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Abstract

Standard pharmacodynamic models are ordinary differential equations without the features of stochasticity and heterogeneity.
We develop and analyse a stochastic model of a heterogeneous tumour-cell population treated with a drug, where each cell
has a different value of an attribute linked to survival. Once the drug reduces a cell’s value below a threshold, the cell is
susceptible to death. The elimination of the last cell in the population is a natural endpoint that is not available in deterministic
models. We find formulae for the probability density of this extinction time in a collection of tumour cells, each with a
different regulator value, under the influence of a drug. There is a logarithmic relationship between tumour population size
and mean time to extinction. We also analyse the population under repeated drug doses and subsequent recoveries. Stochastic
cell death and division events (and the relevant mechanistic parameters) determine the ultimate fate of the cell population. We
identify the critical division rate separating long-term tumour population growth from successful multiple-dose treatment.

Keywords Targeted therapy - Heterogeneity - Cancer - Stochastic - Modelling - Pharmacodynamics

Introduction

Models of the systemic distribution and elimination of
drugs, and models of the effects of drugs, are called phar-
macokinetic and pharmacodynamic (PK-PD) models [1-4].
Those based on ordinary differential equations (ODEs) are
useful for ease of analysis [5—7] but they lack two important
aspects of reality: stochasticity and heterogeneity. Hetero-
geneity is important in many contexts: protein expression
varies from cell to cell; bacteria vary in their susceptibility
to antibiotics [8]. Stochastic models have the feature that
many outcomes are possible even if all conditions and initial
states are given [9]; events occurring at random times impact
disease progression and treatment effects. While agent-based
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models naturally incorporate heterogeneity and stochasticity
and are amenable to computational studies [10], synthesis
into simple formulae is rare [11, 12]. Here, we introduce
and analyse stochastic models of a heterogeneous popula-
tion of cancer cells acted on by a drug, which serve as a
bridge between differential equation-based and agent-based
models [9]. Following established practice in PK-PD mod-
elling [13, 14], we consider both a single sustained dose
and a regimen of multiple doses at regular intervals, with
recovery periods between doses. In the first case, a constant
drug concentration is maintained [15, 16]; in the second, the
drug is absent during recovery periods.

We focus on a simple model of a drug acting to kill a
population of tumour cells. The dynamics includes cell-to-
cell variability: every tumour cell has a different value of an
attribute that we call the regulator value and is linked to cell
viability. Once the action of the drug succeeds in reducing
a cell’s regulator value below a threshold, the cell is “in
the death pool”, meaning it is subject to death. Our model
is based on an agent-based model in which the regulator is
phosphorylated ERK in vivo [12], but can also be applied
to pharmacodynamics in vitro. Our motivating example was
the reduction of phosphorylation of ERK by oral dose of
the MEK inhibitor cobimetinib. The PD effect is modelled
by a single variable that represents cellular pERK, as in the
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Fig. 1 Each blue dot represents
a tumour cell. The drug’s action
reduces each cell’s regulator
value, thereby increasing the
fraction of cells in the death
pool. Left: In a population of
cells before drug dose, initial
regulator values are uniformly
distributed. Those cells with
regulator values below a thresh- regulator
old (those inside the zone col- value
oured red) are said to be in the k
death pool. Right: Some time

after drug dose begins, each

cell’s regulator value is reduced

by the same factor. Hence, a —
greater proportion of cells are

in the death pool (Color figure

online)

population-based PKPD model of Wong et al. [17] (used to
fit tumour concentrations and pERK data) and the agent-
based model with ODE approximations of Truong et al [12].
This PK-PD mechanistic framework is common to many
oncology targeted treatments, and it serves as an illustrative
example here. We are able to summarise the dynamics not by
deriving ordinary differential equations valid when the num-
ber of cells is large, but in terms of survival functions and
densities of extinction times with recognisable forms in the
limit of large numbers of cells. The model is implemented
in the python language and the code can be found online.!

