺ cells. Finally, in a Treg proliferation assay, similar
347 proliferation indexes were obtained after 7 days of culture with MSCs preconditioned by IFN- γ ^{high}
348 cells in comparison with PBMCs alone, indicating that the Treg increase induced by IFN- γ ^{high} cell-
349 conditioned MSCs is not due to Treg proliferation (Supplementary Fig. S5B). Altogether, these data
350 suggest that IFN- γ secretion by AML cells drives MSCs to induce Treg conversion in an IDO1-
351 dependent manner.

352 **IFN- γ secretion by AML cells *in vivo* remodels the BM microenvironment by inducing Tregs
353 and favors leukemia cell engraftment**

354 To gain insight into the effects of AML cell-derived IFN- γ on the BM microenvironment, we
355 established a murine model of AML. For this purpose, we chose the C1498 murine leukemia cell
356 line, which expresses the *Ifng* gene (Supplementary Fig. S6A), and we used shRNA interference to
357 knock down this gene's expression (Supplementary Fig. S6B). Cells transfected with non-specific or
358 *Ifng*-specific shRNA vectors (control or shIFN- γ cells, respectively) were injected into C57BL/6
359 mice tibia. Injection of IFN- γ -producing control cells resulted in a diffuse interstitial effacement of
360 BM parenchyma (Supplementary Fig. S6C) that was coherent with localization of AML cells (as
361 previously described (37)). After 31 days, mice were sacrificed, and tibiae were flushed to recover

362 BM cells: flow cytometry showed a significantly higher percentage of engraftment in mice that
363 received control than shIFN- γ cells (**Fig. 6A**).

364 Since *Ifng* knockdown did not modify the intrinsic ability of C1498 cells to proliferate
365 (Supplementary Fig. S6D), we asked whether IFN- γ stimulates leukemic cell engraftment by
366 modifying the BM microenvironment. Flow cytometry of BM cells revealed similar percentages of
367 CD4 $^{+}$ and CD8 $^{+}$ cells (data not shown) but a significantly higher frequency of Tregs in the BM of
368 mice injected with control than shIFN- γ cells (**Fig. 6B**). This Treg expansion was paralleled by a
369 significant increase in a population of Tregs expressing OX40, a Treg-associated fitness marker
370 (Supplementary Fig. S6E). These data suggest that, in AML, high levels of IFN- γ within the BM
371 microenvironment increase Tregs and leukemic cell engraftment.

372 Given these results, we investigated whether the *in vivo* reshaping of the BM microenvironment
373 toward Tregs by IFN- γ -producing AML cells was due to increased IDO1. Immunohistochemistry
374 on BM sections revealed that IDO1 expression was significantly lower in mice injected with shIFN-
375 γ cells than in control (**Fig. 6C and D**). Immunofluorescence revealed that IDO1 expression
376 decreased also in MSCs, identified as α -smooth muscle actin (SMA) $^{+}$ / nestin $^{+}$ cells (**Fig. 6E**). A
377 similar pattern was obtained for NOS2 (Supplementary Fig. S6F), a downstream target of IFN- γ
378 with a critical role in MSC-mediated immunosuppression (38). Finally, we examined the impact of
379 IFN- γ -producing cells on the population of Tregs expressing CTLA-4, a potent suppressor of cells
380 in the tumor microenvironment (39). The fraction of all Tregs expressing CTLA-4 was higher in
381 BM of mice that received control than shIFN- γ cells, and administration of the IDO1 inhibitor
382 NLG919 to mice inoculated with control cells reduced this population (**Fig. 6F**). Taken together,
383 these results indicate that IFN- γ production by AML cells reshapes the BM microenvironment by
384 inducing Tregs through the upregulation of IDO1. The IFN- γ -dependent increase in Tregs is
385 positively associated with leukemia cell engraftment, suggesting the induction of an immune-
386 tolerant microenvironment.

387 **Discussion**

388 The ability of AML cells to shape the BM niche to their advantage is emerging as a hallmark of this
389 cancer (2,3). Our study builds on this concept and demonstrates that the release of IFN- γ by AML
390 cells skews the immunological composition of the BM microenvironment toward an
391 immunosuppressive phenotype, enriched in suppressive Tregs, which correlates with worse clinical
392 outcomes in AML patients.

393 AML cells produce a wide array of soluble mediators (40,41), which help them increase their
394 autonomous growth capacity (42). Our study shows that AML cells have the ability to release IFN- γ . In contrast to other tumor models, where increased IFN- γ levels have been linked to cytokine
395 production by infiltrating immune cells (43,44), our study found little, if any, contribution to IFN- γ
396 secretion by the major immune cell subsets (i.e., CD8 $^{+}$ and NK cells). Instead, we found that AML
397 cells are the main source of IFN- γ . This finding reveals a unique feature of AML where IFN- γ
398 production is more likely the result of an intrinsic dysregulation of leukemia cells rather than the
399 consequence of inflammatory BM changes.

401 Moreover, our results unravel an unexpected tolerogenic role of IFN- γ in the context of AML,
402 highlighting its ‘dark side’ in the creation of an immunosuppressive microenvironment. Indeed, in
403 most tumors, IFN- γ is known to provide a signal resulting in enhanced anti-tumor immunity (20)
404 and better clinical outcome (21-23). By contrast, in our AML patients' cohort, both microarray and
405 NanoString analysis revealed an association of high *IFNG* expression with the upregulation of both
406 inflammatory and, interestingly, immunosuppressive genes (e.g., IDO1 and NOS2). These data
407 enabled us to identify a novel immune gene signature based on the 30 DEGs between *IFNG*^{high} and
408 *IFNG*^{low} AML samples and create a prognostic index capable of dissecting AML patients into two
409 groups with highly significant differences in survival. Notably, *IFNG* expression alone does not
410 allow us to stratify AML patients from our cohort or public databases (our unpublished data),
411 suggesting that the gene network of IFN- γ -related downstream signals is more relevant for patients'

412 outcomes. These results agree with previous observations that higher expression of type I and II
413 IFN-related genes predicts chemotherapy resistance and response to immunotherapy in AML(45).

414 Increasing evidence indicates that Tregs are involved in creating an immune-tolerant BM
415 microenvironment in AML. A high frequency of Tregs has been correlated with a reduced response
416 to chemotherapy and poor overall survival (8-11). However, the mechanisms by which Tregs are
417 induced within the BM are poorly understood. Moving from the observation that high IFN- γ
418 production by AML cells positively correlates with increased Tregs in the BM of AML patients, we
419 found that the silencing of IFN- γ expression in AML cells reduced the Treg frequency *in vivo*. This
420 effect was paralleled by a decrease of IDO1 expression in BM cells, suggesting that the IDO1
421 pathway activation by IFN- γ -producing AML cells is crucial for Treg induction. IDO1 inhibition
422 reduced the Treg subpopulation expressing CTLA-4, which regulates IDO1-mediated peripheral
423 tolerance (46). Accordingly, an increase in a similar population of suppressive Tregs, expressing
424 CTLA-4 and PD-1, was observed in IFN- γ ^{high} BM samples. Together with the profound reshaping
425 by AML cells of the BM cell transcriptome according to *IFNG* expression, these data suggest that
426 Treg induction is part of a remodeling of the BM immune microenvironment initiated by AML cells
427 through IFN- γ release. In this process, activation of the IDO1 pathway seemed central,
428 corroborating previous reports that demonstrated a crucial role of IDO1 in orchestrating Treg
429 induction in AML (47,48).

