

1 **Novel Sustainable Carbon Dot as Dual Replacements for**
2 **Emulsion Stabilizers and Photoinitiators in Macroporous**
3 **Polymerized High Internal Phase Emulsion Fabrication**

4 **Woming Gao^{1,*}, Zeming Cheng^{1,2}, Nicholas T.H. Farr^{1,2}, Cornelia Rodenburg^{1,2,*}, Frederik Claeysens^{1,2,*}**

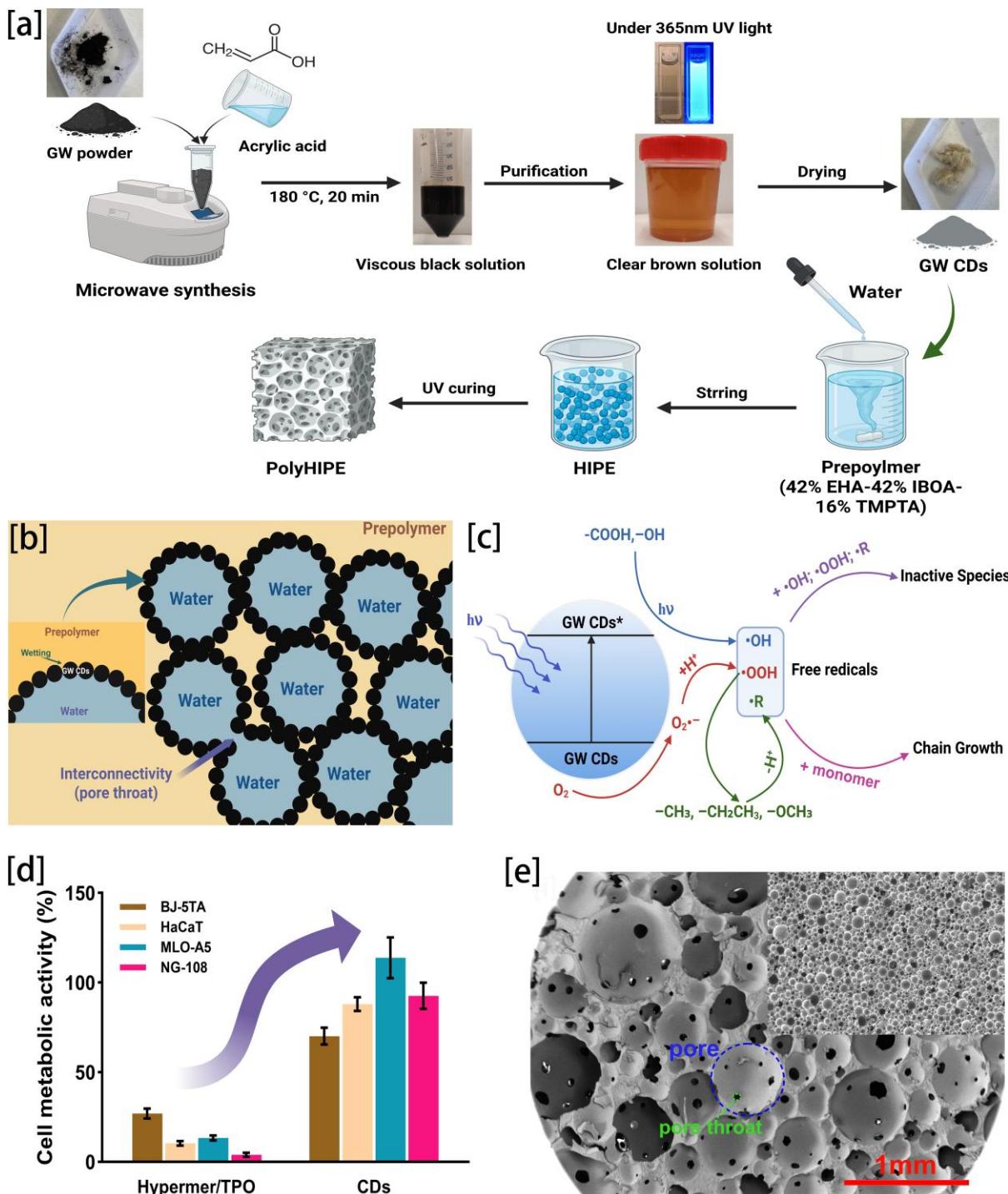
5 * Corresponding authors

6
7 ¹ School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University
8 of Sheffield, Sheffield, S1 3JD, UK

9 ² Insigneo Institute for in Silico Medicine, Pam Liversidge Building, University of Sheffield, S1 3JD,
10 UK

11
12 **Keywords:** carbon dots; emulsion stabilizer; photoinitiator; macroporous PolyHIPEs; enlarged
13 pore throats; fluid permeability; cell permeability

14 **Abstract**


15 Both emulsion stabilizers and photoinitiators are essential components in preparing
16 photocurable water-in-oil (w/o) Polymerized High Internal Phase Emulsions
17 (PolyHIPEs). Conventional stabilizers like Hypermer B246 and photoinitiators like
18 2,4,6-Trimethylbenzoyldiphenylphosphine oxide (TPO) pose environmental and
19 biological hazards, requiring careful removal before use in bioengineering applications.
20 Furthermore, PolyHIPEs prepared with traditional surfactants often feature narrow
21 pores and pore throats, limiting effective fluid and cell infiltration. As a class of easy-
22 synthesizing and biocompatible nanoparticles, carbon dots (CDs) exhibit potential for
23 use as emulsion stabilizers and photoinitiators. Herein, novel amphiphilic carbon dots
24 (GW CDs) were synthesized from Gromwell root waste, a byproduct of shikonin
25 extraction, as sustainable alternative. GW CDs demonstrated excellent emulsion-
26 stabilizing ability, effective photoinitiating performance and superior biocompatibility.
27 GW CDs were employed to stabilize the emulsions and successfully crosslink them
28 under UV light to fabricate 2-ethylhexyl acrylate (EHA)- isobornyl acrylate (IBOA)-
29 trimethylolpropane triacrylate (TMPTA) PolyHIPEs. The pore size and pore throat
30 formation of the resulting PolyHIPEs could be effectively tuned by adjusting the GW
31 CDs content. Compared to PolyHIPEs prepared using Hypermer B246 and TPO, the
32 GW CD-stabilized counterparts exhibited significantly larger pore sizes and pore
33 throats, improving fluid and cell permeability for tissue engineering applications.
34 Additionally, GW CDs possess upconversion luminescence, pH sensitivity, and cell-
35 imaging capabilities, further highlighting their potential in biomedical engineering and
36 environmental science applications.

37 **1. Introduction**

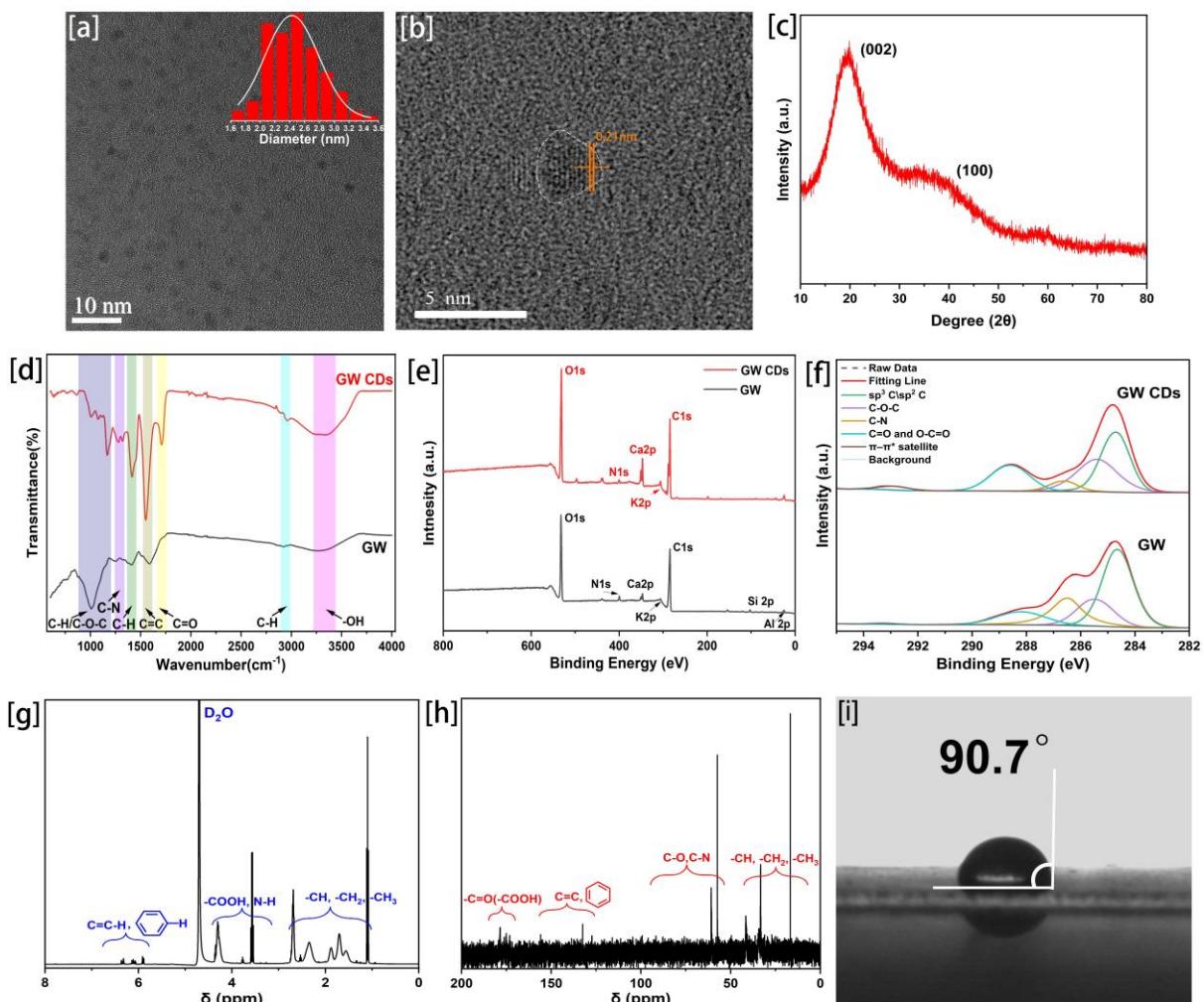
38 Polymerized High Internal Phase Emulsions (PolyHIPEs) are highly porous
39 polymeric materials fabricated via emulsion templating methods. During fabrication,
40 the polymerizable continuous phase cures to form a solid scaffold, while removal of
41 the dispersed internal aqueous phase droplets results in the formation of a highly
42 interconnected porous network [1]. Photocurable water-in-oil (w/o) high internal phase
43 emulsions (HIPEs), such as the 2-ethylhexyl acrylate (EHA)- isobornyl acrylate
44 (IBOA)- trimethylolpropane triacrylate (TMPTA) PolyHIPEs, are widely used due to
45 their tunable mechanical properties and easy processing [2]. These PolyHIPEs have
46 found applications in protein immobilization [3], bone tissue engineering scaffolds [4],
47 and microfluidic osteogenesis platforms [5]. Their formulation typically requires both
48 emulsion stabilizers and photoinitiators, commonly used examples include Hypermer
49 B246 (Hypermer) as the emulsifier and 2,4,6-Trimethylbenzoyldiphenylphosphine
50 oxide (TPO) as the photoinitiator. However, these additives often pose cytotoxicity and
51 environmental concerns, their release into soil and water systems can lead to
52 eutrophication and acidification, adversely affecting biological ecosystems [6], [7], [8],
53 [9], [10]. Their incomplete removal during processing poses challenges for biomedical
54 and environmental applications, particularly in tissue engineering [11], [12].
55 Additionally, emulsions stabilized with traditional surfactants often form PolyHIPEs
56 with pore sizes among 1-50 microns and pore throats less than 10 microns, which can
57 induce capillary effects due to surface tension, ultimately hindering fluid transport and
58 cellular infiltration [13]. Therefore, the development of biocompatible, low-toxicity
59 alternatives to conventional emulsifiers and photoinitiators is critical for the fabrication
60 of macroporous PolyHIPEs with enlarged pore throats.

61 In this study, we aimed to prepare a novel and sustainable carbon dot (CD) as the
62 alternative. CDs are a class of zero-dimensional carbon nanomaterial with excellent
63 biocompatibility, low cost and outstanding optical properties [14], [15], [16]. As solid
64 nanoparticles, CDs can serve as stabilizers for Pickering emulsions [17]. By chemically
65 modifying their surface functional groups to tune hydrophilicity and hydrophobicity,
66 they can be irreversibly adsorbed at the oil-water interface, acting as a strong
67 mechanical barrier to stabilize emulsion [18]. Moreover, certain modified groups on the
68 surface of CDs can trigger photoinitiation by generating free radicals [19]. CDs based
69 on natural sources typically exhibit low toxicity, making them green alternatives to
70 conventional photoinitiators and surfactants [20]. To date, although few studies have
71 reported the use of CDs or their derivatives as either emulsion stabilizers (Rong Ma,
72 et al. [21]) or photoinitiators (Ruiping Li, et al. [19]), there have been no report of a
73 single type of CDs simultaneously fulfilling both roles in the fabrication of PolyHIPEs.
74 Furthermore, while Pickering emulsions are known to produce PolyHIPEs with larger
75 pore sizes compared to those stabilized by traditional surfactants, they typically fail to
76 generate sufficient pore throats between adjacent pores [22], [23]. Whether CDs can
77 help to form the macroporous PolyHIPEs with enlarged pore throats remains to be
78 investigated.