Our model resembles the simplest pharmacodynamic
models in that a cell’s regulator value decreases
exponentially, with rate 6, when the drug is present. The
key stochastic aspect of the dynamics is the death of cells
whose regulator value is sufficiently small. An advantage
of a stochastic model is its natural endpoint: the death of
the last tumour cell. The distribution of this extinction
time can be constructed numerically and, in our simplest
models, analytically. That is, we ask: how long until, under
the action of the drug, all of n cells are eliminated? (Using
ordinary differential equations it is possible to use the time
a trajectory reaches a suitable lower bound as a proxy for the
mean extinction time.)

A brief mathematical description of the assumptions
and dynamics is as follows. The number of tumour cells
at any time is an integer that may reach zero in finite time.
Each cell has a regulator value, scaled to the interval (0, 1);
we use values chosen from the uniform distribution on the
interval as our initial condition. The action of the drug on
an individual cell decreases its regulator value according

! https://github.com/VanThuyTruong/stochastic_pharmacodynamic.
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to a deterministic relationship. In the schematic diagram,
Fig. 1, each cell’s regulator value is multiplied by the factor
0.65 at some time after drug treatment begins (right panel).
Examples from an agent-based model can be found in
Figure 2.2 of the tutorial [12]. A cell’s death rate, in the
stochastic sense where a rate is a probability per unit time,
depends on its regulator value at time ¢, k(¢), via the function
w. That is, if a cell is alive at time ¢ with regulator value k()
then the probability that it dies before ¢ + At is w(k(r))At.
If a cell is alive at time O with regulator value k, then the
probability that it is still alive at time ¢, is found using the
hazard-rate formula [18]

s(t, k) = P(cell survives to time ¢|k(0) = k) = exp (— / w(k(s))ds).
0

ey
Using (1), we calculate S(7), the probability that a tumour
cell, chosen at random from the initial population, is still
alive at time ¢. Two timescales are relevant in the analysis:
1/6 describes the time for the drug to take effect and 1/u is
the mean time for cells to die once they arrive in the death
pool. Our multiple-dose-and-recovery scenario in Sect. 3
also contains a third timescale, 1/4, associated with divi-
sion of tumour cells.

In Sect. 2, we assume the cancer cell population is con-
tinuously exposed to the drug. In the first subsection, we
examine the fate of a single cell: Once its regulator value
k falls below a certain threshold due to drug exposure, it
enters the death pool. (The threshold value of 0.25 is chosen
to match the corresponding published agent-based model
in Truong et al [12] but can be adjusted to the pathway of
interest.) While death is the ultimate fate of any cell, the
mean time to extinction depends on its initial k£ value. We
investigate the survival probability when w(k) is constant
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Table 1 Overview of model framework and results

Single cell behaviour (known k value) Randomly-selected cell Population of # cells under single
sustained dose

Multiple-dose treatment, including cell
division

Time of arrival in the death pool #, Survival probability
S(#) with a step-
function death rate

Mean and variance of
time to death of a

single cell 7,

Survival probability s(z, k)

Mean and variance of time to popula-
tion extinction 7,

Dynamics of regulator values under
multiple-dose treatment using a
difference equation

Probability density f,(¢) of the time to Estimate of the critical death rate u, for
population extinction

population extinction

below the threshold and, in the Supplementary Material,
with w(k) a linear function of k below the threshold. (Which
is more realistic will depend on the physiological pathway
of interest.) The survival probability is given in terms of the
drug-specific parameters y and §. In the second subsection,
we look into a population where each cell has a different &
value. For a population with 7 individual cells we derive the
expectation and variance of the time to population extinc-
tion. With increasing n, the probability density of extinction
times shifts towards later times while maintaining its shape.

