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 Abstract— Vehicle electrification presents challenges and oppor-

tunities across multiple sectors, including the automotive, energy 

and infrastructure domains. Battery charging and swapping are 

the two primary technologies for refuelling electric vehicles (EVs). 

However, the involvement of multiple participants and various 

factors makes EV refuelling a complex and multi-domain issue. 

Since conventional conductive charging requires vehicles to re-

main stationary for a period of time, parking naturally provides 

opportunities for EV charging. Therefore, parking and EV charg-

ing are intrinsically connected in how they are organised and 

planned. This paper presents a comprehensive literature review on 

the features of EV refuelling demand and its relation to parking 

patterns. The review focuses on key study issues related to the in-

teraction between EVs and the power grid, namely forecasting, 

planning, and scheduling. These issues are examined at three dif-

ferent scales: the individual, station, and regional levels. Based on 

the findings from the literature, an integrated framework is pro-

vided to capture the features and linkages between refuelling de-

mand and parking patterns across the different study issues and 

scales. Finally, the paper proposes several open issues that could 

be explored in future studies from the perspective of integrating 

parking and refuelling analysis. 

 

Index Terms—Electric vehicle; Refuelling demand; Parking pat-

tern; Review 

I. INTRODUCTION 

LECTRIC vehicles (EVs) are rapidly growing in their use 

around the world, but the success of EV technology is 

partially reliant on the development of charging and bat-

tery swapping facilities [1], [2], [3]. This development needs to 

 

 

fit with the refuelling demands of EV users while considering 

the impacts of load on the electricity grid [4]. The integration 

of EVs with the grid raises questions about how, when, and 

where users choose to recharge [5]. Meanwhile, refuelling cost 

and experiences of EV users might affect their (and other us-

ers’) future purchase decisions [6], [7], [8], [9]. Therefore, 

deeply understanding EV refuelling demand is crucial for the 

development of the EV industry.  

The elements included in EV refuelling demand are complex, 

involving transportation studies [10], electrical studies, and be-

haviouristics [11], among other factors. Diverse understandings 

of the EV refuelling demand can be found according to different 

stakeholders in the refuelling process. For example, EV users 

focus more on the quality of service (QoS) and costs, while EV 

charging station operators are more concerned with profitability 

and construction costs [12], [13]. The involvement of multiple 

stakeholders and diverse considerations in the issues of fore-

casting, planning and scheduling, which are the three main fo-

cuses in the field of the interaction between EVs and the grid, 

makes EV refuelling demand a multi-domain integration chal-

lenge.  

Prior published reviews have adopted several concepts to un-

derstand EV refuelling demand, which can be mainly catego-

rised into the macro perspective [14], [15], [16], [17] and micro 

perspective [1], [18], [19]. Macro reviews consider the need for 

more EV facility construction and more power capacity, as the 

deployment of EVs increases. Energy policy, economic devel-

opment and zero-carbon electricity are the main factors identi-

fied as affecting EV refuelling demand in previous reviews. Re-

fuelling demand considered from the macro-perspective is rel-

atively broad and generalised, focusing on large-scale trends 

and infrastructure needs, rather than individual charging behav-

iours. In contrast, the micro perspective on refuelling demand 

concentrates on specific issues, such as facility planning [20], 

[21], [22], [23], trend forecasting [1], [15], [24], [25], [26], [27], 

and operational strategy optimisation [14], [21], [28], [29], [30], 

[31]. The original contributions of this review paper, relative to 

existing review papers, are twofold. First, unlike prior reviews 

that have typically focused on individual aspects, this paper in-

tegrates forecasting, planning, and scheduling and explores the 

interrelationships among them, thereby providing a comprehen-

sive framework for analysing EV–grid interactions. Second, we 

systematically review and clarify the role and conceptual 

boundaries of EV refuelling demand across these study issues, 
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as these conceptual definitions have been relatively ambiguous 

in previous studies and often are inconsistent across multiple 

fields. 

Specifically, integrated with some recent reviews of charging 

technologies [21], [29], [30] and battery swapping technologies 

[23], [31], some key issues that emerge may be summarised as 

follows:  

1) The classification and management of EV refuelling de-

mand.  

2) The association between refuelling demand and activity-

based travel behaviour. 

3) The prediction of parking duration and energy require-

ments during a charging event. 

4) The optimal charging strategies from the EV user’s per-

spective. 

5) The impact of charging load on the power distribution net-

work. 

These five issues are inherently connected. The classification 

of EV refuelling demand and its linkage with travel behaviour 

lays the foundation for predicting parking duration and energy 

requirements. These predictions inform user-oriented charging 

strategies, whose aggregated outcomes ultimately shape the im-

pact on the power distribution network. 

It can be noted that there are multiple perspectives on EV 

refuelling demand depending on the study issues and study 

scales [32]. For example, in terms of different study issues, the 

EV refuelling demand focuses on power demand in some oper-

ation optimisation studies, while the focus is on user charging 

willingness in the context of facility planning. The charging de-

mand at an individual level is concerned more with a user’s hab-

its and preferences, while the regional-level charging demand 

focuses on results aggregated into spatial-temporal distributions 

rather than focusing on one single charging event. Therefore, a 

gap exists in the differing conceptualisations and considerations 

of EV refuelling demand across different issues and study 

scales. It motivates us to provide a comprehensive review paper 

that bridges these perspectives, offering a more integrated un-

derstanding of EV refuelling demand.  

Parking is a particularly important activity in this context. 

Considering conventional conductive power transmission, the 

parking time and location of EVs provides an opportunity to 

recharge a vehicle. The connection time between EVs and the 

grid is limited by the arrival- and departure time, while the 

charging power may be constrained by technical parameters 

(e.g., voltage bias, power loss) of the power distribution net-

work where the parking site is located [29], [33]. More im-

portantly, EV parking provides an opportunity for conducting 

an EV charging power profile optimisation, such as designing a 

delay charging scheme or utilising vehicle-to-grid (V2G) tech-

nologies to reduce the impact of the charging load on the power 

distribution network, based on the parking time after a complete 

charging process [34], [35], [36], [37]. Therefore, exploring EV 

parking patterns may help in analysing EV charging demand, 

as parking is a pre-condition of charging. Understanding the re-

lation between refuelling demand and parking patterns may 

therefore support future grid operations (e.g., potential EV 

charging load in different regions), facility planning (e.g., ap-

propriate construction locations) and policymaking (e.g., de-

mand-driven subsidies for the construction of parking lot 

chargers). 

As mentioned above, this paper aims to provide an integrated 

review of EV refuelling demand and parking patterns across 

forecasting, scheduling and planning issues, particularly related 

to the interaction between EVs and the grid. This review fo-

cuses on the systematic description of the above three issues 

and the considerations of the EV refuelling demand and parking 

patterns, rather than the detailed technical developments in one 

issue. The key questions addressed in this paper include the fol-

lowing aspects: 

(1) What features, issues and study scales have been consid-

ered in previous studies of EV refuelling demand?  

(2) What features, issues and study scales have been consid-

ered in previous studies of EV parking patterns? 

(3) How have previous studies incorporated EV parking pat-

terns into the analysis of EV refuelling demand? 

Based on these questions, the present paper provides insights 

into to the extant literature in the following ways:  

(1) A survey of EV refuelling demand and parking patterns 

from the micro-perspective level is provided based on different 

study scales (i.e., individual-, station- and regional levels). EV 

refuelling demand is characterised by time, location, power and 

energy; while parking pattern modelling is classified into statis-

tical, activity-based and scenario-based methods based on time, 

location and intention features.  

(2) Previous methods related to EV refuelling demand fore-

casting issues are critically reviewed. The planning issue is cat-

egorised into siting and sizing and reviewed based on the main 

optimisation objectives and solutions. The scheduling issue is 

also examined according to the main optimisation objectives 

and solutions, while considering the charging technologies 

(e.g., V2G, fast charging). The study scales, refuelling demand 

features and parking pattern modelling methods are labelled for 

each study.  

(3) An integrated framework incorporating the issues of fore-

casting, planning and scheduling is proposed, with the aim to 

link the relations between and features of refuelling demand and 

parking patterns. Open research issues are presented at the end 

of this review.  

The structure of this paper is as follows: Section II firstly 

provides the key terms used in this paper and their definitions. 

Section III provides a classification of the study scales related 

to EV refuelling demand in the context of forecasting, planning 

and scheduling. Section IV focuses on a literature review of EV 

refuelling demand features. Section V summarises the model-

ling methods adopted in previous studies of EV parking pat-

terns. The models and solution methods considered for forecast-

ing, planning and scheduling are reviewed in Section VI, with 

a particular focus on the consideration of EV refuelling demand 

and parking patterns. Section VII provides a framework inte-

grating the above three issues, highlighting features related to 

refuelling demand and parking patterns, followed by a discus-

sion of some open issues. Finally, Section VIII concludes this 
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review paper.  

