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Abstract
Overfitting is a problem in regression and deep neural networks, and it is often stated that Tikhonov regularisationminimises its
adverse effects, but the relationship between regularisation andoverfitting has not been established. The theory of regularisation
is well developed, but overfitting has a qualitative description and it is not defined mathematically. This paper addresses the
relationship between overfitting, regularisation and condition estimation by considering underdetermined and overdetermined
least squares (LS) problems that arise in regression. This study is important because regularisation is not benign since its use
when a condition on the decay of the singular values of the coefficient matrix in the LS minimisation is not satisfied leads to a
large error in the solution of the regularised LS problem. Examples in which the regression curve overfits the data are shown,
but regularisation must not be applied because the LS problem is well conditioned. Also, an ill conditioned LS problemwhose
solution does not display overfitting is shown, but its ill conditioned nature implies regularisation should be applied in order to
obtain a numerically stable solution. It is concluded that regularisation does not solve the problem of overfitting in regression.

Keywords Regression · Overfitting · Regularisation · Condition estimation

1 Introduction

Table 1 lists the symbols used in this paper.
The development of amodel of dataD inmachine learning

requires that it be partitioned into a training set Dtrain and a
test setDtest, whereD = Dtrain∪Dtest andDtrain∩Dtest = ∅.

The model is developed using the data set Dtrain and tested
using the data set Dtest, and it should be sufficiently rich
to represent the true properties of the data, but not too rich
such that it overfits the data. Overfitting occurs, for example,
when a polynomial p(x) of degree greater than two mod-
els data whose exact form varies quadratically. It manifests
itself in the model by many local minima and maxima that
arise from the high degree of p(x), but they are not present
in the data. Classical theory suggests that models that overfit
training data should perform badly on test data, but this is
not observed. The causes of this good generalisation prop-
erty of rich models on test data and its inconsistency with
classical theory are the focus of much research because of
their implications for machine learning [1–3].
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It is often claimed that regularisation solves the problem
of overfitting, and it arises from the bias-variance trade-
off, which defines the relationship between the complexity
and accuracy of a model. The trade-off states that the mean
squared error (MSE) of a model satisfies

MSE = (bias)2 + variance,

where the bias in themodel arises from incorrect assumptions
in the learning algorithm and the variance is the error due to
the sensitivity of themodel to perturbations in the data. A low
value of the variance is associatedwith little or no overfitting,
and a high value of the variance is associated with extensive
overfitting. It follows that, for a given value of the MSE, a
reduction in the extent that a regression curve overfits the
data is associated with an increase in its bias.

Overfitting is a major problem in neural networks, and
several methods, including data augmentation, early stop-
ping and dropout, may be used to implement regularisation.
The performance of a neural network is dependent on many
parameters, including the number of layers, the number of
neurons in each layer, the batch size and the number of
epochs, and it is therefore difficult to identify a relationship, if
it exists, between regularisation and overfitting. These issues
do not arise in regression, and thus the analysis in this paper
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Table 1 Notation and symbols Symbol Representation

A Coefficient matrix of order m × n

A† Pseudo-inverse of A

p min(m, n)

b Vector of function values

xls argminz ‖Az − b‖2
U�V T Singular value decomposition of A

σi i th singular value of A

ui , vi i th column of U , V

c UT b

κ(A) Condition number of A

η(A, b) Effective condition number of the least squares problem

els Error in the least squares solution

λ Regularisation parameter

λ∗ Optimal value of the regularisation parameter

x0(λ) Regularised solution, with regularisation parameter λ

ereg(λ) Error in the regularised solution, with regularisation parameter λ

is restricted to underfitting and overfitting in regression [1,
§1].

Tikhonov regularisation imposes stability on the solution
xls of the least squares (LS) problem,

xls = argmin
z

‖Az − b‖2 , (1)

where ‖·‖ = ‖·‖2, when it is sensitive to a perturbation
in b, that is, the LS problem is ill conditioned.1 The claim
that regularisation solves the problem of overfitting requires,
therefore, that the connection between ill conditioned LS
problems and overfitting be considered. Evidence for this
connection has not been established and thus the objective
of this paper is an investigation into the association between
regularisation and overfitting in order to determine a relation-
ship between them, assuming it exists. It is stated in [4, §2.3]
with reference to physics informed neural networks (neural
networks that are used to solve partial differential equations),
and in [5, §1.2] with reference to deep neural networks, that
regularisation has little or no effect in minimising overfitting,
but details are not provided. This paper extends the work in
these papers by the provision of theoretical analysis, exam-
ples of underdetermined and overdetermined LS problems
that arise in regression and consideration of overfitting that
may, or may not, occur. This leads to the aim of this paper:

• An investigation into the association between overfit-
ting and regularisation, using theoretical analysis and

1 Tikhonov regularisation is known as ridge regression in machine
learning, and it will, for brevity, be termed regularisation.

computational examples of regression, to determine this
association, if it exists.

This investigation is important because (i) overfitting is a
problem in machine learning since it causes a reduction in
the quality of the computed model of the data, and (ii) regu-
larisation is not benign. In particular, its application to the LS
problem (1) requires that A and b satisfy the discrete Picard
condition [6–9], which is a condition on the rate of decay of
the singular values of A. If this condition is not satisfied, the
error between the exact and regularised solutions of the LS
problem is large.

The result of this paper is summarised:

• Regularisation does not solve the problem of overfitting
in regression. In particular, well conditioned LS prob-
lems that lead to regression curves that overfit the data
are shown, but the discrete Picard condition is not sat-
isfied and thus regularisation must not be applied. Also,
an ill conditioned LS problem that leads to a regression
curve that does not overfit the data is shown, but regular-
isation must be applied in order to impose stability on its
solution.

Section2 includes an exampleof regression thatmotivates the
work in this paper. Condition estimation of the LS problem
is considered in Section 3 and it is shown that the condi-
tion number κ(A) of A may yield a large overestimate of the
numerical condition of the LS problem (1). A more refined
measure, the effective condition number η(A, b), of the con-
dition of the LS problem is developed and its advantages with
respect to κ(A) are discussed. Regularisation is considered
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in Section 4, and the L-curve [7, §4.6], which is a graphical
method for calculating the optimal value of the regularisa-
tion parameter, is considered. It is shown that the shape of the
graph is dependent on the satisfaction, or lack of satisfaction,
of the discrete Picard condition. Examples of regularisation,
overfitting, and the condition numbers κ(A) and η(A, b) are
in Section 5 and the paper is summarised in Section 6.

2 Background

The problem addressed in this paper is demonstrated in
Example 1 by considering regression using a given matrix
A and two forms b̃1 and b̃2 of b:

• The LS problem (1) is ill conditioned for b = b̃1 and
regularisation must therefore be applied. The regression
curve has few local minima and maxima, and it does not
overfit the data.

• The LS problem (1) is well conditioned for b = b̃2 and
thus regularisation must not be applied. The regression
curve has many local minima and maxima, and it overfits
the data.