In Sect. 3, cell division is included in the dynamics by
means of a second threshold regulator value. The range
of regulator values, and hence the population of cells at
any time, is divided into three: cells with values over the
threshold of 0.5 are said to be the division pool because they
have a constant probability per unit time of dividing into
two cells; cells with k in the range (0.25, 0.5) neither divide
nor die; cells with values below 0.25 are said to be in the
death pool (Similarly to Sect. (), the threshold value of 0.5,
in principle arbitrary, is chosen to match the corresponding
published agent-based model in Truong et al [12]. In Sect. 2,
we consider a continuous drug dose that drives all cells into
the death pool, hence no division occurs.)

Although our calculations focus on nondimensional
combinations of parameters, such as 6/u, it is helpful to
keep in mind reasonable timescales that depend on context.
We expect 1/6, the time required for the drug to alter the
biochemical state of cells, in vitro or in vivo, to be minutes
or hours. Mean times for the processes of cell death and cell
division, 1 /4 and 1/ 4, will be hours or days [17, 19]. Yang
et al. [19] used time-resolved microscopy to count number
of live and dead tumour cells over four days in vitro. They
estimated a division rate of 0.1 day~".

Also in Sect. 3, we consider multiple rounds of drug dose
and recovery [20], with cell death and division. Drug treat-
ment is repetitively administered with a recovery period
before the next cycle. During recovery periods, the k value
of each cell increases; some cells enter the division pool and
divide. Thus we find dynamics where the number of cells
tends to decrease during drug doses and to increase during
recovery intervals. Under the influence of repeated doses
and recovery periods, whether extinction is the ultimate

fate of the population depends on the balance between cell
death and division. That balance, in turn, depends on the
distribution of regulator values in the surviving cell pop-
ulation, which becomes biased towards larger values. We
derive equations to describe the change of the regulatory
value k after multiple cycles. Thus, the calculations begin
with a single cell with known initial regulator value, then
consider a randomly-selected cell from the distribution of
initial regulator values, allowing consideration of a cohort of
n cells under single sustained dose. The model then extends
to multiple rounds of dose and recovery, including cell divi-
sion. An overview is provided in Table 1. Additionally, in
the Supplementary Material, the relationship between the
critical death rate y, needed to be attained by the drug, the
cellular division rate A, the drug potency 6, and schedule-
specific parameters cycle time T and recovery time 7, is
investigated.

Complicated dynamical systems are most useful as
models of real phenomena when the parameters can be
combined into formulae that summarise the behaviour. In
models with stochasticity and heterogeneity, such a summary
must go beyond mean quantities by predicting distributions
of outcomes. We are able to provide such formulae and
distributions, with particular focus on the distribution of
times until the the elimination of the last cancer cell.

Single sustained dose, no cell division

We assume that an uninterrupted drug dose (giving rise
to constant drug levels) yields the following deterministic
relationship for cell i

k;(t) = k;(0) exp(—5t), @)

and that cells with k;(#) < 0.25 are in the death pool. In the
simplest case, the death rate of any cell in the death pool
is equal to a constant u. Cells with k;(0) > 0.25 are not ini-
tially in the death pool but enter the pool when their regula-
tor value has decreased to 0.25. Figure 2 is a small-scale
illustration of the resulting dynamics: the ten cells initially
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Fig. 2 Illustrating the effect of 1.0
a sustained dose on a popula-

tion of 10 cells. Each blue line 0.8 1
is the regulator attribute of one
cell as a function of time. Lines
terminate in blue dots that indi-
cate cell death. Cells are said to
be in the death pool when their
regulator value is less than 0.25,
indicated by red shading. Sim- 0.2 4
ple model without cell division,

with parameter values 6 = 0.2 0.0 -

0.6

ki(t)

0.4 4

and u =1 0 2

Fig.3 Left: The time, ¢, at

which a cell enters the death

pool is shown as a function of .
the cell’s initial scaled regulator =
value. Right: two death-rate

functions wy (k) and w, (k)

1
5 log4

— U]

w(k)

present die, one by one, as their regulator values decline
under the influence of the drug, taking them into the death
pool.

