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Abstract:  

Photosystem I is a key component of the solar energy conversion machinery in oxygenic photosynthesis, 

and its core, where photochemistry occurs, is highly conserved. However, the coral-associated alga 

Chromera velia that is evolutionary linked to parasitic apicomplexans, exhibits Photosystem I with unusual 

features. These include the splitting of the central PsaA subunit and the binding of superoxide dismutases 

as regular subunits. The organization of such a unique Photosystem I was enigmatic. Here, we present the 

cryo-EM structure of Chromera velia Photosystem I at 1.84 Å resolution. Our work reveals a superoxide 

dismutase heterodimer bound to the stromal side of the core, stabilized by extensions of canonical subunits, 

a novel protein PsaV, and a reduced light-harvesting apparatus. We elucidate how the complex evolved to 

accommodate the superoxide dismutase, assemble the split PsaA, and integrate antenna proteins in a non-

canonical orientation. Based on our data and prior physiological data, we propose that this specialized 

Photosystem I functions likely as an Mehler machine, redirecting electrons from Photosystem II back to 
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water. This mechanism enables Chromera. velia to manage redox imbalance and reduce photorespiration 

through localized oxygen consumption.  

 

Introduction:   

Oxygenic photosynthesis, the primary metabolic process on Earth, emerged around 3 billion years ago. By 

combining two light-driven oxidoreductase complexes (two photosystems - PSI and PSII) within a single 

cell 1 a cyanobacterial ancestor started to oxidize water as an unlimited electron source for carbon fixation. 

Eukaryotes later acquired this metabolic strategy transforming an endosymbiotic cyanobacterium into 

specialized organelles (plastids). Although the number and arrangement of subunits in photosystems, 

especially PSI, can vary in different types of phototrophs, their core structural architecture remained highly 

conserved, indicating strong evolutionary constraints 2. 

A notable exception is represented by the photosynthetic apparatus of the Alveolate alga Chromera velia 3, 

which significantly diverged from the canonical “oxygenic” organisation. The plastid of C. velia derived 

from red algae and tracks back to the early photosynthetic origin of apicomplexan parasites including 

serious pathogens such as Plasmodium falciparum, the causative agent of malaria. In C. velia, the PsaA 

locus underwent a gene fission and two distinct gene products, PsaA1 and PsaA2, are incorporated 

separately into the core 4. Some small subunits were also lost in both photosystems 5 while PSI acquired 

five novel protein subunits. Of those five, three (Unknown1-3) show no homology with any existing 

database entries, while two were homologous to superoxide dismutase (SOD). These metalloenzymes play 

a crucial role in oxygenic phototrophs as a first line defence against reactive oxygen species (ROS), 

catalyzing the dismutation of superoxide into O₂ and H₂O₂. All function as obligate oligomers (dimers, 

tetramers, or hexamers) and are classified according to their catalytic metal cofactor into Mn-, Fe-, Ni-, and 

Cu/Zn-SODs 6. In chloroplasts of green algae, plants, and dinoflagellates 7, Fe-SODs are typically found in 

the chloroplast stroma, near PSI, the main site of superoxide production 6,8 and are essential for viability 

9,10. Notably, the previously isolated PSI from C. velia exhibited SOD activity in vitro 5 and spectroscopic 

data has ranked this modified PSI supercomplex among the most photochemically efficient PSI, 

outperforming plants and green algae 11. 

Another interesting feature of C. velia is the presence of three types of light-harvesting proteins, two of 

which are found in distant algal groups. In particular, the fucoxanthin chlorophyll protein (FCP)-like-

antennae have homologs in dinoflagellates and diatoms 12,13 while the Rhodophyta-type Light-Harvesting 

Complex  (LHCr) antennae, which are associated with PSI, have homologs in red algae 13. Although both 

LHCr and FCP proteins have been co-isolated with C. velia PSI 13,14, the main antenna bound to PSI consists 
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of FCPs; and LHCr play only a minor role in the collection of light for PSI 12. C. velia can also express far-

red absorbing antennae specifically associated with PSII with an absorption maximum at 705 nm 15,16. 

The pigment composition of C. velia is however less diverse, with fewer cofactor types compared to related 

dinoflagellates or e.g. green microalgae. Together with chlorophyll a (CLA), -carotene (BCR), and 

violaxanthin (XAT), C. velia exhibits a novel xanthophyll pigment (named chromeraxanthin; LRX). NMR 

data classified LRX as a new class of carotenoids, combining acetylated cyclohexane end-ring from 

fucoxanthin with a methylated cyclopentane ring typical of capsanthin 17. 

C. velia is preferentially associated with macroalgae assemblages of coral 18 but can also colonise coral 

larvae 19, similar to Symbiodinium, a related dinoflagellate whose common ancestor with C. velia lived 

0.75-1.1 billion years ago 20. The exact nature of this interaction is unclear 21 but C. velia is more likely a 

facultative (photo)parasite 22. Indeed, this alga can be photoautotrophically cultivated and displays 

exceptionally robust and efficient photosynthesis. C. velia cells achieve similar maximum photosynthetic 

rates under both light-limited and light-saturated conditions 23,24, maintaining high efficiency across a wide 

wavelength range. Under sinusoidal light cycles peaking at 500 µmol photons m^-2 s^-1 that closely 

resemble natural conditions, C. velia exhibited very high rates of O2 evolution and 14C fixation during the 

light phase. These rates were 4–5 times higher than those measured in cells under continuous light.  

Here, we report the structure of PSI from C. velia at a near-atomic resolution of 1.84 Å, revealing 

unprecedented structural details in the PSI supercomplex. We found an SOD heterodimer bound to the PSI 

core, stabilized by protein extensions of the canonical PSI subunits, and a previously unknown protein 

PsaV, which likely stabilizes the core PsaA subunit that is split into two separate polypeptides. Further, C. 

velia exhibits a minimized light-harvesting apparatus, as many of its FCPs have been lost due to structural 

rearrangements that would otherwise lead to steric clashes in a canonical PSI. The role of this unique PSI-

SOD assembly in the physiology of C. velia is discussed. 

 

Results 

The overall structure of PSI from C. velia. 

To prepare PSI supercomplexes for cryo-EM, photosynthetic membranes were solubilized with β-dodecyl-

n-maltoside (β-DDM) and fractionated using sucrose density gradient ultracentrifugation in lauryl maltose 

neopentyl glycol (LMNG) (Supplementary Fig. 1). The main PSI-containing fraction was collected and 

further purified either (i) size exclusion chromatography (SEC) or (ii) native-PAGE separation followed by 

gel elution (Supplementary Fig. 1). The subunit composition analysis using SDS-PAGE in the second 
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dimension followed by protein mass spectrometry (MS), confirmed a protein spectrum consistent with 

previous findings by Sobotka et al. 5 (Fig. 1a, b). High-performance liquid chromatography (HPLC)-based 

pigment analysis of the native gel-purified PSI identified the expected pigments: CLA, BCR, XAT, and the 

C. velia-specific LRX (Fig. 1b) 3. For both purification approaches, we prepared EM grids by plunge-

freezing and collected two independent datasets: 20,980 movies for the SEC purification (Dataset 1), and 

11,917 movies for native-PAGE elution purification (Dataset 2). Dataset 1 refined to an overall resolution 

of 2.36 Å, while the gel-eluted PSI refined to 2.48 Å (Supplementary Fig. 2). Superposition of both maps 

showed very similar densities except for a clear density for a lumenal protein bound to PsaB, which was 

poorly ordered in Dataset 1, indicating that the separation on the native PAGE preserves loosely bound 

proteins better than SEC (Supplementary Fig. 2). No significant differences between maps were found in 

the core. Therefore, both datasets were merged, refining the consensus map (the full map without focused 

refinement) to a final global resolution of 1.84 Å (Supplementary Fig. 2 and 3, Supplementary Table 1). 

The peripheral regions, particularly where the antennae are located, exhibited flexibility relative to the PSI 

core. We improved these areas by applying masked refinement using different masks (Supplementary Fig. 

2 and 3). All maps were utilized to generate a merged composite map, into which an atomic model of PSI 

was built. 

