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Abstract— Vehicle electrification presents challenges and oppor-
tunities across multiple sectors, including the automotive, energy
and infrastructure domains. Battery charging and swapping are
the two primary technologies for refuelling electric vehicles (EVs).
However, the involvement of multiple participants and various
factors makes EV refuelling a complex and multi-domain issue.
Since conventional conductive charging requires vehicles to re-
main stationary for a period of time, parking naturally provides
opportunities for EV charging. Therefore, parking and EV charg-
ing are intrinsically connected in how they are organised and
planned. This paper presents a comprehensive literature review on
the features of EV refuelling demand and its relation to parking
patterns. The review focuses on key study issues related to the in-
teraction between EVs and the power grid, namely forecasting,
planning, and scheduling. These issues are examined at three dif-
ferent scales: the individual, station, and regional levels. Based on
the findings from the literature, an integrated framework is pro-
vided to capture the features and linkages between refuelling de-
mand and parking patterns across the different study issues and
scales. Finally, the paper proposes several open issues that could
be explored in future studies from the perspective of integrating
parking and refuelling analysis.

Index Terms—ZElectric vehicle; Refuelling demand; Parking pat-
tern; Review

I. INTRODUCTION

LECTRIC vehicles (EVs) are rapidly growing in their use
around the world, but the success of EV technology is
partially reliant on the development of charging and bat-
tery swapping facilities [1], [2], [3]. This development needs to
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fit with the refuelling demands of EV users while considering
the impacts of load on the electricity grid [4]. The integration
of EVs with the grid raises questions about how, when, and
where users choose to recharge [5]. Meanwhile, refuelling cost
and experiences of EV users might affect their (and other us-
ers’) future purchase decisions [6], [7], [8], [9]. Therefore,
deeply understanding EV refuelling demand is crucial for the
development of the EV industry.

The elements included in EV refuelling demand are complex,
involving transportation studies [10], electrical studies, and be-
haviouristics [11], among other factors. Diverse understandings
of the EV refuelling demand can be found according to different
stakeholders in the refuelling process. For example, EV users
focus more on the quality of service (QoS) and costs, while EV
charging station operators are more concerned with profitability
and construction costs [12], [13]. The involvement of multiple
stakeholders and diverse considerations in the issues of fore-
casting, planning and scheduling, which are the three main fo-
cuses in the field of the interaction between EVs and the grid,
makes EV refuelling demand a multi-domain integration chal-
lenge.

Prior published reviews have adopted several concepts to un-
derstand EV refuelling demand, which can be mainly catego-
rised into the macro perspective [14], [15], [16], [17] and micro
perspective [1], [18], [19]. Macro reviews consider the need for
more EV facility construction and more power capacity, as the
deployment of EVs increases. Energy policy, economic devel-
opment and zero-carbon electricity are the main factors identi-
fied as affecting EV refuelling demand in previous reviews. Re-
fuelling demand considered from the macro-perspective is rel-
atively broad and generalised, focusing on large-scale trends
and infrastructure needs, rather than individual charging behav-
iours. In contrast, the micro perspective on refuelling demand
concentrates on specific issues, such as facility planning [20],
[21],[22], [23], trend forecasting [1], [15], [24], [25], [26], [27],
and operational strategy optimisation [14], [21], [28], [29], [30],
[31]. The original contributions of this review paper, relative to
existing review papers, are twofold. First, unlike prior reviews
that have typically focused on individual aspects, this paper in-
tegrates forecasting, planning, and scheduling and explores the
interrelationships among them, thereby providing a comprehen-
sive framework for analysing EV—grid interactions. Second, we
systematically review and clarify the role and conceptual
boundaries of EV refuelling demand across these study issues,
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as these conceptual definitions have been relatively ambiguous
in previous studies and often are inconsistent across multiple
fields.

Specifically, integrated with some recent reviews of charging
technologies [21], [29], [30] and battery swapping technologies
[23], [31], some key issues that emerge may be summarised as
follows:

1) The classification and management of EV refuelling de-

mand.

2) The association between refuelling demand and activity-

based travel behaviour.

3) The prediction of parking duration and energy require-

ments during a charging event.

4) The optimal charging strategies from the EV user’s per-

spective.

5) The impact of charging load on the power distribution net-

work.

These five issues are inherently connected. The classification
of EV refuelling demand and its linkage with travel behaviour
lays the foundation for predicting parking duration and energy
requirements. These predictions inform user-oriented charging
strategies, whose aggregated outcomes ultimately shape the im-
pact on the power distribution network.

It can be noted that there are multiple perspectives on EV
refuelling demand depending on the study issues and study
scales [32]. For example, in terms of different study issues, the
EV refuelling demand focuses on power demand in some oper-
ation optimisation studies, while the focus is on user charging
willingness in the context of facility planning. The charging de-
mand at an individual level is concerned more with a user’s hab-
its and preferences, while the regional-level charging demand
focuses on results aggregated into spatial-temporal distributions
rather than focusing on one single charging event. Therefore, a
gap exists in the differing conceptualisations and considerations
of EV refuelling demand across different issues and study
scales. It motivates us to provide a comprehensive review paper
that bridges these perspectives, offering a more integrated un-
derstanding of EV refuelling demand.

Parking is a particularly important activity in this context.
Considering conventional conductive power transmission, the
parking time and location of EVs provides an opportunity to
recharge a vehicle. The connection time between EVs and the
grid is limited by the arrival- and departure time, while the
charging power may be constrained by technical parameters
(e.g., voltage bias, power loss) of the power distribution net-
work where the parking site is located [29], [33]. More im-
portantly, EV parking provides an opportunity for conducting
an EV charging power profile optimisation, such as designing a
delay charging scheme or utilising vehicle-to-grid (V2G) tech-
nologies to reduce the impact of the charging load on the power
distribution network, based on the parking time after a complete
charging process [34], [35], [36], [37]. Therefore, exploring EV
parking patterns may help in analysing EV charging demand,
as parking is a pre-condition of charging. Understanding the re-
lation between refuelling demand and parking patterns may
therefore support future grid operations (e.g., potential EV

charging load in different regions), facility planning (e.g., ap-
propriate construction locations) and policymaking (e.g., de-
mand-driven subsidies for the construction of parking lot
chargers).

As mentioned above, this paper aims to provide an integrated
review of EV refuelling demand and parking patterns across
forecasting, scheduling and planning issues, particularly related
to the interaction between EVs and the grid. This review fo-
cuses on the systematic description of the above three issues
and the considerations of the EV refuelling demand and parking
patterns, rather than the detailed technical developments in one
issue. The key questions addressed in this paper include the fol-
lowing aspects:

(1) What features, issues and study scales have been consid-
ered in previous studies of EV refuelling demand?

(2) What features, issues and study scales have been consid-
ered in previous studies of EV parking patterns?

(3) How have previous studies incorporated EV parking pat-
terns into the analysis of EV refuelling demand?

Based on these questions, the present paper provides insights
into to the extant literature in the following ways:

(1) A survey of EV refuelling demand and parking patterns
from the micro-perspective level is provided based on different
study scales (i.e., individual-, station- and regional levels). EV
refuelling demand is characterised by time, location, power and
energy; while parking pattern modelling is classified into statis-
tical, activity-based and scenario-based methods based on time,
location and intention features.

(2) Previous methods related to EV refuelling demand fore-
casting issues are critically reviewed. The planning issue is cat-
egorised into siting and sizing and reviewed based on the main
optimisation objectives and solutions. The scheduling issue is
also examined according to the main optimisation objectives
and solutions, while considering the charging technologies
(e.g., V2G, fast charging). The study scales, refuelling demand
features and parking pattern modelling methods are labelled for
each study.

(3) An integrated framework incorporating the issues of fore-
casting, planning and scheduling is proposed, with the aim to
link the relations between and features of refuelling demand and
parking patterns. Open research issues are presented at the end
of this review.