Regression of the data (x, y) = {
x j , y j

}m
j=1 by the basis

functions φ(x) = {φi (x)}ni=1,

y j =
n∑

i=1

aiφi (x j ), j = 1, . . . ,m,

leads to the LS problem, whose solution xls ∈ R
n contains

the coefficients {ai }ni=1,

xls = argmin
z

‖Az − b‖2

= A†b

=
⎧
⎨

⎩

(AT A)−1AT b, m > n,

A−1b, m = n,

AT (AAT )−1b, m < n,

(2)

where Ai, j = φ j (xi ) and A = {
Ai, j

}m,n
i, j=1, rank A =

min(m, n) and b = {
y j

}m
j=1. The solution of (2) is

xls =
p∑

i=1

(
ci
σi

)
vi , (3)

where p = rank A = min(m, n),

c = {ci }mi=1 = UT b, (4)

the singular value decomposition (SVD) of A is U�V T , vi
is the i th column of V and � ∈ R

m×n is the diagonal matrix

of the singular values σi , i = 1, . . . , p, of A. The solution
xls of (2) is a function of A and b, but the condition number
κ(A) of A is a function of A only, and it is independent of b.
This is problematic because it implies that κ(A) may not be
an accurate measure of the condition of the LS problem. This
issue is addressed by the effective condition number η(A, b),
which is a function of A and b, and it therefore provides more
accurate information on the condition of the LS problem. An
expression for this condition number is developed in Sec-
tion 3 and its importance for the analysis of the LS problem
follows from the following points:

• The LS problem is well conditioned if η(A, b) = O(1),
even if κ(A) � 1, and regularisationmust not be applied.

• The LS problem is ill conditioned if η(A, b) � 1 and
regularisation must be applied if the discrete Picard con-
dition is satisfied.

• The effective condition number η(A, b) may be infinite,
which must be compared with κ(A), which is finite if A
has full rank.

Example 1 shows that a study of the relationship between
regularisation and overfitting requires that the more refined
information on the condition of the LS problem provided by
η(A, b) be used, and that κ(A) does not provide this refined
information.

Example 1 Consider the regression of 100 points (x j , y j ), j
= 1, . . . , 100, in the interval I = [0, . . . , 20] using 33 expo-
nential basis functions, where the 100 points are randomly
distributed in I . It follows that A ∈ R

100×33, and two sets of
data, b = b̃1 and b = b̃2, which are shown in Figure 1, are
considered.

(i) The data (x j , y j ), j = 1, . . . , 100, are shown in Fig.
1(i) and the LS problem is ill conditioned because

η(A, b̃1) = 4.63 × 108,

where b̃1 = {
y j

}100
j=1, and thus

η(A, b̃1) ≈ κ(A) = σ1

σ33
= 5.14 × 108.

Regularisation is required and it is shown in Section 3 that the
dominant components of b̃1 lie in the space spanned by the
columns ofU associated with the large singular values of A.
It therefore follows from (3) and (4) that xls lies in the space
spanned by the columns of V that are also associated with the
large singular values of A. Regularisation removes the effects
of the small singular values from xls and the consequent error
in the regularised solution is small because these singular
values make a minor contribution to xls. The solution xls of
the LS problem is exact because b̃1 lies in the column space of
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Fig. 1 (i) The data b = b̃1 and the regression curve for an ill conditioned LS problem, and (ii) the data b = b̃2 and the regression curve for a well
conditioned LS problem, for Example 1

Fig. 2 The 8th, 13th, 18th, 23rd,
28th and 33rd columns of V for
Example 1

5 10 15 20 25 30

-0.2

0

0.2 8th column

5 10 15 20 25 30
-0.2

0

0.2 13th column

5 10 15 20 25 30

-0.2

0

0.2 18th column

5 10 15 20 25 30
-0.2

0

0.2 23rd column

5 10 15 20 25 30

-0.2

0

0.2 28th column

5 10 15 20 25 30

-0.2

0

0.2 33rd column

Table 2 Results of Example 1.
The vectors ui , i = 1, . . . , 100,
and vi , i = 1, . . . , 33, are the
columns of U and V ,
respectively

b = b̃1 b = b̃2

η(A, b) 4.63 × 108 7.96

b = Uc
∑t

i=1 ci ui , t 
 33
∑33

i=t ci ui , t � 1

xls
∑t

i=1

(
ci
σi

)
vi , t 
 33

∑33
i=t

(
ci
σi

)
vi , t � 1

Sign changes in Few sign changes in Many sign changes in

the columns of V the first t columns the last 34 − t columns

Regularise xls Yes No

Overfitting Not present Present

A and thus the regression curve interpolates the data points,
as shown in Fig. 1(i). The curve does not overfit the data, but
as noted above, regularisation must be applied because xls is
unstable with respect to a perturbation in b̃1.

(ii) The data (x j , y j ), j = 1, . . . , 100, are shown in Fig.
1(ii) and the LS problem is well conditioned because

η(A, b̃2) = 7.96 ≈ min
X

κ(X) = 1,

where b̃2 = {
y j

}100
j=1 and X is an arbitrary matrix of full

rank. This situation arises because the dominant components
of b̃2 lie in the space spanned by the columns ofU associated
with the small singular values of A, and it follows from (3)
and (4) that xls lies in the space spanned by the columns of
V that are also associated with the small singular values of
A. Regularisation must not be applied because it removes
these singular values from xls, which would therefore yield a
large error. The solution of the LS problem is exact because
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b̃2 lies in the column space of A and thus the regression
curve interpolates the data points, as shown in Fig. 1(ii). The
curve overfits the data, but this problem cannot be solved by
regularisationbecause, as noted above, itmust not be applied.

Figure 2 shows six columns of V and it is seen that its i th
column vi has i − 1 sign changes, and thus:

• xls = A†b̃1 = (
AT A

)−1
AT b̃1 is a linear combination of

vectors vi whose entries have few sign changes because
it is a linear combination of the first few columns of V .

• xls = A†b̃2 = (
AT A

)−1
AT b̃2 is a linear combination of

vectors vi whose entries havemany sign changes because
it is a linear combination of the last few columns of V .

The results for b = b̃1 and b = b̃2 are summarised in
Table 2. ��

Theorem 1, [10, p. 87] and [11, §5], establishes that the
oscillatory property of the columns of V shown in Fig. 2
is a property of the eigenvectors of an oscillation matrix. It
is included in the examples in Sect. 5 and it is shown that
a distinction must be made between underdetermined and
overdetermined LS problems.

Theorem 1 If (λk, wk) is the kth eigenpair of an oscillation
matrix of order n, where the eigenvalues satisfy λi > λ j > 0
for i < j , then for every set of coefficients ep, ep+1, . . . , eq ,
1 ≤ p ≤ q ≤ n, such that

∑q
i=p e

2
i > 0, the number of sign

changes S in the entries of r ,

r = epwp + ep+1wp+1 + · · · + eqwq ,

satisfies p−1 ≤ S ≤ q −1. It follows that if i := p = q,
the entries of r = eiwi have exactly i − 1 sign changes.

