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This article questions the common assumption of cold dark matter (DM) by exploring the possibility of a
nonzero equation of state (EOS) without relying on any parametric approach. In standard cosmological
analyses, DM is typically modeled as pressureless dust with wDM ¼ 0, an assumption that aligns with large-
scale structure formation, supports the empirical success of the Λ-cold dark matter model, and simplifies
cosmological modeling. However, there is no fundamental reason to exclude a nonzero wDM from the
cosmological framework. In this work, we explore this possibility through nonparametric and parametric
reconstructions based on Gaussian process regression. The reconstructions use Hubble parameter
measurements from cosmic chronometers, the Pantheonþ sample of Type Ia supernovae, and baryon
acoustic oscillation (BAO) data from DESI DR1 and DR2. Our findings suggest that a dynamical EOS for
DM, although only mildly supported statistically, cannot be conclusively ruled out. Notably, we observe a
mild tendency (∼1σ) toward a negative wDM at the present epoch, which is most likely due to
inconsistencies between the BAO data from DESI and other datasets.
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I. INTRODUCTION

In accordance with the latest observational evidence, and
assuming General Relativity (GR) as the correct theory of
gravity, dark matter (DM) and dark energy (DE) are the two
main components of the universe, comprising nearly 96%
of its total energy budget at present moment. The Λ-cold
dark matter (ΛCDM) cosmological model posits that DE is
most likely due to the cosmological constant (Λ), while DM
is a pressureless fluid that interacts weakly with electro-
magnetic radiation and baryonic matter. This overall
framework, supported by historical evidence, provides an
excellent fit to a wide range of astronomical observations.
However, the ΛCDM model faces several theoretical and
observational challenges, and a revision of this

cosmological framework may be necessary to resolve the
tensions between early- and late-time cosmological obser-
vations [1–4]. Consequently, numerous modifications have
been proposed in the literature to address the limitations of
the standard ΛCDM model (see Refs. [4–16] and refer-
ences therein).
One possible revision of the ΛCDM cosmology,

although not widely explored in the literature, is to assume
a nonzero equation of state (EOS) for DM and investigate
how the resulting cosmological framework may affect the
expansion history of the universe and, consequently, the
inferred cosmological parameters. While cosmological
models with a nonzero EOS of DM (hereafter referred
to as “noncold” DM, following the abbreviation used in
Ref. [17]) have received relatively little attention in the
community [18–42], the assumption of a nonzero DM EOS
nonetheless provides a more general cosmological sce-
nario. It is well-understood that the standard assumption of
a zero EOS for DM has been motivated by the success of
ΛCDM in describing large-scale structure formation and its
remarkable agreement with cosmological observations.
However, it is important to recognize that the intrinsic
nature of both DM and DE remains unknown. As astro-
nomical data continue to improve in precision, a more
robust approach is to let observations determine the
nature of DM, whether it is truly cold or exhibits noncold
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properties. Motivated by this question, in this article we
reconstruct the DM EOS using two distinct approaches; a
nonparametric method and a parametric one. Both
approaches rely on a Gaussian process framework1 and
utilize multiple observational datasets, including Hubble
parameter measurements from cosmic chronometers, Type
Ia supernovae data, and baryon acoustic oscillations. Our
results are particularly interesting, as they suggest a mild
indication of a dynamical evolution in the DM EOS. While
the standard CDM scenario (i.e., a DM EOS equal to zero)
is recovered within the 68% confidence level, an interes-
ting trend emerges with the inclusion of baryon acoustic
oscillation data alongside other cosmological probes: a
tendency toward a negative EOS at the present epoch. This
suggests that the mild deviations observed in the DM EOS
are best interpreted as a consequence of our phenomeno-
logical reconstructions, which act as a proxy to explore
potential inconsistencies between the Dark Energy Spec-
troscopic Instrument (DESI) and Type Ia Supernovae
datasets. In particular, since wDM ¼ 0 remains fully con-
sistent within 2σ, these results should not be overinter-
preted as evidence for dynamical DM, rather viewed as a
diagnostic of the partial tension between DESI and other
tracers of Ωm.
The article is organized as follows. In Sec. II, we

describe the basic equations and express the EOS of
DM in terms of observable quantities. In Sec. III, we
outline the nonparametric and parametric methodologies
adopted for the reconstruction. In Sec. IV, we present the
observational datasets used in our analysis. In Sec. V, we
discuss the main results and their implications, and finally,
in Sec. VI, we summarize the key findings of this study.

II. THEORETICAL SETUP

On large scales, our Universe is approximately homo-
geneous and isotropic, and this geometrical configuration is
well described by the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, given by

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1−Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; ð1Þ

whereK represents the spatial curvature of the universe and
aðtÞ is the scale factor. The curvature parameter K can take
the values 0;�1, corresponding to a spatially flat, open, or
closed universe, respectively. In this work, we assume a
spatially flat universe, i.e., K ¼ 0. In the framework of GR,
the Friedmann equations governing cosmic expansion are
given by

κ2

3
ρtot ¼ H2; ð2Þ

κ2ptot ¼ −ð2Ḣ þ 3H2Þ; ð3Þ

where κ2 ¼ 8πG is Einstein’s gravitational constant. The
total energy density and total pressure of the cosmic
fluid components, comprising DM, DE, and baryons (b),
are denoted by ρtot ¼ ρDM þ ρDE þ ρb and ptot ¼ pDM þ
pDE þ pb, respectively. Here, ρi and pi correspond to the
energy density and pressure of the ith fluid (i¼DM;DE;b).
Since the observational data used in this work primarily
correspond to late times (a ∼ 1), we omit the contribution
of radiation to the total energy density and pressure, as it is
negligible in this regime. An overhead dot denotes dif-
ferentiation with respect to cosmic time, and H ≡ ȧ=a is
the Hubble rate of the FLRW universe. We assume that
each fluid follows a barotropic EOS, given by wi ¼ pi=ρi.
Specifically, we take wb ¼ 0, while the DE EOS wDE can
be treated either as constant or dynamical, depending on
specific parametrizations. The primary focus of this work is
the DM EOS wDM, which we reconstruct using observa-
tional data.
The contracted Bianchi identity, or equivalently, the

combination of Eqs. (2) and (3), leads to the conservation
equation for the total energy density,

ρ̇tot þ 3Hðρtot þ ptotÞ ¼ 0: ð4Þ

Since we assume no interaction between the different fluid
components, this equation can be decoupled into three
separate conservation equations,

ρ̇i þ 3Hð1þ wiÞρi ¼ 0; ði ¼ DM;DE; bÞ: ð5Þ

Next, we introduce the dimensionless Hubble parameter,

EðzÞ ¼ HðzÞ
H0

; ð6Þ

whereH0 is the present-day value of the Hubble parameter.
Using this definition, Eq. (2) can be rewritten as

E2ðzÞ ¼ Ωb;0ð1þ zÞ3 þ Ω̃DMðzÞ þ Ω̃DEðzÞ; ð7Þ

where 1þ z ¼ a0=a is the redshift (with a0, the present-day
scale factor, set to unity), and Ωb;0 ¼ 0.042 repre-
sents the present-day baryon density parameter. The terms
Ω̃DM ¼ ρDM=ρc;0 and Ω̃DE ¼ ρDE=ρc;0 denote the dimen-
sionless density parameters for DM and DE, respectively,

1These approaches are “model-independent” in the sense that
they are purely phenomenological with no assumptions on the
underlying DM theoretical model.

2The parameter Ωb;0 is fixed only in one of the reconstruction
approaches (which we refer to as the kernel approach), while in
the other we apply a BBN Gaussian prior [43] to infer the value of
Ωb;0h2.
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where ρc;0 ¼ 3H2
0

κ2
is the present-day critical energy density.