II. KEY TERMS AND THEIR DEFINITIONS 

We firstly summarised the key terms used in this paper and 

proposed their definitions as some of them have different mean-

ings in multiple fields. Before delving into the detailed discus-

sions, clarifying these terms ensures a common understanding 

and provides a consistent framework for the subsequent analy-

sis. These key terms are generally divided into three main parts: 

(1) Key terms related to study issue. Previous studies identify 

forecasting, planning, and scheduling as the three main 

study issues in the interaction between EVs and the power 

grid. Forecasting refers to predicting EV refuelling demand 

and charging behaviours. Planning involves designing and 

allocating infrastructure and resources, such as charging 

stations and energy capacity, to meet anticipated demand 

efficiently. Scheduling concerns the real-time coordination 

of charging activities, including the assignment of charging 

power and timing to individual EVs, in order to optimise 

objectives such as cost, grid stability, or user satisfaction. 

In these study issues, the study scale can be classified ac-

cording to the scope considered: individual level (focusing 

on EV users), station level (considering users and charging 

stations), and region level (encompassing users, stations, 

and the wider power grid). These issues and related scales 

provide the main benchmarks and features for reviewing 

current publications in this paper. 

(2) Key terms related to EV refuelling demand. EV refuelling 

demand encompasses both battery charging demand and 

battery swapping demand, which are currently the two pri-

mary pathways for replenishing electricity in EVs. From 

the perspective of the refuelling process, these demands 

can be further characterised in terms of energy, time, loca-

tion, and power requirements. Energy demand captures the 

quantity of electricity consumed over time, whereas power 

demand describes the rate at which electricity is delivered 

at a specific instant. Across the current publications, the 

definition of EV refuelling demand is relatively ambigu-

ous, as it often represents one or more of these four char-

acteristics. Therefore, in this paper, we sought to investi-

gate the clarify the conceptual boundaries of EV refuelling 

demand in previous literature. 

(3) Terms related to EV parking patterns. Parking patterns de-

scribe the behaviours of EVs while parked and can be char-

acterised by time (e.g., plug-in and unplug times, duration 

of parking), location (e.g., charging station or regional con-

text), and intention (e.g., charging purpose or general park-

ing). Across the literature, the representation of parking 

patterns varies depending on the research scale and focus, 

highlighting the need for a consistent description.  

III. STUDY SCALES  

EV users are the fundamental unit for generating refuelling 

demand. Stations or regions do not generate the EV refuelling 

demand, which is aggregated from users in those stations or re-

gions. The problem of forecasting on larger scales is essentially 

one of aggregation of individuals. It should also be emphasised 

that the core driver to achieve scheduling or planning remains 

satisfying the refuelling demand of individual EV users in dif-

ferent ways, such as utilising the Time-of-Use (ToU) pricing to 

guide users’ charging behaviours to reach the goal of the grid 

management. However, considerations of EV refuelling de-

mand and the modelling of EV parking patterns are different 

across different study scales. In this paper, the study scale of the 

EV refuelling demand and parking pattern problem is catego-

rised into the individual-, station- and regional levels (as shown 

in Fig.1). For an individual charging process, plug-in time, un-

plug time, charging power, and the corresponding charging en-

ergy are four key factors (see ‘individual-level’ in Fig.1). From 

the station perspective, these factors are aggregated across all 

charging EVs, and the analysis extends beyond single charging 

sessions to include their temporal distributions (see ‘station-

level’ in Fig.1). At the regional level, however, demand should 

be assessed jointly in both temporal and spatial dimensions, 

with the time horizon extending well beyond individual ses-

sions to long-term projections over the next several years (see 

‘region level’ in Fig. 1). 

The classification of the study scale primarily considers the 

focus of the study issue being addressed. For example, in terms 

of a charging scheduling issue in a charging station, when the 

optimisation objective is to reduce the charging cost of individ-

ual users, the study scale is on the individual level, which means 

the focus is on an EV user rather than the operator of the charg-

ing station [38]. It should be noted that the charging power of 

the charging station is limited to the power distribution net-

work. Therefore, the maximum charging power of all EV users 

simultaneously should be less than the limit from the power dis-

tribution network, which means the objective of reducing the 

charging cost of individual users is constrained by the power 

limit of the charging station, especially when there are many 

users in a station simultaneously. The most typical case is the 

bi-level framework with an upper-level consideration in keep-

ing the safety of the power distribution network and a lower-

level optimisation objective at an individual scale [39], [40], 

[41]. The output of the upper-level is the constraint of the lower-

level. In contrast, if the objective is to minimise the energy cost 

of a charging station while still scheduling the charging 

schemes of EV users, the study scale should be classified at the 

station level, as the focus is centred on the charging station ra-

ther than individual EV users [42]. The charging demand of an 

individual user is the constraint to achieving the optimisation 

objective. Moreover, the multiple objectives of an optimisation 

model, including both maximising the charging demand of in-

dividual users and maximising the total revenue of the charging 

station, should be defined as two study scales [43].  

The classification of study scales can be found in the tables 

in the Appendix. Specifically, at the individual level, the focus 

is primarily on the trade-offs between travel mileage, refuelling 
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time and price [44], [45]. Individuals are more  concerned with 

how to refuel enough electricity to satisfy their next trip within 

the limited parking time available. At the station level, the re-

fuelling demand of a station or a limited area (e.g., parking lot, 

residential site) is formed from the integration of individual user 

demands. Therefore, one of the primary objectives for station 

operators is to maximise the number of EVs fulfilling their re-

charging requirements. Additionally, optimising the manage-

ment of parking space and charger operation is highly benefi-

cial, as both efforts contribute to increasing operational profits 

for station operators. From an economic perspective, reducing 

operational costs and initial construction costs are two other key 

objectives explored in previous studies. When station operators 

also function as aggregators (an entity that coordinates distrib-

uted energy resources, such as EVs, to collectively provide ser-

vices to the electricity grid [46]) or establish protocols with lo-

cal grid operators, they can generate additional revenue through 

V2G (for charging stations), battery-to-grid (B2G) (for battery 

swapping stations), or coordination with the power distribution 

network. Grid-side indicators such as minimising power loss, 

reducing peak charging power, and stabilising load fluctuations 

are prioritised to ensure the safety and reliability of the power 

distribution network. Consequently, the objectives at the station 

level can be categorised into three fundamental areas: QoS for 

EV charging, economic objectives, and grid-side objectives. 

When considering the regional-level demand, the objectives are 

still based on these three aspects. However, the matching and 

scheduling among refuelling demand, facility supply, and grid 

operation are considered more in the spatial-temporal dimen-

sions [47], which highlights the importance of planning issues 

in regional-level research.  

IV. FEATURES OF EV REFUELLING DEMAND 

With the growth in EV usage, EV refuelling demand has be-

come a critical factor influencing the stability and sustainability 

of the electricity grid. EV refuelling refers to the process of re-

charging the battery of an EV with electricity at specific loca-

tions, such as homes, workplaces, shopping malls, charging sta-

tions or battery swapping stations. This process involves con-

necting vehicles or batteries to the electricity grid, factoring in 

plug-in and unplug times, locations, electricity requirements, 

and charging power. Based on previous studies, the features of 

EV refuelling demand include four aspects: time, location, 
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Fig.1 The study scales and features of EV refuelling demand and parking pattern. 

Note: The simulation is based on the IEEE 33-bus system with 10,000 vehicles. The slow-charging and fast-charging load 

are determined by the market share in different years. The EV charging behaviours are collected from [41] and the basic grid 

load is a typical shape in a residential area. 
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power and energy. The features of EV refuelling demand can 

be found in the tables in the Appendix.  

A. Time Demand 

‘Time demand’ is a term used to represent when EV users 

would like to charge a vehicle or swap a depleted battery, which 

is a part of a user’s electricity refuelling willingness [10], [48], 

[49], [50]. It mostly includes vehicle plug-in time/battery swap-

ping time, connection duration, unplug time and electricity re-

fuelling frequency. In some cases, time demand can be de-

scribed as the number of charged EVs at a given point in time 

[43], [51], [52], [53], [54], [55], [56]. The time demand distri-

butions might be affected by usage behaviours [35], battery 

state-of-charge (SOC) [57], ToU [58], availability of chargers 

[59] and even the electricity refuelling methods [60].  

At the individual level, understanding time demand helps us-

ers reduce refuelling costs, whilst providing insights into the 

times of the connection between different EVs and the grid. 

This is crucial for optimising resources in charging stations or 

battery swapping stations. At the station level, time demand ag-

gregated from individual users can be used to coordinate the 

scheduling of power distribution networks. The overlap be-

tween charging time demand of EV users and peak electricity 

demand periods may lead to stress on the power quality and op-

erational safety of the electricity grid [61]. At the larger regional 

level, time demand (as incorporated into spatial-temporal de-

mand distributions) may be used to support grid operation and 

facility deployment.  