The structure of PSI from C. velia consists of 14 core subunits (PsaA1, PsaA2, PsaB, PsaC, PsaD, PsaE, 

PsaF, PsaI, PsaL, PsaM, PsaR, PsaSOD1, PsaSOD2, and PsaV) (Fig. 2a) and five FCP antennae (FCPa, 

FCPb, FCPc, FCPd, and FCPe; Fig. 2b-c). We found a total of 245 cofactors, specifically 114 CLA, 1 

chlorophyll a’ (CL0), 8 BCR, 22 XAT, 4 LRX, 11 monogalactosyl-diacylglycerol (LMG), 6 digalactosyl-

diacylglycerol (DGD), 71 β-DDM (LMT), 1 lauryl maltose neopentyl glycol (AV0), 1 sulfoquinovosyl-

diacylglycerol (SQD), 2 phylloquinone (PQN), 3 iron sulfur cluster (SF4) and 1 acylated monogalactosyl-

diacylglycerol (RRL) (Fig. 1d, Supplementary Fig. 4a-d, and Supplementary Table 2, 3) 25,26.  

The high resolution, especially in the core, allowed us to unambiguously identify most rotameric 

conformations of the protein side chains and the identities of most of the ligands, including their 

conformations, cis-trans isomerization, and puckering of the head groups (Supplementary Fig. 5a). We also 

built 1558 water molecules, which are observable across all protein subunits, including the transmembrane 

part, with an accumulation around the iron-sulfur clusters and the reaction center (Supplementary Fig. 5b).  

The previously reported unknown proteins 1, 2 and 3 5 could be identified by building side chains according 

to their appearance in the map, followed by BLAST searches against the available genomic and 

transcriptomic databases 27,28. Despite low conservation with Symbiodinium 29-31 unknown proteins 2 and 3 

could be assigned as PsaR and PsaI, respectively (Supplementary Fig. 6a,b). The protein previously named 

Unknown 1 5 was identified in the density but had no counterpart in other known PSI structures, therefore, 
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this new subunit was named PsaV. Additionally, we identified density attributed to one unreported and 

unidentified protein 5. We could assign it as PsaM (Fig. 2, Supplementary Fig. 6a,b). 

PsaA and PsaB are the major subunits of PSI and form a heterodimer hosting the reaction center. Their 

sequence and structure are highly conserved in all oxygenic photosynthetic organisms tracking back to 

cyanobacteria. In C. velia the reaction center subunit PsaA is split into two subunits, PsaA1 and PsaA2, 

which form a heterodimer within the PSI core (Fig 3, Supplementary Fig. 7a). Superposition with PsaA 

from dinoflagellates reveals that the PsaA1-PsaA2 heterodimer closely resembles the unsplit PsaA 

counterpart in Symbiodinium. However, several local structural differences were observed in PsaA1. The 

N-terminus is partially disordered (Fig. 3a), transmembrane helix 2 (TMH2) is shifted by around 8 Å due 

to a protein truncation and appears to be flexible (Fig. 3b), and the C-terminus, which comprises a linker 

between TMH4 and TMH5 in the unsplit PsaA, changes direction, forming a β-strand that interacts via a β-

sheet with the FCPa antenna (Fig. 3c). Additional changes were observed in PsaA2, which include a 

truncation and a helical alteration of the polypeptide chain (Fig. 3c). Overall, the splitting of PsaA leads to 

greater conformational flexibility of PsaA1, and appears to be an evolutionarily adaption that connects the 

FCPa antenna to the PSI core via the C-terminus of PsaA1.  

Surprisingly, we identified a polypeptide chain in the position of PsaJ, which was found to be absent in the 

genome of C. velia 5. Instead of PsaJ, the position is occupied by the C-terminus of PsaF, which in C. velia 

was modeled with a 40 amino acid (AA) long extension. A non-conserved 20 amino acid domain formed a 

link between the canonical PsaF domain and the PsaJ-like domain. Sequence alignment shows a similarity 

of approximately 30% between the new PsaJ-like C-terminus of PsaF and PsaJ of Symbiodinium, implying 

a gene fusion event between PsaF and PsaJ rather than an extension of the PsaF gene (Supplementary Fig. 

7b,c). Interestingly, in cyanobacteria, psaF and psaJ form a bicistronic operon 32, and in the red-lineage alga 

Cyanidioschyzon merolae, they are directly adjacent in the plastid genome 33, supporting this hypothesis. 

Finally, we also discovered superoxide dismutase dimers linked to the PSI core, forming enzymatic subunits 

never previously resolved in PSI structures (Fig. 2). Hence, we named these SOD1 and SOD2 subunits as 

PsaSOD1 and PsaSOD2, respectively. In summary, our structure reveals an unusual composition of PSI, 

with several novel structural scaffolds and enzymatic subunits acquired in the core.  

 

The PsaSOD1/2 heterodimer is stably attached to the stromal PSI PsaCDE triad. 

The well-ordered PsaSOD1/2 heterodimer is attached to the stromal subunits PsaCDE (Fig. 4a) via the N-

terminal extension of PsaSOD1 (linker) which is absent in PsaSOD2. This linker extends about 100 AA 

and is positioned on the surface of the stromal side of PSI. It forms interactions with an extensive number 
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of subunits, including PsaD, PsaL, PsaB, and FCPb (Fig. 4b). The N-terminus folds back to the attachment 

site, where it interacts with PsaM at its C-terminus. Several other interactions, although less extensive, take 

place with the canonical subunits PsaB, PsaC, PsaD, PsaE, PsaI, and PsaM (Fig. 4b).  

Multiple sequence analyses of SODs from red and green lineages show the PsaSOD1 linker is conserved 

(34% identity) in C. velia and another chromerid alga Vitrella brassicaformis (Supplementary Fig. 8a). 

Some diatoms have a shorter, less conserved N-terminus (around 40-50 residues, 13% and 20% identity), 

which might serve as a weaker SOD-PSI linker. However, the Psa29 (also known as PsaS) subunit, which 

is found only in diatoms 34, would likely block the attachment of SOD (Supplementary Fig. 8b). Hence, the 

stably bound SODs may be a chromerid specific adaptation, possibly present in ancestral diatoms but lost 

during evolution, as suggested by the weakly conserved extension in modern species. 

Superposition with a ferredoxin-bound PSI structure of plants (PDB_ID: 6YAC) revealed the attachment 

of the SOD heterodimer on the side opposite to the expected ferredoxin docking site (Supplementary Fig. 

8c). It further showed the absence of steric clashes between the position of ferredoxin and PSI, excluding a 

potential blockage of the canonical electron transfer by the SOD (Supplementary Fig. 8d, f). Interestingly, 

the binding affinity of ferredoxin to PSI in C. velia could be weaker than in other groups of algae due to 

less negatively charged surface of the C. velia ferredoxin and conformational changes at the N-terminus of 

PsaA1 (Supplementary Fig. 8d,f). 

 

Functional and structural differentiation of the PsaSOD1/2 paralogues. 

A closer inspection of the catalytic sites of PsaSOD1 and PsaSOD2 revealed that only PsaSOD2 contains 

the prosthetic Fe coordinated by a typical iron coordination site 35, composed of three histidine and one 

aspartate (Fig. 4c). In PsaSOD2 we observed that the entry of the catalytic pocket points toward the stroma 

and is ~70 Å apart from phylloquinone, the major site of O₂⁻ generation in PSI 36 (Supplementary Fig. 9a). 

This finding suggests that diffusing O₂⁻ is scavenged by the catalytic site from the stroma rather than directly 

from the PSI acceptor site. 

In PsaSOD1, one of the histidine of the expected active site was substituted by a threonine, making iron 

coordination here unlikely (Fig. 4c); instead, several ordered water molecules were found in the pocket. 

Each protomer thus apparently fulfills a distinct functional role. The PsaSOD2 is most likely a catalytically 

active subunit as previously reported 5, whereas PsaSOD1, which lacks a functional catalytic site, evolved 

into a structural support bridging PsaSOD2 to PSI. It should be noted that the formation of heterodimers is 

important also for the function of plastid Fe-SODs 10 and the superposition of the plant Fe-SOD homodimer 

37 and C. velia PsaSOD1/2 reveals an overall structural similarity (RMSD = 2.2 Å).  
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Remarkably, in PsaSOD1, ASN76 and ASN202 each harbor a N-linked glycosylation (Fig. 4d, 

Supplementary Fig. 9b). Although the density beyond the core sugar moieties was too diffuse to model, MS 

revealed heterogeneous high-mannose N-glycans at Asn76 and Asn202, with HexNAc₂Hex₇ (i.e., 

Man₇GlcNAc₂) as the predominant form (Supplementary Fig. 10). The glycans project toward the stromal 

side, where they could modulate PsaSOD1 interface by local hydration, thereby stabilizing its association 

with the PSI core. 