430 IFN- γ is the most potent inflammatory signal conferring immunosuppressive properties to MSCs
431 (14,15). In particular, after exposure to IFN- γ , MSCs become able to induce fully functional Tregs
432 *in vitro* and *in vivo* (12). We found that IFN- γ from AML cells altered gene expression in MSCs by
433 up-regulating immune-tolerant and Treg differentiation pathways. Importantly, IFN- γ release by
434 AML cells up-regulated MSC expression of IDO1 and its regulators. This observation was made
435 both *in vitro* and *in vivo*. *In vitro*, IFN- γ release by AML cells primed MSCs to induce IDO1, which
436 mediates Treg conversion. *In vivo*, silencing of IFN- γ expression in AML cells was associated with

437 a decrease of IDO1-expressing MSCs and Tregs. This result is in accordance with the finding of
438 increased numbers of IDO1-expressing MSCs associated with high levels of Tregs in AML patients
439 (49). It is conceivable that cells other than MSCs may participate in this process. In particular, AML
440 cells have been described to increase IDO1 expression and activity after exposure to IFN- γ
441 (47,48,50). Accordingly, *in vivo* ablation of IFN- γ production by AML cells reduced IDO1
442 expression, not only in MSCs. Thus, both AML cells and MSCs might contribute to establishing an
443 immune-tolerant microenvironment via IDO1. However, in this work, we observed that, in a Treg
444 conversion assay, AML cell contribution appears reduced if directly compared with that of the
445 MSCs. Altogether, these data suggest that in the induction of Tregs via IDO1, the role of MSCs
446 may be prominent, although the participation of other cell subsets cannot be ruled out.

447 In conclusion, this study shows that AML cells' ability to secrete IFN- γ enables them to alter the
448 transcriptome of BM cells, leading to an immunosuppressive phenotype where induced Tregs have
449 a prominent role. In such process, tolerogenic MSCs, as a key cellular component of BM niche and
450 professional Treg-inducers, are likely to be pivotal. The newly emerging dual face of IFN- γ can be
451 interpreted as part of the complex immune response in cancer, where the broad range of IFN- γ
452 actions could depend on the context of tumor specificity, IFN- γ -signaling levels, and
453 microenvironment conditions. A greater understanding of the IFN- γ -dependent tolerogenic tuning
454 of the BM microenvironment could help provide a rationale for therapies able to overcome
455 immune-modulatory effects on the stromal and immune microenvironment, such as IDO1
456 inhibitors, and may support the design of new treatments combining the activation of effector cell
457 functions and inhibition of Tregs.

458

459

460

461 **Authors' contributions**

462 **G. Corradi:** Conceptualization, investigation, methodology. **B. Bassani:** investigation,
463 methodology. **S. Sangaletti:** investigation, methodology, funding acquisition. **G. Simonetti:**
464 investigation, methodology, formal analysis. **M. Fontana:** investigation, methodology. **M.**
465 **Pazzaglia:** investigation, methodology. **A. Gulino:** investigation, methodology. **C. Tripodo:**
466 investigation, methodology, formal analysis. **G. Cristiano:** Clinical data acquisition. **L. Bandini:**
467 investigation, methodology. **E. Ottaviani:** investigation, methodology. **G. Martinelli:** Resources,
468 funding acquisition. **M.P. Colombo:** funding acquisition, writing–review and editing. **J.**
469 **Vadakekolathu:** investigation, methodology, formal analysis. **S. Rutella:** investigation,
470 methodology, formal analysis, writing–original draft. **M. Cavo:** Resources, funding acquisition,
471 writing–review and editing. **M. Ciciarello:** Conceptualization, funding acquisition, methodology,
472 supervision, writing–original draft. **A. Curti:** Conceptualization, funding acquisition, supervision,
473 writing–original draft. All authors read and approved the final manuscript.

474

475 **Acknowledgements**

476 We would like to thank Marie-Paule Vedrine and Bologna AIL (Associazione Italiana contro le
477 Leucemie)/Section of Bologna for the kind support.

478

479

480

481

482

484 **References**

- 485 1. Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem
486 cell behaviour in myeloid leukaemogenesis. *Nat Rev Cancer* **2020**;20:365-82
- 487 2. Cicarello M, Corradi G, Loscocco F, Visani G, Monaco F, Cavo M, *et al.* The Yin and
488 Yang of the Bone Marrow Microenvironment: Pros and Cons of Mesenchymal Stromal
489 Cells in Acute Myeloid Leukemia. *Front Oncol* **2019**;9:1135
- 490 3. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, *et al.*
491 Bone marrow niches in haematological malignancies. *Nature Reviews Cancer* **2020**;20:285-
492 98
- 493 4. Brück O, Dufva O, Hohtari H, Blom S, Turkki R, Ilander M, *et al.* Immune profiles in acute
494 myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and
495 survival. *Blood Adv* **2020**;4:274-86
- 496 5. Isidori A, Salvestrini V, Cicarello M, Loscocco F, Visani G, Parisi S, *et al.* The role of the
497 immunosuppressive microenvironment in acute myeloid leukemia development and
498 treatment. *Expert Rev Hematol* **2014**;7:807-18
- 499 6. Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, *et al.*
500 Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and
501 proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. *J Immunol*
502 **2001**;167:6021-30
- 503 7. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, *et al.* The
504 distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands
505 in patients with newly diagnosed and relapsed acute myeloid leukemia. *Cancer*
506 **2019**;125:1470-81
- 507 8. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute
508 myelogenous leukemia: is it time for immunomodulation? *Blood* **2011**;118:5084-95
- 509 9. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, *et al.*
510 Increased frequency and suppression by regulatory T cells in patients with acute
511 myelogenous leukemia. *Clin Cancer Res* **2009**;15:3325-32
- 512 10. Sallman DA, McLemore AF, Aldrich AL, Komrokji RS, McGraw KL, Dhawan A, *et al.*
513 TP53 mutations in myelodysplastic syndromes and secondary AML confer an
514 immunosuppressive phenotype. *Blood* **2020**;136:2812-23
- 515 11. Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, *et al.* Elevated frequencies of
516 CD4⁺ CD25⁺ CD127lo regulatory T cells is associated to poor prognosis in patients with
517 acute myeloid leukemia. *Int J Cancer* **2011**;129:1373-81
- 518 12. Yan Z, Zhuansun Y, Chen R, Li J, Ran P. Immunomodulation of mesenchymal stromal cells
519 on regulatory T cells and its possible mechanism. *Exp Cell Res* **2014**;324:65-74
- 520 13. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. *Nature*
521 **2014**;505:327-34
- 522 14. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, *et al.* Role for interferon-
523 gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells.
524 *Stem Cells* **2006**;24:386-98
- 525 15. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Diloo D. Human bone marrow
526 stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated
527 tryptophan degradation. *Blood* **2004**;103:4619-21
- 528 16. Platten M, Friedrich M, Wainwright DA, Panitz V, Opitz CA. Tryptophan metabolism in
529 brain tumors - IDO and beyond. *Curr Opin Immunol* **2021**;70:57-66
- 530 17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* **2011**;144:646-74