Let #, be the first time that a cell, whose initial regulator
value is equal to k, enters the death pool. The lifetime of the
cell is the sum of #, and the time to die once the cell enters
the death pool. We can calculate ¢, using (2):

t, = inf{r > 0: k;(¢) < 0.25 | k;(0) = k}
1
0 (iSkS 7 3)
-<k<1

<

1
~log(4k
5 og(4k) 1

This time is shown on the LHS in Fig. 3. On the RHS, two
possible functions w(k) are shown. We will use w,(k) in this
Section and w, (k) in the Supplementary Material, where

0 k>

k) =
wo(k) uk<

“

ISP

Survival and death of individual cells

Consider a cell chosen at random from a population with
initial regulator values uniformly distributed between 0
and 1. The probability that it survives to ¢ is obtained by
integrating (1):

@ Springer
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1
S(#) = P(randomly-chosen cell survives to time ¢) = / s(t, k)dk.
0

(%)
We evaluate the integral in (1) using (4) to yield the
probability that a cell labelled i survives to time ¢:

<
s(t,k) = P(cell survives to time 1]k;(0) = k) = { i—u(t—fk) ;; ?‘
»
(6)

Figure 4 shows s(t, k) as a function of ¢ using four values of k
(upper) and as a function of k using four values of 7 (lower).

Next, consider a cell chosen at random from a population
with initial regulator values uniformly distributed between 0
and 1. The probability that a cell, chosen in this way, survives
to t is found by evaluating the integral in (5) as follows:

1
1 _
S@) = Ze™ + / s(t, kydk ™
s

. e /4 (Aky P dk +1 — L—ILC(SI ot < log4

- Ze—ﬂf + 11
e—m/ (4k)2/H dk ot > log4.

1
®)

Note that, if & > i then e# = (4k)#/%. On the RHS in (8), the
term ie"" corresponds to cells that are in the death pool at

t = 0 (and remain there). The term 1 — ie‘” is the fraction of
cells that are not in the death pool. Evaluating the integrals,
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Fig.4 Upper: s(t, k) is the prob- 1

ability that a cell, whose initial
regulator value is k, is still alive
at time ¢ when w(k) = wy (k). If
k is fixed then s(z, k) is a non-
increasing function of ¢. Lower:
The probability that a cell,

0.5

s(t, k)

—Fk =0.25 ||
— k=0.5
—k =0.75
— k=10

whose initial regulator value 0
is k, is still alive. If 7 is fixed

then s(t, k) is a non decreasing

function of k. The formula used 1

is (6), with 4 = land 6 = 0.5

0
Ot _ a—ut

K e’ ot <log4
S() = 4 6+ u )

Ae™# 6t > log4,
where

1 4nlé 4 i%
A= / etldk = ————=. (10)

0 1+ £

é

The factor A is an increasing function of the ratio u /8, with
A = 1when /6 = 0. In the limit /5 — 0, the action of the
drug is fast compared to the typical survival time of a cell
in the death pool.

The probability density of single-cell death times, shown
as the top panel in Fig. 6, is obtained from the derivative of
S():

H6C§t _ MZC—W
“aGaw Iy
uAe M 6t > log4.

foy=-8') =

The mean time to death of a single cell will be denoted
[E(z)). It is equal to the sum of the mean time to arrive in the
death pool plus the mean time to die once in the death pool:

: 11 3., 1
E(z)) = [ tdk + ; = g(log4 - 4_1) + ; (12)
The variance of 7, is

1
var(r;) = F (13)

0.25 1

Note that the variability of the mean time to death of a single
cell is a function only of the time the cells take to die once
they arrive in the death pool.

Extinction of a cohort of n tumour cells

Suppose there are n tumour cells at ¢ = 0, with regulator val-
ues uniformly distributed in (0, 1). How long until all n cells
die? An example realisation, with n = 100, calculated using
the single sustained dose model described above, is shown in
Fig. 5. That is, the blue line is a number of cells surviving to
time ¢t when each, independently, is assigned an initial regula-
tor value in (0, 1) and, under the action of the drug, enters the
death pool.