3 Condition estimation

The stability of xls = A†b is usually quantified by the con-
dition number κ(A) = σ1/σp, p = min(m, n), of A. It is a
function of A only, but xls is a function of A and b, from
which it follows that κ(A) may not be a true measure of the
stability of xls. Condition numbers of the LS problem when
A and b are perturbed are considered in [12, §5.3.6], but the
analysis in this section is simpler because it is assumed there
are errors in b only.

Example 2 Consider the two sets of data in Example 1. The
solution x1 = A†b̃1 is sensitive to a change δb̃1 in the data b̃1,
but the solution x2 = A†b̃2 is not sensitive to a change δb̃2 in
the data b̃2. The condition number of A is κ(A) = 5.14×108,
which suggests that x1 and x2 are unstable. This is incorrect
because x2 is stable and thus the large value of κ(A) cannot

explain the difference between the results for the two data
sets. �

Example 2 shows that the formula for the stability of xls
with respect to a perturbation in b must be extended, such
that it is a function of A and b because this will allow the
difference between the stability of the solutions x1 and x2
to be quantified. This extension of κ(A), which is called the
effective condition number η(A, b) [13, 14], is defined in
Definition 1 and an expression for it is developed in Theorem
2. The forms of the expression when the LS problem is ill
conditioned, and when it is well conditioned, are derived
and the geometric conditions that lead to these situations
are established. The inequality between η(A, b) and κ(A) is
derived and it is shown that κ(A) is finite if A has full rank,
and that η(A, b) may be infinite.

Definition 1 (The effective condition number) The effective
condition number of the LS problem (2) is

η(A, b) = max
δb∈Rm

	xls
	b

,

where

	xls = ‖δxls‖
‖xls‖ and 	b = ‖δb‖

‖b‖ .

Theorem 2 is established in [15, §2] and [16, §5.1].

Theorem 2 The effective condition number η(A, b) is

η(A, b) =
∥∥A†

∥∥ ‖b‖
‖xls‖

= ‖c‖
σp

∥∥�†c
∥∥

= 1

σp

⎛

⎜
⎝

∑m
i=1 c

2
i

∑p
i=1

(
ci
σi

)2

⎞

⎟
⎠

1
2

, (5)

where c = {ci }mi=1 is defined in (4).

The superiority of η(A, b) with respect to κ(A) was con-
sidered above, and η(A, b) allows the dominant columns of
U and V spanned by b and xls, respectively, when the LS
problem is ill conditioned, and when it is well conditioned,
to be calculated.

(i) The LS problem is ill conditioned It was stated in
Sect. 1 that the LS problem is ill conditioned if the discrete
Picard condition (6) is satisfied. This condition requires that
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the constants |ci | decay to zero faster than the singular values
decay to zero,

|ci |
σi

→ 0 as i → p = min(m, n). (6)

If this condition is satisfied such that
∥∥�−1c

∥∥ ≈ |c1|/σ1

because the terms |ci |/σi decay sufficiently rapidly, then

η(A, b) ≈ σ1

σp

(
c21 + ∑m

i=p+1 c
2
i

c21

) 1
2

= κ(A)

(

1 +
∑m

i=p+1 c
2
i

c21

) 1
2

≥ κ(A),

where η(A, b) ≈ κ(A) if p = m = n, and thus the LS
problem is ill conditioned if the discrete Picard condition is
satisfied. It follows from (3) and (4) that if the LS problem
is ill conditioned, then:

• The dominant components of b lie in the space spanned
by the columns of U associated with the large singular
values of A.

• The dominant components of xls lie in the space spanned
by the columns of V associated with the large singular
values of A.

(ii) The LS problem is well conditioned This condition is
defined by the situation in which the constants |ci | are either
approximately constant or increase, in which case

|ci+1|
σi+1

� |ci |
σi

, i = 1, . . . , p − 1.

It follows that

η(A, b) ≈
(∑p

i=1 c
2
i + ∑m

i=p+1 c
2
i

c2p

) 1
2

≈
(

1 +
∑m

i=p+1 c
2
i

c2p

) 1
2

,

if

|ci+1| � |ci | , i = 1, . . . , p − 1,

and thus the LS problem is well conditioned if this inequality
is satisfied and

(∑m
i=p+1 c

2
i

c2p

) 1
2

= O(1).

It follows from (3) and (4) that the spaces spanned by b and
xls can be specified:

• The dominant components of b lie in the space spanned
by the columns of U associated with the small singular
values of A.

• The dominant components of xls lie in the space spanned
by the columns of V associated with the small singular
values of A.

These results on the spaces spanned by b and xls for ill condi-
tioned and well conditioned LS problems confirm the entries
in Table 2 for Example 1.

An upper bound for η(A, b) is established in Theorem 3
[17, §4]. This theorem shows that η(A, b) may be infinite,
whichmarks a difference between it and κ(A), which is finite
if A has full rank.

Theorem 3 Let θ be the angle between b and its component
that lies in the column space of A. The condition numbers
κ(A) and η(A, b) are related by

η(A, b) ≤ κ(A)

cos θ
, (7)

where, from (4) and the SVD of A,

cos θ = ‖Axls‖
‖b‖ =

(∑p
i=1 c

2
i∑m

i=1 c
2
i

) 1
2

.

The ratio cos θ is related to the error els in xls,

e2ls = ‖b − Axls‖2
‖b‖2 = 1 − cos2 θ,

and thus els is approximately equal to its maximum value of
one if θ is large. Also, it follows from (7) that the upper bound
of η(A, b) increases rapidly as θ approaches 90 degrees. In
particular, η(A, b) is infinite when cos θ = 0, that is, b is
orthogonal to the space spanned by the columns of A, even
if A has full rank, but κ(A) is finite if A has full rank. The
difference between the condition numbers κ(A) and η(A, b)
for the Hilbert matrix is considered in [15, Ex. 2.2].

The effective condition number η(A, b) would appear to
overcome the disadvantage of the condition number κ(A)

because it is a function of A and b, but it follows from (5)
that the denominator of the expression for η(A, b) contains
the term ‖xls‖. It therefore follows that if xls is unstable with
respect to a perturbation in b, then η(A, b) is also unstable
[18, §4]. This instability is quantified in Theorem 4 by con-
sidering the relative error in η(A, b) due to a perturbation in
b.
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Theorem 4 The relative error in η(A, b) due to a first order
perturbation δb in b is

max
δb

	η(A, b)

	b
= 1 + η(A, b), (8)

where

	η(A, b) = |δη(A, b)|
η(A, b)

,

and

	b = ‖δb‖
‖b‖ .

Proof It follows from (5) that

η2(A, b + δb) =
∥∥A†

∥∥2 ‖b + δb‖2
∥∥A†(b + δb)

∥∥2
,

where

‖b + δb‖2 = bT b + 2bT δb,
∥∥∥A†(b + δb)

∥∥∥
2 = bTCb

(
1 + 2δbTCb

bTCb

)
,

to first order in δb, and

C =
(
A†

)T
A† and bTCb =

∥∥∥A†b
∥∥∥
2
.