B. Location Demand 

Location demand is another basic information aspect of EV 

refuelling demand. It is also a key component of refuelling will-

ingness, representing where EV users prefer to recharge their 

vehicles. In general, it represents the EV refuelling demand in 

a specific site (i.e., a description of the location type) at the in-

dividual- and station levels, while the spatial distribution and 

patterns of change are the focus of the regional-level studies.  

The considerations of location demand mainly include refuel-

ling location types, spatial distributions and mobility patterns. 

Typically, refuelling location types involve home charging, 

work charging, public charging stations or battery swapping 

stations, among others. EV parking location can provide poten-

tial candidate sites. Therefore, the spatial distribution of loca-

tion demand has significant implications for the planning and 

management of EV facilities, particularly in the siting and siz-

ing issue [48], [54], [62], [63], [64], [65]. In addition, location 

demand is often coupled with the power distribution network, 

as power limitations are a critical factor in EV refuelling facility 

construction [66]. Aligning EV refuelling demand with charger 

availability and power supply can enhance facility efficiency 

and improve operational profitability [67]. Identifying the low 

refuelling demand locations and guiding users to refuel their 

vehicles can also be beneficial to the EV charging service.  

C. Energy Demand 

Energy demand is defined as the total electricity (usually 

with a unit of kWh) required by a vehicle from the power grid 

or through swapping a battery at a station (e.g., per charging 

session, daily, weekly) [43], [68], [69], [70]. Satisfying individ-

ual EV energy demand is a key metric for assessing the perfor-

mance of any charging scheduling scheme, i.e., for assessing 

the QoS experienced by EV users [41]. A better understanding 

of energy demand at a station level could support EV charging 

load analysis and forecasting, enabling optimisation of the bal-

ance between energy supply and consumption, such as shifting 

charging energy to off-peak hours to reduce grid strain and 

maximising the use of renewable energy resources [35], [50], 

[58], [71], [72], [73], [74], [75]. When this information is com-

bined with knowledge of location demand at a regional level, 

charging stations or BSSs can be strategically placed to meet 

both energy and location demand of EVs. This facilitates better 

planning and optimisation of infrastructure, ensuring efficient 

energy distribution that aligns with EV usage patterns. Such 

measures not only improve service quality but also contribute 

to a more resilient and sustainable energy system by reducing 

grid stress and increasing the integration of renewable energy 

sources. 

D. Power Demand 

Power demand is defined as the instantaneous power con-

sumption (usually with a unit of kW) of a vehicle or battery as 

it accesses the electricity grid at any time during the charging 

process, representing the charging rate [48], [76], [77]. Differ-

ent from focusing on a continuous period, the instantaneous EV 

power demand reflects the real-time power required at a spe-

cific moment. Power levels, fluctuations and the impact on the 

electricity grid are the main concerns at the individual, station 

and regional levels. Higher power demand can lead to a rapid 

increase in stress on the electricity grid, affecting the power 

quality and even the operational security. Charging power is the 

direct object scheduled when designing an optimal charging 

scheme. For EVs with swappable batteries, battery swapping is 

a more suitable option when users have an urgent refuelling de-

mand. Different from grid-connected charging, there has more 

flexible charging time for the batteries swapped the EVs, as it 

doesn’t serve for the vehicle’s next trip immediately. Therefore, 

the impact of charging power of these swapped batteries may 

not work on the power distribution network immediately, which 

means the battery swapping stations have more advantages in 

optimising the power system load and reducing the pressure on 

the grid. Moreover, when considering facility planning, power 

demand serves as a critical indicator for determining the grid 

configuration of a node [10], [35], [49], [50], [63], [72], [78], 

[79], [80], [81]. In general, different charging technologies, 

such as direct current (DC) fast charging, alternating current 

(AC) slow charging, V2G in charging stations, vehicle-to-vehi-

cle (V2V), and even battery swapping technology are the main 

approaches to satisfy EV power demand.  

V. PARKING PATTERN MODELLING  

Referring to the parking behaviours of internal combustion 

engine vehicles, three dimensions of the EV parking pattern are 

identified: time, location, and intention [82], which share some 

similarities with EV refuelling demand. Time refers to the du-

ration of parking, which influences the potential charging 
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window—longer parking times (e.g., at home or work) are con-

ducive to slow, overnight, or daytime charging, while shorter 

stays (e.g., at shopping centres) often align with fast-charging 

needs. Location indicates where the vehicle is parked, which 

supports the construction of charging facilities. Unlike internal 

combustion engine vehicles that refuel at centralised fuel sta-

tions, EVs charge at a variety of locations, including residential 

areas, workplaces, and public parking lots, while battery swap-

ping has a similarity with traditional gas stations. Finally, inten-

tion describes the purpose behind parking, which affects the 

likelihood and necessity of charging. For instance, drivers park-

ing with the intention of running errands may seek a quick top-

up, while those parking at home overnight may aim for a full 

charge.  

A. Parking Time Pattern 

Parking time primarily encompasses vehicle arrival time, de-

parture time and parking duration. These three indicators are 

combined to formulate the EV parking time pattern, which sub-

sequently supports power allocation, energy scheduling, and 

grid impact assessment. There are four main approaches used 

to establish parking time patterns: scenario-based methods, sta-

tistical methods, aggregation-based methods, and activity-

based models (as shown in Table.1). 

i) Scenario-based method: This method defines parking time 

patterns by constructing a set of fixed, context-specific situa-

tions (scenarios, such as residential buildings, workplace park-

ing lots, and shopping centres), typically based on location type 

or user group. Each scenario reflects relatively stable behaviour 

patterns in a specific place. For example, residential areas typi-

cally exhibit long-duration, overnight parking, as most users 

leave their vehicles parked from evening until the next morning. 

Workplace locations are characterised by medium- to long-du-

ration parking during daytime working hours, with vehicles ar-

riving in the morning and departing in the late afternoon. For 

instance, Sánchez-Martín et al. [83] used scenarios based on a 

household mobility pattern (morning departure and evening ar-

rival-parking pattern) and commercial mobility pattern (morn-

ing arrivals and evening departures). Kumar et al. [84] consid-

ered the combination between EVs and metro railways, utilising 

15-minute and 30-minute parking duration patterns. Wu et al. 

[85] used scenarios based on some extracted, typical patterns of 

public usage vehicles such as day-long stops, morning peak-

time stops, daytime stops, afternoon peak-time stops, and 

nighttime stops. Nevertheless, the parking time pattern of this 

method is determined by predefined parameters rather than by 

sampling or stochastic simulation. Thus, the modelling is suita-

ble for a specific scenario, while the differences between EV 

users cannot be reflected well.  

ii) Statistical method: This method is another fundamental 

and widely used approach for establishing EV parking time pat-

terns. It characterises parking behaviour by assuming that key 

variables (arrival time, departure time, and parking duration) 

follow given statistical distributions and generates parking 

events through probabilistic sampling from these distributions. 

Two of the above three distributions are assumed to generate 

parking events. It is typically assumed that these variables fol-

low a standard statistical distribution, such as the uniform dis-

tribution [55], Poisson distribution [56], [61], [72], [73], Gauss-

ian distribution [86], Gamma distribution [70], generalized ex-

treme value distribution [87], exponential distribution [70] or 

even empirical distributions [62], [80], [88], [89], [90], [91], 

[92], [93]. Monte Carlo (MC) methods are commonly em-

ployed to simulate EV parking behaviour. Different from the 

fixed patterns in scenario-based methods, parking behaviours 

are extracted from feature distributions, which means that 

user’s behaviours are not fixed but follow some specific statis-

tical rules. Therefore, more potential parking patterns can be 

considered in this modelling, which could support more accu-

rate demand forecasting, infrastructure planning, and evalua-

tion of different operational scenarios. 

Scenario1 Scenario2 Scenario3

Probability

 
Fig.2. A typical activity-based model with driving, parking and 

charging [29]. 

iii) Activity-based model: This method is commonly used to 

simulate the individual daily travel behaviour of EV users. It 

integrates driving patterns, charging patterns, and parking pat-

terns, making parking time patterns just one component of the 

TABLE I 

DEFINITIONS AND LINKS BETWEEN THREE KINDS OF PARKING PATTERN MODELLING METHODS. 

Method Core idea Pattern source Focus Relations to others 

Scenario-based Fixed patterns for spe-

cific contexts 

Predefined parameters / 

typical cases 

Popula-

tion 

 Can be derived from Statistical data 

 Can be combined with Activity-based methods 

to capture individual differences. 