The structure of this paper is as follows: Section II firstly
provides the key terms used in this paper and their definitions.
Section III provides a classification of the study scales related
to EV refuelling demand in the context of forecasting, planning
and scheduling. Section IV focuses on a literature review of EV
refuelling demand features. Section V summarises the model-
ling methods adopted in previous studies of EV parking pat-
terns. The models and solution methods considered for forecast-
ing, planning and scheduling are reviewed in Section VI, with
a particular focus on the consideration of EV refuelling demand
and parking patterns. Section VII provides a framework inte-
grating the above three issues, highlighting features related to
refuelling demand and parking patterns, followed by a discus-
sion of some open issues. Finally, Section VIII concludes this
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review paper.
II. KEY TERMS AND THEIR DEFINITIONS

We firstly summarised the key terms used in this paper and
proposed their definitions as some of them have different mean-
ings in multiple fields. Before delving into the detailed discus-
sions, clarifying these terms ensures a common understanding
and provides a consistent framework for the subsequent analy-
sis. These key terms are generally divided into three main parts:
(1) Key terms related to study issue. Previous studies identify

forecasting, planning, and scheduling as the three main
study issues in the interaction between EVs and the power
grid. Forecasting refers to predicting EV refuelling demand
and charging behaviours. Planning involves designing and
allocating infrastructure and resources, such as charging
stations and energy capacity, to meet anticipated demand
efficiently. Scheduling concerns the real-time coordination
of charging activities, including the assignment of charging
power and timing to individual EVs, in order to optimise
objectives such as cost, grid stability, or user satisfaction.
In these study issues, the study scale can be classified ac-
cording to the scope considered: individual level (focusing
on EV users), station level (considering users and charging
stations), and region level (encompassing users, stations,
and the wider power grid). These issues and related scales
provide the main benchmarks and features for reviewing
current publications in this paper.

(2) Key terms related to EV refuelling demand. EV refuelling
demand encompasses both battery charging demand and
battery swapping demand, which are currently the two pri-
mary pathways for replenishing electricity in EVs. From
the perspective of the refuelling process, these demands
can be further characterised in terms of energy, time, loca-
tion, and power requirements. Energy demand captures the
quantity of electricity consumed over time, whereas power
demand describes the rate at which electricity is delivered
at a specific instant. Across the current publications, the
definition of EV refuelling demand is relatively ambigu-
ous, as it often represents one or more of these four char-
acteristics. Therefore, in this paper, we sought to investi-
gate the clarify the conceptual boundaries of EV refuelling
demand in previous literature.

(3) Terms related to EV parking patterns. Parking patterns de-
scribe the behaviours of EVs while parked and can be char-
acterised by time (e.g., plug-in and unplug times, duration
of parking), location (e.g., charging station or regional con-
text), and intention (e.g., charging purpose or general park-
ing). Across the literature, the representation of parking
patterns varies depending on the research scale and focus,
highlighting the need for a consistent description.

III. STUDY SCALES

EV users are the fundamental unit for generating refuelling
demand. Stations or regions do not generate the EV refuelling
demand, which is aggregated from users in those stations or re-
gions. The problem of forecasting on larger scales is essentially

one of aggregation of individuals. It should also be emphasised
that the core driver to achieve scheduling or planning remains
satisfying the refuelling demand of individual EV users in dif-
ferent ways, such as utilising the Time-of-Use (ToU) pricing to
guide users’ charging behaviours to reach the goal of the grid
management. However, considerations of EV refuelling de-
mand and the modelling of EV parking patterns are different
across different study scales. In this paper, the study scale of the
EV refuelling demand and parking pattern problem is catego-
rised into the individual-, station- and regional levels (as shown
in Fig.1). For an individual charging process, plug-in time, un-
plug time, charging power, and the corresponding charging en-
ergy are four key factors (see ‘individual-level’ in Fig.1). From
the station perspective, these factors are aggregated across all
charging EVs, and the analysis extends beyond single charging
sessions to include their temporal distributions (see ‘station-
level’ in Fig.1). At the regional level, however, demand should
be assessed jointly in both temporal and spatial dimensions,
with the time horizon extending well beyond individual ses-
sions to long-term projections over the next several years (see
‘region level’ in Fig. 1).

The classification of the study scale primarily considers the
focus of the study issue being addressed. For example, in terms
of a charging scheduling issue in a charging station, when the
optimisation objective is to reduce the charging cost of individ-
ual users, the study scale is on the individual level, which means
the focus is on an EV user rather than the operator of the charg-
ing station [38]. It should be noted that the charging power of
the charging station is limited to the power distribution net-
work. Therefore, the maximum charging power of all EV users
simultaneously should be less than the limit from the power dis-
tribution network, which means the objective of reducing the
charging cost of individual users is constrained by the power
limit of the charging station, especially when there are many
users in a station simultaneously. The most typical case is the
bi-level framework with an upper-level consideration in keep-
ing the safety of the power distribution network and a lower-
level optimisation objective at an individual scale [39], [40],
[41]. The output of the upper-level is the constraint of the lower-
level. In contrast, if the objective is to minimise the energy cost
of a charging station while still scheduling the charging
schemes of EV users, the study scale should be classified at the
station level, as the focus is centred on the charging station ra-
ther than individual EV users [42]. The charging demand of an
individual user is the constraint to achieving the optimisation
objective. Moreover, the multiple objectives of an optimisation
model, including both maximising the charging demand of in-
dividual users and maximising the total revenue of the charging
station, should be defined as two study scales [43].

The classification of study scales can be found in the tables
in the Appendix. Specifically, at the individual level, the focus
is primarily on the trade-offs between travel mileage, refuelling
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Fig.1 The study scales and features of EV refuelling demand and parking pattern.
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load is a typical shape in a residential area.

time and price [44], [45]. Individuals are more concerned with
how to refuel enough electricity to satisfy their next trip within
the limited parking time available. At the station level, the re-
fuelling demand of a station or a limited area (e.g., parking lot,
residential site) is formed from the integration of individual user
demands. Therefore, one of the primary objectives for station
operators is to maximise the number of EVs fulfilling their re-
charging requirements. Additionally, optimising the manage-
ment of parking space and charger operation is highly benefi-
cial, as both efforts contribute to increasing operational profits
for station operators. From an economic perspective, reducing
operational costs and initial construction costs are two other key
objectives explored in previous studies. When station operators
also function as aggregators (an entity that coordinates distrib-
uted energy resources, such as EVs, to collectively provide ser-
vices to the electricity grid [46]) or establish protocols with lo-
cal grid operators, they can generate additional revenue through
V2G (for charging stations), battery-to-grid (B2G) (for battery
swapping stations), or coordination with the power distribution
network. Grid-side indicators such as minimising power loss,
reducing peak charging power, and stabilising load fluctuations

are prioritised to ensure the safety and reliability of the power
distribution network. Consequently, the objectives at the station
level can be categorised into three fundamental areas: QoS for
EV charging, economic objectives, and grid-side objectives.
When considering the regional-level demand, the objectives are
still based on these three aspects. However, the matching and
scheduling among refuelling demand, facility supply, and grid
operation are considered more in the spatial-temporal dimen-
sions [47], which highlights the importance of planning issues
in regional-level research.

IV. FEATURES OF EV REFUELLING DEMAND

With the growth in EV usage, EV refuelling demand has be-
come a critical factor influencing the stability and sustainability
of the electricity grid. EV refuelling refers to the process of re-
charging the battery of an EV with electricity at specific loca-
tions, such as homes, workplaces, shopping malls, charging sta-
tions or battery swapping stations. This process involves con-
necting vehicles or batteries to the electricity grid, factoring in
plug-in and unplug times, locations, electricity requirements,
and charging power. Based on previous studies, the features of
EV refuelling demand include four aspects: time, location,
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power and energy. The features of EV refuelling demand can
be found in the tables in the Appendix.

A. Time Demand

‘Time demand’ is a term used to represent when EV users
would like to charge a vehicle or swap a depleted battery, which
is a part of a user’s electricity refuelling willingness [10], [48],
[49], [50]. It mostly includes vehicle plug-in time/battery swap-
ping time, connection duration, unplug time and electricity re-
fuelling frequency. In some cases, time demand can be de-
scribed as the number of charged EVs at a given point in time
[43], [51], [52], [53], [54], [55], [56]. The time demand distri-
butions might be affected by usage behaviours [35], battery
state-of-charge (SOC) [57], ToU [58], availability of chargers
[59] and even the electricity refuelling methods [60].