79 To address this, we repurposed hydrophobic gromwell root waste powder (GW), a
80 byproduct of shikonin production, and dispersed it in acrylic acid. Using a microwave-
81 assisted method, we successfully synthesised carbon dots from this mixture, referred
82 to as GW-acrylic acid carbon dots (GW CDs). Their morphology, chemical structure,
83 properties were comprehensively characterized to assess their potential as
84 biocompatible emulsifiers and photoinitiators. GW CDs were then incorporated at
85 various mass ratios into EHA-IBOA-TMPTA formulations to fabricate PolyHIEPs,
86 which were systematically compared both among themselves and against PolyHIEPs
87 prepared using conventional additives (Hypermer and TPO). The comparison focused
88 on structural characteristics, particularly the formation and size of pores and pore
89 throats, as well as the resulting improvements in the permeability of liquid and cells.

90
91 **Figure 1.** (a) Schematic diagram of the synthesis and purification of GW CDs, followed by the preparation
92 of GW CDs/EHA-IBOA-TMPTA PolyHIPEs. (b) Possible mechanism of GW CDs as Pickering emulsion
93 stabilizers for PolyHIPEs. (c) Possible mechanism of GW CDs as photoinitiator. (d) Cell viability assays
94 demonstrated that GW CDs exhibited superior biocompatibility compared to conventional additives such
95 as Hypermer B246 and TPO. (e) SEM images of PolyHIPEs prepared using GW CDs and Hypermer (inset
96 image) at the same concentration (4 wt%) reveal that the GW CDs-stabilized PolyHIPE exhibits significantly
97 larger pore size (blue circle) and pore throat diameters (green circle) compared to the Hypermer-based
98 counterpart (inset image), two image are with the same scale bar (1 mm).

99 **2. Results and Discussion**


100 **2.1 Potential of GW CDs as biocompatible emulsion
101 stabilizers and photoinitiator**

102 Shikonin was extracted from the Gromwell root powder, leaving behind GW (Figure
103 1a). GW was mixed with acrylic acid and subjected to microwave heating at 180 °C for
104 20 minutes. After purification and drying, light grey flocculent GW CDs were obtained
105 (Figure 1a). The aqueous solution of CDs showed bright blue-green fluorescence
106 under 365 nm ultraviolet light (inset of Figure 1a). This synthesis was repeated three
107 times, and the resulting batches showed nearly identical Fourier Transform Infrared
108 Spectroscopy (FTIR), ¹H Nuclear Magnetic Resonance (NMR) and
109 photoluminescence (PL) emission spectra (Figure S17), confirming good batch-to-
110 batch reproducibility and consistent surface functionalization of the GW CDs.

111 The potential of GW CDs as both Pickering emulsion stabilizers and photoinitiators
112 was demonstrated through comprehensive morphological and chemical
113 characterizations. Transmission electron microscopy (TEM) revealed that GW CDs
114 are spherical nanoparticles with a uniform size distribution in the range of 1-3 nm
115 (Figure 2a). High-resolution transmission electron microscopy (HRTEM) image of
116 individual GW CDs reveal distinct lattice fringes with interplanar spacing of 0.21 nm
117 (Figure 2b), which indicated an ordered graphitic layer structure [24], [25]. The broad
118 diffraction peaks centered around 20° (002) and 40° (100) in the X-ray diffraction (XRD)
119 spectrum (Figure 2c) and the sharp weight loss observed between 400 °C and 500 °C
120 in the thermogravimetric analysis (TGA) (Figure S2) also confirmed that GW CDs
121 possessed a graphitized, sp²-conjugated core [26], [27]. This rigid, solid carbon core
122 that imparted high structural integrity, enabling the GW CDs to better resist
123 destabilizing forces such as Brownian motion, gravitational separation, and shear
124 stress, which promoted droplet coalescence or phase separation in emulsions [28].

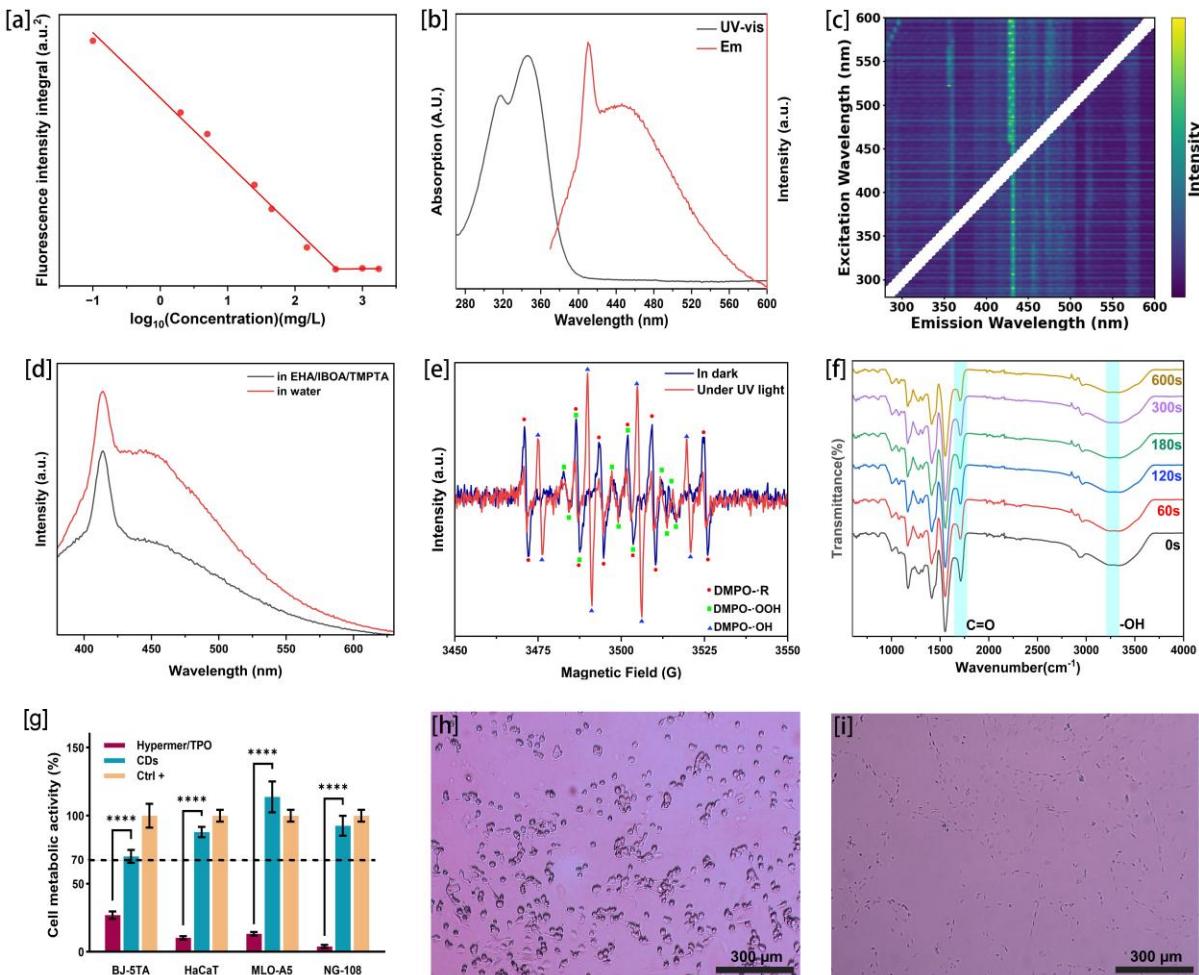
125 Furthermore, the surface chemistry of GW CDs played a vital role in emulsion
126 stabilization and photoinitiation. FTIR, NMR and X-ray Photoelectron Spectroscopy
127 (XPS) confirmed that GW CDs retained the elemental diversity of their natural GW and
128 acrylic acid precursor (C, H, O, N, K, Ca) (Figure 2e) as well as inherited various
129 hydrophobic and hydrophilic surface groups. The presence of aliphatic and aromatic
130 hydrophobic domains is evidenced by C-H stretching and bending bands and C=C
131 stretching in FTIR, sp²/sp³ carbon and π-π* satellite features in the C1s XPS spectrum,
132 and ¹H/¹³C NMR signals in the 1-3 ppm and 1-50 / 100-160 ppm regions, respectively
133 (Figure 2d,f-h) [29], [30], [31], [32]. Hydrophilic functionalities, including hydroxyl,
134 carboxyl and C-O/C-N groups, are indicated by the broad O-H and C=O bands in FTIR,
135 the corresponding C-O/C-N/C=O components in C1s and O1s XPS, and ¹H/¹³C
136 NMR resonances at 3.5-5.0 ppm and 50-100 / 170-200 ppm. [33], [34], [35], [36]. Table
137 S2 summarized the comparative elemental composition and groups percentage of GW
138 CDs and GW by XPS. These diverse surface functionalities modulated the overall

139 amphiphilicity of GW CDs, which was further supported by wettability measurements,
 140 showing a water contact angle of $\sim 90.7^\circ$ for GW CDs coated on glass (Figure 2i),
 141 which confirmed the amphiphilic characteristic. Amphiphilic surface groups enabled
 142 GW CDs to be wetted by both aqueous and oil phases, facilitating their migration to
 143 the oil-water interface and forming a steric barrier to stabilize emulsions [2].
 144 Additionally, surface groups such as hydroxyl, carboxyl, amine, and aliphatic chains,
 145 could facilitate electron or energy transfer processes, which promoted photo-
 146 crosslinking by generating radicals.

147
 148 **Figure 2.** TEM image (a) of GW CDs with a scale bar of 10 nm. Inset: the corresponding particle size
 149 histogram, the particle size distribution of no less than 100 particles was measured. HRTEM image (b) of
 150 a single GW CD with a scale bar of 5 nm. The XRD spectrum (c) of GW CDs. FTIR (d), the full XPS survey
 151 (e) and high-resolution C1s XPS spectra (f) of GW and GW CDs. The $^1\text{H-NMR}$ (g) and $^{13}\text{C-NMR}$ spectra (h)
 152 of GW CDs recorded in D_2O . (i) The morphology and contact angle of deionized water droplets on GW CDs
 153 film covered on a glass slide.

154
 155 While morphological and chemical characterizations suggested the strong potential
 156 of GW CDs being a replacement for Pickering emulsion stabilizers and photoinitiators,
 157 experimental validation is essential to confirm their functional performance. In the
 158 IBOA-EHA-TMPTA w/o emulsion, the oil was the continuous external phase, and the

159 water droplets were dispersed internal phase. Therefore, in order to stabilize the
160 emulsion, GW CDs need to be oil-biased with a hydrophilic-lipophilic balance (HLB) of
161 3-8 [37], [38]. The HLB of GW CDs was calculated based on the ^1H NMR spectrum
162 integration, and the calculated result was 7.39 (Figure S4 and Table S3), which was
163 within the range. Because GW CDs are structurally heterogeneous, this value should
164 be regarded as a semi-quantitative indicator of amphiphilicity rather than a
165 conventional surfactant HLB, but it is consistent with their experimentally observed
166 ability to stabilize w/o emulsions. To determine the effective dosage for micellization
167 and emulsion stabilization, the critical micelle concentration (CMC) of GW CDs was
168 measured by fluorescent spectrometry and the result was ~400 mg/L (Figure 3a),
169 indicating that for an emulsion containing 80 vol% water, the minimum concentration
170 of GW CDs in the organic phase should reach ~0.2 wt% for a stable micelle formation.


171 As potential photoinitiator, GW CDs must be able to absorb UV light and facilitate
172 energy transfer. UV-vis spectrum and fluorescence emission spectrum (Figure 3b)
173 showed the absorption peaks at 318 nm and 346 nm and emission peaks at 398 and
174 438 nm upon excitation at 345 nm. Additionally, the Excitation-Emission Matrix (EEM)
175 (Figure 3c) with Rayleigh and Raman scattering removed revealed a broad absorption
176 and emission range (300-600 nm), indicating that multiple emissive centres and
177 efficient energy transfer pathways, confirming their ability of UV absorption and energy
178 conversion. However, if too much energy was dissipated via fluorescence, the
179 efficiency of radical generation could be compromised [39],[40]. Positively, the
180 photoluminescence quantum yield (PLQY) of GW CDs was 28.33%, which was
181 moderate for effective light harvesting without excessive energy loss in fluorescence
182 (Figure S6). Comparing the PL intensity of GW CDs in water and in prepolymer
183 solution (42% EHA, 42% IBOA and 16% TMPTA), it was found that the GW CDs
184 underwent fluorescence quenching in prepolymer solution, which demonstrated
185 certain amount of energy transfer to the prepolymer (Figure 3d). Also to explore
186 excited-state interactions with the prepolymer, we performed steady-state PL
187 quenching experiments using the prepolymer and analysed the results with Stern-
188 Volmer plots. Fluorescence spectra of GW CDs and, for comparison, TPO were
189 recorded in ethanol under 365 nm excitation while gradually increasing the prepolymer
190 concentration (0-100 mM), ensuring all solutions had low absorbance (≤ 0.2) to
191 minimize inner filter effects. The Stern-Volmer plots (Figure S16) owed linear
192 relationships between the fluorescence quenching ratio (I_0/I) and monomer
193 concentration, consistent with dynamic quenching. The fitted Stern-Volmer constants
194 were $K_{SV} = 12.6 \text{ M}^{-1}$ for GW CDs and $K_{SV} = 20.2 \text{ M}^{-1}$ for TPO, indicating that GW CDs
195 engage in monomer interactions at a similar efficiency to commercial photoinitiators.