Statistical Macro-level patterns 

from historical data 

Fitted distributions / 

empirical data 

Popula-

tion 

 Can provide macro-level distributions for Ac-

tivity-based methods 

 Can validate the reasonableness of Scenario-

based parameters  

Activity-based Parking as part of in-

dividual travel chains 

Daily activity se-

quences 

Individ-

ual 

 Can be aggregated into statistical distributions 

 Can be combined with Scenario-based methods 

to reflect individual differences. 
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overall chain. An activity-based model includes both a statisti-

cal process and a scenario-based process, and both contribute to 

deriving individual-level features from aggregate behavioural 

characteristics in a simulation process. For example, statistical 

methods can estimate the probability of individuals’ travel time, 

location or stop duration [29], [65], [94], while scenario-based 

methods help summarise usage patterns and to classify users 

into categories (such as ‘Scenario 1—After-work trip’ and 

‘Scenario 2—Work trip’ in Fig.2). This approach is more appli-

cable to users with regular travel habits, such as commuting 

passenger EVs and franchised buses. In contrast, establishing pat-

terns for users with highly variable behaviour can be more chal-

lenging than for those with regular routines. Sometimes, to al-

leviate these kinds of irregular features, cluster algorithms are 

used to identify and extract activity categories. For example, 

Cui et al. [95] applied a Gaussian Mixture Model (GMM) and 

a Light Gradient Boosting Machine (LightGBM) model based 

on charging time, dwelling duration after charging, charging 

duration and charging power to cluster and recognise the charg-

ing and parking patterns. This was used to enhance the forecast 

accuracy of individual charging behaviour and to schedule the 

charging scheme to maintain security the power quality in an 

IEEE-33 bus system. Zhang et al. [94] used a k-means model to 

recognise six types of EV users with different parking propor-

tions during the daytime (6 a.m.-6 p.m.) and night (6 p.m.-6 

a.m.). These results supported the development of trip chain 

models and the siting of charging facilities. These results sup-

ported the development of trip chain models and the siting of 

charging facilities. Nevertheless, parking time pattern modelled 

by the activity-based methods is function of the user preference, 

like charging habits, willingness to wait, and user type. Differ-

ent users exhibit variations in travel purposes, temporal flexi-

bility, and preferences for fast or slow charging. This heteroge-

neity directly affects individual parking time distributions and 

charging behaviours. This heterogeneity needs to be accounted 

for in activity-based models to improve the accuracy of charg-

ing demand forecasts and provide more reliable guidance for 

the planning and scheduling of charging infrastructure. 

B. Parking Location Pattern 

The location of EV parking is closely related to EV refuelling 

choices, parking duration, and power supply availability. Gen-

erally, large-scale GPS data are utilised to analyse and establish 

EV parking location patterns. Understanding these patterns is a 

key consideration in the planning of charging facilities.  

i) Scenario-based method: Residential, workplace and com-

mercial parking patterns are commonly extracted to forecast 

and schedule EV refuelling demand. Parking time patterns vary 

significantly across different locations; for instance, parking 

durations at residences tend to be longer and more stable, 

whereas workplace and commercial parking durations are gen-

erally shorter and more variable. Some previous studies have 

considered shifts in parking locations, such as Needell et al. 

[96] who considered the combination of home parking and 

workplace parking. Nevertheless, a fixed parking location pat-

tern is assumed in most existing studies, mostly included in EV 

demand forecasting and EV charging schedules.  

ii) Statistical method: The objective of this method is to rec-

ognise the location distribution of current EV parking so as to 

support the construction of charging facilities or battery swap-

ping stations. Therefore, several studies have used statistical 

methods to identify aggregate parking locations, such as square-

shaped [97], [98], hexagon-shaped (i.e., Hierarchical Hexago-

nal Grid [94]) and multiple shapes (i.e. Voronoi diagrams [99]). 

Cluster algorithms are another suitable class of methods to 

solve this issue. For example, Zhang et al. [94] and Zhang et al. 

[65] both applied Density-Based Spatial Clustering of Applica-

tions with Noise (DBSCAN) model to aggregate parking and 

charging locations based on GPS data.  

iii) Activity-based method: Parking behaviour of EVs plays a 

crucial role in refuelling demand, especially when analysed 

through parking location patterns. The activity-based method 

considers how different parking locations—such as residential 

areas, workplaces, public lots, and on-street parking—affect 

charging behaviours. For instance, residential parking supports 

overnight charging, workplace parking enables long-duration 

daytime charging, while public and on-street parking requires 

fast-charging solutions due to high turnover. By integrating 

traffic flow and parking data, activity-based methods help opti-

mise charging station planning and utilisation. However, chal-

lenges such as limited parking availability and regulatory con-

straints remain significant obstacles. In the simulation of an in-

dividual activity, scenario-based and statistical methods are ap-

plied in a manner similar to parking time pattern modelling. 

These approaches allow for more precise estimation of charging 

demand by capturing the variability of user schedules, trip pur-

poses, and parking durations. Scenario-based methods enable 

researchers to assess refuelling and parking demand under dif-

ferent assumptions, such as increased EV adoption rates or 

shifts in workplace policies, while statistical approaches draw 

on historical data to reflect actual behavioural distributions. By 

combining these methods, researchers can achieve a more ro-

bust representation of real-world parking and charging loca-

tions. 

C. Parking Intention Pattern 

The EV parking intention pattern describes the motivation 

and activity for parking, including the purpose of parking and 

associated behaviours. When combined with EV parking loca-

tion patterns—such as home, workplace parking, etc. [100]—it 

provides a comprehensive representation of parking intentions. 

However, for multi-functional locations such as commercial 

and industrial parking, parking intentions may be less predicta-

ble and harder to recognise. Matching parking intentions with 

parking locations can help obtain more accurate information to 

support EV electricity refuelling management. Several studies 

have explored the definition of EV parking intention patterns. 

For example, Pasaoglu et al. [101] defined the concept of ‘ac-

tive parking’, which means the car is parked after a trip that is 

not the last trip of the day, while if the car is parked before the 

first trip of the day or after the last trip of the day, it should be 

recognised as an inactive parking. These two parking patterns 

may be integrated into the charging scheduling process, 
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exploiting the fact that active parking may have more flexibil-

ity. Furthermore, EV users’ willingness to wait exhibits consid-

erable heterogeneity across various parking contexts. Differ-

ences in the purpose of the stop, temporal flexibility, and per-

ceived urgency can significantly shape waiting tolerance, intro-

ducing additional uncertainty when linking parking intentions 

to charging-scheduling decisions. 

VI. ISSUES AND SOLUTIONS 

A. Forecasting 

Refuelling demand forecasting refers to predicting the power 

demand [81], energy demand [102], and the number of vehicles 

[52], which can be classified into time demand by Section III, 

for specific locations in future periods. The forecasting results 

can provide valuable insights for grid operation, charging facil-

ity planning, and energy management, helping to optimise re-

source allocation and reduce the operational risks of the power 

distribution network caused by EV charging load. Parking pat-

terns help predict when, where, and for how long vehicles will 

remain parked, which directly influences the timing and fre-

quency of charging behaviour. A better understanding of park-

ing patterns leads to more accurate estimates of refuelling de-

mand, particularly in relation to charging facility layout and op-

timisation of EV charging schemes. Incorporating users’ heter-

ogeneous charging preferences, such as preferred charging pe-

riods, charging power choices, and willingness to wait, can fur-

ther improve the accuracy of forecasting models, as these be-

havioural differences significantly influence when and how EV 

users decide to charge under different parking scenarios. Addi-

tionally, forecasting the parking patterns of EVs with battery-

swapping capability can help coordinate battery charging 

schemes at battery swapping stations. Battery swapping opera-

tors only need to prepare enough fully charged batteries, while 

using other batteries for B2G. A forecasting-related literature 

review is provided in Table A I in the Appendix.  

From the perspective of the forecasting period, it can be cat-

egorised into short-term [103], [104], [105], medium-term 

[106] and long-term forecasting [107], which correspond re-

spectively to the issues of power scheduling, facility construc-

tion, and policy decisions. In terms of long-term forecasting, 

time series models, deep learning (DL) and scenario establish-

ment are the main approaches. This is commonly a more macro 

issue, excluding the specific behavioural analysis of individual 

EV users or the operation of individual charging facilities. 