It follows that to first order in δb,

η2(A, b+δb) =
∥∥A†

∥∥2 ‖b + δb‖2
∥∥A†(b + δb)

∥∥2

=
(∥∥A†

∥∥2 (
bT b+2δbT b

)

bTCb

)(
1−2δbTCb

bTCb

)

=
(∥∥A†

∥∥2

bTCb

)(

bT b−2δbTCb
(
bT b

)

bTCb
+2δbT b

)

= η2(A, b)+δbT
(
2

∥∥A†
∥∥2

bTCb

)(

b−Cb
(
bT b

)

bTCb

)

= η2(A, b)

(
1+2

(
δbT

‖b‖2
) (

I − CbbT

bTCb

)
b

)
,

and thus to first order in δb,

η(A, b + δb) = η(A, b)

(
1 +

(
δbT

‖b‖2
) (

I − CbbT

bTCb

)
b

)
.

The relative error in η(A, b) is therefore

η(A, b + δb) − η(A, b)

η(A, b)
=

(
δbT

‖b‖2
) (

I − CbbT

bTCb

)
b.

The magnitude of the left-hand side is 	η(A, b) and thus

	η(A, b)

	b
≤

∥∥∥∥I − CbbT

bTCb

∥∥∥∥ ≤ 1 +
∥∥∥
(
A†

)T
A†bbT

∥∥∥
∥∥A†b

∥∥2

≤ 1 + η(A, b),

which establishes the result (8). ��
Theorem 4 shows that η(A, b) is unstable with respect to

a perturbation in b if η(A, b) � 1, which is problematic
because it implies that the denominator

∥∥�−1(c + δc)
∥∥ of

η(A, b+δb) cannot be used to determine if the discrete Picard
condition is satisfied in the presence of noise δc = UT δb.
In particular, it is shown in [17, §4] that if the exact solution
satisfies the discrete Picard condition (6), then this condition
is not satisfied by data that are perturbed by noise,

|ci + δci |
σi

� 0 as i → p,

and thus it cannot be determined if regularisation is required
when b is perturbed by noise. This problem is addressed by
assuming there exists prior information that the exact solu-
tion xls satisfies the discrete Picard condition, in which case
it is shown in Sect. 4 that regularisation yields a stable solu-
tion whose error is small. This prior information is satisfied
by many exact images and it explains the success of regular-
isation in image deblurring [19, §5.6].

4 Regularisation

It was shown in Sect. 3 that xls is unstable if the discrete
Picard condition is satisfied. Regularisation must therefore
be applied and it leads to the regularised LS problem whose
solution is x0(λ),

x0(λ) = argmin
z

{
‖Az − b‖2 + λ ‖z‖2

}

= (AT A + λI )−1AT b, (9)

if m ≥ n, where x0(0) = xls and λ ≥ 0 is the regularisation
parameter. Equation (9) defines a family of functions x0(λ)

parameterised by λ, and methods for calculating the optimal
value of λ are considered in Sect. 4.1. It cannot be used if
m < n because it requires the inverse of a singular matrix
when λ = 0. The equivalent expression for m < n follows
from the equality (AT A)AT ≡ AT (AAT ) and the addition

123



   13 Page 8 of 18 International Journal of Data Science and Analytics            (2026) 22:13 

of λAT to both sides,

(AT A)AT + λAT ≡ AT (AAT ) + λAT

≡ AT (AAT + λI ),

and thus

(AT A + λI )AT ≡ AT (AAT + λI ).

It follows that

(AT A + λI )−1AT ≡ AT (AAT + λI )−1,

and thus x0(λ) can be written as

x0(λ) =
{

(AT A + λI )−1AT b, m ≥ n,

AT (AAT + λI )−1b, m < n.
(10)

The minimisation (9) yields the regularised solution x0(λ∗)
where λ∗ is the optimal value of λ, and thus x0(λ∗) �= xls.
There is therefore an error in the regularised solution x0(λ∗)
with respect to the exact solution xls. This error is known as
the regularisation error, and it is acceptable if (i) it is small,
and (ii) x0(λ∗) is stable, and much more stable than xls. This
leads to the premise on which regularisation is based:

There is a trade-off between the error and stability of the
regularised solution x0(λ∗): The solution x0(λ∗) is accepted
because (i) its error with respect to xls is small, and (ii) it is
stable, and much more stable than xls.

This is the trade-off that was discussed in Sect. 1, where
the bias and variance are, respectively, the error and stability
of the regularised solution. The trade-off is shown in Fig.
3, which shows the problem P that it is desired to solve.
This problem, whose solution is xls, is ill conditioned and
the neighbouring problem P∗, whose solution is x0(λ∗), is
well conditioned, and x0(λ∗) is a very good approximation
to xls. It follows that if ereg(λ) is the regularisation error,
then the trade-off requires that x0(λ∗) satisfy the following
conditions in order that regularisation be applied to xls,

ereg(λ
∗) = ‖x0(λ∗) − x0(0)‖

‖x0(0)‖ 
 1,

and

η(A, b, λ∗) 
 η(A, b, 0) = η(A, b),

where η(A, b, λ) is the effective condition number of the
regularised LS problem (9). It is shown in Theorem 5 [17,
§5.1] and Theorem 6 [17, §5.2] that these conditions are sat-
isfied for λ = λ∗ if the discrete Picard condition is satisfied,
which is therefore a necessary condition for the application
of regularisation.

Theorem 5 The regularisation error ereg(λ) is

ereg(λ) = λ

⎛

⎜
⎝

∑p
i=1

(
ci
σi

)2
1

(σ 2
i +λ)2

∑p
i=1

(
ci
σi

)2

⎞

⎟
⎠

1
2

,

and if the optimal value λ∗ of λ satisfies

λ∗ 
 σ 2
i , i = 1, . . . , r − 1,

λ∗ ≈ σ 2
i , i = r ,

λ∗ � σ 2
i , i = r + 1, . . . , p,

(11)

then

(i)

ereg(λ
∗) ≈ λ∗

σ 2
1


 1,

if the discrete Picard condition (6) is satisfied.
(ii)

ereg(λ
∗) ≈

(
p − r

p

) 1
2

< 1,

if

|ci |
σi

≈ 1, i = 1, . . . , p.

(iii)

ereg(λ
∗) ≈ λ∗

σ 2
p + λ∗ ≈ 1,

if

|ci+1|
σi+1

� |ci |
σi

, i = 1, . . . , p − 1.

It follows that ereg(λ∗) 
 1 if the discrete Picard condition
is satisfied, and that the two other conditions on the ratios
|ci |/σi yield large errors ereg(λ∗). It is also necessary that the
effective condition number η(A, b) = η(A, b, λ = 0) of the
LS problem be extended to the regularised LS problem (9).
This extension follows from Theorem 2 and it is stated in
Theorem 6.

Theorem 6 The effective condition number of the regularised
LS problem (9) is

η(A, b, λ) = max
δb∈Rm

	x0(λ)

	b
=

⎧
⎨

⎩

∥∥(�T �+λI )−1�T
∥∥‖c‖

‖(�T �+λI )−1�T c‖ , m≥n,
∥∥�T (��T +λI )−1

∥∥‖c‖
‖�T (��T +λI )−1c‖ , m<n,
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Fig. 3 The problem P that it is
desired to solve and the problem
P∗ that is solved by
regularisation

and if the discrete Picard condition is satisfied, then

η(A, b, λ∗) ≈ γ

(
σ1

σr

)

 σ1

σp
= κ(A), (12)

where 1/2 ≤ γ ≤ 1, and λ∗ and r are defined in (11).

