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Abstract
Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity. 
We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell 
has a different value of an attribute linked to survival. Once the drug reduces a cell’s value below a threshold, the cell is 
susceptible to death. The elimination of the last cell in the population is a natural endpoint that is not available in deterministic 
models. We find formulae for the probability density of this extinction time in a collection of tumour cells, each with a 
different regulator value, under the influence of a drug. There is a logarithmic relationship between tumour population size 
and mean time to extinction. We also analyse the population under repeated drug doses and subsequent recoveries. Stochastic 
cell death and division events (and the relevant mechanistic parameters) determine the ultimate fate of the cell population. We 
identify the critical division rate separating long-term tumour population growth from successful multiple-dose treatment.    

Keywords  Targeted therapy · Heterogeneity · Cancer · Stochastic · Modelling · Pharmacodynamics

Introduction

Models of the systemic distribution and elimination of 
drugs, and models of the effects of drugs, are called phar-
macokinetic and pharmacodynamic (PK-PD) models [1–4]. 
Those based on ordinary differential equations (ODEs) are 
useful for ease of analysis [5–7] but they lack two important 
aspects of reality: stochasticity and heterogeneity. Hetero-
geneity is important in many contexts: protein expression 
varies from cell to cell; bacteria vary in their susceptibility 
to antibiotics [8]. Stochastic models have the feature that 
many outcomes are possible even if all conditions and initial 
states are given [9]; events occurring at random times impact 
disease progression and treatment effects. While agent-based 

models naturally incorporate heterogeneity and stochasticity 
and are amenable to computational studies [10], synthesis 
into simple formulae is rare [11, 12]. Here, we introduce 
and analyse stochastic models of a heterogeneous popula-
tion of cancer cells acted on by a drug, which serve as a 
bridge between differential equation-based and agent-based 
models [9]. Following established practice in PK-PD mod-
elling [13, 14], we consider both a single sustained dose 
and a regimen of multiple doses at regular intervals, with 
recovery periods between doses. In the first case, a constant 
drug concentration is maintained [15, 16]; in the second, the 
drug is absent during recovery periods.

We focus on a simple model of a drug acting to kill a 
population of tumour cells. The dynamics includes cell-to-
cell variability: every tumour cell has a different value of an 
attribute that we call the regulator value and is linked to cell 
viability. Once the action of the drug succeeds in reducing 
a cell’s regulator value below a threshold, the cell is “in 
the death pool”, meaning it is subject to death. Our model 
is based on an agent-based model in which the regulator is 
phosphorylated ERK in vivo [12], but can also be applied 
to pharmacodynamics in vitro. Our motivating example was 
the reduction of phosphorylation of ERK by oral dose of 
the MEK inhibitor cobimetinib. The PD effect is modelled 
by a single variable that represents cellular pERK, as in the 
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population-based PKPD model of Wong et al. [17] (used to 
fit tumour concentrations and pERK data) and the agent-
based model with ODE approximations of Truong et al [12]. 
This PK-PD mechanistic framework is common to many 
oncology targeted treatments, and it serves as an illustrative 
example here. We are able to summarise the dynamics not by 
deriving ordinary differential equations valid when the num-
ber of cells is large, but in terms of survival functions and 
densities of extinction times with recognisable forms in the 
limit of large numbers of cells. The model is implemented 
in the python language and the code can be found online.1

Our model resembles the simplest pharmacodynamic 
models in that a cell’s regulator value decreases 
exponentially, with rate � , when the drug is present. The 
key stochastic aspect of the dynamics is the death of cells 
whose regulator value is sufficiently small. An advantage 
of a stochastic model is its natural endpoint: the death of 
the last tumour cell. The distribution of this extinction 
time can be constructed numerically and, in our simplest 
models, analytically. That is, we ask: how long until, under 
the action of the drug, all of n cells are eliminated? (Using 
ordinary differential equations it is possible to use the time 
a trajectory reaches a suitable lower bound as a proxy for the 
mean extinction time.)

