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Abstract

We study families of linear differential equations parametrized by an algebraic
variety X and show that the set of all points x € X, such that the differential Galois
group at the generic fibre specializes to the differential Galois group at the fibre over
x, is Zariski dense in X. As an application, we prove Matzat’s conjecture in full
generality: The absolute differential Galois group of a one-variable function field over
an algebraically closed field of characteristic zero is a free proalgebraic group.
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1 Introduction

The absolute differential Galois group of a differential field F' governs the algebraic prop-
erties of solutions of linear differential equations over F'. Determining the structure of this
group for interesting differential fields is a central problem in differential Galois theory
(see e.g., Section 10]). Matzat’s conjecture addresses the case of one-variable
function fields.

Matzat’s Conjecture. Let k be an algebraically closed field of characteristic zero and
let F' be a one-variable function field over k, equipped with a non-trivial k-derivation.
Then the absolute differential Galois group of F is the free proalgebraic group on a set of
cardinality | F|.

The main goal of this article is to prove Matzat’s conjecture (Theorem in the
form stated above. Several special cases of Matzat’s conjecture are already known: The
first case, when the differential field F' equals (k(x), %), with k& countable and of infi-
nite transcendence degree (over Q) was established in [BHHW2Ib]. The case when F
is (k(z), &), with k of infinite transcendence degree was treated in [BHHW2Ia]. The



case when k has infinite transcendence degree was established in [Wib23|. Moreover, in
[Wib23] it was shown that for an arbitrary algebraically closed field k of characteristic
zero, Matzat’s conjecture for (k(x), %) implies Matzat’s conjecture for one-variable func-
tion fields over k. On the other hand, thanks to the work in [Wib20] and [BHHW21D)], it
is known that Matzat’s conjecture holds for F' countable if and only if every differential
embedding problem of finite type over F' is solvable. Thus, to prove Matzat’s conjecture

in full generality, it suffices to prove the following:

Theorem A (Theorem [5.14)). Let k be an algebraically closed field of characteristic zero.
d

Then every differential embedding problem of finite type over (k(x), =) is solvable.

Theorem A was proved in [BHHP2I] under the assumption that k& has infinite tran-
scendence degree. To remove this unnecessary assumption, we establish a specialization
result for Picard-Vessiot rings and differential Galois groups that we deem of independent
interest. The most conceptual and useful formulation of our specialization result is in
terms of differential torsors (Theorem . For clarity, we state here a simpler, more
concrete, version of our specialization result.

Let & C kK’ be an inclusion of algebraically closed fields of characteristic zero. A
Picard-Vessiot ring R/k'(x) (the differential analog of the splitting field of a polynomial)
for a linear differential equation §(y) = Ay with A € k'(z)"*", is as a quotient R =

1

K (z)[X, m]/m, where X is an n X n matrix of indeterminates, 6(X) = AX and m is a

maximal differential ideal of ¥'(x)[X, ﬁ(x)}
Assume the ideal m is generated by p1, .. ., pm. Choose a finitely generated k-subalgebra

nxn

B of k' and a monic polynomial f € B[z] such that A € B[z] " and pi,... pm €

Blx] [ X, ﬁ(){)] For X = Spec(B), a specialization ¢ € X (k) = Homy(B, k) extends to a

map c: Blz|y — k(z) by ¢(x) = z. In particular, applying c to the coefficients of A yields a
1

matrix A° € k(x)"*"™ and applying c to the coefficients of a p; yields a pf € k(x)[X, W(X)]'

Theorem B (Corollary [5.1). The set of all ¢ € X(k) such that m¢ = (p5,...,p5,) is a
mazximal differential ideal of k(z)[X, ﬁ(X)]’ i.e., R = k(x)[X, m]/mc is a Picard-
Vessiot ring for §(y) = A%, is Zariski dense in X (k).

So, roughly speaking, Theorem B asserts that, for many specializations, the algebraic
relations among the solutions of the specialized equation §(y) = A are exactly the
specializations of the algebraic relations among the solutions of the generic equation d(y) =
Ay. We note that already the existence of a single “good” specialization in Theorem B is
a nontrivial problem.

The behavior of differential Galois groups and Picard-Vessiot rings under specializa-
tion has been studied by various authors in various different settings ([Gol57], [Kat90,
Section 2.4], [Sin93], [Hru02, Section V], [And04] [BvdP06], [dS09], [Dav16l Section 1.6],
[Sei22], [RS23]). Unfortunately, these results are not general or precise enough to be
applicable to a proof of Matzat’s conjecture.

It is well-known that the set of good specializations in Theorem B may not contain
a Zariski open subset, in particular it is in general not Zariski constructible. The easiest
example illustrating this point is the differential equation é(y) = <y with solution z,
which is transcendental for a € k ~ Q but algebraic for o € Q.

As in this example, despite the lack of generic behavior with respect to the Zariski
topology, the set of good specializations is expected to be “large” and not merely Zariski-
dense. To confirm this expectation, we use, following [Hru02|], commutative group schemes



of finite type over B to define “open” subsets of X' (k). An ad-open subset (the ad refers to
the additive group G,) of X (k) is of the form {c € X' (k)| ¢ is injective on I'}, where I" is a
finitely generated subgroup of G,(B) = (B, +) and X' (k) is identified with Homy (B, k). For
example, k minus a finitely generated Q-subspace of k, is an ad-open subset of k = Al(k).
Note that in case I' is generated by a single element h, the corresponding ad-open subset
is the Zariski open subset of X' (k) where h does not vanish. We can thus think of ad-open
subsets as a generalization of Zariski open subsets. AdxJac-open subsets of X(k) are
defined roughly similar but with the additive group replaced by a product of the additive
group with a Jacobian variety. (For a precise formulation see Definition below.) For
example,

{a € k| 25603 — 27 # 0 and (0, 1) is not torsion on the elliptic curve y? = 23 — 4ax + 1}
(1)
is an ad x Jac-open subset of k = Al(k).

A more detailed version of Theorem B, confirming the expectation that the set of good
specializations is large, states that the set of good specializations contains an ad x Jac-open
subset of X(k) (Theorem [4.26). Moreover, if the differential Galois group of d(y) = Ay
(over k'(x)) is connected, then the Jacobian variety is not needed, i.e., the set of good
specializations contains an ad-open subset (Corollary .

We note that a result similar to Theorem B but for finite difference equations, i.e., for
the operator k(z) — k(z), h(z) — h(z + 1) instead of the derivation -, was established
in [Fen2l]. There Jacobian varieties are not needed, essentially because k(x) does not
have nontrivial finite difference field extensions. (In our context, the Jacobian varieties
arise via Jacobians of curves associated to finite field extensions of k(x), which are of
course differential fields.) However, in [Fen21] one also requires subsets that are “open”
with respect to the multiplicative group. These occur in the step when one has to deter-
mine the multiplicative independence of rational functions. In our context, this step is
replaced by determining the logarithmic independence of algebraic functions which leads
to adx Jac-open subsets.

Our proof of Theorem B owes a lot to [Hru02]. In particular, it relies on the ideas
underlying Hrushovski’s algorithm for computing the differential Galois group of a linear
differential equation. Compared to the specialization results in [Hru02, Section V], our
result is more general and more precise: In [Hru02] open subsets with respect to arbitrary
commutative algebraic groups are required, whereas for us, the algebraic group can be
chosen to be a direct product of the additive group with a Jacobian variety. If the generic
differential Galois group is connected, even the additive group alone is sufficient for us.
Moreover, many of the statements in [Hru02, Section V.A] are restricted to the case that

B has Krull dimension one and k = Q.

Historically, a prime force for the development of differential algebra and differential
Galois theory, was the desire to understand when an indefinite integral or differential
equation can be solved “by quadratures”. Of course, making the notion of “solving”
rigorous was part of the problem. As explained in the beautiful survey [Zanl4al, when
studied in families, this somewhat old-fashioned topic of solving, is closely connected to
some modern problems in the realm of unlikely intersections.

Given an indefinite integral of an algebraic function depending on a parameter, or a
linear differential equation depending on a parameter, an important question (asked in
[Zan14al, p. 550]) is the following:



For which values of the parameter can the solutions be expressed within some prescribed
class, assuming this can’t be done for the generic solution?

The expectation is that this set of “exceptional” parameter values is small (albeit not
necessarily finite). For example, in [MZ20], it was shown that for a parametric family
of differentials on an algebraic curve, which cannot be integrated in elementary terms at
the generic fibre, the set of specializations such that the specialized differential can be
integrated in elementary terms is small, in fact, finite in many circumstances.

Based on our specialization result (Theorem {4.26)) we can answer the above question
for classes of functions that are amenable to differential Galois theory in the sense that
solvability of a linear differential equation in the class of functions can be characterized
through a property of the differential Galois group. For example, for the widely used class
of Liouvillian functions we obtain:

Corollary B1 (Corollary [5.6). Assume that the differential equation §(y) = Ay (over
K (x)) does not have a basis of solutions consisting of Liouwvillian functions, then the set
of specializations ¢ € X (k) such that the differential equation §(y) = Ay (over k(x)) has
a basis of solutions consisting of Liouvillian functions, is contained in an adx Jac-closed

subset of X (k).

Moreover, if the differential Galois group of §(y) = Ay (over k'(x)) is connected, then
already an ad-closed subset suffices. Here a subset of X' (k) is called ad x Jac-closed (or ad-
closed) if its complement is adxJac-open (or ad-open). For example, a finitely generated

Q-subspace of k is an ad-closed subset of k = A'(k).
As an illustration of Corollary B1, consider Bessel’s differential equation

5 (y) + 20(y) + (1 = (2)*)y = 0.

It has a basis of solutions consisting of Liouvillian functions if and only if o ¢ % +7Z. The
exceptional set % + Z is contained in Q, an ad-closed subset of k. As predicted by the
general theory, in this case, the Jacobian variety is not needed because the differential
Galois group at the generic fibre (i.e., the differential Galois group of Bessel’s equation
over k'(z), where k' is the algebraic closure of the rational function field k(«)) is SLo,
which is connected.

If we choose as class of functions, the class of all algebraic functions, we obtain an
equicharacteristic zero version of the Grothendieck-Katz conjecture (cf. [Hru02, Cor. to
Prop. 5.1] and [And04] Prop. 7.1.1]):

Corollary B2 (Corollary . Assume that the differential equation 6(y) = Ay (over
K'(z)) does not have a basis of solutions consisting of algebraic functions, then the set of
all specializations ¢ € X (k) such that the differential equation §(y) = A% (over k(x))

has a basis of solutions consisting of algebraic functions, is contained in an adX Jac-closed
subset of X (k).

Again, if the differential Galois group of §(y) = Ay (over k’(x)) is connected, then
already an ad-closed subset suffices. As the intersection of two adxJac-open subsets of
X (k) is nonempty (Remark [2.2F]), Corollary B2 can also be reformulated in the maybe
more familiar spirit of a local to global principle: If the set of all ¢ € X(k) such that
d(y) = A has a basis of solutions consisting of algebraic functions, contains an adxJac-
open subset (e.g., a nonempty Zariski open subset), then §(y) = Ay has a basis of solutions
consisting of algebraic functions.



Theorem B (and its more detailed variant Theorem[4.26)) can be used to transfer results
from a single algebraically closed field of constants (e.g., the field C of complex numbers)
to an arbitrary algebraically closed field of constants. Our prime illustration of this fact is
of course our proof of Theorem A. However, we also show how one can deduce a new and
very short proof of the solution of the inverse problem in differential Galois theory from
Theorem [4.26] Recall that the solution of the inverse problem states that every linear
algebraic group over k is a differential Galois group over k(x). Using analytic methods,
namely Plemelj’s (weak) solution of the Riemann-Hilbert problem, this was proved for
k = C already in 1979 ([TT79]). However, it took more than 25 years and contributions of
many authors to finally solve the inverse problem for an arbitrary algebraically closed field
k of characteristic zero ([Har05]). Using Theorem we can deduce the solution of the
inverse problem from the solution over C rather directly. To the best of our knowledge,
so far only two types of proofs of the solution of the inverse problem were known. Firstly,
the proof from [Har05], secondly proofs that rely on patching. Of course, also Matzat’s
conjecture and Theorem A imply the solution of the inverse problem. However, these
results ultimately rely on patching.

We conclude the introduction with a more detailed outline of the paper. The larger part
of the article (Sections |3|and [4)) is concerned with the proof of the specialization theorem,
which states that the set of “good” specializations contains an adxJac-open subset. This
result would be vacuous if we do not know that ad xJac-open subsets are nonempty. While
the Zariski denseness of ad-open subsets is readily available in the literature, the Zariski
denseness of ad x Jac-open subsets does not seem to be available in the generality required
for the proof of Matzat’s conjecture. In Section [2] we therefore provide a proof of the
Zariski denseness of adxJac-open subsets based on a variant of Néron’s specialization
theorem and a geometric version of abstract Hilbert sets.

In Section [3| we collect various constructions and results from differential Galois theory
that are required for the proof of the specialization theorem, including the concept of
differential torsors. Differential torsors provide a convenient framework to simultaneously
study Picard-Vessiot rings and differential Galois groups under specialization in a com-
patible fashion. This compatibility is vital for the proof of Theorem A, where, in effect,
we consider differential embedding problems under specialization. Roughly, a differential
torsor is obtained by spreading out a Picard-Vessiot ring R for §(y) = Ay (over k'(x))
with the action of the differential Galois group G, into a nice family R with an action of
an affine group scheme G. Our main specialization result, proved at the end of Section
then states that there exists an adxJac-open subset U of the parameter space X'(k) such
that R. is a Picard-Vessiot ring with differential Galois group G, for every ¢ € U.

In the earlier parts of Section [4] the various constructions and criteria from Section
are shown to be well-behaved under specialization. Roughly, the proof of the main special-
ization theorem relies on two intermediate specialization results corresponding to the two
main steps of Hrushovski’s algorithm. In the first main step of Hrushovski’s algorithm one
computes the k'(x)-algebraic relations among the entries of a fundamental solution matrix
for 6(y) = Ay, A € k'(x)"*" up to a fixed predetermined degree d = d(n). The correspond-
ing specialization result (Theorem is that, if p1,...,pm is a basis of the k'(x)-vector
space of all algebraic relations of degree at most d among the entries of a generic solution
matrix, then there exists an ad-open subset U of X'(k) such that p§,...,pS, is a k(x)-basis
of the vector space of all k(z)-algebraic relations of degree at most d among the entries of
a fundamental solution matrix for the specialized equation d(y) = Ay for all ¢ € U.

Roughly, the first step in Hrushovski’s algorithm allows one to compute the differential



Galois group up to a torus (and a finite group, which is however irrelevant for our purpose).
In the second main step of Hrushovski’s algorithm (“the toric part”) the central question is
to decide the logarithmic independence of algebraic functions. Here, elements fi,..., f, €
F belonging to a finite field extension F' of k'(x) are called logarithmically independent
over F' if a relation of the form

d1f1+...+dmfm=&f> with d1,...,dm € Z and f € F*

implies dy,...,d, = 0.

For F = K/(z) this question can be settled as follows. An element of k¥'(x) is a loga-
rithmic derivative of an element of £'(x) if and only if all its poles are simple with integer
residues. Thus an inspection of the poles and residues of fiq,..., f;, will yield all pos-
sible values of dy,...,dy,. For F/k'(x) finite, there exists a similar criterion, however,
in this case, it involves the degree zero divisor class group of F/k’. This is exactly how
the Jacobian varieties enter into the picture. The degree zero divisor class group of F/k’
can be identified with the group J(k’), where J is the Jacobian of a smooth projective
curve with function field F//k’. The criterion for the logarithmic independence, thus re-
lates the computation of the differential Galois group to the question if certain elements
Y, € J(K) are Z-linearly independent. For example, if a = the differential
Galois group G, of

:1:7
i tzta?

&*(y) — (2a + %)5(3/) + (a* —a— @)y =0

is a subgroup of the group G of 2 X 2 monomial matrices. A sufficient criterion for G, = G,
derived from the criterion for logarithmic independence, is that the point (0,1) is not a
torsion point on the elliptic curve y? = 2% — 4ax + 1. This leads to the adxJac-open
subset in . The specialization result corresponding to the second step of Hrushovski’s
algorithm (Theorem states that logarithmic independence of algebraic functions is
preserved on an adxJac-open subset.

Finally, in Section [5] with the specialization theorem in hand, we prove all the results
outlined in the introduction above, including Matzat’s conjecture.

We are grateful to Sebastian Petersen for helpful comments on Néron’s specialization
theorem. We are also thankful to the anonymous referee for helpful suggestions.

Notation and conventions: All rings are assumed to be commutative and unital. All
fields are assumed to be of characteristic zero. The group of multiplicative units of a ring
B is denoted by B*.

If X is a scheme over B and B — B’ is a morphism of rings, then X denotes the scheme
over B’ obtained by base change via B — B’. A similar notation applies to morphisms of
schemes. For an affine scheme X" over B we write B[X] for the ring of global sections of X
so that X = Spec(B[X]). We sometimes abbreviate B'[Xg/] to B'[X].

For a ring B, the polynomial ring B[x] over B in the variable x is always considered as a
differential ring with respect to the derivation %. Similarly, the field of rational functions
in  (over some field of constants) is always considered as a differential field with respect
to %. We use R = {r € R| 6(r) = 0} to denote the constants of a differential ring
(R,0). With X = (Xjj)1<i,j<n we always denote an n x n matrix of indeterminates (over
practically any ring that is around). It is the matrix of coordinate functions on GL,,.

For an algebra B over a field k£ and a prime ideal p of B we denote the residue field
at p with k(p). If B is an integral domain, we write k(B) for the field of fractions of 5.



If X is an integral scheme over k, we write k(X) for the function field of X. With K we
denote the algebraic closure of a field K. As a general rule, we use calligraphic letters
(like A, B,&, X,...) when thinking about objects that vary in a family.

Throughout this article k is an algebraically closed field of characteristic
zero. By “algebraic group over k” we mean a (not necessarily linear) group scheme of
finite type over k. Algebraic groups, or more generally group schemes, are often identified
with their functor of points. By a “closed subgroup” of a group scheme we mean a closed
subgroup scheme. A “variety” is a geometrically integral separated scheme of finite type
over a field.

2 AdxJac-open sets

As explained in the introduction, our main goal is to show that, for a linear differential
equation depending on parameters, the set of parameter values under which the algebraic
properties of the solutions are preserved is “large”. In this section, we make precise the
meaning of “large” by introducing adxJac-open sets following [Hru02] and [Fen2I]. Our
main specialization theorem (Theorem states that the set of good specializations
contains an adxJac-open subset. This result would of course be useless if it is not known
that an adxJac-open subset is nonempty.

The main result of this section is that an ad x Jac-open subset is not only nonempty but
in fact Zariski dense (Theorem [2.24)). It was already shown in [Fen21] that the intersection
of an ad-open set with an open set with respect to the multiplicative group is Zariski dense.
So most of our work here is focused on the case of abelian varieties. For related but weaker
results see [Hru02, Section V.A].

Throughout Section [2] we assume that
e [ is an algebraically closed field of characteristic zero;
e 3 is a finitely generated k-algebra that is an integral domain and

o X = Spec(B).

2.1 Open sets defined by commutative group schemes

Let £ be a commutative group scheme of finite type over B. For every ¢ € X (k) we have
a specialization morphism

o.: E(B) — E(k),

given by applying &, considered as a functor on the category of B-algebras, to the morphism
c: B — k. For a finitely generated subgroup I' of £(B) we set

Wx(E,T) = {c € X(k)| o. is injective on T'}.

The subsets of X' (k) of the form Wy (&E,T") satisfy the axioms for a basis of a topology:
X(k)=Wx(€,1) and

WX(El,Fl) N Wx(gg,rg) = Wx(gl X Ey,T'1 X PQ). (2)

This statement remains true if we restrict the £’s to belong to a class of group schemes
that is closed under taking products, such as the class of all abelian schemes.



We can thus consider the topology of X (k) generated by such a basis. The point of
this construction is that, while families of linear differential equations parametrized by X
do not exhibit generic behaviour with respect to the Zariski topology, they may exhibit
generic behaviour with respect to such a finer topology. If we allow more £’s in our class,
the corresponding topology gets finer and so the genericity statement we hope to prove
gets weaker. It is therefore vital to restrict the shape of the allowed £’s as much as possible.
In this context, it is then irrelevant whether or not the sets of the form Wy (€,I") with &£
an allowed group scheme still form a basis of a topology. We note however, that already
a genericity result with respect to the discrete topology is not easily obtained, i.e., in the
context of Theorem B from the introduction, it is nontrivial to prove the existence of a
single good specialization. In fact, we are not aware of a proof of the existence of a single
good specialization that does not go through Theorem

We next discuss the shape that we will allow for the possible £’s.

Definition 2.1. A subset U of X (k) is ad-open if it is of the form U = Wx(G,,T), for
some finitely generated subgroup I' of Go(B) = (B, +).

In other words, a subset U of X' (k) is ad-open if it is open with respect to the additive
group scheme G, over B. As we are in characteristic zero, the group I' < (B, +) is torsion
free and thus a finite free Z-module. If follows that the ad-open subsets of X(k) consist
of exactly those specializations that preserve the Z-linear independence of a finite family
of elements of B.

Note that if I" is generated by a single nonzero element b € BB, then

Wx(Ga,I') = {c € X(k)| ¢(b) # 0}

is the basic Zariski open subset of X' (k) where b does not vanish. In this sense, the
“topology” generated by the ad-open sets is finer than the Zariski topology.

Example 2.2. Let B = k[a] be a univariate polynomial ring over k so that X = A} and
X (k) = k. For Q-linearly independent elements A1, ..., A, € k, let " be the subgroup of
(B,+) generated by A1,..., A\, and a. Then Wy (G,,I') = k£~ V consists of all elements
of k that are not contained in the Q-vector space V generated by Ay, ..., \y.

Remark 2.3. IfT';,..., 'y are finitely generated subgroups of (B,+) and I is the subgroup
generated by 'y, ..., Ty, then Wy (Gy,T) C Wx(Ge, 1) N .. .NWx(Gy,Ty). Thus a finite
intersection of ad-open subsets of X (k) contains an ad-open subset.

For the specialization arguments to be carried out in Section {4} it is often important
to be able to enlarge the k-algebra B by adjoining finitely many elements from k(B),
because certain properties of the differential equation at the generic fibre may only manifest
themselves over the algebraic closure k(B) of the field of fractions of B. We therefore also
need to consider subsets of X (k) that are the form ¢(Wax/(E,T)), where X’ = Spec(B’)
with B C B’ C k(B) and B’ is finitely generated over B, £ is a commutative group scheme
of finite type over B’, T is a finitely generated subgroup of £(B’') and ¢: X'(k) — X (k) is
the morphism induced by the inclusion B C B'.

We call an inclusion of integral domains B C B’ algebraic if the field extension
k(B')/k(B) is algebraic.

The following lemma is a slight variation of [Hru02, Lemma 5A.1]. It shows that for
ad-open subsets it is not necessary to consider these more general subsets.




Lemma 2.4. Let B C B’ be an inclusion of integral domains such that B’ is finitely
generated and algebraic over B. Set X' = Spec(B') and let ¢: X'(k) — X(k) be the
morphism induced by the inclusion B C B'. If U’ is an ad-open subset X'(k), then there
exists an ad-open subset U of X (k) such that U C ¢U') and ¢~ (U) CU'.

Proof. Let U' = Wx1(Gg,T"), where IV < (B, +) is generated by ~1,...,7,,. Let M be the
Galois closure of k(B')/k(B) and let T,yi,...,y, be indeterminates. Set

| Gal(M/K(B))| [ ¢

Py, u) = ] (T—Zg(%‘)yi) = Y > bigm; | T
i =1

g€Gal(M/k(B)) i=0

where m; 1,...,m;y, are all monomials in yi,...,y, of degree | Gal(M/k(B))| — i. Since
g(p) = p for every g € Gal(M/k(B)), all b;; are in k(B). Write b;; = 7;;/a where
Yij,a € B and a # 0. Let b be a nonzero element of B such that any ¢ € X (k) with
c(b) # 0 can be lifted to a ¢ € X'(k). (Such a b exists by Chevalley’s theorem.) Set
U =Wx(Gq,T'), where I is the subgroup of B generated by b and all ; ;’s.

Assume that ¢ € U, ¢ € X'(k) and ¢(c') = ¢. We claim that ¢ € U’. For a contra-
diction, suppose ¢ ¢ U’. Then there exists a 7' € I\ {0} such that ¢/(y') = 0. Write
v =3 diyl with dy, ..., d, € Z. Since v/ # 0,

ap(0,dy, ..., dy) = a(—1)|Gal(M/KB)) T o) +o.

gEeCal(M/k(B))
Furthermore, ap(v',ds,...,d,) = 0 and
60 EO
ap(O, dl, ey dn) =a Z b(]’jm[)yj(dl, . ,dn) = Z ’)/ijm()’j(dl, ey dn) erl.
j=1 j=1
On the other hand, since ¢/(7") = 0, one has that
| Gal(M/k(B))| 4 ‘
0="C (ap(y',di,...,dn)) = Z d Z Yigmy i(dy, ... dy) | ()
=0 j=1

Lo
=( Z'Yo,jmo,j(dh conydyn) | = (ap(0,dy, ..., dy)) = c(ap(0,dy, . .., dy)).
i=1

This implies that ¢ is not injective on I', because 0 # ap(0,dy, ..., d,) € I', a contradiction.
Therefore ¢~ H(U) C U'.

To see that U C ¢(U’), it suffices to note that every ¢ € U lifts to a ¢ € X' (k) because
c(b) #0as bel. O

For group schemes, other than the additive group G,, we do not have a statement
analogous to Lemma [2.4] at hand. Therefore, in this case, we need to consider algebraic
extensions B’ O B.

For simplicity, we call a group scheme £ over some integral domain By of abelian type
(or of Jacobian type) if it is commutative, separated and of finite type over By such that
the generic fibre € Xgyeq(,) Spec(Ko) is an abelian variety (or a Jacobian variety) over
Ky, where K is the field of fractions of Bj.
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Lemma 2.5. Consider the following three kinds of subsets of X (k):
(i) subsets of the form ¢p(Wxi(Gq x T, 1)) with J of Jacobian type;

(ii) subsets of the form ¢p(Waxi(Gg,I'1) N Wai(T,I2)) with J of Jacobian type;
(iii) subsets of the form Wx(Gq,T'1) N (Wi (T, T'2)) with J of Jacobian type.

Then a subset of one kind contains a subset of any other kind. Here, in all of the above
cases, X' = Spec(B'), with B finitely generated and algebraic over B and ¢: X'(k) — X (k)
is induced by the inclusion B C B'.

Proof. As Wx1(Gga,I'1) N Wai (T, T2) = War (G, x J,I'1 x T'2), a set of the second kind
is in fact a set of the first kind. Conversely, given I' < G,(B') x J(B') let 'y < G4(B')
denote the image of I' under Go(B') x J(B') — G4(B’) and I'y < J(B') the image of T’
under G,(B') x J(B') = J(B'). Then I' <T'; x I'y and so

Wxr(Ga, T1) N War (T, T2) = War(Gy x T, I'1 xT'g) € War (G, x J,T0).

Thus a subset of the first kind contains a subset of the second kind.

If Wy (Gq,T'1) Np(Wai (T, T'2)) is a subset of the third kind, we may consider I'; as a
subgroup of (B', +) and then Wx (G, T'1)Np(Wa (T, T2)) = ¢(War (Gg, 1) NWai (T, T2)).
Thus a subset of the third kind is in fact a subset of the second kind.

Finally, given a subset ¢(Wax/(Gg,I'1) N Wa/ (T, T2)) of the second kind, there ex-
ists, by Lemma a finitely generated subgroup I'g of (B,+) such that Wy (Gg,g) C
d(War (G, T1)) and ¢~ (Wx(Ga,To)) € (War(Ggy,T'1). We then have

Wx(Gq,To) Np(War (T, T2)) € ¢(War(Gg,I'1) N War(T,T2)).
So a subset of the second kind contains a subset of the third kind. O

We now define the “open” subsets of X (k) that are the most relevant for us.

Definition 2.6. A subset U of X (k) is ab-open (or Jac-open) if it is of the form U =
d(Waxi(E,T)), where X' = Spec(B') with B' containing B an integral domain finitely gen-
erated and algebraic over B, £ is a group scheme over B’ of abelian (or of Jacobian) type,
T is a finitely generated subgroup of E(B') and ¢: X' (k) — X (k) is the morphism induced
by the inclusion B C B'.

A subset of X(k) is adxJac-open if it is the intersection of an ad-open subset with a
Jac-open subset of X (k).

A subset of X(k) is adxJac-closed (or ad-closed) if its complement is adx Jac-open
(or ad-open).

In particular, a Jac-open subset is ab-open. We have used the third kind of subsets
from Lemma to define adxJac-open subset. The lemma shows that we could have,
more or less equivalently, also used the first or second kind of subsets in the definition.

Lemma 2.7. Let B’ be an integral domain containing B such that B’ is finitely generated
and algebraic over B. Let ¢: X'(k) — X (k) denote the morphism induced by the inclusion
B C B and let U be a subset of X'(k) that is either ad-open, ab-open, Jac-open or
adx Jac-open, then ¢p(U') contains a subset U of X (k) that is of the same type as U’.

Proof. The case of ad-open subsets follows from Lemma [2.4] For the case of ab-open
and Jac-open subsets it suffices to note that if B C B’ C B” are such that B’ is finitely
generated and algebraic over B and B” is finitely generated and algebraic over B’, then B”
is finitely generated and algebraic over B. The case of ad xJac-open subsets is similar but
also uses Lemma 2.5 O
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2.2 Hilbert sets

To show that ad x Jac-open subsets are Zarisiki dense we will use Hilbert sets. We therefore,
in this section, recall their definition and discuss the properties that are relevant for our
proof.

Throughout Section [2.2] let ko be a field of characteristic zero and let By be a finitely
generated kg-algebra that is an integral domain.

We begin by recalling the abstract definition of Hilbert sets from [Lan83, Chapter 9,
Section 5]. This is closely related to the notion of thin sets (see e.g., [F-J08| Section 13.5])
but restricted to the affine setting.

For an inclusion By C Bj, of integral domains, an element b’ € Bj is called algebraic
over By if ' (considered as an element of the field of fractions of Bj) is algebraic over
the field of fractions of By, i.e., b’ satisfies a nonzero (not necessarily monic) univariate
polynomial over By. Moreover, B is algebraic over By if every element of B’ is algebraic
over B, i.e., the field extension ko(B})/ko(Bo) of the corresponding fields of fractions is
algebraic.

Let B, be an integral domain containing By such that B is algebraic over By and a
finitely generated Bp-algebra. The corresponding fields of fractions then form a finite field
extension ko(By)/ko(Bo)-

Let H(B[,/By) denote the subset of Spec(By) consisting of all p € Spec(By) such that
there exists a unique p’ € Spec(B))) lying above p and for this p’ one has [ko(p’) : ko(p)] =
[ko(B}) : ko(Bo)]. A subset of Spec(By) of the form H(B{/By) is called a basic Hilbert set.

Recall that a basic Zariski open subset of Spec(Bp) has the form D(b) = {p €
Spec(By)| b ¢ p} for some nonzero b € By. A Hilbert subset of Spec(Bp) is a finite in-
tersection of basic Hilbert sets with a basic Zariski open set.

Example 2.8. Let p € By[y] be a univariate polynomial of positive degree such that (p) C
Boly| is a prime ideal. Set B}, = By[y]/(p). Then H(B(/By) consists of all p € Spec(By)
such that the leading coefficient of p does not lie in p and the image p of p in ko(p)[y] is
an irreducible polynomial. To see this, note that the set of primes of B, lying above p can
be identified with the spectrum of Bj, @z, ko(p) = ko(p)[y]/ (D).