The conservation equation for DE, given by

ρ̇DE þ 3Hð1þ wDEÞρDE ¼ 0; ð8Þ

can be rewritten in terms of the redshift as

3ð1þ wDEÞ
ð1þ zÞ Ω̃DE ¼ Ω̃0

DE; ð9Þ

where the prime denotes differentiation with respect to
redshift z. Next, taking the derivative of Eq. (7) with respect
to z and using Eq. (9), we obtain the evolution equation for
the DM density,

Ω̃0
DM ¼ 2EE0 − 3Ωb;0ð1þ zÞ2 − 3ð1þ wDEÞ

ð1þ zÞ Ω̃DE: ð10Þ

Finally, using the conservation equation for DM,

ρ̇DM þ 3Hð1þ wDMÞρDM ¼ 0; ð11Þ

we derive the EOS for DM, wDM, as

wDM ¼ −1þ ð1þ zÞΩ̃0
DM

3Ω̃DM
; ð12Þ

which explicitly shows that the evolution ofwDM depends on
the redshift evolution of the other cosmic fluids. In this
article, we aim to investigate the key question: whether the
evolution ofwDM exhibits any deviation fromwDM ¼ 0 from
a nonparametric perspective. Using the previously derived
equations, we can express wDM as follows:

wDM ¼ 2EE0ð1þ zÞ − 3E2 − 3wDEΩ̃DE

3½E2 −Ωb;0ð1þ zÞ3 − Ω̃DE�
: ð13Þ

In terms of the dimensionless comoving distance,
DðzÞ ¼ R

z
0

dz0
Eðz0Þ, the EOS of DM can be written as

wDM ¼ −2D00ð1þ zÞ − 3D0 − 3wDED03Ω̃DE

3½D0 −D03Ωb;0ð1þ zÞ3 −D03Ω̃DE�
: ð14Þ

Now, regarding the DE sector that appears in Eqs. (13)
and (14) through the term Ω̃DE, one can consider either
a constant or a dynamical EOS for DE. However, in
this work, we adopt the simplest case by setting
wDE ¼ −1, corresponding to a vacuum energy density,
and thus Ω̃DE becomes constant and actually represents the
present-day value of the DE density parameter, i.e.,
Ω̃DEðz ¼ 0Þ ¼ ΩDE;0.

III. METHODOLOGY

A. Gaussian process with kernels

The relationship (or regression) between z and wDMðzÞ
can be determined using a Gaussian process (GP), a
nonparametric approach [44–47], without assuming any
specific parametric form. Using Gaussian process regres-
sion (GPR), we reconstruct the functions EðzÞ and DðzÞ,
along with their corresponding derivatives, directly from
the data. These reconstructed quantities are then employed
in Eqs. (13) and (14) to compute the EOS of DM, wDMðzÞ.
The uncertainty in wDMðzÞ is estimated through an error
propagation technique that accounts for the statistical
properties of EðzÞ and DðzÞ, which follow a multivariate
Gaussian distribution. These properties are characterized
by their mean functions and covariance matrices, including
the observational noise associated with EðzÞ and DðzÞ. We
therefore employ various forms of covariance functions
[45,48]. While we primarily focus on the squared expo-
nential covariance function, we also consider alternative
kernels. The squared exponential kernel, also known as the
Gaussian kernel, is given by

Kðz; z̃Þ ¼ σ2f exp

�
−
ðz − z̃Þ2
2l2

�
; ð15Þ

where z and z̃ are two points, and σf and l are hyper-
parameters controlling the vertical variation and the char-
acteristic length scale, respectively. This kernel is widely
used due to its smoothness and the fact that it is infinitely
differentiable. Another commonly used kernel is the
Matérn kernel, defined as

Kν¼pþ1
2
ðz; z̃Þ ¼ σ2f exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ 1

p
l

jz − z̃j
�

p!
ð2pÞ!

×
Xp
i¼0

ðpþ iÞ!
i!ðp − iÞ!

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ 1

p
l

jz − z̃j
�

p−i
:

ð16Þ

For each value of p, a unique Matérn covariance function is
obtained. Examples include Matérn 9=2 for p ¼ 4, Matérn
7=2 for p ¼ 3, Matérn 5=2 for p ¼ 2, and Matérn 3=2 for
p ¼ 1. These Matérn covariance functions are r-times
mean-square differentiable if r < ν, where ν ¼ pþ 1

2
.

Additionally, we consider another kernel, known as the
Cauchy kernel, defined as

Kðz; z̃Þ ¼ σ2f

�
l

ðz − z̃Þ2 þ l2

�
; ð17Þ

and the rational quadratic kernel, given by
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Kðz; z̃Þ ¼ σ2f

�
1þ ðz − z̃Þ2

2αl2

�−α
; ð18Þ

where σf, α, and l are hyperparameters.
In Appendix A, we describe the methodology of the

Gaussian process in detail. To performGPR,weuse the Python
package GaPP,3 which also allows the computation of the
second and third derivatives of the GPR reconstruction.
Additionally,we employamodified version ofGaPP to handle
combined datasets. The methodology is discussed in [49].

B. Gaussian process as an interpolation

We also adopt a parametric approach to reconstruct
wDMðzÞ. This method employs a Gaussian process, though
not in a fully nonparametric manner, as it involves
parameters whose values must be inferred from data using
Bayesian statistics. In particular, we use a parameter
inference method known as nested sampling [50]. In this
way, we can directly compare our parametric reconstruction
with the standard model using the Bayesian evidence and
the maximum log-likelihood. For a brief review of
Bayesian statistics, see Appendix B.
In this manner, our parametric reconstruction consists of a

set of “nodes,” which are interpolated using a Gaussian
process. These nodes vary in height (their ordinate values),
and these variable heights serve as the parameters of the
reconstruction. For n nodes, there are n variable heights,
resulting in n additional parameters. This method has
previously been applied to reconstruct the EOS of DE
[51] and the interaction rate of an interacting DEmodel [52].
The sampler code used in this work is a modified version

of a Markov chain Monte Carlo code named SimpleMC [53].
SimpleMC is designed to calculate expansion rates and
distances based on the Friedmann equation. It also employs
a nested sampling library, DYNESTY [54], to compute the
Bayesian evidence during the parameter inference pro-
cedure. Regarding the priors on the parameters, we adopt
the following ranges; Ωm ¼ ½0.1; 0.5� for the matter density
parameter, Ωbh2 ¼ ½0.02; 0.025� for the physical baryon
density, h ¼ ½0.4; 0.9� for the dimensionless Hubble param-
eter, where H0 ¼ 100h km s−1 Mpc−1, and wDM;i ¼
½−5.0; 5.0� for the nodes that define the DM parametric
EOS. In this work, the number of nodes is set to 5. The
number of live points used in the nested sampling algorithm
is chosen based on the general rule 50 × ndim [55], where
ndim is the number of parameters being sampled.

IV. OBSERVATIONAL DATA

In this section, we describe the observational data and
statistical methodology considered in this work. We outline
below the datasets used for the reconstructions:

(i) Hubble parameter measurements from cosmic chro-
nometers: The Hubble parameter HðzÞ serves as a
key indicator of the properties of dark energy and
dark matter, as well as the universe’s expansion
history. It can be estimated using a nearly model-
independent method based on the differential age of
passively evolving galaxies, by measuring the ages
of old stellar populations at different redshifts z with
respect to cosmic time t, following the relation:

HðzÞ ≈ −
1

1þ z
Δz
Δt

: ð19Þ

These old galaxies, known as cosmic chronometers
(CC), act as “standard clocks” in cosmology. In this
work, we use a catalog of 31 CC measurements,
listed in Table I, along with their corresponding
references.

(ii) Type Ia supernovae: The Pantheonþ sample [56]
includes 1701 light curves from 1550 distinct Type
Ia supernovae (SN Ia) in the redshift range 0.01 ≤
z ≤ 2.26. To mitigate the effects of anomalous
velocity corrections, we use 1590 SN Ia data points
within the range 0.01 ≤ z ≤ 2.26, applying the con-
straint z > 0.01 [57]. The full Pantheonþ catalog and
its covariance matrix are publicly available.4 The
relationship between the distance modulus μ and
the luminosity distance dLðzÞ is given by

μ ¼ 5log10
dLðzÞ
Mpc

þ 25; ð20Þ

where μ ¼ m −MB and MB ¼ −19.42. The comov-
ing distance is defined as

DMðzÞ≡ dLðzÞ
1þ z

; ð21Þ

wheredL ¼ 10
ðμ−25Þ

5 . The error propagation rule is used
to compute the covariance matrix of DMðzÞ.

