

1 **Interventions for Managing Oral Submucous Fibrosis – Commentary to a**
2 **Systematic Review**

3

4 **Stella Stasiak.** Restorative Department, School of Dentistry, Faculty of Medicine and Health,
5 University of Leeds, Leeds, UK.

6 **Tiffany Li.** Oral and Maxillofacial Surgery, Leeds Teaching Hospitals, Leeds, UK

7 **Adam Jones.** Oral Surgery, School of Dentistry, Faculty of Medicine and Health, University of
8 Leeds, Leeds, UK.

9 **Joshua A Twigg.** Department of Restorative Dentistry, Leeds Dental Institute, Leeds, UK.

10

11

12

13

14

15 **Contact Person**

16 Stella Stasiak

17 Restorative Department, Leeds Dental Institute,

18 The Worsley Building,

19 Clarendon Way,

20 Leeds, West Yorkshire,

21 LS2 9LU.

22 Tel: (0113) 2440111; +(44) 7396376144

23 ORCID ID 0009-0008-2912-9453

24 s.stasiak@leeds.ac.uk

25 **Statement of clinical relevance**

26 Coinciding with our recently published Cochrane systematic review: Interventions for
27 managing oral submucous fibrosis, our article underscores the need for improved patient-
28 centred research and standardised trials in Oral Submucous Fibrosis (OSMF) management.
29 Emphasising patient-reported outcomes and promoting cultural change are crucial steps in
30 advancing effective interventions for OSMF.

31

32

33

34 **Abstract**

35 Oral submucous fibrosis (OSMF) is a chronic, debilitating condition characterised by fibrosis
36 of the oral mucosa, leading to impaired mouth opening, chewing, and speech functions. The
37 aetiopathogenesis is not fully understood, but factors such as chewing betel nut, nutritional
38 deficiencies, immunological and hereditary factors, and overconsumption of spicy foods may
39 play a role. Recently, Jones¹ et al. (2023) published an update of the Cochrane Review titled
40 "Interventions for managing oral submucous fibrosis," which identified 30 relevant
41 randomised controlled trials (RCTs), including 28 new trials since the initial review in 2008.

42

43 The primary objective of this review was to evaluate patient-reported outcomes (PROs) in the
44 management of OSMF, with a particular emphasis on restoring normal eating, chewing, and
45 speech functions. However, our findings revealed limited reporting of PROs, with only four
46 studies assessing relevant outcomes. Instead, most studies measured inter-incisal distance
47 and burning sensation intensity. Moderate certainty evidence showed that antioxidants
48 improved interincisal distance and burning sensation, but no other intervention
49 demonstrated consistent benefits over non-active control treatments.

50

51 Adverse effects were reported in 50% of the studies, and most trials lacked rigorous blinding
52 and allocation concealment, resulting in unclear or high risk of bias in several domains.
53 Additionally, reporting of participant demographics was inconsistent, which hindered
54 external validity assessment. Only four studies reported surgical interventions, which also
55 carried a high potential for complications.

56

57 The review emphasises the need for more comprehensive research on OSMF management.
58 Prioritising basic preclinical research to identify plausible interventions and mechanisms of
59 action before conducting clinical trials is crucial. Furthermore, standardising trial
60 methodologies, giving priority to PROs alongside objective outcomes, and gaining a better
61 understanding of OSMF pathogenesis are essential steps towards improving management
62 strategies. Additionally, emphasising behaviour change interventions to prevent OSMF
63 through education and cultural shift away from areca nut consumption is of utmost
64 importance.

65 **Keywords:** Antioxidants; Dexamethasone; Drug-Related Side Effects and Adverse Reactions;
66 Oral Submucous Fibrosis [therapy]; Pentoxyfylline; Vasodilator Agents;

67

68 Introduction

69 Oral submucous fibrosis (OSMF) is a chronic debilitating disease of the oral cavity
70 characterised by inflammation and progressive fibrosis of the submucosal tissues, resulting in
71 a marked restriction and an eventual inability to open the mouth. Worldwide, estimates of
72 oral submucous fibrosis indicate that 2.5 million people are affected, with most cases
73 concentrated on the Indian subcontinent, especially southern India (Cox² et al., 1996). The
74 precise cause is unknown but chewing of betel nut, overconsumption of spicy foods,
75 nutritional deficiencies, immunological and hereditary factors have a potential role in the
76 pathogenesis. Unfortunately, most patients with OSMF present with moderate-to-severe
77 disease, which is irreversible at this stage (Thakur³ et al., 2020). Currently, there is no gold
78 standard of care for OSMF, and available treatment options focus mainly on managing
79 symptoms and improving mouth movements.