A brief mathematical description of the assumptions 
and dynamics is as follows. The number of tumour cells 
at any time is an integer that may reach zero in finite time. 
Each cell has a regulator value, scaled to the interval (0, 1); 
we use values chosen from the uniform distribution on the 
interval as our initial condition. The action of the drug on 
an individual cell decreases its regulator value according 

to a deterministic relationship. In the schematic diagram, 
Fig. 1, each cell’s regulator value is multiplied by the factor 
0.65 at some time after drug treatment begins (right panel). 
Examples from an agent-based model can be found in 
Figure 2.2 of the tutorial [12]. A cell’s death rate, in the 
stochastic sense where a rate is a probability per unit time, 
depends on its regulator value at time t, k(t), via the function 
w. That is, if a cell is alive at time t with regulator value k(t) 
then the probability that it dies before t + Δt is w(k(t))Δt . 
If a cell is alive at time 0 with regulator value k, then the 
probability that it is still alive at time t, is found using the 
hazard-rate formula [18]

Using (1), we calculate S(t), the probability that a tumour 
cell, chosen at random from the initial population, is still 
alive at time t. Two timescales are relevant in the analysis: 
1∕� describes the time for the drug to take effect and 1∕� is 
the mean time for cells to die once they arrive in the death 
pool. Our multiple-dose-and-recovery scenario in Sect. 3 
also contains a third timescale, 1∕� , associated with divi-
sion of tumour cells.

In Sect. 2, we assume the cancer cell population is con-
tinuously exposed to the drug. In the first subsection, we 
examine the fate of a single cell: Once its regulator value 
k falls below a certain threshold due to drug exposure, it 
enters the death pool. (The threshold value of 0.25 is chosen 
to match the corresponding published agent-based model 
in Truong et al [12] but can be adjusted to the pathway of 
interest.) While death is the ultimate fate of any cell, the 
mean time to extinction depends on its initial k value. We 
investigate the survival probability when w(k) is constant 

(1)

s(t, k) = ℙ(cell survives to time t|k(0) = k) = exp

(
−∫

t

0

w(k(s))ds

)
.

Fig. 1   Each blue dot represents 
a tumour cell. The drug’s action 
reduces each cell’s regulator 
value, thereby increasing the 
fraction of cells in the death 
pool. Left: In a population of 
cells before drug dose, initial 
regulator values are uniformly 
distributed. Those cells with 
regulator values below a thresh-
old (those inside the zone col-
oured red) are said to be in the 
death pool. Right: Some time 
after drug dose begins, each 
cell’s regulator value is reduced 
by the same factor. Hence, a 
greater proportion of cells are 
in the death pool (Color figure 
online)

1  https://​github.​com/​VanTh​uyTru​ong/​stoch​astic_​pharm​acody​namic.

https://github.com/VanThuyTruong/stochastic_pharmacodynamic
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below the threshold and, in the Supplementary Material, 
with w(k) a linear function of k below the threshold. (Which 
is more realistic will depend on the physiological pathway 
of interest.) The survival probability is given in terms of the 
drug-specific parameters � and � . In the second subsection, 
we look into a population where each cell has a different k 
value. For a population with n individual cells we derive the 
expectation and variance of the time to population extinc-
tion. With increasing n, the probability density of extinction 
times shifts towards later times while maintaining its shape.  

In Sect. 3, cell division is included in the dynamics by 
means of a second threshold regulator value. The range 
of regulator values, and hence the population of cells at 
any time, is divided into three: cells with values over the 
threshold of 0.5 are said to be the division pool because they 
have a constant probability per unit time of dividing into 
two cells; cells with k in the range (0.25, 0.5) neither divide 
nor die; cells with values below 0.25 are said to be in the 
death pool (Similarly to Sect. (), the threshold value of 0.5, 
in principle arbitrary, is chosen to match the corresponding 
published agent-based model in Truong et al [12]. In Sect. 2, 
we consider a continuous drug dose that drives all cells into 
the death pool, hence no division occurs.)

Although our calculations focus on nondimensional 
combinations of parameters, such as �∕� , it is helpful to 
keep in mind reasonable timescales that depend on context. 
We expect 1∕� , the time required for the drug to alter the 
biochemical state of cells, in vitro or in vivo, to be minutes 
or hours. Mean times for the processes of cell death and cell 
division, 1∕� and 1∕� , will be hours or days [17, 19]. Yang 
et al. [19] used time-resolved microscopy to count number 
of live and dead tumour cells over four days in vitro. They 
estimated a division rate of 0.1 day−1.