(iii) Baryon acoustic oscillations: Like CC and SN Ia,
Baryon acoustic oscillations (BAO) act as “standard
rulers” in cosmology, enabling measurements of the
angular diameter distance DAðzÞ. From this, we
compute the comoving angular diameter distance
DM ¼ DAð1þ zÞ and then derive DM=rd using the
relation,

DM

rd
¼ c

rd

Z
z

0

dz̃
Hðz̃Þ ; ð22Þ

where HðzÞ is the Hubble parameter, c is the speed
of light and rd is the comoving sound horizon at the

3https://github.com/astrobengaly/GaPP. 4https://github.com/PantheonPlusSH0ES/DataRelease.
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end of the baryon-drag epoch. Since the right-hand
side of Eq. (22) defines the comoving distance,
DMðzÞ, we can equivalently express DM=rd as the
comoving distance scaled by the sound horizon. In
this work, we use measurements of DM=rd at five
different redshifts. The data are taken from the DESI
Data Release 1 (DESI DR1) [58] and Data Release 2
(DESI DR2) [59] anisotropic BAO observations,
with the corresponding values listed in Tables II
(DESI DR1) and III (DESI DR2).

In this work, we used a new technique to combine
different datasets that measure distinct cosmological
observables, which are related to each other through simple
derivatives. This new technique is not exactly the same as
ones used in previous studies, as it includes some mod-
ifications [69]. For the Pantheonþ data, we used only z,
DMðzÞ, and the covariance matrix CovDM

to reconstruct

DMðzÞ and its derivatives. Similarly, for CC data alone, we
reconstructed HðzÞ and its derivatives. Since DESI pro-
vides the measurements of DM=rd, we need to multiply the
DESI measurements by a specific value of rd

5 to convert
them into themeasurements ofDMðzÞ. As a result, DESI and
Pantheonþ now share the same observable, namelyDMðzÞ,
and canbe combined directly.However,when combiningCC
with DESI or Pantheonþ (or both for that matter) we must
take into account the fact that DESI and Pantheonþ provide
DMðzÞ, while CC provide HðzÞ measurements. For CC, the
HðzÞ data are transformed into DHðzÞ ¼ c=HðzÞ. Since
DHðzÞ is the derivative of DMðzÞ, we can then use both
types of measurements simultaneously in the GPR frame-
work to reconstruct DMðzÞ and its derivatives. It is well-
known that different types of covariance functions can be
used in GPR. In particular, the authors of [70,71] explored
their impact on cosmological reconstructions. Following this
motivation, in the present work we reconstructwDMðzÞ using
both the approaches described in Sec. III A.

V. RESULTS

In this section, we present the reconstructions of wDMðzÞ
using various combinations of the aforementioned data-
sets and GPR approaches; kernel-based (nonparametric)
and parametric. First, we reconstruct wDMðzÞ using CC,
Pantheonþ, and CCþ Pantheonþ. Then, we incorporate
BAO data from DESI-DR1 and DESI-DR2 and perfor-
med additional reconstructions with CCþ DESI − DR1,
DESI-DR1þ Pantheonþ (DESI-DR2þ Pantheonþ), and
CC þ DESI-DR1 þ Pantheonþ (CC þ DESI-DR2þ
Pantheonþ),6 resulting in a total of nine dataset combina-
tions. As BAO data incorporates rd, therefore, reconstruc-
tions using BAO are not fully nonparametric. This,
however, does not discourage us from examining the effects
resulting from the inclusion of DESI BAO when combined
with CC and Pantheonþ.

TABLE I. We consider 31HðzÞ measurements obtained using
the CC method. Taking into account both statistical and system-
atic uncertainties, the total error is computed as σtot ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðσþstat þ σ−statÞ=2�2 þ ½ðσþsyst þ σ−systÞ=2�2
q

. For example, the HðzÞ
value reported in [60] is 89� 23ðstatÞ � 44ðsystÞ km s−1 Mpc−1,
which corresponds to a total uncertainty of 89�
49.6ðtotÞ km s−1 Mpc−1 in our analysis. Similarly, the measure-
ment 113.1� 15.1ðstatÞþ29.1

−11.3 ðsystÞ km s−1 Mpc−1 from [61]
yields a total uncertainty of 113.1� 25.22ðtotÞ km s−1 Mpc−1.

z HðzÞ σHðzÞ Reference z HðzÞ σHðzÞ Reference

0.07 69.0 19.6 [62] 0.4783 80.9 9.0 [63]
0.09 69.0 12.0 [64] 0.48 97.0 62.0 [65]
0.12 68.6 26.2 [62] 0.5929 104.0 13.0 [66]
0.17 83.0 8.0 [67] 0.6797 92.0 8.0 [66]
0.1791 75.0 4.0 [66] 0.7812 105.0 12.0 [66]
0.1993 75.0 5.0 [66] 0.8754 125.0 17.0 [66]
0.20 72.9 29.6 [62] 0.88 90.0 40.0 [65]
0.27 77.0 14.0 [67] 0.90 117.0 23.0 [67]
0.28 88.8 36.6 [62] 1.037 154.0 20.0 [66]
0.3519 83.0 14.0 [66] 1.3 168.0 17.0 [67]
0.3802 83.0 13.5 [63] 1.363 160.0 33.6 [68]
0.4 95.0 17.0 [67] 1.43 177.0 18.0 [67]
0.4004 77.0 10.2 [63] 1.53 140.0 14.0 [67]
0.4247 87.1 11.2 [63] 1.75 202.0 40.0 [67]
0.4497 92.8 12.9 [63] 1.965 186.5 50.4 [68]
0.47 89.0 49.6 [60] � � � � � � � � � � � �

TABLE II. Measurements ofDM=rd from DESI DR1 BAO data
[58] at five distinct redshifts.

Tracer Redshift zeff DM=rd

LRG1 0.4–0.6 0.510 13.62� 0.25
LRG2 0.6–0.8 0.706 16.85� 0.32
LRG3þ ELG1 0.8–1.1 0.930 21.71� 0.28
ELG2 1.1–1.6 1.317 27.79� 0.69
Lya QSO 1.77–4.16 2.330 39.71� 0.94

TABLE III. Measurements of DM=rd from DESI DR2 BAO
data [59] at six distinct redshifts.

Tracer Redshift zeff DM=rd

LRG1 0.4–0.6 0.510 13.588� 0.167
LRG2 0.6–0.8 0.706 17.351� 0.177
LRG3þ ELG1 0.8–1.1 0.934 21.576� 0.152
ELG2 1.1–1.6 1.321 27.601� 0.318
QSO 1.1–1.6 1.484 30.512� 0.760
Lya 1.77–4.16 2.330 38.988� 0.531

5Note that the choice of rd is not unique; in principle, one can
adopt any particular value of rd. Since we restrict our analysis to
the low-redshift regime, the methodologies applied in this work
do not allow us to determine the value of rd.

6For the BAO data from DESI, we have considered both DR1
and DR2 measurements in order to examine whether the latter
makes any changes in the reconstructions compared to the former.
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A. Kernel approach