80

81 **Discussion**

82 Our team has recently conducted an update of the Cochrane Review titled "Interventions for
83 managing oral submucous fibrosis". We identified 30 relevant randomised controlled trials
84 (RCTs), adding 28 new trials to the previous review. The primary objective for the review was
85 to evaluate patient-reported outcomes (PROs), specifically resumption of normal eating,
86 chewing, and speech, as these indicators hold the greatest importance to patients. However,
87 we found that PROs were only assessed in only four studies and were reported
88 dichotomously as presence/absences of patients experiencing difficulties or not.

89 The outcomes most frequently measured were inter-incisal distance (the distance between
90 the upper and lower central incisors) and intensity of burning sensation (measured through a
91 visual analogue scale ranging from 0 -100 mm). Adverse effects and adverse events caused by
92 treatments were reported in 50% of studies, although the extent of detail provided varied.

93 No studies measured any health economic outcomes.

94 We grouped interventions into six broad subgroups based on our judgement about the likely
95 primary mechanism of action:

- 96 • Any Intervention vs Placebo
- 97 • Different surgical techniques
- 98 • Surgery alone compared with surgery plus adjunctive treatments
- 99 • Physiotherapy alone compared with physiotherapy plus ultrasound
- 100 • Physiotherapy compared with medications
- 101 • Surgery combined with different physiotherapy techniques

102 Whilst we accept that these groupings are arbitrary, they serve to help structure the data and
103 make sense of the wide variety of evaluations within included studies.

104

105 Habit cessation advice and patient education are widely recognised as the primary and
106 essential components of the standard care for OSMF (Rai⁴ et al., 2021). This was reported in
107 most of the included studies, and we therefore assumed this was a feature of normal clinical
108 care that could be considered redundant in our evaluation. Several studies also included
109 physiotherapy exercises in both study arms, which makes evaluation of specific
110 physiotherapy/jaw exercise interventions challenging as the true effect of such interventions
111 may be underestimated. In the absence of a standard of care among the interventions we
112 evaluated (excluding habit cessation), we deemed any intervention compared to non-active
113 control as our primary outcome with the rationale that it is essential to establish the
114 fundamental effectiveness of interventions before conducting head-to-head comparisons.
115 The aetiopathogenesis of OSMF is complex and incompletely understood. The uncertainty
116 regarding OSMF causation is reflected in management protocols, which largely remain
117 empirical, and lack clear proposed modes of action. Proposed medical mechanisms, which
118 could improve OSMF symptoms include: promotion of non-fibrotic tissue regeneration;
119 enzymatic breakdown of fibrotic tissue; reduction of pro-fibrotic inflammation via immune
120 responses; promotion of blood flow to ischaemic tissues, and correcting nutritional
121 deficiencies. The clinical trial participants underwent various treatments for oral submucous
122 fibrosis, including steroids (alone or combined with other agents), vasoactive substances like
123 pentoxifylline, and antioxidants or plant-based derivatives such as aloe vera or spirulina.
124 Many of the studies included within the systematic review provided no clear clinical
125 justification for the interventions. Moreover, in multiple studies included in this review,
126 combined interventions addressed overlapping putative mechanisms, which makes reliable
127 assessment of the effectiveness of individual treatments difficult. We therefore suggest that

128 further detailed understanding of aetiopathogenesis of OSMF is needed for stronger
129 biological rationale in selecting management strategies.

130 **Key findings**

131 We found moderate-certainty evidence from three studies (620 participants) that
132 antioxidants improved mouth opening (interincisal distance) by 8.83 mm compared to
133 placebo after three to six months. However, the studies had an unclear risk of bias, and no
134 benefit was seen beyond six months, based on a single study of 90 participants. No other
135 treatment consistently improved mouth opening compared to non-active controls.

136 Similarly, moderate-certainty evidence from two studies (500 participants) showed that
137 antioxidants reduced burning sensation on a visual analogue scale (VAS) by 70.82 mm after
138 three to six months. This effect was present at three months and beyond, but with reduced
139 magnitude. Very low-certainty evidence indicated that dexamethasone (one study, 25
140 participants) reduced burning sensation by 46 mm, and vasodilators (two studies, 85
141 participants) improved VAS scores by 51.02 mm, though all these studies had unclear or high
142 risk of bias.