We define the random variable N, to be the number of
cells alive at time ¢, with N, = n. Let 7, be the first time
that N, = 0. Inspecting (9), we see that the single-cell
survival probability has a simple exponential form as long as
6t > log4. The form is S(r) = Ae™# is found if an individual
lifetime is drawn as a random variable that is the sum of
a fixed time of duration logA/pu and an exponentially-
distributed time with mean 1/u. The time to extinction of n
such individuals (IE(z,)) is given by [21]

E@J:lO%A+l+l+l+m+l>:l@ym+ﬂ,
u 2 3 n u

(14)

where y = 0.577 .... We use the symbol ~ to denote the
large-n approximation. Similarly [22, 23]

1 1 1 1 7?
:—1+—+—+~-+—>: —.
var(z,) M( z (15)

1
2" T2 n) 2

@ Springer



28 Page6of11

Journal of Pharmacokinetics and Pharmacodynamics (2025) 52:28

» 100 ” ——r
= —— numerical realization
: nS(t)
(=}
5 50
2
5 o4 ; : . . ]
0 5 10 15 20 25

Fig.5 Blue: The number of surviving cells as a function of time in
one realisation of the single, sustained dose model. Also shown is the
smooth function obtained by averaging over many realisations, equal

Fig.6 Probability density of
extinction times, sustained dose
with n = 1, 10, 100 and 1000.
Solid red lines are the exact

0.1+

fi(t)

to the survival function S(#) (9) multiplied by the initial number of
cells. The vertical dotted line indicates 7 =log4/6. Here n = 100,
6 = land u = 0.2 (Color figure online)

formulae; the blue histograms
are compiled from 10,000
numerical realisations. The
same horizontal scale is used in
each case, with 4 = 0.2 and

fio(t)
o
s

6 =1.Top: n = 1. The
maximum is at t = é log4, after
which all cells are in the death
pool. In each of the lower three
panels, the vertical dotted line is

0.05 A

figo(t)

fnax = i log(nA). The ratio /6
determines the factor A

fiooo(D)
o
S

tmax

As can be seen in Figs. 5 and 6, a consider-
able simplification arises because typical values
of 7, are large compared to 1/6. When 6¢ > log4,
P(randomly-chosen cell dies before time #) = 1 — Ae™*’, and
we are able to derive the probability density of 7, explicitly.
Because each cell is independent, when 67 > log 4,

P(z, < t) = P(n cells all die before 1) = (1 — Ae™')", (16)
and the probability density of 7, is
£, = unAe (1 — Ae™)"™ (17)

which attains its maximum value when nAe™* = 1. Figure 6
shows the density with different choices of n. The maximum
of the density is at ¢,

max = ilog nA. It is striking, in Fig. 6,
that increasing n while keeping u constant shifts the
distribution to the right, maintaining its shape. With this in
mind, consider (16) when ¢ is close to ¢, and 7 is large so

that Ae™#"is small. Then log(1 — Ae #y" = nlog(1 — Ae™#) ~ —nAe*,

@ Springer
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SO thatl]j’(rn < t) = exp(—nAe™#).If T, = ut — log(nA) then
P(z, <t) ~exp(-e~"") and

T,

). (18)

In other words, the random variable u(z, —t,,,,)
approximately Gumbel-distributed [24] when 7 is large.
We use (18) to construct an algorithm that directly generates
samples from the extinction-time density without simulating
the whole timecourse of the stochastic process. Given any p

in (0, 1), the value of # such that P(z, < t) = p is®

(D) = pexp (=T, — e

is

p = exp (—nAe ™)
1/p = exp (nAe™)
log(1/p) = nAe™*"
log (log(1/p)) = log(nA) — ut
ut = pty,, —log(log(1/p)).
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Table2 Main formulae associated with the sustained single dose
model