At the individual level, understanding time demand helps us-
ers reduce refuelling costs, whilst providing insights into the
times of the connection between different EVs and the grid.
This is crucial for optimising resources in charging stations or
battery swapping stations. At the station level, time demand ag-
gregated from individual users can be used to coordinate the
scheduling of power distribution networks. The overlap be-
tween charging time demand of EV users and peak electricity
demand periods may lead to stress on the power quality and op-
erational safety of the electricity grid [61]. At the larger regional
level, time demand (as incorporated into spatial-temporal de-
mand distributions) may be used to support grid operation and
facility deployment.

B. Location Demand

Location demand is another basic information aspect of EV
refuelling demand. It is also a key component of refuelling will-
ingness, representing where EV users prefer to recharge their
vehicles. In general, it represents the EV refuelling demand in
a specific site (i.e., a description of the location type) at the in-
dividual- and station levels, while the spatial distribution and
patterns of change are the focus of the regional-level studies.
The considerations of location demand mainly include refuel-
ling location types, spatial distributions and mobility patterns.
Typically, refuelling location types involve home charging,
work charging, public charging stations or battery swapping
stations, among others. EV parking location can provide poten-
tial candidate sites. Therefore, the spatial distribution of loca-
tion demand has significant implications for the planning and
management of EV facilities, particularly in the siting and siz-
ing issue [48], [54], [62], [63], [64], [65]. In addition, location
demand is often coupled with the power distribution network,
as power limitations are a critical factor in EV refuelling facility
construction [66]. Aligning EV refuelling demand with charger
availability and power supply can enhance facility efficiency
and improve operational profitability [67]. Identifying the low
refuelling demand locations and guiding users to refuel their
vehicles can also be beneficial to the EV charging service.

C. Energy Demand

Energy demand is defined as the total electricity (usually
with a unit of kWh) required by a vehicle from the power grid
or through swapping a battery at a station (e.g., per charging

session, daily, weekly) [43], [68], [69], [70]. Satisfying individ-
ual EV energy demand is a key metric for assessing the perfor-
mance of any charging scheduling scheme, i.c., for assessing
the QoS experienced by EV users [41]. A better understanding
of energy demand at a station level could support EV charging
load analysis and forecasting, enabling optimisation of the bal-
ance between energy supply and consumption, such as shifting
charging energy to off-peak hours to reduce grid strain and
maximising the use of renewable energy resources [35], [50],
[58], [71], [72], [73], [74], [75]. When this information is com-
bined with knowledge of location demand at a regional level,
charging stations or BSSs can be strategically placed to meet
both energy and location demand of EVs. This facilitates better
planning and optimisation of infrastructure, ensuring efficient
energy distribution that aligns with EV usage patterns. Such
measures not only improve service quality but also contribute
to a more resilient and sustainable energy system by reducing
grid stress and increasing the integration of renewable energy
sources.

D. Power Demand

Power demand is defined as the instantaneous power con-
sumption (usually with a unit of kW) of a vehicle or battery as
it accesses the electricity grid at any time during the charging
process, representing the charging rate [48], [76], [77]. Differ-
ent from focusing on a continuous period, the instantaneous EV
power demand reflects the real-time power required at a spe-
cific moment. Power levels, fluctuations and the impact on the
electricity grid are the main concerns at the individual, station
and regional levels. Higher power demand can lead to a rapid
increase in stress on the electricity grid, affecting the power
quality and even the operational security. Charging power is the
direct object scheduled when designing an optimal charging
scheme. For EVs with swappable batteries, battery swapping is
a more suitable option when users have an urgent refuelling de-
mand. Different from grid-connected charging, there has more
flexible charging time for the batteries swapped the EVs, as it
doesn’t serve for the vehicle’s next trip immediately. Therefore,
the impact of charging power of these swapped batteries may
not work on the power distribution network immediately, which
means the battery swapping stations have more advantages in
optimising the power system load and reducing the pressure on
the grid. Moreover, when considering facility planning, power
demand serves as a critical indicator for determining the grid
configuration of a node [10], [35], [49], [50], [63], [72], [78],
[79], [80], [81]. In general, different charging technologies,
such as direct current (DC) fast charging, alternating current
(AC) slow charging, V2G in charging stations, vehicle-to-vehi-
cle (V2V), and even battery swapping technology are the main
approaches to satisfy EV power demand.

V. PARKING PATTERN MODELLING

Referring to the parking behaviours of internal combustion
engine vehicles, three dimensions of the EV parking pattern are
identified: time, location, and intention [82], which share some
similarities with EV refuelling demand. Time refers to the du-
ration of parking, which influences the potential charging
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TABLE1
DEFINITIONS AND LINKS BETWEEN THREE KINDS OF PARKING PATTERN MODELLING METHODS.

Method Core idea Pattern source Focus Relations to others

Scenario-based Fixed patterns for spe- Predefined parameters/  Popula- ¢ Can be derived from Statistical data
cific contexts typical cases tion ¢ Can be combined with Activity-based methods

to capture individual differences.

Statistical Macro-level patterns Fitted distributions / Popula- ¢ Can provide macro-level distributions for Ac-

from historical data empirical data tion tivity-based methods
* Can validate the reasonableness of Scenario-
based parameters

Activity-based Parking as part of in- Daily activity se- Individ- * Can be aggregated into statistical distributions

dividual travel chains  quences ual * Can be combined with Scenario-based methods

to reflect individual differences.

window—Ilonger parking times (e.g., at home or work) are con-
ducive to slow, overnight, or daytime charging, while shorter
stays (e.g., at shopping centres) often align with fast-charging
needs. Location indicates where the vehicle is parked, which
supports the construction of charging facilities. Unlike internal
combustion engine vehicles that refuel at centralised fuel sta-
tions, EVs charge at a variety of locations, including residential
areas, workplaces, and public parking lots, while battery swap-
ping has a similarity with traditional gas stations. Finally, inten-
tion describes the purpose behind parking, which affects the
likelihood and necessity of charging. For instance, drivers park-
ing with the intention of running errands may seek a quick top-
up, while those parking at home overnight may aim for a full
charge.

A. Parking Time Pattern

Parking time primarily encompasses vehicle arrival time, de-
parture time and parking duration. These three indicators are
combined to formulate the EV parking time pattern, which sub-
sequently supports power allocation, energy scheduling, and
grid impact assessment. There are four main approaches used
to establish parking time patterns: scenario-based methods, sta-
tistical methods, aggregation-based methods, and activity-
based models (as shown in Table.1).

i) Scenario-based method: This method defines parking time
patterns by constructing a set of fixed, context-specific situa-
tions (scenarios, such as residential buildings, workplace park-
ing lots, and shopping centres), typically based on location type
or user group. Each scenario reflects relatively stable behaviour
patterns in a specific place. For example, residential areas typi-
cally exhibit long-duration, overnight parking, as most users
leave their vehicles parked from evening until the next morning.
Workplace locations are characterised by medium- to long-du-
ration parking during daytime working hours, with vehicles ar-
riving in the morning and departing in the late afternoon. For
instance, Sanchez-Martin et al. [83] used scenarios based on a
household mobility pattern (morning departure and evening ar-
rival-parking pattern) and commercial mobility pattern (morn-
ing arrivals and evening departures). Kumar et al. [84] consid-
ered the combination between EVs and metro railways, utilising
15-minute and 30-minute parking duration patterns. Wu et al.
[85] used scenarios based on some extracted, typical patterns of
public usage vehicles such as day-long stops, morning peak-
time stops, daytime stops, afternoon peak-time stops, and

nighttime stops. Nevertheless, the parking time pattern of this
method is determined by predefined parameters rather than by
sampling or stochastic simulation. Thus, the modelling is suita-
ble for a specific scenario, while the differences between EV
users cannot be reflected well.

ii) Statistical method: This method is another fundamental
and widely used approach for establishing EV parking time pat-
terns. It characterises parking behaviour by assuming that key
variables (arrival time, departure time, and parking duration)
follow given statistical distributions and generates parking
events through probabilistic sampling from these distributions.
Two of the above three distributions are assumed to generate
parking events. It is typically assumed that these variables fol-
low a standard statistical distribution, such as the uniform dis-
tribution [55], Poisson distribution [56], [61], [72], [73], Gauss-
ian distribution [86], Gamma distribution [70], generalized ex-
treme value distribution [87], exponential distribution [70] or
even empirical distributions [62], [80], [88], [89], [90], [91],
[92], [93]. Monte Carlo (MC) methods are commonly em-
ployed to simulate EV parking behaviour. Different from the
fixed patterns in scenario-based methods, parking behaviours
are extracted from feature distributions, which means that
user’s behaviours are not fixed but follow some specific statis-
tical rules. Therefore, more potential parking patterns can be
considered in this modelling, which could support more accu-
rate demand forecasting, infrastructure planning, and evalua-
tion of different operational scenarios.