1. CC+ and CC+DESI

We begin with the results for CC alone, considering the
squared exponential kernel, and later summarize the key
findings for the remaining kernels. Using the 31 CC data
points listed in Table I, we first reconstructHðzÞ (upper plot
of Fig. 1) and H0ðzÞ (lower plot of Fig. 1). With these
reconstructions, one can obtain the dimensionless quantities
EðzÞ and E0ðzÞ, which are required to recover Eq. (13). It is
important to note that to reconstruct EðzÞ and E0ðzÞ,
specifying a value for H0 is required. In principle, any
specific value ofH0 can be chosen, but different values may
impact the final results [72]. Thus, the choice of H0 may, in
principle, influence the results, and in general, there is no
guiding principle supporting a particular choice of H0.
However, in this case, we have the possibility of avoi-
ding the arbitrary selection of H0 given that, from the
reconstructed graph of HðzÞ (Fig. 1), one can determine
the value of HðzÞ at z ¼ 0 by extrapolation. This yields
H0 ¼ 67.45� 4.75 km=s=Mpc (see Table IV), which we

have used to obtainEðzÞ andE0ðzÞ. With these reconstructed
functions, we can now reconstruct wDMðzÞ using Eq. (13).
The topmost plot in the left column of Fig. 2 corresponds to
the case of CCdata alone. From this, we observe thatwDMðzÞ
is consistent with zero at low redshifts. Therefore, CC data
alone does not indicate any deviation from CDM.
We now present the results using the BAO measure-

ments, namely, DM=rd from DESI DR1 and DESI DR2,
combined with the CC dataset. As already argued, recon-
structions using BAO data require a fixed value of the rd,
which inevitably influences the results. For the CCþ DESI
data combination (and for all combinations considered
hereafter where DESI is used), we adopt two distinct values
of rd; namely, rd ¼ 149.3� 2.7 Mpc at 68% CL [73] and
rd ¼ 137� 3.6 Mpc at 68% CL [74], and perform the
reconstructions of wDMðzÞ. These two choices are moti-
vated by existing literature: the higher value of rd has
been reported by Planck 2018 (rd ¼ 147.09� 0.26 Mpc at
68% CL, Planck TT;TE;EEþ lowEþ lensing [75]) and
by BAO measurements from the Sloan Digital Sky Survey
combined with Big Bang Nucleosynthesis (rd ¼ 149.3�
2.7 Mpc at 68% CL) [73], while a nearly model-indepen-
dent approach based on low-redshift measurements yields a
smaller value, rd ¼ 137� 3.6 Mpc [74]. According to the
literature, there is currently no compelling evidence favor-
ing either of these two values. Therefore, for completeness,
we consider both a high and a low value of rd. In this work,
we adopt the estimate from [73] (i.e., rd ¼ 149.3� 2.7 Mpc
at 68% CL), since it is consistent with the Planck 2018
value within the same confidence level. The uncertainties in
rd for these two measurements are taken into account by
applying the error propagation rule to derive the covariance
matrix of DM and to study how variations in rd affect the
reconstructed wDMðzÞ and its associated uncertainty.7 The
left column (excluding the upper plot) of Fig. 2 presents
the reconstructed graphs of wDM for CCþ DESI-DR1 and
CCþ DESI-DR2. Focusing on CCþ DESI-DR1 for both
choices of rd, we notice mild preference for wDM < 0 (at
slightly more than 68% CL) in the high-redshift regime8

and of wDM > 0 in the intermediate-redshift regime.
However, in the low-redshift regime, wDM is consistent
with zero. This is particularly interesting because, although
the hint for wDM ≠ 0 is statistically mild according to these
datasets, the indication of a sign-changing behavior in wDM
warrants further investigation. When DESI-DR1 is replaced
with DESI-DR2 in the combined dataset, and assuming
rd ¼ 149.3� 2.7 Mpc, the results remain nearly identical

FIG. 1. Reconstruction of HðzÞ (upper panel) and H0ðzÞ (lower
panel) using 31 CC data points with the squared exponential
kernel of the Gaussian approach. The dotted curve in each panel
represents the mean of the corresponding reconstructed quantity.

7We note that for Fig. 3, where we calculate wDMðz ¼ 0Þ for
different rd values, we use a few discrete rd values solely to
illustrate the trend in wDMðz ¼ 0Þ.

8One can further notice that with the increase of rd, mild
preference of a non-null nature of wDM is pronounced only in the
high-redshift regime. It is important to note, however, that beyond
z ∼ 2, the amount of data, and consequently its constraining
power, is limited.
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FIG. 2. Reconstruction of wDMðzÞ using the squared exponential kernel of the Gaussian approach, under the minimal assumption that
DE corresponds to the cosmological constant, i.e., wDE ¼ −1, for the CC, Pantheonþ, CCþ Pantheonþ, DESIþ Pantheonþ, and
CCþ DESI þ Pantheonþ datasets. The red dashed curve represents the mean curve of the reconstructed wDMðzÞ, while the solid
horizontal line corresponds to wDMðzÞ ¼ 0.
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to those obtained with CCþ DESI-DR1. Specifically, we
continue to observe a mild preference for wDM < 0 at high
redshifts and wDM > 0 at intermediate redshifts. However,
these indications are slightly weakened when DESI-DR2 is
used. Overall, the presence of a nonzero wDM throughout
the expansion history of the universe cannot be ruled out.

2. Pantheon+ and DESI+Pantheon+

We now switch our focus to the reconstruction of wDM
using Pantheonþ alone for the squared exponential kernel.
Unlike the previous case with CC alone, where HðzÞ was
obtained directly, here we need to reconstruct DðzÞ since
Eq. (14) involves it. In order to reconstruct DðzÞ, we need
to specify a value ofH0, and this can be efficiently obtained
through the relation betweenD0

MðzÞ andHðzÞ. AsD0
MðzÞ ¼

c=HðzÞ and hence D0
Mð0Þ ¼ c=H0, the reconstructed value

of HðzÞ at z ¼ 0 is 68.74� 0.45 km=s=Mpc. We refer
to the middle column of Fig. 2, where the top graph
corresponds to the reconstruction using Pantheonþ only.
According to the results, Pantheonþ by itself does not
suggest any hint for noncold DM, since we observe that
wDM is in agreement with its null value within the 68% CL.
Now, we consider the combined analyses with

DESIþ Pantheonþ, using both DESI DR1 and DESI
DR2. Following the strategy described in Sec. VA 1, we
performed the reconstructions of wDM using two values of
rd; 149.3� 2.7 Mpc and 137� 3.6 Mpc. The middle
column (excluding the upper plot) of Fig. 2 presents the
reconstructions of wDMðzÞ for the combined datasets.
Starting with DESI-DR1þ Pantheonþ, we notice that
for rd ¼ 149.3� 2.7 Mpc, there is a very mild hint of
wDM < 0 (at slightly more than 68% CL) in the high-
redshift regime, while in the low-redshift regime no hint in

favor of wDM ≠ 0 is found. However, for DESI-DR1þ
Pantheonþ with rd ¼ 137� 3.6 Mpc, we observe that wDM
shows a preference for positive values (where wDM > 0 at
slightly more than 68% CL) in the high-redshift regime
(z ∼ 2), then enters into the negative region where wDM < 0
(at slightly more than 68% CL) as z decreases; after that, it
transits to wDM > 0 (at slightly more than 95% CL) close to
the present epoch, and finally at z ¼ 0, we find a mild
preference of wDM < 0 at slightly more than 68% CL.
When replacing DESI-DR1 with DESI-DR2, we find

that—unlike the DESI-DR1þ Pantheonþ combination
with rd ¼ 149.3� 2.7 Mpc—wDM shows no clear prefer-
ence for a nonzero value throughout the expansion history
of the universe, and CDM remains favored in this case.
However, when using rd ¼ 137� 3.6 Mpc, the results
exhibit some notable changes. While the hint for a nonzero
wDM at high redshift vanishes, a preference for wDM > 0
near the present epoch (z ∼ 0.6) is found at slightly more
than 95% confidence level. Additionally, at z ¼ 0, we find
wDM < 0 at slightly more than 68% confidence level.

3. CC+Pantheon+ and CC+DESI+Pantheon+

We now present the results after adding CC to
Pantheonþ, using the squared exponential kernel for the
GPR. We refer to the right column of Fig. 2, where the top
graph in this series corresponds to this reconstruction. In
this case, we do not find any compelling evidence of a non-
null wDMðzÞ during the expansion history of the universe,
aside from a relatively small preference for wDMðzÞ > 0
slightly above the 68% CL around z ∼ 0.9.
We then combined the two different versions of DESI

BAO with CCþ Pantheonþ, considering the two distinct
values of rd. The right column (excluding the topmost
plot) of Fig. 2 corresponds to these reconstructions of
wDMðzÞ. We start with the results from CCþ DESI-DR1þ
Pantheonþ. For rd ¼ 149.3� 2.7 Mpc, we notice that in
the high-redshift regime, there is a mild preference of
wDMðzÞ < 0 at slightly more than 68% CL. On the
other hand, for rd ¼ 137� 3.6 Mpc, CCþ DESI-DR1þ
Pantheonþ predicts wDMðzÞ < 0 at approximately 68% CL
in the high-redshift regime, and wDMðzÞ > 0 at approx-
imately 99% CL in the intermediate-redshift regime
(z ∼ 0.6), but no evidence for wDMðzÞ ≠ 0 at low redshifts
is found in this case. Replacing DESI-DR1 with DESI-DR2
does not lead to any significant changes; the results for the
CCþ DESI-DR1þ Pantheonþ and CCþ DESI-DR2þ
Pantheonþ combinations remain nearly identical.9

TABLE IV. Reconstructed value of HðzÞ at z ¼ 0, i.e., H0, at
68% CL using GPR for different observational datasets.