Considering the other two sorts of periods, two approaches exist 

for EV charging demand forecasting: model-based and data-

driven [25]. In terms of model-based methods, trip chain model 

and agent-based model (ABM) combined with MC algorithm 

are the most popular methods to forecast EV electricity refuel-

ling demand [65], [94], [108], [109], [110]. In general, the driv-

ing-charging-parking behaviour of individual EV users are sim-

ulated and then aggregated into the refuelling demand of the 

region. Regarding data-driven methods, time series models 

(i.e., AutoRegressive Integrated Moving Average [52], [111]), 

machine learning (ML) (e.g., Support Vector Machine [74]), 

DL (i.e., Convolutional Neural Network, Recurrent Neural Net-

work, Multilayer Perceptron [25], [37], [102] and Long Short-

Term Memory [103], [104], [105]) and ensemble learning (i.e., 

Extreme Gradient Boosting [112], [113], LightGBM [95]) have 

been widely used in previous studies [25]. With the advent of 

the era of big data, increased attention has been paid to intelli-

gent prediction methods based on data, especially multiple-

source data collection and integration (vehicle data, station 

data, traffic data and grid data).  

B. Planning 

EV refuelling facility planning, which can also be described 

as siting and sizing, is one of the most important factors in de-

termining EV development. The issue of siting is typically con-

sidered at the regional level, while the issue of sizing is usually 

addressed at the station level. The parking pattern is a key factor 

in the siting and sizing issue. For example, parking duration in 

residential areas is usually over 8 hours, making such locations 

suitable for slow-AC chargers [114]. In contrast, parking dura-

tions along major highways are much shorter, making these lo-

cations more suitable for fast-DC chargers or battery swapping 

stations. Parking facilities, such as parking lots and on-street 

parking zones, are considered ideal locations for charging sta-

tions, especially in government districts, commercial centres, 

and along major highways [109]. Urban building regulations 

often mandate a certain percentage of parking spaces to be 

equipped with charging facilities. For example, in the U.S., 

commercial areas are required to allocate 5% of their parking 

spaces for charging stations, whereas in the U.K., a 10% re-

quirement was proposed in 2022. As a result, the space of a 

parking lot largely determines the amount of chargers [115], 

[116]. See Appendix for detailed literature review results. 

TABLE II 

BI-LEVEL FRAMEWORK USED IN EV REFUELLING FACILITY PLANNING AND BATTERY CHARGING SCHEME SCHEDULING 

Secondary issue Highlights Primary issue Highlights 

Leader Siting  Sizing depends on selected sites; site selection 

considers capacity feasibility.  

 The issue is a combination between region-

level and station-level.  

 Upper  Plan-

ning 
 Upper-level decisions constrain op-

eration; lower-level feedback refines 

planning. 

 Bidirectional effects and coordi-

nated optimisation of long-term 

planning and short-term scheduling. 

Fol-

lower 

Sizing 

Leader Grid/Station 

operation 

 Captures the two-way interaction between sys-

tem operation and user behaviour; forms an in-

ternal bi-level structure within scheduling 

 The issue is a combination between station/re-

gion-level and individual-level. 

 Lower  Sched-

uling 

Fol-

lower 

Charging 

scheme 
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In terms of the siting issue, node, path, and activity-based ap-

proaches are the basic considerations in previous studies [117]. 

The node-based approach is the most used method for the loca-

tion problem. The objective is to place charging stations at can-

didate locations (nodes) to meet demand, though this problem 

is NP-hard, meaning exact solutions are impractical within a 

reasonable time due to exponential growth in computational 

complexity with problem size. As a result, heuristic methods 

are often employed to provide approximate solutions within 

feasible timeframes. A second approach, the path-based ap-

proach, focuses on a flow-capturing model. Here, the goal is to 

position charging stations along paths with the highest vehicle 

flows, considering origin-destination trips, to maximise user 

coverage. Unlike the node-based approach, it responds dynam-

ically to vehicle flows rather than a static view of demand. 

Lastly, the activity-based approach takes a broader view by 

considering the entire activity of an agent and their vehicle over 

a period, including origins, destinations, distances, paths, and 

parking duration. This approach aims to determine optimal lo-

cations for charging infrastructure based on user behaviour and 

activity patterns.  

In terms of the sizing issue, determining the appropriate num-

ber and type of chargers or battery swapping facilities at a sta-

tion involves balancing demand, power availability, and eco-

nomic feasibility. Key factors include anticipated vehicle arri-

vals, charging or swapping duration, and station throughput, of-

ten modelled using queuing theory to minimise the charger in-

vestment cost or maximise the total profits constrained by sat-

isfying EV user refuelling demand and reducing wait times 

[86], [118]. The combination of the parking pattern and sizing 

issue may be illustrated by the core function in queuing theory. 

Taking M/M/c/N as an example [12], representing a scenario of 

a charging station with c chargers and N parking spaces, the first 

M represents the vehicle arrival time distribution, while the sec-

ond M represents the charging duration except for EVs that do 

not leave the site immediately. The parking time pattern can re-

flect the capacity of the station directly, which stresses the im-

portance of the parking pattern in the issue of siting and sizing.  

The combination of siting and sizing is a common approach 

in planning. Facility siting is always the first layer, while the 

number of chargers and their power are determined in the sub-

sequent step. At the upper level (the leader layer in Table. II), 

siting determines candidate locations at the regional or macro 

scale, considering traffic flow [119], parking patterns [12], land 

availability [120], and grid access to meet overall charging de-

mand and coverage targets. At the lower level (the follower 

layer in Table. II), sizing specifies the number of chargers [12], 

their power ratings, and possible battery swapping capacities 

[121] at each site, taking into account users’ parking duration 

and local load constraints. The upper-level siting results provide 

constraints and candidate positions for the lower-level sizing, 

while the sizing outcomes can feedback to influence siting de-

cisions, e.g., some candidate sites may be adjusted or discarded 

due to insufficient capacity or economic infeasibility. This cou-

pling can be implemented through bi-level optimisation, with 

the upper-level objective typically aiming to maximise regional 

coverage or user satisfaction, and the lower-level objective fo-

cusing on minimising investment cost [122] or user waiting 

time [123]. From a parking modelling perspective, the upper 

level mainly considers parking locations, whereas the lower 

level emphasises parking duration for capacity allocation.  

C. Scheduling 

The issue of scheduling here is mainly oriented towards 

charging technology, while battery charging optimisation is the 

concern of a BSS, which is an internal inventory management 

issue with less consideration necessary for the EV parking pat-

tern. Information on parking patterns is a useful input to support 

offline or day-ahead planning, and real-time planning when 

considering scheduling issues [54]. Economy-related objectives 

(e.g., minimising charging cost [51], minimising charging cost, 

maximising total profit [69]), grid-related objectives (e.g., min-

imising deviation of the transformer load profile [71], minimis-

ing load fluctuation [35] and minimising peak demand of the 

power system [96]) and operation-related objectives (e.g., max-

imising QoS of EV users [41], minimising battery ageing [124]) 

have been the main optimisation considerations in previous 

studies, relevant to different participants in the system. 

Planning

Parking pattern

Energy Power

Refuelling demand

Location IntentionTimeTime Location

IndividualStationRegion

Forecast

Siting Sizing

Scheduling

Orderly charging V2G B2G V2V

Considerations to Forecast

Considerations to Planning

Considerations to Scheduling

Scale from forecast to planning

Scale from forecast to scheduling

 
Fig.3. The integrated framework for the issues of forecasting, planning and scheduling, including the main considerations and 

the links in refuelling demand and parking pattern.  
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Adjusting the EV or battery charging scheme is the key method 

to achieve these optimal objectives, such as delay charging, 

V2G and V2V technology. In terms of delay charging technol-

ogy, Cui et al. [41] defined three kinds of charging priority 

based on the dwelling duration after the completion of the 

charging process, using historical charging records. Charging 

power may then be determined dynamically based on this pri-

ority. Yu et al. [80] considered both regular charging behaviour 

and two kinds of irregular charging behaviour (with long and 

short parking duration) to allocate the charging power to im-

prove the revenue of the charging pole. With a higher penetra-

tion of EVs, a strategy of first-come-first-served may put undue 

stress on the electricity grid. In that situation, knowledge of the 

parking time pattern in different locations provides the potential 

to design alternative charging strategies incorporating such de-

lays. In terms of V2G technology, Zeng et al. [125] proposed 

the use of parking patterns with charging and discharging la-

bels; time-oriented constraints were the main consideration in 

the optimisation model. Makeen et al. [124] also used a dura-

tion-based parking pattern (i.e., 1-hour and 2-hour) to design a 

V2G scheme. In summary, the time pattern of EV users is the 

basic requirement to design an efficient EV charging scheme. 

From Table A III in the Appendix, it can also be found that lo-

cation-specific parking patterns (i.e., Residential [71], [78], 

Workplace [108]) and intentions (i.e., Commuting [58]) are also 

key dimensions used to address the scheduling issue. These pat-

terns, when properly analysed and incorporated, can enable 

smoother and more sustainable scheduling strategies that align 

better with grid demands, economic goals, and user satisfaction.  