196 To assess the radical-generating potential of GW CDs, their structural stability under
197 UV irradiation was examined. No significant structural changes in GW CDs were found
198 from the TEM and XRD analyses, which indicated the intact remaining of carbon core
199 (Figures S7 and S8). FTIR spectra revealed the signal change of C=O and -OH signals
200 within various exposure time, suggesting the possibility of CDs undergoing loss of
201 functional groups or chemical transformation upon UV irradiation (Figure 3f). Electron
202 Paramagnetic Resonance (EPR) spectroscopy using 5,5-Dimethyl-1-pyrroline N-oxide

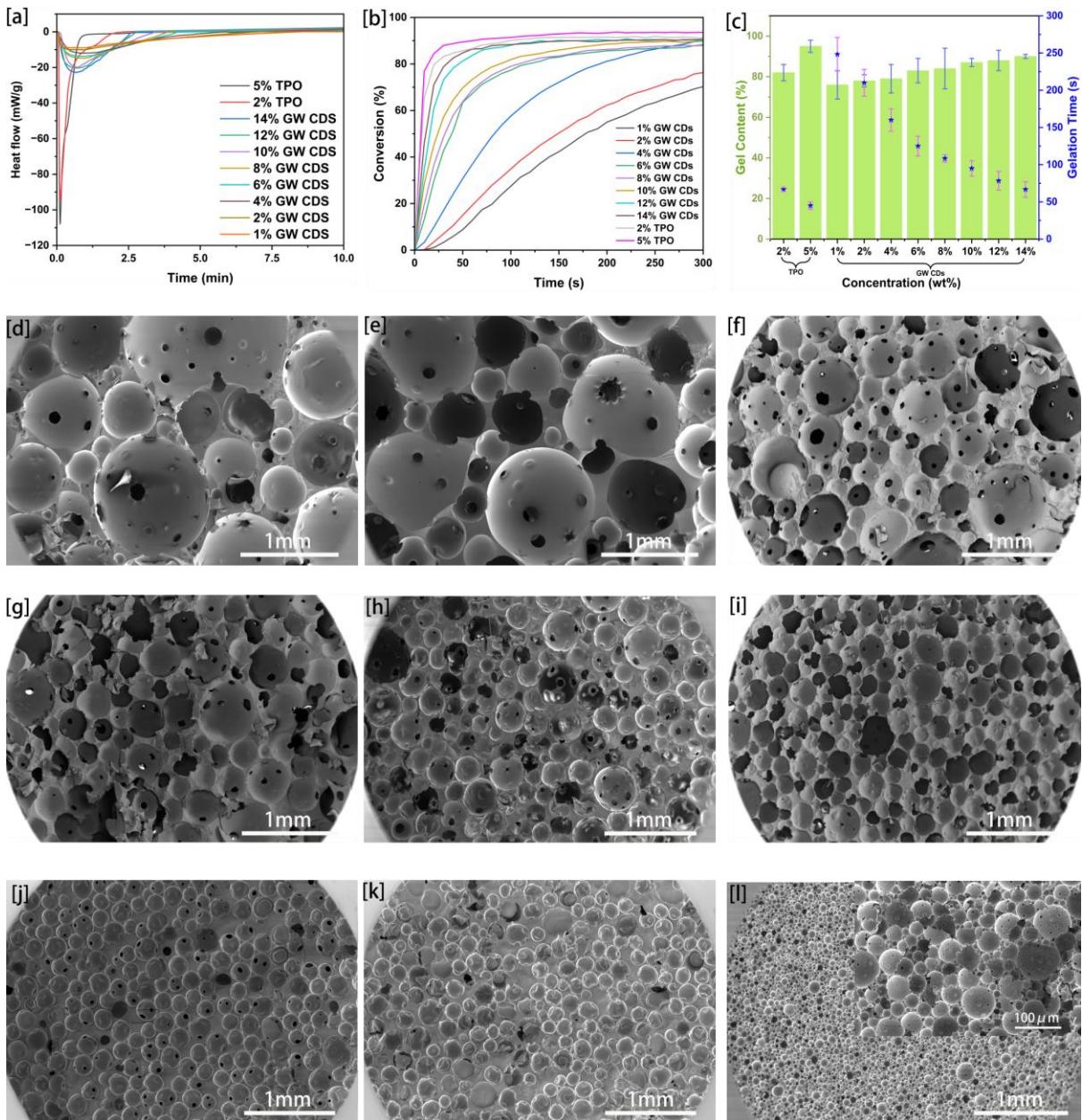
(DMPO) as a spin trap confirmed the radical formation. In the dark, GW CDs generated carbon-centered radicals (DMPO-•R) and hydroperoxyl radicals (DMPO-•OOH) [41], [42]. Upon UV exposure, strong Hydroxyl radicals (DMPO-•OH) signals were also observed alongside the previous radicals (Figure 3e) [43]. Simulated EPR spectra corresponded to experimental data (Figure S9a). The DMPO-•OOH could be formed because the electrons were transferred to the dissolved oxygen-generated superoxide radicals ($\cdot\text{O}_2^-$) and got them protonated [44]. The •OOH radicals could subsequently oxidize methyl groups on GW CDs, withdrawing proton from the methyl groups, leading to the formation of •R radicals [45]. The above mechanism was confirmed by the absence of both DMPO-•OOH and DMPO-•R EPR signals in the deoxygenated system in the dark (Deoxygenated water was prepared by boiling deionized water and then purging with Nitrogen). Conversely, strong DMPO-•OH signals were still detected in the deoxygenated system under UV light, indicating that the photoexcitation of -OH and -COOH groups may drive •OH formation (Figure S9b) [43], [46]. More •OH was found to be constantly generated with continuous UV irradiation, demonstrating the sustained photoinitiation capability of CDs. With strong reactivity, •OH could effectively attack C=C double bonds and initiate free-radical polymerization [47], [48], [49].

Supported by above analyses, a possible mechanism for GW CDs in Pickering emulsion stabilization and photoinitiation was proposed (Figures 1b and 1c).

GW CDs also demonstrated excellent biocompatibility. Four different cell lines (BJ-5TA, HaCaT, MLO-A5, and NG-108) were cultured in blank media, media supplemented with GW CDs (1000 mg/L), and media containing Hypermer/TPO at the same concentration, followed by the assessment of cell viability (Figure 3g). In comparison to cells in normal blank media (positive control), all cell lines supplemented with GW CDs showed metabolic activity higher than 70% (BJ5TA: 72.12%, HaCaT: 87.96%, MLO-A5: 113.80%, NG-108: 92.62%), which proved that GW CDs were non-cytotoxic according to ISO 10993-5 standards [50]. By contrast, the viability of cells cultured in Hypermer/TPO supplemented media was drastically decreased (BJ-5TA: 26.94%, HaCaT: 10.33%, MLO-A5: 13.31%, NG-108: 3.99%). Figures 4h and 4i presented the morphology of NG-108 cells in media containing GW CDs and Hypermer/TPO after 24-hour culture respectively. The cells in GW CDs group exhibited healthy, plump shape with clear cell membrane boundaries and stretched pseudopods, whereas the cells in Hypermer/TPO group exhibited severe shrinkage, blurred boundaries, and apparent membrane degradation. The phenomenon of healthy cells in GW CDs group and damaged cells in Hypermer/TPO group also applied to the rest cell lines (Figure S10). Both the results cell viability and cell morphology presented the excellent biocompatibility of GW CDs and revealed the pronounced cytotoxicity of Hypermer and TPO, highlighting the potential of GW CDs as a green alternative to traditional emulsion stabilizers and photoinitiators.

242

Figure 3. (a) The CMC of GW CDs. (b) The absorption and emission curves of GW CDs. (c) The EEM of GW CDs, with Rayleigh and Raman scattering removed. (d) Fluorescence emission intensities of GW CDs (0.05 g/L) in water and in prepolymer under 350 nm UV light. (e) EPR spectra of radicals formed from GW CDs both in the dark and under UV irradiation. (f) FTIR spectra of GW CDs upon UV irradiation with different exposure time. (g) The cell metabolic activity of BJ-5TA, HaCaT, MLO-A5, and NG-108 in blank media, media supplemented with GW CDs (1000 mg/L), and media containing Hypermer/TPO at the same concentration. The morphology of NG-108 cells in media containing GW CDs (h) and Hypermer/TPO (i) with scale bars of 300 μm .


251

2.2 Photocurable EHA-IBOA-TMPTA PolyHIPE with GW CDs

Motivated by the promising capabilities of GW CDs in emulsion stabilization, photoinitiation, and biocompatibility, we incorporated them into the synthesis of PolyHIPEs at varying mass ratios (1 wt%, 2 wt%, 4 wt%, 6 wt% to 14 wt%). For comparison, a control PolyHIPE was prepared using 4 wt% Hypermer as the surfactant and TPO as the photoinitiator. Detailed formulations of all PolyHIPEs were listed in Table S1. Emulsions containing different concentrations of GW CDs were successfully stabilized and subsequently crosslinked, demonstrating that GW CDs can function effectively as both emulsion stabilizers and photoinitiators. Quantitative

261 evaluation of gelation time and gel fraction using vial inversion experiments (Figure 4c)
262 showed that increasing the GW CDs content led to a progressive decrease in gelation
263 time, from 248 ± 23 s at 1 wt% to 66.7 ± 10.4 s at 14 wt%, and a corresponding
264 increase in gel fraction, from 76 ± 7% to 90 ± 1%. These values closely approach those
265 of the TPO control groups (2 wt% and 5 wt%), which exhibited gel times of 66.7 ± 2.9
266 s and 45.0 ± 5.0 s, and gel fractions of 82 ± 4% and 95 ± 3%, respectively. A
267 comparison with the stability time of each emulsion before creaming and the long-term
268 emulsion stability data (Figure S1b and S1c, Table S7) confirms that the emulsion
269 remains stable well beyond the time required for curing. Emulsions prepared with low
270 GW CDs content (1 to 4 wt%) exhibited rapid droplet coalescence, with average
271 droplet diameters increasing to several hundred microns within 1 to 2 h, ultimately
272 leading to phase separation (creaming). However, this timespan was still sufficient for
273 successful photocuring. In contrast, formulations containing 6 to 8 wt% GW CDs
274 maintained nearly constant droplet sizes for several hours to over a day. Notably,
275 emulsions stabilized with 10 to 14 wt% GW CDs showed minimal change in average
276 droplet diameter over a full 7-day period, indicating excellent long-term emulsion
277 stability. Polymerization kinetics, evaluated by photo differential scanning calorimetry
278 (photo-DSC) and time-resolved FTIR (Figure 4a, Table S6 shows photo-DSC data;
279 Figure 4b shows time-resolved FTIR data), further confirmed that both the
280 polymerization rate and extent increased significantly with higher GW CDs content.
281 Time-resolved FTIR showed that the time required to reach 50% double bond
282 conversion decreased from approximately 180 s at 1 wt% to approximately 10 to 15 s
283 at 14 wt%. Moreover, when the GW CDs content exceeded 4 wt%, the final double
284 bond conversion surpassed 88%, approaching the levels observed with TPO as the
285 photoinitiator. Photo-DSC measurements showed that GW CDs produced broader and
286 weaker exothermic peaks compared to TPO, although the peak intensity increased
287 with higher GW CD concentrations. The total curing enthalpy (ΔH) (Table S6) also
288 increased from approximately 4.02 J/g at 1 wt% to 5.16 J/g at 14 wt%, closely matching
289 the performance of 2 and 5 wt% TPO (conversion: 91% and 94%, ΔH : 5.44 and 4.38
290 J/g). Figure 4 showed the SEM images of all GW CD-based PolyHIPEs, alongside the
291 control sample. Two additional control experiments were conducted: (1) without GW
292 CDs or Hypermer, the emulsion collapsed instantly (within 1 second) (Video S1); (2)
293 without a photoinitiator, the emulsion remained stable but could not crosslink under
294 UV irradiation (Video S2). These results confirmed GW CDs contributed to both
295 stability and photopolymerization (Video S3 and S4).