The result (12) follows from (11) because regularisation
removes the singular values σi , i = r+1, . . . , p, from x0(0).

The regularisation parameter λ is continuous, but it is an
integer in truncated SVD (TSVD), which can also be used
to impose regularisation on xls [7, §3.2]. In this method, the
sum (3) is truncated at an integer t < p,

x1(t) =
t∑

i=1

(
ci
σi

)
vi , (13)

where x1(p) = xls. If the discrete Picard condition is
satisfied, this truncation yields a stable solution whose regu-
larisation error is small.

Tikhonov regularisation and TSVD achieve the same
objective—the imposition of stability on the solution of an ill
conditioned LS problem—but themethods achieve it slightly
differently. This is most easily seen by writing (10) as

x0(λ) =
p∑

i=1

(
fi (λ)

(
ci
σi

))
vi ,

where vi is the i th column of V and fi (λ) is a filter,

fi (λ) = σ 2
i

σ 2
i + λ

, i = 1, . . . , p.

It follows that Tikhonov regularisation removes the small
singular values from xls by the filter fi (λ) whose cut-off is
defined by the continuous parameter λ. This must be com-
pared with TSVD because it follows from (13) that this
removal is achieved by a discrete filter, that is, a filter with an

infinitely sharp cut-off. If the singular values of A are well
separated, then the two methods yield very similar results.
The results from the methods differ, however, if the singu-
lar values are closely spaced because a singular value that
is removed by TSVD will not contribute to the regularised
solution, but its contribution to the solution from Tikhonov
regularisation will reduce smoothly to zero as λ increases
from λ∗.

4.1 The optimal value of the regularisation
parameter

The effectiveness of regularisation depends on the value of
the regularisation parameter λ. If it is too small, then x0(λ)

has too much noise, but a large portion of the exact solution
is filtered from x0(λ) if it is too large. Two methods for com-
puting the optimal value λ∗ of λ are the L-curve [7, §4.6]
and generalised cross validation (GCV) [7, §7.4]. It is shown
in [7, §7.5.1] that if the discrete Picard condition is satisfied
and the noise is white, a parametric plot of log10 ‖x0(λ)‖
against log10 ‖Ax0(λ) − b‖ as a function of λ is a curve in
the form of an L, as shown in Fig. 4(i) and which gives rise
to the name of the method. As λ increases from λ = 0,
‖x0(λ)‖ decreases and ‖Ax0(λ) − b‖ is approximately con-
stant, until λ = λ∗, which is the value of λ in the corner
of the L. As λ increases further, ‖x0(λ)‖ is approximately
constant and ‖Ax0(λ) − b‖ increases, and thus ‖x0(λ)‖ and
‖Ax0(λ) − b‖ are approximately minimised simultaneously
for λ = λ∗, which is therefore the optimal value of λ.

If the discrete Picard condition is not satisfied, a para-
metric plot of log10 ‖x0(λ)‖ against log10 ‖Ax0(λ) − b‖ as
a function of λ has the form shown in Fig. 4(ii). As λ

increases from λ = 0, ‖x0(λ)‖ is approximately constant
and ‖Ax0(λ) − b‖ increases until λ = λ0, and ‖x0(λ)‖
decreases and ‖Ax0(λ) − b‖ is approximately constant as
λ increases further. It follows there does not exist a value of
λ that approximately minimises simultaneously ‖x0(λ)‖ and
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Fig. 4 A parametric plot of
log ‖x0(λ)‖ against
log ‖Ax0(λ) − b‖ when (i) the
discrete Picard condition is
satisfied, and (ii) the discrete
Picard condition is not satisfied

Fig. 5 The computed
polynomials f̃d (x) for
d = 3, 6, 9, 12, 15, 18, for
Example 3

2 4 6 8 10
4
6
8

10
12
14

2 4 6 8 10
4
6
8

10
12
14

2 4 6 8 10

5

10

15

2 4 6 8 10

5

10

15

2 4 6 8 10
0

5

10

15

2 4 6 8 10
0

5

10

15

2 4 6 8 10 12 14 16 18 20

5

10

15

20

degree = 10

Fig. 6 The variation of the condition number log10 κ(A) and effective
condition number log10 η(A, b)with the degree d of the approximating
polynomial, for Example 3

‖Ax0(λ) − b‖, and thus λ∗ = 0, that is, regularisation must
not be applied.

The GCV is different because it is based on the premise
that if an arbitrary component bk of b is omitted, then the
regularised solution with λ = λ∗ obtained with this omission
should yield a value of bk whose error is small. The GCV
also requires that the discrete Picard condition be satisfied.
Comparisons of the L-curve, GCV and other methods for
the determination of the value of λ∗ are in [20, 21] and the
references therein, and it is shown it is dependent on several
parameters, including the noise level.

5 Examples

This section contains examples of regression that consider
the effective condition number, regularisation and overfit-
ting. Example 3 considers the situation in which data that
can be modelled by a polynomial of degree three are rep-
resented by polynomials of degree d, where 1 ≤ d ≤ 20.
Overfitting occurs for large values of d but the LS problem is
well conditioned for these values of d and thus regularisation
must not be applied. Examples 4 and 5 consider solutions that
underfit and overfit the data, and the approximating polyno-
mials of high degree overfit the data but regularisation must
not be applied because the LS problems are well conditioned.
Example 6 is different because regularisationmust be applied
since the LS problem is ill conditioned and a small level of
overfittingoccurs, but a reduction in the number of basis func-
tions yields a well conditioned LS problem whose solution
does not exhibit overfitting.

All computationswere performedusingMATLAB 2022a.

Example 3 The LS problem was solved in order to com-
pute the coefficients of polynomials f̃d(x) of degrees d =
1, 2, . . . , 19, 20, that model the data defined by f (x),

f (x) = 1

15
x3 − x2 + 21

5
x + 2

5
.
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Fig. 7 The variation of a
log10 σi , b log10 |ci | and c
log10 |ci |/σi , for Example 3
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Fig. 8 The L-curves for
polynomials of degrees
d = 2, 6, 10, 14, for Example 3.
The values of λ defined by the
square of the minimum and
maximum singular values of A
are marked
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The function f (x) was represented by 16 points xi , i=1,
. . . , 16, uniformly distributed in the interval I= [1, . . . , 11].
Figure 5 shows the polynomials f̃d(x) of degrees d =
3, 6, 9, 12, 15, 18, and

Figure 6 shows the variation of the condition number
log10 κ(A) and effective condition number log10 η(A, b)
with d. Overfitting does not occur for 3 ≤ d ≤ 12, even
though η(A, b) ≈ 10 for d = 3 and η(A, b) ≈ 104 for
d = 10.Themaximumvalue ofη(A, b)occurswhend = 10,
after which it decreases and the LS problem is well condi-
tioned (η(A, b) ≈ 1) for d ≥ 14. Furthermore, Fig. 5 shows
that overfitting occurs for large values of d and Fig. 6 shows
that η(A, b) ≈ 1 for these values of d.