531 18. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. *Cell*
532 **2010**;140:883-99

533 19. de Bruin AM, Voermans C, Nolte MA. Impact of interferon- γ on hematopoiesis. *Blood*
534 **2014**;124:2479-86

535 20. Ivashkiv LB. IFNy: signalling, epigenetics and roles in immunity, metabolism, disease and
536 cancer immunotherapy. *Nat Rev Immunol* **2018**;18:545-58

537 21. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, *et al.*
538 Interferon- γ Drives T. *Cell* **2017**;169:1130-41.e11

539 22. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human
540 tumours: impact on clinical outcome. *Nature Reviews Cancer* **2012**;12:298-306

541 23. Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for
542 hepatocellular carcinoma. *Nat Rev Gastroenterol Hepatol* **2021**;18:525-43

543 24. Zaidi MR, Merlino G. The two faces of interferon- γ in cancer. *Clin Cancer Res*
544 **2011**;17:6118-24

545 25. Simonetti G, Angeli D, Petracchi E, Fonzi E, Vedovato S, Sperotto A, *et al.* Adrenomedullin
546 Expression Characterizes Leukemia Stem Cells and Associates With an Inflammatory
547 Signature in Acute Myeloid Leukemia. *Front Oncol* **2021**;11:684396

548 26. Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, *et al.* Aneuploid acute
549 myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein
550 degradation machinery. *Cancer* **2019**;125:712-25

551 27. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using
552 Principal Component Analysis and heatmap. *Nucleic Acids Res* **2015**;43:W566-70

553 28. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, *et al.* Enrichr: a
554 comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res*
555 **2016**;44:W90-7

556 29. Wagner S, Vadakekolathu J, Tasian SK, Altmann H, Bornhäuser M, Pockley AG, *et al.* A
557 parsimonious 3-gene signature predicts clinical outcomes in an acute myeloid leukemia
558 multicohort study. *Blood Adv* **2019**;3:1330-46

559 30. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, *et al.* Genomic and
560 epigenomic landscapes of adult de novo acute myeloid leukemia. *N Engl J Med*
561 **2013**;368:2059-74

562 31. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, *et al.* CD127 expression inversely
563 correlates with FoxP3 and suppressive function of human CD4+ T reg cells. *J Exp Med*
564 **2006**;203:1701-11

565 32. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, *et al.* Functional delineation
566 and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription
567 factor. *Immunity* **2009**;30:899-911

568 33. Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, *et al.* Cancer-FOXP3 directly
569 activated CCL5 to recruit FOXP3. *Oncogene* **2017**;36:3048-58

570 34. Lv M, Xu Y, Tang R, Ren J, Shen S, Chen Y, *et al.* miR141-CXCL1-CXCR2 signaling-
571 induced Treg recruitment regulates metastases and survival of non-small cell lung cancer.
572 *Mol Cancer Ther* **2014**;13:3152-62

573 35. Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-
574 canonical NF-kappaB activation. *Nat Rev Immunol* **2007**;7:817-23

575 36. Tas SW, Vervoordeldonk MJ, Hajji N, Schuitemaker JH, van der Sluijs KF, May MJ, *et al.*
576 Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-
577 dioxygenase (IDO) induction and immune regulation. *Blood* **2007**;110:1540-9

578 37. Tripodo C, Burocchi A, Piccaluga PP, Chiodoni C, Portararo P, Cappetti B, *et al.* Persistent
579 Immune Stimulation Exacerbates Genetically Driven Myeloproliferative Disorders via
580 Stromal Remodeling. *Cancer Res* **2017**;77:3685-99

581 38. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, *et al.* Nitric oxide plays a critical
582 role in suppression of T-cell proliferation by mesenchymal stem cells. *Blood* **2007**;109:228-
583 34

584 39. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, *et al.* CTLA-4
585 control over Foxp3+ regulatory T cell function. *Science* **2008**;322:271-5

586 40. Tobler A, Moser B, Dewald B, Geiser T, Studer H, Baggolini M, *et al.* Constitutive
587 expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia.
588 *Blood* **1993**;82:2517-25

589 41. Bradbury D, Rogers S, Reilly IA, Kozlowski R, Russell NH. Role of autocrine and paracrine
590 production of granulocyte-macrophage colony-stimulating factor and interleukin-1 beta in
591 the autonomous growth of acute myeloblastic leukaemia cells--studies using purified CD34-
592 positive cells. *Leukemia* **1992**;6:562-6

593 42. Lotem J, Sachs L. Cytokine control of developmental programs in normal hematopoiesis
594 and leukemia. *Oncogene* **2002**;21:3284-94