Formula Number
Single-cell time to reach the death pool #; % log(4k) 3)
Single-cell survival e—H(—t) 6)
Fraction of single cells surviving Ae~H 9),(10)
Single-cell mean time to extinction 1 (log4 — 3 )+ 1 (12
) 4 u
Single-cell variance time to extinction 1 (13)
W
. T 1
Population mean extinction time Logna +7) (14)
U
Population variance extinction time 1 z2 (15)
u? 6
1 1
E=lmax — — IOg(IOg(—)) (19)
H p

Thus if U is uniformly distributed in (0, 1) (the
simplest random variable available in modern
computer languages [10]) then the random variable
(—log(—1logU) + log(nA))/u is a sample from the
density (18). In Fig. 7, we display the cumulative distribution
of the extinction time 7. The Figure also indicates #,,, Z5,
and fg9, defined as the values of 7 such that P (7, < 1) is equal
to 0.01, 0.50 and 0.99. The factor A is calculated using the
same parameter values as in Fig. 6.

In Fig. 7 we display the cumulative distribution of the
extinction time of a population consisting of 1000 cells. The
Figure also indicates #y,, 5, and #y9, defined as the values of ¢
such that the probability of population extinction P (Tn < t)
is equal to 0.01, 0.50 and 0.99, calculated using (19). The
constant A is calculated using the same parameter values as
in Fig. 6. In Table 2, we summarise the main results of the
sustained-dose model.

Multiple-dose treatment with cell division

In multiple-dose treatment, the drug is administered in doses
of duration 7, each, followed by a recovery period of dura-
tion T — T,. Thus, one cycle takes time 7. In the example of
Fig. 9, the recovery period is twice the dose duration.

Let us examine how each cell’s regulator value changes.
While a dose is being administered, the drug’s effect is

similar to that described by (2):
ki(1) = ki(0)e™, 0<1<T,

In recovery periods, on the other hand, a cell’s regulator
value relaxes towards its natural value k;(0) with rate a. In
the first recovery period

k(t) = k;(0) — (k;(0) — k,(T,)e™ =T, T,<t<T.

In general, during the nth dose,

k(t) = k,(nT)e2¢="1), nT <t<nT+T,.

In the nth recovery period

k(1) = k0) — (k0) — k;(nT + T,))e™*¢=""=1,
nT+T;<t<@m+1T.

As shown in Fig. 9, we denote the nth peak regulator
value by k,,. That is, k, = k;(nT). Then

kl = ko(l _ e—a(T—Td)) + koe—éTde—a(T—Td).

Given n > 1, we find that &, ; depends on k, and k; as
follows:

k,,, = ak, + bk,, (20)

where a = 1 — e~ "1 and b = e~%Tee~2T'-Ta), The solution
of (20) is

n a
k, =K+ (ky — K)b where K = 1 _bko. (21)
1 [
v
£
By
0 | | | -
tOl t50 50 t99 70

Fig.7 The cumulative density function of the extinction time of a
cohort of n=1000 cells. The times satisfying P(z, <) =0.01,
P(z, <) =0.50 and P (7, < t) = 0.99 are shown as dotted vertical

lines marked #y,, t5, and fy9. The values are 1y =1t —1.50/p,
Iso = lyax + 0.37/4 and tog = 1, +4.6/p, where 1, = ﬁlognA.
The curve is plotted using 4 = 0.2 and 6 = 1,sothat A = 1.14
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cells

Fig. 8 Illustrating the effect of multiple cycles of drug dose and
recovery on a small cell population. The number of cells as a func-
tion of time is shown in the upper panel. Doses have duration one
time unit, starting at# = 0, ¢ = 3 and # = 6 (green shading in the lower
panel). Each recovery duration is two time units. Blue lines represent
cells that die before the end of the third cycle and red lines represent
cells that survive to the end of the third cycle. Blue dots indicate the
death of a cell, which happens with rate u to cells with regulator val-

Fig.9 The regulator value of an

individual cell under multiple- ko |
dose treatment is shown in red.