Dataset rdðMpcÞ H0 (km=s=Mpc)

CC � � � 67.4� 4.8
Pantheonþ � � � 68.74� 0.45
CCþ Pantheonþ � � � 68.78� 0.41

CCþ DESI-DR1 149.3� 2.7 71.2� 3.5
CCþ DESI-DR1 137� 3.6 70.8� 3.5

CCþ DESI-DR2 149.3� 2.7 71.1� 3.4
CCþ DESI-DR2 137� 3.6 70.8� 3.6

DESI-DR1þ Pantheonþ 149.3� 2.7 68.72� 0.42
DESI-DR1þ Pantheonþ 137� 3.6 68.98� 0.50

DESI-DR2þ Pantheonþ 149.3� 2.7 68.75� 0.42
DESI-DR2þ Pantheonþ 137� 3.6 68.90� 0.48

CCþ DESI-DR1þ Pantheonþ 149.3� 2.7 68.82� 0.40
CCþ DESI-DR1þ Pantheonþ 137� 3.6 68.77� 0.44

CCþ DESI-DR2þ Pantheonþ 149.3� 2.7 68.823� 0.39
CCþ DESI-DR2þ Pantheonþ 137� 3.6 68.86� 0.45

9We would like to point out that the deviation in wDMðzÞ, even
though statistically mild, observed across all combined datasets
including DESI BAO, occurs in a similar redshift range where
DESI [58,59] reported a deviation from the ΛCDM model. This
connection is noteworthy because, similar to the DESI analyses
[58,59], the present study adopts a model-independent diagnostic
to investigate possible departures from ΛCDM cosmology,
focusing on the DM sector.
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The overall results indicate that the choice of the sound
horizon scale rd plays a significant role in the reconstruc-
tion process. As demonstrated by our analysis, the inferred
behavior of cosmological parameters—particularly the DM
EOS wDMðzÞ—varies with the assumed value of rd.
To systematically investigate this dependence, we evalu-

ated wDMðz ¼ 0Þ over a range of rd values within the
interval [135, 153] Mpc, using the combined datasets
CCþ DESI-DR1þ Pantheonþ and CCþ DESI-DR2þ
Pantheonþ. Unlike the previous cases, where we accounted
for the uncertainties in rd associated with its two measure-
ments from Refs. [73,74], here we consider several discrete
values of rd in the interval [135, 153] Mpc to obtain a rough
estimate of wDMðz ¼ 0Þ. The results are summarized in
Fig. 3, which shows the 68% CL constraints onwDMðz ¼ 0Þ
in the formof awhisker plot.The figure illustrates that, across
the range of rd, the constraints on wDMðz ¼ 0Þ consistently
deviate from the CDM assumption [wDMðzÞ ¼ 0] if rd starts
to differ from∼145 Mpc, reinforcing the idea that rd plays a
non-negligible role in probing potential deviations from the
standard CDM scenario.
This sensitivity arises from the fact that rd sets the

physical scale of the BAO feature, which serves as a
cosmological standard ruler. Since BAO measurements are
used to calibrate distance scales and infer the expansion
history of the universe, any assumption or uncertainty
in rd propagates directly into the reconstructed dynamics.
Moreover, a nonzero wDMðzÞ modifies the redshift evolu-
tion of the DM density, thereby influencing both the back-
ground expansion and the growth of large-scale structure.

As a result, variations in rd can either mimic or obscure the
physical signatures of a nonzero wDMðzÞ. This interplay
highlights the importance of carefully accounting for rd
when using BAO-based datasets to constrain the nature of
DM and assess deviations from the CDM paradigm. In
particular, as shown in Fig. 3, a mild departure of wDMðzÞ
from wDM ¼ 0 is more pronounced for lower values of rd
compared to higher ones; however, departures in both
directions are observed. A lower (higher) value of rd implies
a relatively higher (lower) value of H0 [74]. Since in this
work we assume that the DE sector is represented by a
cosmological constant and does not interact with the DM
sector, an increased (reduced) value of H0 corresponds to
a modification of the standard ΛCDM model, specifically
in its DM sector. Nevertheless, this mild departure should
be interpreted with caution, as there exists a degeneracy
between the late-time expansion history of the universe and
thevalue of rd,which is fixedbyhandwhen incorporating the
DESI BAO measurements. Therefore, variations in rd are
degenerate with the effects on the reconstructed wDM, and
such variations are of the same order as the mild departures
observed in wDMðz ¼ 0Þ.

4. Beyond the squared exponential kernel

To assess the robustness of our results with respect to the
choice of kernel, we also performed reconstructions using
alternative covariance kernels beyond the standard squared
exponential one, namely the Matérn family, Cauchy, and
Rational Quadratic kernels. For consistency, we used DESI
DR1 and DR2, along with the two values of the sound
horizon rd mentioned in previous sections. However, the
results for DESI DR1 and DESI DR2 are not significantly
different; therefore, in this section we present only the
results for DESI DR2.
To avoid overcrowding the manuscript with multiple

figures, in Fig. 4 we summarize the results for CC,
Pantheonþ, CCþ Pantheonþ, CCþ DESI-DR2, DESI-
DR2þ Pantheonþ, and CCþ DESI-DR2þ Pantheonþ.
In particular, in Fig. 4 we present the quantity ΔwDMðzÞ ¼
jwDMðzÞ − 0j=σwDMðzÞ, which quantifies the statistical sig-
nificance of the deviation of wDMðzÞ from the CDM
baseline (wDM ¼ 0). It is important to emphasize that
ΔwDM does not represent the absolute deviation, but rather
the deviation normalized by its corresponding uncertainty,
providing a clearer measure of statistical relevance across
different kernels. According to the results shown in this
figure, indications of a nonzero wDMðzÞ are also supported
beyond the squared exponential kernel. In the following,
we present these results in detail.
We first focus on the reconstructions considering CC

alone and Pantheonþ alone for all the kernels. For CC
alone, we notice that in the low-redshift regime, wDMðzÞ is
almost identical to its null value, but in the high-redshift
regime, a mild tendency for a non-null wDMðzÞ within
(1σ, 2σ) is found. For Pantheonþ alone, irrespective of the

FIG. 3. Whisker plot showing the 68% CL constraints on the
present-day value of wDMðzÞ, i.e., wDMðz ¼ 0Þ, for different
discrete values of rd (in Mpc) within the interval 135 Mpc ≤
rd ≤ 153 Mpc, obtained using the squared exponential kernel of
the Gaussian process and two combined datasets; CCþ
DESI-DR2þ Pantheonþ (upper panel) and CCþ DESI-DR1þ
Pantheonþ (lower panel).
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kernel, we find that evidence for wDMðzÞ ≠ 0 appears up to
2σ, and, except for the squared exponential and Matérn
kernels, wDMðz ¼ 0Þ is found to be non-null at more than
1σ. Combining CC and Pantheonþ results in evidence of a
non-null wDM remaining within 2σ throughout the expan-
sion history of the universe. In addition to that, only for the
Matérn 9=2 kernel do we obtain wDMðz ¼ 0Þ > 0 at
slightly more than 1σ.
When CC is combined with DESI-DR2, a preference for

a nonzero wDMðzÞ is found across all kernels, regardless of
the chosen value of rd. Notably, this preference persists
throughout the redshift range, although differences emerge
at the present epoch, where various kernels yield differing
levels of significance. For instance, the Matérn family of
kernels exhibits wDMðz ¼ 0Þ ≠ 0 at the 2 − 3σ level, with
the Matérn 9=2 kernel in particular showing a deviation
at nearly 3σ. In contrast, the other kernels indicate
wDMðz ¼ 0Þ ≠ 0 only at approximately the 1σ level.
For both DESI-DR2þ Pantheonþ and CCþ DESI-

DR2þ Pantheonþ, we observe a hint of wDM ≠ 0 through-
out the expansion history of the universe. At the present
epoch, all kernels yield a nonzerowDM at approximately the
1σ level. More notably, in the intermediate redshift range,
deviations reach up to 3σ, suggesting evidence for a
dynamical DM component. Additionally, we highlight that
for the Matérn 5=2 and Matérn 7=2 kernels, the error
estimates appear to be overestimated in the cases of the
CCþ Pantheonþ, CCþ DESI-DR2, and CCþ DESI-
DR2þ Pantheonþ datasets. This behavior, which is not
as pronounced in the other kernels, was also noted in [70].
Taken together, these results suggest that the possibility

of a dynamical DM component deserves further
investigation.