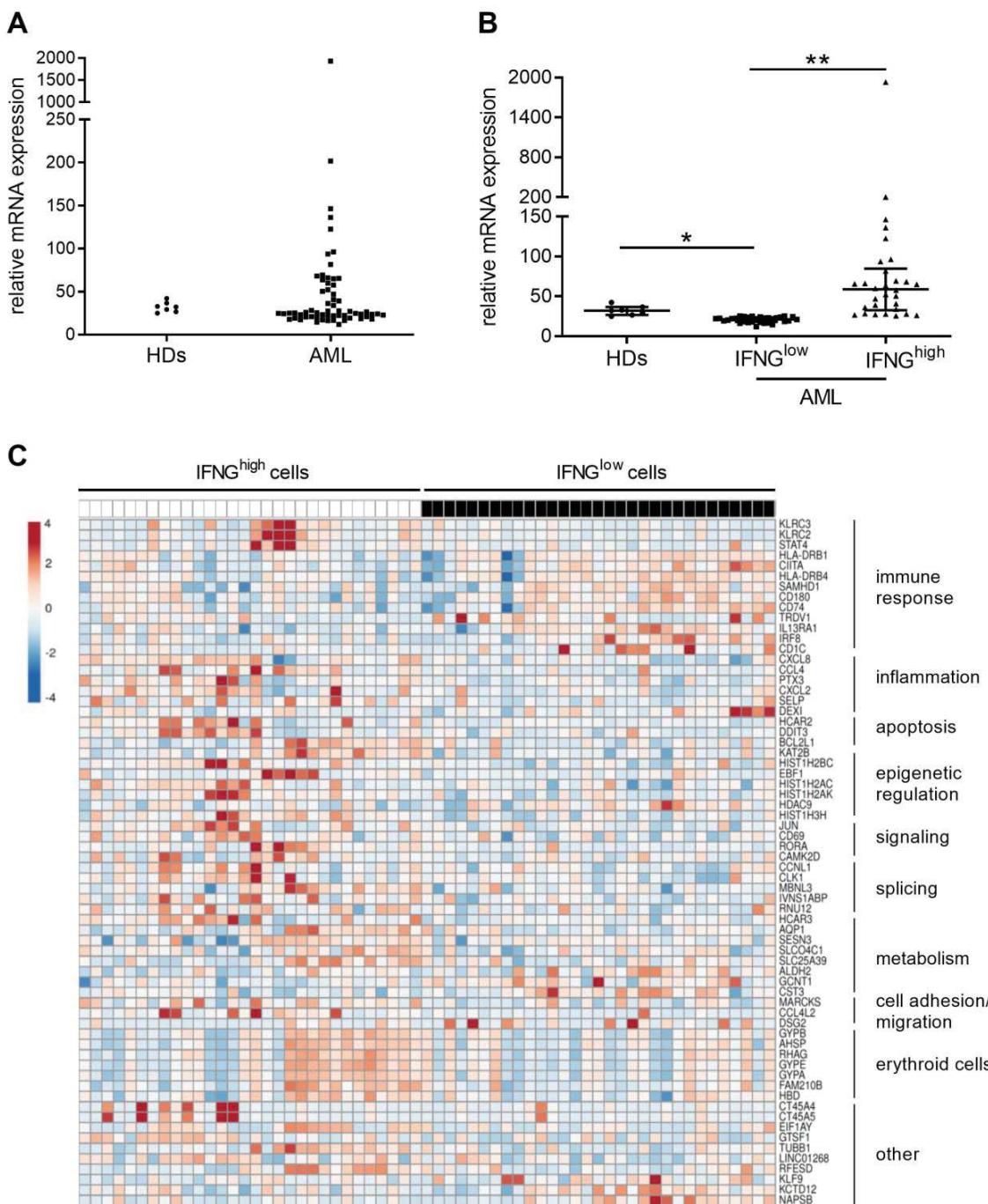
595 43. Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, *et al.* IFN- γ is required
596 for cytotoxic T cell-dependent cancer genome immunoediting. *Nat Commun* **2017**;8:14607

597 44. Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, *et al.* IFN-
598 γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer.
599 *Br J Cancer* **2015**;112:1501-9

600 45. Vadakekolathu J, Minden MD, Hood T, Church SE, Reeder S, Altmann H, *et al.* Immune
601 landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid
602 leukemia. *Sci Transl Med* **2020**;12

603 46. Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, *et al.* Cutting edge:
604 induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell
605 clonal expansion. *J Immunol* **2003**;171:1652-5

606 47. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, *et al.* Modulation of
607 tryptophan catabolism by human leukemic cells results in the conversion of CD25- into
608 CD25+ T regulatory cells. *Blood* **2007**;109:2871-7


609 48. Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM. The role of indoleamine 2,3-
610 dioxygenase in the induction of immune tolerance: focus on hematology. *Blood*
611 **2009**;113:2394-401

612 49. Mansour I, Zayed RA, Said F, Latif LA. Indoleamine 2,3-dioxygenase and regulatory T
613 cells in acute myeloid leukemia. *Hematology* **2016**;21:447-53

614 50. Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, *et al.* Acute myeloid
615 leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-
616 dioxygenase. *Leukemia* **2007**. p 353-5.

617

Figure 1

620 **Figure 1.** *IFNG* expression in AML samples is highly variable. **A**, Relative expression of *IFNG*
 621 mRNA in BM-derived mononuclear cells from 7 healthy donors (HDs) and 61 AML patients at
 622 diagnosis. **B**, Relative expression of *IFNG* mRNA in HDs and AML samples dichotomized into

623 IFNG^{low} (n=31) and IFNG^{high} (n=30) groups at the median. Horizontal lines indicate the median and
624 interquartile range (HDs vs IFNG^{low}, * P=0.008; HDs vs IFNG^{high}, P= 0.551; IFNG^{low} vs IFNG^{high},
625 **P<0.001; Kruskal-Wallis-test). **C**, Heatmap of differentially expressed genes (|FC| \geq 2.0 and
626 P \leq 0.05) between IFNG^{high} and IFNG^{low} AML cells. Columns represent patients. Color changes
627 within rows indicate expression levels relative to the mean for each gene, rescaled on the standard
628 deviation. Genes are ranked according their fold chance (from high to low, IFNG^{high}/ IFNG^{low})
629 inside each macro-pathway (shown on the right).