Drug doses are administered

for time 7, (indicated by green

shading) followed by a recovery k(t)
period. The total cycle time is

T. The regulator value at the

nth peak value is denoted k, and

given by (21)

ues smaller than 0.25 (below the blue dashed line). Red dots indicate
cell division, which happens with rate A to cells with regulator values
greater than 0.5 (above the red dashed line). In the initial cell popula-
tion, regulator values are uniformly distributed between 0 and 1. Note
that, after three rounds of dose and recovery, all remaining cells are
descended from the initial cell with the highest initial regulator value.
The parameter values are y =1, 1 =04, 6 =25, a=2,T =3 and
T, = 1(Color figure online)

k
1 ks

As n — o0, k, » K. We observe that the asymptotic peak
value, K, is a function of T and T;, 6 and «; that is, it depends
on the dosing duration and effectiveness, and on the extent
of recovery after each dose. The parameters, interpretation
and reasonable values are summarised in Table 3.

Consider the effect of multiple doses on the size of the
cell population. Recall that cells with k;(r) > 0.5 divide
with rate A and cells with k;(¢) < 0.25 die with rate . The
general decrease of regulator values during dosing periods
pushes more cells both out of the division pool and into
the death pool; the general increase in regulator values in
recovery periods has the opposite effect. In the examples
shown in Fig. 10, T = 37,

If the drug-induced death rate u is sufficiently large, the
typical increase in cell numbers during recovery periods is
not sufficient to make up for the loss of cells during the
preceding doses. Then, all cells will eventually be killed.
However, the number of doses for complete extinction

@ Springer

T T+1Ty 2T 2T+ 1Ty

t

varies from realisation to realisation. In the lower part of
Fig. 10, extinction of the cell population (indicated by a red
dot) occurs before the end of the tenth dose in two of the
realisations shown. On the other hand, if y is sufficiently
small, the population of cells will increase in the long
run because more cells divide than are killed. This is the
situation illustrated in the upper part of Fig. 10. In this
parameter range, we observe observe a temporary decrease
of average regulator values, and even observe extinction of
the population in some realisations.

Can we calculate the threshold value of y that defines ulti-
mate extinction? We begin by noting that an individual cell’s
fate depends on its initial regulator value. Firstly, cells with
higher k,(0) spend less time in the death pool. Secondly, cells
‘remember’ their initial regulator value in the sense that k,(¢)
relaxes towards k;(0) in each recovery phase. An example of
this is seen in Fig. 8 where, after three cycles of dose and
recovery, all surviving cells are descended from the initial
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Table 3 Parameters of the multiple-dose model, with cell death and division

Symbol Dimensions Interpretation Simulation value Published parameter ranges or potential experimental design

U T! Cell death 1,0.2
concentrations
T! Cell division 0.4, 0.25
o T! Drug action 0.2, 1,2.5
from [17])
a T! Relaxation 2
from [17])
T T Cycle time 3
T, T Dose time 1

Measurable by exposing tumour cell populations to different constant drug

0.1 day~'[19], 0.0828 day~![17]
0.713 day™' for 0.8 mg/kg,0.279 day™' for 0.2 mg/kg,0.159 day™' for 0.05 mg/kg(fitted

0.074 day~! for 0.8 mg/kg,0.012 day~" for 0.2 mg/kg,0.036 day~! for 0.05 mg/kg(fitted

cell with highest regulator value. We provide an estimate of
the threshold in the Supplementary Material.

The distribution of regulator values in the population of
cells before the first dose is uniform in (0, 1). Each cycle of
dose and recovery favours cells with larger regulator values
(that spend less time in the death pool and more time in the
division pool). This selection effect is an adaptation of the
population akin to the development of drug resistance [25,
26] (even though it remains true that the drug, given enough
time, kills all cells). Indeed, we may observe in the upper
panel of Fig. 10 that the first few drug doses do reduce
the cell population significantly, but the surviving cell
population is able to recover.