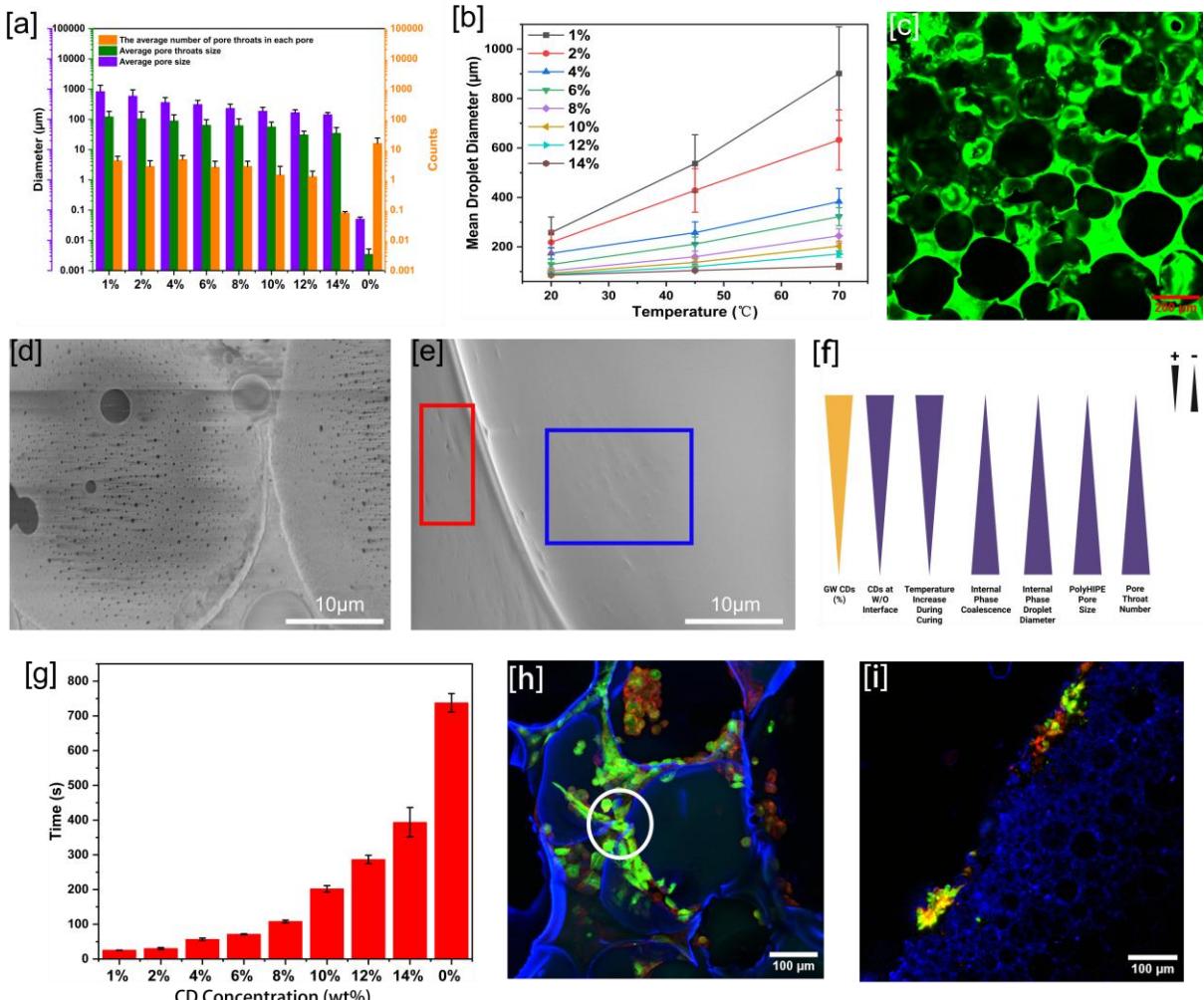
296

297

298 **Figure 4. The Photo-DSC (a), the time-resolved FTIR (b) curves of prepolymer polymerization with**
 299 **different GW CDs or TPO concentrations, the gelation time and the gel content at this point of each**
 300 **emulsion (c) under 405 nm UV light, light intensity is 700 mW/cm². SEM images of PolyHIPE samples**
 301 **containing 1 wt% (d), 2 wt% (e), 4 wt% (f), 6 wt% (g), 8 wt% (h), 10 wt% (i), 12% wt% (j) and 14 wt% (k) GW**
 302 **CDs, as well as a control sample (l) prepared with the standard addition of 4% Hypermer and TPO. The**
 303 **scale bar from figure (d)-(k) is 1mm and inset image of (l) is 100 μ m.**

304

305 The average pore diameter, average number of pore throats per pore, and average
 306 pore throat diameter for the various PolyHIPE formulations were directly measured on
 307 SEM images were summarized in Figure 5a and detailed in Table S4. PolyHIPEs
 308 stabilized by GW CDs exhibited larger pore size than the PolyHIPE stabilized with
 309 Hypermer, and formed an interconnected macroporous structure. Notably, unlike the
 310 Hypermer-stabilized PolyHIPE whose pore size remained mostly unaffected by

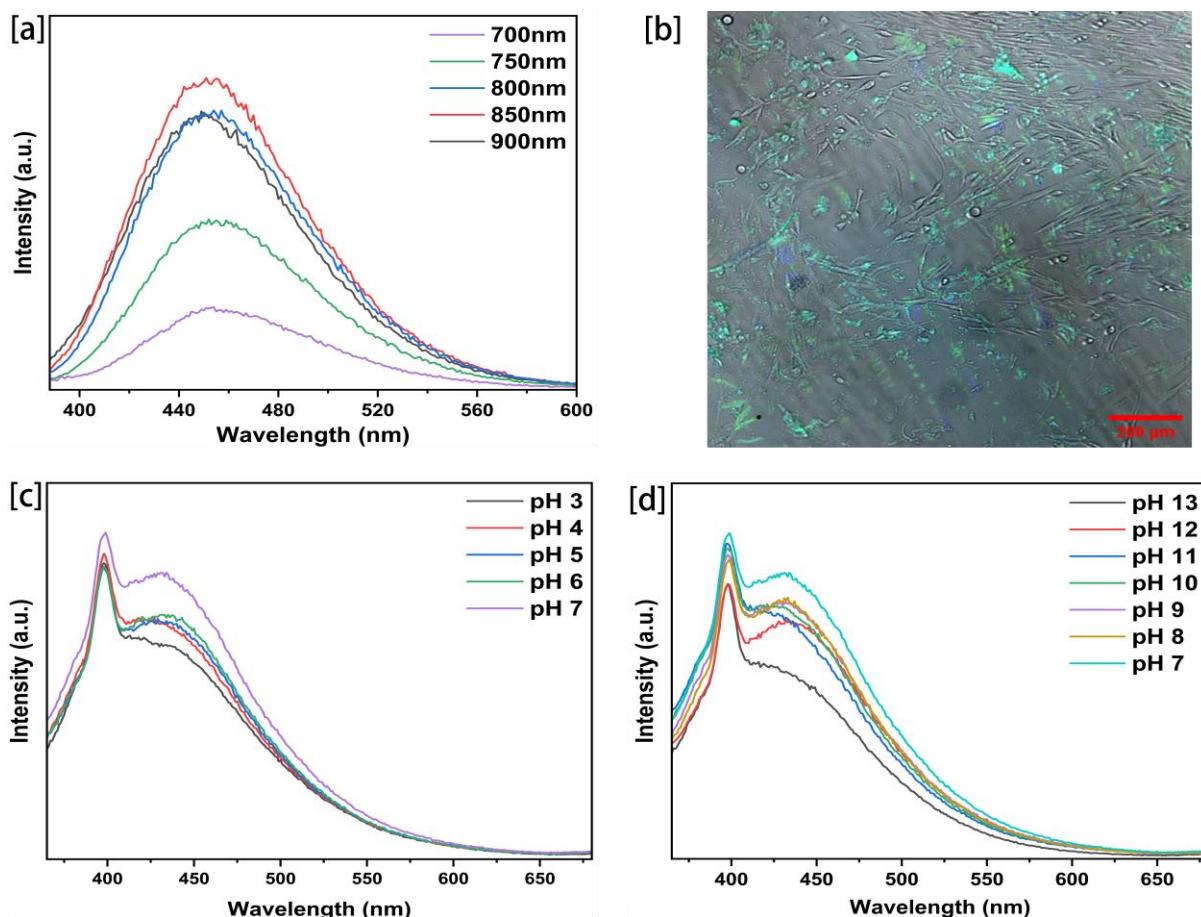

311 changes in surfactant concentration (2 wt%, 4 wt%, 6 wt%, Figure S12), the average
312 pore size of GW CDs-stabilized PolyHIPEs decreased with the increase of GW CDs
313 proportion, indicating that content of the GW CDs can control the pore size. Even at
314 the highest concentration (14 wt%), the resulting PolyHIPE still retained a considerably
315 larger average pore size ($144 \pm 24 \mu\text{m}$) than the sample stabilized by Hypermer
316 ($51 \pm 8 \mu\text{m}$).

317 The pore size of GW CDs-stabilized PolyHIPEs is influenced by both the
318 concentration of carbon dots and the emulsion temperature. Static light scattering
319 (SLS) measurements of emulsions at room temperature (20°C) revealed that the initial
320 resulting PolyHIPEs exhibited larger pore sizes (Figure 5a and Table S4) than the initial
321 droplet diameters (Figure 5b and Table S5) prior to photocuring. This expansion was
322 likely attributed to light absorption and exothermic reactions during polymerization
323 which increased the emulsion temperature. Temperature measurements using a
324 thermal probe indicated that the surface temperature of the PolyHIPEs reached
325 around $66\text{--}73^\circ\text{C}$ after 180 seconds of curing under 365 nm UV light at an intensity of
326 1700 mW/cm^2 (Figure S13). The increased temperature enhanced water molecule
327 mobility and promoted droplet coalescence, leading to larger droplet size and larger
328 pores upon curing [51]. SLS was continuously used to assess the droplets diameters
329 of emulsions incubated at 45 and 70°C (Figure 5b and Table S5). The results
330 confirmed a temperature-dependent increase in droplet size, and the droplet size at
331 80°C turned out to be closer to the final pore size of the PolyHIPEs. Moreover, the
332 impact of increased temperature on droplet size correlated negative with GW CD
333 concentration, suggesting that higher interfacial accumulation of CDs improved
334 emulsion stability by effectively inhibiting droplet coalescence and promoting smaller
335 pore formation upon curing [52]. To directly probe the effect of GW CDs concentration
336 on droplet coalescence, we conducted confocal fluorescence imaging of those
337 PolyHIPEs. As shown in Figure 5c (14 wt% GW CDs) and Figure S15 (other
338 concentrations), GW CDs were observed around the pores' surface, emitting bright
339 fluorescence under UV light. This confirmed that GW CDs accumulated at the oil-water
340 interface. Notably, both the intensity and continuity of the interfacial fluorescence
341 increased with GW CDs content, suggesting the progressive formation of a denser
342 and more uniform particulate layer at the interface. These observations are consistent
343 with our previously conducted long-term emulsion stability experiments (Figure S1c),
344 which demonstrated that emulsions with lower GW CDs content underwent more rapid
345 increases in average droplet size during storage, indicative of substantial droplet
346 coalescence. In contrast, formulations containing higher GW CDs loadings exhibited
347 significantly improved emulsion stability, with negligible droplet growth over time.
348 When combined with SEM-based quantitative analysis of the resulting pore size, throat
349 diameter, and interconnectivity (Figure 5a and Table S4), these results support the
350 following mechanistic interpretation: at low GW CDs concentrations, incomplete
351 coverage of the droplet interface allows for thermally induced coalescence during UV
352 curing, leading to the formation of larger pores and more abundant, wider throats. In
353 contrast, higher GW CDs concentrations enable more complete interfacial coverage,
354 suppressing coalescence and yielding PolyHIPEs with smaller pore sizes and

355 narrower, less frequent throats.

356 However, droplet coalescence during the curing process is beneficial for the
357 formation of interconnected pores. Increased accumulation of CDs at the interface also
358 results in a reduced number of pore throats per pore. Comparison of the high-
359 magnification SEM images of 14 wt% GW CDs-stabilized PolyHIPE and Hypermer-
360 stabilized PolyHIPE revealed distinct structural differences. While the Hypermer-
361 stabilized sample displayed remarkable micron- and submicron-scale interconnected
362 pore throats (Figure 5d), the 14 wt% GW CDs-PolyHIPE showed areas with visible
363 CDs agglomerates (highlighted in blue square, Figure 5d) and regions where pore
364 connections appeared to initiate but ultimately failed to form (highlighted in red square,
365 Figure 5e). These observations supported the hypothesis that CDs aggregation at the
366 interface stabilized emulsion droplets but impeded pore throats formation. The impact
367 of temperature on pore size was minimised on emulsions containing 14 wt% CDs and
368 resulted in PolyHIPEs with poor pore interconnectivity. In contrast, although emulsions
369 with lower CDs content were less stable when temperature increased, larger and more
370 interconnected pores were formed due to greater droplet coalescence during curing,
371 which was desirable for the PolyHIPEs' applications requiring enhanced permeability
372 and cellular infiltration. Hypermer-based samples featured narrow throats ($3\pm2\text{ }\mu\text{m}$)
373 and small pores ($51\pm8\text{ }\mu\text{m}$), which were less favourable for fluid and cell infiltration due
374 to enhanced capillary resistance. In contrast, although with fewer pore throats, GW
375 CDs-stabilized scaffolds exhibited significantly larger pore throat diameters (e.g.,
376 $31\pm10\text{ }\mu\text{m}$ for 12 wt% GW CDs-stabilized PolyHIPE), which subsequently facilitated
377 liquid and cell penetration. Liquid penetration tests (Figure 5f) demonstrated that GW
378 CDs-stabilized PolyHIPEs exhibited faster fluid uptake and higher permeability
379 correlating with larger pores and throats.