 

Stabilization of PsaA1/A2 and PsaSOD1/2 heterodimers by PsaV protein and by extended canonical 

subunits. 

The new protein PsaV is attached to the lumenal side of PSI, centered on the PsaA1/A2 heterodimer, where 

it stabilizes and clamps the two subunits together (Fig. 5a). PsaV forms a six-stranded beta sheet involving 

two times two antiparallel beta strands of PsaA2 (Fig. 5a). This inter-subunit β-sheet forms a closed, β-

barrel-like structure, with antiparallel strand orientation within PsaA2 and within PsaV, whereas the 

interface between the two subunits exhibits a parallel strand arrangement (Supplementary Fig. 11). In 

addition, TMH3 and its succeeding beta turn of PsaA1 are surrounded by three helices of PsaV, forming 

several polar, charged, and hydrophobic interactions with PsaA1 (Fig. 5a). The C-terminus of PsaV attaches 

to the C-terminal extension of PsaL, to PsaB, and PsaA2 while the N-terminus extends to the light-

harvesting antenna FCPb and FCPc, stabilizing their attachment via polar, charged, and hydrophobic 

interactions (Fig. 5a). PsaV thereby stabilizes the split PsaA1/A2 heterodimer while supporting the 

attachment of the FCP antenna to the core of PSI. 

Superposition of the PSI core subunits with structures of other organisms in the red-algal lineage revealed 

several protein extensions unique to C. velia (Supplementary Fig. 12a). Detailed analysis of these 

extensions shows that they are most dominant on the stromal side, forming a stabilizing platform for the 

PsaSOD1/2 heterodimer (Fig. 5b). A large C-terminal extension of PsaD forms the basis of the platform 

near PsaSOD1 and is stabilized by several extensions of PsaR and a C-terminal extension of PsaI. The 

platform for PsaSOD2, in contrast, is formed by a large C-terminal extension of PsaM (Fig. 5b). Despite 

the significant gain in protein mass due to these extensions, the actual interactions between the PsaSOD1/2 

heterodimer and the platform are less extensive than with the linker (Fig. 3 and 5b). Thus, if the primary 

attachment site to PSI is mediated by the N-terminal linker of PsaSOD1, the platform rather serves as a 

steric barrier to maintain a gap between active SOD domains and the thylakoid membranes. In theory, the 

SOD heterodimer could still bind similarly in green algae or plant PSI that lacks the platform and linker, 

without producing any steric hindrance. However, this interaction would be very weak, supported only by 
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a few van der Waals contacts, and we therefore do not expect a stable PSI-SOD in these organisms 

(Supplementary Fig. 12b). 

 

Protein extensions of FCPs antenna stabilize their attachment to the PSI core. 

Comparison of FCP proteins of C. velia and the closely related Symbiodinium by superposition showed 

several structural adaptations in the light-harvesting antenna proteins. The FCPs of C. velia can be classified 

into three types: The first type includes proteins with no extensions in C. velia (FCPc, FCPd, and FCPe), 

while their structural counterparts in Symbiodinium have extensions (Supplementary Fig. 13a). The second 

type includes FCPa with large protein extensions acquired by C. velia but absent in Symbiodinium, and the 

third type includes FCPb with extensions that differ from those of their counterparts in Symbiodinium 

(Supplementary Fig. 13b-d).  

Notably, the FCPa is rotated by almost 90° around its transmembrane axis from its position in 

Symbiodinium, resulting in the loss of the canonical interaction with the PSI core via transmembrane helices 

(Fig. 5c). However, this antenna, organized as a heterodimer with FCPc, possesses a N-terminal extension 

that forms a long helix and a three-stranded β-sheet (Fig. 5c). This segment interacts with the PSI core on 

the stromal side, while FCPc anchors the heterodimer on the lumenal side via PsaV, thereby stabilizing the 

attachment of these antennae (Fig. 5a, c). It is worth noting that the rotated arrangement of the FCPa 

counterpart was also observed in the diatom structure 38, but not in another dinoflagellate (Amphidinium 

carterae) 29, suggesting that this rotation is a case of convergent evolutionary adaptation rather than 

divergent evolution with secondary loss (Fig. 5c). 

The C-terminal extension of FCPb on the lumenal side interacts with PsaA1/A2 and the novel subunit PsaV 

(Fig. 5c). Its stromal N-terminal extension wraps around the N-terminal extension of PsaL and interacts 

with several other subunits, including PsaA2, PsaD, PsaSOD1, and FCPa (Fig. 5c). On the other hand, 

FCPe and FCPd did not acquire extensions but are attached to the PSI core through PsaD, PsaF, and PsaR 

for FCPd, while FCPe is connected to PsaF (Supplementary Fig. 13e). Interestingly, FCPe and FCPd do 

not form any protein-protein contacts, leading to a small gap between the two subunits. Their closest CLA-

CLA distance is 26 Å, which indicates a very poor excitonic energy transfer (EET) between these antennas 

(Supplementary Fig. 13e). Hence, FCPe and FCPd are connected as single subunits to the PSI core and not 

as dimer.  
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The organization of chlorophylls and the FCP antennas shows a reduced light-harvesting apparatus. 

In dinoflagellates, the structural changes in the PSI core led to loss of many conserved CLA binding sites 

compared to diatoms (PDB_ID: 8JJR, 6L4U) 29,30,38,39. The C. velia PSI shares most of these CLA losses 

(Fig. 6a), with 14 CLA binding sites lost in PsaB, 17 CLA in PsaA, and 1 in PsaF, PsaI, and PsaJ. However, 

C. velia stands out from Symbiodinium by absence of additional CLA in the PSI core (Fig. 6b); a detailed 

structural explanation is shown in Supplementary Fig. 14. Specifically, four clusters can be identified in 

which CLA sites are lost. Cluster 4 is the largest one and is adjacent to PsaA1, where 8 CLA disappeared 

in a region where antenna proteins would typically transfer energy to the core (Fig. 6b). The same 

phenomenon was observed for clusters 1 and 2, while the smaller cluster 3 lacks several CLA despite the 

adjacent FCPb. Overall, these findings indicate that the absence of the antenna correlates with the absence 

and shifts of respective CLA connections in the PSI core. On the other hand, two new CLA binding sites 

appeared in PsaF (CLA403 and CLA404), which are not observed in diatoms or dinoflagellates (Fig. 6a). 

Specifically, the new CLA403 in PsaF creates an EET pathway between FCPe and the core, likely to 

compensate the inability of FCPe to transfer excitation energy to FCPd (Supplementary Fig. 13e).  

Similar to CLA, there are fewer carotenoids in the C. velia PSI core (Fig. 6c) than in Symbiodinium. 

Specifically, we found that 7 carotenoids are missing, while one new BCR1231 was acquired in PsaB. 

Additionally, one LRX L1236 in PsaB was found in a region where 4 carotenoids were missing in C. velia 

whereas they are bound to PsaI and PsaM in Symbiodinium. Together with the loss, many of the carotenoids 

appear to be shifted, apparently dispersing the overall distribution of carotenoids within the PSI.  

The PSI from Symbiodinium possesses an inner antenna belt assembled from 12 antenna monomers (Fig. 

6d). In contrast, the PSI in C. velia binds only five FCPs; three located near the PsaA1/A2 heterodimer and 

two near the PsaF region. We cannot rule out that some antenna proteins have been stripped off during the 

isolation of the complex. Nevertheless, several structural features support the absence of additional 

antennae in vivo. Superposition with the Symbiodinium PSI shows a loop extension on the lumenal side of 

PsaB that would produce a steric clash with a hypothetically attached FCP (PCPI-10 in reference structure) 

(Supplementary Fig. 15a). The two neighboring FCPs (PCPI-9 and PCPI-11) would also produce steric 

clashes with PsaR and PsaB, respectively (Supplementary Fig. 15b, c). Hence, the binding in C. velia of a 

PCPI-1 equivalent would also be destabilized by the absence of interactions with its neighboring FCP.  