630

631

632

633

634

635

636

637

638

639

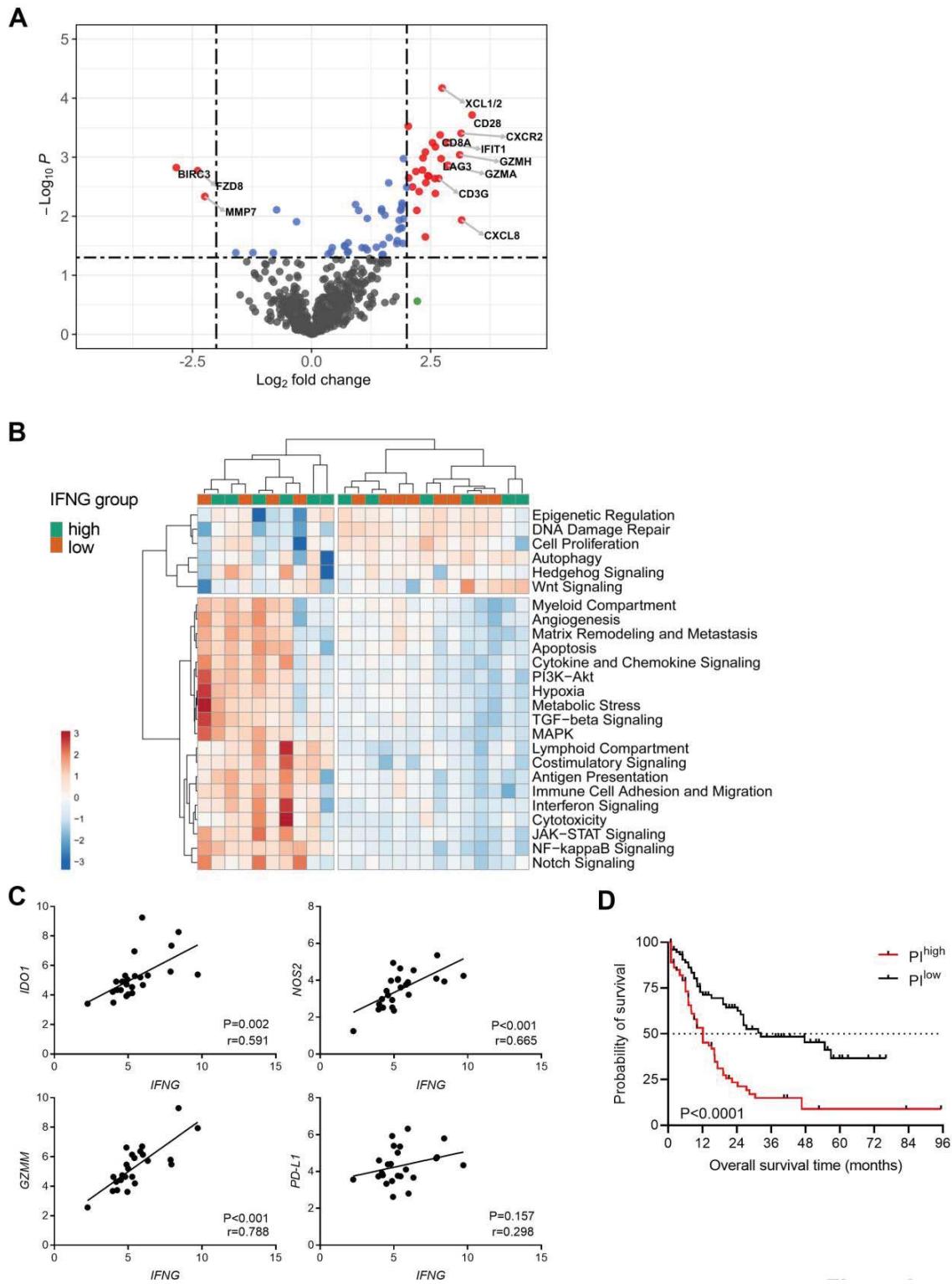
640

641

642

643

644


645

646

647

648

Figure 2

651 **Figure 2.** IFNG^{high} AML cells express a distinctive inflammatory and immune gene signature
652 correlated to poor overall survival. **A**, Volcano plot showing differentially expressed genes between
653 IFNG^{low} and IFNG^{high} groups. Log2 fold change (FC) threshold, 2; *P* value threshold, 0.01 (false
654 discovery rate). Red dots: $|\log_2 \text{FC}| > 2$ and $P < 0.05$. **B**, Heatmap of nSolver biological activity and
655 pathway scores calculated as linear combinations of pre-defined gene sets. Samples and genes are
656 sorted by unsupervised hierarchical clustering, using Euclidean distance and complete linkage. **C**,
657 Pearson's correlations between NanoString-derived mRNA levels of *IFNG* and *IFNG*-modulated
658 immune-related genes. **D**, Kaplan-Meier analysis of overall survival for 149 AML patients
659 dichotomized according to prognostic index in PI^{high} group (n=74) and PI^{low} group (n=75). Log-rank
660 test.