Also in Sect. 3, we consider multiple rounds of drug dose 
and recovery [20], with cell death and division. Drug treat-
ment is repetitively administered with a recovery period 
before the next cycle. During recovery periods, the k value 
of each cell increases; some cells enter the division pool and 
divide. Thus we find dynamics where the number of cells 
tends to decrease during drug doses and to increase during 
recovery intervals. Under the influence of repeated doses 
and recovery periods, whether extinction is the ultimate 

fate of the population depends on the balance between cell 
death and division. That balance, in turn, depends on the 
distribution of regulator values in the surviving cell pop-
ulation, which becomes biased towards larger values. We 
derive equations to describe the change of the regulatory 
value k after multiple cycles. Thus, the calculations begin 
with a single cell with known initial regulator value, then 
consider a randomly-selected cell from the distribution of 
initial regulator values, allowing consideration of a cohort of 
n cells under single sustained dose. The model then extends 
to multiple rounds of dose and recovery, including cell divi-
sion. An overview is provided in Table 1. Additionally, in 
the Supplementary Material, the relationship between the 
critical death rate �c needed to be attained by the drug, the 
cellular division rate � , the drug potency � , and schedule-
specific parameters cycle time T and recovery time Td , is 
investigated.

Complicated dynamical systems are most useful as 
models of real phenomena when the parameters can be 
combined into formulae that summarise the behaviour. In 
models with stochasticity and heterogeneity, such a summary 
must go beyond mean quantities by predicting distributions 
of outcomes. We are able to provide such formulae and 
distributions, with particular focus on the distribution of 
times until the the elimination of the last cancer cell.

Single sustained dose, no cell division

We assume that an uninterrupted drug dose (giving rise 
to constant drug levels) yields the following deterministic 
relationship for cell i

and that cells with ki(t) < 0.25 are in the death pool. In the 
simplest case, the death rate of any cell in the death pool 
is equal to a constant � . Cells with ki(0) > 0.25 are not ini-
tially in the death pool but enter the pool when their regula-
tor value has decreased to 0.25. Figure 2 is a small-scale 
illustration of the resulting dynamics: the ten cells initially 

(2)ki(t) = ki(0) exp(−�t),

Table 1   Overview of model framework and results

Single cell behaviour (known k value) Randomly-selected cell Population of n cells under single 
sustained dose

Multiple-dose treatment, including cell 
division

Time of arrival in the death pool tk Survival probability 
S(t) with a step-
function death rate

Mean and variance of time to popula-
tion extinction �n

Dynamics of regulator values under 
multiple-dose treatment using a 
difference equation

Survival probability s(t, k) Mean and variance of 
time to death of a 
single cell �1

Probability density fn(t) of the time to 
population extinction

Estimate of the critical death rate �c for 
population extinction
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present die, one by one, as their regulator values decline 
under the influence of the drug, taking them into the death 
pool.

Let tk be the first time that a cell, whose initial regulator 
value is equal to k, enters the death pool. The lifetime of the 
cell is the sum of tk and the time to die once the cell enters 
the death pool. We can calculate tk using (2):

This time is shown on the LHS in Fig. 3. On the RHS, two 
possible functions w(k) are shown. We will use w0(k) in this 
Section and w1(k) in the Supplementary Material, where

Survival and death of individual cells

Consider a cell chosen at random from a population with 
initial regulator values uniformly distributed between 0 
and 1. The probability that it survives to t is obtained by 
integrating (1):

(3)

tk = inf{t ≥ 0: ki(t) ≤ 0.25 � ki(0) = k}

=

⎧⎪⎨⎪⎩

0 0 ≤ k ≤ 1

4
1

𝛿
log(4k)

1

4
< k ≤ 1.

(4)w0(k) =

{
0 k >

1

4

𝜇 k <
1

4
.