A Scenariol Scenario2 Scenario3

Home
Workplace

Home
Other
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Other
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Fig.2. A typical activity-based model with driving, parking and
charging [29].

iii) Activity-based model: This method is commonly used to
simulate the individual daily travel behaviour of EV users. It
integrates driving patterns, charging patterns, and parking pat-
terns, making parking time patterns just one component of the
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overall chain. An activity-based model includes both a statisti-
cal process and a scenario-based process, and both contribute to
deriving individual-level features from aggregate behavioural
characteristics in a simulation process. For example, statistical
methods can estimate the probability of individuals’ travel time,
location or stop duration [29], [65], [94], while scenario-based
methods help summarise usage patterns and to classify users
into categories (such as ‘Scenario 1—After-work trip’ and
‘Scenario 2—Work trip’ in Fig.2). This approach is more appli-
cable to users with regular travel habits, such as commuting
passenger EVs and franchised buses. In contrast, establishing pat-
terns for users with highly variable behaviour can be more chal-
lenging than for those with regular routines. Sometimes, to al-
leviate these kinds of irregular features, cluster algorithms are
used to identify and extract activity categories. For example,
Cui et al. [95] applied a Gaussian Mixture Model (GMM) and
a Light Gradient Boosting Machine (LightGBM) model based
on charging time, dwelling duration after charging, charging
duration and charging power to cluster and recognise the charg-
ing and parking patterns. This was used to enhance the forecast
accuracy of individual charging behaviour and to schedule the
charging scheme to maintain security the power quality in an
IEEE-33 bus system. Zhang et al. [94] used a k-means model to
recognise six types of EV users with different parking propor-
tions during the daytime (6 a.m.-6 p.m.) and night (6 p.m.-6
a.m.). These results supported the development of trip chain
models and the siting of charging facilities. These results sup-
ported the development of trip chain models and the siting of
charging facilities. Nevertheless, parking time pattern modelled
by the activity-based methods is function of the user preference,
like charging habits, willingness to wait, and user type. Differ-
ent users exhibit variations in travel purposes, temporal flexi-
bility, and preferences for fast or slow charging. This heteroge-
neity directly affects individual parking time distributions and
charging behaviours. This heterogeneity needs to be accounted
for in activity-based models to improve the accuracy of charg-
ing demand forecasts and provide more reliable guidance for
the planning and scheduling of charging infrastructure.

B. Parking Location Pattern

The location of EV parking is closely related to EV refuelling
choices, parking duration, and power supply availability. Gen-
erally, large-scale GPS data are utilised to analyse and establish
EV parking location patterns. Understanding these patterns is a
key consideration in the planning of charging facilities.

i) Scenario-based method: Residential, workplace and com-
mercial parking patterns are commonly extracted to forecast
and schedule EV refuelling demand. Parking time patterns vary
significantly across different locations; for instance, parking
durations at residences tend to be longer and more stable,
whereas workplace and commercial parking durations are gen-
erally shorter and more variable. Some previous studies have
considered shifts in parking locations, such as Needell et al.
[96] who considered the combination of home parking and
workplace parking. Nevertheless, a fixed parking location pat-
tern is assumed in most existing studies, mostly included in EV
demand forecasting and EV charging schedules.

ii) Statistical method: The objective of this method is to rec-
ognise the location distribution of current EV parking so as to
support the construction of charging facilities or battery swap-
ping stations. Therefore, several studies have used statistical
methods to identify aggregate parking locations, such as square-
shaped [97], [98], hexagon-shaped (i.c., Hierarchical Hexago-
nal Grid [94]) and multiple shapes (i.e. Voronoi diagrams [99]).
Cluster algorithms are another suitable class of methods to
solve this issue. For example, Zhang et al. [94] and Zhang et al.
[65] both applied Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) model to aggregate parking and
charging locations based on GPS data.

iii) Activity-based method: Parking behaviour of EVs plays a
crucial role in refuelling demand, especially when analysed
through parking location patterns. The activity-based method
considers how different parking locations—such as residential
areas, workplaces, public lots, and on-street parking—affect
charging behaviours. For instance, residential parking supports
overnight charging, workplace parking enables long-duration
daytime charging, while public and on-street parking requires
fast-charging solutions due to high turnover. By integrating
traffic flow and parking data, activity-based methods help opti-
mise charging station planning and utilisation. However, chal-
lenges such as limited parking availability and regulatory con-
straints remain significant obstacles. In the simulation of an in-
dividual activity, scenario-based and statistical methods are ap-
plied in a manner similar to parking time pattern modelling.
These approaches allow for more precise estimation of charging
demand by capturing the variability of user schedules, trip pur-
poses, and parking durations. Scenario-based methods enable
researchers to assess refuelling and parking demand under dif-
ferent assumptions, such as increased EV adoption rates or
shifts in workplace policies, while statistical approaches draw
on historical data to reflect actual behavioural distributions. By
combining these methods, researchers can achieve a more ro-
bust representation of real-world parking and charging loca-
tions.

C. Parking Intention Pattern

The EV parking intention pattern describes the motivation
and activity for parking, including the purpose of parking and
associated behaviours. When combined with EV parking loca-
tion patterns—such as home, workplace parking, etc. [100]—it
provides a comprehensive representation of parking intentions.
However, for multi-functional locations such as commercial
and industrial parking, parking intentions may be less predicta-
ble and harder to recognise. Matching parking intentions with
parking locations can help obtain more accurate information to
support EV electricity refuelling management. Several studies
have explored the definition of EV parking intention patterns.
For example, Pasaoglu et al. [101] defined the concept of ‘ac-
tive parking’, which means the car is parked after a trip that is
not the last trip of the day, while if the car is parked before the
first trip of the day or after the last trip of the day, it should be
recognised as an inactive parking. These two parking patterns
may be integrated into the charging scheduling process,
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TABLE II
BI-LEVEL FRAMEWORK USED IN EV REFUELLING FACILITY PLANNING AND BATTERY CHARGING SCHEME SCHEDULING

Secondary issue Highlights Primary issue Highlights
Leader  Siting * Sizing depends on selected sites; site selection * Upper * Plan- * Upper-level decisions constrain op-
Fol- Sizing considers capacity feasibility. ning eration; lower-level feedback refines
lower * The issue is a combination between region- planning.
level and station-level. * Bidirectional effects and coordi-

Leader  Grid/Station e Captures the two-way interaction between sys- ® Lower ¢ Sched-  nated optimisation of long-term

operation tem operation and user behaviour; forms an in- uling planning and short-term scheduling.
Fol- Charging ternal bi-level structure within scheduling
lower scheme * The issue is a combination between station/re-

gion-level and individual-level.

exploiting the fact that active parking may have more flexibil-
ity. Furthermore, EV users’ willingness to wait exhibits consid-
erable heterogeneity across various parking contexts. Differ-
ences in the purpose of the stop, temporal flexibility, and per-
ceived urgency can significantly shape waiting tolerance, intro-
ducing additional uncertainty when linking parking intentions
to charging-scheduling decisions.

VI. ISSUES AND SOLUTIONS

A. Forecasting

Refuelling demand forecasting refers to predicting the power
demand [81], energy demand [102], and the number of vehicles
[52], which can be classified into time demand by Section 111,
for specific locations in future periods. The forecasting results
can provide valuable insights for grid operation, charging facil-
ity planning, and energy management, helping to optimise re-
source allocation and reduce the operational risks of the power
distribution network caused by EV charging load. Parking pat-
terns help predict when, where, and for how long vehicles will
remain parked, which directly influences the timing and fre-
quency of charging behaviour. A better understanding of park-
ing patterns leads to more accurate estimates of refuelling de-
mand, particularly in relation to charging facility layout and op-
timisation of EV charging schemes. Incorporating users’ heter-
ogeneous charging preferences, such as preferred charging pe-
riods, charging power choices, and willingness to wait, can fur-
ther improve the accuracy of forecasting models, as these be-
havioural differences significantly influence when and how EV
users decide to charge under different parking scenarios. Addi-
tionally, forecasting the parking patterns of EVs with battery-
swapping capability can help coordinate battery charging
schemes at battery swapping stations. Battery swapping opera-
tors only need to prepare enough fully charged batteries, while
using other batteries for B2G. A forecasting-related literature
review is provided in Table A I in the Appendix.