Moreover, the position of FCPe is conserved in C. velia, while FCPc is shifted by about 13 Å towards FCPa 

(Fig. 6d). This shift leaves a gap between FCPe and FCPc, leading to a loss of interaction for an additional 

FCP binding in this location and the stabilizing protein extension of PsaJ is absent in C. velia. Collectively, 

these structural rearrangements make a FCP (PCPI-6) binding between FCPe and FCPc unlikely 
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(Supplementary Fig. 15d). Likewise, FCPa is also shifted about the same distance as FCPc. In addition, 

FCPa is rotated around the transmembrane axis by almost 90°. These rearrangements would lead to a steric 

clash with the neighbor PCPI-13 FCP-equivalent (Supplementary Fig. 15e). Consequently, a hypothetical 

PCPI-12 would also be destabilized as it loses its interaction site with the missing PCPI-13. Finally, the 

PCPI-2 equivalent would clash with the loop extension of PsaL, making an antenna binding in this position 

also unlikely (Supplementary Fig. 15f). We conclude that our structural data support a significant reduction 

of the PSI antenna size in C. velia compared to diatoms and Symbiodinium, which may represent a specific 

adaptation to C. velia’s ability to cope with fluctuating and high light conditions. 

 

The function of PsaV and the N-terminal extension of PsaI parallels that of PsaU. 

The N-terminal extension of PsaI, attaches to the lumenal side at PsaB and appears to stabilize the protein 

extension of PsaB between residues 605–656 (Supplementary Fig. 16). The interactions between PsaB and 

PsaI are primarily van der Waals and hydrophobic in nature. As the loop extension of PsaB prevents the 

binding of an antenna protein at this position (Supplementary Fig. 15a), the N-terminal extension of PsaI 

was likely acquired to support structural changes in PsaB that co-evolved with the minimization of the light-

harvesting system. Interestingly, the Symbiodinium protein PsaU occupies a similar position to both PsaV 

and PsaI (Supplementary Fig. 16). Nevertheless, the structural configurations differ markedly. For PsaV 

compared to PsaU, the N- and C-terminal orientations are reversed, and the primary and secondary 

structures are different. PsaI also shows large differences in the extent and positioning of its helices. In 

addition, at the position where PsaU extends toward its C-terminus, the new helix in the PsaB loop (residues 

410-421), which specifically evolved in C. velia, appears to substitute for PsaU at that location 

(Supplementary Fig. 16). These findings suggest that PsaV/PsaI evolved independently of PsaU. 

Nevertheless, these proteins likely arose to stabilize newly evolved structural deviations: PsaV clamps the 

split PsaA together and supports FCPa attachment, whereas PsaI stabilizes the newly evolved PsaB loop, 

which prevents antenna attachment in a canonical way. This is reminiscent of PsaU in Symbiodinium 30, 

which also stabilizes changes in its loop region, but in PsaA rather than PsaB. 

The reduced antenna size and specific pigmentation favor direct antenna-to-core EET. 

A detailed analysis of the five FCPs revealed structural differences in pigment composition (Fig 6e). FCPa 

has 12 CLA binding sites and 5 carotenoid binding pockets, FCPb has 10 CLA and 5 carotenoids, FCPc 

has 12 CLA and 4 carotenoids, FCPd has 8 CLA and 5 carotenoids, and FCPe has 9 CLA and 3 carotenoids. 

The bindings sites for CLA309, CLA302, CLA303, CLA304, CLA310, CLA311, CLA312, CLA313 (only 
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absent in FCPe), CLA319, and the carotenoid binding pockets at positions 319, 320, and 321, and 322 

(absent only in FCPe) are conserved among FCPs (Fig. 6e). C. velia specific LRX carotenoids were 

acquired at position 322 in FCPa, 321 in FCPe, and 323 in FCPd. We observed a significant reduction in 

CLAs, especially in LRX containing FCPe and FCPd. Hence, this reduction in pigments appears to correlate 

with the acquisition of the LRX carotenoid, suggesting co-evolution between CLA reduction and the gain 

of LRX. We estimated the most probable EET pathways in the PSI using Förster models 40. We find that 

C. velia connects each subunit separately to the core with relatively strong EET couplings, while the inter-

FCP connections are weak (Supplementary Fig. 17). The CLA-CLA pair between FCPd and FCPe is 

unlikely to transfer energy (Supplementary Fig. 13e), and a poor connection is also found between FCPa 

and FCPb. This implies that the direct FCP-to-core transfer is the dominant pathway. Only in the case of 

FCPa and FCPc, EET transfer takes place between light harvesting proteins (Supplementary Fig. 17). Thus, 

the simplification of the light-harvesting apparatus also favors direct EET to the PSI core. 

Discussion: 

Unprecedented evolutionary novelties observed in C. velia include a split PsaA subunit of PSI and a split 

β-subunit of ATP synthase, the first steps of CLA biosynthesis located in the mitochondrion, a linear plastid 

genome, and widespread oligouridylation of transcripts 4,41. In addition, the recruitment of SODs as stable 

PSI-associated components represents another remarkable innovation. The high-resolution structure of C. 

velia PSI solved in this work, shows how the complex has reshaped to allow attachment of the SOD 

(PsaSOD2), scaffolded over the inactive PsaSOD1 subunit. Furthermore, the canonical core proteins also 

evolved to provide a docking site for the SOD enzyme. The specialisation of PSI extended to FCPs, which 

contain unique extra segments for anchoring to a modified core-complex. A PSI-SOD complex is also 

present in chromerid alga V. brassicaformis, although it possesses an intact PsaA polypeptide 5. Therefore, 

the split PsaA is probably not essential for the binding of SODs to PSI but might optimize the function of 

the complex. The new subunit PsaV and the new N-terminal extension of PsaI likely co-evolved to serve 

as compensatory elements for modifications of C. velia PSI. PsaV clamps the split PsaA more tightly to 

stabilize it, while also facilitates the attachment of FCP proteins. In contrast, the N-terminal extension of 

PsaI stabilizes a newly formed extension in PsaB, which itself likely evolved as a compensatory structural 

element to replace the original FCP attachment site.  

The role of SODs in phototrophs is not limited to ROS scavenging but also plays a role in redox balance. 

In the so-called Mehler reaction or water-water cycle (WWC), PSI complexes photoreduce molecular 

oxygen (O2) to O₂⁻, especially under conditions of highly reduced ferredoxin pool. The toxic O₂⁻ is rapidly 

reduced by SOD enzymes, and the resulting peroxide is converted back to water by peroxidases or catalases. 
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In this way, the electrons from split water in PSII are transferred back to water in the stroma, and the process 

results in ATP synthesis without producing NADPH. 

It is not entirely clear what physiological role the WWC plays in different groups of phototrophs because 

available quantifications of electron flow via WCC are (at best) only approximations. In model plant species 

(Arabidopsis, tobacco) and green algae the SOD-mediated WWC has probably a minor role 42,43. However, 

in diatoms and Symbiodinium, the WWC can contribute up to 50% of total electron flow 44,45. We postulated 

a lowered affinity of ferredoxin to C. velia’s PSI. This decrease in ferredoxin reduction rate should lead to 

a faster over-reduction of P700 and, consequently the PSI-driven photoreduction of O₂ into O₂⁻. In plants 

and green algae, this potentially harmful process is mitigated by activating cyclic electron flow 46, which 

redirects electrons back to plastoquinone/plastocyanin. In C. velia, the available physiological data imply 

an intensive alternative electron sink 23 and, given the strong WWC in Symbiodinium 44,45, we hypothesize 

that the PSI-SOD complex can operate as a “Mehler machine” which favor photoreduction of O₂⁻ over 

linear electron flow (see below). 

A proposed intensive WWC in C. velia chloroplast would also require a relatively high concentration of 

enzymes scavenging produced quantities of toxic H2O2. To address this point, we used proteomics profiling 

to quantify soluble and membrane-bound proteins from C. velia cells grown at low-stress conditions. 

Notably, 2-Cys peroxiredoxin (PRX) is among the top 50 most abundant soluble proteins (Supplementary 

Table 4). This enzyme is a thiol-specific PRX in chloroplast, and is essential for the WWC in Arabidopsis 

47. PRX-driven peroxide reduction contributes to redox balance (re-oxidation of ferredoxin) as an additional 

electron sink. The soluble extract from C. velia also contains high levels of two MnSODs (Supplementary 

Table 4), one (Cvel_4244) with a predicted signal peptide 5. While MnSODs in chlorophytes are typically 

targeted to mitochondria 48, the very high MnSODs levels in C. velia suggests plastid localization, similar 

to diatoms 49. If so, the concentration of SODs in C. velia chloroplast is enormous as FeSODs belong to the 

most abundant membrane-associated proteins (Supplementary Table 4). These data support our working 

model (Fig. 7) that, in C. velia, a large fraction of electrons generated by PSII can be directed by PSI into 

O₂⁻ and immediately detoxified by SODs and PRXs.  