We evaluate the integral in  (1) using  (4) to yield the 
probability that a cell labelled i survives to time t:

Figure 4 shows s(t, k) as a function of t using four values of k 
(upper) and as a function of k using four values of t (lower).

Next, consider a cell chosen at random from a population 
with initial regulator values uniformly distributed between 0 
and 1. The probability that a cell, chosen in this way, survives 
to t is found by evaluating the integral in (5) as follows:

Note that, if k > 1

4
 then e�tk = (4k)�∕� . On the RHS in (8), the 

term 1
4
e−�t corresponds to cells that are in the death pool at 

t = 0 (and remain there). The term 1 − 1

4
e�t is the fraction of 

cells that are not in the death pool. Evaluating the integrals,

(5)

S(t) = ℙ(randomly-chosen cell survives to time t) = ∫
1

0

s(t, k)dk.

(6)

s(t, k) = ℙ
(
cell survives to time t|ki(0) = k

)
=

{
1 t ≤ tk
e−𝜇(t−tk) t > tk.

(7)S(t) =
1

4
e−�t + ∫

1

1

4

s(t, k)dk

(8)

=
1

4
e−𝜇t +

⎧
⎪⎪⎨⎪⎪⎩

e−𝜇t �
1

4
e𝛿t

1

4

(4k)𝜇∕𝛿dk + 1 −
1

4
e𝛿t 𝛿t < log 4

e−𝜇t �
1

1

4

(4k)𝛿∕𝜇dk 𝛿t ≥ log 4.

Fig. 2   Illustrating the effect of 
a sustained dose on a popula-
tion of 10 cells. Each blue line 
is the regulator attribute of one 
cell as a function of time. Lines 
terminate in blue dots that indi-
cate cell death. Cells are said to 
be in the death pool when their 
regulator value is less than 0.25, 
indicated by red shading. Sim-
ple model without cell division, 
with parameter values � = 0.2 
and � = 1

Fig. 3   Left: The time, tk , at 
which a cell enters the death 
pool is shown as a function of 
the cell’s initial scaled regulator 
value. Right: two death-rate 
functions w0(k) and w1(k)
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where

The factor A is an increasing function of the ratio �∕� , with 
A = 1 when �∕� = 0 . In the limit �∕� → 0 , the action of the 
drug is fast compared to the typical survival time of a cell 
in the death pool.

The probability density of single-cell death times, shown 
as the top panel in Fig. 6, is obtained from the derivative of 
S(t):

The mean time to death of a single cell will be denoted 
IE(�1) . It is equal to the sum of the mean time to arrive in the 
death pool plus the mean time to die once in the death pool:

The variance of �1 is

(9)S(t) =

⎧⎪⎨⎪⎩

1 −
�

4

e�t − e−�t

� + �
�t ≤ log 4

Ae−�t �t ≥ log 4,

(10)A = ∫
1

0

e�tkdk =
4�∕� +

1

4

�

�

1 +
�

�

.

(11)f (t) = −S�(t) =

⎧
⎪⎨⎪⎩

��e�t − �2e−�t

4(� + �)
�t ≤ log 4

�Ae−�t �t ≥ log 4.

(12)IE(�1) = ∫
1

1

4

tkdk +
1

�
=

1

�
(log 4 −

3

4
) +

1

�
.

(13)var(�1) =
1

�2
.

Note that the variability of the mean time to death of a single 
cell is a function only of the time the cells take to die once 
they arrive in the death pool.

Extinction of a cohort of n tumour cells

Suppose there are n tumour cells at t = 0 , with regulator val-
ues uniformly distributed in (0, 1). How long until all n cells 
die? An example realisation, with n = 100 , calculated using 
the single sustained dose model described above, is shown in 
Fig. 5. That is, the blue line is a number of cells surviving to 
time t when each, independently, is assigned an initial regula-
tor value in (0, 1) and, under the action of the drug, enters the 
death pool.