380 The confocal images of the cross-section of cell-seeded PolyHIPEs also proved that
381 larger pores and throats helped cell infiltration. As shown in the image (Figure 5g and
382 5h), MDA-MB-231 cells (green fluorescence from GFP and red fluorescence from
383 Phalloidin-TRITC) staining were obstructed at the outer surface of the Hypermer/TPO-
384 PolyHIPEs without inward expansion. In comparison, the cells seeded on 12% GW
385 CDs-stabilized PolyHIPEs were found not only growing on the scaffold outer surface
386 but also migrating and proliferating inside the pores through the pore throats (As
387 marked in the white circle in Figure 5g). Although the 12 wt% sample had fewer and
388 narrower throats compared to formulations with lower GW CDs concentrations, its
389 interconnectivity was still sufficient to support effective cell invasion. This observation
390 suggests that samples with GW CDs concentrations below 12 wt% may exhibit even
391 better permeability, as they typically possess more and larger interconnect pores.
392 Nevertheless, the 12 wt% sample already provided adequate pore interconnectivity to
393 enable robust cell infiltration. Compared with Hypermer/TPO-PolyHIPEs, 12 wt% GW
394 CDs-PolyHIPEs had significantly bigger pores and pore throats, which enabled cells'
395 migration and proliferation within the scaffolds.


396
397 **Figure 5.** (a) Average pore size, number of pore throats per pore, and pore throat diameter for each
398 PolyHIPE sample (n=100). (b) The average droplet size of each PolyHIPE emulsion under different
399 temperatures. (c) The confocal image of 14 wt% GW CDs-PolyHIPE under 488 nm wavelength, the scale
400 bar is 200 μ m. The SEM image of Hypermer/TPO-PolyHIPE (d) and 14 wt% GW CDs-PolyHIPE (e), all the
401 scale bars are 10 μ m. (f) The summary of the effect of GW CDs content on pore and pore throat control.
402 The inverted triangle (\blacktriangledown) indicates increase (+), while the upright triangle (\blacktriangle) indicates decrease (-). (g)
403 Liquid penetration time test results. (h)-(i) Confocal images of cell infiltration into 12 wt% PolyHIPEs.

404 **2.3 Other potential applications of GW CDs**

405 Apart from being a candidate of novel emulsion stabilizers and photoinitiators, GW
406 CDs exhibited a range of promising properties suggesting their broader application
407 potential. For instance, their distinct two-photon upconversion photoluminescence
408 characteristics made them suitable candidates for photodynamic therapy and
409 electrocatalysis (Figure 6a and Figure S18) [53]. Furthermore, GW CDs displayed
410 multicolour fluorescence, enabling their potential usage in cellular multicolour imaging
411 (Figure 6b). Additionally, they also turned out to be sensitive to pH changes, which
412 might be leveraged for environmental sensing or biomedical diagnostics (Figure 6c)

413 and 6d). Collectively, these features highlighted the substantial versatility and research
414 value of GW CDs for future applications.

415 DE

416
417 **Figure 6.** (a) The up-conversion emission spectra of GW CDs under different UV wavelengths. (b) The cell
418 image of BJ5TA under 400 nm (blue light) and 488 nm (green light) after being exposed to GW CDs. (c)-(d)
419 Fluorescence changes of GW CDs under different pH conditions under 350 nm UV light.

420 **3. Conclusion**

421 A novel amphiphilic and sustainable carbon dot (GW CD) was successfully
422 synthesised via a microwave-assisted method using acrylic acid and gromwell root
423 waste. GW CDs exhibited dual functionality as both Pickering emulsion stabilisers and
424 photoinitiators, combining interfacial stabilisation with efficient radical generation
425 under UV light. Their amphiphilic surface chemistry, featuring both hydrophobic and
426 hydrophilic groups, enabled stable oil-in-water emulsions and effective interfacial
427 adsorption. Upon UV irradiation, GW CDs generated carbon-centred, peroxyhydroxyl,
428 and hydroxyl radicals, supporting their capacity to initiate free radical polymerisation.

429 In EHA, IBOA, and TMPTA-based high internal phase emulsions, GW CDs
430 facilitated the formation of stable emulsions and crosslinked PolyHIPEs with larger
431 pore sizes than those formed using conventional Hypermer and TPO systems. Notably,
432 the pore architecture, including pore throat diameter and connectivity, could be tuned
433 by adjusting the GW CDs concentration. At concentrations below 14 wt%, GW CDs-

434 based PolyHYPEs maintained superior pore throat dimensions and permeability,
435 offering advantages for mass transport and cell infiltration.

436 In addition to their dual functionality, GW CDs demonstrated excellent pore
437 improvement, supporting higher cell viability and normal morphology across multiple
438 cell lines compared to traditional stabiliser and initiator systems. Furthermore, GW
439 CDs exhibited unique properties such as upconversion photoluminescence, pH
440 responsiveness, and intracellular fluorescence, highlighting their potential for broader
441 applications in biomedical engineering, environmental remediation, and functional
442 material design.

443 **4. Experimental Section**

444 **4.1 Materials**

445 Gromwell roots powder was purchased from Mystic Moments (Fordingbridge, UK),
446 ethanol, limonene, dimethyl sulphoxide (DMSO), methanol, deuterium oxide (D₂O),
447 5,5-Dimethyl-1-pyrroline N-oxide (DMPO), 4-phenyl-2-tert-butyl nitrone (PBN), L-
448 glutamine, amphotericin B, foetal bovine serum (FBS), penicillin/streptomycin (P/S),
449 trypsin, paraformaldehyde, Phalloidin-TRITC, BJ-5TA cells, HaCaT cells, MLO-A5
450 cells, NG-108 cells were all purchased from Sigma-Aldrich (Darmstadt, Germany). 2-
451 ethylhexyl acrylate (EHA), isobornyl acrylate (IBOA), trimethylolpropane triacrylate
452 (TMPTA), 1 kDa dialysis membrane, acrylic acid, 2,4,6-
453 Trimethylbenzoyldiphenylphosphine oxide (TPO), pyrene, quinine sulfate (QS), NaOH,
454 HCl were purchased from Thermo Fisher Scientific Inc. (Waltham, MA, USA).
455 Hypermer B246 was purchased from Croda International Plc. (New York, NY, USA)
456 and deionized (DI) water.

457 **4.2 Acquisition of GW**

458 Groomwell root powder was extracted with 70% ethanol at a mass ratio of 1:10 at
459 80 °C for 2.5 hours, after which the insoluble residue was separated using filter paper
460 [54]. This extraction process was repeated three times. The shikonin was dissolved in
461 ethanol, while the remaining insoluble residues were collected and placed in a vacuum
462 oven (Fistreem Vacuum Oven, Fistreem International Ltd, Cambridge, UK) at 30 mtorr,
463 60°C to remove residual ethanol, resulting in the production of Gromwell root powder
464 waste (GW).

466 **4.3 Synthesis of GW CDs**

467 0.5 g of GW was thoroughly dispersed in 20 g of acrylic acid via ultrasonication (The

468 Fisher Scientific FB15051 ultrasonic baths, Thermo Fisher Scientific Inc., Waltham,
469 MA, USA) and subsequently heated at 180 °C in microwave (CEM Discover® 2.0 (CEM
470 Corporation, Matthews, NC, USA)) for 20 minutes to produce a viscous black liquid.
471 The resulting liquid was transferred into a dialysis membrane with a 1 kDa molecular
472 weight cut-off and dialyzed against deionized water to the complete removal of acrylic
473 acid and other small molecule impurities. The aqueous solution was removed to
474 remove the high-hydrophilic component, and the remaining precipitate was washed
475 with limonene to remove the high-hydrophobic component. The left crude products
476 were dissolved in 1:1 ethyl acetate/water solvent and then vacuum oven-dried
477 (Fistreem Vacuum Oven (Fistreem International Ltd, Cambridge, UK)) to yield light
478 grey flocculent GW CDs.

479 **4.4 Synthesis of PolyHIPEs**

480 42 wt% 2-ethylhexyl acrylate (EHA), 42 wt% 3-isobornyl acrylate (IBOA), 16 wt%
481 trimethylolpropane triacrylate (TMPTA), and half amount of different proportions of GW
482 CDs (1 wt%, 2 wt%, 4 wt%, 6 wt% until 14 wt%) were mixed, along with a control group
483 formulated without CDs but containing all amount of 4 wt% Hypermer B246 and 4 wt%
484 of TPO (Table S1) [55]. Finally, 80 vol% of deionized (DI) water mixed with the other
485 half amount of GW CDs was added dropwise as the internal phase while stirring at
486 500 rpm using a SciQuip-Pro 40 stirrer (Rotherham, UK) to form stable emulsions (Top
487 of Figure S1a). All emulsions were then cured under a 365 nm UV lamp (Dymax
488 BlueWave® FX-1250 High Intensity LED UV Curing Flood Lamp (Dymax®,
489 Wiesbaden, Germany), 1700 mW/cm²) for 180s to obtain cross-linked PolyHIPEs
490 (bottom of Figure S1a).
491

492 **4.5 Characterizations**

493 **4.5.1 Transmission electron microscope (TEM)**

494 The GW CDs before and after 365 nm UV irradiation with 600s were examined using
495 a cold field emission (c-FEG) JEOL F200 TEM (JEOL Ltd., Tokyo, Japan) operating at
496 200 kV. The CA CDs methanol solution was evenly spread on the copper grid and air-
497 dried to visualize the nano particles.
498

499 **4.5.2 X-ray Diffraction Spectroscopy (XRD)**

500 Panalytical Aeris X-ray Diffraction Spectroscopy (Malvern Panalytical Ltd, Malvern,
501 UK) was used for XRD of GW CDs and GW CDs were exposed under 365nm UV light
502 with 600s by setting the mode at 20min 10-80° scanning rotating. The CA CDs powder
503 was carefully filled in the sample ring cavities.
504

505 **4.5.3 Thermogravimetric Analysis (TGA)**

506 10 mg of GW CDs were placed in the crucible of a PerkinElmer Pyris 1 TGA

507 instrument (Artisan Technology Group, Champaign, IL, USA) and heated from 30 °C
508 to 600 °C at a rate of 10 °C/min to measure their mass change.

509

510 **4.5.4 X-ray photoelectron spectroscopy (XPS)**

511 X-ray photoelectron spectroscopy (XPS) was performed using Al Ka X-rays (1.486
512 keV photon energy, 20 mA emission at 300 W) in an Axis Ultra spectrometer (Kratos
513 Analytica, Kyoto, Japan). The X-ray spot was approx. 1 mm diameter. Survey spectra
514 were measured with pass energy 80 eV, and high-resolution core level spectra with 20
515 eV. Binding energy positions are compared to literature values, including databases
516 from NIST, USA. GW CDs samples were pressed onto conductive copper tape using
517 clean stainless-steel spatulas to create a uniform area ~15 mm diameter. Charge
518 neutralization of powders and insulators is achieved using a low energy electron
519 source in vacuum (PREVAC). The measurements were performed under ultra-high
520 vacuum conditions with an instrument base pressure of approx. 1×10^{-8} mbar. Avantage
521 software (Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to deconvolute
522 the peaks of different elements.

523

524 **4.5.5 Attenuated total reflectance-fourier transform infrared (ATR-FTIR)**

525 Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy
526 was conducted on GW CDs samples and the GW CDs were exposed under 365nm
527 UV light with 60s, 120s, 180s, 300s and 600s via Perkin Elmer Frontier Fourier
528 Transform Infrared (FTIR) (PerkinElmer, Waltham, MA, USA) with iD7 Single-Bounce
529 ATR Accessories scanning between 600 and 4000 cm^{-1} .