B. Parametric approach

We now turn our attention to the results of the parametric
interpolation using GPR. Similar to the previous section,
we consider nine different data combinations. The func-
tional posteriors for the cases without and with DESI
DR1 and DESI DR2 are presented in Fig. 5. In Table V, we
report the best-fit values of h and Ωm;0, along with the
natural logarithm of their Bayes factor and the quantity
−2Δ lnLmax. The latter, if negative, indicates how well the
fit to the data compares to the standard model. The 1D and
2D marginalized posteriors are shown in Figs. 6–8. In the
following, we examine each case in detail.
For the case where only the CC dataset is used to

reconstruct wDM, we observe an expected improvement in
−2Δ lnLmax due to the additional parameters with respect
to ΛCDM. The Bayes factor indicates moderate evidence
against this reconstruction, which aligns with expectations.
Notably, allowing wDM to vary leads to a significant
increase in the best-fit h (see Table V), though it remains
largely unconstrained. This alleviates the Hubble tension
but comes at the cost of reduced constraining power. As
shown in the upper part of Fig. 5, the DM EOS exhibits an
oscillatory behavior at the 1σ level, which is also reflected
in the best-fit curve (red-dotted line).
For the Pantheonþ dataset, the larger data sample results

in fewer oscillations compared to CC, though slight
deviations from ΛCDM’s wDM ¼ 0 persist at the 1σ level.
We also observe wDM > 0 around z ≈ 2.3, followed by a

FIG. 4. Deviation of wDMðzÞ from zero, quantified by ΔwDM ¼ jwDMðzÞ − 0j=jσwDMðzÞj, for different datasets across various kernels.
For the datasets where DESI DR2 BAO is included, the solid red line corresponds to rd ¼ 149.3� 2.7 Mpc, while the dashed blue
line corresponds to rd ¼ 137� 3.6 Mpc. Nonzero evidence for wDMðzÞ across the redshift range is observed, regardless of the choice
of kernel.
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FIG. 5. Parametric reconstructions of wDM using different datasets, considering the binned Gaussian approach. These plots represent
the functional posterior and were generated using the publicly available Python library FGIVENX [76]. The red dotted curve represents the
best-fit curve for each case and the horizontal dotted line corresponds to wDM ¼ 0.

TABLE V. The table summarizes the mean values and the standard deviations.

Model Datasets h Ωm wDMðz ¼ 0Þ lnBΛCDM;i −2Δ lnLmax

ΛCDM CC 0.676 (0.044) 0.332 (0.063) 0 � � � � � �
eosDM CC 0.749 (0.078) 0.229 (0.092) −1.4 (2.4) 3.41 (0.17) −3.12

ΛCDM Pantheonþ 0.65 (0.14) 0.331 (0.018) 0 � � � � � �
eosDM Pantheonþ 0.61 (0.14) 0.25 (0.11) 0.23 (0.51) 6.11 (0.17) −2.62

ΛCDM CCþ Pantheonþ 0.676 (0.028) 0.329 (0.017) 0 � � � � � �
eosDM CCþ Pantheonþ 0.663 (0.029) 0.26 (0.11) 0.31 (0.48) 8.14 (0.19) −0.45

ΛCDM CCþ DESI 0.699 (0.025) 0.286 (0.032) 0 � � � � � �
eosDM CCþ DESI 0.685 (0.065) 0.234 (0.088) 0.16 (0.88) 7.72 (0.39) −3.04

ΛCDM DESI þ Pantheonþ 0.719 (0.045) 0.324 (0.018) 0 � � � � � �
eosDM DESI þ Pantheonþ 0.63 (0.13) 0.176 (0.066) 0.85 (0.44) 6.61 (0.39) −6.58

ΛCDM CCþ DESIþ Pantheonþ 0.689 (0.022) 0.321 (0.016) 0 � � � � � �
eosDM CCþ DESIþ Pantheonþ 0.658 (0.028) 0.229 (0.068) 0.46 (0.35) 9.03 (0.43) −3.53

ΛCDM CCþ DESI-DR2 0.671 (0.011) 0.323 (0.027) 0 � � � � � �
eosDM CCþ DESI-DR2 0.711 (0.071) 0.277 (0.063) −0.9 (1.2) 7.81 (0.25) −1.15

(Table continued)
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FIG. 6. Triangle plot of the parametric reconstructions using three datasets without BAO. Shown are the marginalized 1D and 2D
posteriors, illustrating their behavior within a specific cluster of dataset combinations.

TABLE V. (Continued)

Model Datasets h Ωm wDMðz ¼ 0Þ lnBΛCDM;i −2Δ lnLmax

ΛCDM DESI-DR2þ Pantheonþ 0.702 (0.025) 0.325 (0.018) 0 � � � � � �
eosDM DESI-DR2þ Pantheonþ 0.60 (0.19) 0.237 (0.098) 0.18 (0.40) 6.07 (0.23) −5.08

ΛCDM CCþ DESI-DR2þ Pantheonþ 0.693 (0.018) 0.323 (0.017) 0 � � � � � �
eosDM CCþ DESI-DR2þ Pantheonþ 0.668 (0.029) 0.302 (0.037) 0.00 (0.21) 9.55 (0.25) −2.67
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sharp decline toward z ≈ 3, mirroring the behavior seen
with the kernel approach. We attribute this similarity and
behavior to the lack of data, and consequently of con-
straining power, in this redshift range, which causes the
node located at z ¼ 3 to default to a lower value than the
previous one. While the parametric wDM improves the fit,
the Bayes factor suggests even weaker statistical support
compared to the CC-only case. Moreover, both H0 and Ωm
remain largely unconstrained, as indicated by the red con-
tours in Fig. 6. In the standard model, the Pantheonþ
dataset alone provides a relatively tight constraint on Ωm,
yielding Ωm ¼ 0.332� 0.018. In contrast, the parametric

scenario results in a significantly broader constraint,
Ωm ¼ 0.249� 0.107.
This weakened constraint on Ωm appears across all

dataset combinations, although its magnitude varies
depending on the case. It can be directly attributed to
the additional degrees of freedom introduced by allowing
the DM equation of state to vary. In the parametric
approach, the dimensionless Hubble parameter is obtained
after inference as

E2ðzÞ ¼ ΩmðzÞ þ ΩDEðzÞ; ð23Þ

FIG. 7. Triangle plot of the parametric reconstructions using three datasets including DESI-DR1 BAO. Shown are the marginalized 1D
and 2D posteriors, illustrating their behavior within a specific cluster of dataset combinations.
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where we restrict our analysis to late-time redshifts (neglect-
ing Ωr ≃ 0) and assume a spatially flat universe (Ωk ¼ 0).
For ΛCDM, we have wDM ¼ 0, and consequently ΩmðzÞ ¼
Ωmð1þ zÞ3 [Ωm refers to the present day value ofΩmðzÞ]. In
contrast, for our parametric reconstruction, the situation is
less straightforward, sincewDM is now a function of redshift.
If only one bin (or node) were used, with a constant wDM;0,
the matter density would evolve as

ΩmðzÞ ¼ Ωmð1þ zÞ3ð1þwDM;0Þ; ð24Þ

which introduces an additional degree of freedom, allowing
Ωm to vary in [0.1, 0.5], since DM is no longer restricted to
evolve strictly as a−3. In our case, however, we use five bins
(or nodes), which further increases this freedom. As a result,
if the datasets employed lack sufficient constraining power,
one should not expect Ωm to behave as tightly as in the
standard ΛCDM scenario.
Next, we analyze the combination of the CC and

Pantheonþ dataset. This joint dataset considerably improves
the constraints on the functional posterior, particularly
within the range 0.5 < z < 1.5 (upper-right panel of Fig. 5).