We define the random variable Nt to be the number of 
cells alive at time t, with N0 = n . Let �n be the first time 
that Nt = 0 . Inspecting  (9), we see that the single-cell 
survival probability has a simple exponential form as long as 
𝛿t > log 4 . The form is S(t) = Ae−�t is found if an individual 
lifetime is drawn as a random variable that is the sum of 
a fixed time of duration logA∕� and an exponentially-
distributed time with mean 1∕� . The time to extinction of n 
such individuals ( IE(�n) ) is given by [21]

where � = 0.577… . We use the symbol ≃ to denote the 
large-n approximation. Similarly [22, 23]

(14)

IE(�n) =
1

�

(
logA + 1 +

1

2
+

1

3
+⋯ +

1

n

)
≃

1

�
(log nA + �),

(15)var(�n) =
1

�2

(
1 +

1

4
+

1

9
+⋯ +

1

n2

)
≃

1

�2

�2

6
.

Fig. 4   Upper: s(t, k) is the prob-
ability that a cell, whose initial 
regulator value is k, is still alive 
at time t when w(k) = w0(k) . If 
k is fixed then s(t, k) is a non-
increasing function of t. Lower: 
The probability that a cell, 
whose initial regulator value 
is k, is still alive. If t is fixed 
then s(t, k) is a non decreasing 
function of k. The formula used 
is (6), with � = 1 and � = 0.5
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As can be seen in Figs.  5 and 6, a consider-
able simplification arises because typical values 
of �n are large compared to 1∕� . When 𝛿t > log 4 , 
ℙ(randomly-chosen cell dies before time t) = 1 − Ae−�t , and 
we are able to derive the probability density of �n explicitly. 
Because each cell is independent, when 𝛿t > log 4,

and the probability density of �n is

which attains its maximum value when nAe−�t = 1 . Figure 6 
shows the density with different choices of n. The maximum 
of the density is at tmax =

1

�
log nA . It is striking, in Fig. 6, 

that increasing n while keeping � constant shifts the 
distribution to the right, maintaining its shape. With this in 
mind, consider (16) when t is close to tmax and n is large so 
that Ae−�t is small. Then log(1 − Ae−�t)n = n log(1 − Ae−�t) ≃ −nAe−�t , 

(16)ℙ
(
𝜏n < t

)
= ℙ(n cells all die before t) = (1 − Ae−𝜇t)n,

(17)fn(t) = �nAe−�t
(
1 − Ae−�t

)n−1
,

so that ℙ
(
𝜏n < t

)
= exp(−nAe−𝜇t) . If Tn = �t − log(nA) then 

ℙ
(
𝜏n < t

)
≃ exp(−e−Tn) and

In other words, the random variable �(�n − tmax) is 
approximately Gumbel-distributed [24] when n is large.
We use (18) to construct an algorithm that directly generates 
samples from the extinction-time density without simulating 
the whole timecourse of the stochastic process. Given any p 
in (0, 1), the value of t such that ℙ

(
𝜏n < t

)
= p is2

(18)fn(t) ≃ � exp
(
−Tn − e−Tn

)
.

Fig. 5   Blue: The number of surviving cells as a function of time in 
one realisation of the single, sustained dose model. Also shown is the 
smooth function obtained by averaging over many realisations, equal 

to the survival function S(t)  (9) multiplied by the initial number of 
cells. The vertical dotted line indicates t = log 4∕� . Here n = 100 , 
� = 1 and � = 0.2 (Color figure online)

Fig. 6   Probability density of 
extinction times, sustained dose 
with n = 1 , 10, 100 and 1000. 
Solid red lines are the exact 
formulae; the blue histograms 
are compiled from 10,000 
numerical realisations. The 
same horizontal scale is used in 
each case, with � = 0.2 and 
� = 1 . Top: n = 1 . The 
maximum is at t = 1

�
log 4 , after 

which all cells are in the death 
pool. In each of the lower three 
panels, the vertical dotted line is 
tmax =

1

�
log(nA) . The ratio �∕� 

determines the factor A 

2 
p = exp

(
−nAe−�t

)

1∕p = exp
(
nAe−�t

)

log(1∕p) = nAe−�t

log (log(1∕p)) = log(nA) − �t

�t = �tmax − log(log(1∕p)).