The evolutionary splitting of the PsaA subunit was poorly understood thus far as it was hard to discern its 

biological function 4. Based on our structure we speculate that the splitting leads to greater conformational 

flexibility of PsaA1, which is evolutionarily adapted to connect the rotated FCPa antenna to the PSI core 

(Fig. 4). The unusual attachment of FCPa allows other antennae to shift, creating a large gap between FCPe 

and FCPc. This gap could serve as a docking site for other proteins or protein complexes. PSI and PSII in 

C. velia are probably tightly interconnected via antennas that enable energy spillover 23 or form a 
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megacomplex 5. We speculate that the splitting of PsaA is part of a radical redesign that ensures binding of 

SOD together with the attachment of (oxygen producing) PSII (Fig. 7). In C. velia, PSII also lost several 

subunits including PsbM, which stabilize the PSII dimer 5, and the CP47 subunit has a larger unique 

extension at the lumenal side.  

However, this explanation needs to be considered also in light of the newly acquired subunit PsaV, which 

clamps together the split PsaA subunits at the lumenal side and also stabilizes the attachment of other 

antenna components, such as FCPb and FCPc. Hence, the FCPa attachment (a formation of a gap) is likely 

not the only reason for the splitting. An alternative hypothesis could be that possible higher O₂⁻ 

concentration in C. velia leads to differential local damage. It is conceivable that local O₂⁻ damage affects 

the PsaA subunit unevenly, which in turn could have favored the evolutionary splitting of PsaA to minimize 

the replacement cost by allowing only one subunit to be exchanged at higher rates. This is supported by the 

higher transcript coverage of PsaA2, which suggests increased synthesis of this subunit 4. PsaA2 is also 

located closer to the reaction center, where most O₂⁻ should form. 

The ability of C. velia to efficiently adapt to changing light conditions suggests that additional FCPs may 

dynamically and transiently associate with PSI-5FCP, though likely in a different configuration than in 

Symbiodinium due to steric constraints. Alternatively, no additional FCPs bind, instead, antenna proximity 

and interaction strength might be modulated to optimize energy transfer. The reduced antenna size could 

serve as a photoprotective adaptation under high light, balancing over-reduction. Antenna minimization 

was previously shown to benefit photosynthetic performance under light stress 50,51.  

C. velia utilizes a form II Rubisco, which kinetic is fast but suffers from low CO2-O2 selectivity 3,52. This 

fact could imply that C. velia concentrates carbon around Rubisco, but so far no such mechanism (e.g. 

pyrenoid) has been identified. The correlation of O2 production with other photosynthetic parameters 

however suggests that an intensive O2-consuming process(es) keeps the O2 concentration in C. velia stroma 

low 23. We hypothesize that the expected large capacity of the WWC in C. velia could thus prevent the 

over-reduction of the photosynthetic electron transport chain while lowering the oxygenase activity of type 

II Rubisco. 

 

Methods 

Culturing of C.velia cells 
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C. velia (RM12) cells were grown photoautotrophically in a rotary shaker in 500 ml Erlenmeyer flasks 

bubbled with air and under continuous light (day light bulbs) at 27 °C and in artificial seawater medium 

with f/2 nutrients. The applied light intensity was 100 μmol photons m−2 s−1.  

 

Purification of C. velia PSI  

The resuspended cells in thylakoid buffer (20 mM MES, pH 6.5, 20 mM MgCl2, 10 mM CaCl2) were mixed 

with 0.5 ml of glass beads (0.1-0.2 mm diameter) in a 2 ml screw capped tube and broken using Mini-

BeadBeater (BioSpec; twenty shaking cycles, 30 s each with 2-min breaks for cooling the suspension on 

ice). Membranes were separated from the cell extract by centrifugation (40,000 x g, 20 min) and solubilized 

with β-DDM (β-DDM/CLA = 15, w/w for 1 hour on room temperature). The solubilized membranes (3 

mL) were loaded on the top of a step sucrose gradient (38.5 mL in total, Thickwall polycarbonate 

ultracentrifuge tube, Beckmann Coulter) prepared from 12 ml 20% sucrose, 12 ml of 15% sucrose and 10 

mL 10% sucrose in thylakoid buffer containing 0.01% LMNG (Supplementary Fig. 1a). After 

ultracentrifugation (18 h, 100,000 x g) the green fraction containing PSI was collected (5 mL) and 

concentrated on Amicon 100 kDa micro-concentrators to 1 mL. From two independent purifications, one 

preparation was further separated on 4-14% clear-native PAGE with 1% (w/v) A8-35 amphipol 53. The 

second preparation was injected onto an Agilent-1260 HPLC system and separated on a Yarra SEC-4000 

column (Phenomenex) using mobile phase (20 mM MES, pH 6.5, 100 mM NaCl, pH 6.5, containing 0.01% 

(w/v) LMNG at a flow rate of 0.25 ml min−1 at 15 °C. Eluted proteins and complexes were detected using 

a diode-array detector and a fluorescence detector set to 440/675 nm (excitation/emission wavelengths) 

(Supplementary Fig. 1b).  

 

2D electrophoresis  

The individual components of C. velia PSI were resolved by incubating the gel strip from the first dimension 

in 25 mM Tris/HCl pH 7 containing 1% (w/v) SDS and 1% (w/v) dithiothreitol for 30 min at room 

temperature and by subsequent separation in the second dimension by SDS electrophoresis in a denaturing 

12–20% (w/v) polyacrylamide gel containing 7M urea. The separated proteins were stained with Coomassie 

Brilliant Blue. 

 

Quantitative protein mass spectrometry 
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Cell lysate of C. velia, prepared as described earlier, was centrifuged (40,000 x g, 20 min), the supernatant 

collected as the soluble fraction and the pelleted membrane resuspended in 2 mL of the thylakoid buffer. 

The centrifugation was repeated, the pellet resuspended in 1 mL and analyzed as membrane fraction. To 20 

µL of each fraction, ammonium bicarbonate (Sigma Aldrich; final concentration 50 mM) and Rapigest 

(Waters) surfactant (final concentration 0.1% v/v) were added to obtain 50 µL of sample. The sediment was 

resuspended in 50 µL of 50 mM ammonium bicarbonate with 0.1% (v/v) Rapigest and sonicated by 10 

consecutive 1-second pulses interrupted by 1 second cooldown using a UP100H ultrasonic processor 

(Hielscher) on ice. Both mixtures were incubated at 60°C for 45 minutes, then cooled to room temperature, 

proteomic grade trypsin (Pierce) was added to a final concentration of 10 ng/µL and incubated ad 37°C. 

After 12 h, samples were acidified by mixing with formic acid to a final concentration of 0.1% (v/v) and 

peptides were isolated by the StageTip procedure 54 to obtain 40 µL of the sample. LC-MS/MS analysis (n 

= 2) was performed on an UltiMate 3000 UHPLC (Thermo Fisher) on-line coupled to a TimsTOF pro 

(Bruker) mass spectrometer. 2 µL of the sample were trapped for 2 min on a ThermoFisher trap (0.3 x 5 

mm, C18, 5 µm) column, then separated by reverse phase liquid chromatography on an Acclaim PepMap 

RSLC column (75 µm x 15 cm, C18, 2 µm, 100Å; ThermoFisher). The 30 min gradient started at 3% of 

acetonitrile in 0.1% formic acid and rose to 50% acetonitrile in 0.1% formic acid. Peptides were ionized by 

CaptiveSpray, spectra were acquired in data dependent PASEF (Parallel Accumulation/SErial 

Fragmentation) mode with an accuracy of 0.2 ppm for precursors and 0.5 ppm for fragments. Raw data 

were processed by the MaxQuant/Andromeda software 1.6.14 55 and 56, compared to C. velia protein 

databases downloaded from CryptoDB (https://cryptodb.org/cryptodb/app) and with a list of plastid-

encoded proteins in C. velia obtained from Prof. Miloslav Oborník (Biological Centre, Czech Academy of 

Sciences). Statistical analysis was performed in Perseus 1.6.14.0 57. 

 

Analysis of protein gel spots using protein MS 

Selected spots were excised from the gel, chopped into smaller pieces, and destained by sonication in 50 

mM Tris-Cl (pH 8.0) containing 50% acetonitrile. Samples (n=1) were then reduced with 10 mM TCEP at 

65 °C for 10 min and subsequently alkylated with 20 mM iodoacetamide for 1 h in the dark. Both reactions 

were performed in 100 mM Tris-Cl (pH 8.0). The samples were further washed by sonication in water, 

acetonitrile, and 50% acetonitrile, and then dried in a vacuum concentrator (SpeedVac DNA 130, Thermo 

Fisher Scientific). 