143
144 Substantial heterogeneity was observed among the interventions evaluated. Out of the 30
145 studies included, only 13 compared an active treatment against a non-active or placebo
146 control. Additionally, there was a lack of standardisation in intervention protocols. Trials
147 utilising similar medical agents exhibited a wide range of treatment durations and doses, with
148 the authors failing to provide a clear rationale for the varying treatment regimens.

149 Furthermore, few studies evaluated participants for more than 6 months and the longest
150 identified follow-up period with usable data was only nine months. While shorter follow up is
151 frequently a limitation of interventional research due to cost and logistical issues, OSMF is a

152 chronic, lifelong condition, therefore longer term follow up is important to ensure that
153 interventions provide meaningful benefits to patients.

154 There is no established minimum clinically important difference (MCID) for change in burning
155 sensation in the OSMF population. A systematic review of MCIDs in chronic pain conditions
156 by Olsen⁵ (2018) has suggested a MCID of 32% relative reduction in VAS scores. We found a
157 similar effect size only for intralesional dexamethasone compared to placebo, with benefits
158 sustained up to six months, though further validation is needed.

159 For mouth opening, a report of the minimum clinically important difference (MCID) in an
160 OSMF population was suggested to be 10 mm by Kaur⁶ (2022), however none of the
161 interventions we reviewed reached this level at any time point.

162 **Methodological limitations**

163 Most of the studies evaluated appeared to be open label trials, where allocation concealment
164 and blinding were either not performed or not described, leading to them being judged to be
165 at unclear or high risk of bias in one or more domains. In 9 studies, a placebo control was
166 used to blind participants. To be an effective control, a placebo must be indistinguishable
167 from the active comparator in terms of appearance, taste, dosing schedule and any other
168 characteristics. However, Piyush⁷ (2018) included a placebo capsule in their three-arm trial,
169 which acted as an effective placebo control for lycopene capsules, but not curcumin tablets.

170 A more extreme example is the three-arm trial undertaken by Kumar⁸ (2007), which
171 compared lycopene with lycopene plus intralesional betamethasone. Here, placebo capsules
172 were provided to a control group, but no placebo intralesional injections were given,
173 meaning only one comparator arm was effectively blinded.

174 Only 3 studies undertook power calculations to inform study sample sizes. There was a wide
175 range (8-400, median 50) in the number of participants included within studies.

176 Reporting adverse events is fundamental to detecting and managing safety issues arising
177 from medical or surgical intervention trials. Of the trials we reviewed, only half published
178 information relating to adverse events. Of the 15 trials that did make adverse event
179 information available, none of this data was presented in a format suitable for quantitative
180 analysis and so we were unable to make an informed judgement about potential adverse
181 effects of any of the treatments assessed.

182 The goal of a randomised controlled trial is to compare groups that only differ by the
183 treatment the participants have received. For this reason, it is important that the
184 characteristics of participants in the intervention and control groups are comparable.
185 Evaluating and reporting participant demographics at baseline allows us to determine that
186 groups are comparable, and that randomisation has been effective. Providing participant
187 demographic information also allows readers to consider the external validity of findings and
188 assess whether the results apply to the patient groups they wish to treat. Of the trials
189 reviewed less than half (11) reported baseline demographic information and several reported
190 only participant age ranges. Age and gender were the most consistently reported
191 demographics, but other factors such as ethnicity, clinical or histological staging of disease, or
192 habit information such as nature and duration of areca nut use were infrequently reported.
193 Future trials should ensure that all relevant covariates and potential confounders are
194 reported adequately.

195 The systematic review included only four studies which reported surgical interventions for
196 OSMF. Careful consideration should be given to proposing surgical management of OSMF
197 due to the high potential for complications relative to the low quality of evidence to support
198 surgical interventions.

199 Further analysis of both included and excluded surgical studies revealed inconsistencies in
200 the reporting of adverse events/effects (AEs). Half (11) of the 22 studies evaluated did not
201 report AEs. Out of the studies that reported adverse events (AEs), only one study indicated
202 that no AEs were encountered. One study (Kania⁹ et al., 2022) reported 4 adverse events that
203 we judged to be serious/severe (total graft necrosis in 3 of 30 patients and one case of
204 commissure tear). The remaining studies reported AEs that while not severe, caused
205 morbidity and distress to patients, including perforation of the soft palate, TMJ subluxation,
206 infection, and partial graft necrosis. The frequency of AEs reported in all surgical studies
207 assessed ranged from 10-60 %. However, given the overall poor reporting of AEs, it is likely
208 that this is an underestimate of the true rate.