Journal of Pharmacokinetics and Pharmacodynamics (2025) 52:28	 Page 7 of 11  28

Thus if U is uniformly distributed in (0,  1) (the 
simplest random var iable available in modern 
computer languages  [10]) then the random variable 
(− log(− logU) + log(nA))∕� is a sample from the 
density (18). In Fig. 7, we display the cumulative distribution 
of the extinction time �1000 . The Figure also indicates t01 , t50 
and t99 , defined as the values of t such that ℙ

(
𝜏n < t

)
 is equal 

to 0.01, 0.50 and 0.99. The factor A is calculated using the 
same parameter values as in Fig. 6.

In Fig. 7 we display the cumulative distribution of the 
extinction time of a population consisting of 1000 cells. The 
Figure also indicates t01 , t50 and t99 , defined as the values of t 
such that the probability of population extinction ℙ

(
𝜏n < t

)
 

is equal to 0.01, 0.50 and 0.99, calculated using (19). The 
constant A is calculated using the same parameter values as 
in Fig. 6. In Table 2, we summarise the main results of the 
sustained-dose model.

(19)t = tmax −
1

�
log(log(

1

p
)).

Multiple‑dose treatment with cell division

In multiple-dose treatment, the drug is administered in doses 
of duration Td each, followed by a recovery period of dura-
tion T − Td . Thus, one cycle takes time T. In the example of 
Fig. 9, the recovery period is twice the dose duration.

Let us examine how each cell’s regulator value changes. 
While a dose is being administered, the drug’s effect is 
similar to that described by (2):

In recovery periods, on the other hand, a cell’s regulator 
value relaxes towards its natural value ki(0) with rate � . In 
the first recovery period

In general, during the nth dose,

In the nth recovery period

As shown in Fig. 9, we denote the nth peak regulator 
value by kn . That is, kn = ki(nT) . Then

Given n ≥ 1 , we find that kn+1 depends on kn and k0 as 
follows:

where a = 1 − e−�(T−Td) and b = e−�Tde−�(T−Td) . The solution 
of (20) is

ki(t) = ki(0)e
−�t, 0 ≤ t ≤ Td.

ki(t) = ki(0) − (ki(0) − ki(Td))e
−𝛼(t−Td), Td < t < T .

ki(t) = ki(nT)e
−𝛿(t−nT), nT < t < nT + Td.

ki(t) = ki(0) − (ki(0) − ki(nT + Td))e
−𝛼(t−nT−Td),

nT + Td < t < (n + 1)T .

k1 = k0(1 − e−�(T−Td)) + k0e
−�Tde−�(T−Td).

(20)kn+1 = ak0 + bkn,

(21)kn = K + (k0 − K)bn where K =
a

1 − b
k0.

Table 2   Main formulae associated with the sustained single dose 
model

Formula Number

Single-cell time to reach the death pool tk 1

�
log(4k)

(3)

Single-cell survival e−�(t−tk) (6)
Fraction of single cells surviving Ae−�t (9),(10)
Single-cell mean time to extinction 1

�
(log 4 −

3

4
) +

1

�

(12)

Single-cell variance time to extinction 1

�2

(13)

Population mean extinction time 1

�
(log nA + �)

(14)

Population variance extinction time 1

�2

�2

6

(15)

Fig. 7   The cumulative density function of the extinction time of a 
cohort of n = 1000 cells. The times satisfying ℙ

(
𝜏n < t

)
= 0.01 , 

ℙ
(
𝜏n < t

)
= 0.50 and ℙ

(
𝜏n < t

)
= 0.99 are shown as dotted vertical 

lines marked t01 , t50 and t99 . The values are t01 = tmax − 1.50∕� , 
t50 = tmax + 0.37∕� and t99 = tmax + 4.6∕� , where tmax =

1

�
log nA . 

The curve is plotted using � = 0.2 and � = 1 , so that A = 1.14
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As n → ∞ , kn → K . We observe that the asymptotic peak 
value, K, is a function of T and Td , � and � ; that is, it depends 
on the dosing duration and effectiveness, and on the extent 
of recovery after each dose. The parameters, interpretation 
and reasonable values are summarised in Table 3.