For digestion, the gel pieces were rehydrated in 50 mM ammonium bicarbonate containing sequencing-

grade trypsin Gold (Promega) at a 1:50 protease:protein ratio and incubated at 37 °C for 18 h. Proteolysis 
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was quenched by adding 0.1% trifluoroacetic acid (TFA) in 50% acetonitrile, followed by sonication, and 

the supernatants were collected into new tubes. The gel pieces were then extracted a second time with 20 

µl of 0.1% TFA in 50% acetonitrile, sonicated, and the supernatants were pooled. Collected peptide 

solutions were dried in the vacuum concentrator and resuspended in 20 µl of 0.1% TFA in 5% acetonitrile. 

For PsaS1, one half of the gel/sample was deglycosylated before digestion by overnight incubation with 

500 U PNGase F (New England Biolabs) in 50 mM ammonium bicarbonate. 

LC–MS/MS analysis was carried out on an EvoSep One system (EvoSep) coupled online to a timsTOF 

SCP mass spectrometer (Bruker Daltonics). A 15 µl aliquot of each sample was loaded onto Evotips (Evotip 

PURE, EvoSep) equilibrated in 0.1% formic acid and 0.015% DDM. Peptides were separated on a PepSep 

column (150 µm × 15 cm, C18, 1.5 µm, Bruker) using the EvoSep “30 samples per day” method (44 min 

gradient achieved with 0.1% formic acid in water and 0.1% formic acid in acetonitrile, at a flow rate of 0.5 

µl/min). Spectra were acquired in data-dependent mode employing PASEF. 

For protein identification, data were peak-picked in DataAnalysis (v6.1, Bruker Daltonics), exported to 

Mascot generic files, and searched with Mascot (v2.7.0, Matrix Science, London, UK) against databases 

containing C. velia protein sequences as described above with manually added sequence of PsaM and cRAP 

contaminants. Search parameters were as follows: enzyme specificity, Trypsin/P with up to two missed 

cleavages; carbamidomethylation (Cys) as a fixed modification; N-terminal acetylation and Met oxidation 

as variable modifications; and Asn deamidation as an additional variable modification for the 

deglycosylated sample. Mass tolerances were set to 15 ppm for precursors and 0.05 Da for fragments. 

Decoy searches were enabled with FDR < 1%, IonScore cutoff set to 25, and minimum peptide length > 5 

amino acids. For glycan identification of PsaSOD1, raw data were also searched in PEAKS Studio 12.5 

(Bioinformatics Solutions Inc.) using the Glycan workflow, GlycanScore cutoff set to 20 and identical 

search parameters as described above. 

 

Pigment analysis 

To identify pigments associated with isolated C. velia PSI, we excised a piece of CN gel (~ 3 × 2 mm) 

containing the separated complex and cut it further into several smaller pieces. Gel pieces were incubated 

in 200 μl of 25 mM MES buffer, pH 6.5 with 0.04% β-DDM overnight to elute PSI from the gel. After 

centrifugation, 50 μl of the supernatant were injected into the Agilent-1260 HPLC system equipped with a 

diode-array detector. Pigments were separated on a reverse-phase column (Zorbax Eclipse C18, 5 μm 

particle size, 3.9 × 150 mm; Agilent) with 35% (v/v) methanol and 15% (v/v) acetonitrile in 0.25 M pyridine 

(solvent A) and 20% (v/v) methanol, 20% (v/v) acetone, 60% (v/v) acetonitrile as solvent B. Pigments were 
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eluted with a linear gradient of solvent B (30–95% (v/v) in 25 min) in solvent A followed by 95% of solvent 

B in solvent A at a flow rate of 0.8 ml min−1 at 40 °C. CLA and carotenoids were detected at 450 nm; the 

obtained peaks were integrated and molar stoichiometries calculated from calibration curves prepared using 

authentic standards. Since no chemical standard for LRX was available, we used a standard of echinenone 

(Sigma-Aldrich). This xanthophyll has a similar absorption maximum as LRX (~450 nm)17 and, although 

the quantification of LRX is not absolutely precise, this approach provides a good estimate of the LRX 

content. 

 

Grid preparations:  

The grids for the two datasets were prepared as follows. For dataset 1 (SEC purified sample), Quantifoil R 

1.2/1.3 grids with 300 copper mesh (100 pieces, Thermo Fisher Scientific, USA) were glow-discharged for 

45 seconds at 35 mA using a GloQube Plus instrument (Quorum Technologies, UK). The purified PSI 

sample, with a CLA concentration of ~0.3 mg/ml, was spun down at 22,000 x g for ten minutes to pellet 

larger aggregates. Three microliters of the supernatant were applied to 1.2/1.3 Cu Quantifoil 300 mesh 

grids. The sample was incubated on the grid for 30 seconds in the humidified chamber (100% humidity) at 

4°C using a Vitrobot (FEI Company, USA) plunge-freezing machine. The grids were then blotted for 2.5 

seconds and plunge-frozen into liquid ethane.   

For dataset 2, the sample eluted from clear native PAGE was used. The greenish band in the gel was excised, 

cut and smashed into smaller fragments using a scalpel. Gel fragments (~1 ml) were placed into a 15 ml 

Falcon tube, and the PSI was eluted by diffusion into 3 ml sample buffer (20 mM MES pH 6.5, 0.15M NaCl 

and 0.02% β-DDM) by incubating it using a rotary mixer at 4°C overnight. The resuspension was then 

centrifuged for 2 h at 300,000 x g to pellet gel particles. The resulting supernatant was concentrated using 

a spin concentrator (Vivaspin 500, 100 kDa cutoff) and further used for grid preparations. Quantifoil R 

1.2/1.3 grids with 300 copper mesh were glow-discharged for 30 seconds at 35 mA using a GloQube Plus 

instrument. After incubating the native gel eluted sample for 5 seconds, the grids were blotted for 3 seconds 

and plunge-frozen in liquid ethane. The temperature was set to 4°C, and the relative humidity to 100%. All 

grids were then clipped and loaded into a 300-kV Titan Krios G4 microscope (Thermo Fisher Scientific, 

USA).  

  

Cryo-EM data collections:  
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Both datasets were collected on a Titan Krios G4 microscope, fitted with a Falcon 4i camera and Selectris 

X Energy Filter (Thermo Fisher Scientific, USA). Data collection was carried out using EPU 3.5.1.6034 

software at a magnification of 165k, which corresponds to a nominal pixel size of 0.729 Å/px. A total of 

20,980 micrographs for dataset 1 and 11,917 micrographs for dataset 2 were acquired from grids that 

showed a good particle distribution. The dose rate was 6.73 electrons per physical pixel per second, and 

images were recorded for 3.16 s, corresponding to a total dose of 40 electrons per Å². Defocus was set to 

−0.5, -0.8, -1.1, -1.5, -1.8, and −2.1 μm. 

 

Cryo-EM single particle analysis: 

Supplementary Fig. 2 provides an overview of the data processing workflow. Two datasets were 

independently processed using cryoSPARC 58 v4.5.3, as detailed below. Initially, motion correction and 

CTF estimation were performed on the raw data in cryoSPARC’s Live session. Particle picking was 

conducted using blob picking, followed by an initial 2D classification. Promising 2D classes were selected 

to generate templates for subsequent particle picking. From these, 2,446,533 particles from Dataset 1 and 

3,360,609 particles from Dataset 2 were extracted using a 500-pixel box size, which was subsequently 

binned to a 200-pixel box size (96-pixel box for dataset 2). The particle stacks and processed exposures 

were then exported to cryoSPARC’s workspace for further processing. 

Both datasets underwent two rounds of 2D classification followed by Ab initio reconstruction to create 

initial maps for heterogeneous refinement. For Dataset 1, two rounds of heterogeneous refinement were 

performed using five classes (two Ab initio and three junk classes), starting with all 2,446,533 particles. 

After an additional Ab initio job, non-uniform refinement with 348,740 unbinned, re-extracted particles 

produced a 2.36 Å map. Dataset 2 underwent eight rounds of heterogeneous refinement using five classes 

(one Ab initio and four junk classes for the first seven rounds, two Ab initio and three junk classes for the 

final round). Non-uniform refinement of 184,142 cleaned and re-extracted particles yielded a 2.48 Å map. 