For kg algebraically closed, the above notion of Hilbert subset is not really useful: If p is
a closed point of Spec(By) (i.e., a maximal ideal) then ko(p) = ko has no finite extensions.
Thus, if p belongs to some basic Hilbert set H(B(,/By), we must have [ko(B}) : ko(Bo)] = 1.
So ko(Bj) = ko(Bp) and B}, is contained in a localization of By.

The following definition introduces a notion of Hilbert set that is useful when working
over an algebraically closed field. Recall that (throughout Section [2)) k is an algebraically
closed field of characteristic zero, B is a finitely generated k-algebra that is an integral
domain and X = Spec(B).

Definition 2.9. A subset H of X (k) is a geometric Hilbert set if there exists a subfield
ko of k finitely generated over Q, a finitely generated ko-subalgebra By of B such that the
canonical map By ®p, k — B is an isomorphism and a Hilbert subset H of Xy = Spec(By)
such that H is the inverse image of H under X(k) — X — Xy. In case we need to be
more specific, we call such an H a geometric By/ko-Hilbert set.

We will see below that geometric Hilbert sets are always Zariski dense in X' (k). The
following two lemmas will be needed to establish further good behavior of (geometric)
Hilbert sets.
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Lemma 2.10. Let B, be an integral domain containing By such that B, is algebraic over
By and a finitely generated Bo-algebra. Then there exists a nonzero b € By such that for
every p € D(b)

e there exists a p’ € Spec(B)) lying above p;
e the fibre By ®p, ko(p) is a ko(p)-vector space of dimension [ko(By) : ko(Bo)];

e for every prime p’ € Spec(B() lying above p one has [ko(p') : ko(p)] < [ko(B]) :
ko(Bo)].

Proof. As By is finitely generated algebraic over By, there exists a nonzero b; € By such
that (B{)p, is integral over (By)y,. Since (B{)p, is finitely generated over (By),, in fact
(B})p, is finite over (Bp)p,. By generic freeness (see e.g., [Sta24] Tag 051S]) there exists a
nonzero by € By such that (B()p,s, is not only finite over (Bp)p,p, but even free. The rank
d of (B})p,b, as a (By)p,p,-module is then necessarily equal to [ko(B}) : ko(Bo)]-

We claim that b = b1bs has the required property. First note that because (B()p is
integral over (By)y, for every p € D(b) there exists a p’ € Spec(By) lying above p.

Regarding the second point, note that for p € D(b) the fibre

By @5, ko(p) = (Bo)s @(5,), ko(p)

is a ko(p)-vector space of dimension d. Thirdly, a prime p’ € Spec(B) lying above p
corresponds to a prime p’ in Spec(B), ®p, ko(p)). The residue field of p’ can be identified
with the residue field of p’, which is an extension of degree at most d of ko(p). O

Lemma 2.11. Let Bj, be an integral domain containing By such that B, is algebraic and
finitely generated over By. Let w: Spec(B)) — Spec(By) denote the morphism correspond-
ing to the inclusion By C Bj, and let H' C Spec(B),) be a Hilbert set. Then there ezists a
Hilbert set H in Spec(By) satisfying the following two conditions:

e HCn(H') and

e for every p € H there exists a unique p’ € Spec(By) lying above p. (Of course then
p'eH.)

Proof. Write H' = H(B{/By) N ...NH(B./By) N D(t'). By Lemma there exists a
nonzero b} € B such that, for i = 1,...,n, every prime in D(b}) lifts to a prime in B
and for every prime p/ € Spec(B}) lying above p’ € D(b}) one has [ko(p)) : ko(p')] <
[ko(BY) : ko(Bj)]. By Chevalley’s theorem there exists a nonzero by € By such that
D(by) € n(D(LY)).

By Lemma again, there exists a nonzero by € By such that for every p € D(by)
the ko (p)-vector space Bj, ®p, ko(p) has dimension [ko(By) : ko(Bo)] and for every prime p’
of B}, lying above p one has [ko(p’) : ko(p)] < [ko(B}) : ko(Bo)]-

We claim that H = H(B{/By) N ...N H(B}/By) N D(b1b2) has the required property.
Let p € H. As p € D(by) C w(D(b}V)), there exists a prime p’ € D(b}b') lying above p.
Since p e D(bg) we have [ko(p/) : ko(p)] < []{J()(B(l)) : ko(Bo)]

Because p’ € D(b)) there exists, for every ¢ = 1,...,n, a prime p € Spec(B/) lying
above p’ and satisfying [ko(p?) : ko(p)] < [ko(BY) : ko(By)]. As p/ € Spec(BY) is a prime
above p and p € H(B!/By), we see that p/ is the unique prime of B! above p and that
[ko(p?) = ko(p)] = [ko(BY) : ko(Bo)]. Therefore
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[ko(B') = ko(Bo)] = [ko(BY') : ko(Bp)] - [ko(B') = ko(Bo)] > [ko(pi) = ko(p")] - [ko(p') : ko(p)] =
= [ko(p7) = ko(p)] = [ko(B) : ko(Bo)]

and it follows that
[ko(p") = ko(p)] = [ko(B') : ko(Bo)] and  [ko(p;) : ko(p')] = [ko(BY) : ko(Bg)].  (3)

We next show that p’ € H'. As p’ € D(V') we only have to show that p’ € H(B!/B')
for i =1,...,n. If there was a prime of B/ other than p/ lying above p’, this would also
be a prime other than p/ lying above p which is impossible. Thus p/ is the unique prime
of B! lying above p’. By we see that p’ € H(B//B'). So p’ € H and p € n(H'), i.e.,
H C n(H").

Regarding the second item, note that by the choice of by, the fibre Bj ®p, ko(p) is a
ko(p)-vector space of dimension [ko(B') : ko(Bp)]. On the other hand, there exists a prime
in B ®p, ko(p) whose residue field is an extension of ko(p) of degree [ko(B') : ko(Bo)].
Thus Bj, ®p, ko(p) is a field and there is only one prime in Spec(B)) lying above p. O

We next relate the abstract notion of Hilbert set with the more classical notion con-
cerned with polynomials that remain irreducible under specialization (see [FJ08, Chap-
ter 12]).

Let p1,...,pn € Boy[y] be monic univariate polynomials that are irreducible as elements
of ko(Bo)[y]. For a prime ideal p of By let p; denote the image of p; in ko(p)[y], i.e., the
coefficients of p; are reduced modulo p. We set

Hp,(p1,...,pn) = {p € Spec(By)| p1,- -, Pn € ko(p)[y] are irreducible }.

Lemma 2.12. Let BB, be an integral domain containing By, finitely generated and algebraic
over By. Then there exists a monic polynomial p € Byly] such that p is irreducible in
ko(Bo)ly] and a nonzero b € By such that

Hig,(p) N D(b) € H(By/Bo).

Proof. As ko(B())/ko(Bo) is a finite field extension, there exists, by the primitive element
theorem, a b’ € B{ such that ko(B') = ko(Bo)[V/]. Replacing b’ with a By-multiple of b’ if
necessary, we can assume that the minimal polynomial p of ¥’ over ko(Bp) has coefficients
in By. Write By = By[b),...,b,] and b, = p;(0') with p; € ko(Bo)[y] (1 < i < n). Let
b € By ~ {0} be such that bp; has coefficients in By for i = 1,...,n. Then b, € (By)s[V']
and therefore (B)), = (Bo)s[¥] = (Bo)slyl/(»)-

Let p € Hg,(p) N D(b). Then p; is a prime ideal of (By), and for the fibre of Bj/By
over p we have

By @5, ko(p) = (By)s @8y, ko(Ps) = (Bo)s[y]/ (P) @(5y), ko(bs) = ko(p)[y]/ (D).

As p € Hp,(p), we see that B ®p, ko(p) is a field extension of ky(p) of degree deg(p) =
[ko(B}) : ko(Bo)]. Thus p € H(B]/By) as desired. O

As an immediate corollary to Lemma [2.12| we obtain:

14



Corollary 2.13. Let H be a Hilbert subset of Spec(By). Then there exist p; ..., pn € Boly]
monic and irreducible in ko(Bo)[y] and b € By ~ {0} such that

HBo(pl,---,pn) ﬁD(b) CH.
O

A different, less intrinsic, notion of geometric Hilbert set was used in [Fen21]. In order
to be able to use the results from [Fen2I], we have to relate the two notions. Let us first
recall the definition from [Fen21l, Notation 2.6].

Recall that B is a finitely generated k-algebra that is an integral domain. By Noether’s
normalization lemma, we can find 7y,...,7,...,7m € B such that B = k[n,...,%m],
M,...,Ne are algebraically independent over k and 7¢41,...,...,mm are integral over
klm,...,ne. We abbreviate n = (n1,...,mm) and n, = (n1,...,m)-

Note that for i = 1, ..., m—¢, the minimal polynomial of n,; over k(mn;) has coefficients
in k[n,| since k[n,] is integrally closed (JAM69, Prop. 5.15]). We can thus find a subfield
ko of k finitely generated over Q such that, for ¢ = 1,...,m — £, the minimal polynomial
of ng1; over k(m;) has coefficients in ko[n,].

Let p be a finite tuple of monic elements of ko[n][y] that are irreducible in ko(n)y].
Furthermore, let b € kg[n] ~ {0} and let d = (dy,...,ds) € Z* be an (-tuple of positive
integers. Identifying X'(k) with Homy (B, k) we define

Hgoy)((k) (d7p7 b)
as the set of all ¢ € X' (k) such that

e [ko(c(m),...,c(mi))  kolc(m), ... c(ni-1))] = di for i =1,.... 4

e for every entry p of p the polynomial p¢ obtained from p by applying ¢ to the
coefficients is irreducible in ky(c(n))[yl;

e c(b) #0.

The following lemma shows that every geometric Hilbert set contains a set of the form
HZ(),X(k) (da b, b)

Lemma 2.14. Let kg C k be a finitely generated field extension of Q and By C B a finitely
generated ko-algebra such that By @k, k — B is an isomorphism. Furthermore, let H be a
Hilbert subset of Xy = Spec(By) and let H C X (k) be the corresponding geometric Hilbert
set.

Then there exists n € B* with By = ko[n] and appropriate p, b such that

HZO,X(k)((L <o 1),p,b) CH.

Proof. Applying Noether’s normalization lemma to By, we find n = (n1,...,m¢,...,1m) €
By with By = ko[n] such that 7y, . .., n are algebraically independent over kg and 7¢11, ..., 7m

are integral over ko[n1, ..., n¢]. Note that n,...,n, are also algebraically independent over
k and 7¢41, ..., nm are integral over k[ny,...,ne]. Moreover, for i = 1,...,m — ¢, the min-
imal polynomial of 7y4; over k(n1,...,n¢) has coefficients in ko[n1, ..., 7.

By Corollary there exist monic polynomials pi,...,p, € Bply| irreducible in
ko(Bo)[y] and a b € By~ {0} such that Hg,(p1,...,pn)ND(b) C H. With p = (p1,...,pn)
we thus have HZO X(k)((lv ..., 1),p,b) CH. O
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The following proposition, going back to [Hru02], explains why the sets of the form
’HZO PN 2 b) are useful for us. We assume that ko and n are as described after Corol-

lary

Proposition 2.15. Let I be a finitely generated subgroup of (ko[n|,+). Then there exists
a d such that ”Hgo X(k)(d,(i), 1) € Wy (G, T).

Proof. This is really just a restatement of [Fen21l Prop. 2.10]. O

2.3 Néron’s specialization theorem

Néron’s specialization theorem is a crucial ingredient in our proof that ad xJac-open sets
are Zariski dense (Theorem. Roughly speaking, Néron’s specialization theorem states
that in an algebraic family of abelian varieties, the specialization map defined by a point
of the parameter space is injective for all points in a Hilbert subset of the parameter
space. This theorem can be used to construct abelian varieties with groups of rational
points of large rank. Several versions of Néron’s specialization theorem are available in
the literature. The original reference is [Nérb2]. Other presentations are in [Ser97bl
Section 11.1], [Lan83, Chapter 9, Section 6] and [Pet06, Section 3]. Unfortunately, none
of these versions seems to directly yield the result we need. We therefore include a self-
contained proof of our variant of Néron’s specialization theorem, mostly following [Ser97b]
in the argument (cf. [Fen21l, Section 2]).

Throughout Section we make the following assumptions:
e kg is a field of characteristic zero;

e Xy = Spec(Bp) is an affine variety over ky (i.e., a geometrically integral affine scheme
of finite type over ko);

o Ko = ko(Bp) is the function field of X, i.e., the field of fractions of By;
e B C Ky is a finitely generated By-algebra;
e X = Spec(B});

o &y is a commutative separated group scheme of finite type over By such that & X
Spec(Kj) is connected.

We also make the following assumption on &.
(A) For every finitely generated subgroup I' of & (K)), the group
{e € &(Kyp) | €™ €T for some n > 1}
is also finitely generated.

We will need a few lemmas of a preparatory nature.

Lemma 2.16. Let G be a connected commutative algebraic group over kg and let n > 1 be
an integer. Then the morphism [n]: G — G, g+ g" has finite kernel and [n]: G(ko) —
G(ko) is surjective.
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Proof. Note that [n] is a morphism of algebraic groups because G is commutative. The
induced morphism Lie([n]): Lie(G) — Lie(G) on the Lie algebra of G is multiplication
by n. As we are in characteristic zero, this implies that Lie([n]) is an isomorphism. In
particular, Lie(ker([n])) = ker(Lie([n])) = 0. Thus ker([n]) is finite. Then, for dimension
reasons, the image of [n]: G (ko) — G(ko) must have the same dimension as G. As the
image is closed and G is connected, it follows that [n]: G(ko) — G(ko) is surjective. [

For every 2’ € A{j we have a specialization morphism
Oy 50(86) — go(k‘o(.l‘/)),

obtained by applying &y, considered as a functor on the category of Byp-algebras, to the
morphism Bj, — ko(z').

Lemma 2.17. Let v € &(B}) and n > 1. Then the set {e € E(Ko) | €™ = v} is finite
and nonempty and there exist a nonempty Zariski open subset U' of X such that

e € EolRo@)) | " = aar()}| = |1z € &(K) | " =2}
for every ' e U'.

Proof. The set {e € &(Kp) | € = ~} is finite and nonempty by Lemma Set
&y = &o,p, and consider the morphism [n]: & — &), g — ¢" and its kernel ker([n]) < &.
Then ker([n]),s is the kernel of the n-th power map on 80 , for every o' € X[.

It follows from Lemma- 2.16| that ker([n])¢ is finite, where ¢ is the generic point of XL
Being finite spreads out from the generic fibre and also the number of geometric points is
constant over a nonempty Zariski open subset ([Gro66l, Cor. 9.7.9]). Thus, there exists a
nonempty Zariski open subset U’ of X such that

e € & (Ro(@)| " = 1}| = |{e € & o (Ko)| " = 1}

for all ' € Y’. Shrinking U’ if necessary, we can also assume that &) ,, is connected for
all ' € U'. (Recall that an algebraic group is connected if and only if 1t is geometrically
connected). Using Lemma [2.16] we then find

{e € &lko(2))) | €" = 0w (M} = e € E o (ko)) | " = ow(7)}] =
= |{e € & (ko(@))] €" =1} = |{e € & ¢ (Ko)| e = 1}| =
= [{e € &0(Ko) | e" =7}

for all ' e U'. O

Lemma 2.18. Let S be a scheme of finite type over By and let s € S(B;,) be such that
ko(s(€')) = ko(&') = ko(By) is an isomorphism, where ' is the generic point of X and we
think of s as a morphism s: Xj — S. Then there exists a nonempty Zariski open subset
U of X such that the morphism ko(s(z')) — ko(z') induced by s is an isomorphism for
every ' e U'.

Proof. Let U be an affine open subset of S containing s(¢’) and let D(b') be a basic Zariski
open subset of X contained in s™!(U). Then the restriction §: D(0/) — U of s: X, — S
satisfies the assumption of the lemma, i.e., the induced map ko(5(¢")) — ko(¢') is an
isomorphism. We can thus assume without loss of generality that S is affine.
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So we can identify S with the spectrum of a finitely generated By-algebra R. The point
s € 8(B}) corresponds to a morphism ¢: R — B|, of By-algebras. The assumption that
ko(s(&')) — ko(¢') is an isomorphism, means that the field of fractions of ¥(R) (formed
inside ko (B()) equals all of ko(B}).

Fix b),..., b, € B} such that B = By[b,...,b,]. Fori=1,...,n we can then write
b, = :ﬁé%g with 71,...,70,71,...,7, € R and ¥(r1),...,¢¥(rm) € B| nonzero. We claim
that U’ = D(¢(r1) ... () C &{ has the desired property.

Let 2’ € U’ correspond to the prime ideal p’ of Bj. For b/ € B} let ¥/ € By/p' C
ko(B,/p') = ko(a') denote the image of b/ in B{/p’. As ¢(r;)b, = 1(r;) in B, we have
()b, = (r;) fori =1,...,n. Asa’ € U', we can divide by ¢(7;) in ko(2') to obtain b =
¥(ri)
¥(rs)
R/Y™1(p") — By/p’ by passing to the field of fractions. In particular, ko(s(z')) — ko(z')
is an isomorphism if and only if the field of fractions of ¥(R) C B} /p’ C ko(B}/p’) equals

all of ko(By/p'). As ko(By/p") = ko(Bo)(b}, ..., bl,), the latter follows from b, = %

in ko(z'). Note that the morphism kq(s(x’)) — ko(z') is obtained from the injection

Lemma 2.19. Let S be a finite subset of Ey(B()). Then there exists a nonempty Zariski
open subset U' of X such that o, is injective on S for every ' € U’.

Proof. 1t suffices to treat the case when S consists of two distinct elements si, 9. As
& — A is separated, the equalizer Z — X of s1, s2: Xj — & (in the category of schemes
over Xp) is a closed subscheme of A} ([Sta24, Tag 01KM]). In particular, for a morphism
¢: Z - X} of Xp-schemes one has s1¢ = sp¢ if and only if ¢ factors through the closed
immersion Z — A.

We will show that Z defines a proper closed subset of Xj. Suppose, for a contradiction,
that the underlying set of Z is all of X. Since X is reduced, the only closed subscheme
supported on all of X is X itself. So Z = X (as schemes). But then s; = s3; a
contradiction.

Thus Z defines a proper closed subset of A and its complement &’ C X} is a nonempty
Zariski open subset. For z’ € U’, the morphism ¢,/: Spec(ko(z')) — X does not factor
through Z — X and so s¢, # §'¢u, 1€, 047 (51) # 02/ (52). O

The following lemma explains how Hilbert subsets enter into Néron’s specialization
theorem.

Lemma 2.20. Letn > 1, lgg Ko a finitely generated Bo-algebra and v € & (B) such that
{e € &(Ky) | €™ =~} C &(B). Then there exists a Hilbert subset H of X = Spec(B) such
that

{e € &o(ko()) | " = 02(7)} = 0z({e € &o(Ko) [ " =}). (4)

for all & € H.

Proof. Note that the inclusion “2” in is trivial. Set S = {e € &(Kp) | €” = ~}. Let
Bj, C Kj be a finitely generated B-algebra such that S C &(B)). By Lemma Im there
exists a nonempty Zariski open subset U’ of X = Spec(B]) such that o,/ is injective on
S for all 2’ € U'. By Lemma there exists a nonempty Zariski open subset V' of A

such that

{e € &o(ko(a")) | €" = ow (1)} = |5] (5)

for all z' € V'. Let ¢: Ay — X be the morphism corresponding to the inclusion B C Bj.
Since By, is algebraic over B, there exists a nonempty Zariski open subset W' of X such
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that ko(z') is algebraic over ko(o(z')) for all 2/ € W'. (This follows, for example, from
Lemma ) By Chevalley’s theorem, there exists a nonempty basic Zariski open subset
U of X contained in ¢(U' NV NW).

Let # € U. Then there exists an =’ € U’ N V' N W' with ¢(2') = Z. We claim that

{e € &o(ko(2)) [ " = 02(7)} = 0w (5). (6)

As o, is injective on S, we find

S| = low (S)] < [{e € Eo(ko(a")) | €™ = 0w (M)} < [{e € Eo(ko(a’)) | €™ = ow (V)}-
From , we thus deduce that o,/(S) = {e € & (ko(2)) | €” = o4 (y)}. This implies @
because ko(x') = ko(Z) since ko(z') is algebraic over ko(Z) = ko(¢(2)).

We first assume that S C &(Kg). Then S = {e € &(Kp)| e” = v} C &(B) by
assumption. The commutativity of

&o(B)———&(By)

ail i%,

Eo(ko(Z))— Eo(ko(x"))

paired with @ then yields 0z(S) = {e € &(ko(Z)) | € = 0z(y)}. In particular, {e €
Eo(ko(Z)) | €™ = 0z(7)} = 0z(S) as desired. So, in case S C & (Ko), we can choose as
H=U.

Now assume that S\ & (Ko) # 0 and let € € S\ E(Kp). Then ko(e(€)) — Ko is
a finite extension of Ko with [ko(g(€)) : Ko] > 1, where we think of € as a morphism
e: Spec(Ky) — & and ¢ is the unique point of Spec(Ky). Let B- C ko(e(€)) be a finitely
generated B-algebra with ko(£(€)) as field of fractions and such that e € & (B.). Further-
more, we may assume B; C Bj,.

Then Lemma applied with S = &y, B, = B and s = € € &(B:), yields a nonempty
Zariski open subset V. of Spec(B;) such that kqo(e(z)) — ko(x) is an isomorphism for every
x € V.. By Chevalley’s theorem, there exists a nonempty basic Zariski open subset U, of
X = Spec(B) such that U, lies in the image of V. under Spec(B.) — Spec(B).

Set H. = U. N H(B./B) and let # € H.. Then [ko(z.) : ko(Z)] = [ko(e(§)) : Ko] > 1,
where z. is the unique element of Spec(B;) lying above &. As z. € V., the field extensions
ko(e(ze)) and ko(ze) of ko(Z) are isomorphic. Therefore, ko(e(x:)) is a non-trivial field
extension of ky(Z).

We will show that H = 4N (N.e S\Eo( Ko)ﬁ .) has the desired property. Let # € H. Then
there exist an 2’ € U' NV NW' C X with ¢(z') = &. Given (6], to verify (), it suffices
to show that o,/(e) & Ey(ko(Z)) for every e € S\ Ey(Kp). Note that o,/ (g) ¢ Eo(ko(T)) if
and only if ko(e(2")) is a non-trivial extension of ko(Z).

For e € S\ &(Ky), since . is the unique element of Spec(B;) lying above  and
B. C Bj, we see that z. is the image of ' under Spec(B()) — Spec(B:). So £(z’) = e(x.)
and ko(e(2')) = ko(e(zz)) is a non-trivial extension of ko(Z) as desired. O

We are now prepared to prove our variant of Néron’s specialization theorem.

Theorem 2.21. Let T be a finitely generated subgroup of Ey(By). Then there exists a
Hilbert subset Hy of Xy such that o4,: Eg(Bo) — Eo(ko(xo)) is injective on T for every
xg € Hy.
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Proof. SetT' = {e € &(Kp) | €" € T for some n > 1}. Then T is a subgroup of & (Ky) and
by assumption (A) it is finitely generated. Let B C Ky be a finitely generated Bp-algebra
such that T' C £ (B). We shall show that there exists a Hilbert subset H of X = Spec(B)
such that the specialization map oz : E(B) — E(ko(#)) is injective on T for every & € H.
Note that this implies the theorem since, by Lemma 2.1} there exists a Hilbert subset Hy
of Xy contained in the image of H under X — X, and if # € H maps to z¢9 € Hy, then
the diagram

Eo(B) = &o(B)

Eo(ko(wo))— Eo(ko(Z))

commutes.

Let n > 1 be an integer such that the order of the torsion subgroup of T’ divides
n. Let {y1,...,7m} be a set of representatives of f‘/f’". Without loss of generality we
may assume that 71 = 1. For i = 1,...,m set A; = {¢ € [ | " = }. Note that

A; = {e € &(Kp) | €™ = i} by construction of T'.

Lemma [2.20| applied with v = ~;, yields a Hilbert subset H; of X such that
{e € &(ko(@)) | " = 0a(vi)} = 0z(Ai)

for every & € H;. Set H = Nt 1H and let & € H. We will show that o3 is injective on
T. It suffices to show that Ty = ker(oz) N [ is trivial. Note that [y is a finitely generated
group because it is a subgroup of the finitely generated group T.

We claim that I'g = I'j. Let v € I'g and write v = ;7" for some i and v € L.
Then 1 = 03(y) = 0z(7)0z(3)" and so 0z(3~1)" = 0z(). Because & € H;, we have
0z:(771) = 0z(e) for some € € A, i.e., " = ;. This implies that v; = 1, i.e., i = 1.

Hence 03(771) = 03(e) for e € T and €” = 1. So 0z(e5) = 1 and &5 € T'y. Moreover,

v =" =" ="y = (e7)" € Ig.

Thus I'y = I'{j as claimed. As the order of the torsion subgroup of T divides n, the group
I'™ is torsion free Therefore, also I'g = I'j C '™ is torsion free. But a finitely generated
torsion-free group is a free Z-module and so can satisty I'y = T'g only if I'p = 1 is trivial.
Thus Ty = 1 and o is injective on T for every Z € I as desired. O

The following corollary contains the special case of Theorem relevant for our
purpose.

Corollary 2.22. Let ko be a finitely generated field extension of Q, Xy = Spec(By) an
affine variety over ko and & a group scheme over By of abelian type. Then there exists
a Hilbert subset Hy of Xy such that the specialization morphism o4, : Eo(Bo) — Eo(ko(xo))
is injective for every xog € Hp.

Proof. Since Ky is finitely generated over Q, by the generalized Mordell-Weil theorem
([Lan83, Chapter 6, Thm. 1]) the group & (Kjp) is finitely generated. Therefore, assump-
tion (A) is satisfied and also I' = £y (By) < & (Kp) is finitely generated. Thus Theorem
applies. ]

In addition to the case of group schemes of abelian type explained in the above corol-
lary, Theorem also applies in the case where kg is a finitely generated field extension
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of Q and & = Gy, B, is the multiplicative group scheme over By. In this case assumption
assumption (A) is verified by [Fen21l Prop. 2.12].

Theorem does not apply to the additive group scheme G, 5, over By because
assumption (A) is violated. For example, for I' = (Z, +), the group in (A) equals (Q, +).

2.4 Denseness of ad xJac-open sets

In this section we combine the results of the previous sections to show that adxJac-open
subsets are Zariski dense. The following proposition is an important step in this direction.
It can be seen as a “geometric” version of Corollary

Proposition 2.23. Let U be an ab-open subset of X (k) and S C B a finite subset. Then
there exists a geometric By/ko-Hilbert set H C X (k) such that S C By and H C U. In
particular, every ab-open subset of X (k) contains a geometric Hilbert set.

Proof. The ab-open set U is of the form U = ¢p(Wy/(E,T')), where X' = Spec(B’) with B an
integral domain containing B, finitely generated and algebraic over B, £ is a group scheme
of abelian type over B, I is a finitely generated subgroup of £(B’) and ¢: X'(k) — X (k)
is the morphism induced by the inclusion B C B’. The idea of the proof is to descend the
whole situation from k to a finitely generated field extension of Q so that we can apply
Néron’s specialization theorem. We claim that we can find

e a nonzero b € B such that every p € D(b) lifts to a prime ideal of B’;
e a subfield kg of k that is finitely generated over Q;

e a finitely generated kp-subalgebra By of B containing b and .S such that the canonical
map By ®k, kK — B is an isomorphism;

e a finitely generated ko-subalgebra B{, of B’ containing By such that the canonical
map B ®, k — B’ is an isomorphism and such that By is algebraic over By;

e a group scheme & over B of abelian type such that the base change from ko to k
of & /B} equals £/B" and T' C &)(B})) (where we identify & (B}) with a subset of
EB).

To see that we can find the above items we argue as follows. First, by Chevalley’s theorem,
we can find an appropriate b € B. Let ~v1,...,7, be a finite generating set of I'. Writing
B’ as the directed union of all of its finitely generated Z-algebras and considering the
morphisms ~1: Spec(B') — &,...,v,: Spec(B’) — £ and the separated commutative
group scheme & over B’, we can combine Theorem 8.8.2 and Theorem 8.10.5 (v) of [Gro66],
to obtain a finitely generated Z-subalgebra B of B, a commutative separated group scheme
& of finite type over B and morphisms J;: Spec(B) — € (i =1,...,n) such that the base
change of £ from B to B is € and the base change of J; from B to B is ; fori = 1,...,n.
So, if we identify £(B) with a subset of £(B'), then T’ C £(B).

Next, choose a finite generating set S’ of B’ as a k-algebra such that S’ contains a
finite generating set of B as a Z-algebra. Then choose a finite generating set T of B as a
k-algebra such that b € T', S C T and all elements of S’ satisfy a nonzero univariate (not
necessarily monic) polynomial over Z[T]. Set T = S’ UT. Then T C T, T generates B
as a k-algebra, T” generates B’ as a k-algebra and every element of T” is algebraic over
Z[T). Next, let kg C k be a finitely generated field extension of Q such that the ideal of
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all k-algebraic relations among the elements of T' as well as the ideal of all k-algebraic
relations among the elements of T” is generated by polynomials with coefficients in kq. Set
By = ko[T'] and B(, = ko[T"]. Then By C B, and Bj is finitely generated and algebraic over
By. Moreover, b € By, S C By, B C B{, and the morphisms By®g, k — B and B)Qx, k — B’
are isomorphism.

Let & be the base change of & from B to Bj. Then & is a commutative separated
group scheme of finite type over Bj with I" C &y(13,) and the base change of & from By, to
B'is €. 1t follows that the base change of £ Xgpec(sy) Spec(ko(By)) from ko(By)) to k(B')
is & Xgpec(sr) k(B'). Since the latter is an abelian variety, also & Xspec(s;) Spec(ko(B)))
must be an abelian variety. So & is of abelian type. In summary, we have successfully
descended everything to ko: The base change of B(/By from kq to k is B’/B and the base
change of & /Bj, from kg to k is £/B’.

Set Xy = Spec(By) and X = Spec(B])) so that £ — X’ — X is the base change from
k’o tOkﬁOfEb—)Xé—)Xo.

By Neron’s specialization theorem (Corollary , there exists a Hilbert subset H),
of Xj such that the specialization map o, : £o(Bjy) — Eo(ko(zp)) is injective for every
xy € Hj. By Lemma there exists a Hilbert subset Hp of X such that the image of
H{ in X, contains Hy and every element of Hj has a unique lift to an element of X{. Let
‘H be the inverse image of Hy N D(b) under X (k) - X — AXp. Then H is a geometric
By /ko-Hilbert set.

We claim that the geometric Hilbert set H is contained in U. Let ¢ € H and let z, xg
denote the image of ¢ in X, X respectively. By construction of Hy, there exists an x(, € H),
mapping to xzg. On the other hand, if p is the prime ideal of B corresponding to x, then
b ¢ p and so x lifts to a point 2’ of X’ by the choice of b. The commutative diagram

X ——X

L

X, — X

then shows that the image of 2’ in X equals xz{, because xj, is the unique lift of x¢ to an
element of Xj. We then have a commutative diagram

&(Bp) £(8)

O'T{)l/ io’w/

Eo(ko(xp)) —= E(k(z"))

where the horizontal maps are injections. As oy 1s injective, it is in particular injective
on I'. Thus also o,s = o, is injective on I". So ¢ € Wx/(E,T') = U as desired. O

We are now prepared to prove the main theorem of Section

Theorem 2.24. The intersection of an ad-open and an ab-open subset of X (k) is Zariski
dense in X (k). In particular, an adx Jac-open subset of X (k) is Zariski dense in X (k).