661

662

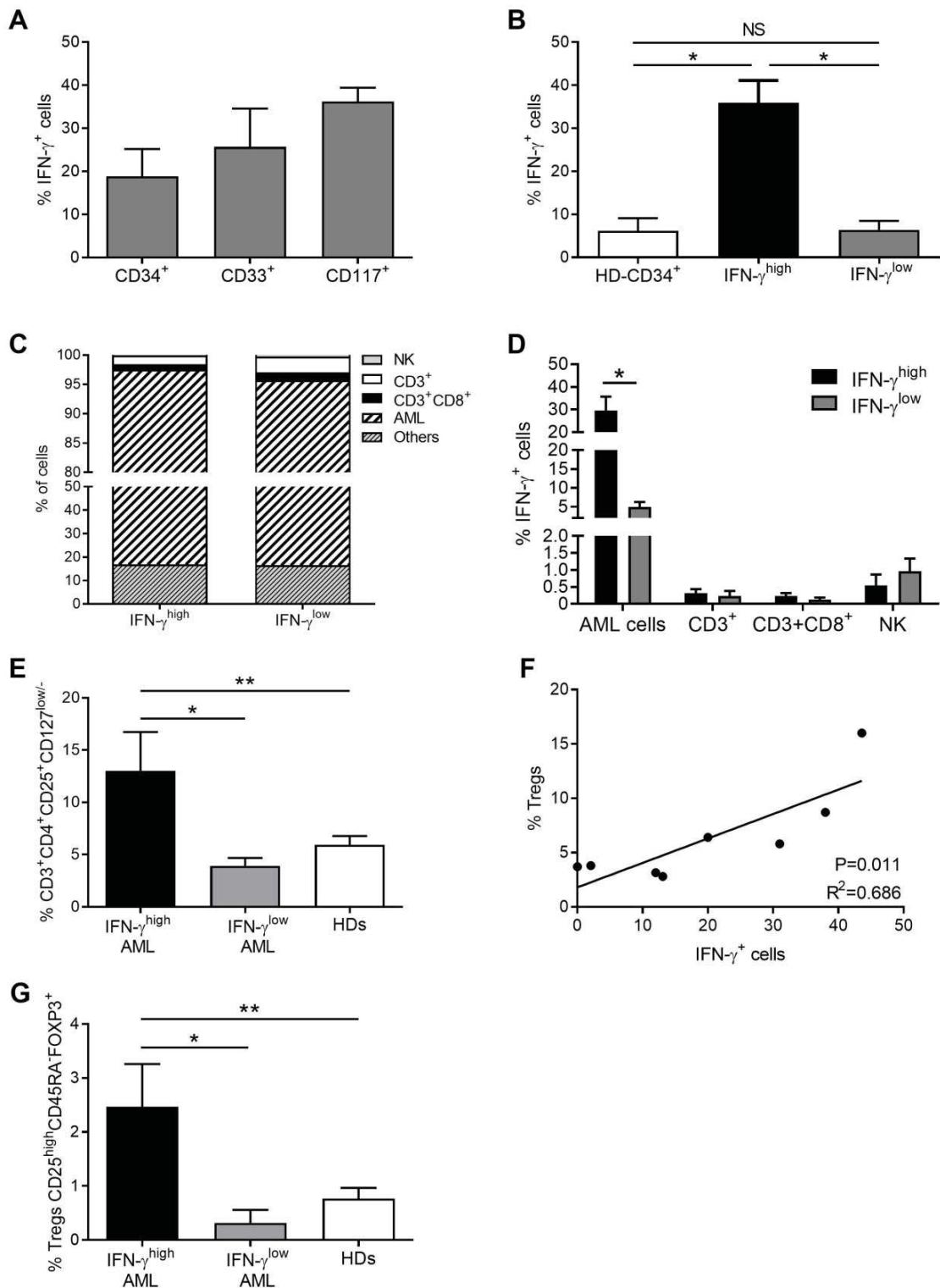
663

664

665

666

667


668

669

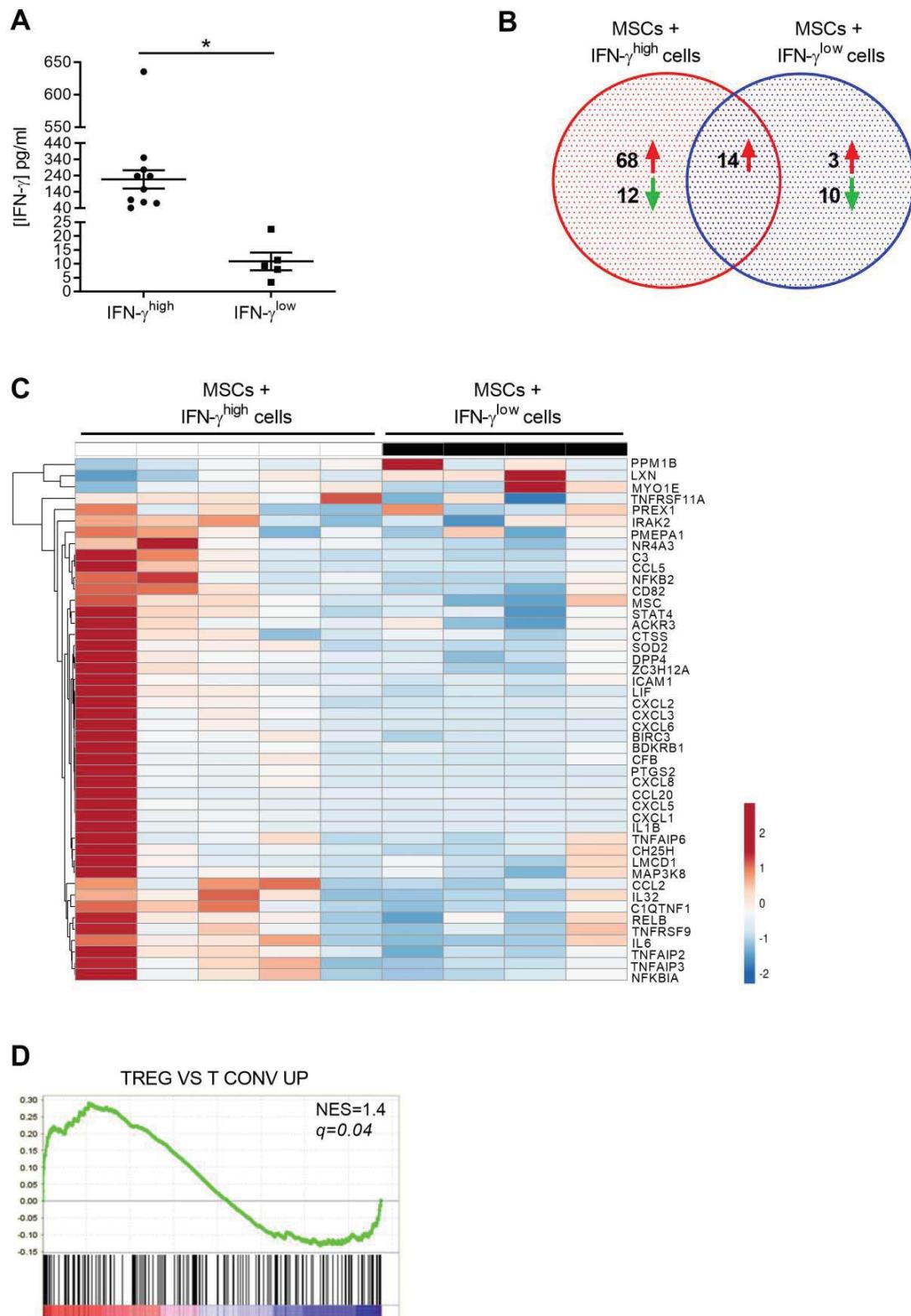
670

671

Figure 3

674 **Figure 3.** IFN- γ expressed by BM AML cells correlates with the presence of Tregs in the BM. **A**,
675 Cells co-expressing IFN- γ and the indicated blast-specific marker analyzed by flow cytometry
676 (mean \pm SEM, n=12; CD34 vs CD33, $P=0.875$; CD34 vs CD117, $P=0.623$; CD33 vs CD117,
677 $P=0.792$; one-way ANOVA, Tukey comparison). **B**, IFN- γ^+ cells in immune-magnetically purified
678 CD34 $^+$ cells from healthy BM donors (n=4) and in IFN- γ^{high} (n=8) and IFN- γ^{low} samples (n=8)
679 (mean \pm SEM; * $P<0.001$, NS, not significant; one-way ANOVA, Bonferroni correction for multiple
680 comparisons). **C**, Cellular composition of IFN- γ^{high} and IFN- γ^{low} samples by flow cytometry. AML
681 cells (CD34 $^+$, CD33 $^+$, or CD117 $^+$); NK cells (CD45 $^+$ CD3 $^-$ CD56 $^+$). Values are averages of at least 5
682 samples ($P>0.05$, two-way ANOVA, Bonferroni correction for multiple comparisons). **D**, IFN- γ^+
683 cells in IFN- γ^{high} (n=7) and IFN- γ^{low} (n=7) groups, by cell type (mean \pm SEM; * $P<0.001$; two-way
684 ANOVA, Bonferroni correction for multiple comparisons. **E**, Frequencies of Tregs
685 (CD3 $^+$ CD4 $^+$ CD25 $^+$ CD127 $^{\text{low/}-}$ cells) in BM cells of healthy donors (HDs; n=5) and in IFN- γ^{high}
686 (n=4) and IFN- γ^{low} (n=7) samples (mean \pm SEM; * $P=0.005$, ** $P=0.040$; one-way ANOVA, Tukey
687 comparison). **F**, Correlation between the percentages of Tregs and IFN- γ^+ cells in BM cells (linear
688 regression). **G**, Activated, suppressive Tregs (CD45RA $^-$ CD25 $^{\text{high}}$ FOXP3 $^+$ cells) within the
689 CD3 $^+$ CD4 $^+$ CD25 $^+$ CD127 $^{\text{low/}-}$ Treg population, expressed as a percentage of CD4 $^+$ cells, in BM cells
690 of healthy donors (n=5) and in IFN- γ^{high} (n=4) and IFN- γ^{low} (n=7) samples (mean \pm SEM;
691 * $P=0.008$, ** $P=0.041$; one-way ANOVA, Tukey comparison).