Discussion

In this work, we began by analysing the fate of a single cell,
and a heterogeneous population of cells, under a model of
sustained drug dose. Heterogeneity originates in the initial
conditions: each cell’s starting k value is chosen randomly
between O and 1. The effect of the drug, during a dose or
doses, is to decrease each cell’s k value with timescale 1/6.
The cell population changes in size and distribution; those
cells with k < 0.25 are in the death pool, while those with
k > 0.5 are in the division pool. The survival probability
of a typical cell, and survival or extinction of the whole
population, is calculated. The mean time to extinction
depends on the logarithm of the initial number of cells; the
distribution of extinction times has a characteristic Gumbel
limiting form. We continue by simulating a multiple-dose
treatment where the cells are allowed to recover and divide
between cycles. The balance between cell death and cell
division determines the ultimate fate of the population after
repeated rounds of drug dose and recovery.

The timescale 1/6 characterises the potency of the drug
(activity of the targeted protein). For example, in cancer
cell cultures grown with and without drug treatment, and
immunoblots of those cultures were created incubated with

antibodies to activated phosphorylated ERK1 and ERK2 and
total ERK1 and ERK2 [27]. The death and division rate is
obtainable from tumour cell cultures under constant drug
treatment in different concentrations. Yang et al [19] used
time-resolved microscopy to track the temporal change of
the number of live and dead tumour cells in vitro. In xeno-
graph models, tumour cells are injected subcutaneously or
in the same organ as the tumour’s origin. The change in
tumour size is quantified by surgically removing the tumour
for ex vivo weighing, in vivo tumour volume measurement
using calipers, within internal organs by employing mag-
netic resonance imaging, computed tomography, or ultra-
sound [28]. Additionally, organoids can be employed to
measure longitudinal changes in tumour size [28].

In our model, we analyse the time to complete
elimination of a heterogeneous tumour cell population.
The fact that the extinction time, a natural endpoint in a
stochastic model, is not available in deterministic models,
may be seen as part of the general pattern that stochastic
models are most relevant in small populations [9] (for
example, the small residual cancer cell population after
effective immunotherapy, the small initial population
early in infection, the small fraction of the cells surviving
antibiotic treatment [29]). Even genetically-identical cells
in a uniform in vitro environment differ in their response to
drugs due to dynamic randomness in gene expression levels
and other biochemical phenomena [30]. Tolerance where a
bacterial population survives transient antibiotic exposure
or resistance to a drug can be analysed to find the best time
or concentration for a treatment [31]. Heterogeneity in
cancer-cell populations results in resistance via changes to
the drug target or downstream signalling network [26]. For
example, in post-myeloproliferative neoplasm secondary
acute myeloid leukemia the mutation in JAK2 increases
nuclear f catenin levels and its co-localization with TBL1,
promoting growth and survival [32]. Additionally, resistance
via persisters (dynamic non-genetic heterogeneity of clonal
cell populations which produces metastable phenotypic
variants) can be analysed [25].
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Fig. 10 Number of cells as a
function of time under multiple
doses and recovery periods. Red 140
lines are individual realisations
and the ensemble average is
shown in blue. Time intervals
when the drug is applied are
shaded green. Red dots indicate
extinction times (the moment
when the last cell dies, in one 40
realisation). y = land 6 = 2.5,
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Deterministic models of the effect of a drug on
tumour cells using ordinary differential equations [5, 6]
often have the advantage of easy implementation and
analysis, but they do not naturally capture stochasticity
or heterogeneity. Advances in molecular biology and the
development of therapies that target intracellular signalling
pathways [33—-35] make it ever more important to consider
heterogeneity of target cells. Biological heterogeneity
also manifests itself in variable susceptibility to antibiotic
treatments [29, 36]. Agent-based models overcome many
shortcomings of simpler models because cells and their
interactions are governed by stochastic rules, but they often
require high computational power and running times and
have large parameter spaces [12]. Here, based on a published
agent-based model [12] where a heterogeneous cancer cell
population is treated with a MEK inhibitor, we use stochastic
modelling and analysis as a bridge between different types of
models. The dynamics of a stochastic model is represented
by relatively simple mathematical expressions which are
reminiscent of deterministic models.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10928-025-09974-7.
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