From the perspective of the forecasting period, it can be cat-
egorised into short-term [103], [104], [105], medium-term
[106] and long-term forecasting [107], which correspond re-
spectively to the issues of power scheduling, facility construc-
tion, and policy decisions. In terms of long-term forecasting,
time series models, deep learning (DL) and scenario establish-
ment are the main approaches. This is commonly a more macro
issue, excluding the specific behavioural analysis of individual
EV users or the operation of individual charging facilities.

Considering the other two sorts of periods, two approaches exist
for EV charging demand forecasting: model-based and data-
driven [25]. In terms of model-based methods, trip chain model
and agent-based model (ABM) combined with MC algorithm
are the most popular methods to forecast EV electricity refuel-
ling demand [65], [94], [108], [109], [110]. In general, the driv-
ing-charging-parking behaviour of individual EV users are sim-
ulated and then aggregated into the refuelling demand of the
region. Regarding data-driven methods, time series models
(i.e., AutoRegressive Integrated Moving Average [52], [111]),
machine learning (ML) (e.g., Support Vector Machine [74]),
DL (i.e., Convolutional Neural Network, Recurrent Neural Net-
work, Multilayer Perceptron [25], [37], [102] and Long Short-
Term Memory [103], [104], [105]) and ensemble learning (i.e.,
Extreme Gradient Boosting [112], [113], LightGBM [95]) have
been widely used in previous studies [25]. With the advent of
the era of big data, increased attention has been paid to intelli-
gent prediction methods based on data, especially multiple-
source data collection and integration (vehicle data, station
data, traffic data and grid data).

B. Planning

EV refuelling facility planning, which can also be described
as siting and sizing, is one of the most important factors in de-
termining EV development. The issue of siting is typically con-
sidered at the regional level, while the issue of sizing is usually
addressed at the station level. The parking pattern is a key factor
in the siting and sizing issue. For example, parking duration in
residential areas is usually over 8 hours, making such locations
suitable for slow-AC chargers [114]. In contrast, parking dura-
tions along major highways are much shorter, making these lo-
cations more suitable for fast-DC chargers or battery swapping
stations. Parking facilities, such as parking lots and on-street
parking zones, are considered ideal locations for charging sta-
tions, especially in government districts, commercial centres,
and along major highways [109]. Urban building regulations
often mandate a certain percentage of parking spaces to be
equipped with charging facilities. For example, in the U.S.,
commercial areas are required to allocate 5% of their parking
spaces for charging stations, whereas in the U.K., a 10% re-
quirement was proposed in 2022. As a result, the space of a
parking lot largely determines the amount of chargers [115],
[116]. See Appendix for detailed literature review results.
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Fig.3. The integrated framework for the issues of forecasting, planning and scheduling, including the main considerations and

the links in refuelling demand and parking pattern.

In terms of the siting issue, node, path, and activity-based ap-
proaches are the basic considerations in previous studies [117].
The node-based approach is the most used method for the loca-
tion problem. The objective is to place charging stations at can-
didate locations (nodes) to meet demand, though this problem
is NP-hard, meaning exact solutions are impractical within a
reasonable time due to exponential growth in computational
complexity with problem size. As a result, heuristic methods
are often employed to provide approximate solutions within
feasible timeframes. A second approach, the path-based ap-
proach, focuses on a flow-capturing model. Here, the goal is to
position charging stations along paths with the highest vehicle
flows, considering origin-destination trips, to maximise user
coverage. Unlike the node-based approach, it responds dynam-
ically to vehicle flows rather than a static view of demand.
Lastly, the activity-based approach takes a broader view by
considering the entire activity of an agent and their vehicle over
a period, including origins, destinations, distances, paths, and
parking duration. This approach aims to determine optimal lo-
cations for charging infrastructure based on user behaviour and
activity patterns.

In terms of the sizing issue, determining the appropriate num-
ber and type of chargers or battery swapping facilities at a sta-
tion involves balancing demand, power availability, and eco-
nomic feasibility. Key factors include anticipated vehicle arri-
vals, charging or swapping duration, and station throughput, of-
ten modelled using queuing theory to minimise the charger in-
vestment cost or maximise the total profits constrained by sat-
isfying EV user refuelling demand and reducing wait times
[86], [118]. The combination of the parking pattern and sizing
issue may be illustrated by the core function in queuing theory.
Taking M/M/c/N as an example [12], representing a scenario of
a charging station with ¢ chargers and N parking spaces, the first
M represents the vehicle arrival time distribution, while the sec-
ond M represents the charging duration except for EVs that do
not leave the site immediately. The parking time pattern can re-
flect the capacity of the station directly, which stresses the im-
portance of the parking pattern in the issue of siting and sizing.

The combination of siting and sizing is a common approach

in planning. Facility siting is always the first layer, while the
number of chargers and their power are determined in the sub-
sequent step. At the upper level (the leader layer in Table. II),
siting determines candidate locations at the regional or macro
scale, considering traffic flow [119], parking patterns [12], land
availability [120], and grid access to meet overall charging de-
mand and coverage targets. At the lower level (the follower
layer in Table. II), sizing specifies the number of chargers [12],
their power ratings, and possible battery swapping capacities
[121] at each site, taking into account users’ parking duration
and local load constraints. The upper-level siting results provide
constraints and candidate positions for the lower-level sizing,
while the sizing outcomes can feedback to influence siting de-
cisions, e.g., some candidate sites may be adjusted or discarded
due to insufficient capacity or economic infeasibility. This cou-
pling can be implemented through bi-level optimisation, with
the upper-level objective typically aiming to maximise regional
coverage or user satisfaction, and the lower-level objective fo-
cusing on minimising investment cost [122] or user waiting
time [123]. From a parking modelling perspective, the upper
level mainly considers parking locations, whereas the lower
level emphasises parking duration for capacity allocation.

C. Scheduling

The issue of scheduling here is mainly oriented towards
charging technology, while battery charging optimisation is the
concern of a BSS, which is an internal inventory management
issue with less consideration necessary for the EV parking pat-
tern. Information on parking patterns is a useful input to support
offline or day-ahead planning, and real-time planning when
considering scheduling issues [54]. Economy-related objectives
(e.g., minimising charging cost [51], minimising charging cost,
maximising total profit [69]), grid-related objectives (e.g., min-
imising deviation of the transformer load profile [71], minimis-
ing load fluctuation [35] and minimising peak demand of the
power system [96]) and operation-related objectives (e.g., max-
imising QoS of EV users [41], minimising battery ageing [124])
have been the main optimisation considerations in previous
studies, relevant to different participants in the system.
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Adjusting the EV or battery charging scheme is the key method
to achieve these optimal objectives, such as delay charging,
V2G and V2V technology. In terms of delay charging technol-
ogy, Cui et al. [41] defined three kinds of charging priority
based on the dwelling duration after the completion of the
charging process, using historical charging records. Charging
power may then be determined dynamically based on this pri-
ority. Yu et al. [80] considered both regular charging behaviour
and two kinds of irregular charging behaviour (with long and
short parking duration) to allocate the charging power to im-
prove the revenue of the charging pole. With a higher penetra-
tion of EVs, a strategy of first-come-first-served may put undue
stress on the electricity grid. In that situation, knowledge of the
parking time pattern in different locations provides the potential
to design alternative charging strategies incorporating such de-
lays. In terms of V2G technology, Zeng et al. [125] proposed
the use of parking patterns with charging and discharging la-
bels; time-oriented constraints were the main consideration in
the optimisation model. Makeen et al. [124] also used a dura-
tion-based parking pattern (i.e., 1-hour and 2-hour) to design a
V2G scheme. In summary, the time pattern of EV users is the
basic requirement to design an efficient EV charging scheme.
From Table A III in the Appendix, it can also be found that lo-
cation-specific parking patterns (i.e., Residential [71], [78],
Workplace [108]) and intentions (i.e., Commuting [58]) are also
key dimensions used to address the scheduling issue. These pat-
terns, when properly analysed and incorporated, can enable
smoother and more sustainable scheduling strategies that align
better with grid demands, economic goals, and user satisfaction.