Proof. Let Y = Wx(G,,T') be an ad-open subset of X' (k) and let V be an ab-open subset
of X (k). We first show that & NV is nonempty.

Choose a finite generating set S C B of the finitely generated subgroup I' of (B, +).
By Proposition there exists a geometric By/ko-Hilbert set H of X'(k) with S C By
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and # C V. Now Lemma [2.14] yields an n € Bf* with By = ko[n] and appropriate p, b
such that ’Hk X(k)((l .., 1),p,b) C H. In particular, Hk X(k)((l ., 1),p,b) CV.
On the other han d, I' C By as S C By and so by Proposmon [2.15] there exists a d
such that 7 x(p(d,0,1) CU. Thus
HZ(),X(k’) (dvpa b) = Hgmx(k) (da (Da 1) N Hgm)((k)((]-a try 1)’p7 b) g unv.

Since HZOX(R)(d, p,b) # 0 by [Fen21l, Prop. 2.8], we can conclude that U NV # 0.

We next show that & NV is Zariski dense in X (k). Suppose, for a contradiction, that
U NV is not Zariski dense. Then there exists a nonempty Zariski open subset U’ of X' (k)
such that /' NUNYV = 0. So, if U” is any ad-open subset of X (k) contained in U’ NU,
then U” NV = (). This contradicts the first part of the proof. O

We can do slightly better:

Remark 2.25. The intersection of finitely many ad-open and finitely many ab-open sub-
sets of X (k) is Zariski dense in X (k).

Proof. The intersection of finitely many ad-open subsets contains an ad-open subset (Re-
mark[2.3)) and the intersection of finitely many ab-open subsets is an ab-open subset (argue
as in ([2)). Thus the remark follows from Theorem [2.24] O

3 Some topics in differential Galois theory

This section is a collection of definitions, results and constructions from differential Galois
theory, mostly related to the computation of the differential Galois group via Hrushovski’s
algorithm. In Section [4] in the course of the proof of our main specialization theorem
(Theorem, we will then show that many of the properties and constructions discussed
here are preserved on an adxJac-open subset of the parameter space.

Throughout Section [3| we assume that

e (F.¢) is a differential field with field of constants
e k = F° algebraically closed and of characteristic zero.

In the later subsections we will specialize to the case (F,d) = (k(x), %) or F' a finite
field extension of k(z). The reader is invited to recall our notational conventions from the

end of the introduction.

3.1 Basics of differential Galois theory

We begin by recalling the basic definitions and results from the Galois theory of linear
differential equations. Proofs and more background can be found in any of the introductory
textbooks [Mag94], [vdPS03|, [CH11], [Saul6].

Recall that a differential ring R is §-simple if it is not the zero ring and the only §-ideals
of R are R and the zero ideal.

Definition 3.1. A Picard-Vessiot ring for §(y) = Ay, (A € F"*") is a d-simple F-§-al-

gebra R such that there exists a Y € GL,(R) with §(Y) = AY and R = F[Y, ﬁ(y)]
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For any given A € F"*" there exist a Picard-Vessiot ring R/F for d(y) = Ay and it
is unique up to an F-§-isomorphism. Moreover, R’ = k. The differential Galois group
G = G(R/F) of R/F (or of 6(y) = Ay) is the functor from the category of k-algebras
to the category of groups given by G(T') = Aut(R ®x T/F ®j T'), where T is considered
as a constant differential ring. It is a linear algebraic group (over k). Its coordinate ring
k[G] can explicitly be described as k[G] = (R®F R)° = k[Z, det(Z)] with Z =Y 1oY €
CGL,((R®x R)?) and Y as in Definition The canonical map

R®y k[G] = R®r R

is an isomorphism and so we may make the identification R @ R = R ®y, k[G]. For a
k-algebra T, any g € G(T), i.e., any K ®j T-6-isomorphism g: R ®, T — R ®; T, is
determined by ¢g(Y ® 1). Moreover, g(Y ® 1) = Y ® [g] for a unique [g] € GL,(T). The
assignment g — [g] determines a morphism G — GL,, j, of algebraic groups over k which
is a closed embedding. The dual of this morphism is the map k[GL,] = k[X, #(X)] —
kEG], X — Z.

The (functorial) action of G on R/F is determined by the map p: R — R ®y k[G],
which, under the identification R ®r R = R ®j, k[G] corresponds to the inclusion into
the second factor. Explicitly, we have p(Y) =Y ® Z. For ¢ € G(T) = Hom(k[G],T),
the corresponding automorphism g: R ®; T — R ®j T is the T-linear extension of R 2,
R®i kGl - Ry T.

The following lemma shows that Picard-Vessiot rings and differential Galois group
are well-behaved under extension of the constants. For a proof see, e.g. [BHHW2Ial
Lemma 5.2].

Lemma 3.2. Let k C k' be an inclusion of algebraically closed fields and let R/k(x)
be a Picard-Vessiot ring with differential Galois group G. Then R @y, k' () /K () is a
Picard-Vessiot ring with differential Galois group Gir. O

3.2 Differential torsors

Differential torsors were introduced in [BHHWI1S] for the purpose of solving differential
embedding problems. To study the behaviour of Picard-Vessiot rings and differential
embedding problems under specialization, we will need a version of differential torsors
that works over an arbitrary base and not just a differential field, as in [BHHW1S].

As in the introduction, consider an inclusion & C k' of algebraically closed fields of
characteristic zero and a differential equation §(y) = Ay over k() with differential Galois
group G and Picard-Vessiot ring R/k'(x). To discuss specializations of G and R down to
k one first needs to spread out G and R into families, i.e., we would like to have a finitely
generated k-subalgebra B of £/, an affine group scheme G and a differential ring R over B
such that the base change from B to k' yields G and R. It is then natural to also ask for
an action of G on R compatible with the action of G on R. Moreover, since R defines a
G-torsor, also R should define a G-torsor. This idea is formalized through the notion of
differential torsor.

Let B be a k-algebra (considered as a constant d-ring) and let Q be a B-d-algebra. The
two most relevant cases for us are, firstly B = k and Q = k(x) and, secondly Q = Blz],
where f € B[z] is a monic polynomial.

For a Q-d-algebra R, we define Aut(R/Q) to be the functor from the category of
B-algebras to the category of groups given by Aut(R/Q)(T) = Aut(R@pT/Q®5T) for
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any B-algebra 7. Here T is considered as a constant d-ring and the automorphisms are
understood to be differential automorphisms. An element g of Aut(R/Q)(T) is thus a
Q ®p T-6-isomorphism g: R®@p 7T — R ®pT. On morphisms Aut(R/Q) is given by base
change.

Let G be an affine group scheme over B. An action of G on R/Q is a morphism
G — Aut(R/Q) of group functors. In particular, for a B-algebra T, every g € G(T)
defines a Q ®p5 T-d-automorphism g: R T — Rz T.

Lemma 3.3. To specify an action of G on R/Q is equivalent to specifying a morphism
p: R — R ®p B[G] of Q-0-algebras such that the diagrams

R P R ®p B[J]

P l lp®3[g]

R @5 BIG] 225 R @ B[G) @5 BIG)

and

R ®p B[G]

\/

commute, where A: B[G] — B[G] @5 B[G] is the comultiplication and e: B|G] — B the
counit of the Hopf algebra B[G] over B.

Proof. As this is a fairly standard argument, we only sketch the proof. First assume that
an action of G on R/Q is given. For T = B[G] and g = id € G(T) = Hom(B[G], B[G]) we
thus have a Q ®p B[G]-J-automorphism g: R ®p B[G] - R ®p B[G]. Then we can define
p as the composition p: R — R @5 BlG] & R @5 B[G].

Conversely, given p, we define an action of G on R/Q as follows. For a B-algebra T
and g € G(T) = Hom(B[g], T) we define g: R®p T — R®p T as the T-linear extension

of R % R ®p BlG] Re9, » ®p T. The first diagram corresponds to the associativity of
this action while the second diagram shows that the identity acts trivial. O

As above, let G act on R/Q and let p: R — R ®p B[G] denote the coaction (as in
Lemma . We call R/Q a differential G-torsor if R is not the zero ring and the map
R®oR — RepB[G], a®b— (a®1)-p(b) is an isomorphism. The geometric interpretation
of this condition is the usual torsor condition, i.e., for Z = Spec(R), the morphism

zZ X9 gQ — Z Xsz (z,g) = (szg)
of affine schemes over Q is an isomorphism.

Definition 3.4. Let A € Q"*". A differential G-torsor R/Q is a differential G-torsor for
d(y) = Ay if there exists a Y € GL,(R) such that

(i) 6(¥) =AY,
(i) R = Q[Y, ﬁm] and

(iii) for every B-algebra T and every g € G(T) there exists a [g] € GL,(T) such that
gV el)= el el).
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A matriz Y € GL,(R) such that the above three conditions are satisfied is called a funda-
mental matrix.

Assuming Definition the assignment g — [g] defines a morphism G — GL, 5 of
group schemes over B.

Example 3.5. The most basic example of the above definitions is when B =k, Q = F'is
a differential field with F® = k and R = R is a Picard-Vessiot ring over F for d(y) = Ay
(A € F™") with differential Galois group G = G. As explained in Section G acts on
R/F and R/F is a differential G-torsor for 6(y) = Ay. Note that if Y =Y € GL,(R)
is such that §(Y) = AY and R = K|[Y, 1+, then condition (iii) of Definition is
automatically satisfied (because (R ®y T)° = T for any k-algebra T).

In the following example we construct a differential torsor for the group scheme of 2 x 2
monomial matrices.

Example 3.6. Let B C Q C Q[n] be an inclusion of differential k-algebras such that B is
constant and Q[n] is an integral domain. We assume that 7 has minimal polynomial 4% —a
over the field of fractions of Q, where a is some element of ©*. We also fix b € Q. Let
y1,y2 be indeterminates over Q[n] and define a derivation § on R = Q[nl[y1,y2, 7 ", ¥ ']

by 6(y1) = (b+n)y1, d(y2) = (b —n)y2. Set

Vo <5(yy11> 6&)) B ((b Co 0 —3137)92)

Then det()) = —2ny1y2. Therefore R = Q[Y, ﬁ()})] A direct computation shows that
(YY) =AY, where

0 1

AZ( §(a)b 6a>€Q2X2'
a+ 8(b) — b — 2 gy 4 oa)

We would like to describe Z = Spec(R) explicitly as a closed subscheme of GL3 o. To
this end, let Z denote the kernel of the morphism Q[X #] - R, X =Y. As R is

s det(X)
an integral domain, Z is a prime differential ideal of Q[X, |, where §(X) = AX. We

1
det(X)
have

O+n)yr-(b—nya= 0" —a)yryz  and  (b+n)y1-y2 + (b—n)y2 - y1 = 2by1yp.
Therefore, the polynomials

1= Xo1Xoo — (0* —a)X11X12  and  pp = Xo1 X192 + Xo2 X117 — 20X11 X2

lie in Z. We will show that Z = (p1,p2). For this, it suffices to show that the in-
duced map Q[X, ﬁ(x)}/(pl,pg) — R is injective. Let 21, 29, 2], 25 denote the image in

Q[X, ﬁ(x)]/@?hpg) of Xi1, X129, Xo1, Xoo respectively. Then

212 = (b? — a)z) 20, (7)
and

229 + 2hzy = 2bz120. (8)
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Subtracting 2z} zo from (8) yields 2125 — 2] 29 = 229(bz1 —2). Since 22, — 2] 22 is invertible,
we see that also zo is invertible. Similarly, subtracting 22521 from , we see that zp is
invertible. So can be rewritten as

2 oA

T+ 2=2b (9)
whereas 1') becomes i . 2 = b2 —a. Plugging i =2b— i into the latter equation yields
(% —b)? =a. Set ¥ = 2 —b. Then n? =a, 2{ = (b —|— n')z1 and from @) we obtain

= (b—1)z.
Set S = Q[n’,zl,zg,zl_l, 25 1. We claim that S = Q[X » Jot X)]/(plapz). It suffices to

show that 2/, 2} and ~ lie in S. But 21 = (b+ 7/ )21 €8, 2,=(0b—1n)z S and

z1z2 2!
z12h — 2129 = 2n'z129. So m €S and § = Q[X ,det )]/(pl,pg) as claimed.
The map
Q][z1: 22,21 ', 25 '] = QIX, gy )/ (p1,p2) — R = Qnl[yn, vz, 1 v ') (10)

sends 7 to 1, z1 to y1 and 23 to yo. As n'? = a, the restriction Q'] — Q[n] is injective.
But then, since y; and y9 are algebraically independent over Q[n], the map is injective.
Thus Z = (p1,p2) as claimed. In other words, Z is the closed subscheme of GLg o defined

by p1 and po.
Let G be the group scheme of monomial 2 x 2 matrices over B, i.e.,

g(T) = {<gz g;z) € GL2(T) | 911912 = 921922 = g11921 = G12922 = 0} < GL2(T)
(11)

for any B-algebra 7. In particular, if 7 is an integral domain then

g(T):{(é ?) |s,teTX}u{<(t) 0) B teTX} < GLy(T).

Note that the equations in (11)) are redundant, in fact,

g(T) = {(gu g12> € GL2(T) | 911912 = 921922 = 0}

921 G922

for any B-algebra 7. For example, if g11912 = g21922 = 0, then (g11922 — g12921)911921 = 0
and so also gJg11g921 = 0 since g11922 — gi12921 is invertible.
We will define an action of G on R/Q. Roughly, the idea is that a diagonal matrix

1
<8 g) acts by y1 — syi1, yo — tyo and fixing n, whereas the permutation matrix (? O)

acts by interchanging y; with yo and n with —»n. In general, for 7 a B-algebra, g =

(?11 g12> € G(T) acts on RpT by g(¥) = Y®g. To make sure that this is well-defined,
21§22

we check that for any Q-algebra S, Z = (ZH 212) € Z(S)and g = <g11 912) € G(S),
Zon  Za 921 922

Znugn + Zi2921 Z11g12 + Z12922 .
we have Zg = € Z(S). Using (|11)), we find
g <Z21911 + Z22g21  Z21912 + Z22922 (%) g (i1

p1(29) = (Za1g11 + Z22991)(Za1912 + Zaagaz) — (0* — a)(Z11g11 + Z12921)(Z11912 + Z12922)
= Zo1 722911922 + Z22 721921912 — (b* — a)(Z11Z12911922 + Z12Z11921912)
=p1(Z)g11922 + p1(Z)g21912 = 0
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and

p2(Z29) = (Z21911 + Z22921)(Z11912 + Z12922) + (Z21912 + Z22922)(Z11911 + Z12921) —
20(Z11911 + Z12921)(Z11912 + Z12922)
= Zo1 212911922 + Z22Z11921912 + Z21 212912921 + L2 Z11911922—
20(Z11 212911922 + Z12211921912)
= p2(Z)g11922 + p2(Z)g21912 = 0.

To see that R/Q is indeed a differential G-torsor, it suffices to check that for Z, 2" € Z(S),
the matrix Z 17’ lies in G(S). As

g1 _ 1 < Z99 —Z12> (Zh Z{2> . 1 <Z22Z§1 — Z12Zé1 Z22Z§2 — Zngé2
Z11Z21 - Z21Zn leZ22 - Z21Z12

Cdet(2) \—Zu1  Zn ) \ZYy Ziy)  det(2)

it suffices to show that

(Z22Z11y — Z12Z1)(Z22Z19 — Z12Z55) = 0 (12)
and

(Z11251 — Zo1 Z11)(Z11 239 — Z1Z15) = 0. (13)
To verify these identities, it is helpful to rewrite p;(Z) = 0 and p2(Z) = 0 as

Zo1 | Z22 _ 2

Z11 Z12 —a and 7 72 — 2b. (14)

Z11 Z12

(Note that subtracting 2Z; Z12 from pa(Z) = 0 and using the invertibility of det(Z) shows
that Zpo is invertible. By a similar argument, Z1; is invertible.) From we deduce
(% — b)? = a, which leads to

_ (Z22\2 _ 9pZxn 2 N (ZoaN\2 _ (Zay | Za)\ Zoy _ Zay | Ziy _
0_(Z12) 2bZ12+(b a)_( ) (Zil Ziy ) Z12 71 Zip

— (Ze2 _ Zon\ (Zo2 _ Z2o
Z12 Z1 Z12 Ziy )"
Clearing denominators, we find . A similar computation verifies . In summary,
we see that R/Q is a differential G-torsor for d(y) = Ay with fundamental matrix ).

In the next lemma we collect three basic observations that will be used repeatedly in
what follows.

Lemma 3.7. Let G act on R/Q.
(i) If B — B’ is a morphism of k-algebras, then Gg acts on R @ B'/Q @p B'.

(ii) If S is a multiplicatively closed subset of Q, then the action of G on R/Q extends
canonically to an action of G on S_lR/S_lQ.

(i) If @ — Q' is a morphism of §-rings, then G acts on R ®¢g Q'/Q’.

Moreover, if R/Q is a differential G-torsor, then also the actions in (i), (ii) and (iii) define
differential torsors, provided that R @5 B', ST'R and R ®g Q' respectively is not the zero
ring. ]

For later use we record a lemma on differential torsors in the case B = k and Q = k(z).
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Lemma 3.8. Let G be a linear algebraic group over k and let R/k(x) be a differential
G-torsor. Then the intersection of all mazximal 6-ideals of R is zero.

Proof. Let m be a maximal d-ideal of R. For every g € G(k), also g(m) is a maximal
d-ideal of R. It thus suffices to show that the ideal I = ) ¢y 9(m) of R is zero. Clearly
g(I) C I for every g € G(k). In terms of the coaction p: R — R®y,k[G] (as in Lemmal3.3)
this property translates to p(I) C I ®k[G]. But then the closed subscheme W of Spec(R)
defined by I is stable under the action of Gy (,). Since Spec(R) is a Gy, -torsor, this is
only possible if W = Spec(R), i.e, I = 0. O

To explain how differential torsors are obtained by “spreading out” a Picard-Vessiot
ring into a family of differential rings we will need a basic lemma on linear algebraic groups.

Lemma 3.9. Let G be a linear algebraic group over k and let k'/k be a field extension.
If ' Gy — GLy g is a closed embedding of algebraic groups over k', then there exists a
finitely generated k-subalgebra B of k' and a closed embedding ¢: Gg — GLy g of group
schemes over B such that ¢y = ¢'.

Proof. Writing k' as the directed union of its finitely generated k-subalgebras, this follows
from Theorem 8.8.2 and Theorem 8.10.5 (iv) in [Gro66]. O

The following simple example illustrates Lemma [3.9

Example 3.10. Let k'/k be a field extension and b € k' ~\ {0}. Consider the closed
embedding ¢': G, i — GLg i of algebraic groups over k' (where G, s denotes the additive

group over k') given by
1 bg
g (0 1 ) . (15)

For B = k[b] C £/, formula defines a morphism G, 5 — GLg2 s of group schemes over
B that need not be a closed embedding, e.g., if b is transcendental over k, the fibre over
b = 0 is not a closed embedding. However, for B = k[b,b~!] C K/, formula (15| defines a
closed embedding G, 5 — GL2 g of group schemes over B.

One can think of differential torsors as the kind of objects one obtains when “spreading
out” a Picard-Vessiot ring into a nice family. This is formalized in the following lemma.

Lemma 3.11. Let k C k' be an inclusion of algebraically closed fields and let R/K'(x)
be a Picard-Vessiot ring for 6(y) = Ay with A € k' (x)™™ and Y € GL,(R) such that
0(Y) = AY. Then there exist

e a finitely generated k-subalgebra B of K,
e a monic polynomial f € B[z],
e an affine group scheme G of finite type over B and
e a differential G-torsor R /Blx]s
such that

o A€ B},
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o R is flat over Blz]y and R/B[z|s is a differential G-torsor for 6(y) = Ay with
fundamental solution matriz Y € GL,(R) and R&" = R ®pjy), K(x) is d-simple,
where K C k' is the algebraic closure of the field of fractions of B and

o RE" R (yy k' () ~ R via an isomorphism that identifies J with Y.

Moreover, if By is a finitely generated k-subalgebra of k' and fo € Bylx] is monic, then B
can be chosen such that By C B and f can be chosen such that fy divides f in Blz|. If, in
addition, fo € Bolz] is such that A € Bylx }?X" then B can, in addition, be chosen such
that B is contained in the algebraic closure of the field of fractions of By.

Furthermore, if the differential Galois group G of R/k'(x) is of the form G = Gy for
some algebraic group Go over k, then G can be chosen to be equal to Gy .

Proof. We consider the differential Galois group G of R/k'(x) as a closed subgroup of
GL,, ;s via the choice of Y. The contributions to B and f came from three different
sources. We go through them one by one:

(a) Let By be a finitely generated k-subalgebra of &' and f; € B[z] a monic polynomial
such that A € Bi[z];". Then Bi[z], | ,m] is a d-subring of R.

(b) Consider the ideal I of k'(z)[X, det( )} given by I = {p € k'(z)[X, det ]] p(Y) =0}.
Choose p1,...,pr € I such that I = (p1,...,p,). Let By be a finitely generated k-sub-
algebra of &’ and let fo € Ba[z] be monic such that pi,...,p, € Ba[z]y,[X, ﬁm] C

K(@)[X, -

(¢) Let Bs be a finitely generated k-subalgebra of k' and Gs a closed subgroup scheme
of GL, s, such that Gs;» = G as closed subgroups of GL,, ;». By generic flatness
([EisO4, Theorem 14.4]), we may assume that G is flat over Bs.

Let By be the k-subalgebra of k' generated by By, Bs and B3. Furthermore, set f4 = fi fo
and consider the finitely generated Bslx]s,-algebra Ba[z]s,[Y, ﬁ(y)] C R. By generic
flatness ([Eis04, Theorem 14.4]), there exists a nonzero (not necessarily monic) h € Balx]f,
such that (Ba[z]s,)nlY, ﬁ(y)] is flat over (Ba[z]s,)n. Write h = % with hy € By[z] and
m > 1. With h = f4h1 S B4[$] we then have (84[ ]f4)h = 84[ ]

Let B be the k-subalgebra of k' generated by B, and the inverse (in k') of the leading
coefficient b of h’. In general, if R — S is a flat ring map and f € R, then S; =

S®g Ry is a flat Ry-module ([Sta24, Tag 00HI]). Therefore, since B[]y [Y, ﬁ(y)] is a flat

84 [l‘] h/—module, (84 [x] h’)b D/, ﬁ(y)

f:%h’EB[ ] we have (By[z]n )y = Bz]; and so Blz]f[Y, 5

We set R = Blz]y| 7W] and G = Gz . Then R is a Blz]s-6-algebra and flat
over Blz|s. Moreover, the canonical surjection R ®p), K'(zx) — R is an isomorphism
by item (b) above. Since Gs is flat over B3, we see that G is flat over B. Furthermore,
Gr = (G38)kw = Gs)v = G. In particular, k'(z) ®p B|G] = k'(z) @i K'[G].

The above flatness properties allow us to identify R ®p B[G] with a J-subring of R ®j
K'[G]. In detail, since B[G] is a flat B-algebra, Blz]; ®p B[F] is a flat B[z];-algebra and
therefore R @ B[G] = R ®p[), (Blz]r ®@p B[J]) is a flat Bz]s-algebra. This entails that
the map R ®p B[G] — (R ®p B[F]) @p[s), k'(v) is injective. But

(R @5 BlG]) @pla), K'(2) =(R ®pj); k' (2)) @) (K (2) @5 B[G]) =
=R Qp/(a) (K'(z) @i K'[G]) = R @p K'[G].

| is a flat (By[z]p)p-module. For the monic polynomial
T] is a flat B[z]p-module.
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So we can consider R ®p B[G] as a subring of R ® k'[G].

As explained in Section the closed embedding G — GL,, ;s corresponds to the
morphism £'[X, ﬁ(x)] — K[G] = (R®p@u R)°, X = Z =Y '®Y. Moreover, the
coaction R — R ®j K'[G] is determined by Y +— Y ® Z. In summary, we see that the
coaction R — R ®j k'[G] restricts to a map R — R ®p B[G]. It is then clear that G acts
on R/B[z];. Indeed, for a B-algebra T, every g € G(T) < GL,(T) acts on R ®5 T by
YRl1—-Y®g.

To see that R/Bz]y is a differential G-torsor, let us first show that R ®pp,, R —
R ®j/(,) R is injective. Note that

(R @B, R) @pja); K (2) = (R @pa), K (2)) Opr(2) (R @B, k' (2)) = R ®po () R-

It thus suffices to show that the map R ®pp,|, R = (R ®p[z); R) @5, k' (2) is injective.
But this follows from the flatness of Blz]; — R ®p,), R, which in turn follows from the
flatness of Blz]; — R.

We claim that the isomorphism R ®j/(;) R — R ®p k'[G] restricts to an isomorphism
R ®pa); R = R @B B[G]. Injectivity being obvious, the surjectivity of R @Bl R —
R @ B[G] follows from B[G] = B[Z, -1, where Z =Y ' ®Y € GL,(R O/ (z) R), and

> det(Z)
R ®@p), R — R @p B[G] maps Y1®Y to1®Z. Thus R/B[z]s is a differential G-torsor.
As §(Y) = AY and R = Blz,[Y, ﬁ(ﬁ’)]’ we see that, in fact, R/Bz]; is a differential

G-torsor for §(y) = Ay with fundamental matrix ) =Y.

As (R ®ppa);, K(2)) k(o) k' (z) = R ®pp, K'(v) = R is é-simple, we see that also
REM = R Qp), K (x) must be d-simple. We have thus established the first claim of the
lemma.

To address the second claim, let Ky C k' be the algebraic closure of the field of fractions
of By. Note that there is no difficulty in arranging B such that By C B. For example, in
the above construction of B, we could choose By such that By C B;. Similarly, we can
choose fi so that fy divides fi.

Assume that A € Bo[z]3". As A € Ko(x)"*", we may consider a Picard-Vessiot
ring Ro/Ko(x) for 6(y) = Ay. It then follows from Lemma that Ro @, () ¥ (2) is a
Picard-Vessiot ring for §(y) = Ay over k'(x). By the uniqueness of Picard-Vessiot rings,
we thus have R >~ Ry Qg () K'(x). We can now apply the first claim of the lemma to the
inclusion k£ C Ky and the Picard-Vessiot ring Ry/Ky(x). Then automatically B C Kj.

Concerning the last claim of the lemma, note that, according to Lemma the
closed embedding G = G} — GL,, v determined by Y spreads out to a closed embedding
Gp — GL, g, where B’ is a finitely generated k-subalgebra of £’. In point (c) above, we
can thus choose B3 = B’ and G3 = Gp,, so that G = G .

O

3.3 Proto-Picard-Vessiot rings

For a linear algebraic group G, let G' denote the intersection of all kernels of all char-
acters of G°, the identity component of G. The algebraic group G* plays a fundamental
role in the study of moduli of linear differential equations ([Sin93]) and in Hrushovski’s
algorithm ([Hru02]). In regards to Hrushovski’s algorithm, the key point concerning G? is
the following. While the degree of defining equations of a closed subgroup of GL,, cannot
be bounded uniformly in n (consider, e.g., the groups i, of m-th roots of unity in GL1),
there exists a function d of n such that for every closed subgroup H of GL,, there exists
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a closed subgroup G of GL,, defined by equations of degree at most d(n) satisfying
G'<H<G. (16)

Given H, an algebraic group G satisfying is called a proto-Galois group for H
([AMP22, Def. 4.1]). In the first main step of Hrushovski’s algorithm a proto-Galois
group for the differential Galois group is computed.

For our purpose, the mere existence of the function d(n) is sufficient. To make
Hrushovski’s algorithm practical (a goal that seems rather far out of reach), it is im-
portant to find small bounds. In [AMP22] it is shown that one can take d(n) = (4n)3".

One can think of G as an “approximation” of H. This approximation is good in the
sense that G/G? is small. Indeed, G* is normal in G and the identity component of G/G"
is a torus. An alternative description of G is, as the closed subgroup of G generated
by all unipotent elements of GG. In this section we introduce an analog of this notion for
differential torsors: Proto-Picard-Vessiot ring. We think of them as “approximations” of
Picard-Vessiot rings. We also establish a criterion that enables us to decide whether or
not a proto-Picard-Vessiot ring is a Picard-Vessiot ring.

In addition to the standing assumption of Section |3| that F' is a differential field with
field of constants k = F? algebraically closed and of characteristic zero, throughout Sec-
tion [3.3] we make the following assumptions:

e (5 is a linear algebraic group over k;
o Aec Fmm,

e R/F is a differential G-torsor for §(y) = Ay with fundamental matrix Y € GL,,(R)
such that R is an integral domain;

e [’ is the integral closure of F in R;

e [ is the field compositum of F and the field of fractions of R (inside the algebraic
closure of the field of fractions of R).

Note that if m is a maximal d-ideal of R, then R/m is a Picard-Vessiot ring for §(y) =
Ay. As we will now explain, the differential Galois group H of R/m is canonically a closed
subgroup of G (cf. the proof of Proposition 1.15 in [BHHW1S8]). The composition

R® k[G] = R®p R — R/m®p R/m = R/m @y, k[H] (17)

maps k[G] into k[H], because the elements of k[G] are constant and the constants of
R/m ®y, k[H] are just k[H]. Thus the surjection is of the form 7 ® 1, where 7: R —
R/m is the canonical map and ¢: k|G| — k[H] is a surjective map of k-algebras. So 1)
defines a closed embedding H — G and we may identify H with a closed subscheme of G.
We claim that

H(T)={g€G(T)| gm®, T) =m®; T} (18)

for every k-algebra T'. In particular, H is a closed subgroup of G.
The commutative diagram

R—" + R®y k|G

l |ov

R/m —— R/m ®y, k[H]
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shows that p(m) C m ®; k[G] + R @4 I(H), where I(H) = ker(y)) C k[G] is the defining
ideal of H. Therefore g(m ®, T) C m ®; T for g € H(T). Since also g~ € H(T), we
deduce that indeed g(m @3 T') = m ®;, T.

Conversely, if g € G(T) satisfies g(m ®; T) = m ®; T, then g induces a differential
automorphism of (R®,T)/(m®,T) = R/m®;, T and thus belongs to H(T"), by definition
of H. This proves .

Now let m” be another maximal d-ideal of R. Then R/m’ is a Picard-Vessiot ring over
F with differential Galois group H’ canonically contained in G. We will show that G* < H
if and only if G* < H'.

As a first step, let us show that there exists a g € G(k) such that m’ = g(m). Consider
the morphism

k[G] = R®, k|[G] = R®pr R — R/m’ ®p R/m — S, (19)

where S is a quotient of R/m’ ® p R/m by a maximal d-ideal. As S is -simple and finitely
generated over F, we have S® = k ([vdPS03, Lemma 1.17]). Thus maps k[G] into
k and therefore defines a point g € G(k). By construction, g(m) C m’. Since g(m) is a
maximal d-ideal of R, we obtain g(m) = m’ as claimed.

From , we thus deduce that H' = gHg~'. As G! is normal G, we see that G* < H
if and only if G* < H'.

In summary, if m and m’ are maximal -ideals in R, yielding differential Galois groups
H < G and H' < @G respectively, then G < H if and only if G' < H’. So we can use this
property to define proto-Picard-Vessiot rings.

Definition 3.12. The differential torsor R/F is proto-Picard-Vessiot if for one (equiva-
lently every) mazimal 6-ideal m of R we have Gt < H, where H is the differential Galois
group of R/m.