209 Conclusion

210 The findings of this systematic review highlight the need for more comprehensive research
211 on the management of OSMF, conducted with greater methodological rigour. Priority should
212 be given to identifying biologically plausible interventions with adequately characterised
213 mechanisms of action through basic preclinical research before embarking on clinical trials.
214 Once candidate interventions have been established, clinical trials should compare such
215 interventions to non-active controls, and interventions that carry the lowest risk of adverse
216 sequelae should be favoured. Trial methodologies should be standardised in terms of
217 participant inclusion criteria, diagnostic criteria, and intervention follow-up protocols.
218 Patient-reported outcomes should be included alongside objective outcomes such as inter-
219 incisal distance. Additionally, priority should be given to gaining an understanding of the
220 pathogenesis of OSMF and optimising behaviour change interventions at both population and
221 individual level to prevent the disease through education and promoting a shift in cultural
222 and behavioural attitudes towards areca nut consumption.

223

224 **Conflict of Interest**

225 No

226

227 **Funding**

228 No funding

229

230 **Ethics statement/confirmation of patient permission**

231 Not required

232

233 **References**

234 1. Jones A, Veale B, Li T, Aggarwal VR, Twigg J. Interventions for managing oral
235 submucous fibrosis. *Cochrane Database of Systematic Reviews*. 2024(2),

236 <https://doi.org/10.1002/14651858.CD007156.pub3>

237 2. Cox, S.C. and Walker, D.M. Oral submucous fibrosis. A review. *Aust Dent J*. 1996;
238 41(5), pp.294-9, <https://doi.org/10.1111/j.1834-7819.1996.tb03136.x>

239 3. Thakur, D. V., Jassal , D. S., Kumar , D. A., Malik , D. S. J., Sharma , D. P., & Sahi , D. S.. A
240 Short Review on OSMF: Oral Submucous fibrosis. *Curr Med Res Opin*. 2020; 3(09),
241 619–624. <https://doi.org/10.15520/jcmro.v3i09.337>

242 4. Rai A, Jain A, Arora A, et al Oral submucous fibrosis in children: an alarming condition
243 and challenges in management. *BMJ Case Rep*. 2021;14:e238718,
244 <https://doi.org/10.1136/bcr-2020-238718>

245 5. Olsen MF, Bjerre E, Hansen MD, Tendal B, Hilden J, Hróbjartsson A. Minimum clinically
246 important differences in chronic pain vary considerably by baseline pain and
247 methodological factors: systematic review of empirical studies. *J Clin Epidemiol*. 2018;
248 Sep; 101:87-106.e2. doi: 10.1016/j.jclinepi.2018.05.007. Epub 2018 May 21. PMID:
249 29793007, <https://doi.org/10.1016/j.jclinepi.2018.05.007>

250 6. Kaur, Amanjot, Neeti Rustagi, Aparna Ganesan, P M Nihadha, Pravin Kumar, and Kirti
251 Chaudhry. Minimal clinically important difference of mouth opening in oral
252 submucous fibrosis patients: a retrospective study [Minimal clinically important
253 difference of mouth opening in oral submucous fibrosis patients: a retrospective

254 study]. *J Korean Assoc Oral Maxillofac Surg.* 2022;48(3):167-173,
255 <https://doi.org/10.5125/jkaoms.2022.48.3.167>

256 7. Piyush, P, Mahajan, A, Singh, K, Ghosh, S, Gupta, S. Comparison of therapeutic
257 response of lycopene and curcumin in oral submucous fibrosis: a randomized
258 controlled trial. *Oral Dis.* 2018;25(1):73-79.. 21578964,
259 <https://doi.org/10.1111/odi.12947>

260 8. Kumar A, Bagewadi A, Keluskar V, Singh M. Efficacy of lycopene in the management of
261 oral submucous fibrosis. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.*
262 2007;103(2):207-13. 3005200, <https://doi.org/10.1016/j.tripleo.2006.07.011>

263 9. Kania J, Dhuvad J, Anchlia S, Bhatt U, Dholabhai P, Nakrani A . Abdominal Dermal Fat
264 Graft Versus Nasolabial Flap in Oral Submucous Fibrosis: A Randomized Clinical Trial. *J*
265 *Maxillofac Oral Surg.* 2022; 25:1-9. 223105, <https://doi.org/10.1007/s12663-022-01741-2>

266

267

268

269

270