There are also studies that consider bi-level optimisation ap-
proaches for scheduling problems. In most cases, the operation
of the grid or the charging station is considered as the upper
level (see Table. II), while individual EV users or aggregators
constitute the lower level. Upper-level decisions, such as avail-
able capacity and load allocation, typically define the feasible
actions of lower-level actors. Conversely, the responses of
lower-level actors, including user charging behaviour and tim-
ing choices, determine and constrain the operational strategies
of the upper-level system. This leader—follower structure within
scheduling effectively captures the two-way interaction be-
tween system operation and user behaviour. In this kind of bi-
level framework, the parking/charging pattern analysis are used
in the lower level to determine the potential of the scheduling
options for an EV user.

VII. DISCUSSIONS

Fig.3 provides a framework integrating the EV refuelling de-
mand features, parking patterns, study scales and main foci in
forecasting, planning and scheduling, three important issues
studied when considering the interaction between EVs and the
grid. EV refuelling demand and parking patterns are the inputs
to these problems. In general, forecasting plays a pivotal role in
supporting planning decisions (like the rows in Fig.3), such as
siting and sizing, as well as scheduling strategies, including or-
derly charging and V2G integration, while planning and sched-
uling can be constraints or considerations for each other.

In practice, as the basis for scheduling and planning, fore-
casting errors in EV refuelling demand or parking behaviour
can propagate into planning decisions, leading to inappropriate
site selection or capacity allocation. These planning decisions
then constrain the flexibility of short-term scheduling, poten-
tially causing local overloads or underutilisation of charging re-
sources. Furthermore, once siting and sizing decisions are im-
plemented based on forecasted data, they are difficult to adjust
later, amplifying the long-term impact of initial forecasting er-
TOTS.

From the perspective of the combination of planning and
scheduling, these two kinds of issues can also be used in a bi-
level framework. Such an optimisation formulation is able to
recognise the hierarchical dependence between the two sub-
problems, where planning issues are at the upper level and
charging scheduling issues are at the lower level [126], [127].
This bi-level framework is more complex than those addressing
the planning or scheduling issue alone, as more complicated in-
formation is considered, and more complex inter-dependencies
arise. For example, such a framework can simultaneously ac-
count for factors such as battery state, charging station loca-
tions, and operational constraints, rather than treating them sep-
arately. Therefore, several key challenges arise in this context
and need to be considered carefully in future modelling.

(1) The siting and sizing problem is an NP-hard optimisation
task. When incorporating scheduling issues such as charg-
ing power allocation and dispatch, the computational time
and resources required for the solution procedure must be
carefully considered.

(2) The decision in the upper level is a long-term optimisation,
while it is a short-term or even real-time decision that is
made at the lower level. This kind of temporal scale differ-
ence may lead the results of a long-term decision to be in-
compatible with the requirements of a short-term schedul-
ing task. Thus, a dynamic feedback and coordination
should be considered from the lower level to the upper,
over the different time-scales.

(3) There are many sources of data uncertainty in the optimi-
sation, for example, travel demand for EV users, parking
time and duration, load fluctuations and renewable energy
generation. Due to the nested structure and inter-level de-
pendency of the bi-level framework, these uncertainties
can propagate between levels and significantly affect the
stability and optimality of the overall solution.

Therefore, future studies should focus on a more integrated
approach that simultaneously optimises forecasting, planning,
and scheduling, ultimately improving the synergy between EV
refuelling demand and grid stability.

Some open issues that can be identified are:

1) Parking pattern forecasting in EV scheduling.

Focusing on the issue analysed in Section V, the question of
parking duration after the completion of the charging process
plays a crucial role in scheduling the charging scheme [35],
[73], [95]. However, unlike forecasting charging behaviour, ac-
curately predicting departure time remains a challenge. While
information such as plug-in time, charger power, and battery
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SOC allows for precise forecasting of the charging end time,
departure time—an essential component of parking patterns—
remains difficult to predict, regardless of whether the focus is
on an individual, a station, or a region. As a result, some studies
have only provided a range of potential parking durations after
the completion of the charging process, rather than a precise
duration or departure time. If it is not clear how much time is
available for scheduling, the EV will likely leave without
enough energy to the satisfaction of the user.

User profiles and usage behaviours play a key role in fore-
casting parking patterns User behaviour regularity significantly
impacts the scheduling system. In general, users can generally
be categorised into two groups: regular and irregular users.
Regular users typically charge and park at fixed times and loca-
tions, making their behaviour highly predictable. Based on a
small amount of information, such as commuter users spending
relatively regular time at home and work, the charging scheme
can be optimised to satisfy both the grid and the user. In con-
trast, irregular users display more random charging behaviour,
such as the EVs in a public parking lot. For these users, prefer-
ences such as desired charging speed or willingness to partici-
pate in partial charging can greatly influence departure times
and scheduling flexibility. It may not be possible to get an ac-
curate departure time only by regularity analysis, which may
result in an underperforming scheduling strategy and inefficient
utilisation of charging resources. Parking pattern forecasting
models can be included in this scheduling process. More infor-
mation, such as historical parking duration, and user-specific
mobility patterns should be considered to enhance the accuracy
of the forecast.

2) Diversity of spatially varying parking patterns and re-
fuelling demand.

The EV travel pattern is closely linked to the urban spatial
structure, leading to spatial heterogeneity in EV refuelling de-
mand. As illustrated in the above sections, public parking lots
might be the most suitable candidates to construct a charging
station, while installing an EV charger at an on-street parking
lot or residential parking area is another viable option. How-
ever, user parking patterns vary significantly across these dif-
ferent parking spaces, and hence not all candidates have the po-
tential to be a charge location. Moreover, heterogeneity among
EV users further complicates infrastructure planning. Differ-
ences in travel frequency, trip purpose, vehicle type, charging
preferences, and willingness to wait can lead to varying charg-
ing demand and parking durations, even at the same location.
Existing literature lacks considerations of randomness and var-
iability, both of which are essential for accurately capturing
spatial and temporal variations in refuelling demand [128]. For
instance, many studies predominantly focus on personal EVs,
which exhibit relatively regular travel and charging patterns
[12], [89], [107]. In contrast, research on public usage EVs,
which demonstrate greater randomness in their usage behav-
iours, often relies on predefined candidate locations for infra-
structure planning [91], [129]. Therefore, future research
should prioritise developing more comprehensive models that
better incorporate spatial and temporal dynamics, as well as

user heterogeneity. Considering the parking intention may also
be a good option for the planning of charging facilities. For one
parking location, different parking intentions may result in dif-
ferent durations. However, the visit must be of a certain dura-
tion before it is beneficial, in terms of received energy, for the
EV owner to make the effort of plugging in [117]. This may
affect the utilisation rate of the chargers installed in a parking
lot.

3) Parking-lot charging mandates and feasibility

In this review paper, we highlighted the combination of park-
ing lots with the installation of chargers. This is one potential
way to quickly employ chargers and expand the EV charging
network. Indeed, several countries have already proposed re-
quirements to promote the construction of such facilities. For
example, the local government in Orlando requires that EV
charging stations must be installed at a certain percentage of
parking spots [130]. In Germany, owners of non-residential
buildings with more than 20 parking spaces are required to in-
stall the mandated EV charging points [131]. However, there
are still remaining issues to be resolved in terms of charger de-
ployment in parking lots. First, the high installation and mainte-
nance costs may discourage property owners, particularly when
the expected utilisation rate of the chargers is uncertain. Sec-
ond, the additional demand on the local electricity grid can pose
capacity and stability issues, requiring costly upgrades or smart
energy management systems. Third, the allocation and manage-
ment of charging spaces raises practical concerns, such as how
to prevent long-term occupation of chargers by fully charged
vehicles. Finally, ensuring equitable access to charging infra-
structure, both geographically and across different user groups,
remains a significant policy and planning challenge [132],
[133], [134].

4) V2G potential by integrating charging and parking
sessions

With the development of vehicle electrification, V2G and
B2G technologies have become increasingly important for the
coordinated operation of EVs and the grid. However, the large-
scale integration of V2G services faces challenges across three
main dimensions: technical feasibility, adoption barriers, and
regulatory constraints. Addressing these issues is essential for
robust, flexible, and effective deployment of V2G in urban en-
vironments.