FIG. 8. Triangle plot of the parametric reconstructions using three datasets including DESI-DR2 BAO. Shown are the marginalized 1D
and 2D posteriors, illustrating their behavior within a specific cluster of dataset combinations.
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At higher redshifts, the mild preference for negative values
becomes more evident. Nevertheless, despite the improve-
ment relative to the individual CC and Pantheonþ cases, the
confidence contours remain broad due to the scarcity of data
in this regime. The constraining power is relatively low for
CC, as shown in Fig. 6, where the dominant contribution to
the constraints on the DMEOS parameterswDM;i arises from
Pantheonþ. Interestingly, however, some influence fromCC
appears when considering the fourth node: since Pantheonþ
contains only a handful of supernovae above z ¼ 1.5, the few
CC points available in this range can modestly affect the
behavior of the node at z ¼ 2.25. Although the CC dataset
does not strongly impact the wDM;i parameters, it provides
something that Pantheonþ cannot; an anchor for H0.
The best-fit curve (red-dotted line in the lower panel

of Fig. 5) trends toward negative values for z > 1.2,
closely resembling the results obtained using the kernel
approach with CC data alone. Notably, the improvement in
fit, as measured by −2Δ lnLmax (Table V), is minimal
compared to the standard model. In the well-constrained
range 0.5 < z < 1.5, wDM gravitates toward zero, leading to
negligible gains in data fitting. Given the additional param-
eters, this results in a significantly worse Bayes factor.
The next three cases will be discussed together, as they

closely resemble the previously analyzed scenarios but now
include DESI-DR1 BAO data. In the CCþ DESI-DR1
case, the fit to the data remains comparable to its counter-
part without DESI-DR1. However, this is not true for the
other two cases. Both DESI-DR1þ Pantheonþ and CCþ
DESI-DR1þ Pantheonþ exhibit an overall improvement
in data fitting. Despite this, the Bayes factor strongly favors
the standard model, with an even greater preference than
in cases without DESI-DR1. Specifically, the Bayes factor
values are approximately 7.7, 6.6, and 9 for CCþ DESI-
DR1, DESI-DR1þ Pantheonþ, and CCþ DESI-DR1þ
Pantheonþ, respectively. Substituting DESI-DR1 with
DESI-DR2 results in an overall poorer fit to the data
(compared toΛCDM) than in theDESI-DR1 cases; however,
the Bayesian evidences remain largely unchanged.
Examining Fig. 5, we observe a clear impact from

incorporating DESI data. This inclusion leads to tighter
constraints (i.e., smaller contours), while still preserving an
oscillatorylike behavior across all six cases. Regarding
these oscillations, we note that an interesting feature
emerges in the best-fit reconstructions (red-dotted lines);
a transition in behavior around z ∼ 1.5. Specifically, when
using DESI DR1, wDM tends to favor positive values,
whereas with DESI DR2, the preference shifts toward
neutral or negative values. This behavior is readily
explained by the differences between the two data releases,
particularly the reduced error bar on the ELG2 point at
z ∼ 1.32 and the addition of a new QSO point at z ¼ 1.48—
precisely the redshift region where this transition occurs.
Another noteworthy characteristic is the best-fit value of

wDM at z ¼ 0. Unlike the nonparametric reconstructions,

which tend to favor negative values, these results generally
indicate a preference for positive values, except in the case
where only CC data is used. This is a direct consequence of
treatingH0 (specifically, h) as a free parameter while fixing
rd (at 149.3 Mpc) for the DESI BAO data in the parametric
approach. This results in lower values of h and Ωm;0 and
higher values of wDMðz ¼ 0Þ. Another key factor contrib-
uting to this behavior can be observed in the marginalized
posteriors (Figs. 6–8). Since wDM is allowed to vary freely,
the usual correlation between h and Ωm;0 disappears,
leading to weaker constraints on both parameters at the
background level given the datasets used. Additionally,
a direct comparison between Figs. 6–8 highlights the
impact of the DESI DM data on the posteriors (both
DR1 and DR2), particularly for the DM EOS parameters.
The exception is wDM;5, which remains largely unaffected
due to its location at z ¼ 3, where data is sparse. Moreover,
a tendency for positive values of wDMðz ¼ 0Þ becomes the
standard trend when DESI data is included. The mild
preference observed in DESI (both DR1 and DR2) for a
nonzero DM equation of state, wDM ≠ 0, may be under-
stood in the broader context of its tendency to favor
deviations from the ΛCDM paradigm. Recent analyses
have already reported evidence for a preference toward
dynamical dark energy within DESI data [58,59]. In our
framework, however, DE is fixed to a nondynamical form,
and thus the flexibility that DESI data appear to demand
cannot be accommodated through the DE sector. As a
consequence, this preference for dynamics is effectively
absorbed by the DM sector, manifesting as a slight
deviation of wDM from zero. It is important to emphasize,
however, that this interpretation does not exclude the
possibility of genuine physical modifications to the DM
sector or to the processes of structure formation, which
remain viable avenues for further exploration beyond the
standard ΛCDM framework.

VI. SUMMARY AND CONCLUSIONS

The dark sector of the universe, comprised of DM and
DE, collectively constitutes nearly 96% of the total energy
budget of the universe. In an effort to probe its nature,
numerous astronomical missions have been conducted over
the years, yet a definitive answer remains elusive to
cosmologists. In this article, we have reconstructed wDM
using two methodologies based on GPR; one being a
nonparametric approach, and the other a parametric frame-
work. The DE sector is represented by the cosmological
constant in this work. More complex DE models could be
considered—since the fundamental nature of DE remains
unknown—but we opted for the simplest scenario, focusing
exclusively on DM.
We began by performing nonparametric GPR reconstruc-

tions of wDM, exploring different kernels and three datasets:
CC, Pantheonþ, and DESI BAO, along with their combi-
nations. The results extracted from the reconstructions of
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wDM are presented in Figs. 2–4, which jointly indicate a
preference for a non-null wDM throughout the expansion
history of the universe. In fact, such evidence may increase
up to3σ during certain epochs (see Fig. 4),with the important
caveat that this also depends on the choice of rd and kernel.
Additionally, in some cases, we observe potential sign
changes in the DM EOS, with multiple transitions occurring
in specific instances (see Fig. 2). We also note a mild
tendency for wDM to be negative at the present time, as
indicated by the recent datasets. This tendency becomes
more pronouncedwhenDESIBAO is combinedwithCCand
Pantheonþ (see Fig. 3). This could be a potential indication
of alleviating theH0 tension (seeRef. [5] for details), since an
increasedvalueofH0maybeassociatedwith a lower valueof
rd, consistent with the presence of a negative DMEOS at the
present epoch. These findings raise important questions
about the consistency between datasets regarding the back-
ground expansion history, particularly the BAO measure-
ments fromDESI, as they appear to be driving the dynamical
behavior of wDM.
In the parametric reconstruction using GPR as an

interpolation method and employing the nested sampling
algorithm, wDM is obtained for the same datasets and
their combinations (see Fig. 5), this time without fixing
the parameter H0 (h). Compared to the nonparametric
approach, we observe notable differences, such as a
preference for wDMðz ¼ 0Þ > 0, which is likely a conse-
quence of the absence of correlation between H0 and Ωm;0.
This lack of correlation also results in lower inferred values
for bothH0 andΩm;0. Similar to the nonparametric case, we
observe a tendency for wDM to oscillate around zero.
However, in this scenario, the statistical significance of
the deviations is much lower, never exceeding the 2σ level.
Moreover, we find that substituting DESI DR1 with DESI
DR2 leads to a noticeable change in the oscillatory
behavior of the DM EOS. We attribute this change to
the improved constraints provided by DR2 and the inclu-
sion of an additional data point at z ¼ 1.48; this redshift
being the one where the change in behavior occurs.
Based on the results summarized above, no strong

conclusive evidence for wDM ≠ 0 is found throughout
the entire expansion history of the universe. However,
the hints of a dynamical wDM, including the possibility of
negative values, merit further investigation. This is par-
ticularly relevant for assessing whether a time-varying DM
EOS is truly required, especially at late times, given the
current observational data. Since this study approaches
wDM in a nonparametric framework, we hope it provides a
valuable contribution to ongoing efforts in modern cos-
mological research.
Looking ahead, upcoming cosmological surveys such as