Clearly, R/F is proto-Picard-Vessiot if R/F is Picard-Vessiot. Our next goal is to find
a criterion to test if a differential torsor is proto-Picard-Vessiot. In the next defintion and
lemma k' is a field of characteristic zero. Following [Fenl5] and [AMP22, Def. 2.3] we
make the below definition.

Definition 3.13. A geometrically reduced closed subscheme Z of GL,, s is bounded by a
positive integer d, if there exist polynomials p1,...,pm € K'[X] of degree at most d such
that

Z(K') = {g € GL,(K)| p1(9) = ... = pm(g) = 0}. (20)

Note that, by Hilbert’s Nullstellensatz, (@ is equivalent to I(Z) = \/(p1,-..,Pm), where
1(Z) C K'[X, 5] is the defining ideal of Z and (p1,...,pm) is the ideal of k'[X, -]
generated by p1,...,Pm.

Lemma 3.14. Let G be a closed subgroup of GL,, » and Z a geometrically reduced closed
subscheme of GLy, v such that Z is a G-torsor under right multiplication. If G is bounded
by d, then also Z is bounded by d.

Proof. A point z € Z(k’) defines an isomorphism G — Z7, g+ zg of schemes over k.
If p1,...,pm € K'[X] are such that

G(K') = {g € GL,(K')| p1(g9) = ... = pm(g) = 0},
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then o o
Z(k) = {g € GLa(K)| p1(7"g) = ... = pm(2"'g) = 0}.
S0 1(Zig) = /(o1 1X), - pml(z X)) € FIX, gy -
We have [(Z;) = 1(Z) @y k" and so, if p;(2~' X)) € k’[X] has degree at most d, i.e, p; has
degree at most d, then p;(27'X) can be written as a k’-linear combination of polynomials

¢i; € K'[X]N1(Z) of degree at most d. The set of solutions of all ¢;;’s in GL,, (') is Z(K').
Therefore Z is bounded by d. O

As above, set d(n) = (4n)3"". The following lemma allows us to test if a differential
torsor is proto-Picard-Vesssiot. Roughly speaking, it shows that R/F is proto-Picard-
Vessiot if R encodes the algebraic relations among the entries of a fundamental solution
matrix up to degree d(n).

Lemma 3.15. Let m be a mazimal 6-ideal of R. If p(Y) = 0 for every p € F[X]| with
deg(p) < d(n) and p(Y') € m, then R/F is proto-Picard-Vessiot.

Proof. Let H < G be the differential Galois group of R/m and consider H as a closed
subgroup of GL, x via the fundamental solution matrix Y € GL,(R/m), the image of ¥
in R/m. Due to Corollary 4.1 of [AMP22], there exists a closed subgroup G of GL,
bounded by d(n) such that Gt < H < G.

Let m’ be the maximal d-ideal of F/[X, ﬁ(x)] whose image in R is m and let Z’ be the

closed subscheme of GLy,  defined by m’. The image Z of Z' x Gp — GL,.F, (2,9) — 29
is a G p-torsor. Indeed, for a point z € Z/(F) we have

Z(F) = Z'(F)G(F) = zH(F)G(F) = 2G(F).

We know from Lemma that Z is bounded by d(n). Let pi,...,pm € F[X] be poly-
nomials of degree at most d(n) such that 1(Z) = \/(p1,...,pm). As Z' C Z, we have
]I(Z) C m’. Therefore p1(Y),...,pn(Y) € m. By assumption, the image of pi,...,pn, in
R is zero. Since R is reduced, we see that in fact the image of I(Z) in R is zero. Geo-
metrically, this means that Z C Z, where Z C GL,,  is the closed subscheme defined by

I(Z) = {p € F[X, #H p(Y) = 0}. As Z is a Gp-torsor and Z is a Gp-torsor (both

det(X) N "~
under right multiplication), we must have G < G. Therefore, G! < G' < H and R/F is
proto-Picard-Vessiot. 0

We now work towards a criterion to decided if a proto-Picard-Vessiot ring is Picard-
Vessiot. Recall that G° denotes the identity component of the algebraic group G and that
F’ is the integral closure of F' in R.

Lemma 3.16. The F'-6-algebra R/F’ is a differential G°-torsor for §(y) = Ay.

Proof. As in [Wat79, Section 6.5], for a k’-algebra S over a field £, let 7o(S/k’) denote
the union of all étale k’-subalgebras of S. In particular, 7o(R/F) = F’ and mo(k[G]/k) =
k[G/G®]. In fact, the defining ideal I(G°) C k[G] of G° is the ideal of k[G] generated by
ker(e) N mo(k[G]/k), where €: k[G] — k is the counit ([Wat79, Section 6.7]).

In the diagram

R®p R—== R®y, k[G] (21)

| |

R®p R R ®y, k[G°]
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the kernel of the left vertical map is (f®1—1® f| f € F') C R®p R. The kernel of the
right vertical map is R ®j, I(G°), the ideal of R ®j, k[G] generated by ker(e) N mo(k[G]/k).
We claim that these two kernels correspond to each other under the isomorphism.

The diagram

F' @p F' F' @y, mo(K[G]/k)

\ id-e

F/

where the top isomorphism is obtained by applying 7y to R®p R ~ R®y k|G|, commutes.
The kernel of the left map is (f ®1—1® f| f € F') C F' ®p F’. The kernel of the right
map is F' @y, (mo(k[G]/k) Nker(e)). This shows that the two kernels in correspond to
each other. We thus have an induced isomorphism R ® g R ~ R ®j, k[G°], showing that
R/F’ is a differential G°-torsor. O

Let FR denote the ring compositum of F and R (inside the algebraic closure of the
field of fractions of R). In other words, FR is the F-algebra generated by R.

Corollary 3.17. We have FR = R®p F and FR/F is a differential G°-torsor.
Proof. Since R/F’ is a differential G°-torsor (Lemma [3.16)), it follows from Lemma

that R ®p F/F is a differential G°-torsor. As G° is connected, this implies that R @ pr F'
is an integral domain, i.e., R is a regular F’-algebra. This implies ([Bou90, Chapter V,
§17, Sections 4 and 5 | that F’ is relatively algebraically closed in the field of fractions
F'(R) of R and that F'(R) ®p F is a field. Thus the canonical map F'(R) ®p F — E is

injective (in fact bijective) and so also R @ F — FR is injective. O

Following [Gro67, Def. 4.5.2], for a field k" and a k’-algebra R', the number of ir-
reducible components of Spec(R’' ®js k') is called the geometric number of irreducible
components of R /K.

Corollary 3.18. The geometric number of irreducible components of R/F is [F' : F].

Proof. Because R/F is a differential G-torsor, R ®p F is isomorphic to F[Gf] (as an
F-algebra). The number of irreducible components of G is the same as the number of
connected components of G and this is the same as the number of connected components
of G. The latter is the same as the dimension dimy, mo(k[G]/k) of mo(k[G]/k) as a k-vector
space. As observed in the proof of Lemma [3.16] we have F' @ p F' = F' @y, mo(k[G]/k). So
dimy, o (k[G]/k) must equal [F' : F). O

Recall that E denotes the field compositum of F and the field of fractions of R (inside
the algebraic closure of the field of fractions of R). The idea for the criterion to decide if a
proto-Picard-Vessiot ring R/F' is Picard-Vessiot is to first Gauge transform the equation
d(y) = Ay with fundamental sulution matrix ¥ to an equation §(y) = A’y (where A’ =
BAB~! + §(B)B~!') with fundamental matrix BY via a matrix B € GL,(F) such that
BY € G°(F) and then apply characters of G° to BY. The following corollary shows that
we can always find such a transformation matrix B.

Corollary 3.19. For 9 € Homp (R, F) and B = 9(Y)™! € GL,(F) we have BY €
G°(E).
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Proof. Set Z = Spec(R), considered as a scheme over F'. As R/F’ is a G°-torsor by
Lemma the morphism

Z xp G — Z % Z, (2,9) = (2, 29) (22)

is an isomorphism If we consider Z and G%, as closed subschemes of GL,, p via Y, the
inverse of is given by (z1,22) — (zl, 2] 122) In particular, for any field extension F
of F' and 21,z € Z(F), we have 27 2 € GO(F F). With F = E, z = 9(Y) and 25 = Y,
this implies the claim. O

We note that there is a fixed embedding of F’ into I’ derived from forming the algebraic
closure of F inside the the algebraic closure of the field of fractions of R and Homp (R, F)
has to be interpreted accordingly.

We denote with I, the n x n-identity matrix.

Lemma 3.20. Let x be a character of G°, ¥ € Homp (R, F) and B = 9(Y)™! € GL,(F).
Then

S(x(BY)) = (L) (BAB™ +6(B)B™")y; | x(BY).

Proof. We will work with the ring E[e] of dual numbers, i.e., €2 = 0. For p € F[X, ?&X)],
C € GL,(F) and D € E™" (ie., C +eD € GL,(E[e]), we then have p(C + eD) =
p(C )‘1‘52” 1 3X (C)D;;. Therefore

p(C +6(C)) +5Z

3,j=1

8X Cij) = p(C) + £(5(p(C)))- (23)

For Y’ = BY € GL,(E) and A’ = BAB™ '+ §(B)B~! € F""" we have §(Y') = A’Y’. As
Y’ € G°(E) (Corollary [3.19) it follows from that Y/ +e0(Y’) € G°(E[e]). We have

XY+ e8(Y)x(Y'™h) = (((Y') +ed(x (YY) = 1+ e8(x (Y))x(Y')

On the other hand,

/ / —1y\ / / —1 _ !
XY +e5(Y)x (Y1) = x((Y +e5(Y)Y'™) = x(In + £4') = 1+e]218X 1) Al
Thus

/ / !
S0 = | 3 g | ()
2,7=1
as claimed. 0

The proof of Lemma [3.20| shows that ., 8?? (I,)(BAB™! +6(B)B™1);; € F does

not depend on the lift of x € k[G°] to an element of k[X, ﬁ(){)]
Our criterion that characterizes Picard-Vessiot rings among proto-Picard-Vessiot rings
is based on the concept of logarithmic independence that we now define.
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Definition 3.21. FElements f1,..., fm of a differential field F are logarithmically in-
dependent (over F) if Y, difi = 0(f)/f for di,....,dm € Z and f € F* implies
dy=---=d,=0.

The significance of the above definition is the following. Let hi,..., h,;, be nonzero
elements of some d-field extension of F' with no new constants such that 6(h;) = fih;
for i = 1,...,m. By the Kolchin-Ostrowski theorem ([Kol68]), if hi,...,h,, are alge-
braically dependent over F', then there exist dy, ..., d, € Z not all equal to zero such that
h‘lil ...hdm = f € F. Applying the logarithmic derivative h L}?) to this equation yields

dl...hﬁlnm

On the other hand, if ;" d;f; = d(f)/[f holds, the logarithmic derivative of fy 7

is zero. So i is a constant A and hill ...hdm = f\ € F. In summary, we see that
hi,..., h;, are algebraically independent over F' if and only if fi,..., f,, are logarithmically
independent. B

Note that if F' C F'is an inclusion of differential fields, then f1,..., f;, € F may be
logarithmically independent over I’ but logarithmically dependent over F'. However, from
the above discussion we deduce the following.

Remark 3.22. If ﬁ/F is an algebraic extension of differential fields and fi,..., fm €
F, then fi,..., fm are logarithmically independent over F if and only if fi,..., fm are
logarithmically independent over F.

The following lemma provides a criterion to test if a proto-Picard-Vessiot ring is Picard-
Vessiot. We denote with X (G°) the group of characters of G°.

Lemma 3.23. Assume that R/F is proto-Picard-Vessiot and let x1,...,Xm be a basis of
X(G°) (as a Z-module). Choose ¥ € Homp/(R, F) and set B=9(Y)"! and

n

fort=1,....,m. Then R/F is Picard-Vessiot if and only if fi,..., fm are logarithmically
independent over F.

Proof. Suppose R/F is not Picard-Vessiot, i.e., R is not d-simple. We will show that
fi,---, fm are logarithmically dependent. As a non-trivial d-ideal of R, gives rise to a
non-trivial §-ideal of R @ F, this implies that also R @ F is not d-simple.

From Corollary we know that FR = R ®p F is a differential G°-torsor over F'.
Let m be a maximal é-ideal of FR = R ®p F and set m = m N R. Then (FR)/m is a
Picard-Vessiot ring for §(y) = Ay over F and R/m embeds into (F'R)/m. This implies
that the field of fractions of R/m does not have new constants. So R/m is a Picard-Vessiot
ring (over F) for §(y) = Ay and m is a maximal d-ideal of R. Let H be the differential
Galois group of R/m. As R/F is proto-Picard-Vessiot, we have G < H < G.

The ring compositum F(R/m) of F and R/m (inside the algebraic closure of the field
of fractions of R/m) can be identified with (FR)/m. In fact, using Corollary (applied
to R/m), we get a map F(R/m) — (FR)/m which then necessarily is an isomorphism. By
Corollary m the differential Galois group of F(R/m) = (FR)/m is H°.

As m is a nonzero prime ideal of R and R is an integral domain, we see that

dim(H) = dim(R/m) < dim(R) = dim(G).
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Therefore H® is a proper subgroup of G°. As the identity component G°/G* of G/G" is
a torus and H°/G" is a proper subgroup of G°/G?, there exists a non-trivial character of
G°/G" that is trivial on H°/G, i.e., there exists a non-trivial character y of G° such that
H° C ker(y).

Let Y € GL,(R/m) C GL,((FR)/m) denote the image of Y € GL, (R) and set
Y’ = BY € GL,(F(R/m)) = GL,((FR)/m). As BY € G°(FR) (Corollary [3.19), we have
Y’ € G°((FR)/m). For every h € H°(k) we can write h(Y') = Y’[h] with [h] € GL, (k).
Indeed, as explained in Section we may identify H° with a closed subgroup of GL,, ;.
Then

h(x(Y")) = x(Y'[h]) = x(Y")x([h]) = x(Y")
for every h € H°(k).

Thus x(Y') = f € F\ {0} by the differential Galois correspondence. Write y =
I, Xfi with d; € Z. Then not all d; are zero, because x is non-trivial. By Lemma ﬁ,
we have §(x;(BY)) = fix;(BY) for i = 1,...,m. This is an identity in FR. Taking the
quotient mod m yields d(x;(Y")) = fixi(Y') in (FR)/m = F(R/m). So

o(f S i
(f)_ Zd Xy/ de@

Thus fi1,..., fm are logarithmically dependent over F.

Conversely, assume that R/F is Picard-Vessiot. Then G is the differential Galois group
of R/F and E/F is a Picard-Vessiot extension with differential Galois group G°. Suppose
fi,--., fm are logarithmically dependent, i.e., there are di,...,d, € Z not all zero and
f € F\ {0} such that 3> dif; = 6(f)/f. Write x = [T, x. Then y is a non-trivial
character of G°. For Y’ = BY, using Lemma we obtain

5(X( Xz 7f
X(Y Zd y/ de’ - f

Thus 6(X52) =0, ie, X5 =X ek Sox(Y)=Af €T
For every g € G°(k) we can write g(Y') = Y'[g] for some [g] € GL,(k), thereby
identifying G° with a closed subgroup of GL,, ;. Then

x(Y') = gx(Y")) = x(g(Y")) = x(Y'[g]) = x(Y")x([g]),

for all g € G°(k). This implies that y is trivial; a contradiction. Therefore, fi,..., f,, are
logarithmically independent over F. O

Note that in case X (G°) is trivial, Lemma asserts that a proto-Picard-Vessiot ring
is automatically Picard-Vessiot.

Remark 3.24. If F = k(z) and R/F is Picard-Vessiot with connected differential Galois
group G, then the 9 € Homp (R, F) in Lemma can be chosen such that B = 9(Y)~! €
GL,,(F') and therefore also fi,..., fm € F.

Proof. By Tsen’s theorem the field F' = k(x) is a C-field and so by Steinberg’s theorem
every torsor for a connected linear algebraic group over F' is trivial ([Ser97a, Chapter III,
Section 2.3]). As R defines a torsor for Gp, we see that there exists a morphisms ¥ €
Homp (R, F'). Because G is connected, the differential Galois correspondence implies that
the integral closure F” of F in R is equal to F. So 9 € Homp (R, F) and 9(Y)~! € GL,(F)
as desired. O
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The following example illustrates Lemma [3.23

Example 3.25. Let a,b € F such that a € F* is not a square in F. Then F(n) =
F[y]/(y* — a) is a differential field extension of F. As in Example [3.6| we set

R=F(n)lyy2. 91" 95" = FIX. g/ (1,92) = FIY. gy

where §(y1) = (b+n)y1, 6(y2) = (b —n)y2,

p1 = X1 Xo2 — (b* — a) X11 X12, p2 = Xo1X12 + X209 X711 — 20X 11 X9,

0 1
A:< d(a)b 5a>EF2X27
a+5(b) — b2 — S gy 4 o)

and 0(X) = AX. Then R is an integral domain and R/F is a differential G-torsor
for 6(y) = Ay, where G < GLgyy is the group of 2 x 2 monomial matrices (as seen in
Example . As G' =1, it is clear that R/F is proto-Picard Vessiot.

The algebraic group G° is the diagonal torus in GLg j and so a basis x1, x2 of X(G°) is
represented by X177 and Xgo. The integral closure F’ of F in R equals F' = F(n). Define
¥ € Homp (R, F) by 9(y1) = 9(y2) = 1. Then

o 1 1 — Y1 0 .
I(Y) = (b—l-n b 77) € GLo(F) and 9(Y) <0 yg) =Y.
We have
U1 0 - b+ n 0 Y1 0 o
J (0 y2) = ( 0 b-n)\0 4 and 0(Y) = AY. (24)
Because (%1 ; ) = BY for B = 9(Y)~!, the matrices defining the differential equations
2

in are related via the Gauge transformation defined by B, i.e., BAB~!+§(B)B~! =
b+n 0
. Therefore,

0 b—n
2.0
fi= X (L)(BAB™' +6(B)B™Y);; =b+n and
=1 c?X”
2.0
fo= X2 (L) (BAB™' +6(B)B™Y);; =b—1.

0X,;
ij=1"""

So Lemma shows that R/F is Picard-Vessiot if and only if b +7 and b — n are
logarithmically independent over F'(n).

3.4 Logarithmic independence via residues

In the previous section (Lemma , we have seen that whether or not a proto-Picard-
Vessiot ring is Picard-Vessiot, depends on the logarithmic (in)dependence of certain alge-
braic functions. The point of this short section is to present a criterion from [CS99] for the
logarithmic independence of algebraic functions via differential forms and their residues.
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In Section [4 we will then show that this criterion is preserved under many specializations.

Let F be a finite field extension of k(z), i.e., F//k is a function field of one variable.
Recall ([Sti09, Def. 4.2.10]) that the residue resp(w) of a differential form w of F/k
at a place P of F/k is defined as resp(w) = A_; € k, where w = fdt with ¢t € F a
uniformizing variable at P and f = Y >°, A\;t’ the P-adic expansion of f € F. In other
words, resp(w) = resp(f).

Let f1,...,fm € Fand set £ = (f1,..., fm). Let P be the (finite) set of places of F/k
consisting of all poles of the differential forms fidx, ..., f,dx. Define

Zl(f,P) = {(Cll,.. . ,dm) ezZm

) “diresp(fidz) € ZVP €Pand Y Y diresp(fidx) = 0} ,

=1 PeP i=1
Zy(£,P) = {(d1,...,dm) € Z1(£,P) | - pep (it divesp(fida)) P is a principal divisor of F/k} .

Note that Z;(f,P) and Z(f,P) are submodules of Z™ and thus are free Z-modules. Let
{(e1,.. . eme) | £ =1,...,n} be a basis of Zy(f,P) and for £ =1,...,n write

Z <Z € resP(fidx)> P = (hy) with hy € F*.
=1

pPeP

For ¢ =1,...,n, set wy = (%hf > ei,gfi> dz.

Lemma 3.26. The elements fi,..., fm are logarithmically independent over F if and only
if wi,...,wp are Z-linearly independent. In particular, if Za(f,P) = 0, then fi,..., fm
are logarithmically independent over F'.

Proof. The proof of this lemma is contained in the proof of [CS99, Prop. 2.4]. For the
convenience of the reader we include the details.

First assume that fi,..., f,, are logarithmically independent over F Let dy,...,d, €
Z be such that Y, dywe = 0. By definition of wy, this implies >, ds hé) =Y Zl 1 deei o fi.

For h =[], hgz € F*, we thus have

3 a2 =35 (S 5.

=1

The logarithmic independence of fi, ..., fy, implies that >, , dpe;p =0fori=1,....,m
The Z-linear independence of the (e, ..., em¢)’s thus yields di = ... = d,, = 0 as desired.

Conversely, assume that wq, ... ,w, are Z-linearly independent. Let dy,...,d,, € Z and
h € F* be such that 2% — S™™ ;. We will show that (dy,...,dn) € Zo(f, P). First

note that the dlfferentlal form (h)dx = dh has only simple poles and the residues are all in-
tegers. In fact, the residue at a place P of F/ K is the P-valuation of h. (This can, for exam-
ple, be deduced from [Sti09, Prop. 4.2.7].) So > ", diresp(fidx) = resp(d_;", d;fidr) =
resp(%) € Z for every place P of F/K and

m

(h) = ZresP Th P = szl resp(fidx)P.

P P =1
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where the sum is taken over all places of F//K. However, since resp(} -, d;fidx) = 0,
unless P is a pole of one of the forms f;dz, the sum can be restricted to P € P. As
principal divisors have degree zero ([Sti09, Theorem 1.4.11]), we see that (di,...,dn) €
Z1(f,P) and also (di,...,dn) € Zao(f,P). Therefore, there exist ci,..., ¢, € Z such that
di=> "y jceipfori=1,...,m. Then

;Céwe = ;Cewz - (&;?) - Zdifi>d$ =

= Z ( 8thy) Zez éfz) dr — (T i Céei,ffidx =

I, O T

VY GV Y

By construction, the differential forms wy have no simple poles; so Y., ; cowy has no
d(h TTp—y hy")
I Vi hZZ

simple pole. On the other hand, has only simple poles. This is only possible

if Yy cowe = 0.
Now the Z-linear independence of the w,’s yields that all ¢;’s are zero. Hence also all
d;’s are zero and the f;’s are logarithmically independent as desired. O

The following example illustrates Lemma [3.26

Example 3.27. Let F = k(z,2) with 22 = 2* + 2 + « and a € k. We assume that the
discriminant 2563 — 27 of 2* + x + « is nonzero so that 2* + +a has four distinct roots
as, oy, a5, 06 in k. Let B € kwith B4+ B8+a #0. Set b= x(f+zJ)ra = (%X 5)2 and n = =8,
We will investigate the logarithmic independence of f1 = b+ n and f2 =b—n. (Thls

choice of f1, fo is motivated by Example )
We first need to find the set P of poles of fidx and fodx. Note that the projective
curve C' C }P’% defined by the affine equation 22 = 2* + 2 + o has a singularity at infinity.
The transformation

yields a smooth model C' C ]P’i defined by the affine equation v? = u3 — 4au + 1. The
inverse transformation is given by

u=2z*-2), v=—-4(z*-2)z-1

These transformations yield an isomorphism between C' ~ {(0 : 1 : 1),(0 : 1 : 0)} and
C’"~{(0:1:0)}. The singular point (0 : 1: 0) of C" has two preimages in C, namely
(0:1:1)and (0:1:0). The places of F//k are in one-to-one correspondence with C'(k).
The inclusion k(z) C F of function fields corresponds to the morphism

C—PL (u:v:w) e (v+w: —2u).

By the Hurwitz genus formula ([Sti09, Cor. 3.5.6]), this morphism has exactly four
ramification points. They are a3, ay, a5, ag € AL(k) C PY(k). Let P3, Py, P5, Ps denote the
(unique) places of F//k extending the places of k(z) corresponding to as, ay, as, ag. The
point of C(k) corresponding to P; is (20?2 : —4a —1:1) fori=3,...,6.

For a place P of F/k let vp denote the corresponding valuation on F'. Similarly, every
A € kU{oo} defines a valuation vy on k(z). For a € k(x) we have vp, (a) = 2v,,(a) for i =
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3,...,6. For any other place P of F/k (i.e., P ¢ {Ps, Py, P5, Ps}) we have vp(a) = vy(a),
where A corresponds to the restriction of P. With this preparation, one sees immediately

that the poles of b = ;f;flz are Ps, Py, Ps, Ps and vp,(b) = —2 for ¢ = 3,...,6. Because
b = n?, it follows that the poles of n are Ps, Py, Ps, Ps and vp,(n) = —1 for i = 3,...,6.

There are two places Py, P> of F/k that restrict to the infinite place of k(x). They
correspond to the points (0:1:0) and (0:1:1) of C(k). Then the poles of x are P;, P,
and vp, () = —1 for i = 1,2.

Set P ={P,...,Ps}. Then the poles of bdx and ndx belong to P, because outside of P
neither b, 7 or = has a singularity. As vp, (%) = 1fori = 1,2 we can use ! as a uniformizer
at Py, Py. Then bdx = —bx?d(x~ ') and so vp,(bdz) = vp,(—bx?) = voo(—bz?) = 0. Hence
Py, P, are not poles of bdzx.

As

vp,(22) = vp.(a* + 4+ @) = 2vy, (2 + 2+ a) = 2,
for i = 3,...,6, we see that z is a uniformizer at Ps, Py, P5, Ps. From 22 = z* + 2z + a it
3
follows that §(z) = 2+ and so

_ ( B)*2z 2(z—p)?
bdx = 22 (dz 3+1)d (Az3+1)z dz.

Therefore vp, (bdz) = —1 for i = 3,...,6. Thus the poles of bdx are Ps, Py, Ps, Ps.
For i = 1,2 we have vp,(b) = 2 and so vp,(n) = 1. It follows that

Vpi(ﬁdx) = VPL-(—m?Qd(ﬂ?fl)) = VPZ-(—WCZ) =-1

for i« = 1,2. So Py, P, are poles of ndxz. On the other hand, ndz = 7 3+1dz and so
vp,(ndz) =0 for i = 3,...,6. So the poles of ndzx are Py, P».

In summary, we see that the poles of fidx as well as of fodx are exactly P.

We next compute the residues. As vp, (z—a;) = 2fori =3,...,6, the P;-adic expansion
of x — a; is of the form ¢;22 4 ... with ¢; € k*. Substituting = a; + ¢;2° + ... we find

_ 2(z—p)? 2y —PBHciZ?+.)% 1 2(a;—p)% 1
bdr = ZEEE iy = e Bras b R, ( ool 2Jr...)czz.

Therefore resp, (bdx) = % for i = 3,...,6. We next compute resp, (ndx) for i = 1,2.

As vp,(22) = vp,(z* + 2+ ) = —4, we see that vp,(2) = —2 for i = 1,2. So the P;-adic
expansion of z is of the form z = ¢;(z71)72 + ... with ¢; € K* for i = 1,2. We have

nde = —natd(a~!) = SR d() = SR d )
and so resp, (ndzr) = —1/¢;.

Plugging z = ci(z™ )72 + ... into 22 = 2t + 2 + a we find (¢;(x71)72 +...)%2 =
(z7')™* 4+ ... and so ¢; € {1,—1} for i = 1,2. Suppose ¢; = c3. Then % and 1 are
rational functions on C' that take the same value in k on Py and P> and F' = k(3, ;)
Thus P, = P»; a contradiction. So ¢ # ca. To find the exact value of ¢; we can evaluate
Z=1- a +f)2 at the point (0 : 1 : 1) corresponding to P,. This yields ¢ = 1 and so
¢y = —1. Thus resp, (ndx) = 1 and resp,(ndx) = —1.

With this information at hand we can now calculate

Z1((f1, f2),P) = {(dl,dg) VA

2 2
> diresp(fidz) €ZVP €Pand Y Y diresp(fidr) = 0} .

i=1 PcP i=1
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Note that for P; (i = 3,...,6), the first condition is (d; + d2)2(4023_f1)2 € Z, whereas for

Py, P, the first condition is vacuous, because resp,(f;) € Z for i = 1,2. There indeed exist
a, B € k such that Aai—p)? €Qfori=3,...,6, for example, « =0 and 8 = %

da3+1
. 3)2 4 2
Set r = H?:g (Z&? f)l . A direct calculation shows that r = %. Thus, the first

condition mentioned above, implies that r € Q if d; + ds # 0.
Assume that r ¢ Q. Then

Z1((f1, f2),P) = {(~d.d) € Z°| d € L}

and for (—d,d) € Z1((f1, f2), P) we have

2
> (Z d; resP(fidm)> P = —2dP, + 2dP, = 2d(P, — P,)

PeP \i=1

and so
Zs((f1, f2), P) = {(—d,d) € Z?| 2d(P, — P,) is a principal divisor of F/k}.

Recall (see e.g., [Sti09, Prop. 6.1.6]) that the choice of a point of C(k) defines a
bijection between the degree zero divisor class group CI°(F/k) and C(k). As usual, we
choose the point to be (0:1:0) € C(k). Thus the point (0: 1 :0) corresponding to P is
the neutral element of the group C(k). Then 2d(P, — P;) is principal, i.e., equal to zero
in C1°(F/k), if and only if 2d(0 : 1: 1) = 0 in C(k). Therefore Zs((f1, f2), P) is trivial if
and only if the point (0,1) is not a torsion point of the elliptic curve v? = u?® — 4au + 1.
In this case f1, fo are logarithmically independent over F' by Lemma It is not easy
to exactly determine the values of a for which (0, 1) is a torsion point, but this question
will be further discussed in Example

If (0,1) is a torsion point, then a basis of Za((f1, f2), P) is given by e; = (—e, e), where
2e is the order of (0,1) in C(k). One can then write 2e(Py — P1) = (h1) with hy € F*. In
this case, fi, fo are logarithmically independent if and only if

é(hhll) —(—e)fi —efa = 5%1) + 2en

is nonzero. The latter questions will also be further discussed in Example [4.28]

3.5 Exponential bounds for linear differential operators

A solution h of a homogeneous scalar linear differential equation over k(z) is an ezponential
solution if its logarithmic derivative 6(h)/h lies in k(x), i.e., h satisfies d(h) = ah, with
a € k(x). The goal of this section is to describe a fairly explicit bound on the degrees of
the logarithmic derivatives of the exponential solutions.

We will work with the (non-commutative) ring k(z)[d] of linear differential operators
with coefficients in k(z) (as defined in [vdPS03, Section 2.1]). Thus a (scalar) linear
differential equation

6" (y) + an—16"" () + ... +ay =0

with ag,...,a, € k(x), can be written more succinctly as Ly = 0, where

L=06"+a,10"" 4+ ... 4+ ap € k(x)[0]
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is the corresponding linear differential operator.

A nonzero solution h of Ly = 0 (in some Picard-Vessiot extension of k(x)) is called an
exponential solution of Ly = 0 if §(h)/h € k(x). The reader is referred to Section 4.1 of
[vdPS03] for more background on exponential solutions and their computation.

Recall that the degree of a nonzero rational function a = 2 € k(z) with a1, as, € k[z]
relatively prime, is defined as deg(a) = max{deg(a;),deg(az)}. By convention, deg(0) =
—00.

Definition 3.28. An integer N is an exponential bound for Ly = 0, if deg(6(h)/h) < N
for any exponential solution h of Ly = 0 (belonging to some Picard-Vessiot extension of

k(x))-

The main point of this section is to describe an exponential bound N(L) for Ly = 0
that is well-behaved under specialization. This bound is also described in the second
paragraph on page 109 of [vdPS03].