(1) Technical feasibility

The potential of V2G is primarily determined by battery ca-
pacity and charging/discharging limits, which directly interact
with EV charging demand. For instance, vehicles with larger
batteries or higher charging/discharging rates can provide
greater flexibility for grid services while still meeting the own-
ers’ mobility requirements. Conversely, if battery constraints or
charging schedules limit energy availability, the capacity to par-
ticipate in V2G is reduced. Additional technical challenges in-
clude battery degradation [135], interoperability issues between
vehicles and chargers, and the absence of standardised commu-
nication protocols [136], [137]. To address these issues, policy
measures should focus on developing durable high-capacity
batteries, establishing interoperability standards, integrating


https://www.sciencedirect.com/topics/engineering/plugging-in

12

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

real-world charging patterns into V2G scheduling, and deploy-
ing bidirectional chargers at strategic parking locations.

(2) Adoption barriers

User behaviour and parking characteristics greatly influence
V2G participation. Constraints include limited parking dura-
tion, user concerns over battery degradation or potential mobil-
ity restrictions, and heterogeneity in travel habits, parking
times, and charging requirements. In many cases, drivers prior-
itise maintaining sufficient charge for subsequent journeys,
which reduces their willingness to allow energy to be dis-
charged back to the grid. Variations in access to suitable park-
ing facilities and the uneven availability of bidirectional
chargers further restrict participation. Together, these behav-
ioural and spatial factors introduce significant uncertainty into
the number, timing, and duration of vehicles that can be relied
upon for V2G services. Potential measures to overcome these
barriers include providing financial incentives or reduced
charging fees, implementing user education and engagement
programmes to raise awareness of V2G benefits and to explain
participation requirements, and offering reserved or priority
parking for V2G-enabled vehicles to increase accessibility and
utilisation [138].

(3) Regulatory constraints

The deployment of V2G infrastructure and its effective utili-
sation can be limited by policy and regulatory factors. Chal-
lenges include insufficient availability and uneven distribution
of bidirectional chargers, a lack of coordinated planning for
charger locations, and the absence of flexible parking or opera-
tional policies that support V2G. Furthermore, complex permit-
ting procedures to obtain the necessary permits, differing local
regulations, and the lack of clear standards for V2G operations
can slow deployment and increase costs. The regulatory frame-
work may also fail to provide adequate incentives for operators
or users to participate in V2G schemes [137]. Policy measures
to address these constraints include deploying bidirectional
chargers at strategic locations, such as workplaces, residential
areas, and commercial zones, and introducing flexible parking
and EV management regulations to facilitate priority access for
V2G vehicles.

4) Behaviour changes in future scenario analysis and as-
sessment

In terms of EV refuelling demand and parking patterns, there
are many highly subjective features involved. Most previous
studies have modelled the future using previous or current EV
refuelling demand features, however, there may be many
changes with improvements in technology (e.g., higher battery
energy density, battery swapping technology commercialisa-
tion), major events (e.g., COVID-19), and due to the influence
of policymaking (e.g., subsidy reduction). For example, Lin et
al. [139] noted that in the period 2019-23, with advances in bat-
tery technology and increased use of EVs, the charging habits
of EV users have shifted, with a greater preference for nighttime
charging and therefore new preferences for charging times, re-
sulting issues, charging prices, and distance of charging infra-
structures from home locations. Cui et al. [140] found that be-
tween 2018 and 2021 there had been a 15 % rise in daily

distances travelled by electric taxis, alongside a 26.5 % increase
in all-electric driving range and a 29.9 % increase in charging
power. In contrast, personal EV travel distance showed little
change, despite a 50.8 % increase in AER and a 13.9 % increase
in charging power. Nevertheless, it is essential to assess
whether behavioural features derived from small sample sizes
or early-stage EV adopters remain valid in future high-penetra-
tion EV scenarios [141].

Early adopters often exhibit distinct usage patterns, such as
higher technological enthusiasm, greater willingness to pay for
charging services, and different mobility habits compared to the
mainstream market [142]. As EV adoption scales up, new user
groups with varying socio-economic backgrounds, driving de-
mands, and charging preferences will emerge, potentially lead-
ing to significant shifts in refuelling demand and parking be-
haviours, key factors within the user behaviour layer. There-
fore, future scenario assessments should incorporate longitudi-
nal studies and diverse user datasets to ensure robustness in pre-
dicting large-scale EV adoption impacts. Longitudinal studies
can track the same users or groups over time, capturing changes
in travel behaviour, charging habits, and parking preferences,
which are critical for understanding evolving patterns [141]. In-
corporating diverse user datasets, including different geo-
graphic regions, socioeconomic groups, vehicle types, and us-
age profiles, can help account for heterogeneity in user behav-
iour and improve the generalisability of the predictions. These
approaches enhance robustness by reducing reliance on any sin-
gle sample or location, ensuring that the findings remain stable
and applicable across different contexts and making the rele-
vant models more transferable to other datasets and tasks (e.g.,
forecasting charging demand at new locations).

VIII. CONCLUSION

With the development of the interaction between EVs and the
grid, forecasting, planning and scheduling have emerged as key
study issues. From an integrated perspective, these issues are
interrelated. Therefore, this paper provides a comprehensive re-
view of all three aspects. Firstly, study scales are categorised
into three levels: individual, station, and regional. Secondly, re-
fuelling demand characteristics in previous studies are classi-
fied based on four dimensions—time, location, power, and en-
ergy—across different study scales and issues. Parking patterns
are also reviewed in terms of modelling approaches along three
dimensions: time, location, and intention. Finally, for each re-
search issue, the considerations of refuelling demand and park-
ing demand are examined in detail. The main solutions pro-
posed to address each issue are also reviewed. In future studies,
clarifying refuelling demand across different study scales, inte-
grating more comprehensive parking patterns, and strengthen-
ing the interconnections among forecasting, planning, and
scheduling can enhance the construction and operation of EV
facilities and promote the interaction between EVs and the grid.
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TABLE A 1
FORECASTING-RELATED LITERATURE REVIEW.
Ref. I ScSale R Parking Pattern T ]iemargl P Solutions
[10] v Scenario-based: Residential; Commercial N N v ML
[50] v Scenario-based: Private; Public car park; Public on-street v v v ML; Fuzzy model
[53] R Scenario-based: Paid; Free v ML
[55] \/ Statistical: Uniform distribution \ y DL
[65] v Activity-based NN N ML; Trip chain
[66] V' Scenario-based: Residential; Workplace; Food centre; Shopping mall; Public Park \/ Y v ABM
[70] V' Scenario-based: Workplace; Statistical: Gamma and exponential distributions \/ v Y MC
[72] N Statistical: Gaussian distribution S v MC
[74] N Scenario-based: Workplace S v v ML;DL
[75] R Activity-based R v 4 ABM
[76] \/ N Activity-based: Bynes Inference \/ v \ N Trip chain
[77] N Scenario-based: Campus \/ y ML
[90] \/ Statistical: Empirical distribution S y DL
[94] v Activity-based V N Trip chain
[143] \/ N Scenario-based: Home(night) parking; Workplace (daytime) parking; Other location parking S S S v ABM
[144] N Activity-based NN N 4 ABM
[145] v Intention-based: ‘Park to Charge’; ‘Park to Home’; ‘Park to Work’ v v v ML; DL
Note: I, S, R, T, L, E, and P represent Individual, Station, Region, Time, Location, Energy and Power, respectively.
TABLE A 1l
PLANNING -RELATED LITERATURE REVIEW.
Ref. Issue Scale Parking pattern Main Objectives Demand Problem
S R T L E P formulation
[91] Siting V' Statistical: Empirical data Minimise investment of charging facilities N v MILP
[80] Scheduling Statistical: Empirical data Maximise n-year net present value of charging pole investment and daily profit of charging \/ SP; LP
Sizing station
[146] Siting V' Intention-based: Residential; Guest Maximise utilisation rate and equity of charging station SR -
[86] Siting V' Statistical: Gaussian distribution Maximise profit of parking lot NN N MINLP
Sizing
[92] Siting \ Statistical: Empirical data Minimise total construction cost and total benefit reduction NN MINLP
[62] Siting V' Statistical: Empirical data Minimise total investment of charging facility NN N MILP
Sizing
[93] Sizing N Statistical: Empirical data Minimise net annual energy cost and installed PV capacity \ N MOP
[89]  Siting V' Statistical: Empirical data Minimise sum of distances from locations of all charging events to their closest charging sta- v CcoO
tions
[118] Siting N Activity-based Minimise sum of the extra travel time and waiting time of EVs; Maximise profit of charging v v Bi-level