Euclid [77], theNancy Grace Roman Space Telescope [78],
Legacy Survey of Space and Time (LSST) [79], and the
gravitational waves data [80] are expected to significantly
improve constraints on the expansion history of the uni-
verse and the growth of structure. These missions will

provide high-precision measurements of Type Ia super-
novae, weak lensing, galaxy clustering, and baryon acous-
tic oscillations over a wide range of redshifts and cosmic
volumes. In particular, the increased data density and
reduced observational uncertainties will allow for more
robust nonparametric reconstructions of cosmological
functions such asHðzÞ andDMðzÞ, thereby enabling tighter
constraints on the dark matter equation of state wDMðzÞ.
This will be especially important for testing the presence of
a dynamical or nonzero wDM, potentially distinguishing
between cold and noncold dark matter scenarios with
greater confidence.
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APPENDIX A: GAUSSIAN PROCESS
REGRESSION

In this section we describe the details of the Gaussian
process regression and the remaining kernels that we used
in the article. The procedure for the Gaussian process is the
following:
(1) Firstly, we assume that we have n data points. We

model the function fðzÞ as a realization of a Gaussian
process [44,46], meaning that its values at any finite
set of input locations follow a multivariate Gaussian
distribution:
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f ∼ GPðM;KðZ; ZÞÞ; ðA1Þ

where M ¼ ½Mðz1Þ;Mðz2Þ;…;MðznÞ� is the mean
vector, and KðZ; ZÞ is an n × n covariance
matrix. Here, Z ¼ fziji ¼ 1; 2;…; ng represents
the input set.

(2) The locations at which we reconstruct the function
are denoted by Z� ¼ fz�i ji ¼ 1; 2;…; n�g. At these
points, the function values are represented as
f� ¼ ½f�1; f�2;…; f�n� �, where f�i ¼ fðz�i Þ. These val-
ues are jointly distributed according to a Gaussian
process:

f� ∼ GPðM�; KðZ�; Z�ÞÞ; ðA2Þ

where M� ¼ ½Mðz�1Þ;Mðz�2Þ;…;Mðz�n� Þ� is the prior
mean vector at Z�, and KðZ�; Z�Þ is the n� × n�
covariance matrix evaluated at Z�. The observational
data are assumed to be noisy realizations of the
underlying function,

yi ¼ fðziÞ þ ϵi; ðA3Þ

where ϵi is Gaussian noise. Therefore, the data
vector y ¼ ½y1; y2;…; yn� is distributed as

y ∼ GPðM;KðZ; ZÞ þ CÞ; ðA4Þ

where C is the noise covariance matrix. If the
observational errors are uncorrelated, C is diagonal;
otherwise, it is a full covariance matrix.

(3) The covariance function K contains hyperpara-
meters that control the shape and scale of the
reconstructed function. To determine their optimal
values, we maximize the log marginal likelihood
[44,46], which is derived by assuming a Gaussian
prior fjZ; σf;l ∼ GPðM;KðZ; ZÞÞ and a likelihood
yjf ∼ GPðf; CÞ. The resulting expression is

lnL ¼ lnpðyjZ; σf;lÞ

¼ −
1

2
ðy −MÞT ½KðZ; ZÞ þ C�−1ðy −MÞ

−
1

2
ln jKðZ; ZÞ þ Cj − n

2
ln 2π: ðA5Þ

The hyperparameters σf and l are optimized by
maximizing this likelihood.

(4) By combining Eqs. (A2) and (A4), we obtain the
joint distribution of the training outputs y and the
reconstructed function values f� [44,46],

�
y

f�

�
∼GP

��
M

M�

�
;

�
KðZ;ZÞ þC KðZ;Z�Þ
KðZ�; ZÞ KðZ�;Z�Þ

��
:

ðA6Þ

Conditioning this joint distribution on the observed
data y yields the posterior distribution for the
reconstructed function f�:

f�jZ�; Z; y ∼ GPðf�; covðf�ÞÞ; ðA7Þ

where the mean and covariance of the posterior
distribution are given by

f� ¼M� þKðZ�; ZÞ½KðZ;ZÞ þC�−1ðy−MÞ ðA8Þ

and

covðf�Þ ¼ KðZ�; Z�Þ − KðZ�; ZÞ
× ½KðZ; ZÞ þ C�−1KðZ; Z�Þ: ðA9Þ

Thus, we obtain the posterior mean vector f� and
covariance matrix covðf�Þ for the reconstructed
function.

The reconstruction of the function’s derivative is also
Gaussian. In Gaussian Processes, the derivative of the
function follows a multivariate normal distribution, just
as the function prediction does. Consequently, the pre-
diction of the derivative, denoted by f0�, is given by
f0� ¼ ½f0ðz�1Þ; f0ðz�2Þ; f0ðz�3Þ;…; f0ðz�nÞ�. The reconstructed
derivative f0� follows a multivariate Gaussian distribution
with mean M0� and covariance K00ðZ�; Z�Þ. The joint
distribution involving the observations, the reconstructed
function, and its derivative is given by

2
64

y

f�

f0�

3
75 ∼ GP

0
B@
2
64

M

M�

M0�

3
75;

2
64
KðZ; ZÞ þ C KðZ; Z�Þ K0ðZ; Z�Þ
KðZ�; ZÞ KðZ�; Z�Þ K0ðZ�; Z�Þ
K0ðZ�; ZÞ K0ðZ�; Z�Þ K00ðZ�; Z�Þ

3
75
1
CA:

ðA10Þ

The prediction of the derivative function’s mean and
covariance is given below,

f0�jZ�; Z; y ∼ GPðf0�; covðf0�ÞÞ; ðA11Þ

f 0� ¼ M0� þ K0ðZ�; ZÞ½KðZ; ZÞ þ C�−1ðy −MÞ; ðA12Þ

and

covðf0�Þ ¼ K00ðZ�; Z�Þ − K0ðZ�; ZÞ
× ½KðZ; ZÞ þ C�−1K0ðZ; Z�Þ; ðA13Þ
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where covð∂fi
∂zi

; ∂fj
∂zj
Þ ¼ K00ðz�i ; z�jÞ ¼

∂
2Kðz�i ;z�j Þ
∂z�i ∂z

�
j

are the ele-

ments of the n� × n� covariance matrix K00ðZ�; Z�Þ.
This case also includes optimized hyperparameter values

to determine the mean and covariance of the derivative
function. Furthermore, we use Eq. (A5) to obtain the
optimal hyperparameter values. The second-order deriva-
tive case follows a similar methodology. After reconstruct-
ing the function and its derivative, one can reconstruct
wDMðf; f0�; f00�Þ, where f represents either E or D, and its
uncertainty can be estimated using the error propagation
rule. For more details we refer to [44].

APPENDIX B: BAYESIAN STATISTICS

To perform a parameter inference procedure, one applies
Bayes’ theorem,

PðujD;MÞ ¼ LðDju;MÞPðujMÞ
EðDjMÞ ; ðB1Þ

where u is the vector of parameters of model M, D is
the data, PðujD;MÞ is the posterior probability distribution,

LðDju;MÞ is the likelihood, PðujMÞ is the prior distribu-
tion, and EðDjMÞ is the Bayesian evidence. Once the
Bayesian evidence is computed for two models, M1 and
M2, the Bayes factor is defined as

B12 ≡ EðDjM1Þ
EðDjM2Þ

: ðB2Þ

By taking the natural logarithm of the Bayes factor and
using the empirical revised Jeffreys’ scale in Table VI, we
can quantify how much better (or worse) model M1 is
compared to model M2 in explaining the data.
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