The particles from both datasets were converted into star files using csparc2star from the PyEM suite (v0.5 

Zenodo) (55) for further processing in RELION v5.0.0b 59. Motion correction was repeated using RELION's 

built-in implementation. A total of 532,822 particles were extracted with a 500-pixel box size, and Datasets 

1 and 2 were merged for subsequent steps. A reference map was generated via 3D refinement without a 

mask, employing a global angular search, and used to create a solvent mask. Several iterative steps were 

then performed. First, a 3D refinement with a solvent mask and local angular search resulted in a 2.48 Å 

map, which was sharpened using the postprocessing routine in RELION. Second, following the initial 

postprocessing step, CTF refinement (without fourth-order aberration correction) and a subsequent 3D 
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refinement with local angular search improved the map to a 2.03 Å resolution. Third, another 

postprocessing step was followed by particle polishing (separately for each dataset) and another 3D 

refinement, yielding a 1.92 Å map. Fourth, after a third postprocessing step, additional CTF refinement 

with fourth-order aberration correction and another 3D refinement produced a 1.85 Å map. Finally, 

following a fourth postprocessing step, a second round of polishing (separately for each dataset) and 

subsequent 3D refinement yielded a map with a 1.86 Å resolution. A final CTF refinement led to a 

consensus map with an overall resolution of 1.84 Å. 

To improve local resolution in the FCPa, FCPe, and SOD regions, three individual local masks were created 

using ChimeraX’s map eraser tool 60. 3D refinements with these masks and local angular searches produced 

maps with resolutions of 2.17 Å (FCPa), 2.05 Å (FCPe), and 1.95 Å (SOD), as shown in Supplementary 

Fig. 2. 

To enhance the local resolution of the N-terminal region of PsaI, particles from datasets 1 and 2 were 

manually separated using a text editor. 3D refinements with a solvent mask and local angular search were 

performed on each dataset individually. While dataset 1 yielded a map with poor PsaI density, dataset 2 

produced a refined PsaI region map with an overall resolution of 1.94 Å. 

 

Sequence alignment, BLAST searches, and protein modeling. 

Amino acid sequences for alignments were retrieved from either PDB structure files or NCBI BLAST / 

GenBank. The alignment of Acylated Galactolipid Associated Protein 1 (AGAP1) from Arabidopsis 

thaliana and C. velia was performed with the MUSCLE algorithm in Geneious Prime (Supplementary Fig. 

4c). To find the amino acid sequence of AGAP1, we conducted a BLAST search with the homologous 

enzyme sequence from Arabidopsis thaliana (Uniprot ID Q95JI7). However, conventional BLASTp, even 

when restricted to sequences of C. velia, failed to yield results. We therefore used tBLASTn with the amino 

acid sequence of Arabidopsis thaliana in the Transcriptome Shotgun assembly library and restricted results 

again to C. velia. The resulting transcript (GenBank ID: JO804824) was shorter than that of Arabidopsis 

thaliana and is potentially truncated. As has been pointed out previously, sequence data of photosynthetic 

active organisms is often poorly annotated or data bases suffer from other issues, such as redundant entries 

61,62. We then retrieved the full-length sequence with a BLAST search performed in Geneious Prime, using 

Patent Data Bases as source. Both the truncated and full version of this sequence and resulting protein 

models were oddly similar to distantly related plant species. The deposited C. velia sequences 63 were indeed 

found previously to be contaminated with other sequences and an erratum was published 64. Using the 

sequence data from Woehle et al. as custom BLAST data base in Geneious Prime and Arabidopsis thaliana 
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AGAP1, we then found another C. velia, putative AGAP1 sequence. We could confirm this sequence in the 

online data base CryptoDB (https://cryptodb.org/cryptodb/app/) with the ID Cvel_10729, as it is annotated 

as putative mono- and diacylglycerol lipase. We used this sequence to model a potential C. velia AGAP1 

fold with AlphaFold (Supplementary Fig. 4d).  

To compare sequences of canonical subunits (PsaA, B, C, D, E, F, L, M, I, R) of C. velia to a closely related 

species, Symbiodinium, we retrieved Symbiodinium amino acid sequences from the PDB structure 8JJR and 

aligned them with the Clustal Omega algorithm in Geneious Prime. 

For sequence alignments in Supplementary Fig. 7, sequences were retrieved from PDB file 8JJR and aligned 

in Geneious Prime with the software’s own alignment option (cost matrix Blosum62). To avoid 

fragmentation of the two shorter sequences (C. velia PsaA1 and -2) when aligning to the longer sequence 

(Symbiodinium PsaA), we increased the gap open penalty to 20, the gap extension penalty was left as the 

default (= 3). PsaF/J sequences of C. velia and Symbiodinium were aligned with the same settings. SOD 

sequences of different species (Chaetoceros tenuissimus 1, NCBI ID: GFH51814; Porphyridium 

purpureum, NCBI ID and query cover: KAA8495090.1:64-261; Chaetoceros tenuissimus 2 NCBI ID: 

GFH47345; C. velia: sequence from current work; V. brassicaformis, NCBI ID and query cover: 

CEM36361.1:51-331; Symbiodinium, NCBI ID and query cover: AAX99422.1:3-197; Physcomitrium 

patens, NCBI ID and query cover: XP_024379755.1:60-263; Chlamydomonas reinhardtii, NCBI ID and 

query cover: AAB04944.1:47-228; Pisum sativum, NCBI ID and query cover: XP_050888148.1:65-271) 

in Supplementary Fig. 8 were aligned using Clustal Omega in Geneious Prime with default settings. FCP 

sequences from the PSI complex structure of this current manuscript were used for a Clustal Omega 

alignment with default settings in Geneious Prime. Protein models in Supplementary Fig. 4d (C. velia 

AGAP1), Supplementary Fig. 8 (C. velia ferredoxin) and Supplementary Fig. 12 (Pisum sativum SODs) 

were modelled using the SWISS-MODEL server 65. 

 

Model building and refinement: 

The atomic model building was carried out using Coot 9.8.98 66 in combination with ISOLDE 67 in 

ChimeraX 1.7.1 60. The known subunits were predicted using SWISS MODEL 65 and then rigid-body fitted 

into the map as a starting model using UCSF Chimera v1.17 68. Real-space refinement in Coot was then 

carried out to rebuild the model, deleting residues that were absent in the density and correcting the rotamers 

and deviations in the main chain tracings. The unknown proteins were first modeled manually by tracing 

about 100 amino acids and estimating the sidechains from the density. The predicted sequences were then 

exported and BLASTed 27 against genomic and transcriptomic databases of C. velia 28. The hits were 
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unambiguously linked to only one protein. The sequences were then used to manually rebuild the unknown 

proteins and extend the missing parts using Coot. For model building, all maps (consensus, SOD-region, 

FCPe-region, FCPa-region) were first aligned in Chimera, resampled, and then imported to Coot to be used 

simultaneously for model building. Target maps were changed when necessary, so that model fitting was 

always done in maps with the best local quality. Model-map weights were adjusted accordingly. In lower 

quality maps of the FCP regions, more weight was given to the model restraints, while in the core regions 

of PSI, the map weight was increased and model restraint was lowered. All ligands, like CLAs, carotenoids, 

lipids, detergents, and other cofactors, were manually placed using restraints files generated from the 

Grade2 server (http://grade.globalphasing.org). The modelling of ligand identities was based on high-

resolution density map. If the density was located in a well-resolved region of the map, then inspection of 

both sharpened and unsharpened maps was sufficient to unambiguously identify the ligand. For the LRX 

ligands, the density was unambiguous for at least one head group (one side of the molecule showed high-

resolution density and the other side was less well resolved). Nevertheless, the quality of the density on the 

well-resolved side was sufficient to confidently determine the ligand’s identity. Similarly, the RRL ligand 

shows well-resolved density for the core moiety and sugar group, including correct sugar-ring puckering, 

whereas the aliphatic chains are less defined. After fitting the model, PHENIX software suite (1.21-5207) 

69 was used for an initial round of model refinement. Ready-set was utilized to add hydrogens and determine 

the link records for the coordination of the chlorophylls. The overall refinement weight was optimized and 

applied in subsequent refinement steps. For the refinement, a composite map was created with PHENIX, 

which averaged all maps weighted by their local correlation coefficient with the model. This map was first 

used to refine the model using the minimization_global options. After the initial refinement with PHENIX 

real-space refine, the model was imported into ISOLDE (v1.7)/ChimeraX, to fix clashes and rotameric 

outliers of the sidechains. Then, a second round of real-space refinement was conducted, with several 

iterations of rebuilding, fixing outliers, and model validation using MolProbity 70. The final refinement was 

done by refining only the atomic B-factors using the consensus map instead of the composite map. Finally, 

validation was conducted using the validation server of the Protein Data Bank (PDB) (https://validate-rcsb-

1.wwpdb.org/). All maps and the model were deposited in the PDB databank. All structural figures were 

generated with Chimera X 60 and UCSF Chimera 68. 