The elements u € k(x) of the form u = é(h)/h for some exponential solution i of
Ly = 0 are exactly the solutions of the Riccati equation associated with Ly = 0 ([vdPS03|
Def. 4.6]). Another description of these u’s is, as the set of elements of k(z) such that
0 —u € k(x)[d] is a right-hand factor of L.

To describe the bound N(L) we need to introduce some notation from [vHI7b] and
[T97a]. Set § = x6. Then k(z)[d] = k(x)[d], i.e., every operator in § can be rewritten as

an operator in J. Set
E= ] klz'/7

TEZ>()

and let e € E. The ramification index ram(e) of e is the minimal r such that e € k[z~/"].
For L € k(z)[d], or more generally, for L € k((z))[0] we set Se(L) = L(d4¢) € k((z~/"))[9]
and write
Se(L) =Y a'"Nie L (5),
i>f

where N; ¢ 1, € k[T] (with T a new variable) and Ny 1, # 0. Following [vHI7b], Section 3.4]
Ny, is called the Newton polynomial of Se(L) at 0 for slope 0. Let mco(L) be the
multiplicity of 0 in Ny, (T). Following [vH97al Def. 3.1], we define the generalized
exponents of L:

Definition 3.29. An element e € E is a generalized exponent of L at 0 if meo(L) > 0.

The number m, (L) is called the multiplicity of e in L. By (3.3) on page 542 of
[vHO7a], we have

> meo(L) = ord(L)(=n). (25)

ecE
In particular, L only has finitely many generalized exponents at 0.
Example 3.30. Let us determine the generalized exponents for the linear differential
operator L =02 + 15+ 1 — (2)? € k(z)[0] corresponding to Bessel’s differential equation,
where « is an arbitrary element of k. Rewriting L in terms of §, we have L = 1%52 +1-

(%)2 So, after normalizing (which does not effect the generalized exponents), the relevant
operator is L' = 6% 4+ 22 — a?. For e € E we have

L'(—e) =0 —e)?+a?—a®=0%—2ed —xd(e) +e? +2° — .
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Thus, choosing e € {a,—a}, we have L'(§ — e) = 62 — 2eé + 22, which has Newton
polynomial T2 — 2¢T. By , the generalized exponents of L are o and —a. In case
a = 0, the generalized exponent e = 0 has multiplicity two.

Remark 3.31. Due to Lemma 3.4 of [vHI7d], if 6 —u € k((x))[0] is a right-hand factor
of L € k(z)[0] C k((x))[d], then u = e + v/, where e € k[z™!] is a generalized exponent
of L at 0 with ram(e) = 1 and v’ € zk[[z]]. However, this can also be seen directly: If
L = Ly-(6—u) is a factorization in k((x))[0], and u is written as u = e+u' with e € k[z~!]
and u' € xk[[z]], then Se(L) = S.(L1) - (§ —u'), which has a Newton polynomial vanishing
at zero, because for every power of x occurring in Se(L1)u', there is a smaller power of x

occurring in Se(L1)d.

In order to define the generalized exponents at a point A € P}(k) = k U {occ} different
from 0, we introduce (following [vHI97a, Section 3.4]) the k-algebra automorphism

Iy : k(2)[0] = k()[0]

as follows: if A € k, then Iy(z) = = + X and [5(d) = J, otherwise /() = 1/x and
loo(8) = —2%8. For e € E set me \(L) = meo(Ir(L)).

Definition 3.32. If m. (L) > 0, then e is called a generalized exponent of L at A and
me (L) is called the multiplicity of e in L at .

Since we are only interested in the factors of L € k(z)[d] that are of the form 6 — u
with u € k(x), we only need to consider the generalized exponents e of L with ram(e) = 1.
However, generalized exponents with ramification index larger than 1 are necessary for
to hold and this formula is crucial for showing that our exponential bound is preserved
under many specializations (Proposition . We will next explain how Remark can
be used to obtain the possible principal parts of an exponential solution of L.

Before proceeding, let us recall some terminology for rational function. The principal
part of an element u € k(z) at A € k is Y, ui(z — A", when u = Y00, uy(z — \g) is
written as an element of k((x — \)). The residue resy(u) of u at A is res)(u) = u—q. The
order ordy(u) of w at X is ordy(u) = —¢, where uy # 0. By convention, ord(0) = 0.

The residue at infinity is defined as resoo(u) = reso(—x%u(%)), while the order at
infinity is ordao(u) = ord(u(2)). These definitions are such that the sum of all residues
of u is zero (see e.g. [Sti09 Cor. 4.3.3]).

The principal part of u at oo is ELE w;z™", when u = Y22, u;a™" is written as an
element of k((x~!)). This definition is such that res,(u) can be determined (as —u;)
from the principal part at infinity.

Assume that e € E is a generalized exponent of L at A\ with ram(e) = 1. We set

%

Al r ek
pp(e, A) = {_xl?.?(e) if A = oo

T

Lemma 3.33. Let u € k(x) be such that § — u is a right-hand factor of L. Then, for
every A € PL(k), the principal part of u at X is of the form pp(e, \) for some generalized
exponent e of L at A with ram(e) = 1.

Proof. We write L = Ly - (0 —u), with Ly € k(z)[d]. First assume that A € k. Applying I,

yields Ix(L) = Ix(L1)- (6 —Ix(u)) = L2- (6 —xlx(u)) for some Ly € k(x)[0]. By Remark|3.31

xzly(u) = e + ', where e € E is a generalized exponent of L at A with ram(e) = 1 and
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W € zk[[z]]. Applying l_x to aly(u) = e + o/, we find u = = A(e) + Lk *( ) Thus %()\e) is
the principal part of u at A.
Now let us consider the case A = co. We have

loo(L) = loo(L1) - (=226 — loo(w)) = loo(L1) - (=26 — loo(u)) = Ly - (5 — ==y,

—loo(u)

= e + u/, where e is a generalized

Therefore, as above, by Remark m we have
—1 =], we obtain

exponent of L at oo with ram(e) = 1 and v’ € zk[[z]]. Applying (Is)
_ loo(€)Floo (u)

For A € P1(k) = kU {oo} we set

u= . This implies the claim. O
PP(L,\) = {pp(e, \) | e € E is a generalized exponent of L at A\ with ram(e) =1}.

With Sing(L) C k we denote the set of all singular points of L, i.e., the elements of k that
are poles of one of the coefficients a; of L. Write Sing(L)U{oco} = {A1,..., A} and define

@y : PP(L,A\y) X - X PP(L, Ap) — k
(fryes fm) = e resy, (fi)
and
N(L) = max{{0} U (Im(®.) N Z)} + > felr)rlljz%%’/\)ord)\(f).

AeSing(L)U{oco}
Lemma 3.34. The number N(L) is an exponential bound for Ly = 0.

Proof. Let h be an exponential solution of Ly = 0 and set uw = §(h)/h € k(x). We have
to show that deg(u) < N(L). As u is a solution of the Riccati equation associated with
Ly =0, it follows from (4.3) on page 107 of [vdPS03], that u is of the form

o
w22 gy 22 (20)
b1 a2

where p;, ¢; € k[x], deg(p2) < deg(ga), the zeros of g2 are in Sing(L) and the zeros of p;
are not in Sing(L).

Note that the partial fraction decomposition of % is of the form Zle mf’i\,_, with
ni € N,ni+...4ng = deg(p1) and X, € k~Sing(L). The partial fraction decomposition of
P2

=2 is a sum of terms of the form ZZ 1 Ty ar NG with A, € k and A € Sing(L). The polynomial

q1 can be thought of as the contribution at co.
By Lemma we have

<
ordy(u) < feglgagk){ordx(f)}

for any A € P(k). As ordy(q1 + Z—;) < ordy(u) for A € Sing(L) U {oco}, this yields ord(q1 +
qz) < maxsepp(r,n){orda(f)} for A € Sing(L) U {oo}. Thus

P P
deg(q1 + %) < | Z ordy(q1 + 22) < | Z e ordx(f).  (27)
AeSing(L)U{oco} AeSing(L)U{oco}
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To also bound deg(p;), let B C k be the set of poles of u that are not in Sing(L). Then
B is the set of zeros of p;. Moreover, ¢; and % have residue zero at any point of B.

Therefore
Z resy(u) = Z FGSA(J;T)) = deg(p1).
\eB AEB

As Sing(L) U B U {oo} contains all poles of u, we have

0= Z resy(u) = deg(p1) + Z resy(u).

X€Sing(L)UBU{co} A€Sing(L)U{oo}

On the other hand, resy(u) = resy(f) for some f € PP(L,\). Therefore deg(p;) €
Im(®7) NZ. So deg(p1) < max{{0} U (Im(®;) NZ)}. Combing this with and
yields the claim of the lemma. O

Example 3.35. Let us determine the exponential bound N (L) from Lemma for the
linear differential operator L = 6% 4+ 15 + 1 — (2)2 € k(z)[6] corresponding to Bessel’s
differential equation. Note that Sing(L) = {0}. We already determined the generalized
exponents of L at 0 in Example They are a and —«. Thus PP(L,0) = {<, =2}.

T’ x
To compute N (L), we also need to deEerrnine the generalized exponents at co. We have
loo(L) = (—x25)27— 236 4+1—(ar)? = 2252 +1— (04:17)2. So, after normalizing, the relevant
operator is L' = 62+ -5 —a?. For e € E, we have L'(§ —e) = 02 —2ed —xd(e) +€* + 2 —a’.

Let i and —i denote the roots of the polynomial 72 + 1 in k. For e = == % we find

L'(6—e) =62 — (% —-1)0+ 1 — o which has Newton polynomial 2¢T. Similarly, for
e = —— %, one finds the Newton polynomial —2¢7". Thus, by , the generalized
exponents of L at p = oo are £ —  and =% — 1. Therefore PP(L,00) = {i+ 5, —i+ 5-}.
The image of ®7: PP(L,0) x PP(L,00) = kis {-a — 3, a — 1}.

Let us first assume that oo — % is not an integer. Then Im(®z) NZ = ) and it follows
that N (L) = 1. More precisely, if u € k(x) is a solution of the Riccati equation associated

with Ly = 0 and u = IV Q1 + % is written as in , then the proof of Lemma |3.34

p1
shows that deg(p;) = 0, i.e., 6(11;11) = 0. Moreover, the only possibilities for ¢q; + % are
i+ %, =i+ %, i— %5, —i— . These are not solutions of the Riccati equation

5(u)+u2+%u+1— (%)2 =0
associated with Ly = 0. Thus, there are no exponential solutions in this case.
Now assume that & — 2 € Z. Then max{{0} U (Im(®.) N Z)} = |a| — 3. Therefore
N(L) = |a|+ 1. In this case there are indeed exponential solutions. The interested reader

can find their explicit form in the Appendix of [Kol68].

3.6 Linear relations

Let F be a differential field and R/F a Picard-Vessiot ring. For a vector v € R’ satisfying
§(v) = A'v for some A’ € F*™* we set

LinRel(v, F') = {p € F[y1,-..,y¢] | p is linear homogeneous and p(v) = 0}.

Then LinRel(v, F) is an F-vector space of dimension at most ¢; the vector space of linear
relations among the entries of v. The main goal of this section is to describe, in the case
F = k(z), with the help of Section a bound N such that LinRel(v, F') has a basis
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consisting of elements of the form ayy; +. ..+ agye, with ay, ..., a, € k(z) and deg(a;) < N
fori=1,...,¢

By the cyclic vector lemma, any linear differential system §(y) = Ay, with A € k(x)
is equivalent to a scalar linear differential equation Ly = 0 with L = 6" +a,_16" ' +... +
ag € k(x)[d], i.e., there exists a matrix T' € GL, (k(x)) such that T~YAT + 6(T~1)T is of
the form

nxn

0 1 0

0 1 0 € k(z)""".
0 1
—apg —ai ... PN —Qp—1

We call such a T' a transformation matriz from 6(y) = Ay to Ly = 0. Furthermore, deg(7T)
is defined as the maximum of all degrees of entries of T'.

To a linear differential system 0(y) = Ay, with A € k(x)"*", one can associate, for
every i = 1,...,n, anew linear differential system 6(y) = (A’ A)y with \" A € k(a:)(?)x(?)
If one works with differential modules (as in [vdPS03, Section 2.2]) and M is the differential
module associated with 6(y) = Ay, then A’ M is the differential module associated with

5(y) = (N A)y.

Lemma 3.36. Let v € R’ be a solution of 6(y) = Ay, where A’ € k(x)*¢ and R/k(x)
is a Picard-Vessiot ring (not necessarily for 6(y) = A'y). Let d be the dimension of the
k(x)-vector space generated by the entries of v and let T € k(z)™*™ (m = (fl)) be a
transformation matriz from 6(y) = (N A')y to Ly = 0, where L € k(z)[6]. Furthermore,
let N be an exponential bound for L.

Then LinRel(v, k(z)) has a k(z)-basis consisting of elements of the form a1y + ...+
agye, with ay,...,ap € k(x) and deg(a;) < 2mdeg(T) +m(m — 1)N fori=1,...,¢.

Proof. Write v = (vq,...,v,)t € Rf. Without loss of generality, we may assume that
v1,...,0q are linearly independent over k(x). For i =d+1,... ¢, write
d
vV = Z Qi Vi, Q;j € k(a;) (28)
j=1

Then (y; — Z;-lzl aivjyj)i:cHl _, is a k(x)-basis of LinRel(v, k(x)) and our goal is to bound

deg(a; ;). Let V be the k-subspace of R’ generated by {g(v)| g € G(k)}, where G is the
differential Galois group of R/k(x). We claim that dim; V' = d. Set

Rel(V) = {(a1,...,a0)" € k(x)*| ayus + ... +agug =0VY u = (uy,...,up)t € V}.

From it follows that u; = Z?Zl a; ju; for every (u1,...,u)' € Vandi=d+1,... .0
On the other hand, v1, ..., vy are k(x)-linearly independent. Thus Rel(V) is a k(x)-vector
space of dimension ¢ — d.

We will show (cf. [BBHS8S, Prop. 1.5]) that also dimy,) Rel(V) = ¢ — dim; V. Let
bi,...,b, be a basis of V and let B € R*" be the matrix with columns b,...,b.. As
b1,...,b, are solutions of d(y) = A’y, their k-linear independence, implies their E-linear
independence, where E is the field of fractions of R ([vdPS03| Lemma 1.7]). Thus there
exists an r X r-submatrix C' € GL,(E) of B. As g € G(k) acts on B and C via right
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multiplication with a matrix in GL,(k), we see that BC~ ! is fixed by g. So BC™! € k(z)*"
by the differential Galois correspondence. We have

Rel(V) = {a € k(z)"| aB = 0} = {a € k(x)¢| aBC™! = 0}.

Since BC™! € k(x)*" has linearly independent columns, we see that dimy,) Rel(V) =
¢ —r =/{—dimg(V). Therefore dimy V = d as claimed.

Let b1,...,bq be a k-basis of V. For a vector or a matrix w, denote by w® the i-th row
of w. For I = (ny,...,ng) with1 <ny <ng <--- <ng </ set by = det((bgni))lgmgd) €
R. A calculation, that is probably best understood by using the exterior power of the
associated differential module ([vdPS03, Lemma 2.27]), shows that

§(by) = Z ar.jby, (29)
J=(mi,....,mq)
1<mi<ma<---<mg<{

where a7y € k(z) and A* 4’ = (a7.5) € k(z)™ ™. That is, the vector (b;); € R™ is a
solution of 8(y) = (A% A')y. We extend the definition of the a;j’s from to all values

ofie{l,...,¢} by
1ifi=j,
0 otherwise

fori=1,....,dand j =1,...,d. Then is true for all values of ¢ € {1,...,¢} and so

bg) = Z;l:l aivjbg) fori=1,...,fand n=1,...,d, or in matrix form
(4) _ (4)
(bj > 1<i<e <aivj> 1<i<t <ij ) 1<i<d
1<5<d 1<5<d 1<5<d
For I = (ny,...,ng) with 1 <nj <ng < - - <ng < ¢, we thus have
br = crbap,....a), (30)

with ¢; = det((an, j)1<ij<d) € k(x). In particular,
1 for I = (1,2,...,d),
a1 (2 | (31)
(-1)*a;; forI=(1,...,5—-1,5+1,...,d,9),

where 1 < j < dand d < ¢ < £. From and it follows that by .4 € R is
exponential over k(z), i.e., (b1 2, a4))/b12,..4) € k().

As T transforms §(y) = (A?A')y into Ly = 0, the solution (b;); € R™ of d(y) =
(A Ay is transformed to a vector T~ (b;); = (h,8(h),...,8 1 (h))" € R’ with L(h) = 0.
Using , we see that h = b( 9 _g)c With ¢ € k(z). It follows that h is an exponential
solution of L(y) = 0. Write 6(h) = a1h with a1 € k(z). Then also §'(h) = a;h with
a; € k(z) fori=1,...,m—1. So

1 1
ai ai
T_l(b[)[ =h . or (b[)[ =hT
Am—1 Am—1
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The last equation implies by = hT(I)(l, at,...,am_1)", where T@ denotes the I-th row of
T. Combining this with and yields

(—1)"a;; = ; (32)

am—1

where I = (1,...,7—1,7+1,...,d,7).

We claim that deg(a;) < ideg(aq) for i = 1,...,m — 1. Indeed, writing aq = % with
p1,q € klz] relatively prime, we will show by induction on i, that a; = % with p; € k[z]
and deg(p;) < ideg(ai). We have

§(pi)d" — ipig""6(q) L PipL d(pi)g —ipid(q) + pim1
ez 7 Pl '

ai+1 = 0(a;) + aja; =

So deg(pit+1) = deg(d(pi)q — ipid(q) + pip1) < (i + 1) deg(ar).
Recall that the degree of a rational function satisfies deg(ab) < deg(a) + deg(b) and
deg(a + b) < deg(a) + deg(b) for a,b € k(z). From deg(a;) < ideg(ai), we obtain

m—1
deg(TV (1, a1, ..., am-1)") < D (deg(T) + i deg(ar)) < mdeg(T) + "2 deg(ay).
=0
Using , we find
deg(ai ;) < 2mdeg(T) + m(m — 1) deg(a1). (33)

As a; = 6(h)/h, with h an exponential solution of Ly = 0, this implies the claim of
the lemma. ]

4 Specializations

In this section we prove our main specialization result (Theorem [4.26]). To this end, we
first show that various criteria and properties discussed in Section [3| are preserved under
many specializations. Throughout Section [l we make the following assumptions:

k is an algebraically closed field of characteristic zero;

B is a finitely generated k-algebra that is an integral domain;

X = Spec(B);

K is the algebraic closure of the field of fractions of B.

We usually identify a ¢ € X(k) with the corresponding k-algebra morphism ¢ : B — k.
We denote with ¢ the image of b € B under c¢. For a polynomial or Laurent polynomial
p with coefficients in B, we denote with p® the polynomial obtained from p by applying ¢
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to its coefficients. A similar notation applies to fractions of polynomials with coefficients
in B (assuming that the denominator does not specialize to zero under ¢). Moreover,
M = {p°| p € M} for any set M such that p® makes sense for any p € M. In a similar
spirit, if v is a tuple or matrix such that the specialization ¢ can be applied to the entries
of v, then v° is the tuple or matrix obtained from v by applying ¢ to the entries of v.

We now provide an outline of the proof of the main specialization result (respectively
Theorem B from the introduction). Starting from an inclusion of algebraically closed fields
k C k' and a differential equation 6(y) = Ay, A € k/(2)"*™ with differential Galois group
G and Picard-Vessiot ring R/k'(x), we first spread out (using Lemma R and G into
nice families R and G over a parameter space X'. Our goal then is to show that the fibre R
over ¢ is Picard-Vessiot for all ¢ in an ad x Jac-open subset of X'(k). This is achieved via two
main steps, corresponding to the two main steps of Hrushovski’s algorithm. The first main
step is to show, using the criterion of Lemma that R¢/k(x) is proto-Picard-Vessiot
for all ¢ in an ad-open subset of X (k). The key ingredient for this is Theorem which,
roughly speaking, states that for a fixed degree d, a basis of the space of algebraic relations
of degree at most d among the entries of a solution matrix for §(y) = Ay specializes to a
basis of the space of algebraic relations of degree at most d among the entries of a solution
matrix for §(y) = A for all ¢ in an ad-open subset of X' (k). Theorem is proved
in Section using Section (via a reduction to the study of linear relations) and
Section where it is shown that the exponential bound from Section [3.5]is preserved
under specialization on an ad-open subset of X (k).

The second main step of the proof is to find, inside the ad-open subset of X(k) over
which R¢/k(z) is proto-Picard-Vessiot, an adxJac-open subset over which R¢/k(z) is
Picard-Vessiot. The criterion of Lemma [3.23] allows us to decide if a proto-Picard-Vessiot
ring is Picard-Vessiot by testing if certain algebraic functions are logarithmically inde-
pendent. To apply this criterion, we thus need to show that logarithmic independence of
algebraic functions is preserved on an adxJac-open subset of the parameter space (The-
orem [4.10] This is proved in Section where it is shown, building on specialization
results for divisors from Section that the criterion of Section to test the logarith-
mic independence of algebraic functions is well-behaved under specialization.

4.1 The exponential bound under specialization

In this section we show that the exponential bound from Lemma, [3.34]is preserved on an
ad-open subset of the parameter space.

We first note a remark regarding the possibility of extending B if necessary that will
be used repeatedly in what follows.

Remark 4.1. Assume we are given a family F over X and we would like to show that a
certain property holds of the fibre F. for all c in a

e Zariski open,

e ad-open,

e Jac-open or

e adx Jac-open
subset of X (k). Then we can, without loss of generality, replace B with a finitely generated
B-subalgebra of K.
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Proof. In the applications below it will always be clear what the family F is. Let B’ be a
finitely generated B-subalgebra of K. We assume here that we can base change the family
F over X to a family F' over &' = Spec(B’) such that F, = Fy) for all ¢ € &'(k),
where ¢: X'(k) — X(k) is the morphism corresponding to the inclusion B C B’. By
Chevalley’s theorem, if i’ is a nonempty Zariski open subset of X’(k), then ¢(U’) contains
a nonempty Zariski open subset of X' (k). By Lemma a similar statement holds for
ad-open, Jac-open, and adxJac-open subsets of X (k). O

Let f € Blz] be a monic polynomial and let
L=06"+a,16""+ ... +ag

be a linear differential operator with ag,...,an—1 € Blz]y C K(x). So £ € K(z)[¢] and
for any ¢ € X (k) we have a linear differential operator

LE=6"4+al 6" ... +a§ € k(x)]0].

Example 4.2. Let B = k[a] (with o transcendental over k), f = z and £ = 6% + 16 +
1 — (%)% € Blz]f[é]. From Example we know that N(£) =1 and N(L°) =1 for any
¢ € X(k) = k with ¢ — £ ¢ Z. On the other hand, N (L) = || + § in case ¢ — 3 € Z. So
N(L) specializes well only on an ad-open subset of X (k).

Proposition 4.3. There exists an ad-open subset U of X (k) such that N(L¢) = N(L) for
all c € U. In particular, N (L) is an exponential bound for LE for all c € U.

Proof. Enlarging B if necessary (Remark , we may assume that Sing(£) C B and that
all coefficients of all generalized exponents at points in Sing(L£) U {oo} belong to B. There
exists a nonempty Zariski open subset U of X' (k) such that for any ¢ € U,

(i) Sing(£)¢ = Sing(L°) and A§ # A§ for A1, A2 € Sing(L) (one can use resultants for
this step);

(ii) ram(e€) = ram(e) and ordy(e) = ordg(e) for every generalized exponent e of L at
every point of Sing(L) U {oo};

(ill) mee re(L) = me (L) for every A € Sing(L) U {oo} and every generalized exponent
e of L at A

For (iii), note that the units of the ring B((x)) of formal Laurent series over B, are exactly
those Laurent series whose lowest nonzero coefficient is a unit in B. So f may not be
a unit in B((x)). However, if b € B is the lowest nonzero coefficient of f, then f is a
unit in By((x)) and therefore Blz]; C By((x)). It follows that for A € Sing(£) U {oo} and
e € Blz~'/7], the operator S.(I\(£)) € K((x'/7))[5] has coefficients in By((z'/)). Thus,
all that is required to guarantee (iii), is that ¢ does not specialize b or any coefficient of
the Newton polynomial of S, (I,(£)) for slope 0 to zero.

Assume that ¢ € U;. By (iii), e is a generalized exponent of £ at \° with multiplicity
me (L), for every generalized exponent e of £ at A € Sing(L) U {oco}. From formula ,
it follows that every generalized exponent of L€ at p° is equal to e¢ for some generalized
exponent e of £ at A\. Hence PP(L \°) = PP(L,\)¢ for every A\ € Sing(L) U {oo}.
Furthermore, Im(®zc) = Im(P)°.

In general, Im(®,)°NZ can be larger than Im(®,) NZ. However, if I is the subgroup
of G,(B) generated by {1} UIm(®,), then Im(P,)*NZ = Im(P,) NZ for c € Wy (G,,T).
Therefore, for U an ad-open subset of U; N Wy (G,,T') and ¢ € U, we have Im(Prc) NZ =
Im(®,) NZ and consequently N (L) = N(L). O
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4.2 Divisors under specialization

Our next goal is to show that logarithmic independence of algebraic functions is preserved
under many specializations. To show that the criterion for the logarithmic independence
from Lemma is preserved under many specializations, we first need to know that
principal divisors and residues are preserved under many specializations.

Let F//K be a function field of one variable, i.e., a finitely generated field extension of
transcendence degree one. Let C' be a smooth projective model of the function field F/K,
i.e., C' is a smooth projective (irreducible) curve over K with function field F. We fix a
closed embedding of C' into P} = Proj(K|[yo,...,yn]). So C is defined by a homogeneous
prime ideal I of K[yo, ...,ys]. Enlarging B if necessary, we can assume that [ is generated
by homogeneous polynomials with coefficients in B, and so Z = I N Blyo,...,yn] is a
homogeneous prime ideal of B[yo, ..., yn] such that Z @ K = I in Blyo,...,yn] @ K =
Klyo, - -, Yn]-

Set C = Proj(B[yo, - .., yn]/ZL), i.e., C is the closed subscheme of P} defined by Z. Then
C is an integral scheme of finite type over k, projective over X. Since (Blyo, ..., ys]/Z) @5
K = Klyo,...,yn)/I, we have C x y Spec(K) = C. Thus the generic fibre of C — X is
smooth, geometrically irreducible and of dimension one. These three properties are generic
properties. (For geometric irreducibly see [Sta24, Tag 0559|, for fibre dimension see [Sta24l,
Tag 05F7] and for smoothness see [Gro67, Prop. 17.7.11].) Thus there exists a nonempty
Zariski open subset U of X such that for every u € U, the fibre C, over u is a smooth
geometrically irreducible curve (over the residue field at u). Hence, replacing B with a
localization of B if necessary, we may (and henceforth do) assume that C, is a smooth
geometrically irreducible curve for all u € X. In line with our notation for specializations
we set C¢ = C, for c € X(k) C X. Note that, concretely, C¢ C P} is the closed subscheme
defined by the homogeneous polynomials obtained by applying ¢ to a set of homogeneous
generators of Z.

Throughout Section we assume that C is as described above. In particular, C C P}
is an integral scheme of finite type over k, projective over A and all fibres C° C P} are
smooth, irreducible curves.

In the sequel, we will usually identify the places of F/K with C(K) (and similarly
for k(C¢)/k and C¢(k)). The discrete valuation on F//K (or k(C¢)/k) corresponding to a
point (respectively place) P is denoted vp.

For every ¢ € X (k) we have a specialization map

C(B) — C°(k), P+ P°,

where P¢: Spec(k) — C x x Spec(k) is such that the composition of P¢ with the projection
to C is the composition of Spec(k) % X with P: X — C.

A rational function h on C yields a rational function h%"™ on C' via the projection
C' = Cx xSpec(K) — C. Note that h&®" is well-defined because for a nonempty Zariski open
subset U of C, the inverse image U x y Spec(K) of U under the projection C x ySpec(K) — C
is nonempty, since the generic point of U and the point of Spec(K) map to the generic
point of X.

Roughly speaking, the following lemma shows that principal divisors are preserved
under specialization on a nonempty Zariski open subset. We think this lemma is well-
known to the experts, but we were not able to locate a suitable reference.
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Lemma 4.4. Let h be a nonzero rational function on C and let Z1,...,Z, and Py,. .., Ps
be the zeros and poles of h&™ in C(K). Assume that Zy,...,Z.,Pi,...,P; € C(B) C
C(K) = C(K). Then there exists a nonempty Zariski open subset U of X (k) such that for
every c €U

e h yields a rational function h® on C° via the projection C¢ = C X x Spec(k) — C;

o Z{,...,Z L Pr, ..., P are all distinct;

S

o Z¢,...,7¢

T

is the set of zeros of h® and Py, ..., P is the set of poles of h°;
o vze(h®) = vz,(h®") and vpe(h®) = vp,(h&") for all i.
In particular, if (h&") =371 diZ; + 3%y e Py, then (h€) =371 diZF + 370 e PF.

Proof. Assume that h is given by a regular function on a nonempty Zariski open subset V
of C. For h° to be well-defined, we need to know that V x x Spec(k) C C x x Spec(k) = C*
is nonempty. Since V — X is a dominant morphism of schemes of finite type over k,
the image contains a nonempty Zariski open subset U; by Chevalley’s theorem. Then
V X x Spec(k) is nonempty for every ¢ € U; (k) because there is an element of V mapping
to ¢ € X. This takes care of the first item in the lemma.

For the remaining three items, we choose a linear form ¢ = agyg + ... + apyn €
Klyo, ..., yn) such that the hyperplane H C P} defined by ¢ = 0 does not contain any of
the Z;’s or P;’s. Enlarging B if necessary, we may assume that ¢ € Blyo, ..., yn]. In fact,
after localizing B if necessary, we can assume that (ao,...,a,) € B"*! is a column of an
invertible matrix in B X"+ Thus, after a linear change of coordinates on P}, we
can assume that ¢ is given by £ = yo.

Let Uy be the open subscheme of P} where x¢ does not vanish. So Uy can be iden-
tified with A% = Spec(Bly1,...,yn]). Recall (see [Mill7, Chapter 7, Section d] or [Str99,
Prop. 3.4]) that a point P € Pj(B), i.e., a morphism X — P}% (over B) can be identified
with a submodule L of B"*! such that L is a direct summand (i.e., there exists a submod-
ule M of B"*! such that B"*! = L ® M) and L is locally free of rank 1. The point P lies
in Up(B) C P} (i.e., X — P} factors through Uy — Pg) if and only if L has a basis vector
of the form (bg,...,b,) € B™ with by = 1. As the Z;’s and P;’s (considered as elements
of P (K)) do not lie in H(K), we see that, after replacing B with a localization of B, we
may assume that all the Z;’s and P;’s (considered as elements of P}(B)) lie in Uy(B).

Consider the open subscheme Cyp = C NUy of C. Then Cy identifies with a closed
subscheme of Uy = A} and the Z;’s and P;’s identify with elements of Ag(B) = B". On
the Zariski open subset of X (k) where the product of suitable differences of coordinates
of the Z;’s and P;’s does not vanish, the elements Z7,..., Z¢, Pf, ..., P¢ are all distinct.

Let Z = (z1,...,2n) € B® C K" be one of the Z;’s. Assume that h8" has a zero of
multiplicity m > 1 at Z, i.e., m = vz(h&"). So h&" is contained in the m-th power me
of the maximal ideal m¢ 7z of the local ring O¢ 7.