Figure 7 shows the variation of log10 σi , log10 |ci | and
log10 |ci |/σi with i for polynomials of degrees d = 3, 6, 9, 12,
15, 18. The dominant components of |ci |/σi are defined by
large values of i and thus the discrete Picard condition is
not satisfied. Figure 8 shows the L-curves for polynomials
of degrees 2, 6, 10, 14, and they are similar to Fig. 4(ii). The

curves for degrees 6, 10, 14 exhibit an L but they do not
display a rapid decrease in‖x0(λ)‖ asλ increases fromλ = 0,
as shown in Fig. 4(i). It follows that regularisation cannot be
used to solve the problem of overfitting discussed above.

Figure 9 shows the number of sign changes in each column
of V for d = 1, . . . , 20. It is seen that AT A is an oscillation
matrix for d = 1, . . . , 13, because the i th column of V has
i − 1 sign changes for these values of d. Furthermore, it
follows from Theorem 1 that the entries of xls have many
sign changes for 1 
 d ≤ 12, but Fig. 5 shows that the
regression curves are smooth.

Noise was not added to the coefficients of f (x), and Figs.
6 and 7 show that the LS problem is well conditioned. It
follows that the effect of noise on the computed coefficients
would be minor. ��

Example 4 Figure 10 shows 25 points, corresponding to a
sampling interval of 0.075, of the function f (x), which is
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Fig. 9 The number of sign changes in each column of V for polyno-
mials of degrees d = 1, . . . , 20, for Example 3. The red bars show the
maximum degree d of the approximating polynomial for which AT A
is an oscillation matrix

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0
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0.4

0.6

0.8

1

Fig. 10 The function f (x) defined in (14) for Example 4

similar to the function in [22, §2.3],

f (x) = 1

1 + 25(x − 2)2
, (14)

for 1 ≤ x ≤ 2.8. The sampling interval was increased to
0.150, which corresponds to 13 points, and approximating
polynomials of degrees d = 1, . . . , 24, were computed. It
follows that A ∈ R

13×(d+1), and Fig. 11 shows the varia-
tion of log10 κ(A) and log10 η(A, b) with d. It is seen that
log10 κ(A) increases almost linearly for d ≤ 12, it attains its
maximum value when d = 12, that is, A is square, and it is
then approximately constant at a slightly lower value. The
effective condition number displays much less variation, its
maximum value is about 100 and this figure is therefore sim-
ilar to Fig. 6.

Figure 12 shows the variation of log10 σi , log10 |ci |
and log10 |ci |/σi with i for polynomials of degrees d =
4, 8, 12, 16, 20, 24. The graphs in the figure show that the
constants |ci | are approximately independent of i and d, and
that the ratios |ci |/σi increase with i , which shows that the
discrete Picard condition is not satisfied. It follows that xls

2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

log (A)

log (A,b)

degree =12

Fig. 11 The variation of the condition number log10 κ(A) and effective
condition number log10 η(A, b)with the degree d of the approximating
polynomial, for Example 4

is dominated by the small singular values of A and regu-
larisation must not be applied because it would remove the
contribution of these singular values from xls. Figure 13
shows the L-curves for polynomials of degrees 5, 10, 15, 20
and they are similar to Fig. 4(ii). The curve for a polynomial
of degree 20 has an L, but as for Example 3, ‖x0(λ)‖ does
not decrease rapidly as λ increases from λ = 0.

The LS problem was solved for polynomials of degrees
d = 1, . . . , 24, and the number of sign changes in each col-
umn of V , for each LS problem, was computed. The results
are shown in Fig. 14 and it is seen that for each value of
d = 1, . . . , 12, there are i −1 sign changes in the i th column
of V for the overdetermined problem (1 ≤ d ≤ 11) and the
interpolation problem (d = 12).

Figure 15 shows the function (14), a noisy form f̃ (x), with
signal-to-noise ratio (SNR) ‖b‖/‖δb‖ = 7, of f (x), approx-
imations with polynomials of degree d = 22 that overfit
f (x) and f̃ (x), and an approximation with a polynomial
of degree d = 2 that underfits f̃ (x). Overfitting of f (x)
and f̃ (x) occurs at the tails of the curve, but regularisation
cannot be used to reduce it because Fig. 12 shows that the
ratios |ci |/σi increase approximately monotonically and thus
the exact solution xls is dominated by the small singular val-
ues of A. Regularisation removes these singular values from
xls and thus its application would lead to a large error. It fol-
lows that regularisation cannot be used to solve the problem
of overfitting of a high degree polynomial approximation to
the function f (x) defined in (14).

The oscillatory curves in Fig. 15 demonstrate Runge’s
phenomenon, also known as the Gibbs phenomenon, which
arises when a polynomial of high degree approximates a
function. It is characterised by large oscillations and errors
near the edges of the interval, and it shows that interpolation
by polynomials of high degree leads to overfitting.

Noise was not added to the 25 points, that is, to b, in Fig.
10. Figure 12 shows that the ratios |ci |/σi increase with i and
thus the solution of the LS problem is dominated by the small
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Fig. 12 The variation of a log10 σi , b log10 |ci |, and c log10 |ci |/σi with i , for polynomials of degrees d = 4, 8, 12, 16, 20, 24, for Example 4

Fig. 13 The L-curves for
polynomials of degrees
d = 5, 10, 15, 20, for Example
4. The values of λ defined by the
square of the minimum and
maximum singular values of A
are marked
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singular values of A. The addition of noise would therefore
cause a small error in this solution. ��
Example 5 Example 4 was repeated for the function [22,
§2.3],

f (x) = 1

1 + 25x2
, (15)

for−1 ≤ x ≤ 0.8, which differs from the function (14) by
a shift of two units of the independent variable x but it is oth-
erwise identical. Figure 16 shows the variation of log10 κ(A)

and log10 η(A, b) with the degree d of the approximating
polynomial. The maximum value of η(A, b) is 101.5 = 32
and thus the LS problem is well conditioned. The figure is
similar to Figs. 6 and 11 but κ(A) is much smaller, by sev-

eral orders of magnitude, and the variation of η(A, b) with
d is very similar for the functions (14) and (15). Figure 17
shows the variation of log10 σi , log10 |ci | and log10 |ci |/σi with
i for polynomials of degrees d = 4, 8, 12, 16, 20, 24, for the
function (15). Figure 16 is confirmed by the graphs in Fig. 17,
which show that the ratios log10 |ci |/σi increase with i , albeit
not monotonically. The graphs in the figure are very similar
to the graphs in Fig. 12 but the singular values span a smaller
range, which is expected from comparison of κ(A) in Figs.
11 and 16. Figure 18 shows the L-curves for polynomials of
degrees 5, 10, 15, 20, and they are similar to Fig. 4(ii). They
confirm that the discrete Picard condition is not satisfied, and
thus regularisation must not be applied.
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Fig. 14 The number of sign changes in each column of V for polyno-
mials of degrees d = 1, . . . , 24, for Example 4. The coefficient matrix
A is square when d = 12, which is shown by the red bars
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Fig. 15 a The exact function f (x), b a noisy form f̃ (x) of f (x), (c)
an approximation that overfits f (x), d an approximation that overfits
f̃ (x) and (e) an approximation that underfits f̃ (x), for Example 4
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Fig. 16 The variation of the condition number log10 κ(A) and effective
condition number log10 η(A, b)with the degree d of the approximating
polynomial, for Example 5