692


693

694

695

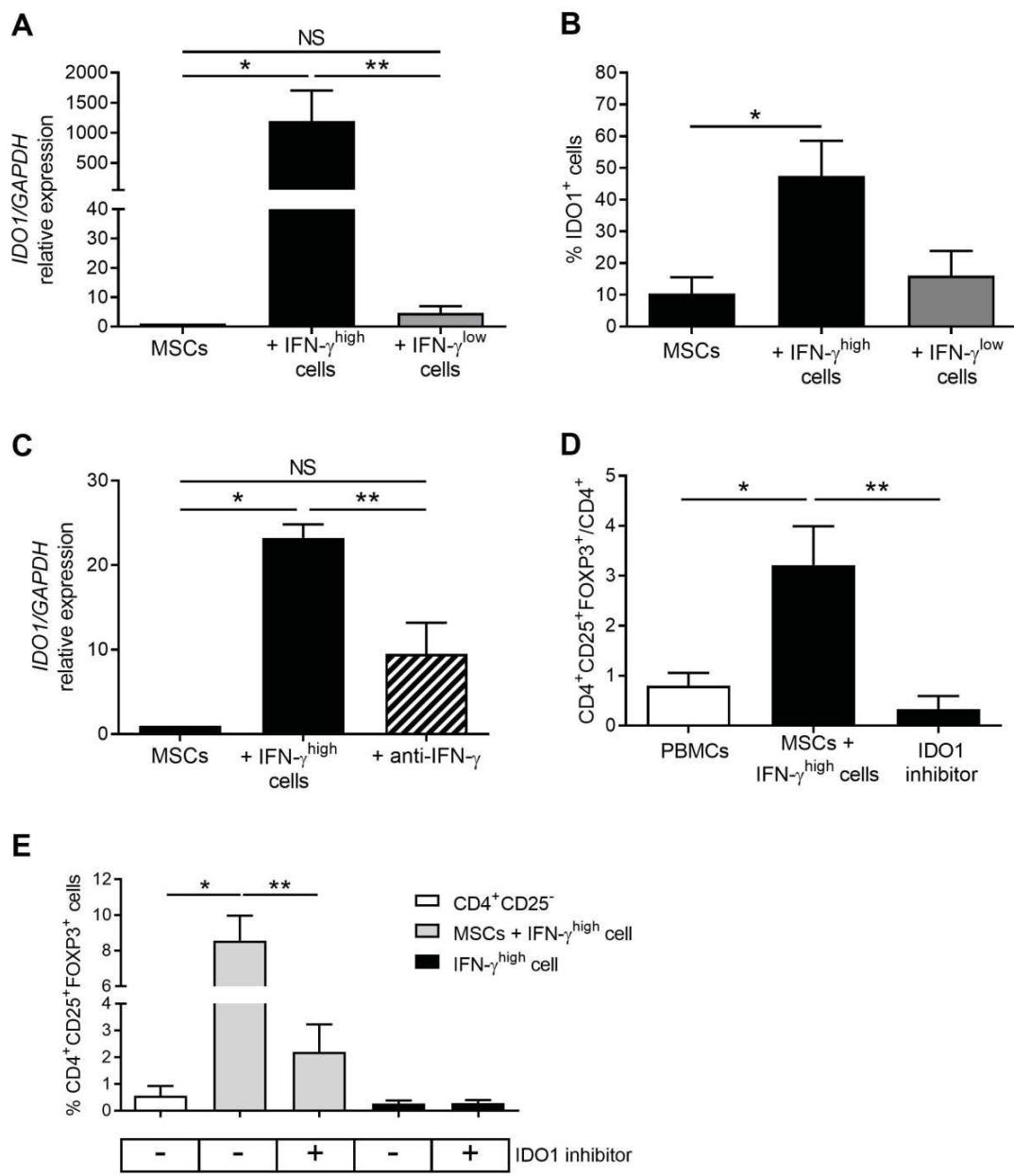

696

Figure 4

699 **Figure 4.** IFN- γ ^{high} AML cells mold the MSC transcriptome towards an immunosuppressive profile.
700 **A**, IFN- γ levels in conditioned medium from co-cultures of MSCs and IFN- γ ^{high} or IFN- γ ^{low} cells.
701 Each dot represents the average of one sample analyzed by immunoassay in triplicate (mean \pm SEM
702 of at least 5 experiments with different samples; * P =0.025; unpaired t test. **B**, Venn diagram
703 showing numbers of genes up-regulated and down-regulated in MSCs co-cultured with IFN- γ ^{high}
704 (n=5) or IFN- γ ^{low} (n=4) cells with respect to MSC monocultures (n=5). **C**, Heatmap of selected
705 immune response-related genes whose expression in MSCs changed as a result of co-culture with
706 IFN- γ ^{high} or IFN- γ ^{low} cells. Columns report ratios between a co-culture and its related monoculture.
707 Color scale indicates expression levels relative to the mean for each gene, rescaled on the standard
708 deviation. Genes are sorted by average linkage hierarchical clustering. **D**, Representative enplot
709 from gene set enrichment analysis of immune tolerance signatures in MSCs co-cultured with IFN-
710 γ ^{high} cells. The illustrated pathway (TREG VS T CONV UP) refers to the up-regulation of Treg
711 differentiation from conventional T cells. NES, normalized enrichment score; q , FDR q value.
712
713
714
715
716
717
718
719
720
721
722
723
724

Figure 5

727 **Figure 5.** IFN- γ ^{high} cells induce IDO1 expression in MSCs and increase their capacity to induce
728 Tregs. **A**, qRT-PCR analysis of *IDO1* gene expression in MSCs cultured for 4 days, alone (taken as
729 1) or with IFN- γ ^{high} or IFN- γ ^{low} cells (mean \pm SEM of 5 experiments; * P =0.004, ** P =0.005; one-
730 way ANOVA, Bonferroni correction for multiple comparisons). **B**, Percentage of IDO1⁺ cells
731 analyzed by flow cytometry in MSCs cultured for 4 days, alone or with IFN- γ ^{high} or IFN- γ ^{low} cells

732 (mean \pm SEM of 3 experiments; MSCs vs IFN- γ^{high} , $*P=0.039$; MSCs vs IFN- γ^{low} , $P=0.581$; IFN-
733 γ^{high} vs IFN- γ^{low} , $P=0.082$; one-way ANOVA, Bonferroni correction for multiple comparisons). **C**,
734 qRT-PCR analysis of *IDO1* expression in MSCs cultured for 6 h, alone or with IFN- γ^{high} cells, in
735 the absence or presence of an IFN- γ -neutralizing antibody (anti-IFN- γ , 20 $\mu\text{g/ml}$) (mean \pm SEM of
736 3 experiments; $*P<0.001$, $**P=0.012$; one-way ANOVA, Tukey correction). **D**, Percentages of
737 Tregs (CD3 $^+$ CD4 $^+$ CD25 $^+$ FOXP3 $^+$ T cells, gated on CD4 $^+$) in 7-day cultures of PBMCs alone or
738 with MSCs pre-cultured with IFN- γ^{high} cells for 4 days, in the absence or presence of 1 mM 1-
739 methyl-DL-tryptophan (mean \pm SEM of 6 experiments; $*P=0.004$; $**P=0.002$; one-way ANOVA,
740 Tukey correction). **E**, Percentage of CD4 $^+$ CD25 $^+$ FOXP3 $^+$ cells after 7-day cultures of purified
741 CD4 $^+$ CD25 $^-$ T cells, alone or with MSCs pre-cultured for 4 days with IFN- γ^{high} cells, in the absence
742 or presence of 1 mM 1-methyl-DL-tryptophan (mean \pm SEM of 5 experiments; $*P<0.001$, $**$
743 $P=0.001$; one-way ANOVA, Tukey correction).