Let Cy be the open subscheme of C' where 39 does not vanish, in other words, Cy =
Co X x Spec(K). Then K(C) = K(Cp) and Oc z = Oc,,z. As the maximal ideal m¢, » of
Oc,,z is generated by the images of y1 — 21, ..., yn — 2, We see that mey s generated by
the set M consisting of the images of m-fold products of elements from {y; — z1,...,yn —
Zn}. So we can write h&" = fimy + ... + fgmq with fi,..., fq € Oc,z € K(Cp) and
mi,...,mqg € M. Enlarging B if necessary, we may assume that fi,..., f; come from
rational functions on C, i.e., f; = hi"" for some rational function h; on C for i =1,...,d.
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Recall that k(B) denotes the field of fractions of B. Note that the function field k(C)
of C (considered as a scheme over k) agrees with the function field k(B)(Cyg)) of Cy(s) =
C xx Spec(k(B)) (considered as a scheme over k(B)) and the latter is contained in the
function field K (C') (considered as a scheme over K'). In fact, K(C) = k(B)(Ci(s)) @rs) K-
So the identity h&" = fim; + ...+ fgmg that holds in K(C), can be interpreted as an
identity

h=hymi+...4+ hgmy (34)

that holds in &(C).

We already observed in the beginning of the proof that a rational function i on C can be
specialized to a rational function h¢ on C° for all ¢ in some nonempty Zariski open subset
of X (k). To specialize , we would like to know that if h#" € O ;, then h® € Oce ze,
where Cf is the open subscheme of C® where yy does not vanish, i.e., C§ = Cy x x Spec(k).

But h#" € O¢,,z means that h can locally be described by a fraction% of two polynomi-
als p,q € Bly1, .. .,yn] such that ¢ does not vanish at Z. Thus, on the Zariski open subset
of X(k), where q(Z) € B does not vanish, the rational function h¢ is locally described by
the fraction ’q?—z and so h® € Ocg ze.

Since the maximal ideal mge ze of Oge ze is generated by the images of y1—c(21), . . ., yn—
c(2p), the specialization h¢ = him§+...4+hGmg of shows that h¢ € m% ;.. Therefore
vze(h®) > m = vz(h&") for all ¢ in a nonempty Zariski open subset of X (k).

From this inequality for the zeros, we can immediately derive a similar inequality for
the poles, because a point is a pole of multiplicity m of a rational function if and only
if it is a zero of multiplicity m of the inverse of the rational function. So there exists a
nonempty Zariski open subset Uy of X' (k) such that for all ¢ € Us

e h° is well-defined;

o Zi,...,Z, Pr, ..., P¢ are all distinct;

vze(h) > vz, (k") for i = 1,...,r; in particular, Z7, ..., Z are zeros of h%

vpe(h®) <wp, (k&™) for all i = 1,...,s; in particular, Py, ..., Py are poles of h°.

Note that the statement of the lemma is trivial in case h is constant (i.e., h lies in K)
since in that case there are no zeros or poles. We may thus assume that h is not constant.
Under this assumption we will now show that

[K(C) : K(h5)] = [K(C°) : k(%)] (35)

for all ¢ in a nonempty Zariski open subset of X' (k). Since h&" is transcendental over
K, the field extension K (C')/K(h%") is finite and we can choose n € K(C') such that
K(C) = K(h&",n). Let ¢ € K(h%")[y| be the minimal polynomial of n over K (h&").
Replacing n with a K (h&")-multiple of 7 if necessary, we can assume that ¢ € K[h&"][y].
Enlarging B if necessary, we can indeed assume that ¢ € B[h&"|[y]. Let p € B[z, y] be such
that p(h&",y) = ¢q. By Gauss’s lemma, p € K[z, y] is irreducible. In fact, since p is monic
as a polynomial in y, we see that p is a prime element of B[z,y|. So D = Spec(B[z,y]/(p))
is an integral scheme and Dx = D Xy Spec(K) = Spec(K|z,y]/(p)) has function field
K (h# | ) = K(C).
Let V = Spec(BJay, ..., an]) be an open affine subscheme of C. Then

Vi =V Xx Spec(K) = Spec(Blay, . .., am] @5 K)
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is a nonempty affine open subscheme of C' = C x x Spec(K). Moreover Dg and Vi are
birationally equivalent (over K). In other words, the fields of fractions of B[z, y] @5 K
and Blaq,...,ay,] ®p K are isomorphic as field extensions of K, where T and 7 stand for
the images of = and y in Bz, y]/(p) respectively. Such an isomorphism and its inverse is
given by fractions of polynomials with coefficients in K. Enlarging B if necessary, we may
assume that all coefficients belong to B. Then there exist nonzero elements b € B[z, y] and
a € Blai,...,an] such that B[z,7|, and Blay,...,a,], are isomorphic over B. In other
words, there exist an open subscheme D’ of D and an open subscheme V' of C such that
D’ and V' are isomorphic over B. Note that under this isomorphism, the rational function
h&™ on V' corresponds to T.

By Chevalley’s theorem, there exists a nonempty Zariski open subset U3 of X (k) such
that Us is contained in the image of the vertical maps in the commutative diagram

= V.
X

Forc e Us C X (k) C X, the fibre w5 1(¢) is a nonempty open subscheme of C¢ and therefore
has function field k(C®). On the other hand, the fibre 7, '(c) is an open subscheme of
the spectrum of (B[z,y]/(p)) ® k = k[z,y]/(p®). The isomorphism D’ ~ V' induces an
isomorphism 7, *(¢) ~ 75 *(c). Under the corresponding isomorphism of functions fields,
h¢ € k(C°¢) corresponds to the image of = in the field of fractions of k[z,y]/(p®). The
degree of the field of fractions of k[z,y]/(p°) over the image of x is the degree of p as a
polynomial in y, which equals [K(C) : K (h&")]. Thus holds for all ¢ € Us.

Set U = Uy NUs3. By [Sti09, Theorem 1.4.11], the degree of the zero divisor and the
degree of the pole divisor of h&" is equal to [K(C) : K (h&")] and similarly for h¢ in place
of h&®". Thus

D/

[K(C) s K(h#™)] = Y vz, (h5") < Y wze(h) < [R(C) = k(h)] = [K(C) : K (h&™)]
i=1 i=1

for all ¢ € U. This implies that vze(h¢) = vz, (h&") for i = 1,...,r and that h° has no
zeros other than Zf, ..., Z¢. A similar argument applies for the poles instead of the zeros.
We conclude that ¢/ has the desired properties. O

Roughly speaking, the following lemma shows that residues are preserved under spe-
cialization on a nonempty Zariski open subset.

Lemma 4.5. Let h and t be rational functions on C such that t®" is a uniformizer at
P eC(B) CC(K)=C(K). Then there exists a nonempty Zariski open subset U of X (k)
such that for all c € U

o h® t¢ and respsen (REM)¢ are well-defined;
e i€ is a uniformizer at P¢ and
e respe e (h¢) = resp gsen (R8")C.

Proof. Note that uniformizers are characterized by the property that their valutation is
one. It thus follows from Lemma [4.4] that there exists a nonempty Zariski open subset i
of X such that h¢ and t¢ are well-defined and that ¢¢ is a uniformizer at P¢ for all ¢ € U;.
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If vp(h&™) > 0, then respsen (h®") = 0 and the claim follows from Lemma We

may thus assume that vp(h8") = —m, with m > 1.
From the uniqueness of the P-adic representation, it follows that there exist uniquely
determined elements a_y,,...,a—1 € K such that vp(h&® — > a_;(t5")~%) > 0 and

that in this situation a_; = respsen (h®"). Enlarging B if necessary, we may assume
that a_,,,...,a_1 € B. By Lemma there exists a nonempty Zariski open subset U
of X(k) such that for every ¢ € U the rational function f = h — Y /" a_;t~" on C has
a well-defined specialization f¢ = h¢ — > 1" a®,(t%) " with vpe(f¢) > 0. It follows that
a®, = respe e (h°). O

The following lemma explains the origin of the Jac-open subset that occurs in our
main specialization result (Theorem |4.26). We denote with Div®(—) the group of divisors
of degree zero.

Lemma 4.6. Let Pi,...,P, € C(B) CC(K) = C(K). Then there exists an adx Jac-open
subset U of X (k) such that for all c € U and all dy,...,d, € Z, if 1P + ...+ d,.P. €
DivY(C) is not principal, then diP{ + ...+ d,.PS € Div?(C°) is not principal.

Proof. Let J be the Jacobian of C' and let ¢: C' — J be a canonical embedding. For more
background on Jacobian varieties see e.g., [Mil86] or [BLRI0, Chapter 9]. Enlarging B if
necessary (Remark , there exists a commutative separated group scheme 7 of finite
type over B and a closed embedding ¢: C — J over X such that

e ¢x = ¢ (in particular, 7 is of Jacobian type) and

e there exists a nonempty Zariski open subset U; of X' (k) such that the base change
¢ C° — JC of ¢ via ¢: Spec(k) — X is a canonical embedding of C¢ into its
Jacobian J°¢ for every ¢ € U;.

For every c € U; we have a commutative diagram

C(B)——J(B)

-

C(k)——T(k)

where the vertical maps are the specialization maps. Let I' be the subgroup of J(B)
generated by Pi,..., P, € C(B) C J(B) and set V = Wx(J,T') (notation as in Section 2.1)).

Then U = U; NV is an ad x Jac-open subset of X (k). Let ¢ € U and assume that dy Py +
...+ d.P, € Div’(C) is not principal. Then d1P; + ...+ d,. P, € J(B) C J(K) = J(K)
is nonzero because Div?(C) — J(K) is surjective with kernel the subgroup of principal
divisors. Since the specialization map J(B) — J¢(k) is injective on I, we see that
d Pf + ... +d.P¢ € J¢(k) is nonzero. Therefore diPf + ... + d.P¢ € Div?(C) is not
principal. O

4.3 Logarithmic independence under specialization

In this section we show that logarithmic independence is preserved on an AdxJac-open
subset of the parameter space.

Let F be a finite field extension of K(x). So F/K is a function field of one variable,
considered as a differential field via § = %. Let n € F be such that F' = K(x,n) and
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the minimal polynomial of n over K (x) has coefficients in B[z|. Let f € B[x] be a monic
polynomial such that Blx]¢[n] is a differential subring of F'.

Let p € Blz,y] € K(x)[y] be the minimal polynomial of n over K(z). By Gauss’s
lemma p € K[z, y] is irreducible and by the Bertini-Noether theorem ([FJ08, Prop. 9.4.3])
there exists a nonempty Zariski open subset U of X (k) such that p© € k[x,y] is irreducible
for all ¢ € Y. Then

Blz][n] ©@ppi, k(x) = (Blzlflyl/ (p) ©ppa), k(z) = k()[y]/ (%)

is a finite field extension of k(x) for all ¢ € U. Replacing B with a localization of B, we
mays assume that U = X (k). For ¢ € X(k) we set

F = Blz]¢[n] ®p), k(z)

and for h € Blz]f[n] we set h = h® 1 € F°. The following lemma explains that this
notation is consistent with the notation from Section [£.2] Let C be a smooth projective
model of F//K and let C and C¢ be as described in Section

Lemma 4.7. After enlarging B if necessary, there exists a nonzero element b € B[z]¢[n]
such that Spec((Blx]f[n])s) is isomorphic (over B) to an open subscheme of C. Moreover,
there exists a nonempty Zariski open subset U of X (k) such that for all ¢ € U we have
F¢ ~ k(C®) and for h € Blx]¢[n] the rational function h® € k(C*) as defined in Lemma
corresponds to h® = h ® 1 as defined above.

Proof. The argument is quite similar to the argument used towards the end of the proof
of Lemma 4.4, We therefore only replicate the main points.

Let D = Spec(B[z,y]/(p)) be the closed subscheme of A% defined by p. Then D
is an integral scheme of finite type over k such that the geometric generic fibre D =
D x x Spec(K) = Spec(K|z,y]/(p)) of D — X is birationally equivalent (over K) to C.

Let V = Spec(BJai, - .., an]) be an open affine subscheme of C. Then

Vi =V Xx Spec(K) = Spec(B[ay, ..., an] ®p K)

is a nonempty affine open subscheme of C' = C x y Spec(K) and Dg and Vi are bira-
tionally equivalent (over K). In other words, the fields of fractions of B[z, y] ®5 K and
Blai,...,an] ®p K are isomorphic as field extensions of K, where T and 7 stand for the
images of x and y in B[z, y|/(p) respectively. Enlarging B if necessary, we can find elements
b e B[z,y] and a € Blay, ..., an] such that B[Z,7, and Blay, ..., a,)q are isomorphic over
B.

Localizing both sides one more time, we get an isomorphism between B[Z,7]s and
Blai,...,am]qy for some @’ € Blay,...,an,]. This establishes the first claim of the lemma
since V' = Spec(B[ay, ..., am]q) is an open subscheme of C and

B[z, yloy = (Blz,y]/(p))sy = (Blal[n])os = (Bla]s[n])e-

By Chevalley’s theorem, there exists a nonempty Zariski open subset U of X' (k) such that
U is contained in the image of the vertical maps in the commutative diagram

Spec((B[z]y[n])s) = V.
S

o8



Forc € U C X (k) C X the fibre ;! (c) is the spectrum of (B[z] ;[n])y@5k = (k[x, yl/(0)) (bf)e;
a ring with field of fractions F** = k(z)[y]/(p°) = Blz]¢[n] ®p[s), k(). On the other hand,
the fibre 7, ! (¢) = V' x x Spec(k) is an open subscheme of C x x Spec(k) = C¢ and therefore
has function field £(C*). Thus the function fields ¢ and k(C¢) of the fibres are isomorphic.
On each fibre, h¢ is the interpretation of h as a rational function on the fibre. O

In the sequel, we will consider elements of B[xz]¢[n] as rational functions on C as ex-
plained in Lemma Note that if h € B[z]¢[n] is interpreted as a rational function on C,
then A& is simply h, considered as an element of F. In this situation, we will therefore
usually write h instead of h&".

Lemma 4.8. Let h € Blz]f[n] and P € C(B) C C(K). Then there exists a nonempty
Zariski open subset U of X (k) such that resp(hdx)¢ = respe(hCdx) for all c € U.

Proof. After enlarging B and replacing f with a multiple of f if necessary, we can write
hdx = hydt, where hy,t € Blz]|¢[n] and t is a uniformizer at P. We then have h = h10(t)
and so h¢ = h{d(t¢), i.e., h°dx = h{dt® for all c € X (k).

By Lemma there exists a nonempty Zariski open subset U of X' (k) such that ¢ is
a uniformizer at P¢ and respe 4c(h{) = respt(h1)© for all ¢ € Y. Therefore,

resp(hdx)® = resp(hidt) = respi(h1)¢ = respe 4c(h{) = respe(h{dt®) = respe(h°dx).
O

We next show that the Z-modules Z; and Z, (as defined in Section [3.4]) are preserved
under many specializations.

Lemma 4.9. Let f = (f1,..., fm) be a tuple of elements of Blx]s[n] and let P be the set
of poles of the differential forms fidx,..., fmdx on C. Assume that P C C(B) CC(K) =
C(K). Then there exists an ad-open subset U of X (k) such that for all c € U

o P¢ is the set of poles of the differential forms fidzx,..., f5dx on C° and
o 7 (f¢,P°) = Z1(f, P).

Moreover, there exists an adx Jac-open subset V of X (k) such that, in addition to the
above two properties, we also have Zs(f¢, P¢) = Zy(£,P) for all c € V.

Proof. To resolve the first item, let us first discuss how the poles of a differential form
w = hdx are determined by h and z. To see if w has a pole at a place P, one can write
w = hidt with ¢t = tp a uniformizer at P and then see if vp(w) = vp(h1) is negative. But
hdx = hidt entails hy = hdéi(x), where §; is the derivation determined by d0,(¢t) = 1. So
vp(h1) = vp(h) + vp(di(x)). Using [Sti09, Prop. 4.2.7], we see that

vp(x) —1 if vp(x)#0,
vp(0i(z)) = .

vp(zx —ap) —1 if vp(xz) =0,
where ap denotes the value of x at P, i.e., the image of x in the residue field Op/mp.
Thus w = hdx has a pole at P if and only if (vp(z) # 0 and vp(h) + vp(z) — 1 < —1) or
(vp(x) =0 and vp(h) + vp(x —ap) — 1 < —1).

Now let h be one of the f;’s. After enlarging B if necessary (Remark , we may

assume that all zeros and poles of x and h lie in C(B). Then, by Lemma there exists
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a nonempty Zariski open subset U; of X (k) such that the principal divisors defined by
x and h are preserved under all specializations belonging to U/;. Similarly, by the same
lemma, and after enlarging B if necessary, we can also assume that for every ¢ € U; and
every pole P of h we have vp(x — ap) = vpe((x — ap)®) = vpe(x€ — ape).

In particular, for ¢ € U, every zero or pole of z¢ € k(C°) is the specialization of a zero
or pole of x € F/K. For a place Q of k(C°)/k that is not the specialization of a zero or pole
of z or of a pole of h, we then have vg(z¢) = 0 and vg(h®) +vg(z¢ —ag) —1>0+0=0.
So, by the above consideration, @) is not a pole h¢dzx.

By construction, for those places @ of k(C¢)/k that come from zeros or poles of z or
from poles of h, all the relevant valuations are preserved under specialization and so we
see that for ¢ € U the poles of h°dx are exactly the specializations of the poles of hdzx.
Thus we can find a nonempty Zariski open subset Us of X' (k) such that the first item of
the lemma is satisfied for all ¢ € Us.

By Lemma there exists a nonempty Zariski open subset Us of X' (k) such that
resp(fidx)® = respe(fidx) for all P € P and i =1,...,m. Thus Z(f,P) C Z;(f¢, P°) for
all ¢ € UyNUs3. For the reverse inclusion, let ' be the finitely generated subgroup of (B, +)
generated by 1 and resp(fidz) (P € P, i € {1,...,m}). Let U be a nonempty ad-open
subset contained in Us NU3 N Wx (G, T).

Let c € U and (di,...,dm) € Z1(£¢,P°), i.e., dp. = Y ;"  direspe(ffdr) € Z for all
PecPand ) p.pdpe=0. Then

(Z d; resp(fidx) — dp,c> = diresp(fidz)° —dp. =Y direspe(ffdr) —dp. =0

i=1 i=1 =1

for all P € P. As ¢ € Wx(G,,T'), we can conclude that Y ;" d;resp(fidz) —dp. = 0. In

particular, Y ", d;resp(fidx) € Z. Moreover, Y pep 2 ieq divesp(fidx) = Y pepdpe =
0. Thus (di,...,dn) € Z1(f,P) and so Z; (£, P) = Z;(f¢,P¢) for all c € Y.

Our next goal is to find a nonempty Zariski open subset Uy of X' (k) such that Zs(f, P) C
Zy(f¢,P¢) for all ¢ € Uy NUs N Wx(Gq, I') NUy.

Let (€14, ..., emr)1<e<n be a basis of the Z-module Z5(f, P) and for £ =1,...,n write
> pep er,pP = (hy), with hy € F* and e, p = >, €; yresp(fidx) € Z. Replacing f with
a mulitple and enlarging B if necessary, we may assume that hq,..., Ay, hfl, o ht e
Blz]¢[n]. By Lemma there exists a nonempty Zariski open subset Uy of X' (k) such
that (hj) = > pcperpPCfor £=1,...,n and all c € Uy.

Let ¢ € Us NU3 N Wy (G,,T') NUy and (dy,...,dn) € Za(f,P). Then there exist

ai,...,an € Zsuchthatd; = > ), ase; o fori =1,...,m. Moreover, since ;" | d;resp(fidz) €
Z, we have
(&
Zd resp(fidx) = <Zd resp(fidx) ) Zd resp(fidx)© Zd respe(f,
=1 =1 =1
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for all P € P. Therefore

((A§* . hgm)®) = ((h)™ - ((hn))™) = an(hf) = ageq,pP° =
/=1 (=1 PeP
= Z Z Zagezgresla (fidx) P = Z d; resp(fidx)P
(=1 PeP i=1 PeP i=1
= Z Zdl I‘eSpc(f d:E)P
PeP i=1

This shows that (di,...,dn) € Zo(f, P°). So Zy(f, P) C Zy(f¢,P€) for all c € Us NU3 N
Wx<Ga, F) NUy.

For the reverse inclusion, we can use Lemma to find an ad xJac-open subset V; of
X (k) such that for all ¢ € V; and all dp € Z, (P € P), if 3. pep dpP € Div'(C) is not
principal, then " p.p dpP¢ € Div?(C®) is not principal. For all ¢ € Us NUsNWx (G4, T)N
Uy NV1 we then have Zo(f, P) = Z(£€, PC). 0

We are now prepared to show that logarithmic independence is preserved on an Ad xJac-
open subset.

Theorem 4.10. Let fi,..., fm € Blz|¢[n] be logarithmically independent over F. Then
there exists an adx Jac-open subset U of X (k) such that ff,..., fS are logarithmically
independent over F€ for all c € U.

Proof. Set f = (f1,..., fm) and let P be the set of poles of fi,..., f, € F. Fix a basis
{(e1,..seme)| £=1,...,n} of Zy(f,P) and for £ =1,...,n write

Z <Z €ir resP(fidx)> P = (hy) with hy € F*. (36)
=1

pPcP

After enlarging B and replacing f with a multiple if necessary, we can assume that
e the set P belongs to C(B) C C(K) = C(K) and
o hi,....hn, byt byt € Blz]sn).

Let d be the degree of n over K(x). As ay = %h;ﬁ —> i eiofi € Blz|gn] for £ =1,...,n,
we can find r,s € N and b; j, € B such that

e = fr Zzbﬂ’xn

=1 j=1

for £ =1,...,n. Since f1,..., f, are logarithmically independent over F', it follows from
Lemma that the differential forms a1dz, ..., a,dx are Z-linearly independent. Note
that the latter condition is equivalent to: If dy, ..., d, € Z such that dib; j1+...+dyb; j, =
Oforalll1 <i<s, 1<j<d, thendy=...=d, =0.

Let T" be the subgroup of G,(B) = (B,+) generated by all b; ;s and let U; =
Wx(Gg,T') be the ad-open subset of X' (k) defined by I'. By Lemma there exists an
adx Jac-open subset Us of of X' (k) such that P¢ is the set of poles of £¢ and Z(f¢, P¢) =
Zy(f,P) for all ¢ € Uy. Moreover, by Lemmas and we can find a nonempty Zariski
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open subset Us of X' (k) such that the principal divisors defined by hy, (¢ =1,...,n) are
preserved under specialization and resp(f;dx)® = respe(fidx) (i = 1,...,m, P € P) for
all ¢ € Us.

Let U be an adxJac-open subset of X'(k) contained in Uy NUs NUs. We claim that
fi, ..., f5, are logarithmically independent over F° for all ¢ € U.

Let ¢ € U. Using that ¢ € Us, we can specialize (36| to

Z (Z emresPc(ffd;r)) = (hj)

PeP \i=1

for ¢ = 1,...,n. Furthermore, af = (a(hlz") -y ei,gfi>c = 6(:;) — > eioff. Using
that Zo(f¢,P¢) = Zs(f,P), the criterion of Lemma states that ff,..., fS are loga-
rithmically independent over F° if and only if af, ..., a;, are Z-linearly independent. Note
that the degree of n° over k(z) equals d, the degree of n over K(x) (cf. the discussion
before Lemma . As

1 s d A .
%= o | 2 X b))
i=1 j=1
we see that af, ..., ay, are Z-linearly independent if and only if d; b7 it A dpbf jn=20 for
di,...,dp, €7,1<i<s,1<j<dimpliesd; =...=d, =0. But d1bf7j71+- . '+dnbzg,j,m =
0 implies, by the injectivity of I' — k, v + 7€, that dib; ;1 + ... + dpb;jn = 0. Thus
af,...,ay, are Z-linearly independent and ff,..., f5, are logarithmically independent as
desired. O

Remark 4.11. In case n =1, i.e., F = K(x), the Jac-open subset is not needed, i.e., the
set U in Theorem [{.10 can be chosen to be ad-open.

Proof. In this case we can choose C = P§ and so C¢ = Py, for all ¢ € X(k). In this case

Lemma |4.6] is trivial because all degree zero divisors are principal. Thus Lemma does
not create a Jac-open set and also the subsequent results (Lemma and Theorem |4.10)
can make do without the Jac-open set. O

4.4 The setup for specializing Picard-Vessiot rings

Let k C k' be an inclusion of algebraically closed fields. In Lemma we have seen how
a Picard-Vessiot ring R/k’(x) can be spread out to a differential torsor R/B[z|¢. In this
section we discuss some first properties of R and its specializations R¢. We now describe
our framework for specializing Picard-Vessiot rings.

Notation 4.12.

e k is an algebraically closed field of characteristic zero;

B is a finitely generated k-algebra and an integral domain;

X = Spec(B);

K is the algebraic closure of the field of fractions k(B) of B;

G is an affine group scheme of finite type over B;
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e f € B[z] is a monic polynomial and Blz] is a differential ring with respect to 6 = 4.

dx’
o A€ Bzl

e R/Bz]; is a differential G-torsor for d(y) = Ay with fundamental matrix ) €
GL,(R) such that R is flat over B[z]¢;

o R° =R ®p, k(x), where c € X(k) = Homy (B, k) and the tensor product is formed
using the extension of ¢: B — k to ¢: Blz|f — k(x) determined by c(z) = x;

e Y=Y®1e GL,(R°) is the image of ) in R¢;

o A¢ € k(x)" ™ is obtained from A by applying c: Blz]; — k(x) to the coefficients of
A;

o (G¢ = G, is the algebraic group over k obtained from G by base change via ¢: B — k;
o RN =R ®p[,, K(z) is §-simple;

o V&M =) ®1 e GL,(RS") is the image of ) in R&";

o (%" = ([ is the algebraic group over K obtained from G by base change via B — K.

Furthermore, for h € R, denote with h¢ = h ® 1 € R® the image of h in R°. Similarly,
h&™ = h ® 1 € R®" denotes the image of h in R,

For the remainder of Section [ we assume Notation [4.12l

Notation gives a precise meaning to the idea of a family of potential Picard-Vessiot
rings for a family of linear differential equations with prescribed potential differential
Galois groups. (Lemmas and below elaborate this point.) We think of R as
defining the family (R¢).cx ) and we would like to compare the individual R®’s with the
ring R8™ at the generic fibre.

We now explore some first consequences of Notation [4.12

Lemma 4.13. The ring R is an integral domain and the morphisms Blz]; — R, B — B[G]
and R — R&™ are injective.

Proof. Suppose that h € B[z]f is a nonzero element of the kernel of B[z]s — R. Then the
image h8" of h in R&" is zero but also a unit. Thus R®"™ must be the zero ring. This
contradicts the assumption that R is §-simple.

Assume that b € B lies in the kernel of B — B[G]. Then the image of b in R ®p B[J]
is zero. But then the second diagram of Lemma [3.3| implies that b = 0.

As R is flat over B[z]; it is clear that R — R®" is injective. From this it follows that
R is an integral domain because differentially simple rings are integral domains. O

Because R — R®" is injective, it is not really necessary to distinguish between an
element h € R and its image h®*" in R5". However, we will sometimes use the notation
h&™ to emphasize that we are considering h as an element of RS,

At the generic fibre we have a Picard-Vessiot ring:

Lemma 4.14. The K(x)-d-algebra R®™ is a Picard-Vessiot ring for é(y) = Ay with
fundamental matriz Y& and differential Galois group G8".
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Proof. As R/B|x]y is a differential G-torsor, R K /B[z| ;@ K is a differential G&"-torsor
by Lemma (i). But R@pK = R®@p[y, K[z]; and Blz] ;@ K = K[z];. Thus R&" /K (z)
is a differential G#*"-torsor by Lemma (ii).

As R = Blz]|¢[V, ﬁ()})] and 0()) = AY, we have R&" = K(z)[Y®", m] and
J(yem) = AYe". Because RS is assumed to be J-simple, we see that R&"/K(z) is a
Picard-Vessiot ring for §(y) = Ay.

It follows from [BHHWIS|, Prop. 1.12] that the differential Galois group of R&" /K (x)
is G&°". O

So, reversing the idea of Lemma we can think of R/Blz]; as having been obtained
by “spreading out” the Picard-Vessiot ring R®*" /K (z). At the special fibres we either have
nothing or a ring that “looks like” a Picard-Vessiot ring:

Lemma 4.15. If ¢ € X(k) is such that R° is not the zero ring, then R¢/k(x) is a dif-
ferential G-torsor for 6(y) = A with fundamental matriz Y¢. Moreover, there exists a
nonempty Zariski open subset U of X (k) such that R is not the zero ring for every c € U.

Proof. Assume that RC is not the zero ring. As in Lemma using Lemma one
sees that R°/k(z) is a differential G®torsor. Furthermore, R® = k(z)[Y¢, W] and
0(Y€) = A°Ye. Let T be a k-algebra and g € G(T). When interpreted as an element
of G(T), g acts on Y ® 1 € GL,(R ®3 T') by multiplication with a matrix [g] € GL,(T).
Thus ¢ also acts on Y¢® 1 € GL,(R® ®; T') by multiplication with [g]. This proves the
first claim of the lemma.

For the second claim, note that B[z]; C R by Lemma and that R is a finitely
generated B[z]s-algebra. By [Bou72, Cor. 3, Chapter V, §3.1] (applied with b = 1)
there exists a nonzero h € B[z]; such that any morphism ¢ (of rings) from B|z]; into an
algebraically closed field with ¥ (h) # 0, extends to a morphism on R. Without loss of
generality we may assume h € Blz|. Let a € B be the leading coefficient of h and let U be
the Zariski open subset of X' (k) defined by a, i.e., U is the complement of the vanishing
locus of a.

Let ¢ € U. We will show that R® is not the zero ring. Taking ¢ as ¢: Blz]; =

k(x) — k(x), we see that ¥(h) # 0 and so ¢ extends to a morphism ¢: R — k(x). Then
R ®pa),; k(z) = k(z), r ® s — 1(r)s is a morphism of rings. Thus R ®p,, k(z) cannot
be the zero ring. O

We can do slightly better:

Lemma 4.16. There exists a nonempty Zariski open subset U of X (k) such that R is an
integral domain for all c € U.

Proof. The key fact from algebraic geometry that we will use is that being geometrically
integral “spreads out” from the generic fibre ([Pool7, Theorem 3.2.1 (ii)]). More con-
cretely, if B C R is an inclusion of finitely generated k-algebras, such that R ®g K is an
integral domain (where, as usual, K is the algebraic closure of the field of fractions k(B)
of B), then there exists a nonempty Zariski open subset U of Spec(B) such that R @ k(p)
is an integral domain for every p € U.

To apply this to our situation, note that R®p K is an integral domain because RRpK =

R ®pp, Klz]f € R @pjy), K(x) = R and the latter is an integral domain.
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By the first paragraph, there exists a nonempty Zariski open subset U of X (k) such
that R ®p k is an integral domain for all ¢ € U. As

R =R @pa, k(z) = (R ®pja,; klz]pe) Qpfa)ye k() = (R @B k) Qpfay e k(),

we see that R€ is a localization of the integral domain R®p k for all c € U. So RC is either
the zero ring or an integral domain. Thus the claim follows from Lemma O

The following example illustrates Lemma

Example 4.17. Let a be a unit of Bz]; such that a is not a square in k(B)(x). Then
Blz]¢[yl/(y* — a) = Blz]¢[n] is an integral domain and naturally a differential ring (with

d(n) = %‘;)n). Let b € Blz];. As in Example set
R — B[$]f[n][y17y27y1_17y2_1] = B[l‘]f[Xg ﬁ(){)]/(phpQ) = B[:U]f[y7 detl(y)]7

where §(y1) = (b+n)y1, 6(y2) = (b — n)y2,

p1 = Xo1X29 — (b2 — a) X11 X12, p2 = X01X12 + X229 X171 — 2bX711 X2,

0 1

- 2%2
A= (v s L) <5

and 6(X) = AX. Then R is an integral domain and R/B|xz]; is a differential G-torsor for
d(y) = Ay, where G is the group scheme of 2 x 2 monomial matrices over B (as seen in
Example .