There are also studies that consider bi-level optimisation ap-

proaches for scheduling problems. In most cases, the operation 

of the grid or the charging station is considered as the upper 

level (see Table. II), while individual EV users or aggregators 

constitute the lower level. Upper-level decisions, such as avail-

able capacity and load allocation, typically define the feasible 

actions of lower-level actors. Conversely, the responses of 

lower-level actors, including user charging behaviour and tim-

ing choices, determine and constrain the operational strategies 

of the upper-level system. This leader–follower structure within 

scheduling effectively captures the two-way interaction be-

tween system operation and user behaviour. In this kind of bi-

level framework, the parking/charging pattern analysis are used 

in the lower level to determine the potential of the scheduling 

options for an EV user.  

VII. DISCUSSIONS 

Fig.3 provides a framework integrating the EV refuelling de-

mand features, parking patterns, study scales and main foci in 

forecasting, planning and scheduling, three important issues 

studied when considering the interaction between EVs and the 

grid. EV refuelling demand and parking patterns are the inputs 

to these problems. In general, forecasting plays a pivotal role in 

supporting planning decisions (like the rows in Fig.3), such as 

siting and sizing, as well as scheduling strategies, including or-

derly charging and V2G integration, while planning and sched-

uling can be constraints or considerations for each other.  

In practice, as the basis for scheduling and planning, fore-

casting errors in EV refuelling demand or parking behaviour 

can propagate into planning decisions, leading to inappropriate 

site selection or capacity allocation. These planning decisions 

then constrain the flexibility of short-term scheduling, poten-

tially causing local overloads or underutilisation of charging re-

sources. Furthermore, once siting and sizing decisions are im-

plemented based on forecasted data, they are difficult to adjust 

later, amplifying the long-term impact of initial forecasting er-

rors. 

From the perspective of the combination of planning and 

scheduling, these two kinds of issues can also be used in a bi-

level framework. Such an optimisation formulation is able to 

recognise the hierarchical dependence between the two sub-

problems, where planning issues are at the upper level and 

charging scheduling issues are at the lower level [126], [127]. 

This bi-level framework is more complex than those addressing 

the planning or scheduling issue alone, as more complicated in-

formation is considered, and more complex inter-dependencies 

arise. For example, such a framework can simultaneously ac-

count for factors such as battery state, charging station loca-

tions, and operational constraints, rather than treating them sep-

arately. Therefore, several key challenges arise in this context 

and need to be considered carefully in future modelling. 

(1) The siting and sizing problem is an NP-hard optimisation 

task. When incorporating scheduling issues such as charg-

ing power allocation and dispatch, the computational time 

and resources required for the solution procedure must be 

carefully considered. 

(2) The decision in the upper level is a long-term optimisation, 

while it is a short-term or even real-time decision that is 

made at the lower level. This kind of temporal scale differ-

ence may lead the results of a long-term decision to be in-

compatible with the requirements of a short-term schedul-

ing task. Thus, a dynamic feedback and coordination 

should be considered from the lower level to the upper, 

over the different time-scales. 

(3) There are many sources of data uncertainty in the optimi-

sation, for example, travel demand for EV users, parking 

time and duration, load fluctuations and renewable energy 

generation. Due to the nested structure and inter-level de-

pendency of the bi-level framework, these uncertainties 

can propagate between levels and significantly affect the 

stability and optimality of the overall solution. 

Therefore, future studies should focus on a more integrated 

approach that simultaneously optimises forecasting, planning, 

and scheduling, ultimately improving the synergy between EV 

refuelling demand and grid stability.  

Some open issues that can be identified are: 

1) Parking pattern forecasting in EV scheduling.  

Focusing on the issue analysed in Section V, the question of 

parking duration after the completion of the charging process 

plays a crucial role in scheduling the charging scheme [35], 

[73], [95]. However, unlike forecasting charging behaviour, ac-

curately predicting departure time remains a challenge. While 

information such as plug-in time, charger power, and battery 
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SOC allows for precise forecasting of the charging end time, 

departure time—an essential component of parking patterns—

remains difficult to predict, regardless of whether the focus is 

on an individual, a station, or a region. As a result, some studies 

have only provided a range of potential parking durations after 

the completion of the charging process, rather than a precise 

duration or departure time. If it is not clear how much time is 

available for scheduling, the EV will likely leave without 

enough energy to the satisfaction of the user. 

User profiles and usage behaviours play a key role in fore-

casting parking patterns User behaviour regularity significantly 

impacts the scheduling system. In general, users can generally 

be categorised into two groups: regular and irregular users. 

Regular users typically charge and park at fixed times and loca-

tions, making their behaviour highly predictable. Based on a 

small amount of information, such as commuter users spending 

relatively regular time at home and work, the charging scheme 

can be optimised to satisfy both the grid and the user. In con-

trast, irregular users display more random charging behaviour, 

such as the EVs in a public parking lot. For these users, prefer-

ences such as desired charging speed or willingness to partici-

pate in partial charging can greatly influence departure times 

and scheduling flexibility. It may not be possible to get an ac-

curate departure time only by regularity analysis, which may 

result in an underperforming scheduling strategy and inefficient 

utilisation of charging resources. Parking pattern forecasting 

models can be included in this scheduling process. More infor-

mation, such as historical parking duration, and user-specific 

mobility patterns should be considered to enhance the accuracy 

of the forecast.  

2) Diversity of spatially varying parking patterns and re-

fuelling demand.  

The EV travel pattern is closely linked to the urban spatial 

structure, leading to spatial heterogeneity in EV refuelling de-

mand. As illustrated in the above sections, public parking lots 

might be the most suitable candidates to construct a charging 

station, while installing an EV charger at an on-street parking 

lot or residential parking area is another viable option. How-

ever, user parking patterns vary significantly across these dif-

ferent parking spaces, and hence not all candidates have the po-

tential to be a charge location. Moreover, heterogeneity among 

EV users further complicates infrastructure planning. Differ-

ences in travel frequency, trip purpose, vehicle type, charging 

preferences, and willingness to wait can lead to varying charg-

ing demand and parking durations, even at the same location. 

Existing literature lacks considerations of randomness and var-

iability, both of which are essential for accurately capturing 

spatial and temporal variations in refuelling demand [128]. For 

instance, many studies predominantly focus on personal EVs, 

which exhibit relatively regular travel and charging patterns 

[12], [89], [107]. In contrast, research on public usage EVs, 

which demonstrate greater randomness in their usage behav-

iours, often relies on predefined candidate locations for infra-

structure planning [91], [129]. Therefore, future research 

should prioritise developing more comprehensive models that 

better incorporate spatial and temporal dynamics, as well as 

user heterogeneity. Considering the parking intention may also 

be a good option for the planning of charging facilities. For one 

parking location, different parking intentions may result in dif-

ferent durations. However, the visit must be of a certain dura-

tion before it is beneficial, in terms of received energy, for the 

EV owner to make the effort of plugging in [117]. This may 

affect the utilisation rate of the chargers installed in a parking 

lot.  

3) Parking-lot charging mandates and feasibility 

In this review paper, we highlighted the combination of park-

ing lots with the installation of chargers. This is one potential 

way to quickly employ chargers and expand the EV charging 

network. Indeed, several countries have already proposed re-

quirements to promote the construction of such facilities. For 

example, the local government in Orlando requires that EV 

charging stations must be installed at a certain percentage of 

parking spots [130]. In Germany, owners of non-residential 

buildings with more than 20 parking spaces are required to in-

stall the mandated EV charging points [131]. However, there 

are still remaining issues to be resolved in terms of charger de-

ployment in parking lots. First, the high installation and mainte-

nance costs may discourage property owners, particularly when 

the expected utilisation rate of the chargers is uncertain. Sec-

ond, the additional demand on the local electricity grid can pose 

capacity and stability issues, requiring costly upgrades or smart 

energy management systems. Third, the allocation and manage-

ment of charging spaces raises practical concerns, such as how 

to prevent long-term occupation of chargers by fully charged 

vehicles. Finally, ensuring equitable access to charging infra-

structure, both geographically and across different user groups, 

remains a significant policy and planning challenge [132], 

[133], [134]. 

4) V2G potential by integrating charging and parking 

sessions 

With the development of vehicle electrification, V2G and 

B2G technologies have become increasingly important for the 

coordinated operation of EVs and the grid. However, the large-

scale integration of V2G services faces challenges across three 

main dimensions: technical feasibility, adoption barriers, and 

regulatory constraints. Addressing these issues is essential for 

robust, flexible, and effective deployment of V2G in urban en-

vironments.  