530 The polymerization rate of the organic phase was also monitored by plotting
531 conversion-time curves from time-resolved FTIR. The organic phase composition was
532 identical to that used for emulsion fabrication and GW CDs 1-14 wt% and TPO were
533 added at 2 or 5 wt% with respect to the total organic phase, respectively. UV exposure
534 was conducted using a 405 nm wavelength lamp (M405L2 UV-mounted LED lamp
535 (Thorlabs Inc., Newton, NJ, USA)) at an intensity of 700 mW/cm². Sequential spectra
536 were acquired for 300s under continuous irradiation at 10-second intervals. Double-
537 bond conversion was quantified by following the decrease of the characteristic C=C
538 absorption band at ~810 cm^{-1} normalized to the carbonyl band (C=O) at ~1720 cm^{-1} ,
539 which was assumed to remain constant during curing:

540
$$\text{Conversion (\%)} = 1 - \left(\frac{A_{\text{C=C after exposure}}/A_{\text{C=O after exposure}}}{A_{\text{C=C before exposure}}/A_{\text{C=O before exposure}}} \right) \times 100\% \quad (1)$$

541 where $A_{\text{C=C}}$ and $A_{\text{C=O}}$ are the C=C and C=O peak areas before and after exposure,
542 respectively. Conversion-time curves were obtained for formulations containing 1-14
543 wt% GW CDs and for formulations containing 2 wt% and 5 wt% TPO.

544

545 **4.5.6 Proton nuclear magnetic resonance (NMR) spectroscopy**

546 The GW CDs were dispersed in 1% w/v. deuterated H_2O (D_2O) and use 400 MHz
547 ^1H and ^{13}C nuclear magnetic resonance (NMR) (Bruker AVIIHD 400 NMR
548 spectrometer (Blue Scientific Limited, Cambridge, UK)) to test. D_2O at 4.8 ppm in ^1H
549 NMR spectrum is used as a chemical shift standard. D_2O shows no peak in ^{13}C NMR

550 spectrum. MestReNova software (MestreLab Research, Santiago de Compostela,
551 Spain) was used to analyze the spectra. To calculate the hydrophilic-lipophilic balance
552 (HLB) of the GW CDs, the peak between 1-1.15 ppm in the ^1H NMR spectrum was
553 used as reference, and the peak areas in ^1H NMR spectrum were integrated. The HLB
554 was then calculated using Griffin's empirical formula [56]:

555
$$\text{HLB} = 20 \cdot \frac{M_H}{M_T} \quad (2)$$

556 where M_H is the molecular mass of the hydrophilic portion of the molecule, and M_T is
557 the molecular mass of the whole molecule.

559 **4.5.7 UV-vis absorption spectroscopy (UV-vis)**

560 Varian Cary 50 UV-vis absorption Spectrometer (Agilent, Santa Clara, CA, USA)
561 was used for testing absorption properties of GW CDs in deionized water, with
562 wavelength readings between 250 and 600 nm, scanning at a medium rate.

564 **4.5.8 Photoluminescence (PL) spectroscopy**

565 Horiba FluoroMax-4 Spectrofluorometer (HORIBA, Ltd., Kyoto, Japan) was used
566 for testing excitation and emission spectra. Emission spectra of CA CDs aqua
567 solutions were tested with excitation wavelengths under 345 nm, the scanning was
568 at a medium rate. Up-conversion luminescence properties of GW CDs were
569 evaluated at excitation wavelengths of 700 nm, 750 nm, 800 nm, 850 nm, and 900
570 nm; at 800 nm measurements the sample absorbance at the excitation wavelength
571 was kept below 0.1, and excitation/emission slit widths, PMT voltage, and integration
572 time were carefully controlled. Power-dependence tests were performed by varying
573 the excitation slit width (1, 2, 4, 8, and 16 nm) at 800 nm while keeping all other
574 parameters constant, and the emission intensity at the maximum was analyzed on a
575 log-log scale. Excitation-Emission Matrix (EEM) of GW CDs were scanned with
576 excitation and emission wavelengths between 250nm to 600nm and remove the
577 Rayleigh and Raman scattering disturbing.

578 The photoluminescence quantum yield (PLQY) of the carbon dots was determined
579 by comparing the fluorescence intensity of their aqueous solution with that of quinine
580 sulfate (QS) (dissolved in 0.05 mol/L sulfuric acid, PLQY = 54%) as a reference,
581 following the standard quantum yield calculation method [57]:

582
$$\text{PLQY}_{\text{GW CDs}} = \text{PLQY}_{\text{QS}} \cdot \frac{S_{\text{GW CDs}}}{S_{\text{QS}}} \cdot \frac{A_{\text{QS}}}{A_{\text{GW CDs}}} \cdot \frac{\eta_{\text{GW CDs}}^2}{\eta_{\text{QS}}^2} \quad (3)$$

583 where PLQY is photoluminescence quantum yield, QS represents the quinine-
584 sulfate reference solution, S means the integral area of the fluorescence peak in the
585 PL spectra, A expresses the absorbance at the excitation wavelength, and η
586 represents the refractive index of the solution. The absorbance less than 0.1 can be
587 regarded as the same refractive index.

588 The emission intensities of GW CDs (0.05 g/L) dispersed in water and in an
589 EHA/IBOA/TMPTA prepolymer mixture (comprising 42% EHA, 42% IBOA, and 16%
590 TMPTA) were also measured and compared under 350 nm excitation.

591 The critical micelle concentration (CMC) of GW CDs was determined based on

592 fluorescence intensity changes [58]. The GW CDs were dispersed into water and
593 prepolymer mixture, where water constituted 80 vol%, and the prepolymer phase
594 (comprising EHA, IBOA, and TMPTA) was prepared at a mass ratio of 42:42:16. GW
595 CDs were added at varying concentrations, and the mixtures were ultrasonicated
596 (The Fisher Scientific FB15051 ultrasonic baths, Thermo Fisher Scientific Inc.,
597 Waltham, MA, USA) for 5 minutes to ensure homogeneous dispersion. Immediately
598 after mixing, fluorescence spectra were recorded with excitation at 350 nm, and the
599 corresponding fluorescence peak areas were calculated.

600 To evaluate the pH sensitivity of GW CDs, solutions with pH values ranging from 3
601 to 13 were prepared by adding appropriate amounts of HCl or NaOH to deionized
602 water. GW CDs were dispersed in these solutions at a concentration of 0.05 g/L.
603 Fluorescence emission spectra were then recorded at an excitation wavelength of
604 350 nm.

605 To qualitatively investigate the interaction between GW CDs and prepolymer,
606 steady-state PL quenching experiments were conducted. Fluorescence emission
607 spectra were recorded for GW CDs and TPO, both dissolved in ethanol at fixed
608 concentrations (0.25 mg/mL), under 365 nm excitation. The prepolymer mixture
609 (EHA/IBOA/TMPTA = 42:42:16 by mass) was added incrementally (0, 5, 10, 20, 50,
610 100 mM), and absorbance was maintained ≤ 0.2 at all stages to minimize inner filter
611 effects. At each concentration, the maximum emission intensity (I) was recorded and
612 compared to the initial intensity (I_0) to construct Stern-Volmer plots, showing I_0/I as a
613 function of monomer concentration. The Stern-Volmer constant (K_{SV}) was obtained
614 from linear fitting to:

$$615 \frac{I_0}{I} = 1 + K_{SV}[\text{Prepolymer}] \quad (4)$$

616 **4.5.9 Water contact angle test and liquid penetration test**

617 Water contact angle test was performed using a Kruss DSA100 Optical Contact
618 Angle Meter (KRÜSS, Bristol, UK) to measure the hydrophilicity of GW CDs which
619 fully covered on the glass. A drop of 20 μL deionized water was loaded on sample
620 surface and the drop shape image was taken and analysed using the software Drop
621 Shape Analysis (KRÜSS, Bristol, UK).

622 The liquid penetration test was also performed by this machine, a drop of 20 μL
623 deionized water was loaded on PolyHPEs surface and record the time from the
624 beginning of dropping to complete penetration inside the material. All tests were
625 repeated three times for each sample.

626 **4.5.10 Electron Paramagnetic Resonance (EPR)**

627 Electron Paramagnetic Resonance (EPR) experiments were carried out using a
628 ELEXSYS-II E500T (X-band) spectrometer at 100 kHz equipped with Bruker
629 ELEXSYS Super High Sensitivity Probehead. The power intensity was adjusted to
630 20 mW. The radicals of GW CDs in deionized water and deoxygenated water were
631 generated through photolysis at room temperature when exposed to the 365 nm UV
632 (24 mW/cm²) with DMPO. The EPR spectra simulations were performed using the

635 Easyspin. Deoxygenated water was prepared by boiling deionized water and then
636 purging with Nitrogen for 20-40 minutes at a flow rate of 25 mL/s.

637

638 **4.5.11 Cell viability test**

639 BJ-5TA (P22-26), HaCaT (P83-89), MLO-A5 (P49-55), NG-108 (P11-15) cells were
640 revived from -80 °C cryovial stocks. The culture media was based on Dulbecco's
641 modified Eagle's medium (DMEM) and was supplemented with 10% v/v FBS, 1% v/v
642 L-glutamine, P/S and 1% v/v amphotericin B. The cells were incubated at 37°C, 5%
643 CO₂ and were passaged when their confluence under light microscope reached 70%
644 - 80%. Cells were seeded in 48-well plates at the density of 1×10⁴ cells per well.

645 The cell metabolic activity on the samples was measured via resazurin reduction
646 assay and seeding on TCP as positive control. The resazurin sodium salt was
647 dissolved in PBS in the concentration of 25 mg/100 mL as the master stock and was
648 diluted 10 times in culture media as reaction solution. The four cell lines were seeded
649 into wells and initially incubated in media for 24 hours to allow for cell attachment.
650 The media were then replaced with media containing 1 mg/mL GW CDs and 1
651 mg/mL Hypermer/TPO (0.5 mg/mL Hypermer + 0.5 mg/mL TPO) and incubated in
652 the dark at 37 °C for an additional 24 hours. Following incubation, 200 µL of the
653 solution from each well was transferred into a 96-well plate, and fluorescence was
654 measured using a microplate reader (FLX800, BIO-TEK Instruments, Inc., Agilent,
655 Santa Clara, CA, USA) at an excitation wavelength of 540 nm and an emission
656 wavelength of 630 nm. All incubated cells were also taken under an optical
657 microscope at 10× magnification to observe the cell morphology.

658

659 **4.5.12 Scanning electron microscope (SEM)**

660 All the PolyHIPEs were 5 nm gold-coated (Quorum Q150RS plus, Quorum
661 Technologies Ltd., Lewes, UK) and evaluated by FEI Nova NanoSEM 450 (Field
662 Electron and Ion Company, Hillsboro, OR, USA) at 5KV. Based on the SEM images,
663 ImageJ software was used to quantify and calculate the average pore size, the
664 average number of pore throats per pore, and the average pore throat diameter for
665 each PolyHIPE sample. For each formulation, images from at least three different
666 regions were analysed and 100 pores and 100 pore throats were measured to
667 determine the average pore diameter, the average number of throats per pore and
668 the average pore-throat diameter. All values are reported as mean ± standard
669 deviation (n = 100). High-magnification images (4000×) were used to observe and
670 compare the microscopic surface morphology of 5% Hypermer/TPO-PolyHIPE and
671 14 wt% GW CDs-PolyHIPE.

672

673 **4.5.13 PolyHIPEs emulsion stability time before creaming and long-term 674 emulsion stability test.**

675 The stability time of each emulsion **before creaming** was recorded as the point at
676 which visible creaming was first observed (Figure S1b). The long-term storage stability
677 of GW CDs-stabilized emulsions was evaluated by monitoring changes in droplet size
678 over time using optical microscopy. The emulsions were prepared following the

679 method described in Experimental Section 4.3. Immediately after emulsification, a
680 small amount of freshly prepared emulsion was gently transferred onto a glass slide,
681 covered with coverslip, and imaged without disturbing the droplet structure. Bright-field
682 images were acquired at room temperature (20 °C) using an optical microscope
683 (AE2000 Inverted Microscopes, Motic, Hong Kong, China) equipped with a digital
684 camera and 10× objectives. These images correspond to time zero (t = 0). The
685 remaining emulsion sample was stored in sealed vials at 20 °C and resampled at
686 predefined time points: 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 1 day, and 7
687 days. At each point, a small amount of emulsion was transferred onto a glass slide
688 and imaged under the same conditions. For each formulation and time point, at least
689 100 droplets were analyzed from multiple randomly selected fields of view using
690 ImageJ software. The equivalent circular diameter of each droplet was calculated
691 based on its projected area, and the average droplet diameter along with the standard
692 deviation was determined.

693
694

695 **4.5.14 Static light scattering (SLS) measurement**

696 Static light scattering (SLS) was employed to measure the droplet size distribution
697 of emulsions stabilized with varying concentrations of GW CDs at different
698 temperatures (20 °C, 45 °C, and 70 °C). Emulsions were incubated in a constant-
699 temperature oven until equilibrium was reached. The droplet diameter distribution
700 was determined using a Malvern Mastersizer 2000 (Malvern Instruments Ltd.,
701 Malvern, Worcestershire, UK) equipped with a 633 nm He-Ne laser and a 466 nm
702 solid-state blue laser. The average droplet diameter is calculated from the diameter
703 distribution.

704

705 **4.5.15 Surface temperature test of PolyHIPEs after curing**

706 The surface temperature of GW CDs-stabilized PolyHIPEs was measured
707 immediately after 180 seconds of UV curing (under a 365nm UV lamp (Dymax
708 BlueWave® FX-1250 High Intensity LED UV Curing Flood Lamp (Dymax®,
709 Wiesbaden, Germany), 1,700 mW/cm²) using a WIGGENS PT100-01 temperature
710 sensor (WIGGENS GmbH, Germany). Each sample was measured in triplicate.