We claim that for ¢ € X(k) the k(z)-0-algebra R® = R ®pj,, k(z) is an integral
domain if and only if a® is not a square in k(z). Note that R is a Laurent-polynomial
ring in y1,y2 over Blz]f[n]. Therefore, R ®p, ; k(z) is a Laurent polynomial ring over
Blz]f[n] ®p[a), k(z). The latter is an integral domain, if and only if Blz]¢[n] ®p[, k(z) =
k(z)[y]/(y* — a®) is an integral domain and this is the case if and only if a® is not a square
in k(z).

Thus, for example, for B = klo, 8], with «, 8 algebraically independent over k and
a = 2?2 +ax+ 3, we see that R¢ is an integral domain if and only if ¢ € U, where U C X (k)
is the Zariski open subset where the discriminant o — 43 does not vanish.

By Lemmathe R®’s “look like” Picard-Vessiot rings for §(y) = A with differential
Galois group G°¢. The only missing piece of information is whether or not R¢ is d-simple.
If R®is 0-simple, then R¢/k(z) is a Picard-Vessiot ring with differential Galois group G*.

The main question is: Are there “many” ¢’s in X' (k) such that R°/k(z) is Picard-
Vessiot? (In Theorem we will see that the answer is yes.)

The following example illustrates that the set of all ¢ € X(k) such that R® is Picard-
Vessiot is in general not constructible.

Example 4.18. Let B = k[a], with « a variable over k and set f = z. Let

A= <(a)g_ 1 _11) € l’)’[:l?]fcX2 = kfo, 2]2%2

T
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be the companion matrix of Bessel’s differential equation 6%(y) +26(y) + (1 — (2)?)y = 0.
Let X be a 2 x 2 matrix of indeterminates over Blz];. Consider Blz][X, ot X)]

B|x] p-0-algebra via 6(X) = AX. Then
6(det(X) — 1) = 6(det(X)) + 75 = =+ det(X) + 25 = —2(det(X) — 1)

and so (det(X)—1) is a 6-ideal of Blz][X, #(X)] and R = Blz|f[X, ﬁm]/(det(X)—%) is
a B[x]s-d-algebra. Let Y € GL,(R) denote the image of X in R. Let G = SLy = SLg 5 be
the group scheme SLy over B. Then G acts on R/B[x];: For a B-algebra T, a g € SLa(T)
defines a B[z]; ®p T-6-automorphism g: R@gT — R T by g(Y®1) = (Y®1)(1®9).
The corresponding morphism p: R — R ®p B[SLs] of B[z]s-0-algebras (as in Lemma
is given by p()) = (Y ® 1)(1 ® T), where T € B[SL3]?*? is the matrix of coordinate
functions on SLy. The morphism R ®p(,), R =+ R ®@p B[F], a®b+— (a®1) - p(b) is an
isomorphism, its inverse is determined by 1 ® T +— (Y ® 1)"1(1® V). So R/B[z]s is a
differential G-torsor for d(y) = Ay.

From a more geometric perspective, if Q is any ring (e.g., Blz]|f) and a € Q% it is
clear that the closed subscheme Z of GLj o defined by det(X) — a is an SLy o-torsor: For
any Q-algebra Q’, the map Z(Q') x SLo(Q') — Z(Q') x Z2(Q'), (z,9) — (z, zg) is bijective
with inverse (21, 22) = (21, 2] *22).

The differential Galois group of Bessel’s equation is SLo if a—% ¢ 7 and the multiplica~
tive group otherwise (Appendix of [Kol68]). The significance of the condition oo — 3 ¢ Z
is also explained in Example It follows that R&" = R ®p[,, K(z)/K(x) is Picard-

Vessiot. Moreover, R° is Picard-Vessiot if and only if ¢ € k \ {3 + m| m € Z}.
The following three lemmas will be useful later on.

Lemma 4.19. Let h € R be nonzero. Then there exists a nonempty Zariski open subset
U of X (k) such that h® € R is nonzero for every c € U.

Proof. Applying [Bou72, Cor. 3, Chapter V, §3.1] to the inclusion B[z]f C R, we find
a nonzero element b’ € B[z]; such that every morphism v (of rings) from Blz]; into an
algebraically closed field with ¢ (h') # 0, extends to a morphism ¢ on R with 1 (h) # 0.
Without loss of generality we may assume that A’ € Blz]. Let a € B be the leading
coefficient of A" and let U be the Zariski open subset of X (k) defined by a.

For ¢ € U let ¢ be defined by 1: Blz]; = k(z) — k(z). Then (k') # 0 and
extends to R with ¢(h) # 0. We can thus define a morphism ¢': R® = R ®pyy), k(z) —
k(z), r® s+ (r)s. Then ¢'(h¢) = 4(h) # 0. Thus h° # 0. O

Recall (Definition that the fundamental matrix ) € GLy,(R) defines a morphism
G — GL,, g of group schemes over B.

Lemma 4.20. There exists a nonzero element b € B such that the base change of G —
GL,, s via B — By is a closed embedding.

Proof. Set R' = R®py), k(B)(). As in the proof of Lemmawe see that R’ /k(B)(z) is
a differential Gy, g)-torsor for §(y) = Ay with fundamental matrix Y ®1 € GL,(R’). From
this we deduce that the morphism Gy z) — GL,, x(5) determined by J ® 1 is a closed em-
bedding as follows: Assume 7 is a k(B)-algebra and g € Gyg)(T) = Homy g (k(B)[F], T)
is in the kernel of Gy (T) — GL,(T), i.e., g acts trivially on R’ @) 7. Let p': R" —
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R’ @iy k(B)[G] denote the coaction and e € Hom(k(B)[G], T) = G(T) the identity ele-
ment. As g acts trivially, the maps

R L5 R @y k(B)[G] % R @) T

and

R Qe

R 5 R @) k(B)[G] = R @) T

agree (with a — a®1). As the R'-linear extension of p’ is an isomorphism, it follows that
R' ®g = R' ® e and therefore g = e. This shows that Gyz)(7T) — GL,(T) is injective
for every k(B)-algebra 7. Therefore Gy — GL, y(5) is a closed embedding ([Wat79)
Section 15.3]).

The morphism G — GL,, g determined by ), after base change via B — k(B), yields
the morphism Gyz) — GL,, j() determined by J ® 1 (and, as we have just seen, the

latter is a closed embedding). So the map : B[X, det% )] — BJ[G], dual to the morphism

G — GL,, 5, becomes surjective after the base change B — k(B). In other words, the map
S—ly: STIB[X, ﬁ(x)] — S71B[G] is surjective, where S is the multiplicatively closed
subset of all nonzero elements of B.

Let ai,...,am € B[G] be generators of B[G] as a B-algebra and let f%, e % €
S—1B[X, det( )] be such that (S _1@&)(%) = G fori=1,...,m. Then thereexist s,...,s;, €
S such that s}(¢(fi)—sia;) =0fori=1,...,m. Thusb = sy...sy,s] ...s), has the desired
property. ]

Lemma 4.21. Let Blz]; denote the integral closure of Blz]; in R and for ¢ € X (k) let
k(x) denote the integral closure of k(x) in R°. Then there exists a nonempty Zariski
open subset U of X (k) such that Blz]} ®p, k(z) = k(z) € R® = R ®py, k(z) is an
isomorphism for every c € U.

x]f

Proof. Let m denote the geometric number of irreducible components of R&" /K (x). As
k(B)(z) = K(z), it is clear that the geometric number of irreducible components of
R @, b(B) () /k(B)(x) is also m.

We clalm that the (vector space) dimension dimyp) ) Bz} ®pjz), k(B)(z) equals m.
The inclusion k(B)(z) = Blz|f ®p), k(B)(z) € R®p[, k(B)(x) can be identified with the
localization of the inclusion B[z]; € R at the multiplicatively closed subset of all nonzero
elements of B[z]|¢. As integral closure commutes with localization ([Sta24, Tag 0307]), the
integral closure k(B)(z)" of k(B)(z) in R ®py, k(B)(z) is k(B)(x)" = Blz|} @p[a), k(B)(2).
As integral closure commutes with separable algebraic base change ([Sta24, Tag 0CBF]),
it follows that the integral closure K(x) of K(z) in

(R ®pa); k(B)(2)) ®r(B)(2) K(7) = R @pjy), K(zx) = RE"

is K(z)' = (B[2]} @5, k(B)(2)) @rs)(2) K (2). As [K(z)": K(x)] = m by Corollary
it follows that dimy(g) ) B[] ®p[, k(B)(z) = m as claimed.

It is known that B[z]} is a ﬁmtely generated Bz]s-module ([Eis04), Cor. 13.13]). Thus,
there exists a nonempty Zarlsk1 open subset V; of Spec(B|x]y) such that dimy,,,) B [:E]’f@) Blzl;
k(p) is constant on V; (e.g., using [Eis04, Theorem 14.4]). As dimy g, B[x]’f R Blz]
k(B)(x) = m, we must have dimy,,) B[z]} ®p[y), k(p) = m for all p € V1.

For a morphism of schemes of finite type the number of geometrically irreducible
components of the fibres is constant on a nonempty Zariski open subset ([Sta24, Tag
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055A]). Applying this to the dual of the inclusion Blz]; C R shows that there exists a
non-empty Zariski open subset Vo of Spec(B[z]f) such that the number of geometrically
irreducible components of R ®p/,], k(p) is constant on Va. As the number of geometrically
irreducible components of R ®py), k(B)(z) is m, we see that the number of geometrically
irreducible components of R ®p(y), k(p) is m for all p in V.

The inclusion B C K, being a composition of a localization with a field extension,
makes K a flat B-module. Thus the map B [:1:]} ®p K — R ®p K is injective. We already
noted in the proof of Lemma that R ®p K is an integral domain and so B[z} ®@p K
is an integral domain. As in loc. cit. it follows that there exists a nonempty Zariski open
subset U of X (k) such that Blz]} ®p[,, k(z) is an integral domain for all ¢ € U;.

Let h € Blz] be a nonzero polynomial such that D(h) C V; N Vs and let U be the
Zariski open subset of U; where the leading coefficient of h does not vanish. We will
show that B[z} ®p(,), k(z) — k(z)" is an isomorphism for every ¢ € U. Let ¢ € U and
let p be the kernel of c: Blz]; — k(z). Then Blz]} ®pp), k(p) = Blz]; ®pp), k(z) and
R®pa), k() = R®p, k(z) = R°. As c does not vanish on the leading coefficient of i we
have p € V1NVa. So dimy(,) Blz]}; ®p(), k(z) = m and the geometric number of connected
components of R® is m. It thus follows from Corollary that [k(z) : k(z)] = m.
Therefore, Blz]; ®p(), k(z) and k(z)" have the same degree m over k(z). It thus suffices
to show that B[z} ®py, k(z) — k(z)' is injective. But as ¢ € Uy, the ring B[z} ®py, k(z)
is an integral domain and therefore a field, since it is integral over k(z). O

The following remark, which is important from a technical perspective and will be used
repeatedly in what follows, specializes Remark [4.1] to the context of Notation

Remark 4.22. Assume that in the setup of Notation[{.13 we would like to show that there
exists

e an ad-open,
e a Jac-open or
e an adx Jac-open

subset U of X (k) such that

e the differential k(x)-algebra R® has a certain property for every c € U or

e that for given f1,..., fm € R, the elements fi,..., f}, € R° have a certain property,

then we can, without loss of generality, replace B with an integral domain B’ such that
B C B and B’ is finitely generated and algebraic over B.

Proof. Note that k(B) C k(B") C k(B) = K. Set
R =RepB =R ®B[z}f B'[:p]f CR ®B[z]f K(w) = R,

Then R’ is not the zero ring and so R’ is a differential G’ = Gp-torsor over Blz]; ®p
B' = B'[z]f by Lemma We next verify that R'/B'[z] has all the properties listed
in Notation The matrix )/ = Y ® 1 € GL,(R’) is such that 6()') = AY" and
R = B'[z]|¢]), W] Since G acts on ) through matrix multiplication, also G acts on

Y’ through matrix multiplication. Thus R'/B'[z]; is a differential G’-torsor for d(y) = Ay

68


https://stacks.math.columbia.edu/tag/055A
https://stacks.math.columbia.edu/tag/055A
https://stacks.math.columbia.edu/tag/055A

with fundamental matrix J’. As R is a flat over Bz]y, we see that R' = R ®p[,), B'[z]f
is flat over B'[z];. Moreover,

R&N — R/ QB[] K(z)=(R @Bl B'[m]f) ®B[z]; K(z)=R ®Blx); K(z) = R®"

is d-simple.
Similarly, if ¢: X'(k) — X(k) is the morphism induced by the inclusion B C B’ and
d € X(k) is such that ¢(c’) = ¢, then

R/C = R/ ®B/[l”}f k(a;) = (R ®B[‘T}f B/[a}]f) ®B’[z]f k(w) =R ®B[x]f k(.%') = R°.

Furthermore, for ¢ = 1,...,m, the image ff/ of f; in R agrees with the image ffof fiin
Re.

Thus, if there exists a subset U’ of X’(k) of one of the three kinds listed in the remark
such that one of the two properties of the remark is true for all ¢ € U’, then Lemma
yields a subset U of X (k) of the corresponding kind such that & C ¢(U’) and the corre-
sponding property holds for all ¢ € U. O

4.5 Algebraic relations under specialization

Recall that we assume Notation .12] for the remainder of Section 4l The main result
of this section (Theorem is that a basis of the vector space of algebraic relations
of degree at most d among the entries of a fundamental solution matrix for d(y) = Ay
specializes to a basis of the vector space of algebraic relations of degree at most d among
the entries of a fundamental solution matrix for §(y) = A for all ¢ in an ad-open subset
of the parameter space. This is in spirit similar to Theorem B from the introduction.
However, the present result is weaker because we have to fix the degree of the algebraic
relations.

By considering the vector of all monomials of degree at most d in the entries of a
fundamental solution matrix, the study of the algebraic relations of degree at most d
among the entries of a fundamental solution matrix can be reduced to the study of the
linear relations satisfied by the entries of one solution vector. We therefore, first study the
behavior of linear relations under specialization. Combining the main result of Section [3.6]
with the main result of Section [£.1] we obtain:

Proposition 4.23. Let v € R be such that v&°" € (R&™)* is a solution of 6(y) = A'y,
with A" € K(x)*. Then there exists a positive integer N and an ad-open subset U of
X (k) such that for every ¢ € U the following holds: If m. is a maximal d-ideal of R® and
v° € (R°/m,)¢ is the image of v° in R°/m., then the k(x)-vector space LinRel(v, k(x))
has a basis consisting of elements of the form a1y1 + ...+ agye, with a1, . ..,ay € k(x) and
deg(a;) < N fori=1,... /L.

Proof. For i = 1,...,¢, let £; € K(x)[0] be a monic differential operator, equivalent to
d(y) = (N"A)yandlet T; € GL(L{) (K (x)) be a corresponding transformation matrix. (See

Section [3.6]) Enlarging B if necelssary (Remark , we can assume that A’, T; and £;
(1 <4 < ¥) have coefficients in Blz]fy,, where fi € Blz] is a monic polynomial. So, for
a nonempty Zariski open subset U’ of X(k), the matrix T} lies in GL(g) (k(z)) and is a

transformation matrix from d(y) = (A" A)°y = (A" A°)y to L5y = 0. Note that v¢ is a
solution of §(y) = A"y for every ¢ € X (k).
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By Proposition for each ¢ = 1,..., /¢, there exists an ad-open subset U; of X (k)
such that N(L;) is an exponential bound for L{y = 0 for any ¢ € U;. Note that
dimy,) LinRel(v k(z)) lies between 1 and ¢ for any ¢ € X'(k). It thus follows from
Lemma [3.36] that

¥ g o) oo+ () () =) eeo

and U any ad-open subset of U’ NU; N ... NU,; have the required property. ]

Let F be a differential field, A € F™*" and R/F a Picard-Vessiot ring for §(y) = Ay
with fundamental matrix ¥ € GL,(R). For a fixed positive integer d, we set

AlgRel(Y,d, F) = {p € F[X] [ p(Y) =0, deg(p) < d}.

Then AlgRel(Y,d, F') is a finite dimensional F-vector space; the vector space of algebraic
relations of degree at most d among the entries of Y.

The following theorem shows that a basis of the vector space of algebraic relations of
degree at most d among the entries of a fundamental solution matrix is preserved on an
ad-open subset of the parameter space.

Theorem 4.24. For any ¢ € X(k), let m. be a mazimal S-ideal of R and let Y¢ €
GL,,(R°/m.) denote the image of Y in R°/m.. Letpi,...,pm € Blz]|[X] be a K(x)-basis of
AlgRel(Y8" d, K(x)). Then there exists an ad-open subsetU of X (k) such that pS, ..., pS,
is a k(z)-basis of AlgRel(Y ¢, d, k(z)) for any c € U.

Proof. The main step of the proof is to show that there exists an ad-open subset Uy of
X (k) such that

dimy,) AlgRel(Y®, d, k(z)) < dimg(,) AlgRel(Y5, d, K (z)) (37)

for every c € U;.
Let mi,...,m, denote all monomials in X of degree at most d (so r = ("izrd) and
let ¢ be the dlmensmn of the K (z)-vector space generated by my(Y8"),... m,(Y&")
(inside R&™). We may assume, without loss of generality, that m;(Y8"),. .. mg(Ygen)

are K (z)-linearly independent. We see that m = dimg ;) AlgRel(Y®",d, K (x)) = r —

As §(Y&™") = AV the vector (my(Ye"), ... m, (V&) € (R&1) is a solutlon
of §(y) = Ay for some A; € K(x)"*". Since m;(Y*#") ({ +1 < i < r) can be ex-
pressed as a K (x)-linear combination of my (Y8"),..., my(Y#"), it follows that the vec-
tor (my(Y&"), ... my(Y&"))! is a solution of §(y) = A’y for some A" € K(z)"**. Set
v=(m),... 7m€(y))t e R.

By Proposition there exists a positive integer N and an ad-open subset U’ of
X (k) such that for every ¢ € U’ the following holds: If m. is a maximal d-ideal of R® and
v¢ € (R°/m.)’ is the image of v¢ in R°/m,, then LinRel(v¢, k(z)) has a k(x)-basis of the
form ajy1 + ...+ apye with a; € k(z) and deg(a;) < N for i =1,...,¢.

Recall that the wronskian wr(hy, ..., hs) of elements hq, ..., hs of some differential ring
R, is defined as the determinant of the wronskian matrix

b .. h
Sh) ... 8(hy)
51(hy) ... 8 L(hy)
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The crucial property of the wronskian is that, if R is a field, then Ay, ..., hy are R’-linearly
independent if and only if wr(hy,. .., hs) is nonzero ([vdPS03, Lemma 1.12]).
Because m; (Y8"), ..., my(Y8") € R&" are K (x)-linearly independent, the elements

m; (V") (0 < j <IN, 1 <i< /) of R" are K-linearly independent. Thus their
wronskian is nonzero. Let w € R be the wronskian of z/m;()) (0 < j < /N, 1 <i</).
By Lemma[4.19] there exists a nonempty Zariski open subset " of X (k) such that w® € R°
is nonzero for every ¢ € U'. Therefore, by Lemma [3.8] there exists, for every c € U”, a
maximal d-ideal m, of R such that w® ¢ m.. Let Y¢ € GL,(R°/m.) denote the image
of Y¢ in R°/m.. As the image of w in R°/m, is nonzero for every ¢ € U”, the family
xjml(i%) (0 <j <IN, 1<i<U/)is k-linearly independent.

We claim that my (Y°), ..., my(Y¢) are k(z)-linearly independent for every ¢ € U/ NU" .
Suppose this is not the case. Then LinRel(v¢, k(z)) is nonzero for some ¢ € U'NU". By the
choice of N and U’ above, there exist ay,...,a; € k(z) with deg(a;) < N and alml(Yc)

.+ agmg(YC) = 0. Clearing denomlnators we find that the family a:JmZ(YC) 0<j<
ZN , 1 <4 <) is k-linearly dependent; a contradiction.

Thus m;(Y°),...,my(Y¢) € R°/m, are k(z)-lincarly independent. This implies that

dimy(,) AlgRel(Y<, d, k(z)) < 7 — € = dim(,) AlgRel(YE™, d, K (x)).

Since dimy,(,) AlgRel(Y¢,d, k(x)) does not depend on the choice of the maximal J-ideal m,
of R°, we obtain (37) with U; an ad-open subset of U’ NU".

As pi(YE™) = 0, also pf(Y°) = (pi(Y))¢ =0 fori =1,...,m and ¢ € X(k). So
p$,..., 05, € AlgRel(Y¢, d, k(x)) for any c € X (k).

The K (z)-linear independence of pi,...,pm, € B[z][X] can be expressed through the
non-vanishing of determinants. Thus, there exists a nonempty Zariski open Uy of X (k)
such that p§,...,p%, € k(x)[X] are k(x)-linearly independent for any ¢ € Us. Combining
this with , we see that, for ¢ € U; N Us, equality holds in and that p{,...,py,
is a k(z)-basis of AlgRel(Y ¢, d, k(x)). We can thus choose U as any ad-open subset of
UL NUs. O

4.6 Picard-Vessiot rings under specialization

Recall that we assume Notation 12| for the remainder of Section [l In this section we
prove our main specialization result, namely, that R¢/k(z) is Picard-Vessiot for all ¢ in an
ad xJac-open subset of X (k).

Combining the criterion of Lemma[3.15 with Theorem we first show that R¢/k(x)
is proto-Picard-Vessiot for all ¢ in an ad-open subset of X (k).

Proposition 4.25. There exists an ad-open subset U of X (k) such that R¢/k(x) is proto-
Picard-Vessiot for all c € X (k).

Proof. By Lemma there exists a nonempty Zariski open subset U of X' (k) such that
R° is an integral domain for every ¢ € Uj.

Let p1,...,pm € K[z][X] be a K(x)-basis of AlgRel(Y#",d(n), K(z)). Extending B
if necessary (Remark , we may assume that p1,...,pn € B[z][X]. As p;(Y) =0, also
pi(Ye) = i) =0fori=1,...,m and all c € X(k).

For ¢ € X(k) let m. be a maximal d-ideal of R® and let Y¢ € GL,,(R¢/m,) denote the
image of Y¢ in R°/m.. By Theorem there exists an ad-open subset Uy of X' (k) such
that pS,...,p¢, is a k(x)-basis of AlgRel(Y¢,d(n), k(x)) for any ¢ € Us.
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We will show that R¢/k(x) is proto-Picard-Vessiot for any ¢ € Uy NUs. Let p € k(z)[X]
with deg(p) < d(n) and p(Y°) € m.. According to Lemma it suffices to show that
p(Y)=0. o

As p(Y¢) =0, ie., p € AlgRel(Y¢,d(n), k(z)), we have p = """, a;p§ for appropriate
ai,...,am € k(z). Therefore, p(Y°) = > a;p§(Y°) = 0. Thus, we can choose U as any
ad-open subset of Uy N Us. O

We next make the step from proto-Picard-Vessiot to Picard-Vessiot. Roughly, this
corresponds to the second main step of Hrushovski’s algorithm, which is more or less
the Compoint-Singer algorithm from [CS99, Section 2.5]. Besides Proposition key
ingredients for the proof are the characterization of Picard-Vessiot rings among proto-
Picard-Vessiot rings from Lemma [3.23| and the preservation of logarithmic independence
under specialization from Theorem [£.10] The following theorem is our main specialization
result. We assume the setup of Notation

Theorem 4.26. There exists an adxJac-open subset U of X (k) such that R°/k(zx) is
Picard-Vessiot for all ¢ € U. In particular, the set of all ¢ € X (k) such that R°/k(x) is
Picard-Vessiot, is Zariski dense in X (k).

Proof. Extending B if necessary (Remark , we can assume that the morphism G —
GL,, s defined by Y is a closed embedding (Lemma . We can thus consider G as a
closed subgroup of GL,, 5. Note that the equations defining G as a closed subgroup of
GL, 5, also define G&" as a closed subgroup of GL, k. Let {x1,...,xm} be a basis of
X((G&™)°) and let qi,...,qm € K[X, m] be such that the image of ¢; in K[(G&™)°]
agrees with x; for i = 1,...,m. Let K(x) denote the integral closure of K(x) in R%™"
and let ¥ € Homg ) (R, K(x)). Note that K ()" is canonically embedded into K(x)
by forming K (x) inside the algebraic closure of the field of fractions of R8". As (R&™")
is a finite field extension of K (z), there exists an 7 € K (x) such that ¢(R&™) = K (z)[n] =
K(x,m). In particular, B = 9(Y#")~! € GL, (K (z)) has coefficients in K (x)[n]. Replacing
n with a K(z)-multiple of n if necessary, we can assume that the minimal polynomial
p € K(x)[y] of n over K (z) has coefficients in K|z].

Extending B and replacing f by a multiple of f if necessary (Remark , we may
assume that

e the coefficients of p, q1,..., ¢y are all in B,
e 0(n) € Blz]f[n], so that Blz]¢[n] is a differential subring of K (z,n) and
e B,B7! € Bz]¢[n]™*".

By [Fen2ll Prop. 3.5], there exists a nonempty Zariski open subset U; of X' (k) such
that the images x{,...,x5, of ¢f,...,q5, in k[(G)°] are a basis of X((G)°) for every
c e U.

As p € Bz, y] is irreducible in K (x)[y] and monic in y, it follows from Gauss’s lemma
that p is irreducible in K[z,y]. By the Bertini-Noether theorem ([FJO8, Prop. 9.4.3)),
there exits a nonempty Zariski open subset Us of U such that p°(x,y) is irreducible in
klx,y], and hence also irreducible in k(z)[y], for any ¢ € Us. So, for ¢ € Uy, the ring
Blz]f[n] ®p, k(x) = k(x)[y]/(p°) is a field, in fact, a finite field extension of k(z).

For ¢ € X(k), let k(z)" denote the integral closure of k(x) in R°. Our next goal is to
construct, using 9, elements ¢ € Homy,) (R, k(z)). Recall (Lemma that we may
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regard R as a d-subring of R®™. So the morphism ¢: R&" — K(x,n) of K(x)"-algebras
restricts to a morphism ¥: R — Blz]s[n] of Blz]}-algebras. Thus for ¢ € Us we can
base change J: R — Blz|f[n] via c: Blz]f — k(z) to a morphism 6°: R® = R ®pl),
k(z) = Blz]¢[n] ®ppa), k(x) of Blz]; ®p[,, k(z)-algebras. By Lemma there exists a
nonempty Zariski open subset U3 of Uy such that the map B [x]’f ®pla), k(@) = k(z) C R
is an isomorphism. So composing 0¢ with a Blz]; ®p[,, k(z) = k(z)" embedding of

Blz]¢[n] ®pje), k(z) into k(x), we obtain a morphism ¥°: R® — k(z) of k(z)-algebras.

Note that B¢ = 9¢(Y¢)~! € GL,(k(z)) agrees with the image of B under B[z]s[n] —

Blz]¢[n] @B[a]; k(x) — k(x) for all ¢ € Us.
For/=1,...,m we set

n

fo=

ij=1

Oq
8Xij

(I)(BAB™ + 86(B)B);; € Blalsln] € K (z, ) C K(a).

As Re#"/K(x) is Picard-Vessiot, it follows from Lemma and Remark that
fi,.-., fm are logarithmically independent over K (z,n).
For an element a of Blz]¢[n] and ¢ € Us, let us write a° = a ® 1 € Blx]|[n] ®p[) k(z)

for the image of a in Blx][n] ®pjy) k(x) = k(z). For £ =1,...,m, we then have

n

fi=>

ij=1

Oqy
0Xi;

(In)(B°AS(B) ™" +8(B)(B°) ™)y € Blz]s[n] @py), k(x) = k(2).

By Theorem there exists an adxJac-open subset U’ of X' (k) contained in U3 such
that ff,..., fy, are logarithmically independent over Blz];[n] ®p(), k() for all ¢ € U'.
Then U’ is of the form U’ = Uy NV with Uy ad-open and V Jac-open.

By Proposition there exists an ad-open subset Us of X' (k) such that R¢/k(x)
is proto-Picard-Vessiot for any ¢ € Us. Let Ug be an ad-open subset of Uy NUs. Then
U =Ug NV is adxJac-open. Now Lemma implies that R°/k(z) is Picard-Vessiot for
any c € Y.

The last statement of the theorem follows from Theorem 2.241 O

The proof of Theorem [4.26] shows that if the algebraic group G& over K is such that
(Ge)t = G&M (e.g., G&" is semisimple or unipotent), then the Jac-open subset is not
needed, i.e., the set of good specializations contains an ad-open subset. However, we can
do much better than that:

Corollary 4.27. Assume that in the setup of Notation[f.19 the generic differential Galois
group G&" is connected. Then there exists an ad-open subset U of X (k) such that R®/k(x)
1s Picard-Vessiot for every c € U.

Proof. 1f G&°" is connected, then the ¥ € Homp(,)(R*", K(x)) in the proof of Theo-
rem can be chosen such that B = 9(Y&")~! € GL, (K (x)) by Remark We can
therefore choose n =1 and so fi,..., fm € Blz]; € K(x). By Remark the Jac-open
subset V is then not needed so that U’ = U is ad-open and therefore also U is ad-open. []

While Jac-open subsets do not occur when the generic differential Galois is connected,
they do indeed occur in the non-connected case. This is illustrated in the following exam-
ple.
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Example 4.28. Let « and 8 be variables over k and set B = k[a,3]. In line with
Notation we also set K = k(a, ).

Let a = ;f;f J)fa, f = (z* + 2 + a)(z — B) and consider the differential equation

3(y) — (2a+ XD)5(y) + (a® —a— 2@y =0 (38)

over B[z]|¢. Note that the companion matrix A € B [a:]fvX2 of l) is of the form described

in Examples and with b = a.
As a is not a square in k(a, 8)(z), we see that Blz]f[y]/(y? —a) = B[z]¢[n] is an integral
domain and a differential ring. As in the previous examples we set

R = Blalsnllyr, y2, 91 vz '] = Blal ¢ [X, gy )/ (01, 02) = Bl ¢ [V, goiiy -
where
p1 = Xo1 X292 — (a® — a) X11 X12 p2 = Xo1X12 + Xo2 X11 — 2aX11 X012,

(y1) = (a+m)y1, 6(y2) = (a +n)y2 and §(Y) = AY.
We know from Example|(3.6|that R/B[z]¢ is a differential G-torsor for §(y) = Ay where
G is the group scheme of 2 x 2 monomial matrices over B. Therefore,

RE™ = R ®ppy, K(2) = K(z,n)[y1, 2,97 vy '] = K(@)[VE", o]

is a differential G#" = Gg-torsor. Example shows that R&" /K (x) is Picard-Vessiot
if and only if fi = a+n and fo = a—n are logarithmically independent over K (x,n). From
Example We know that f1, fo are logarithmically independent over K (z, ) if the point
(0,1) is not a torsion point on the elliptic curve (over K) defined by v? = u® — 4au + 1.

Combining Example 2.4 (i) of [Zanl4a] and Proposition 12.1 of [Zanl4b] we see that
the latter is the case and so R®"/K(z) is Picard-Vessiot. (Note that in the notation of
these references oo = (0,1) and oo_ is the neutral element.)