(1) Technical feasibility 

The potential of V2G is primarily determined by battery ca-

pacity and charging/discharging limits, which directly interact 

with EV charging demand. For instance, vehicles with larger 

batteries or higher charging/discharging rates can provide 

greater flexibility for grid services while still meeting the own-

ers’ mobility requirements. Conversely, if battery constraints or 

charging schedules limit energy availability, the capacity to par-

ticipate in V2G is reduced. Additional technical challenges in-

clude battery degradation [135], interoperability issues between 

vehicles and chargers, and the absence of standardised commu-

nication protocols [136], [137]. To address these issues, policy 

measures should focus on developing durable high-capacity 

batteries, establishing interoperability standards, integrating 

https://www.sciencedirect.com/topics/engineering/plugging-in
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real-world charging patterns into V2G scheduling, and deploy-

ing bidirectional chargers at strategic parking locations. 

(2) Adoption barriers 

User behaviour and parking characteristics greatly influence 

V2G participation. Constraints include limited parking dura-

tion, user concerns over battery degradation or potential mobil-

ity restrictions, and heterogeneity in travel habits, parking 

times, and charging requirements. In many cases, drivers prior-

itise maintaining sufficient charge for subsequent journeys, 

which reduces their willingness to allow energy to be dis-

charged back to the grid. Variations in access to suitable park-

ing facilities and the uneven availability of bidirectional 

chargers further restrict participation. Together, these behav-

ioural and spatial factors introduce significant uncertainty into 

the number, timing, and duration of vehicles that can be relied 

upon for V2G services. Potential measures to overcome these 

barriers include providing financial incentives or reduced 

charging fees, implementing user education and engagement 

programmes to raise awareness of V2G benefits and to explain 

participation requirements, and offering reserved or priority 

parking for V2G-enabled vehicles to increase accessibility and 

utilisation [138]. 

(3) Regulatory constraints 

The deployment of V2G infrastructure and its effective utili-

sation can be limited by policy and regulatory factors. Chal-

lenges include insufficient availability and uneven distribution 

of bidirectional chargers, a lack of coordinated planning for 

charger locations, and the absence of flexible parking or opera-

tional policies that support V2G. Furthermore, complex permit-

ting procedures to obtain the necessary permits, differing local 

regulations, and the lack of clear standards for V2G operations 

can slow deployment and increase costs. The regulatory frame-

work may also fail to provide adequate incentives for operators 

or users to participate in V2G schemes [137]. Policy measures 

to address these constraints include deploying bidirectional 

chargers at strategic locations, such as workplaces, residential 

areas, and commercial zones, and introducing flexible parking 

and EV management regulations to facilitate priority access for 

V2G vehicles. 

4) Behaviour changes in future scenario analysis and as-

sessment 

In terms of EV refuelling demand and parking patterns, there 

are many highly subjective features involved. Most previous 

studies have modelled the future using previous or current EV 

refuelling demand features, however, there may be many 

changes with improvements in technology (e.g., higher battery 

energy density, battery swapping technology commercialisa-

tion), major events (e.g., COVID-19), and due to the influence 

of policymaking (e.g., subsidy reduction). For example, Lin et 

al. [139] noted that in the period 2019-23, with advances in bat-

tery technology and increased use of EVs, the charging habits 

of EV users have shifted, with a greater preference for nighttime 

charging and therefore new preferences for charging times, re-

sulting issues, charging prices, and distance of charging infra-

structures from home locations. Cui et al. [140] found that be-

tween 2018 and 2021 there had been a 15 % rise in daily 

distances travelled by electric taxis, alongside a 26.5 % increase 

in all-electric driving range and a 29.9 % increase in charging 

power. In contrast, personal EV travel distance showed little 

change, despite a 50.8 % increase in AER and a 13.9 % increase 

in charging power. Nevertheless, it is essential to assess 

whether behavioural features derived from small sample sizes 

or early-stage EV adopters remain valid in future high-penetra-

tion EV scenarios [141].  

Early adopters often exhibit distinct usage patterns, such as 

higher technological enthusiasm, greater willingness to pay for 

charging services, and different mobility habits compared to the 

mainstream market [142]. As EV adoption scales up, new user 

groups with varying socio-economic backgrounds, driving de-

mands, and charging preferences will emerge, potentially lead-

ing to significant shifts in refuelling demand and parking be-

haviours, key factors within the user behaviour layer. There-

fore, future scenario assessments should incorporate longitudi-

nal studies and diverse user datasets to ensure robustness in pre-

dicting large-scale EV adoption impacts. Longitudinal studies 

can track the same users or groups over time, capturing changes 

in travel behaviour, charging habits, and parking preferences, 

which are critical for understanding evolving patterns [141]. In-

corporating diverse user datasets, including different geo-

graphic regions, socioeconomic groups, vehicle types, and us-

age profiles, can help account for heterogeneity in user behav-

iour and improve the generalisability of the predictions. These 

approaches enhance robustness by reducing reliance on any sin-

gle sample or location, ensuring that the findings remain stable 

and applicable across different contexts and making the rele-

vant models more transferable to other datasets and tasks (e.g., 

forecasting charging demand at new locations). 

VIII. CONCLUSION 

With the development of the interaction between EVs and the 

grid, forecasting, planning and scheduling have emerged as key 

study issues. From an integrated perspective, these issues are 

interrelated. Therefore, this paper provides a comprehensive re-

view of all three aspects. Firstly, study scales are categorised 

into three levels: individual, station, and regional. Secondly, re-

fuelling demand characteristics in previous studies are classi-

fied based on four dimensions—time, location, power, and en-

ergy—across different study scales and issues. Parking patterns 

are also reviewed in terms of modelling approaches along three 

dimensions: time, location, and intention. Finally, for each re-

search issue, the considerations of refuelling demand and park-

ing demand are examined in detail. The main solutions pro-

posed to address each issue are also reviewed. In future studies, 

clarifying refuelling demand across different study scales, inte-

grating more comprehensive parking patterns, and strengthen-

ing the interconnections among forecasting, planning, and 

scheduling can enhance the construction and operation of EV 

facilities and promote the interaction between EVs and the grid.  
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TABLE A I 

FORECASTING-RELATED LITERATURE REVIEW. 

Ref. 
Scale 

Parking Pattern 
Demand 

Solutions 
I S R T L E P 

[10]   √ Scenario-based: Residential; Commercial √ √  √ ML 

[50]  √  Scenario-based: Private; Public car park; Public on-street √  √ √ ML; Fuzzy model 

[53]  √  Scenario-based: Paid; Free √    ML 

[55]  √  Statistical: Uniform distribution √  √  DL 

[65] √   Activity-based √ √  √ ML; Trip chain 

[66]   √ Scenario-based: Residential; Workplace; Food centre; Shopping mall; Public Park √  √ √ ABM 

[70]   √ Scenario-based: Workplace; Statistical: Gamma and exponential distributions √ √ √  MC 

[72]  √  Statistical: Gaussian distribution √   √ MC 

[74]  √  Scenario-based: Workplace √  √ √ ML; DL 

[75]  √  Activity-based √  √ √ ABM 

[76] √  √ Activity-based: Bynes Inference √ √ √ √ Trip chain 

[77]   √ Scenario-based: Campus √  √  ML 

[90] √   Statistical: Empirical distribution √  √  DL 

[94]   √ Activity-based  √  √ Trip chain 

[143] √  √ Scenario-based: Home(night) parking; Workplace (daytime) parking; Other location parking √ √ √ √ ABM 

[144] √  √ Activity-based √ √ √ √ ABM 

[145]  √  Intention-based: ‘Park to Charge’; ‘Park to Home’; ‘Park to Work’  √  √ √ ML; DL 

Note: I, S, R, T, L, E, and P represent Individual, Station, Region, Time, Location, Energy and Power, respectively.  

 

TABLE A II 

PLANNING -RELATED LITERATURE REVIEW. 