Consider the effect of multiple doses on the size of the 
cell population. Recall that cells with ki(t) > 0.5 divide 
with rate � and cells with ki(t) < 0.25 die with rate � . The 
general decrease of regulator values during dosing periods 
pushes more cells both out of the division pool and into 
the death pool; the general increase in regulator values in 
recovery periods has the opposite effect. In the examples 
shown in Fig. 10, T = 3Td.

If the drug-induced death rate � is sufficiently large, the 
typical increase in cell numbers during recovery periods is 
not sufficient to make up for the loss of cells during the 
preceding doses. Then, all cells will eventually be killed. 
However, the number of doses for complete extinction 

varies from realisation to realisation. In the lower part of 
Fig. 10, extinction of the cell population (indicated by a red 
dot) occurs before the end of the tenth dose in two of the 
realisations shown. On the other hand, if � is sufficiently 
small, the population of cells will increase in the long 
run because more cells divide than are killed. This is the 
situation illustrated in the upper part of Fig. 10. In this 
parameter range, we observe observe a temporary decrease 
of average regulator values, and even observe extinction of 
the population in some realisations.

Can we calculate the threshold value of � that defines ulti-
mate extinction? We begin by noting that an individual cell’s 
fate depends on its initial regulator value. Firstly, cells with 
higher ki(0) spend less time in the death pool. Secondly, cells 
‘remember’ their initial regulator value in the sense that ki(t) 
relaxes towards ki(0) in each recovery phase. An example of 
this is seen in Fig. 8 where, after three cycles of dose and 
recovery, all surviving cells are descended from the initial 

Fig. 8   Illustrating the effect of multiple cycles of drug dose and 
recovery on a small cell population. The number of cells as a func-
tion of time is shown in the upper panel. Doses have duration one 
time unit, starting at t = 0 , t = 3 and t = 6 (green shading in the lower 
panel). Each recovery duration is two time units. Blue lines represent 
cells that die before the end of the third cycle and red lines represent 
cells that survive to the end of the third cycle. Blue dots indicate the 
death of a cell, which happens with rate � to cells with regulator val-

ues smaller than 0.25 (below the blue dashed line). Red dots indicate 
cell division, which happens with rate � to cells with regulator values 
greater than 0.5 (above the red dashed line). In the initial cell popula-
tion, regulator values are uniformly distributed between 0 and 1. Note 
that, after three rounds of dose and recovery, all remaining cells are 
descended from the initial cell with the highest initial regulator value. 
The parameter values are � = 1 , � = 0.4 , � = 2.5 , � = 2 , T = 3 and 
Td = 1 (Color figure online)

Fig. 9   The regulator value of an 
individual cell under multiple-
dose treatment is shown in red. 
Drug doses are administered 
for time Td (indicated by green 
shading) followed by a recovery 
period. The total cycle time is 
T. The regulator value at the 
nth peak value is denoted kn and 
given by (21)
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cell with highest regulator value. We provide an estimate of 
the threshold in the Supplementary Material.

The distribution of regulator values in the population of 
cells before the first dose is uniform in (0, 1). Each cycle of 
dose and recovery favours cells with larger regulator values 
(that spend less time in the death pool and more time in the 
division pool). This selection effect is an adaptation of the 
population akin to the development of drug resistance [25, 
26] (even though it remains true that the drug, given enough 
time, kills all cells). Indeed, we may observe in the upper 
panel of Fig. 10 that the first few drug doses do reduce 
the cell population significantly, but the surviving cell 
population is able to recover.

Discussion

In this work, we began by analysing the fate of a single cell, 
and a heterogeneous population of cells, under a model of 
sustained drug dose. Heterogeneity originates in the initial 
conditions: each cell’s starting k value is chosen randomly 
between 0 and 1. The effect of the drug, during a dose or 
doses, is to decrease each cell’s k value with timescale 1∕� . 
The cell population changes in size and distribution; those 
cells with k < 0.25 are in the death pool, while those with 
k > 0.5 are in the division pool. The survival probability 
of a typical cell, and survival or extinction of the whole 
population, is calculated. The mean time to extinction 
depends on the logarithm of the initial number of cells; the 
distribution of extinction times has a characteristic Gumbel 
limiting form. We continue by simulating a multiple-dose 
treatment where the cells are allowed to recover and divide 
between cycles. The balance between cell death and cell 
division determines the ultimate fate of the population after 
repeated rounds of drug dose and recovery.