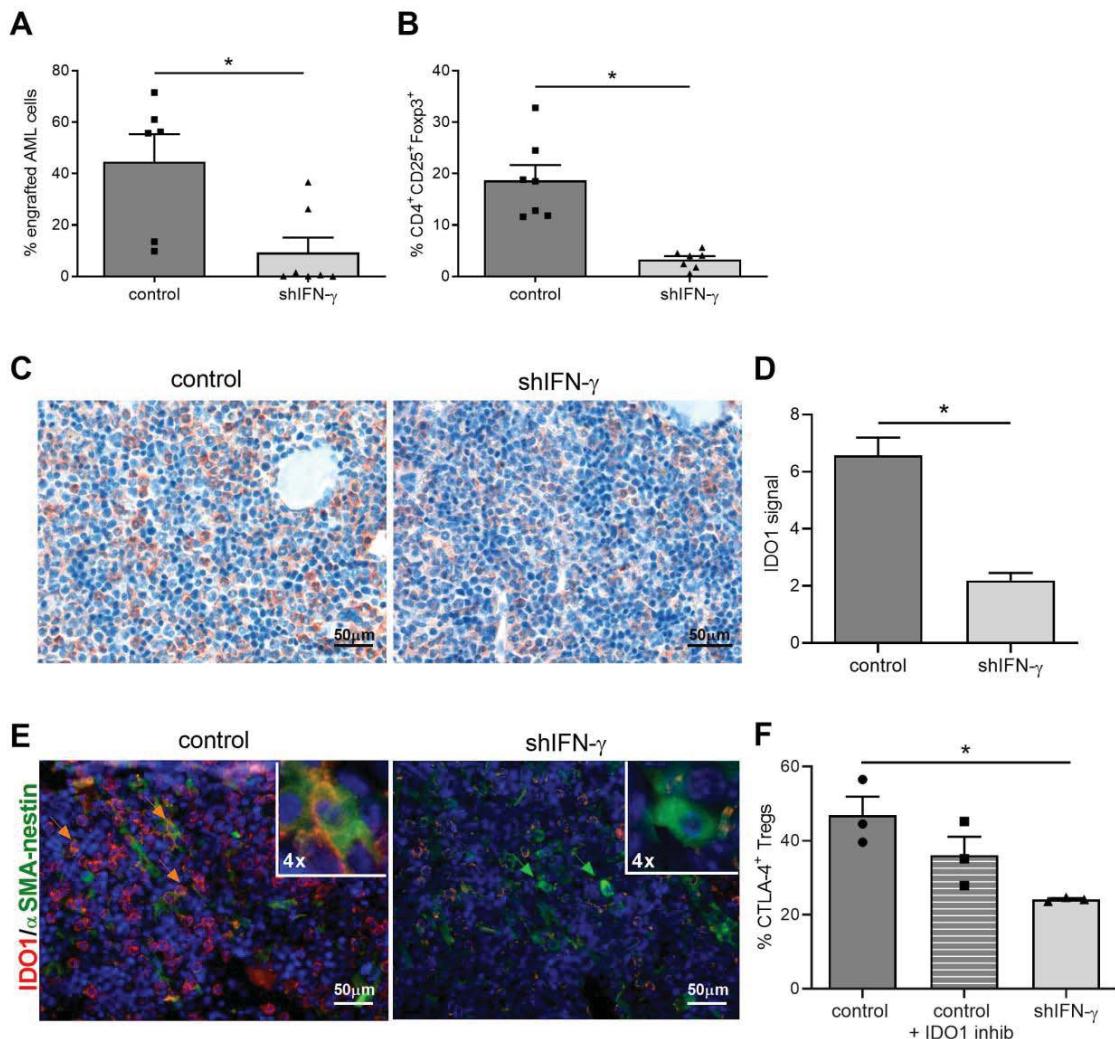
744

745

746

747

748


749

750

751

752

Figure 6

755 **Figure 6.** IFN- γ production by AML cells shapes the BM microenvironment by inducing Tregs *in*
 756 *vivo*. Tibia of C57BL/6 mice were injected with C1498 cells transfected with a vector expressing
 757 *Ifng*-specific or non-specific shRNA (shIFN- γ or control). After 31 days, BM was flushed to obtain
 758 cells for flow cytometry and bone was paraffin-embedded for microscopy. **A**, Engraftment (31
 759 days) of BM cells expressing GFP (control, n=6; shIFN- γ , n=7; *P=0.011; unpaired *t* test). **B**,
 760 Frequencies of Tregs (CD4 $^{+}$ CD25 $^{+}$ Foxp3 $^{+}$ cells) gated on CD4 $^{+}$ cells (control, n=7; shIFN- γ , n=7;
 761 *P<0.001; unpaired *t* test). **C**, Immunohistochemistry of IDO1 in BM sections. Magnification \times 40.
 762 **D**, Quantification of IDO1 staining of sections in C. Values are percentages of positive signals (3+

763 and 2+) in five non-overlapping high-power fields ($\times 400$) per group; $*P < 0.001$, unpaired *t* test. **E**,
764 Immunofluorescence in BM sections of IDO1 (red, Alexa Fluor 568), α SMA–nestin (green, Alexa
765 Fluor 488), and triple-positive cells (yellow). Blue, nuclei (DAPI). Magnification $40\times$.
766 Representative arrowed cells are shown magnified in the inserts. **F**, CTLA-4 $^{+}$ Tregs expressed as a
767 percentage of all Tregs (control, $n=3$; control +IDO1 inhib, $n=3$; shIFN- γ , $n=3$; control vs control
768 +IDO1 inhib, $P=0.229$; control +IDO1 inhib vs shIFN- γ , $P=0.180$; control vs shIFN- γ , $*P=0.018$;
769 one-way ANOVA, Tukey comparison). Values are mean and SEM in all experiments.

770

771

772

773

774