711

712 **4.5.16 Confocal imaging**

713 To determine the location of GW CDs in PolyHIPE, cross-sections of 1-14 wt%
714 GW CDs-polyHIPE were directly imaged using Nikon A1 confocal microscope
715 (Nikon, Tokyo, Japan) with an excitation wavelength of 488 nm (Alexa Fluor 488). To
716 assess the cell imaging capability of GW CDs, BJ- 5TA cells were seeded at a
717 density of 10,000 cells per well in 48-well culture plates. The cells were initially
718 cultured in the media for 24 hours to settle down, and the cells were fed with media
719 supplemented with 1 mg/mL GW CDs every two days. On day 7, the cells were
720 removed media and directly imaged using the confocal microscope under excitation
721 wavelength of 488 nm (Alexa Fluor 488) and 400nm (DAPI).

722 The Hypermer/TPO-PolyHIPE and 10 wt% GW CDs-PolyHIPE scaffolds were cut

723 into 1 mm thick discs ($d = 8$ mm). The sample discs were sterilized in 70% ethanol
724 for 1 h and dried under UV for 30 min on both sides. 5×10^3 MDA-MB-231 cells with
725 GFP (Green Fluorescent Protein) marked were seeded on the surface each scaffold
726 and were cultured in DMEM (supplemented with 10 % FBS, 1% P/S, 1% F and 1%
727 L-Glutamine by volume) at 37 °C, 5% CO₂ atmosphere. The media changed every
728 two days. On day 7, cells on the scaffolds were fixed in 3.7% paraformaldehyde
729 (PFA) and the cytoskeleton was stained red by Phalloidin-TRITC. The scaffolds were
730 observed under blue light (wavelength 405 nm), green light (wavelength 488 nm)
731 and red light (wavelength 562 nm) using Nikon A1 confocal microscope.

732

733 **4.5.17 Statistical analysis**

734 Differences between groups were assessed using GraphPad Prism one-way Analysis of
735 Variance (ANOVA) test for cell viability test, and the results were plotted as mean \pm standard
736 deviation (SD). Significant differences between each experimental group were analyzed.
737 Significant difference was defined as * $p < 0.05$. Highly significant differences were defined as ** p
738 < 0.01, *** $p < 0.001$, and **** $p < 0.0001$.

739

740 **4.5.18 Photo-DSC measurements**

741 The analysis was conducted using a Pyris Diamond DSC 6 (PerkinElmer, Shelton, CT, USA). A
742 M405L2 UV-mounted LED lamp (Thorlabs Inc., Newton, NJ, USA; 405 nm, 700 mW/cm²) was
743 mounted 1 cm above the open sample chamber. Approximately 5 mg of prepolymer sample
744 (IBOA/EHA/TMPTA, with GW CDs or TPO at the same concentrations as in the FTIR
745 polymerization rate experiments) was placed in an aluminium DSC pan. The reference was an
746 empty pan. All measurements were performed at 30 °C under a nitrogen atmosphere (20 mL/ min).
747 The UV light source was controlled via a Thorlabs development controller and triggered after a 1-
748 second temperature equilibration. Samples were irradiated for 10 mins, and the resulting heat flow
749 was continuously recorded. The heat-flow curves (mW/g) were integrated to obtain the total
750 reaction enthalpy (ΔH , J/g).

751

752 **4.5.19 Vials inversion test**

753 The curing efficiency of GW CDs was evaluated by a vial inversion method combined with gel-
754 fraction analysis. Emulsions were prepared by mixing the organic phase (42 wt% IBOA, 42 wt%
755 EHA, 16 wt% TMPTA with 1-14 wt% GW CDs, or with 2 or 5 wt% TPO) with deionized water as
756 internal phase. The water volume fraction was fixed at 80 vol% in all cases. For the vial inversion
757 test, approximately 2.0 g of each freshly prepared emulsion was transferred into 10 mL glass
758 beakers ($n = 3$ for each composition). Vials were placed under a M405L2 UV-mounted LED lamp
759 (Thorlabs Inc., Newton, NJ, USA; 405 nm, 700 mW/cm²) at a 5 cm distance of the sample surface.
760 Immediately after the UV lamp was switched on, the vials were tilted at regular intervals of 5 s. The
761 gelation time (t_{gel}) was defined as the time at which the emulsion no longer flowed upon tilting
762 (Figure S14). To determine the gel fraction at the gel point, additional vials were prepared and
763 irradiated for the respective t_{gel} determined for each formulation. The cured PolyHIPEs were
764 removed from the vials, cut into small pieces, and extracted with an excess of DMSO for 24 h to
765 remove the soluble fraction. The samples were then dried to constant mass at 40 °C under vacuum.

766 The gel fraction (G) was calculated as:

767

$$G(\%) = \frac{m_{dry}}{m_{organic}} \times 100\% \quad (5)$$

768 where m_{dry} is the mass after extraction and drying and $m_{organic}$ is the initial mass of the organic
769 phase in the sample, calculated from its total mass and organic-phase weight fraction in the
770 formulation. Gelation time and gel fraction are reported as mean \pm standard deviation for three
771 independent samples.

772

773 Acknowledgements

774 The authors acknowledge the financial assistance provided to Womina Gao, Zeming
775 Cheng by the University of Sheffield. The authors would like to thank the Engineering
776 and Physical Sciences Research Council (EPSRC) for funding EP/V012126/1 to
777 Cornelia Rodenburg and Nicholas Farr. Frederik Claeysens also thanks the Royal
778 Society for funding a Royal Society Leverhulme Trust Senior Research Fellowship
779 2022 (SRF\R1\221053). Confocal imaging work was performed at the Wolfson Optical
780 Microscopy Facility, and TEM (with thanks to Jiahui Qi) and SEM work was performed
781 at Sorby Centre for Electron Microscopy. We thank Khalid Doudin for helping with
782 measuring the NMR data. We also wish to acknowledge the support of the Henry
783 Royce Institute for XPS test at University of Manchester. This work was supported by
784 the Henry Royce Institute for Advanced Materials, funded through EPSRC grants
785 EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1. We wish to
786 acknowledge the support of the Henry Royce Institute for Advanced Materials at
787 Imperial College London (with thanks to Irena Nejestic), as well as access to SPIN-
788 Lab Bruker X-band EPR spectrometer at Royce Imperial funded through EPSRC
789 grants EP/P030548/1, EP/R00661X/1 and EP/P02520X/1.

790

791 Conflict of Interest

792 The authors declare no conflict of interest.

793

794 Data Availability Statement

795 The data that support the findings of this study are available from the corresponding
796 author upon reasonable request.

797

798

References

799 [1] N. Sengokmen-Ozsoz, R. Boston, J. S. Dean, C. Rodenburg, and F. Claeysens, 'Fabrication of
800 hierarchically porous carbon lattices derived from 3D-Printed polymerized high internal phase
801 emulsions', *Carbon*, vol. 234, p. 119933, Mar. 2025, doi: 10.1016/j.carbon.2024.119933.

802 [2] B. Aldemir Dikici and F. Claeysens, 'Basic Principles of Emulsion Templating and Its Use as an
803 Emerging Manufacturing Method of Tissue Engineering Scaffolds', *Front. Bioeng. Biotechnol.*,
804 vol. 8, p.875, Aug. 2020, doi: 10.3389/fbioe.2020.00875.

805 [3] S. J. Pierre *et al.*, 'Covalent Enzyme Immobilization onto Photopolymerized Highly Porous
806 Monoliths', *Adv. Mater.*, vol. 18, pp. 1822-1826, Jul. 2006, doi: 10.1002/adma.200600293.

807 [4] R. Owen, C. Sherborne, T. Paterson, N. H. Green, G. C. Reilly, and F. Claeysens, 'Emulsion
808 templated scaffolds with tunable mechanical properties for bone tissue engineering', *J. Mech.
809 Behav. Biomed. Mater.*, vol. 54, pp. 159-172, Feb. 2016, doi: 10.1016/j.jmabbm.2015.09.019.

810 [5] H. Bahmaee *et al.*, 'Design and Evaluation of an Osteogenesis-on-a-Chip Microfluidic Device
811 Incorporating 3D Cell Culture', *Front. Bioeng. Biotechnol.*, vol. 8, p.557111, Sep. 2020, doi:
812 10.3389/fbioe.2020.557111.

813 [6] S. Rebello, A. K. Asok, S. Mundayoor, and M. S. Jisha, 'Surfactants: toxicity, remediation and green
814 surfactants', *Environ. Chem. Lett.*, vol. 12, pp. 275-287, Jun. 2014, doi: 10.1007/s10311-014-
815 0466-2.

816 [7] X. Ji *et al.*, 'Occurrence, Fate, Human Exposure, and Toxicity of Commercial Photoinitiators',
817 *Environ. Sci. Technol.*, vol. 57, pp. 11704-11717, Aug. 2023, doi: 10.1021/acs.est.3c02857.

818 [8] S. Rebello, A. K. Asok, S. Mundayoor, and M. S. Jisha, 'Surfactants: Chemistry, Toxicity and
819 Remediation', in *Pollutant Diseases, Remediation and Recycling*, E. Lichtfouse, J. Schwarzbauer,
820 and D. Robert, Eds., Cham, Switzerland: Springer International Publishing, 2013, pp. 277-320.
821 doi: 10.1007/978-3-319-02387-8_5.

822 [9] B. Zeng *et al.*, 'Cytotoxic and cytocompatible comparison among seven photoinitiators-
823 triggered polymers in different tissue cells', *Toxicol. In Vitro*, vol. 72, p. 105103, Apr. 2021, doi:
824 10.1016/j.tiv.2021.105103.

825 [10] G. C. J. Lindberg *et al.*, 'Biological function following radical photo-polymerization of biomedical
826 polymers and surrounding tissues: Design considerations and cellular risk factors', *Appl. Phys.
827 Rev.*, vol. 8, p. 011301, Jan. 2021, doi: 10.1063/5.0015093.

828 [11] H. Refaat *et al.*, 'Challenges with effective removal of surfactants from monoclonal antibody
829 formulations', *Int. J. Pharm.*, vol. 670, p. 125146, Feb. 2025, doi: 10.1016/j.ijpharm.2024.125146.

830 [12] L. Xu, N. Sheybani, W. A. Yeudall, and H. Yang, 'The effect of photoinitiators on intracellular AKT
831 signaling pathway in tissue engineering application', *Biomater. Sci.*, vol. 3, pp. 250-255, Jan. 2015,
832 doi: 10.1039/C4BM00245H.

833 [13] V. O. Ikem, A. Menner, and A. Bismarck, 'Tailoring the mechanical performance of highly
834 permeable macroporous polymers synthesized via Pickering emulsion templating', *Soft Matter*,
835 vol. 7, pp. 6571-6577, Jul. 2011, doi: 10.1039/C1SM05272A.

836 [14] W. Gao *et al.*, 'Advancing synthetic bone tissue engineering materials: Nano-scale investigation
837 into transitional Interface in carbon dots/ polymer composites', *J. Colloid Interface Sci.*, vol. 700,
838 p. 138553, Dec. 2025, doi: 10.1016/j.jcis.2025.138553.

839 [15] R. Lu, S. He, T. Wang, L. Lai, and M. Zhao, 'Low-cost preparation of temperature-resistant and

840 salt-tolerant amphiphilic carbon dots from a nonionic surfactant and its application in enhanced
841 oil recovery', *Carbon*, vol. 225, p. 119104, May 2024, doi: 10.1016/j.carbon.2024.119104.

842 [16] Y. Cheng *et al.*, 'N-doped carbon dots-modulated interfacial charge transfer and surface
843 structure in FeNbO₄ photocatalysts for enhanced CO₂ conversion selectivity to CH₄', *Chem. Eng.*
844 *J.*, vol. 498, p. 155576, Oct. 2024, doi: 10.1016/j.cej.2024.155576.

845 [17] Y.-S. Seo and J.-W. Kang, 'Synthesis and characterization of clove residue-derived carbon
846 quantum dots: Application in Pickering emulsion with enhanced antibacterial properties', *Chem.*
847 *Eng. J.*, vol. 503, p. 158247, Jan. 2025, doi: 10.1016/j.cej.2024.158247.

848 [18] Y. Wang *et al.*, 'Preparation of surface-active carbon dots with fluorocarbon and hydrocarbon
849 hybrid chains via a one-pot solvothermal technique and their characterization and potential
850 applications', *Colloids Surf. Physicochem. Eng. Asp.*, vol. 684, p. 133155, Mar. 2024, doi:
851 10.1016/j.colsurfa.2024.133155.

852 [19] R. Li *et al.*, 'Type I Photoinitiator Based on Sustainable Carbon Dots', *Angew. Chem. Int. Ed.*, vol.
853 63, p. e202404454, Apr. 2024, doi: 10.1002/anie.202404454.

854 [20] K. Chang, Q. Zhu, L. Qi, M. Guo, W. Gao, and Q. Gao, 'Synthesis and Properties of Nitrogen-
855 Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source', *Materials*, vol. 15, p. 466,
856 Jan. 2022, doi: 10.3390/ma15020466.