 

Data availability 

Atomic coordinates of the PSI supercomplex from C. velia have been deposited in the PDB under accession 

code 9HYU [https://www.wwpdb.org/pdb?id=pdb_00009hyu]. The composite density map, including the 

core region, SOD region, FCPa region, PsaI N-terminal region, and FCPe region, has been deposited in the 
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Electron Microscopy Data Bank (EMDB) under accession code EMD-52518 

[https://www.ebi.ac.uk/emdb/EMD-52518] (composite map). The consensus map is deposited under 

accession code EMD-52508 [https://www.ebi.ac.uk/emdb/EMD-52508], along with EMD-52501 

[https://www.ebi.ac.uk/emdb/EMD-52501] (SOD region), EMD-52524 

[https://www.ebi.ac.uk/emdb/EMD-52524] (FCPa region), EMD-52517 

[https://www.ebi.ac.uk/emdb/EMD-52517] (FCPe region), and EMD-52507 

[https://www.ebi.ac.uk/emdb/EMD-52507] (PsaI N-terminal region). Whole-cell proteomics data and the 

MS analysis of protein spots form the 2D gel have been deposited to the ProteomeXchange Consortium via 

the PRIDE partner repository with the dataset identifiers and PXD060022 and PXD068416. 
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Fig. 1: Analysis of protein and pigment composition of the purified PSI from C. velia. a, The PSI was 

purified twice and, in both cases, the PSI-enriched fraction was first isolated using a sucrose gradient. 

Subsequent purification steps involved either clear-native (CN) gel or size-exclusion chromatography 

(Supplementary Fig. 1). A single strip from the CN gel was further separated in the second dimension by 

SDS-PAGE and stained with Coomassie Blue. All visible protein spots were analyzed by MS (b). The 

proteins identified in selected spots are shown in a form of heat map, where each protein is colored based 

on its identification score (see Supplementary Data File for all identified proteins). * indicates that the 

tryptic digestion of the sample was combined with deglycosylation by PNGase F. c, HPLC pigment analysis 

of the PSI complex eluted from the CN gel; the cut band is indicated by a dashed rectangle in (a). The ratio 

of individual carotenoids, showed in parentheses, is calculated to 114 CLA molecules that were identified 

in the cryo-EM structure of C. velia PSI from this work. The data for this figure are provided in the 

Supplementary Data File S2. 
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Fig. 2: Overall structure of PSI from C. velia. a, Top view from the stromal side showing the core 

subunits in ribbon style and PsaA1/A2, PsaB, and antenna proteins in surface representation. b, Top view 

highlighting the antenna proteins in ribbon style and core subunits as surface. c, Side view showing the 

transmembrane part. d, Network of pigments and cofactors shown in stick and ball representations. CLAs 

are shown in green, XATs in purple, BCRs in blue, LRX in red, PQN in orange, lipids in light gray, iron-

sulfur clusters in yellow-orange, and the iron cofactor in orange. 
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Fig. 3: Splitting of the core subunit PsaA in C. velia and comparative analysis with the PsaA 

homologue from Symbiodinium. a, The secondary structure of PsaA1 and PsaA2 is shown and numbered 

from the N- to the C-terminus: transmembrane helices (TMH), helices (H), and β-strands (B). Note the 

partially disordered N-terminus near the ferredoxin-binding site. b, The shifted TMH2 helix, accompanied 

by a truncation of the subsequent loop by ~8 Å, is depicted. The lower-resolution density, indicative of 

local flexibility of this helix, is displayed as a transparent isosurface representation. c, Several structural 

remodelings are observed: the loop between β-sheets B3 and B4 is truncated, while the loop region between 

TMH3 and B1 is remodeled into two newly formed helices, H3 (α) and H4 (3₁₀). The new C-terminus is 

redirected toward FCPa, where it stabilizes attachment to the PSI core through a newly formed inter-subunit 

β-sheet and a salt bridge between R277 of PsaA1 and D214 of FCPa. 
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Fig. 4: The attachment of PsaSOD1/2 subunits to the stromal side of the PSI core. a, The PsaSOD1/2 

heterodimer stably binds to the PsaCDE triad of PSI via an N-terminal extension (Linker, highlighted in 

orange). b, The linker of PsaSOD1 is buried in a groove that is formed by stromal parts of PsaD, PsaL, 

PsaI, PsaB, and FCPb, engaging in hydrophobic, charged, and polar interactions with a total buried surface 

area of 4,675 Å2. c, PsaSOD2 is the catalytically active site with Fe bound to three histidines and one 

aspartate, while PsaSOD1 has lost its Fe cofactor due to a mutation of one histidine to threonine, resulting 

in unfavorable coordination for Fe. d, PsaSOD1 has two N-linked glycosylation sites at the SOD domain 

and in the N-terminal linker region; both glycosylation sites were confirmed by MS analysis 

(Supplementary Fig. 10). The conserved NXS/T motif, with the sugar chains, are shown with density. Color 

coding follows the same scheme as in Fig. 1.  
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Fig. 5: PsaV and protein extensions collectively stabilize the split PsaA1/A2, FCPs, and the 

PsaSOD1/2 heterodimer. a, Overall and close-up views showing interactions of PsaV with the PsaA1/A2 

dimer, FCPb, FCPc, PsaL and PsaB. b, The PsaSOD1/2 platform, formed by stromal protein extensions of 

several canonical subunits in the PSI core, is highlighted in red. Interacting residues are depicted as spheres 

centered on Cα atoms, colored according to their respective subunits (<4 Å distance cut-off for sidechain-

to-sidechain interactions) c, Protein extensions of FCPs stabilize their attachments, with further support 

from PsaV. Interactions are shown the same way as in panel b.  
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Fig. 6: Reduced number of CLA and carotenoids in the PSI core and structural changes in the FCP 

antenna. a, Lost CLA in C. velia PSI core compared to the diatom structure with PDB_ID: 6L4U. Missing 

CLAs in C. velia compared to 6L4U are shown in gray, all CLAs present in C. velia in green, and conserved 

CLAs shared between 6L4U and C. velia in orange. Shifted CLA binding sites are indicated by arrows. All 

conserved CLA binding sites in C. velia are labeled. b, Comparison of CLA binding sites in Symbiodinium 

(yellow) and C. velia (green), with four clusters of decreased CLA sites in orange. Lost CLA sites in 

Symbiodinium are labeled (PDB_ID: 8JJR). Absent and present FCPs are indicated. c, Comparison of 

carotenoids in Symbiodinium (purple) and C. velia (blue) PSI core. Lost carotenoids are in turquoise, new 

ones in pink. Carotenoids are labeled by type and subunit, with arrows indicating the shifts of carotenoid 

binding sites. d, C. velia FCP antenna compared to Symbiodinium shows steric clashes (red star) and a ~45 

Å shift of FCPa and FCPc, resulting in a widened gap (black arrow). e, Close-up view of all five FCP 

antennae. Transmembrane helices are labeled, pigments numbered according to the PDB file of the current 

work. 
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Fig. 7: The PSI of C. velia as an enzymatic machine for oxygen photoreduction. PSI and PSII are co-

localized or organized as a supercomplex in C. velia and oxygen therefore concentrates around PSI.  Due 

to the weaker affinity of ferredoxin for PSI, oxygen is readily reduced to superoxide (O2
-) and immediately 

dismutated into peroxide and oxygen either by PSI-attached FeSOD or by soluble MnSOD. The oxygen 

molecules from the dismutase half-reaction can undergo another round of reduction by PSI. The peroxide 

is finally converted back into water by the abundant thiol peroxiredoxins (PRX). As the reducing substrate 

of PRX are in most cases thioredoxins, this reaction serves as another sink for electrons in the chloroplast 

(see Discussion).  

 

 

 

 

Editorial Summary 

The alveolate alga Chromera velia is a close relative of parasitic apicomplexans that possesses 

an unusual Photosystem I. Here, the authors present the cryo-EM structure of this complex, 

revealing several novel subunits, including a bound superoxide-dismutase heterodimer. 
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