Ref. Issue Scale Parking pattern Main Objectives Demand Problem 

formulation S R T L E P 

[91] Siting  √ Statistical: Empirical data Minimise investment of charging facilities √ √  √ MILP 

[80] Scheduling 

Sizing 

√  Statistical: Empirical data Maximise n-year net present value of charging pole investment and daily profit of charging 

station 

√  √  SP; LP 

[146] Siting  √ Intention-based: Residential; Guest Maximise utilisation rate and equity of charging station √ √   - 

[86] Siting 

Sizing 

 √ Statistical: Gaussian distribution Maximise profit of parking lot √ √ √  MINLP 

[92] Siting  √ Statistical: Empirical data Minimise total construction cost and total benefit reduction √ √   MINLP 

[62] Siting 

Sizing 

 √ Statistical: Empirical data Minimise total investment of charging facility √ √  √ MILP 

[93] Sizing  √ Statistical: Empirical data Minimise net annual energy cost and installed PV capacity √   √ MOP 

[89] Siting  √ Statistical: Empirical data Minimise sum of distances from locations of all charging events to their closest charging sta-

tions 

√ √   CO 

[118] Siting 

Sizing 

 √ Activity-based Minimise sum of the extra travel time and waiting time of EVs; Maximise profit of charging 

parking lots 

√ √  √ Bi-level 
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[61] Sizing √  Statistical: Poisson distribution 

Scenario-based: Long-term workplace; Long-

term residential 

Minimise daily operating cost; Maximise dynamic payback period and investment profits √   √ MILP 

[147] Siting  √ Scenario-based: Residential; Commercial Minimise power loss, voltage deviation and total cost of the system √ √  √ Bi-level 

[39] Siting 

Sizing 

 √ Activity-based Maximise annual profits of charging station; Minimise holistic charging cost of EV users √ √ √ √ Bi-level; 

MINLP 

[64] Siting  √ Statistical: Double-peak distributions Minimise total annual construction cost, operation cost of EVCSs, maintenance cost of EVCSs 

and annual detour time for EV users 

√ √ √  DP 

[148] Siting  √ Scenario-based: Residential; Commercial; 

Government Park; Transportation hub 

Minimise both the penalty for EV charging demand shortfall and the time required to travel to 

charging facilities 

√ √   MILP 

[66] Siting  √ Scenario-based: Residential; Workplace; 

Food centre; Shopping mall; Public Park 

Maximise profit of all stakeholders and utilisation of the park lots √ √  √ NLP 

Note: 1. I, S, R, T, L, E, and P represent Individual, Station, Region, Time, Location, Energy and Power, respectively.  

          2. Mixed-Integer Linear Programming (MILP); Mixed-Integer Nonlinear Linear Programming (MINLP); Stochastic Programming (SP); Linear Programming (LP); Dynamic Programming (DP); Nonlinear 

Programming (NLP); Multi-objective programming (MOP); Combinatorial Optimisation (CO) 

 

 

TABLE A III 

SCHEDULING -RELATED LITERATURE REVIEW. 

Ref. 
Charging tech-

nologies 

Scale 

Parking pattern Main Objectives 

Demand Problem 

formula-

tion  
I S R T L E P 

[69] V2G   √ Statistical: Traffic pattern data Maximise profits of multi-energy operator  √  √  MILP 

[73] L2  √  Statistical: Poisson and exponential distributions Maximise revenue of multi-department charging hubs √  √  BMILP 

[55] FC  √  Statistical: Empirical data  
Minimise maximum number of simultaneous charging ses-

sions 
√    MILP 

[74] V2G  √  Scenario-based: Workplace Minimise charging cost and deviation from desired SOC √  √ √ MILP 

[36] V2G; V2V  √  Statistical: Empirical data Minimise cost of power procurement √   √ LP 

[71] SC; V2G   √ 
Scenario-based: Residential 

Statistical: Survey data 
Minimise deviation of the transformer load profile √  √  QP 

[38] Limited √   Statistical: Empirical data Minimise charging cost of all users √  √ √ NLP 

[149] 3.7 kW; V2G  √ √ Scenario-based Maximise aggregator profits √ √ √  MILP 

[58] 
15 kW G2V; 10 

kW V2G 
√   Statistical: Commuting pattern Maximise profit of consumers √   √ MINLP 

[42] 11 kW  √  Statistical: Empirical data Minimise operating costs of the charging station √  √  MILP 

[125] V2G; V2V  √  Scenario-based: Charging EV; Discharging EV Maximise the trading volume of electricity √  √  MILP 

[56] Limited  √  
Sharing parking between 8:00–18:00 

Statistical: Poisson and exponential distributions 

Maximise utilisation of parking and charging resources 

and profitability of the parking platform. 
√    BMILP 

[150] V2G   √ 
Scenario-based: Residential (from 6 p.m. to 7 a.m.); Workplace 

(from 6 a.m. to 6 p.m.) 
Maximise profits of multi-energy hubs √  √  MILP 
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[51] AC SC  √  
Scenario-based: Residential; Commercial 

Statistical: Survey data  
Minimise charging costs √    - 

[80] 
1.9 kW; 19.2 

kW; 50 kW 
 √  

Scenario-based: Shopping mall 

Statistical: Empirical data 
Maximise net present value of charging pole investment √   √ 

Bi-level 

SP 

[43] 1.8 kW/30min √ √  
Scenario-based: Regular users; Irregular users with long parking 

lot occupancies; Irregular users with short parking lot occupancies 

Maximise number of EVs fulfilling their recharging re-

quirements and total revenue of the parking lot 
√    LP 

[78] 60 kW √ √  Scenario-based: Residential 
Minimise charging station spaces, charging infrastructure 

investment and purchasing costs from grid 
√   √ LP 

[124] V2G; V2V   √ Scenario-based: 1-hour continuous; 2-hour continuous; Random  
Minimise battery aging cost; Maximise V2G profits of EV 

users 
√  √ √ MILP 

[151] 
Fast and slow 

charging 
  √ Scenario-based: Residential; Workplace; Other location  Maximise QoS of charging service √   √ - 

[152] Limited  √  
Scenario-based: Residential (from 5 p.m. to 12 p.m.); Workplace 

parking pattern (from 9 a.m. to 1 p.m. and 6 p.m. to 11 p.m.) 
Minimise energy costs; Maximise energy elasticity √  √ √ MILP 

[153] 
V2G; 3.3 kW; 

19.2 kW 
  √ 

Scenario-based: Short parking duration pattern with higher power; 

Long parking duration pattern with lower power 

Maximise amount of electricity charged by EV; Demand 

response 
√    MOP 

[154] V2G; V2V   √ Scenario-based: Residential; Workplace; Industrial Minimise operation costs √   √ MINLP 

[155] 
3.3 kW; 6.6 kW; 

10 kW; V2G 
 √ √ Statistical: Empirical data 

Minimise daily operational charging cost and charging 

peak power 
√   √ MILP 

[34] 
Flex; Flex+; 

Flex++; V2G 
  √ 

Scenario-based: Residential; Workplace; Public charging station 

Statistical: Survey data 

Minimise necessary curtailment to stay within allowed 

grid bounds and squared component loading; Maximise 

charging flexibility potential 

√ √ √  MILP 

[108] V2G   √ Scenario-based: Residential; Workplace; Industrial; Commercial 
Minimise daily operation cost of a multi-regional inte-

grated energy system 
√ √  √ RO 

[96] L1; L2   √ 
Scenario-based: Home; Home (delayed); Home + Work; Home 

(delayed) + Work  

Minimise peak demand of power system; Maximise utili-

sation of PV power generation 
√   √ MILP 

[156] 
2.5 kw; 5 kw; 

7.5 kw; 10 kw 
 √  

Scenario-based: 1-hour duration; 2-hour duration; 3-hour duration; 

4-hour duration 
Maximise profits and social welfare √  √ √ MILP 

[157] Limited  √  Scenario-based: Residential 
Minimise grid dependency; Maximise user satisfaction, 

PV power utilisation and operational costs 
√  √ √ DP 

[154] V2G  √  Scenario-based: Typical parking pattern 
Minimise operation costs, charging costs; Maximise utili-

sation rate of renewable energy 
√  √ √ MILP 

[41] FC  √  

Scenario-based: Short-duration with high-priority charging de-

mand; Medium-duration with medium-priority charging demand; 

Long-duration with low-priority charging demand 

Maximise QoS of EV users √   √ Bi-level 

[35] FC; SC √ √  

Activity-based: Driving-Charging-Driving pattern; Driving-Park-

ing-Charging-Driving pattern; Driving-Parking-Charging-Parking-

Driving pattern; Driving-Charging-Parking-Driving pattern; Driv-

ing-Charging-Parking-Charging-Driving pattern 

Minimise individual charging cost and load fluctuation of 

the residential area 
√   √ MILP 

Note: 1. I, S, R, T, L, E and P represent Individual, Station, Region, Time, Location, Energy and Power, respectively.  

          2. Flex, Flex+, and Flex++ denote different levels of flexibility in smart charging systems. Each level represents an increasing ability to adjust the timing, rate, or location of vehicle charging in response to 

system needs, such as grid constraints, renewable energy availability, or electricity pricing. Specifically, Flex corresponds to basic flexibility, allowing minor adjustments in charging schedules; Flex+ indicates 

moderate flexibility, enabling more substantial shifts in charging times or rates; and Flex++ represents the highest level of flexibility, allowing highly dynamic optimization, such as shifting charging across multi-

ple time periods or locations to maximize efficiency, reduce costs, or support grid stability. 

          3.Limited means there is a constraint on the charging power which defines the limits in terms of the maximum and minimum bounds in the optimisation models.  

          4. Mixed-Integer Linear Programming (MILP); Binary and Mixed-Integer Linear Programming (BMILP); Mixed-Integer Nonlinear Linear Programming (MINLP); Stochastic Programming (SP); Robust 

Optimisation (RO); Linear Programming (LP); Multi-objective programming (MOP); Nonlinear Programming (NLP); Dynamic Programming (DP) 