Figure 19 shows the exact function f (x), (15), a noisy
form f̃ (x) of f (x)when noise with SNR = 25 is added to b,
approximations that overfit f (x) and f̃ (x), and an approxi-
mation that underfits f̃ (x). There is considerable overfitting,
and Figs. 16 and 17 show that xls is stable and thus regu-
larisation must not be imposed. It follows that regularisation

cannot be used to solve the problem of overfitting that arises
when a polynomial of high degree approximates the function
(15). Runge’s phenomenon is evident in Fig. 19 to a much
greater degree than in Fig. 15 and thus the extent of overfitting
is dependent on the interval of the independent variable.

Noise was not added to the function values f (xi ), i =
1, . . . , 13, of the function (15), and its effect would be minor
because η(A, b) ≈ 32. Figure 17 confirms that the solution
of the LS problem is stable because it is dominated by the
small singular values of A. ��

Example 6 Figure 20 shows m = 26 points {xi , f (xi )}mi=1
uniformly distributed in the interval I = [1, . . . , 21] and a
curve formed from n = 17 exponential basis functions,

f (xi ) =
n∑

j=1

a j exp

(−(xi − d j )
2

2σ 2

)
, (16)

for i = 1, . . . ,m, that interpolates the points, where
σ = 2.35 and the centres d = {

d j
}n
j=1 of the exponential

functions are uniformly distributed in I .
Figure 21(i) shows the variation of the constants log10 |ci |,

the singular values log10 σi and the ratios log10 |ci |/σi with i ,
and it is seen that the constants |ci | decay to zero faster than
the singular values σi decay to zero, from which it follows
that xls is unstable because the discrete Picard condition (6)
is satisfied. Figure 22 shows the L-curve and it is very similar
to the L-curve in Fig. 4(i), which confirms that the discrete
Picard is satisfied. The instability of xls is apparent in Fig.
21(ii), which shows the ratios log10 |ci |/σi and log10 |ci+δci |/σi ,
after the addition of noise with SNR = 25 to b, because
log10 |ci+δci |/σi is dominated by noise for i ≥ 7.

It follows that the noise dominates the solution xls + δxls
and thus only the singular values σ16 and σ17 need be con-
sidered in this solution,

|ci + δci |
σi

≈ |δci |
σi

� |ci |
σi

, i = 16, 17,

and thus

xls + δxls ≈
n∑

i=n−1

(
ci + δci

σi

)
vi

≈
(

δc16
σ16

)
v16 +

(
δc17
σ17

)
v17.

Figure 21(ii) shows that |ci+δci |/σi and |ci |/σi decrease at the
same rate for i = 1, . . . , 6, and that the noise δci manifests
itself for i = 7, . . . , 17. The regularised approximation of xls
by TSVD (13) is therefore obtained by removing the singular
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Fig. 17 The variation of a log10 σi , b log10 |ci |, and c log10 |ci |/σi with i , for polynomials of degrees d = 4, 8, 12, 16, 20, 24, for Example 5

Fig. 18 The L-curves for
polynomials of degrees
d = 5, 10, 15, 20 for Example
5. The values of λ defined by the
square of the minimum and
maximum singular values of A
are marked
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Fig. 19 a The exact function f (x), b a noisy form f̃ (x) of f (x), c
an approximation that overfits f (x), d an approximation that overfits
f̃ (x), and e an approximation that underfits f̃ (x), for Example 5

values σi , i = 7, . . . , 17, from the noisy solution,

x1(t = 6) =
6∑

i=1

(
ci + δci

σi

)
vi

≈
6∑

i=1

(
ci
σi

)
vi . (17)

Figure 23(i) shows the coefficients log10 |ai | of the exact
solution xls and the coefficients log10 |ai + δai | of the per-
turbed solution xls+δxls. Figure 23(ii) shows the coefficients
ai of the exact solution xls, the coefficients of the regularised
solutions in which λ∗ is computed from the L-curve and the
GCV, and the coefficients of the regularised solution from
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Fig. 20 A curve that interpolates m = 26 points in the interval I =
[1, . . . , 21], for Example 6

TSVD (17). The figure shows that TSVD yields the best reg-
ularised solution and that the regularised solution in which
λ∗ is computed from the L-curve has more oscillations than
the regularised solution in which λ∗ is computed from the
GCV. The failure of the L-curve to yield a satisfactory regu-
larised solution has been observed in some problems whose
solutions are smooth [7, p. 190]. The decay of the value of
λ∗ computed from the L-curve as the noise level decreases
to zero is considered in [23] and it is shown it is too rapid,
which yields a regularised solution that does not converge to
the exact solution. Experiments show that under smoothing
may occur when the GCV is used, and this is observed in the
regularised solution obtained from the GCV in Fig. 23(ii) [7,
p. 197].

Theorem 4 shows that if xls is unstable with respect to a
perturbation in b, then η(A, b) is also unstable. This is con-
firmed in Fig. 24, which shows the variation of log10 κ(A),
log10 η(A, b), and log10 η(A, b + δb) when noise δb with
SNR = 25 is added to b, for m = 26 and n = 1, . . . , 32.
The noise causes a reduction in the value of η(A, b) and
the maximum value of this reduction is about seven orders
of magnitude. Figure 24 shows that κ(A) attains its maxi-
mum value when A is square (m = n = 26), after which
it is approximately constant at a slightly lower value, and it
therefore has the same properties as the graphs in Figs. 11
and 16 for the monomial basis.

Figure 25 shows the number of sign changes in the entries
of the columns vi of V for m = 26 as the number of basis
functions increases from n = 1 to n = 32. There are i − 1
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Fig. 22 The L-curve for Example 6. The values of λ defined by the
square of the minimum and maximum singular values of A, and the
optimal value λ∗ = 0.0187 of λ, are marked

sign changes in vi for n ≤ m and this sign change property is
not present for n > m. The condition n = m therefore marks
the division between the satisfaction, and lack of satisfaction,
of the sign change property. The matrix AT A is singular for
n > m and thus it is not an oscillation matrix for these values
of n.