Sizing

parking lots
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[61]

[147]
[39]
[64]
[148]

[66]

Sizing \

Siting
Siting
Sizing
Siting
Siting

Siting

B e

Statistical: Poisson distribution
Scenario-based: Long-term workplace; Long-
term residential

Scenario-based: Residential; Commercial

Activity-based

Statistical: Double-peak distributions

Minimise daily operating cost; Maximise dynamic payback period and investment profits

Minimise power loss, voltage deviation and total cost of the system
Maximise annual profits of charging station; Minimise holistic charging cost of EV users

Minimise total annual construction cost, operation cost of EVCSs, maintenance cost of EVCSs

and annual detour time for EV users

Scenario-based: Residential; Commercial;
Government Park; Transportation hub
Scenario-based: Residential; Workplace;
Food centre; Shopping mall; Public Park

Minimise both the penalty for EV charging demand shortfall and the time required to travel to
charging facilities
Maximise profit of all stakeholders and utilisation of the park lots

R

<. 2 =2 2 2

\/
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MILP

Bi-level
Bi-level;
MINLP
DP
MILP

NLP

Note: 1. I, S, R, T, L, E, and P represent Individual, Station, Region, Time, Location, Energy and Power, respectively.
2. Mixed-Integer Linear Programming (MILP); Mixed-Integer Nonlinear Linear Programming (MINLP); Stochastic Programming (SP); Linear Programming (LP); Dynamic Programming (DP); Nonlinear
Programming (NLP); Multi-objective programming (MOP); Combinatorial Optimisation (CO)

TABLE A III
SCHEDULING -RELATED LITERATURE REVIEW.

Charging tech- Scale Demand Problem
Ref. nologies I s R Parking pattern Main Objectives T L E P fortrir(l)l:lla-
[69] V2G v Statistical: Traffic pattern data Maximise profits of multi-energy operator S \ MILP
[73] L2 y Statistical: Poisson and exponential distributions Maximise revenue of multi-department charging hubs S \ BMILP
[55] FC N Statistical: Empirical data ls\ifléﬁlmlse maximum number of simultaneous charging ses- J MILP
[74] V2G Y Scenario-based: Workplace Minimise charging cost and deviation from desired SOC S v N MILP
[36] V2G; V2V \/ Statistical: Empirical data Minimise cost of power procurement S N LP
[71]  SC;V2G y  Scenario-based: Residential Minimise deviation of the transformer load profile N N QP

Statistical: Survey data
[38]  Limited \ Statistical: Empirical data Minimise charging cost of all users S v NLP
[149] 3.7kW; V2G v v Scenario-based Maximise aggregator profits NN N MILP
[58] ll(évk\\yngV; 10 S Statistical: Commuting pattern Maximise profit of consumers S N MINLP
[42] 11 kW Y Statistical: Empirical data Minimise operating costs of the charging station S MILP
[125] V2G; V2V Y Scenario-based: Charging EV; Discharging EV Maximise the trading volume of electricity S MILP
o Sharing parking between 8:00-18:00 Maximise utilisation of parking and charging resources

[56]  Limited v Statistical: Poisson and exponential distributions and profitability of the parking platform. v BMILP
[150] V2G N Scenario-based: Residential (from 6 p.m. to 7 a.m.); Workplace Maximise profits of multi-energy hubs N N MILP

(from 6 a.m. to 6 p.m.)
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[51]
[80]
[43]
[78]
[124]
[151]
[152]
[153]
[154]

[155]

[35]

ACSC

1.9 kW; 19.2
kW; 50 kW

1.8 kW/30min
60 kW

V2G; V2V

Fast and slow
charging

Limited

V2G; 3.3 kW;
19.2 kW

V2G; V2V

3.3 kW; 6.6 kW;
10 kW; V2G

Flex; Flex+;
Flex++; V2G

V2G

L1; L2

2.5 kw; 5 kw;
7.5 kw; 10 kw

Limited

V2G

FC

FC; SC

< 2 =2 2

Scenario-based: Residential; Commercial

Statistical: Survey data

Scenario-based: Shopping mall

Statistical: Empirical data

Scenario-based: Regular users; Irregular users with long parking
lot occupancies; Irregular users with short parking lot occupancies

Scenario-based: Residential
Scenario-based: 1-hour continuous; 2-hour continuous; Random

Scenario-based: Residential; Workplace; Other location

Scenario-based: Residential (from 5 p.m. to 12 p.m.); Workplace
parking pattern (from 9 a.m. to 1 p.m. and 6 p.m. to 11 p.m.)
Scenario-based: Short parking duration pattern with higher power;
Long parking duration pattern with lower power

Scenario-based: Residential; Workplace; Industrial

Statistical: Empirical data

Scenario-based: Residential; Workplace; Public charging station
Statistical: Survey data

Scenario-based: Residential; Workplace; Industrial; Commercial

Scenario-based: Home; Home (delayed); Home + Work; Home
(delayed) + Work

Scenario-based: 1-hour duration; 2-hour duration; 3-hour duration;
4-hour duration

Scenario-based: Residential

Scenario-based: Typical parking pattern

Scenario-based: Short-duration with high-priority charging de-
mand; Medium-duration with medium-priority charging demand;
Long-duration with low-priority charging demand

Activity-based: Driving-Charging-Driving pattern; Driving-Park-
ing-Charging-Driving pattern; Driving-Parking-Charging-Parking-
Driving pattern; Driving-Charging-Parking-Driving pattern; Driv-
ing-Charging-Parking-Charging-Driving pattern

Minimise charging costs

Maximise net present value of charging pole investment

Maximise number of EVs fulfilling their recharging re-
quirements and total revenue of the parking lot

Minimise charging station spaces, charging infrastructure
investment and purchasing costs from grid

Minimise battery aging cost; Maximise V2G profits of EV
users

Maximise QoS of charging service

Minimise energy costs; Maximise energy elasticity

Maximise amount of electricity charged by EV; Demand
response

Minimise operation costs

Minimise daily operational charging cost and charging
peak power

Minimise necessary curtailment to stay within allowed
grid bounds and squared component loading; Maximise
charging flexibility potential

Minimise daily operation cost of a multi-regional inte-
grated energy system

Minimise peak demand of power system; Maximise utili-
sation of PV power generation

Maximise profits and social welfare

Minimise grid dependency; Maximise user satisfaction,
PV power utilisation and operational costs

Minimise operation costs, charging costs; Maximise utili-
sation rate of renewable energy

Maximise QoS of EV users

Minimise individual charging cost and load fluctuation of
the residential area

2. 2 2 2 2 2 2 2 2 2

2

B

<. 2 =2 =2
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Bi-level
SP

Lp

Lp

MILP

MILP

MOP
MINLP

MILP

MILP

RO

MILP

MILP

DP

MILP

Bi-level

MILP

Note: 1. I, S, R, T, L, E and P represent Individual, Station, Region, Time, Location, Energy and Power, respectively.
2. Flex, Flex+, and Flex++ denote different levels of flexibility in smart charging systems. Each level represents an increasing ability to adjust the timing, rate, or location of vehicle charging in response to
system needs, such as grid constraints, renewable energy availability, or electricity pricing. Specifically, Flex corresponds to basic flexibility, allowing minor adjustments in charging schedules; Flex+ indicates
moderate flexibility, enabling more substantial shifts in charging times or rates; and Flex-++ represents the highest level of flexibility, allowing highly dynamic optimization, such as shifting charging across multi-
ple time periods or locations to maximize efficiency, reduce costs, or support grid stability.
3.Limited means there is a constraint on the charging power which defines the limits in terms of the maximum and minimum bounds in the optimisation models.
4. Mixed-Integer Linear Programming (MILP); Binary and Mixed-Integer Linear Programming (BMILP); Mixed-Integer Nonlinear Linear Programming (MINLP); Stochastic Programming (SP); Robust
Optimisation (RO); Linear Programming (LP); Multi-objective programming (MOP); Nonlinear Programming (NLP); Dynamic Programming (DP)