857 [21] R. Ma, M. Zeng, D. Huang, J. Wang, Z. Cheng, and Q. Wang, 'Amphiphilicity-adaptable graphene
858 quantum dots to stabilize pH-responsive pickering emulsions at a very low concentration', *J.*
859 *Colloid Interface Sci.*, vol. 601, pp. 106-113, Nov. 2021, doi: 10.1016/j.jcis.2021.05.104.

860 [22] E. Durgut, M. Zhou, B. A. Dikici, R. Foudazi, and F. Claeysens, 'Modifying pickering polymerized
861 high internal phase emulsion morphology by adjusting particle hydrophilicity', *Colloids Surf.*
862 *Physicochem. Eng. Asp.*, vol. 680, p. 132629, Jan. 2024, doi: 10.1016/j.colsurfa.2023.132629.

863 [23] D. Yi, G. Jeong, J.-H. Seo, M. J. Yoo, and H. Yang, 'Carbon Dots with Tailored Surface Wettability
864 as Pickering Emulsifiers', *ACS Appl. Nano Mater.*, vol. 5, pp. 10258-10267, Aug. 2022, doi:
865 10.1021/acsanm.2c01277.

866 [24] B. Wang *et al.*, 'Rational Design of Multi-Color-Emissive Carbon Dots in a Single Reaction
867 System by Hydrothermal', *Adv. Sci.*, vol. 8, p. 2001453, Nov. 2021, doi: 10.1002/advs.202001453.

868 [25] W. Li *et al.*, 'Carbon-Quantum-Dots-Loaded Ruthenium Nanoparticles as an Efficient
869 Electrocatalyst for Hydrogen Production in Alkaline Media', *Adv. Mater.*, vol. 30, p. 1800676, Jul.
870 2018, doi: 10.1002/adma.201800676.

871 [26] H. Yang *et al.*, 'Hydrophobic carbon dots with blue dispersed emission and red aggregation-
872 induced emission', *Nat. Commun.*, vol. 10, p. 1789, Apr. 2019, doi: 10.1038/s41467-019-09830-
873 6.

874 [27] A. Mewada *et al.*, 'Green synthesis of biocompatible carbon dots using aqueous extract of *Trapa*
875 *bispinosa* peel', *Mater. Sci. Eng. C*, vol. 33, pp. 2914-2917, Jul. 2013, doi:
876 10.1016/j.msec.2013.03.018.

877 [28] Preeti *et al.*, 'Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of
878 Drugs', *Scientifica*, vol. 2023, p. 6640103, Oct. 2023, doi: 10.1155/2023/6640103.

879 [29] M. Mieles, S. Harper, and H.-F. Ji, 'Bulk Polymerization of Acrylic Acid Using Dielectric-Barrier
880 Discharge Plasma in a Mesoporous Material', *Polymers*, vol. 15, p. 13, Jan. 2023, doi:
881 10.3390/polym15132965.

882 [30] F.-M. Yin *et al.*, 'Unconventional Fluorescent and Multi-responsive Polyethyleneimine with LCST
883 and UCST Behavior: Synthesis, Characterization and Biological Applications', *Chin. J. Polym. Sci.*,

884 vol. 42, pp. 826-837, Jun. 2024, doi: 10.1007/s10118-024-3120-x.

885 [31] X. Zhuang, J. Liu, C. Wang, Q. Zhang, and L. Ma, 'Microwave-assisted hydrothermal liquefaction
886 for biomass valorization: Insights into the fuel properties of biocrude and its liquefaction
887 mechanism', *Fuel*, vol. 317, p. 123462, Jun. 2022, doi: 10.1016/j.fuel.2022.123462.

888 [32] S. Z. N. Ahmad, W. N. Wan Salleh, A. F. Ismail, N. Yusof, M. Z. Mohd Yusop, and F. Aziz,
889 'Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of
890 functional groups and mechanisms', *Chemosphere*, vol. 248, p. 126008, Jun. 2020, doi:
891 10.1016/j.chemosphere.2020.126008.

892 [33] F. Dai, Q. Zhuang, G. Huang, H. Deng, and X. Zhang, 'Infrared Spectrum Characteristics and
893 Quantification of OH Groups in Coal', *ACS Omega*, vol. 8, pp. 17064-17076, May 2023, doi:
894 10.1021/acsomega.3c01336.

895 [34] I. Y. Miranda-Valdez *et al.*, 'Bio-Based Foams to Function as Future Plastic Substitutes by
896 Biomimicry: Inducing Hydrophobicity with Lignin', *Adv. Eng. Mater.*, vol. 26, p. 2400233, Aug.
897 2024, doi: 10.1002/adem.202400233.

898 [35] Jim Clark, 'Interpreting C-13 NMR spectra?', Chemguide. Accessed: Apr. 26, 2025. [Online].
899 Available: <https://www.chemguide.co.uk/analysis/nmr/interpretc13.html>

900 [36] B. Zhao *et al.*, 'Triphenylamine-Derived Solid-State Emissive Carbon Dots for Multicolor High-
901 Efficiency Electroluminescent Light-Emitting Diodes', *Angew. Chem.*, vol. 135, p. e202301651,
902 Mar. 2023, doi: 10.1002/ange.202301651.

903 [37] J. Wu, F. Yan, Q. Jia, and Q. Wang, 'QSPR for predicting the hydrophile-lipophile balance (*HLB*)
904 of non-ionic surfactants', *Colloids Surf. Physicochem. Eng. Asp.*, vol. 611, p. 125812, Feb. 2021,
905 doi: 10.1016/j.colsurfa.2020.125812.

906 [38] S. M. Rahaman, A. Bhattacharai, D. Kumar, B. Singh, and B. Saha, 'Chapter 11 - Application of
907 biosurfactants as emulsifiers in the processing of food products with diverse utilization in the
908 baked goods', in *Applications of Next Generation Biosurfactants in the Food Sector*, Inamuddin
909 and C. O. Adetunji, Eds., Amsterdam, Netherlands: Academic Press, 2023, pp. 203-237. doi:
910 10.1016/B978-0-12-824283-4.00021-6.

911 [39] M. Sbacchi, M. Mamone, L. Morbiato, P. Gobbo, G. Filippini, and M. Prato, 'Shining Light on
912 Carbon Dots: New Opportunities in Photocatalysis', *ChemCatChem*, vol. 15, p. e202300667, Jun.
913 2023, doi: 10.1002/cctc.202300667.

914 [40] S. Bhattacharyya *et al.*, 'Effect of nitrogen atom positioning on the trade-off between emissive
915 and photocatalytic properties of carbon dots', *Nat. Commun.*, vol. 8, p. 1401, Nov. 2017, doi:
916 10.1038/s41467-017-01463-x.

917 [41] Y. Huang, L. Luo, S. Zhu, K. Yin, L. Bu, and S. Zhou, 'Revealing the crucial role of Carbon-Centered
918 radicals in UV/PAA process for trace amounts of organic contaminants removal', *Chem. Eng. J.*,
919 vol. 475, p. 146254, Nov. 2023, doi: 10.1016/j.cej.2023.146254.

920 [42] M. Danilczuk, F. D. Coms, and S. Schlick, 'Visualizing Chemical Reactions and Crossover
921 Processes in a Fuel Cell Inserted in the ESR Resonator: Detection by Spin Trapping of Oxygen
922 Radicals, Nafion-Derived Fragments, and Hydrogen and Deuterium Atoms', *J. Phys. Chem. B*,
923 vol. 113, pp. 8031-8042, Jun. 2009, doi: 10.1021/jp901597f.

924 [43] F. A. Villamena, E. J. Locigno, A. Rockenbauer, C. M. Hadad, and J. L. Zweier, 'Theoretical and
925 Experimental Studies of the Spin Trapping of Inorganic Radicals by 5,5-Dimethyl-1-Pyrroline
926 N-Oxide (DMPO). 1. Carbon Dioxide Radical Anion', *J. Phys. Chem. A*, vol. 110, pp. 13253-13258,
927 Dec. 2006, doi: 10.1021/jp064892m.

928 [44] L. Y. Zang and H. P. Misra, 'EPR kinetic studies of superoxide radicals generated during the
929 autoxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium, a bioactivated intermediate of
930 parkinsonian-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.', *J. Biol.*
931 *Chem.*, vol. 267, pp. 23601-23608, Nov. 1992, doi: 10.1016/S0021-9258(18)35881-2.

932 [45] S. González and X. Jaramillo-Fierro, 'Density Functional Theory Study of Methylene Blue
933 Demethylation as a Key Step in Degradation Mediated by Reactive Oxygen Species', *Int. J. Mol.*
934 *Sci.*, vol. 26, p. 1756, Feb. 2025, doi: 10.3390/ijms26041756.

935 [46] H. Tong *et al.*, 'Hydroxyl radicals from secondary organic aerosol decomposition in water',
936 *Atmospheric Chem. Phys.*, vol. 16, pp. 1761-1771, Feb. 2016, doi: 10.5194/acp-16-1761-2016.

937 [47] D. Panda and J. Barik, 'Flooding Tolerance in Rice: Focus on Mechanisms and Approaches', *Rice*
938 *Sci.*, vol. 28, pp. 43-57, Jan. 2021, doi: 10.1016/j.rsci.2020.11.006.

939 [48] J.-C. Brosse, D. Derouet, F. Epaillard, J.-C. Soutif, G. Legeay, and K. Dušek, 'Hydroxyl-terminated
940 polymers obtained by free radical polymerization — Synthesis, characterization, and
941 applications', in *Catalytical and Radical Polymerization*, Berlin, Heidelberg: Springer, 1986, pp.
942 167-223. doi: 10.1007/BFb0037615.

943 [49] Hydrogen Link, 'Hydroxyl Radicals Reactivity', Hydrogen Link Inc. Accessed: Jun. 23, 2025.
944 [Online]. Available: <https://www.hydrogenlink.com/hydroxylradicalsreactivity>.

945 [50] P. Thangaraju and S. B. Varthya, 'ISO 10993: Biological Evaluation of Medical Devices', in *Medical*
946 *Device Guidelines and Regulations Handbook*, P. S. Timiri Shanmugam, P. Thangaraju, N. Palani,
947 and T. Sampath, Eds., Cham, Switzerland: Springer International Publishing, 2022, pp. 163-187.
948 doi: 10.1007/978-3-030-91855-2_11.

949 [51] Y. Jiao *et al.*, 'Enhancing the Formation and Stability of Oil-In-Water Emulsions Prepared by
950 Microchannels Using Mixed Protein Emulsifiers', *Front. Nutr.*, vol. 9, p. 822053, May 2022, doi:
951 10.3389/fnut.2022.822053.

952 [52] E. Durgut, C. Sherborne, B. Aldemir Dikici, G. C. Reilly, and F. Claeysens, 'Preparation of
953 Interconnected Pickering Polymerized High Internal Phase Emulsions by Arrested Coalescence',
954 *Langmuir*, vol. 38, pp. 10953-10962, Sep. 2022, doi: 10.1021/acs.langmuir.2c01243.

955 [53] H. Li *et al.*, 'Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design', *Angew.*
956 *Chem.*, vol. 122, pp. 4532-4536, Jun. 2010, doi: 10.1002/ange.200906154.

957 [54] Y. H. Choi *et al.*, 'Ethanol extract of *Lithospermum erythrorhizon* Sieb. et Zucc. promotes
958 osteoblastogenesis through the regulation of Runx2 and Osterix', *Int. J. Mol. Med.*, vol. 38, pp.
959 610-618, Aug. 2016, doi: 10.3892/ijmm.2016.2655.

960 [55] N. Sengokmen-Ozsoz, R. Boston, and F. Claeysens, 'Investigating the Potential of Electroless
961 Nickel Plating for Fabricating Ultra-Porous Metal-Based Lattice Structures Using PolyHIPE
962 Templates', *ACS Appl. Mater. Interfaces*, vol. 15, pp. 30769-30779, Jun. 2023, doi:
963 10.1021/acsami.3c04637.

964 [56] K. Shinoda, H. Saito, and H. Arai, 'The effect of the size and the distribution of the oxyethylene
965 chain lengths of nonionic emulsifiers on the stability of emulsions', *J. Colloid Interface Sci.*, vol.
966 35, pp. 624-630, Apr. 1971, doi: 10.1016/0021-9797(71)90220-7.

967 [57] S. Zhao, X. Chen, C. Zhang, P. Zhao, A. J. Ragauskas, and X. Song, 'Fluorescence Enhancement
968 of Lignin-Based Carbon Quantum Dots by Concentration-Dependent and Electron-Donating
969 Substituent Synergy and Their Cell Imaging Applications', *ACS Appl. Mater. Interfaces*, vol. 13,
970 pp. 61565-61577, Dec. 2021, doi: 10.1021/acsami.1c20648.

971 [58] Y. Yang, M. Zhao, and L. Lai, 'Surface activity, micellization, and application of nano-

972 surfactants—amphiphilic carbon dots', *Carbon*, vol. 202, pp. 398-413, Jan. 2023, doi:
973 10.1016/j.carbon.2022.11.012.
974