The timescale 1∕� characterises the potency of the drug 
(activity of the targeted protein). For example, in cancer 
cell cultures grown with and without drug treatment, and 
immunoblots of those cultures were created incubated with 

antibodies to activated phosphorylated ERK1 and ERK2 and 
total ERK1 and ERK2 [27]. The death and division rate is 
obtainable from tumour cell cultures under constant drug 
treatment in different concentrations. Yang et al  [19] used 
time-resolved microscopy to track the temporal change of 
the number of live and dead tumour cells in vitro. In xeno-
graph models, tumour cells are injected subcutaneously or 
in the same organ as the tumour’s origin. The change in 
tumour size is quantified by surgically removing the tumour 
for ex vivo weighing, in vivo tumour volume measurement 
using calipers, within internal organs by employing mag-
netic resonance imaging, computed tomography, or ultra-
sound [28]. Additionally, organoids can be employed to 
measure longitudinal changes in tumour size [28].

In our model, we analyse the time to complete 
elimination of a heterogeneous tumour cell population. 
The fact that the extinction time, a natural endpoint in a 
stochastic model, is not available in deterministic models, 
may be seen as part of the general pattern that stochastic 
models are most relevant in small populations  [9] (for 
example, the small residual cancer cell population after 
effective immunotherapy, the small initial population 
early in infection, the small fraction of the cells surviving 
antibiotic treatment  [29]). Even genetically-identical cells 
in a uniform in vitro environment differ in their response to 
drugs due to dynamic randomness in gene expression levels 
and other biochemical phenomena [30]. Tolerance where a 
bacterial population survives transient antibiotic exposure 
or resistance to a drug can be analysed to find the best time 
or concentration for a treatment  [31]. Heterogeneity in 
cancer-cell populations results in resistance via changes to 
the drug target or downstream signalling network [26]. For 
example, in post-myeloproliferative neoplasm secondary 
acute myeloid leukemia the mutation in JAK2 increases 
nuclear � catenin levels and its co-localization with TBL1, 
promoting growth and survival [32]. Additionally, resistance 
via persisters (dynamic non-genetic heterogeneity of clonal 
cell populations which produces metastable phenotypic 
variants) can be analysed [25].

Table 3   Parameters of the multiple-dose model, with cell death and division

Symbol Dimensions Interpretation Simulation value Published parameter ranges or potential experimental design

� T−1 Cell death 1, 0.2 Measurable by exposing tumour cell populations to different constant drug 
concentrations

� T−1 Cell division 0.4, 0.25 0.1 day−1 [19], 0.0828 day−1 [17]
� T−1 Drug action 0.2, 1, 2.5 0.713 day−1 for 0.8 mg/kg,0.279 day−1 for 0.2 mg/kg,0.159 day−1 for 0.05 mg/kg(fitted 

from [17])
� T−1 Relaxation 2 0.074 day−1 for 0.8 mg/kg,0.012 day−1 for 0.2 mg/kg,0.036 day−1 for 0.05 mg/kg(fitted 

from [17])
T T Cycle time 3
Td T Dose time 1
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Deterministic models of the effect of a drug on 
tumour cells using ordinary differential equations [5, 6] 
often have the advantage of easy implementation and 
analysis, but they do not naturally capture stochasticity 
or heterogeneity. Advances in molecular biology and the 
development of therapies that target intracellular signalling 
pathways [33–35] make it ever more important to consider 
heterogeneity of target cells. Biological heterogeneity 
also manifests itself in variable susceptibility to antibiotic 
treatments [29, 36]. Agent-based models overcome many 
shortcomings of simpler models because cells and their 
interactions are governed by stochastic rules, but they often 
require high computational power and running times and 
have large parameter spaces [12]. Here, based on a published 
agent-based model [12] where a heterogeneous cancer cell 
population is treated with a MEK inhibitor, we use stochastic 
modelling and analysis as a bridge between different types of 
models. The dynamics of a stochastic model is represented 
by relatively simple mathematical expressions which are 
reminiscent of deterministic models.
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