Figure 26 shows the curve that interpolates the m = 26
points, and the points b̃ = Axls = AA†b for n = 7 basis
functions and n = 30 basis functions. Figure 24 shows that
η(A, b) = 12.40 and κ(A) = 20.23 when n = 7, and Fig.
26 shows that the error between this curve and the given
curve is small, and that overfitting does not occur. The figure
also shows there is a small level of overfitting when n =
30, but significantly less overfitting than in Figs. 15 and 19
for Examples 4 and 5, respectively. Regularisation must be
applied when n = 30 in order to obtain a computationally
reliable solution becauseFig. 24 shows thatη(A, b) = 4.57×
109 and κ(A) = 9.77 × 1013, and thus xls is unstable. ��

6 Summary

This paper has considered the application of regularisation to
regression and it has been shown it cannot solve the problem
of overfitting. This result, which is consistent with previous
results on physics informed neural networks and deep neural
networks, was derived using a refined condition number of
the LS problem, from which the discrete Picard condition
was established. The satisfaction of this condition implies

Fig. 21 (i) The constants
log10 |ci |, the singular values
log10 σi and the ratios
log10 |ci |/σi , and (ii) the ratios
log10 |ci |/σi and the ratios
log10 |ci+δci |/σi , for Example 6
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Fig. 23 (i) The coefficients
log10 |ai | and log10 |ai + δai | of
the exact and perturbed
solutions xls and xls + δxls,
respectively, and (ii) the
coefficients of (a) the exact
solution, (b) the regularised
solution with λ∗ computed from
the L-curve, (c) the regularised
solution with λ∗ computed from
the GCV, and (d) the regularised
solution (17) computed by
TSVD, for Example 6

5 10 15 20 25 30
0

5

10 log (A)

log (A,b)

log (A,b+ b)

m = n = 26

Fig. 24 The effective condition number log10 η(A, b), the effec-
tive condition number log10 η(A, b + δb) and the condition number
log10 κ(A), for Example 6

Fig. 25 The number of sign changes in each column of V for n =
1, . . . , 32, basis functions, for Example 6. The coefficient matrix A is
square when n = m = 26, which is shown by the red bars
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Fig. 26 a The function (16), b the computed data using n = 7 basis
function, and c the computed data using n = 30 basis functions, for
Example 6

that regularisation can be applied and it leads to the premise
on which regularisation is based. Specifically, it is based on a
trade-off between the error and condition of the LS problem
because a significant reduction in its condition is associated
with a small and acceptable error in the regularised solution.
If, however, the discrete Picard condition is not satisfied, then
the error in the regularised solution is large,which is therefore
unacceptable. This trade-off between the condition of the LS
problem and the error in the regularised solution is known as
the bias-variance trade-off in machine learning.

Well conditioned LS problems for which the regression
curve displays overfitting were presented, but it follows from
their well conditioned property that regularisation must not
be applied. The condition numbers of the coefficientmatrices
in these examples are large, which suggests the LS problems
are ill conditioned.The effective condition numbers are, how-
ever,much smaller and they show that regularisationmust not
be applied because it would lead to a large error. Also, an ill
conditioned LS problem that requires regularisation and for
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which the regression curve exhibits a small level of overfit-
ting was shown.

It has been shown that regularisation does not solve the
problem of overfitting in regression, but the problem of over-
fitting persists. Research is therefore required to identify the
cause of overfitting and to develop a method that minimises
its adverse effects.

Author Contributions Dr Joab Winkler carried out all the work: (a)
Theoretical analysis (b) The software that demonstrates the examples
(c) The writing of the manuscript and proof reading

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bartlett, P., Long, P., Lugosi, G., Tsigler, A.: Benign overfitting
in linear regression. Proc. Nat. Acad. Sci. 117(48), 30063–30070
(2020)

2. Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern
machine-learning practice and the classical bias-variance trade-off.
Proc. Nat. Acad. Sci. 116(32), 15849–15854 (2019)

3. Huang, T., Hogg, D.W., Villar, S.: Dimensionality reduction, reg-
ularization, and generalization in overparameterized regressions.
SIAM J. Math. Data Sci. 4(1), 126–152 (2022)

4. Bajaj, C., McLennan, L., Andeen, T., Roy, A.: Recipes for when
physics fails: recovering robust learning of physics informed neural
networks. Mach. Learn.: Sci. Technol. 4, 015013 (2023)

5. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Under-
standing deep learning (still) requires rethinking generalization.
Comm. ACM 64(3), 107–115 (2021)

6. Hansen, P.C.: The discrete Picard condition for discrete ill-posed
problems. BIT 30, 658–672 (1990)

7. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion. SIAM, Philadelphia, USA
(1998)

8. Richards,D.,Mourtada, J., Rosasco, L.: Asymptotics of ridge (less)
regression under general source condition. Proc.Mach. Learn. Res.
130, 3889–3897 (2021)

9. Wu, D., Xu, J.: On the optimal weighted �2 regularization in over-
parameterized linear regression. Adv. Neural. Inf. Process. Syst.
33, 10112–10123 (2020)

10. Gantmacher, F.R., Krein, M.G.: Oscillation Matrices and Kernels
and Small Vibrations of Mechanical Systems. AMS Chelsea Pub-
lishing, Rhode Island, USA (2002)

11. Price, H.: Monotone and oscillation matrices applied to finite dif-
ference approximations. Math. Comput. 22, 489–516 (1968)

12. Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins
University Press, Baltimore, USA (2013)

13. Li, Z.-C., Huang, H.-T.: Effective condition number for numeri-
cal partial differential equations. Numer. Linear Algebra Appl. 15,
575–594 (2008)

14. Li, Z.-C., Huang, H.-T., Chen, J.-T., Wei, Y.: Effective condition
number and its applications. Computing 89, 87–112 (2010)

15. Lakshmi, M.V., Winkler, J.R.: Numerical properties of LASSO
regression. Appl. Numer. Math. 208, 297–309 (2025)

16. Winkler, J.R.: Error analysis and condition estimation of the pyra-
midal formof theLucas-Kanademethod in optical flow.Electronics
13(5) (2024)

17. Winkler, J.R., Mitrouli, M.: Condition estimation for regression
and feature estimation. J. Comp. Appl. Math. 373, 112212 (2020)

18. Winkler, J.R., Mitrouli, M., Koukouvinos, C.: The application
of regularisation to variable selection in statistical modelling. J.
Comp. Appl. Math. 404, 113884 (2022)

19. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images:Matri-
ces, Spectra, and Filtering. SIAM, Philadelphia, USA (2006)

20. Choi, H.G., Thite, A.N., Thompson, D.J.: Comparison of methods
for parameter selection in Tikhonov regularizationwith application
to inverse force determination. J. Sound Vib. 304, 894–917 (2007)

21. Zare, H., Hajarian, M.: Determination of regularization parameter
via solving a multi-objective optimization problem. App. Num.
Math. 156, 542–554 (2020)

22. Bollt, E.: Regularized kernel machine learning for data driven fore-
casting of chaos. Ann. Rev. Chaos Theory, Bifurcat. Dyn. Syst. 9,
1–26 (2020)

23. Hanke, M.: Limitations of the L-curve method in ill-posed prob-
lems. BIT 36, 287–301 (1996)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Overfitting, regularisation and condition estimation in regression
	Abstract
	1 Introduction
	2 Background
	3 Condition estimation
	4 Regularisation
	4.1 The optimal value of the regularisation parameter

	5 Examples
	6 Summary
	References