Set X = Spec(B) = AZ. We would like to determine an adxJac-open subset U of
X (k) = k? such that R® = R ®pq, k(z) is Picard-Vessiot for every ¢ € U. To this end, we
follow the same strategy as at the generic point. Example shows that R is an integral
domain provided that 256(ac)® — 27 # 0. For these c¢’s, Example shows that R¢ is
Picard-Vessiot if and only if f{ = a®+n° and f§ = a®—n° are logarithmically independent
over F¢ = k(x,n°) = k(x)[y]/(y® — a®). With 2¢ = x;fw, we have F°¢ = k(x,z°) and
(292 =2+ 2+

Set U = Wx(G,,T') NV, where T is the subgroup of (B, +) generated by (3% + 8 + a)?
and 25603 — 27 and V is the set of all ¢ = (a¢, 5¢) € X (k) such that 256(ac)® — 27 # 0
and (0 : 1 : 1) is not a torsion point of the elliptic curve £¢ with affine equation: u? =
v3 —4av + 1. So U is an adxJac-open subset of X' (k). We will show that R¢/k(z) is
Picard-Vessiot for every ¢ € U.

Let ¢ € U. Because ¢ € Wx(G,,T'), we have

((B) +5°+ a)?
256(ac)3 — 27

(Bt + B+ a® # 0, 256(a”)* — 27 # 0, and £Q

From Example with a, 8 being replaced by a¢, 8¢ respectively, we see that Z1 ((ff, f5),P) =
{(d,—d) | d € Z}, where P = {P1, P»,..., Ps} are all poles of ffdz and fSdx. In particu-
lar, Py, P, are places of the function field F¢ = k(z, 2¢) with (2¢)2 = 2* + 2 + a¢ and P
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is the place corresponding to the neutral element (0:1:0) € E(k), while P, corresponds
to the point (0:1:1) € E°(k). For each (d, —d) € Z1((f{, f5),P),

2
Z (Z dresP(ffda:)> P =2d(P, — P)
PeP \i=1

Furthermore, as ¢ € V, 2d(P>» — P1) is not a torsion point of £°k) if d # 0. Thus
Zo((ff, f5), P) is trivial and therefore ff, f§ are logarithmically independent (see Exam-
ple for details). So R/k(z) is Picard-Vessiot for every ¢ € U.

In the following, we also show that there are infinitely many ¢ = (a¢, 5¢) € k% = X (k)
with 256(a¢)® — 27 # 0 such that R is not Picard-Vessiot, i.e., f{, f§ are logarithmically
dependent. By Example 2.4 (i) of |[Zanl4a], there exist infinitely many a¢ € k with
256(ac)® — 27 # 0 such that (0,1) is a torsion point on the elliptic curve £¢. For every
such a¢ € k, let m. > 2 denote the order of (0,1). Now m.(0,1) is the neutral element
of £¢, if and only if the divisor m.(P» — Pj) is principal. Thus, there exist an h. € F°
such that (h.) = m.(Py — P1). Note that Czl—f is a regular differential of F°. The only
f b _ Ohe)

poles o 5~ dr are P and P,. Moreover, these poles are simple with residues —m,

and m, respectively. On the other hand, =" dx = mzc—de(:U_l) and the F;-adic expansion
of 2¢is 2¢ = ¢i(z™ )"t + ... for i = 1,2 with ¢; = —1 and ¢ = 1 (Example [3.27). It
follows that also the dlfferentlal Tetdr — ( 3he) o s regular. As F/k has genus one, the
space of regular differentials is one dunensmnal Therefore, there exists an s € k such that
mez _ Ohe) _ = %. If we set B¢ = m—c € k, then

z¢ he

mc(ff — fé:) = mcnc _ me(x—pB°) _ 5(}15)7

z¢ he
so that indeed ff, f§ are logarithmically dependent for ¢ = (a¢, 5¢) € X (k).
As the above ¢’s are not really given explicitly, let us present at least one explicit
¢ € Wx(Gg,,TI') such that R°/k(x) is not Picard-Vessiot. (In this sense the set V is
necessary.)

Set ¢ = (af, f¢) = (_1+f 1+r) Then

37249(v/—3 + 1)
c _ c\4 c 2
256a° —27 =5, ((8°)" + B°+ ) 262144 '

So ¢ = (%, B € Wx(Gg,I') but ff, f§ are logarithmically dependent. In fact, one has
that )
(x — +T‘/j3)d:c _o(h)

\/x4+33—1+)4/j3 h

2(ff — f5)dw = 4

Whereh:p—i—Q\/x‘l—l—aj—H’T\/jswith

= (22 — 22+ 2)V3+ V=1(22* + 40P + 22 + 2 4+ 1),
g= (22" — 1)V3+vV—1(22% + 4z + 1).

5 Applications of the specialization theorem

In this section, we present some applications of our specialization theorem (Theorem [4.26]).
The main application, which in fact motivated this entire paper, is the proof of Matzat’s
conjecture. Besides Matzat’s conjecture, we also present the proofs for the results an-
nounced in the introduction and a very short proof of the solution of the inverse problem.
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5.1 Exceptional parameter values

In this section we deduce the results announced in the introduction from Theorem [4.26]

5.1.1 Exceptional parameter values for the algebraic relations among the so-
lutions in a family of linear differential equations

Let k C k' be an inclusion of algebraically closed fields of characteristic zero and let
R/K'(x) be a Picard-Vessiot ring for d(y) = Ay with A € k'(x)"*™. Then R is of the form
R = K (2)[X, ﬁ(X)] /m for some maximal differential ideal m of k'(z)[X, ﬁ()()]’ where

0(X) = AX. Let p1,...,pm be a generating set of the ideal m. Fix a finitely generated

nxn

k-subalgebra By of k' and fo € Bo[z] a monic polynomial such that A € Bo[z]}"" and
P1s---,Pm € Bolx] s, [X, m] Set Xy = Spec(Byp) and for ¢y € Xy(k) let m® denote the

ideal of k(z)[X, ﬁ(x)] generated by pi°,...,p%.

Corollary 5.1. There exists an adx Jac-open subset Uy of Xo(k) such that m® is a maz-
imal differential ideal of k(z)[X, #(X)] for every ¢y € Uy, where k(x)[X, ﬁ(x)] as a
differential ring with respect to the derivation determined by 6(X) = A®X.

Proof. By Lemma there exists

e a finitely generated k-subalgebra B of k' containing By and contained in the algebraic
closure of the field of fractions of By;

e a monic polynomial f € Blz| such that fy divides f in B[z];
e an affine group scheme G of finite type over B;

e a differential G-torsor R/B[z]; for §(y) = Ay such that R is a flat B[z]s-module,
R ®p); K (x) is d-simple, where K C k' is the algebraic closure of the field of
fractions of B and R ®p[,, k() ~ R.

Let Y denote the image of X in R = k'(x)[X, #(X)]/m and let Y € GL,(R) be the

fundamental matrix corresponding to ¥ under the isomorphism R ®p(,), K'(z) ~ R. Then

m = {p € KX, gabey] | o) =0}

and for
T = {p € Blal[X. gy | p() = 0}

we have Z ®p,, E(x)=m=(p1,...,pm) C k' (2)[X, ﬁ(X)]

Set X = Spec(B) and let ¢: X(k) — Ap(k) be the map induced by the inclusion
B, C B.

We claim that there exists a nonempty Zariski open subset U of X' (k) such that Z® Blz];
k(z) = m?©) C k(z)[X, ﬁ(X)] for all ¢ € U, where the tensor product Z ®p,, k(z) is
formed using c: Blz]; — k(z). As p1,...,pm € Z, we have m?(©) C T ®p[a), k(z) for all
ce X(k).

Set

I' = {p € k(B)(@)[X, gary] | P(¥) = 0}
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AsT' Q) a)k (#) = m = (p1,...,pm) € K (2)[X, ﬁm],we must have Z’ = (p1,...,pm) C

KB) ()X, g
Let qi1,...,qq € Blz]f[X, ﬁ(}()] be such that Z = (¢1,...,q4)- As ¢ € T C T' =
(p1,---,Pm), we can find a nonzero b € B and a monic f’ € Blz] such that bf'q; €

(p1,---,pm) C Blz][X, ﬁ(x)] for i = 1,...,d. Let U be the Zariski open subset of X (k)

where b does not vanish. Then ¢f € (pf,...,p5,) C k(z)[X, ﬁ(X)] for i = 1,...,d for
every ¢ € U. Therefore

T ®pp), k(x) = (q1, - - 4a) ®pp), k(@) = (¢5, ..., q5) € (5, ..., p5,) = m?)

and so Z®p[,, k(z) = m®©) for all ¢ € U as claimed. In particular, since Z is a differential
ideal, also m?(©) is a differential ideal for all ¢ € U.

Theorem applied to the differential torsor R/B[x]; yields an ad xJac-open subset
V of X(k) such that R ®g,), k() is d-simple for every ¢ € V. For ¢ € U NV we then have
that

R ®pja), k(@) = (Blz]4[X, qozy)/T) ®bpal, k(@) = k(@) [X, gozy)/Z @), k() =

— k(@) [X, gy )/m?)

x]f

is d-simple, i.e., m?(© is a maximal §-ideal. By Lemma there exists an adxJac-open
subset Uy of Xp(k) such that Uy C ¢(U N'V). Then m® is a maximal d-ideal for all
co € Uy. O

Remark 5.2. If, in the context of Corollary the differential Galois group of 6(y) = Ay
(over k'(x)) is connected, then the set Uy can be chosen to be ad-open.

Proof. If the differential Galois group G of §(y) = Ay is connected, also the differen-
tial Galois group G&™" of R®" = R ®@p[,), K(x) is connected because G = (G5"); by
Lemma Thus, by Corollary the adxJac-open subset V of X (k) in the proof of
Corollary can be chosen to be ad-open. Then by Lemma also Uy can be chosen to
be ad-open. ]

5.1.2 Families of not solvable algebraic groups

We next work towards a proof of Corollary B1 from the introduction. A linear differential
equation is solvable by Liouvillian functions if and only if the identity component of the
differential Galois group is solvable ([vdPS03, Theorem 1.43]). For the proof of Corol-
lary B1 we need to know that the contrapositive of this property spreads out from the
generic fibre to an open subset of the parameter space.

Throughout Section [5.1.2) we make the following assumptions:

e [ is an algebraically closed field of characteristic zero;
e 3 is a finitely generated k-algebra that is an integral domain;

o K = k(B) is the algebraic closure of the field of fractions k(B) of B;

X = Spec(B);

G is an affine group scheme of finite type over X such that G — X is dominant, i.e.,
the dual map B — B[J] is injective.
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e ¢ is the generic point of X and G¢ = G x x Spec(k(&)) is the generic fibre (an algebraic
group over k(§) = k(B)) whereas Gz = G x x Spec(K) is the geometric generic fibre
(an algebraic group over K). Moreover, G, is the fibre over ¢ € X (an algebraic
group over the residue field of c).

The main goal of this subsection is to prove the following:

Proposition 5.3. If (Gz)° is not solvable, then there exists a nonempty Zariski open subset
U of X(k) such that (G.)° is not solvable for every c € U.

The proof of Proposition [5.3|is given at the end of Section We will need some
properties of the derived subgroup of an algebraic group. For more background see [Mill7,
Section 6 d] or [Wat79, Section 10.1]. Let k' be a field of characteristic zero and let
G be an algebraic group over k'. The derived group D(G) of G can be defined as the
smallest closed normal subgroup of G such that G/D(G) is abelian. Alternatively, it
can also be described as the closed subgroup of G generated by the commutator map
G x G — G, (g,h) — ghg~'h~! ([Mill7, Prop. 6.18]). More generally, for every n > 1,
consider the map

bGP = G, (91,h15 s Gny hn) = grhagy "hit .. gnhngy thy !

and its dual ¢%: k'[G] — @*K'[G]. So ker(¢?) is the defining ideal of the closure of the
image of ¢,. One has ker(¢]) D ker(¢3) O ... and the defining ideal I(D(G)) C k'[G]
of D(G) is I(D(G)) = > ker(¢}). In fact, I(D(G)) = ker(¢}) for some n ([Mill7,
Prop. 6.20]). -

The algebraic group G is perfect if D(G) = G. Thus G is perfect if and only of ¢} is
injective for some n > 1. In other words, G is perfect if and only if ¢, is dominant for
some n > 1.

The higher derived groups D!(G) are defined recursively by DY (G) = D(D1(Q)).
Then G 2 D(G) 2 D*(G) D ... is a descending sequence of closed subgroups (the derived
series) that must eventually terminate, say at D"(G). If D"(G) = 1 is the trivial group,
then G is called solvable. Otherwise, D"((G) is a nontrivial perfect closed subgroup of G.

Lemma 5.4. If G¢ is perfect and nontrivial, then there exists a nonempty Zariski open
subset U of X such that G. is perfect and nontrivial for every c € U.

Proof. As above, for n > 1 consider the scheme morphism
on: G2 = G, (g1 hnse o gn ) = gihagr Ay gnbngy thy

Since G¢ is perfect (¢n)e: g¢ — Ge is dominant for some n > 1. By [Gro66l, Theo-
rem 9.6.1 (ii)], the set of all ¢ € X such that (¢,).: G — G. is dominant is constructible.
As it contains the generic point &, this set thus contains a nonempty Zariski open subset
U’ of X. So for every c € U, the algebraic group G, is perfect.

By generic freeness ([Sta24, Tag 051S]), there exists nonzero b € B such that B[G]; is a
free By-module, say of rank . Then, B[G]®pk(p) is a k(p)-vector space of dimension x for
every prime ideal p € D(b). The assumption that G¢ is nontrivial means that B[G]®p k(B)
is not reduced to k(B). So k > 1 and B[G] ®p5 k(p) is not reduced to k(p) for any p € D(b),
i.e., G. is nontrivial for ¢ € D(b). Thus U = U’ N D(b) has the required property. O

Lemma 5.5. If G¢ is not solvable, there exists a nonempty Zariski open subset U of X
such that G. is not solvable for every c € U.
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Proof. Since G¢ is not solvable, there exists an n > 1 such that H = D”(gg) is nontrivial
and perfect. The closed subgroup H of G¢ spreads out to a closed subgroup H over a
nonempty Zariski open subset of X'. In detail, there exists a nonempty affine Zariski open
U" of X and a closed subgroup scheme H of Gy = G xx U’ such that Hg = H. This
follows, for example, from [Gro66, Theorems 8.8.2 and 8.10.5].

Lemma applied to H, yields a nonempty Zariski open subset I of U’ such that H,.
is nontrivial and perfect for every ¢ € U. Thus, for every ¢ € U, the algebraic group G,
contains the closed nontrivial perfect subgroup H. and can therefore not be solvable. [

We are now prepared to prove the main result of this subsection.

Proof of Proposition[5.3 Because solvability ([Mill7, Cor. 6.31]) and the formation of
the identity component ([Mill7, Prop. 1.34]) is compatible with base change, we see that
(gg)o is not solvable. As in the proof of Lemma the closed subgroup H = (gg)o of
G¢ spreads out to a closed subgroup scheme over a nonempty Zariski open subset of X,
i.e., there exists a nonempty Zariski open subset U; of X and a closed subgroup H of
Gu, = G xx Uy such that He = (G¢)°. Because H. is (geometrically) connected, there
exists a nonempty Zariski open subset Us of U; such that H,. is (geometrically) connected
for every ¢ € Uy ([Gro66, Theorem 9.7.7]). Moreover, there exists a nonempty Zariski
open subset Us of U; such that dim(G.) = dim(Ge) and dim(H.) = dim(H¢)(= dim(Ge))
for all ¢ € Us ([Sta24, Tag 05F7]). In summary, this shows that we can find a nonempty
Zariski open subset U’ of U; such that H. = (G.)° for all ¢ € U'.

Applying Lemma to the affine group scheme Hyy = H Xy U over U yields a
nonempty Zariski open susbset U” of U’ such that H. = (G.)° is not solvable for all
¢ €UY”. In particular, (G.)° is not solvable for every c e U =U" N X (k). O

5.1.3 Exceptional parameter values for solving in a family of linear differential
equations

Throughout Subsection we make the following assumptions:

e k C k' is an inclusion of algebraically closed fields of characteristic zero;

nxn.

d(y) = Ay is a linear differential equation over ¥'(z), i.e., A € k'(z)™*"™;

By C k' is a finitely generated k-algebra and fo € By[z] is a monic polynomial such

that A € Bo[z]}"";

Xy = Spec(By);

for cg € Xy(k) we denote with A% € k(z)™*" the matrix obtained from A by applying
co: By — k to the coefficients of the entries of A.

We first treat the case of solving in Liouvillian extensions. Recall that a subset of Xy (k)
is called adxJac-closed (or ad-closed) if its complement is adx Jac-open (or ad-open).

Corollary 5.6. Assume that the differential equation 6(y) = Ay (over k'(x)) does not have
a basis of solutions consisting of Liouvillian functions, then the set of all ¢y € Xy(k) such
that the differential equation 0(y) = A%y (over k(x)) has a basis of solutions consisting of
Liowvillian functions, is contained in an adx Jac-closed subset of Xy(k).

Proof. Let R/K'(x) be a Picard-Vessiot ring for §(y) = Ay. By Lemma there exists
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e a finitely generated k-subalgebra B of k' containing By and contained in the algebraic
closure of the field of fractions of By;

e a monic polynomial f € Blz| such that fy divides f in B[z];
e an affine group scheme G of finite type over B;

e a differential G-torsor R/B[x]; for §(y) = Ay such that R is a flat B[z]s-module,
R ®pp), K () is d-simple, where K is the algebraic closure of the field of fractions
of B and R ®p), K'(z) ~ R.

Note that R ®pgy,, K(x) is a Picard-Vessiot ring over K (x) with differential Galois
group G (Lemma {4.14). So it follows from Lemma that R ®pp), k'(v) ~ R is a
Picard-Vessiot ring over k'(z) with differential Galois group Gi/. Because d(y) = Ay (over
K'(x)) does not have a basis consisting of Liouvillian functions, we know that (G )° is not
solvable ([vdPS03, Theorem 1.43]). As the formation of the identity component ([Mill7,
Prop. 1.34]) and solvability (JMill7, Cor. 6.31]) is compatible with base change, this
implies that (Gx)° is not solvable.

Set X = Spec(B). By Proposition there exists a nonempty Zariski open subset U
of X(k) such that (G.)° is not solvable for every ¢ € U;.

Theorem applied to the differential torsor R/Bz]; for §(y) = Ay yields an
adxJac-open subset Uy of X'(k) such that R® = R ®py,), k(z) is Picard-Vessiot for all
¢ € Us. By Lemma there exists an adxJac-open subset Uy of Xp(k) such that Uy is
contained in the image Uy NUs under X (k) — Xy(k). For any ¢y € Up, there thus exists
a ¢ € Uy NUz mapping to ¢p. We then have A = A° and R°/k(z) is a Picard-Vessiot
ring for 0(y) = A with differential Galois group G¢ = G.. As (G.)° is not solvable, we
see that d(y) = A%y does not have a basis of solutions consisting of Liouvillian functions
for every ¢y € Up. Thus the set of all ¢g € Xy(k) such that §(y) = Ay has a basis of
solutions consisting of Liouvillian functions, is contained in the complement of Uj. O

Remark 5.7. If, in the context of Corollary the differential Galois group of 6(y) = Ay
(over k'(z)) is connected, we can make do with an ad-closed subset of Xo(k).

Proof. Asin Remark[5.2] we see that the differential Galois group G8" of R&" is connected
and so Uy can be chosen to be ad-open by Corollary [£.27] O

We next treat the case of solving in algebraic extensions.

Corollary 5.8. Assume that the differential equation 6(y) = Ay (over k'(x)) does not have
a basis of solutions consisting of algebraic functions, then the set of all co € Xy(k) such
that the differential equation §(y) = A%y (over k(x)) has a basis consisting of algebraic
functions, is contained in an adx Jac-closed subset of Xy(k).

Proof. This could be deduced directly from Corollary Alternatively, noting that a
differential equation has a basis of algebraic solutions if and only if its differential Galois
group is finite, this can be proved exactly like Corollary but replacing Proposition [5.3
with the following statement: With the notation of Subsection if Gz is finite, then
there exists a nonempty Zariski open subset U of X' (k) such that G. is finite for every
cel. O

Remark 5.9. Again, if in the context of Corollary[5.8, the differential Galois group of
d(y) = Ay (over K(x)) is connected, then we can make do with an ad-closed subset of
Xo(k).
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5.2 A short solution of the inverse problem

The solution of the inverse problem states that every linear algebraic group over k is a
differential Galois group over k(x). Using the Riemann-Hilbert correspondence, this was
proved for k = C already in 1979 ([TT79]) but it took more than 25 years and contributions
of many authors to finally solve the inverse problem for an arbitrary algebraically closed
field k of characteristic zero ([Har05]).

In this short section, we explain how Theorem can be used to deduce the solution
of the inverse problem over k, from the solution of the inverse problem over C. Of course,
our solution is only short if one accepts Theorem and the solution of the inverse
problem over C, as given.

Theorem 5.10. Let k be an algebraically closed field of characteristic zero. Then every
linear algebraic group over k is a differential Galois group over k(z).

Proof. Let G be a linear algebraic group over k. Then G descends to a finitely generated
field, i.e., there exists a subfield kg of k finitely generated over Q and a linear algebraic
group Go over kg such that (Gp)r = G. Passing to the algebraic closure k1 C k of kg, we
obtain a countable algebraically closed field k; and a linear algebraic group G over k;
such that (G1)r = G.

By Lemma it suffices to show that G is a differential Galois group over ki(z).
Since ki is countable, there exists an embedding of &y into C that we now fix.

By [TT79], there exists a Picard-Vessiot ring R/C(z) for some equation §(y) = Ay,
(A € C(x)™*™) with differential Galois group (G1)c. The Picard-Vessiot ring R/C(x) can
now be spread out by Lemma [3.11] i.e., there exists

e a finitely generated kj-subalgebra B of C,

e a monic polynomial f € Blz] with A € Blz]}*"

e and a differential (G1)g-torsor R/B[z]s for §(y) = Ay such that R is flat over B[z|¢
and R®p[,], K () is é-simple, where K is the algebraic closure of the field of fractions
of B.

Set X = Spec(B). By the specialization theorem (Theorem [4.26)), there exists a ¢ € X (ky)
such that R =R ®p[,, ki1(z) is Picard-Vessiot. So R°/ki(z) is a Picard-Vessiot ring for
d(y) = A% with differential Galois group ((G1)5)¢ = ((G1)8)k, = G1. In particular, Gy is
a differential Galois group over ki (z) as desired. O

5.3 Proof of Matzat’s conjecture

In this section we show that every differential embedding problem of finite type over
(k(x), %) has a solution (Theorem and deduce Matzat’s conjecture from this. The
idea for the proof is to first solve the differential embedding problem over a sufficiently
large field of constants &' D k and then to go back down to k using Theorem

Throughout Section [5.3] we assume that k is an algebraically closed field of character-
istic zero. Let us recall some background on differential embedding problems. Let F be a
differential field with F* = k. If R C S is an inclusion of Picard-Vessiot rings over F, then
there is a restriction map G(S/F) - G(R/F') on the differential Galois groups which is a
quotient map, i.e., the dual map is injective.
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Definition 5.11. A differential embedding problem of finite type over F is a pair (¢p: G —
H, R), consisting of a quotient map ¢: G — H of linear algebraic groups over k and a
Picard-Vessiot ring R/ F with differential Galois group H. A solution is a Picard-Vessiot
ring S/F containing R together with an isomorphism G ~ G(S/F') such that

~.

H = G(R/F)

G(S/F) (39)

commutes. In other words, the restriction map G(S/F) — G(R/F) realizes the given
morphism ¢: G — H.

The attribute “of finite type” in Definition refers to the assumption that G (and
hence H) is a group scheme of finite type (over k). In general, to deal with Matzat’s
conjecture, it is important to allow more general differential embedding problems (not
necessarily of finite type). See [BHHW21b|. However, for our purpose differential embed-
ding problems of finite type are sufficient. On the ring side, the commutativity of is
expressed by the commutativity of

S —— S @ k[G]

|

R—— R ®y k[H]|

where R ®y, k[H] — S ® k[G], r ® a— r @ ¢*(a) with ¢*: k[H] — k[G] the dual of ¢.
As detailed in the following remark, a differential embedding problem over k(x) can
always be extended to a differential embedding problem over k'(x).

Remark 5.12. Let (¢p: G — H, R) be a differential embedding problem of finite type over
k(x) and let k' be an algebraically closed field extension of k. Then R’ = R®y,) k' (z) is a
Picard-Vessiot ring over k'(x) with differential Galois group Hy (Lemma . Therefore,
(¢ : Gpr — Hyr, R') is a differential embedding problem of finite type over k'(x).

To apply Theorem we first need to “spread out” a solution of the extended dif-
ferential embedding problem into a family with nice properties. This is achieved in the
following lemma. Recall that actions of affine group schemes on differential algebras were

defined in Section [3.21

Lemma 5.13. Let (¢p: G — H, R) be a differential embedding problem of finite type over
k(x). Let k' be an algebraically closed field extension of k and let S'/k'(x) be a solution
of the induced differential embedding problem (¢ : G — Hy, R') over K'(z), where
R’ = R ®y(y) k'(x). Then there exist

(1) a monic polynomial h € klx|, and a k[z],-0-subalgebra Ry of R with an action of
H on Ro/klz]n such that Ry ®, k(z) = R (equivalently, U'Ry = R, where
U = k[z]n ~ {0}) and the induced action of H on U~'Ry/U 1 k[z]}, is the natural
action of H on R/k(x),

(i) a finitely generated k-subalgebra B of k' and a monic polynomial f € B[x] such that
h € klz] C Bx] divides f in Blz],
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(iii) @ matriz A € B[z ]"X" and a differential Gg-torsor S/B[x]s for é(y) = Ay such that
S is flat over Blz]y and S*" = S ®p(,), K(x) is 6-simple, where K = k(B) C k' is
the algebraic closure of the field of fractions of B,

(iv) a morphism R — S of Blx]f-0-algebras that is equivariant with respect to the mor-
phism ¢p: G — Hp, where R = Ry @y, Blz]s = (Ro @k B)y and R/B[z]; has an
Hpg-action induced from (i) above. (The equivariance means that for every B-algebra
T and g € Gp(T) the diagram

ST —2-Se5T

| ]

RRpT —=RpT
commutes.)

Proof. We begin with (i). Choose A € k(x)™*™ such that R/k(z) is a Picard-Vessiot
ring for d(y) = Ay. Let h € k[z] be a monic polynomial such that A € k[z];"*™ and
let Y € GL,,(R) satisfy 6(Y) = AY. Then Ry = k[x]s] ’W(Y)} is a d0-subring of R
because §(Y) = AY € R(**™. For a k-algebra T an element g € H(T') acts on R ®; T by
Y ®1—Y ®[g] for some matrix [g] € GL;,,(T"). Thus g: R®; T — R ®j, T restricts to
a k[x], ®p T-J-automorphism of Ry ®j T. This defines an action of H on Ry/k[z];, that
clearly induces the given action on R/k(z).

To address the remaining points, fix A" € k()™ and Y’ € GL,(S’) such that
S'/K'(x) is a Picard-Vessiot ring for §(y) = A’y and §(Y') = A’Y'. AsRC R C S =
K (z)[Y’, W], there exists a finitely generated k-subalgebra By of £’ and a monic poly-
nomial f) € Bp[z] such that all entries of Y and ﬁ(y) lie in Bolz]z[Y”, det(y,)] C S’. Set
fo = hf} € Bola]. Then Ro = klalalY: gtys) € Bolol [, qoriyr] € S

Now Lemma [3.11] yields a finitely generated k-subalgebra B of k' with By C B, a monic
polynomial f € Blz] such that fo divides f in Blz], a differential Gz-torsor S/B[x]; for
d(y) = A’y with fundamental solution matrix ) such that S is flat over B[z]s, S&" =
S ®p[e), K (2) is 6-simple and S ®pyy), k' (2) =~ 5" via Y — Y. So, S can be identified with
Blz]¢[Y’, det(Y’)} C S and Ry C S.

By now we have established (i), (ii) and (iii) of the lemma. Let us move on to (iv).
Setting R = Ro ®p[y), Blz]y, the inclusion Ry C S yields a morphism R — S of Blx]s-0-
algebras. Since S’/K/(x) is a solution of the differential embedding problem (¢ : Gy —
Hy, R') the diagram

S —s 9 R k‘/[Gk/]

]

R ——= R’ R k/[Hk/]

commutes. Therefore also

S —— S @5 B[Gp] S @, k[G]—— ' @1, k[G] = S @ K [Gi/]
RO RO ®k k[H]C—> R/ ®k k[H] — R/ ®k’ k/[Hk/]
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and

S— S @pB[Gs

|

R—=R B [H 3]
commutes. This establishes (iv). O

The following theorem was proved in [BHHP2I] under the assumption that k has
infinite transcendence degree over Q. Thanks to Theorem [£.26] we are able to remove this
unnecessary assumption.

Theorem 5.14. Let k be an algebraically closed field of characteristic zero. Then every
differential embedding problem of finite type over (k(x), %) is solvable.

Proof. Let (¢: G — H, R) be a differential embedding problem of finite typer over k(z).
Let k' be an algebraically closed field extension of k such that &’ has infinite transcendence
degree over Q. Consider the induced differential embedding problem (¢ : Gy — Hys, R'),
where R’ = R ®y(y) k'(x). According to [BHHP21, Cor. 4.6] it has a solution S’/k'(x).
Let h, Ry, B, f, A, R and S be as in Lemma and set X = Spec(B). Then S/B[z|¢
satisfies all the assumptions of Notation and it follows from Theorem that there
exists a ¢ € X (k) such that S¢ = S ®p[,, k(z) is a Picard-Vessiot ring. In fact, 5¢/k(x)
is a Picard-Vessiot ring with differential Galois group G° = (Gg). = G.

The morphism R — S of B[z];--algebras yields a morphism R ®p(), k(x) — S ®p[a,
k(x) of k(x)-d-algebras. But

R @pj); k(2) = (Ro ®kay, Blzlf) ®pp), k(x) = Ro @, k(z) = R

and S ®pjy, k(z) = S¢. We thus obtain an embedding R — S of Picard-Vessiot rings
over k(x). By (iv) of Lemma the diagram

S —— S ®p B[Gp]

|

R——R®pB [H 3]
commutes. Therefore also its base change

S¢—= ¢ @, k[G]

|

R—— R ®y k[H]

via Blz]f — k(x) commutes. Thus S¢/k(x) is a solution of (¢: G - H, R). O
We are now prepared to prove Matzat’s conjecture in full generality.

Theorem 5.15. Let k be an algebraically closed field of characteristic zero and let F' be
a one-variable function field over k, equipped with a non-trivial k-derivation. Then the

absolute differential Galois group of F' is the free proalgebraic group on a set of cardinality
|
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Proof. The case when k has infinite transcendence degree (over Q) is proved in [Wib23|
Theorem 2.9]. So we can assume that k has finite transcendence degree. In particular,
k is countable. In [Wib23, Prop. 2.8] it is shown that if Matzat’s conjecture is true for
(k(x), L), then it is true for F. So we have reduced to proving the theorem for (k(z), )
with k& countable. According to [BHHW21bl Cor. 3.9], the absolute differential Galois
group of a countable differential field F' is free on a countably infinite set if and only if

every differential embedding problem over F of finite type is solvable. It therefore suffices

to show that every differential embedding problem of finite type over (k(x), %) is solvable.

This is exactly Theorem O
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